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Reduced realization for switched linear systemswith known

mode sequence

Md. Sumon Hossain a, Stephan Trenn a,

aBernoulli Institute for Mathematics, Computer Science, and Artificial Intelligence, University of Groningen, The Netherlands.

Abstract

We consider switched linear systems with mode-dependent state-dimensions and/or state jumps and propose a method to
obtain a switched system of reduced size with identical input-output behavior. Our approach is based in considering time-
dependent reachability and unobservability spaces as well as suitable extended reachability and restricted unobservability
spaces together with the notion of a weak Kalman decomposition. A key feature of our approach is that only the mode sequence
of the switching signal needs to be known and not the exact switching times. However, the size of a minimal realization will
in general depend on the mode durations, hence it cannot be expected that our method always leads to minimal realization.
Nevertheless, we show that our method is optimal in the sense that a repeated application doesn’t lead to a further reduction
and we also highlight a practically relevant special case, where minimality is achieved.

Key words: Kalman decomposition, reachability, observability, switched systems.

1 Introduction

Realization theory is a classical topic in control theory
and involves finding a (preferably) unique minimal sys-
tems which generate the specified input-output behavior
of a certain class cf. [10, 25]. Moreover, realization theory
provides a theoretical basis for model reduction, system
identification and filtering/observer design. In [2], the
minimal state space realization problem for (continuous)
linear time-invariance systems was first studied based on
hidden pole-zero cancellation techniques and in [10], the
input-output description is revealed by considering the
reachable and observable part of a dynamical system.

Realization theory of switched systems has already been
discussed e.g. in [1, 13, 15, 14, 16, 17, 19, 20] and the
references therein. In particular, in [13], the author com-
bines the theory of rational formal power series with
the classical automata theory to discuss the realization
theory of hybrid systems. Specifically, the cases of arbi-
trary and constrained switching are discussed where the
switching signal is considered as an input. This consid-
eration of the switching signal as an “input” is a com-
mon viewpoint in most of the existing works, i.e. it is not
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possible to use these results when trying to find a (min-
imal) realization for a given switching signal (or given
mode sequence). Without discussing realization theory,
observability and reachability of switched systems have
been studied in [12, 18, 22, 21, 24], the proposed ap-
proach is strongly inspired by these results.

In contrast to many of the existing literature on switched
system, in this paper we view a switched linear systems
as a piecewise-constant time-varying linear systems, in
particular, a (minimal) realization in general depends on
the specifically given switching signal.

To be more specific, we consider the switched linear sys-
tems (SLSs) with a given switching signal of the form

Σσ :

{ ẋk(t) = Aσ(t)xk(t) +Bσ(t)u(t), t ∈ (sk, sk+1)

xk(s+k ) = Jσ(s+
k
),σ(s−

k
)xk−1(s−k ), k ∈ Q

y(t) = Cσ(t)xk(t+), t ∈ [sk, sk+1),
(1)

where σ : R → Q = {0, 1, 2, . . . , m} ⊆ N is the given
switching signal with finitely many switching times s1 <
s2 < . . . < sm in the bounded interval [t0, tf ) be of in-
terest and xk : (sk, sk+1)→ Rnk is the k-th piece of the
state (whose dimension nk may depend on the mode).
For notational convenience let s0 := t0, sm+1 := tf and
let the duration of mode k be denoted by τk := sk+1−sk,
k ∈ {0, 1, . . . , m}. In the context of realization theory it
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is common to assume that the system starts with a zero
initial condition, i.e. set x−1(t−0 ) := 0, however, it will
turn out that our approach can easily take into account
the situation of a nonzero initial value. The input and
output are given by u : R → Rm and y : R → Rm, re-
spectively. Here, x(t−) and x(t+) denote, respectively,
the left- and right-sided limit at t, assuming they exist.

For each mode p ∈ {0, 1, 2, . . . , m}, the system matri-
ces Ap, Bp, Cp of appropriate size describe the (continu-
ous) dynamics corresponding to the linear system active
on the interval (sk, sk+1) where σ(t) = p. Furthermore,
Jp,q : Rnq → Rnp is the jump map from mode q to mode
p. Note that due to the different space dimensions the
introduction of a jump map is necessary; on the other
hand, in case all state dimensions are equal, the con-
sideration of a jump map is “optional” and leads to so
called impulsive systems (in particular, our reduced re-
alization results will also provide novel results for this
system class).

It is well known that finding a minimal realization (which
can be interpreted as removing unobservable and un-
reachable states) is a first step towards model reduction
(which furthermore reduced difficult to observe and diffi-
cult to reach states). In [5], a time-varying model reduc-
tion approach is presented for switched linear systems
(with identical state-dimensions and without jumps).
However, the resulting reduced systems is not switched
systems anymore, instead it is fully time-varying and it
is difficult to handle numerically. Therefore, the aim is
to gain insight into a more suitable model reduction ap-
proach by studying the minimal realization problem for
switched systems of the form (1) within this system class.
As already mentioned above, the process of going from a
non-minimal representation (with initial value zero) to
a minimal one can be seen as removing “unreachable”
and “unobservable” states; understanding what the no-
tions “unreachable” and “unobservable” exactly means
in this context allows to generalize these ideas to “diffi-
cult to reach” and “difficult to observe” which then al-
lows to perform model reduction.

The main goal is to find a reduced size switched system
(with the same switching signal σ) of the form

Σ̂σ :

{ ˙̂xk(t) = Âσ(t)x̂k(t) + B̂σ(t)u(t), t ∈ (sk, sk+1)

x̂k(s+k ) = Ĵσ(s+
k
),σ(s−

k
)x̂k−1(s−k ), k ∈ Q

y(t) = Ĉσ(t)x̂k(t+), t ∈ [sk, sk+1),
(2)

which has the same input-output behavior as the original
system Σσ.

The single switch case was discussed in our confer-
ence contributions [7, 6] and a preliminary version of
this manuscript is the conference submission [8], which
doesn’t contain all proofs and less details.

We will assume in the following that the switching signal
is fixed, hence by suitable relabeling of the matrices, we
can assume that σ(t) = k on (sk, sk+1). Consequently,
we can simply write Jk := Jσ(s+

k
),σ(s−

k
) = Jk,k−1 and

Ĵk := Ĵσ(s+
k
),σ(s−

k
) = Ĵk,k−1 in the following. Further-

more, in some slight abuse of notation, we will speak in
the following of the solution x(·) instead of the different
solution pieces xk(·).

This paper is organized as follows. In Section 2, the prob-
lem formulation and preliminaries are given, in particu-
lar, the concept of a weak Kalman decomposition is pre-
sented. In Section 3, the time-varying reachability and
observability spaces are discussed for switched systems,
and we define suitable extended reachable and restricted
unobservable spaces. Section 4 discusses the main results
with the proposed reduction algorithm. Finally, some
numerical results are shown in Section 5.

2 Preliminaries

2.1 Reduced realization: definition

In this section, we introduce some notions and challenges
related to reduced realizations of switched linear sys-
tems (1). Let’s begin with the formal definition of re-
duced realization.

Definition 1 (Cf. [13]) For Σσ as in (1) we define its
total dimension as follows

dim Σσ :=
∑
q∈Q

nq.

Furthermore, we define its input-output behavior as fol-
lows

Bio
σ :=

{
(u, y)

∣∣∣∣∣ ∃xq : (sq, sq+1)→ Rnq satisfying

(1) and x(t−0 ) = 0

}
.

A switched linear system Σ̂σ with corresponding input-

output behavior B̂io
σ is said to be a reduced realization of

switched system Σσ if

1) Bio
σ = B̂io

σ and

2) dim Σ̂σ ≤ dim Σσ.

In the following we will also discuss minimal realizations,
which are reduced realization of smallest total dimension
under all reduced realizations. It should be noted that
at this point it is not clear that the sequence of reduced
state dimensions is unique for a minimal realization.

For non-switched linear systems, it is well known that a
realization is minimal if, and only if, it is reachable and
observable, however, for SLSs of the form (1) this is not
the case in general as the following example shows:
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Example 2 Consider a switched linear system with two
modes

(A0, B0, C0) =
([

1 0 0
0 2 0
0 0 3

]
,
[
1
0
1

]
, [ 1 1 0 ]

)
,

(A1, B1, C1) =
([

0 0 0
0 2 0
0 0 1

]
,
[
0
1
0

]
, [ 1 0 1 ]

)
and the switching signal

σ(t) =

{
0, on (t0, s1),

1, on (s1, tf ).
(3)

It is easily seen, that each mode is unreachable and un-
observable. However, the switched system is reachable in
the sense that each value x(t−f ) ∈ R3 can be reached from
zero by a suitable input and it is also observable in the
sense that (for a vanishing input) only a zero initial value
leads to a zero output.
On the other hand, the second state is unreachable in the
1st mode and unobservable in the 2nd mode. In partic-
ular, when starting with a zero initial value, for any in-
put the value of the second state does not effect the out-
put (because in the first mode it is identically zero and
in the second mode the corresponding coefficient in the
C-matrix is zero). Therefore, we can remove the second
state without altering the input-output behavior.

Remark 3 The above definition of reduced realization
is not specifying any method how to obtain a reduced re-
alization from a given switched system. In particular, it
does not take into account constraints like the require-
ment that the reduced state is obtained via a uniform pro-
jection map (cf. [3, 4] in the context of model reduction).
In general, a reduced realization can only be obtained by
considering each mode individually (and by properly tak-
ing into account the effect from the other modes). Fur-
thermore, Example 4 in [6] shows that by removing lo-
cally unreachable and unobservable states in each mode
does not preserve the input-output behavior and hence
does not lead to a reduced system.

Another important challenge for obtaining a reduced re-
alization is the fact, that even when we start with a clas-
sical switched system (i.e. all states have the same di-
mensions and the jump map is the identity), a reduced
realization may have different state-space dimensions
and/or requires the definition of a jump map. This is
illustrated with the following example.

Example 4 Consider a switched linear system with two
modes

A0 = A1 =
[
0 0 0
1 0 0
0 0 0

]
, B0 = B1 =

[
1
0
0

]
,

C0 = [ 0 1 0 ] , C1 = [ 1 0 0 ] ,

with switching signal (3) and without jumps. It is eas-
ily seen that the first mode corresponds to a double in-
tegrator, while the second mode corresponds to a single

integrator. Hence a minimal realization is given by the
following switched linear system with mode-dependent
state-dimensions:

on [t0, s1) :

ż0 = [ 0 0
1 0 ] z0 + [ 10 ]u,

y = [ 0 1 ] z0,

∣∣∣∣∣∣
on [s1, tf ) :

ż1 = 0 · z1 + u,

y = z1,

with z1(s1) = [ 1 0 ] z0(s1).

The possible mode dependence of a reduced realization
is our main motivation to study switched systems (1)
with mode-dependent state-dimension and jumps, so
that both systems (original system and the reduced
realization) are from the same overall system class.

2.2 Weak Kalman decomposition

In order to obtain a reduced realization in the following,
we will utilize extended reachable and restricted unob-
servable spaces together with the following weak Kalman
decomposition.

Let’s first recall the classical Kalman decomposition
(KD) [10] for a linear system

Σ :

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(4)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n. Based on
the reachability and unobservable spaces 1 , it is pos-
sible to define a coordinate transformation x = Tz
which leads to the following block triangular form
(T−1AT,T−1B,CT) =([

A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44

]
,

[
B1

B2
0
0

]
, [ 0 C2 0 C4 ]

)
,

where
([
A11 A12

0 A22

]
,
[
B1

B2

])
is reachable and

([
A22 A24

0 A44

]
, [C2 C4 ]

)
is observable.

It is then easily seen that a minimal realization of (4) is
now given by (A22, B2, C2).

It should noted that the above minimal realization is
only valid for vanishing initial values; if arbitrary initial
values are considered, only the unobservable part can
be removed without altering the corresponding input-
output behavior.

1 In fact, T = [V 1, V 2, V 3, V 4], where imV 1 is the inter-
section of the reachable and unobservable space, im[V 1, V 2]
is the reachable space and im[V 1, V 3] is the unobservable
space.
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In the context of switched systems all, but the first mode,
will in general have non-trivial initial states but also not
arbitrary initial states, which means that the classical
KD cannot directly be used to obtain a reduced real-
ization. In addition to consider an extended reachable
space for each mode (due to the–partially–nonzero ini-
tial state) also the local unobservable space may need
to be restricted, due to the fact, that an unobservable
state in the current mode may become observable in the
future and hence cannot be removed without altering
the overall input-output behavior of the switched sys-
tem. This motivates us to define a weak KD which takes
into account an extended reachable space and restricted
unobservable space.

Lemma 5 Consider a classical LTI system (4) and
let R ⊇ imB and U ⊆ kerC be two A-invariant sub-
spaces (an extended reachable and a restricted unob-
servable space). For any coordinate transformation T =

[V
1
, V

2
, V

3
, V

4
] with imV

1
:= R∩U , im [V

1
, V

2
] := R,

im[V
1
, V

3
] := U , we have (T−1AT,T−1B,CT) =([
A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44

]
,

[
B1

B2

0
0

]
, [ 0 C2 0 C4 ]

)
. (5)

In particular, CeAtB = C2eA
22tB2 for all t ∈ R.

Proof. SinceR∩U = imV
1

isA-invariant there is a ma-

trixA11 of appropriate size such thatAV
1

= V
1
A11. The

A-invariance ofR implies thatAV
2 ⊆ im[V

1
, V

2
], hence

there exists A12, A22 such that AV
2

= V
1
A12 + V

2
A22.

Similarly, A-invariance of U implies AV
3 ⊆ im[V

1
, V

3
],

hence there exists A13, A33 such that AV
3

= V
1
A13 +

V
3
A33. Finally, im[V

1
, V

2
, V

3
, V

4
] = Rn implies exis-

tence of A14, A24, A34, A44 such that AV
4

= V
1
A14 +

V
2
A24 + V

3
A34 + V

4
A44. Combining all of the above,

we obtain

A[V
1
V

2
V

3
V

4
] = [V

1
V

2
V

3
V

4
]

[
A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44

]
,

which shows thatT−1AT has the desired block structure.
Since imB ⊆ R = im[V

1
, V

2
], there exists B1, B2 such

that

B = V
1
B1 + V

2
B2 = [V

1
V

2
V

3
V

4
]

[
B1

B2

0
0

]
,

from which the desired block structure of T−1B fol-
lows. Finally, kerC ⊇ U = im[V

1
V

3
] implies that

C[V
1
V

3
] = {0}, and hence, for C2 := CV

2
and C4 :=

CV
4
,

CT = C[V
1
V

2
V

3
V

4
] = [0 C2 0 C4].

With these block structure, simple matrix multiplication

leads to CeAtB = C2eA
22tB2 for all t ∈ R. 2

For the formulation of forthcoming reduction method,
we will need the following notations of invariant sub-
spaces.

Definition 6 For A ∈ Rn×n and a subspace L ⊆ Rn, let

〈A | L〉 := L+AL+ . . .+An−1L

be the smallest A-invariant subspace containing L. Fur-
thermore, let (here A−1 stands for the preimage, it is not
assumed that A is invertible)

〈L | A〉 := L ∩A−1L . . . ∩A−(n−1)L

be the largest A-invariant subspace contained in L. 4

Note that for any C ∈ Rm×n we have

〈kerC | A〉 = ker[C>, (CA)>, . . . , (CAn−1)>]>.

Furthermore, it is well known that for a linear system
(A,B,C), the reachable space R is given by R = 〈A |
imB〉 and the unobservable space U is given by 〈kerC |
A〉.

Remark 7 Clearly, the choice R = R and U = U
in Lemma 5 leads to the well known KD. Furthermore,
any A-invariant subspace R ⊇ imB will be a super-
set of R, because R is the smallest A-invariant subspace
containing imB; analogously, any A-invariant subspace
U ⊆ kerC will be contained in U . This is the motivation
to call R ⊇ R an extended reachable space and U ⊆ U a
restricted unobservable space in Lemma 5.

For a linear system (A,B,C) with given extended reach-
able space R and restricted unobservable space U the
weak KD (5) immediately leads to the reduced system
(A22, B2, C2) which can be obtained from (A,B,C) by
suitable left and right projection defined as follows.

Definition 8 For any coordinate transformation T =

[V
1
, V

2
, V

3
, V

4
] as in Lemma 5, let

[(W
1
)>, (W

2
)>, (W

3
)>, (W

4
)>]> := T−1

such that the sizes of (W
i
)> matches the size of V

i
, i =

1, 2, 3, 4. Then W
2

and V
2

are called the weak-KD left-
projector and weak KD right-projector, respectively. 4
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By definition of the weak-KD left- and right-projector,

we have W
2
V

2
= I and

(A22, B2, C2) = (W
2
AV

2
,W

2
B,CV

2
).

3 Exact (time-varying) reachability / Unob-
servability spaces

Our reduction approach relies on identifying suitable ex-
tended reachable and restricted unobservable spaces for
each mode of the switched system (1). Towards this goal,
we first provide expression for the exact (time-varying)
reachable and unobservable space for (1) in the follow-
ing. Before doing so, we briefly highlight that the solu-
tion of (1) is given recursively by, for t ∈ [sk, sk+1) and
k = 1, . . . , m,

x(t) := eAk(t−sk)Jkx(s−k ) +

∫ t

sk

eAk(t−s)Bku(s)ds.

(6)
and the output equation is given by

y(t) := Ckx(t), t ∈ [sk, sk+1), k = 0, 1, . . . , m. (7)

3.1 Exact (time-varying) reachability space

Definition 9 The reachable space of the switched sys-
tem (1) on time interval [t0, t) is defined by

Rσ[t0,t) :=

{
x(t−)

∣∣∣∣∣ ∃ solution (x, u) of (1)

with x(t−0 ) = 0

}
.

We call the switched system (1) reachable (on [t0, tf )) if,
and only if,

Rσ[t0,tf ) = Rnm . 4

To calculate the reachability spaces of (1), the known
reachability information from the previous modes needs
to carry over appropriately to the current mode. Let
Rk = 〈Ak | imBk〉 be the local reachable subspace for
mode k. We will show then that the reachable space at
the end of the k-th mode is defined by the following
recursive equation, k = 1, 2, . . . , m:

Mσ
0 := R0,

Mσ
k := Rk + eAkτkJkMσ

k−1.
(8)

The intuition behind the sequence (8) is as follows. By
starting with a zero initial value in the initial mode,
clearly Rσ[t0,s1) = R0; continuing recursively, the reach-

able space at the end of mode k, is obtained by propagat-
ing forward the reachable spaceMσ

k−1 at the end of the

previous mode, i.e. first jump via Jk and then propagate
according to the matrix exponential (the time-evolution
for a zero input). Finally, to take into account the ef-
fect of the input, the local reachable space of mode k is
added. This intuition is formalized as follows.

Lemma 10 (Cf. [11]) For all 0 ≤ k ≤ m,

Mσ
k = Rσ[t0,sk+1)

.

In particular, (1) is reachable if, and only ifMσ
m = Rnm .

Proof. Clearly, Mσ
0 = Rσ[t0,s1). Inductively, assume

that for some k ∈ {1, 2, . . . , m},

Mσ
k−1 = Rσ[t0,sk),

we will then show that Mσ
k = Rσ[t0,sk+1)

. Let xk+1 ∈
Mσ

k , then there exists xk ∈ Mσ
k−1 and xu ∈ Rk such

that xk+1 = eAkτkJkxk + xu. From Mσ
k−1 = Rσ[t0,sk) it

follows that there exists a solution (x̂, û) on [t0, sk) with
x̂(0−) = 0 and x̂(s−k ) = xk.

In view of (6) the extension of (x̂, û) on the interval
[t0, sk+1) via (x̂(t), û(t)) := (eAk(t−sk)Jkxk, 0) is a solu-
tion of (1) on the larger interval [t0, sk+1). Furthermore,
there exists a solution (x̃, ũ) of mode k on (sk, sk+1) with
x̃(s+k ) = 0 and x̃(s−k+1) = xu.

By setting (x̃(t), ũ(t)) = (0, 0) for all t ∈ [t0, sk), it is
easily seen that (x̃, ũ) is a solution of the switched system
(1) on [t0, sk+1) with x̃(t−0 ) = 0.

Altogether, by linearity we have that (x, u) := (x̂, û) +
(x̃, ũ) is a solution of (1) on [t0, sk+1) with x(t−0 ) = 0 and

x(s−k+1) = x̂(s−k+1) + x̃(s−k+1) = eAkτkJkxk +xu = xk+1,

which implies that xk+1 ∈ Rσ[t0,sk+1)
. Hence,

Mσ
k ⊆ Rσ[t0,sk+1)

.

To show the converse subspace relationship, let xk+1 ∈
Rσ[t0,sk+1)

, then there exists a solution (x, u) of (1) with

x(sk+1) = xk+1.

From x(s−k ) ∈ Rσ[t0,sk) =Mσ
k−1 and

xu :=

∫ sk+1

sk

eAk(sk+1−s)Bku(s)ds ∈ Rk,

it follows immediately from (6) that xk+1 = x(sk+1) =
eAkτkJkx(s−k ) + xu ∈ eAkτkJkMσ

k−1 +Rk =Mσ
k .

5



Now if the system (1) is reachable then

Rσ[t0,sm+1)
= Rnm ,

and consequently,

Mσ
m = Rnm .

This completes the proof. 2

From (8), it is clear that the reachable spaces depend on
the switching times (in fact, on the mode duration τk)
and this dependency cannot be avoided in general as the
following example shows. In particular, the overall reach-
ability of the switched system (1) on [t0, tf ) depends on
the switching times and how long each mode is active.

Example 11 (Dependency on the switching times)
Consider the switched system (1) given by

A0 = A2 = [ 0 0
0 0 ] , A1 =

[
0 −1
1 0

]
,

B0 = B2 = [ 10 ] , B1 = [ 00 ] ,

with J1,0 = J2,1 = I. It is noted that none of the pairs
(Ai, Bi) are reachable. Consider the switching signal σ
with the mode sequence 0 → 1 → 2 and switching times
s1, s2. Let {e1, e2} denote the natural basis vectors for
R2.

Clearly, R0 = R2 := span{e1}, R1 := {0}, eA1τ =[
cos τ − sin τ
sin τ cos τ

]
and eA2τ = [ 1 0

0 1 ]. Hence

Mσ
0 = R0 = span{e1},

Mσ
1 = R1 + eA1τ1J1,0Mσ

0 = span
{[ cos τ1

sin τ1

]}
,

Mσ
2 = R2 + eA2τ2J2,1Mσ

1 = span{e1}+ span
{[ cos τ1

sin τ1

]}
.

If τ1 = kπ for any k ∈ N then Mσ
2 = span{e1}, oth-

erwise, Mσ
2 = R2. This clearly shows that the overall

reachability of a switched system depends on the switch-
ing times. 4

Note that although Mσ
k ⊇ Rk ⊇ imBk, the space Mσ

k
is not a suitable extended reachable space for the mode
(Ak, Bk, Ck) in the sense of Lemma 5, because it is not
Ak-invariant in general. Before addressing this problem
in Section 3.3, we recall first the “dual” space of the
reachability spaces: the unobservable spaces.

3.2 Exact (time-varying) unobservability space

Definition 12 The unobservable space of the switched
system (1) on time interval [t, tf ) is defined by

Uσ[t,tf ) :=

{
x(t+)

∣∣∣∣∣ ∃ solution (x, u = 0) such that

y = 0 of (1) on [t, tf )

}
.

We call the switched system (1) observable (on [t0, tf ))
if, and only if,

Uσ[t0,tf ) = {0}.
4

Similar as for the reachable spaces, we aim to express the
unobservable spaces recursively. Starting from the last
mode it is clear that the unobservable space is the same
as the classical unobservable space Um = 〈kerCm | Am〉.
Recursively, the unobservable space at switch number
k+ 1 can now be propagated backwards in time by first
taking the preimage under the jump Jk+1 and then fur-
ther propagating it back with the continuous flow of
mode k, i.e. by e−Akτk . Finally, this propagated space
needs to be combined with the local unobservable space
of mode k given by Uk = 〈kerCk | Ak〉. This motivates
the definition of the following sequence of subspaces,
k = m− 1, m− 2, . . . , 0:

N σ
m := Um,
N σ
k := Uk ∩

(
e−AkτkJ−1k+1N

σ
k+1

)
.

(9)

Lemma 13 (Cf. [23, 11]) . For all 0 ≤ k ≤ m,

N σ
k = Uσ[sk,tf ).

In particular, (1) is observable if, and only if N σ
0 = {0}.

Proof. For k = m, clearly N σ
m = Uσ[sm,tf ). Inductively,

assume now that for k ∈ {m− 1, m− 2, . . . , 0}

N σ
k+1 = Uσ[sk+1,tf )

and we want to show that then N σ
k = Uσ[sk,tf ).

Let xk ∈ N σ
k , then xk ∈ Uk and there exists xk+1 ∈

N σ
k+1 = Uσ[sk+1,tf )

such that xk+1 = Jk+1e
Akτkxk. Con-

sequently, the unique solution (x, u = 0) of (1) on [sk, tf )
with x(s+k ) satisfies y = 0 on [sk, sk+1) because xk ∈ Uk
and y = 0 on [sk+1, tf ) because x(sk+1) = xk+1 ∈
Uσ[sk+1,tf )

. This shows that xk ∈ Uσ[sk,tf ).

Now, let xk ∈ Uσ[sk,tf ), then the unique solution

(x, u = 0) of (1) on [sk, tf ) with x(s+k ) = xk has zero

output. Consequently, xk+1 := x(s+k+1) ∈ Uσ[sk+1,tf )
=

N σ
k+1. From xk+1 = Jk+1e

Akτkxk, it follows that

xk ∈ e−AkτkJ−1k+1{xk+1} ⊆ e−AkτkJ−1k+1N σ
k+1 = N σ

k ,
which concludes the proof. 2

Similar as for the reachability, the observability of the
switched system in general depends on the switching
time. This is illustrated by considering again Example
11 with an additional output.
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Example 14 (Dependency on the switching times)
Recall Example 11 with output submatrices

C0 = C2 = [ 0 1 ] , C1 = [ 0 0 ] .

It is noted that none of the pairs (Ai, Ci) are observable.

Clearly, U0 = U2 = span{e1}, U1 = R2, e−A1τ =[
cos τ sin τ
− sin τ cos τ

]
and e−A2τ = [ 1 0

0 1 ]. Hence

N σ
2 = U2 = span{e1},
N σ

1 = U1 ∩ e−A1τ1J−12 N σ
2 = R2 ∩ span

{[ cos τ1
− sin τ1

]}
,

N σ
0 = U0 ∩ e−A0τ0J−11 N σ

1 = span{e1} ∩ span
{[ cos τ1
− sin τ1

]}
.

If τ1 = kπ for any k ∈ N, then N σ
0 := span{e1}, oth-

erwise N σ
0 = {0}. Therefore, the overall observability of

(1) depends on the switching time. 4

Note that similar to the reachability spaces, although the
unobservable spaces N σ

k satisfy N σ
k ⊆ Uk ⊆ kerC, they

are not Ak-invariant and hence, they are not restricted
unobservable spaces in the sense of Lemma 5.

3.3 Extended reachable / restricted unobservable spaces

So far, we have seen that the reachability spaces and ob-
servability spaces of (1) depend on the switching time.
Even worse, when looking at the reachable / unobserv-
able space at a particular time t ∈ (sk, sk+1) between
two switches, then it is easily seen that these spaces in
general also depend on the considered time t and a re-
duction method based on the exact reachability / ob-
servability spaces will necessarily result in general time-
varying coordinate transformations / projections (cf. our
previously proposed reduction method [5]) and would
not lead to a reduced system of the desired form (2).

To circumvent this problem, we introduce suitable ex-
tended reachable and restricted unobservable spaces for
the switched system (1). The key idea is based on the fact
that for any subspace H ⊆ Rn, any matrix A ∈ Rn×n
and any t ∈ R the following subspace relationship holds:

〈H | A〉 ⊆ eAtH ⊆ 〈A | H〉. (10)

By replacing the matrix-exponentials in the construc-
tions of the reachable / unobservable spaces by the cor-
responding A-invariant subspace we arrive at the follow-
ing sequences (cf. [23] for the unobservable spaces):

R0 := R0,

Rk := Rk + 〈Ak | JkRk−1〉, k = 1, . . . , m;
(11)

Um := Um,
Uk := Uk ∩ 〈J−1k+1Uk+1 | Ak〉, k = m− 1, . . . , 0.

(12)

In view of (10), it is easy to see that

Rk ⊇Mσ
k ⊇ Rk and Uk ⊆ N σ

k ⊆ Uk.

In particular, Rm = Rnm and U0 = {0} respectively, are
necessary conditions for reachability and observability
of the overall switched system (5).

Finally, observe that by construction both Rk and Uk
are Ak-invariant, i.e. they are extended reachable / re-
stricted unobservable spaces in the sense of Lemma 5
and we are now ready to propose our main result about
the reduction of switched systems of the form (1).

We conclude this section by highlighting an interesting
special case, which is motivated by the following “appli-
cation”: Consider a large scale network whose dynam-
ics can be described by a linear ODE. The network can
be controlled through several actuators at different lo-
cations and several sensors are distributed throughout
the network. However, due to resource limitation at any
given time only one or a limited number of actuators can
be used and the data of only one or a limited number of
sensors is available. This situation can be modelled by
the following switched system (without jumps)

ẋ = Ax+Bσu,

y = Cσx,
(13)

where the switching signal is determined by the schedule
of the actuator and sensor usages. In this scenario it
seems rather natural that the mode sequence is fixed a
priori (e.g. to make sure that all sensors and actuators
are equally used), while the time duration may depend
on the actual measured outputs. For this setup we have
the following result:

Proposition 15 (Constant A-case) Consider the
switched linear systems (13) with corresponding time-
dependent reachability space Rσ[t0,t) and unobservable

space Uσ[t,tf ). Then for all t ∈ (sk, sk+1) we have

Rσ[t0,t) = Rk and Uσ[t,tf ) = Uk,

i.e. the time-varying reachable and unobservable spaces
are piecewise constant and can be calculated recursively
via (11) and (12).

Proof. Inductively, it is easily seen that Rσ[t0,t) and

Uσ[t,tf ) are A-invariant, from which the claim follows.

4 Main result: Proposed reduction method

We now propose a method to compute a reduced real-
ization (2) of (1) for a given switching signal.
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Step 1. Compute the sequence of extended reachable
R0,R1, · · · ,Rm and restricted unobservable sub-
spaces U0,U1, · · · ,Um as in (11) and (12).
Step 2. Apply Lemma 5 to (Ak, Bk, Ck) with
(Rk,Uk) to compute the weak-KD left- and right-

projectors W
2

k, V
2

k , and let(
Âk, B̂k, Ĉk

)
=
(
W

2

kAkV
2

k,W
2

kBk, CkV
2

k

)
.

Step 3. Calculate the reduced jump map

Ĵk := W
2

kJkV
2

k−1.

Before showing that the resulting reduced system (2) is
indeed a realization of (1), we first highlight an impor-
tant connection between the solutions of both systems.

Lemma 16 Consider the switched system Σσ as in (1)

and the reduced system Σ̂σ as in (2) obtained by the left-

and right-projectors W
2

σ(·), V
2

σ(·). If x(·) is a solution of

Σσ then x̂(·) := W
2

σ(·)x(·) is a solution of Σ̂σ.

Proof. Consider any time interval (sk, sk+1) between
two switches, then, for t ∈ (sk, sk+1),

˙̂x(t) = W
2

kẋ = W
2

kAkx(t) +W
2

kBu(t)

= [0, Âk, 0, ∗]T
−1
k x(t) +B2

ku(t),

where T k = [V
1

k, V
2

k, V
3

k, V
4

k] is the coordinate trans-
formation according to Lemma 5 for mode k. Since

x(t) ∈ Rσ[t0,t) ⊆ Rk = im[V
1

k, V
2

k], it follows that

T
−1
k x(t) = [∗, x̂(t)>, 0, 0]> and hence, as claimed, for all

t ∈ (sk, sk+1)

˙̂x(t) = Âkx̂(t) + B̂ku(t).

In particular, due to unique solvability of linear ODEs,

for any solutions x of Σσ and x̂ of Σ̂σ the following im-
plication holds:

W
2

kx(s+k ) = x̂(s+k ) =⇒ ∀t ∈ (sk, sk+1) : W
2

kx(t) = x̂(t).

To show that x̂ = W
2

σx is indeed a global solution of Σ̂σ
it therefore remains to be shown that

W
2

kx(s+k ) = ĴkW
2

k−1x(s−k ). (14)

In fact,

W
2

kx(s+k ) = W
2

kJkx(s−k ) = W
2

kJkT k−1T
−1
k−1x(s−k )

= W
2

kJk[V
1

k−1,V
2

k−1,V
3

k−1,V
4

k−1]

( ∗
W

2

k−1x(s
−
k
)

0
0

)
.

From (12) it is easily seen that JkUk−1 ⊆ Uk, hence

im JkV
1

k−1 ⊆ im Jk[V
1

k−1, V
3

k−1] = JkUk−1 ⊆ Uk =

im[V
1

k V
3

k] ⊆ kerW
2

k, i.e. W
2

kJkV
1

k−1 = 0, from which
it follows that

W
2

kx(s+k ) = W
2

kJkV
2

k−1W
2

k−1x(s−k )

as desired. 2

As a consequence of the above and of the uniqueness of

solutions it follows that every solution x̂ of Σ̂σ with zero

initial value and given input u satisfies x̂ = W
2

σx where
x is the solution of Σσ with zero initial value and the
same input u. We will now prove that the corresponding
outputs are indeed equal.

Theorem 17 Consider the switched system Σσ as in

(1) and the reduced system Σ̂σ as in (2) obtained by

the above reduction method. Then Σσ and Σ̂σ are input-
output equivalent in the sense that for all inputs u the
output y of (1) with initial condition x(t−0 ) = 0 equals
the output ŷ of (2) with initial condition x̂(t−0 ) = 0.

Proof. The output of Σσ on [sk, sk+1) is given by

y(t) = Cke
Ak(t−sk)Jkx(s−k ) +

∫ t

sk

Cke
Ak(t−s)Bku(s)ds

=: yJ(t) + yu(t).

Inserting suitable identity matrices we have that

yJ = CkTkeT
−1

k AkTk(t−sk)T−1k JkTk−1T
−1
k−1x(s−k ),

yu(t) =

∫ t

sk

CkTkeT
−1

k AkTk(t−s)T−1k Bku(s)ds,

where Tk = [V
1

k, V
2

k, V
3

k, V
4

k] is the coordinate transfor-
mation according to Lemma 5 for mode k. The special

block structure of the matrices T−1k AkTk, T−1k Bk, CkTk
implied by Lemma 5 immediately leads to

yu(t) =

∫ t

sk

Ĉke
Âk(t−s)B̂ku(s)ds.
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Hence, for showing ŷ(t) = y(t) = yJ(t)+yu(t) it remains
to be shown that

yJ(t) = Ĉke
Âk(t−sk)Ĵkx̂(s−k ). (15)

With similar arguments as used to establish (14)
in Lemma 16 we can show that

T−1k JkTk−1T
−1
k−1x(s−k ) =

( ∗
ĴkW

2

kx(s
−
k
)

0
0

)
.

Using the already established fact in Lemma 16, that

W
2

kx(s−k ) = x̂(s−k ) together with the special block struc-

tures of T−1k AkTk, T−1k Bk, CkTk we can conclude that
(15) holds. 2

Remark 18 (Non-zero initial values) Our method
can easily be adjusted to account for non-zero initial
values. Assume x(t−0 ) ∈ X0 for some subspace X0 ⊆ Rn,
then in (8) we just have to replace the initial definition by

Mσ
0 := R0 + eA0τ0J0X0

and in (11) the initial space needs to be adjusted to

R0 := R0 + 〈A0 | J0X0〉,

while the definition of the other subspaces remain un-
changed.

A key feature of our method is that it is independent of
the actual switching times (or mode durations) and only
requires knowledge of the mode sequence. The following
example shows however that the size of a minimal real-
ization depends on the mode durations, hence we cannot
expect that our method results in a minimal realization
in general.

Example 19 Consider a switched system with modes

A0 = A2 =
[
0 0 0
0 0 0
0 0 0

]
, A1 =

[
0 0 0
0 0 −1
0 1 0

]
, B0 =

[
1
1
0

]
,

B1 = B2 =
[
1
0
0

]
, C0 = C1 = [ 1 0 0 ] , C2 = [ 1 1 0 ] .

with J1,0 = J2,1 = I. Assume the mode sequence 0 →
1 → 2. Fix the switching time duration τ1 = π/2 for
mode 1. Then the original solution x and output y of each
time interval can be characterized as follows:

t ∈ (t0, s1) : x(t) =
[ ∗
∗
0

]
, y(t) = C0x(t) = [ 1 0 0 ]

[ ∗
∗
0

]
,

t∈(s1, s1+ π
2 ) : x(t) =

[ ∗
∗
∗

]
, y(t) = C1x(t) = [ 1 0 0 ]

[ ∗
∗
∗

]
,

x(s2) = x(s1 + π
2 ) =

[ ∗
0
∗

]
t ∈ (s2, tf ) : x(t) =

[ ∗
0
∗

]
, y(t) = C2x(t) = [ 1 1 0 ]

[ ∗
0
∗

]
.

Clearly, the second and third states do not affect the out-
put for this specific switching signal. In particular, it is
easily seen that the overall input-output behavior is de-

scribed by the (nonswitched) system ˙̂x = u, y = x̂. How-
ever, if we apply our proposed method, then the sequence
of reachable and unobservable spaces are given by

Mσ
1 = imB0, N σ

0 = {0},
Mσ

2 = R3, N σ
1 = {0},

Mσ
3 = R3, N σ

2 = span{e3}.

Indeed, the sequences produce a switched system with
modes in dimensions 1, 3 and 2, respectively, instead of
a one dimensional minimal systems. Nevertheless, one
should note that for τ1 6= kπ/2, our method actually pro-
duces a minimal realization. 4

The previous example however leads to our believe that
our method results in a minimal realization for almost all
switching times. While we have not been able to prove
this conjecture, we are able to show that our method is
optimal in the sense that a repeated application doesn’t
lead to a further reduction.

Theorem 20 Consider the switched system Σσ and the

reduced switched system Σ̂σ resulting from our proposed

method. Let R̂σ(·) and Ûσ(·) be the sequences of reachabil-

ity and unobservability spaces, respectively, of Σ̂σ. Then

R̂σ(·) = Rn̂σ(·) , Ûσ(·) = {0}.

In particular, the left- and right-projectors for a potential
further reduction are given by identity matrices, i.e. no
further reduction occurs.

Proof. Our proposed methods yields for each mode k a
coordinate transformation Tk such that (Ak, Bk, Ck) is
transformed toA11

k A12
k A13

k A14
k

0 Âk 0 A24
k

0 0 A33
k A34

k

0 0 0 A44
k

 ,[B1
k

B̂k
0
0

]
, [ 0 Ĉk 0 C4

k ]

 , (16)

where (Âk, B̂k, Ĉk) is the input-output equivalent re-
duced system for mode k. By construction, the ex-
tended reachable and restricted unobservable spaces of
(Ak, Bk, Ck) are given by

Rk = Tk
[
I 0
0 I
0 0
0 0

]
, Uk = Tk

[
I 0
0 0
0 I
0 0

]
,

respectively.

Seeking a contradiction assume R̂k ( Rn̂k (Case I), or

Ûk 6= {0} (Case II) for some k.
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Case I: For k = 0 we see that from R0 = R0 it follows

that the pair (Â0, B̂0) must be reachable and hence R̂0 =

R̂0 = Rn̂0 . Assume now inductively that for some k we

have R̂k−1 = Rn̂k−1 and R̂k ( Rn̂k . Since R̂k is Âk-

invariant and contains im B̂k we can choose a coordinate

transformation T̂k such that (Âk, B̂k) is transformed to([
Â1
k ∗
0 Â2

k

]
,
[
B̂1
k
0

])
(17)

and im T̂k [ I0 ] = R̂k. By adjusting the original coordi-

nate transformation Tk we can assume in the following

that (Âk, B̂k) is actually equal to (17). In particular, we
then have

im [ I0 ] = R̂k = R̂k + 〈Âk | ĴkR̂k−1〉.

Since R̂k = 〈Âk | B̂k〉 ⊆ im [ I0 ] we can conclude that,

im [ I0 ] ⊇ 〈Âk | ĴkR̂k−1〉 = 〈Âk | im Ĵk〉 ⊇ im Ĵk. There-
fore (Ak, Bk, Jk) is actually transformed to


∗ ∗ ∗ ∗

0

[
Â1
k ∗
0 Â2

k

]
0 ∗

0 0 ∗ ∗
0 0 0 ∗

 ,
 ∗[

B̂1
k
0

]
0
0

 ,
 ∗[

J1
k
0

]
0
0


 .

From this we arrive at the following contradiction:

im

[
I 0
0 I
0 0
0 0

]
= Rk = Rk + 〈Ak | JkRk−1〉 ⊆ im

[
I 0
0 [ I 0

0 0 ]
0 0
0 0

]
.

Hence we have inductively shown that R̂k = Rn̂k for all
mode k.

Case II: Assume Ûk 6= {0}. Analogously as in Case I,
the contradiction

Uk 6= im

[
I 0
0 0
0 I
0 0

]
,

arises, the details are omitted. 2

For the special case of constant A-matrices, our method
does in fact result in a minimal realization.

Corollary 21 Consider the switched system (13) with
mode-independent A-matrix. Then the reduced switched
system obtained via our proposed reduction method is
minimal.

Proof. This is a simple consequence from Proposi-
tion 15, because in any mode a smaller reduced model
would necessarily remove some reachable and observable
states and hence cannot lead to the same input-output
behavior.

5 Numerical results

In this section, we demonstrate the operation of the pro-
posed reduction method for the switched linear system.
The proposed method is illustrated by means of numer-
ical examples. The source code for the numerical exam-
ples is available from [9].

Example 22 Consider a switched linear system with
modes:

(A0, B0, C0) =
([

2 0 1
0 1 0
0 0 −1

]
,
[
1
0
0

]
, [ 1 0 1 ]

)
,

(A1, B1, C1) =

([
0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 2

]
,

[
0
1
0
0

]
, [ 0 0 0 1 ]

)
,

(A2, B2, C2) =
([

1 0 1
0 1 0
0 −1 2

]
,
[
0
1
1

]
, [ 0 1 0 ]

)
,

J1,0 =

[
1 1 0
0 2 1
0 0 1
0 −1 1

]
, J2,1 =

[
2 1 0 0
0 1 0 1
0 0 2 1

]
.

Assume the mode sequence 0 → 1 → 2. We apply the
proposed reduction method and the reduced systems can
be obtained as follows.

Step 1. Here, R0 =
[
1
0
0

]
, R1 =

[
1 0
0 1
0 0
0 0

]
, R2 =

[
1 0
0 1
0 1

]
,

U0 =
[
0
1
0

]
, U1 =

[
1 0 0
0 1 0
0 0 1
0 0 0

]
, U2 =

[
1 0
0 0
0 1

]
. Now we compute

the sequence of reachable and unobservable spaces:

R0 = R0 =
[
1
0
0

]
,

R1 = R1 + 〈A1 | J1,0R0〉 =

[
1 0
0 1
0 0
0 0

]
,

R2 = R2 + 〈A2 | J2,1R1〉 = R3,

U2 = U2 =
[
1 0
0 0
0 1

]
,

U1 = U1 ∩ 〈J−12,1 U2 | A1〉 =

[
0
0
1
0

]
,

U0 = U0 ∩ 〈J−11,0 U1 | A0〉 = {0}.

Step 2. Via the proposed method, the sequence of left- and
right-projectors are obtained by

(W
2

0, V
2

0) =

([
1
−2
−2

]>
,
[
1
0
0

])
,

(W
2

1, V
2

1) =

([
1 0
0 1
0 0
0 0

]>
,

[
1 0
0 1
0 0
0 0

])
,

(W
2

2, V
2

2) =

([
0
−1
0

]>
,
[

0
−1
−1

])
.
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The reduced switched system is given by

(Â0, B̂0, Ĉ0) = (W
2

0A0V
2

0,W
2

0B0, C0V
2

0) = (2, 1, 1) ,

(Â1, B̂1, Ĉ1) =
(
W

2

1A1V
2

1,W
2

1B1, C1V
2

1

)
=
([

0 −1
1 0

]
, [ 01 ] , [ 0 0 ]

)
,

(Â2, B̂2, Ĉ2) =
(
W

2

2A2V
2

2,W
2

2B2, C2V
2

2

)
= (1,−1,−1) .

Step 3. The reduced jump maps are given by

Ĵ1 = [ 10 ] , Ĵ2 = [ 0 −1 ] .

Figure 1 shows the output of the original and its minimal
switched linear system for input u(t) = 1 with switching
times s1 = 2 and s2 = 5 over [0, 6] and clearly both
outputs coincide.

0 1 2 3 4 5 6

Time(sec)

0

5

10

15

20

25

30

O
u

tp
u

t

Original

Reduced

Fig. 1. Outputs of original system and the proposed reduced
system.

6 Conclusions

In this paper, we have proposed a method for obtain-
ing a reduced realization for switched linear systems
with jumps and mode-dependent state-dimensions; the
switching signal is assumed to be fixed with known
mode sequence. Our reduction method is independent
of the switching times and hence in principle also appli-
cable for state-dependent switched systems if a certain
mode sequence is known a-priori. The proposed reduc-
tion method is based on a weak Kalman decomposition
of each mode by defining suitable extended reachable
and restricted unobservable spaces. We believe, that
our method results in a minimal realization for almost
all switching times, however, a definite answer to this
question is still ongoing research. It cannot be expected
that our method will result in a minimal realization for
all switching times, we provided an example for which
the dimension of the minimal realization depends on the

specific switching times. We have so far assumed that all
subspace related operations (intersections, sums, . . . )
can be carried out with exact arithmetics, however, for
large scale systems and/or for systems with numerical
coefficient matrices the involved subspace calculations
are in general ill-posed. A suitable adaption of our algo-
rithm utilizing e.g. the singular value decomposition to
carry out the subspace calculations approximately is a
topic of future research.
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