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Abstract

Application of interpretable machine learning techniques on medical datasets facilitate
early and fast diagnoses, along with getting deeper insight into the data. Furthermore,
the transparency of these models increase trust among application domain experts. Medi-
cal datasets face common issues such as heterogeneous measurements, imbalanced classes
with limited sample size, and missing data, which hinder the straightforward application
of machine learning techniques. In this paper we present a family of prototype-based (PB)
interpretable models which are capable of handling these issues. The models introduced
in this contribution show comparable or superior performance to alternative techniques
applicable in such situations. However, unlike ensemble based models, which have to com-
promise on easy interpretation, the PB models here do not. Moreover we propose a strategy
of harnessing the power of ensembles while maintaining the intrinsic interpretability of the
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PB models, by averaging the model parameter manifolds. All the models were evaluated
on a synthetic (publicly available dataset) in addition to detailed analyses of two real-world
medical datasets (one publicly available). Results indicated that the models and strate-
gies we introduced addressed the challenges of real-world medical data, while remaining
computationally inexpensive and transparent, as well as similar or superior in performance
compared to their alternatives.

1. Introduction

With the emergence of better and affordable sensors and other data collection tools in var-
ious domains the availability of data has exploded. Application of machine learning (ML)
techniques in these domains accelerate in-depth analysis of the collected data. ML tech-
niques are being increasingly used in healthcare, judiciary, insurance, logistics, and finance,
among other anthropocentric sectors. Therefore it is crucial that the decision-making mech-
anism of the applied machine learning algorithms are understandable and explainable by
human experts. Wang et al. (2020); Holzinger et al. (2017); Tjoa and Guan (2021); Ghosh
(2021) raise an interesting observation that we tend to hold AI to a harsher explanatory
standard than we do for drugs and clinicians. The motivation behind this is that clini-
cians sometimes cannot explain the reason for arriving at a particular diagnosis: a decision
may appear intuitive to them but might not actually be explainable. Similarly, certain
effective drugs had been used widely even before their working mechanism was understood
(Wang et al., 2020). Nevertheless, when the decision-making process of a human-expert
or a ML algorithm is understandable to the stakeholders, then their trust in the decision
increases (Tjoa and Guan, 2021). Additionally, this ensures improved fairness and prevent
biased learning (Ghosh et al., 2020; Arrieta et al., 2020). Currently, most ML researchers
prioritise results and performance. This tendency, however, comes typically at the cost of
reducing transparency. It obscures the inner workings of the ML models, thus precluding
any way of verifying the fairness of the system (Backhaus and Seiffert, 2014; Bibal and
Frénay, 2016). Nevertheless, science and society require much more than just performance
metrics of an ML model to be able to adopt it for large scale implementations in the real
world, with accountability, fairness, and transparency at the core (Arrieta et al., 2020; Luo
et al., 2019; Tjoa and Guan, 2021). This has consequently ushered in the era of Explainable
ML or Explainable Artificial Intelligence (XAI) (Carvalho et al., 2019).

There are certain terminologies associated with XAI which are used interchangeably in
some publications (Tjoa and Guan, 2021), while others have explained their subtle differ-
ences (Arrieta et al., 2020). Two such terms are interpretability and explainability. In-
terpretability, unlike explainability, is not necessarily an active characteristic of a model
Arrieta et al. (2020); Luo et al. (2019). There are three types of interpretability:

(I) pre-model interpretability, which involves data exploration techniques such as PCA,
k-means clustering (Alpaydin, 2020) and t-ditributed Stochastic Neighbor Embedding
(tSNE) (Maaten and Hinton, 2008);

(II) post-model interpretability, in which model-agnostic techniques are applied on black-
box models to analyze them locally, such as Local interpretable model-agnostic ex-
planations (LIME) (Arrieta et al., 2020), DeepView (Schulz et al., 2020), Feature
Relevance Information (FRI) (Pfannschmidt et al., 2019) and SHapley Additive ex-
PLanations (SHAP)(Lundberg and Lee, 2017) just to name a few;
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(III) intrinsically interpretable models are those which are explainable by themselves, such
as decision trees (DTs), linear/logistic regression, K-nearest neighbours (KNNs) (Ar-
rieta et al., 2020), and nearest prototype based classifiers (NPCs) Ghosh et al. (2020).

While neither of the first two techniques give access to the working-logic of the model, the
third type includes transparent models (Arrieta et al., 2020). However, how the intrinsic
interpretability of different classifiers can be compared have often been debated, especially
when comparing models of distinct types.
Backhaus and Seiffert proposed 3 criteria to answer the aforementioned question (Backhaus
and Seiffert, 2014; Bibal and Frénay, 2016; Ghosh et al., 2020):

(1) the model’s intrinsic ability to select features from the input pattern,
(2) the ability to provide class-specific representative data points, and
(3) model parameters which have information about the decision boundary directly en-

coded.
(Tjoa and Guan, 2021) describes the criteria (1) as saliency. It further classifies inter-

pretability on the basis of its mathematical structure or whether it is perceptive visually,
or verbally, and so on. Unlike (Arrieta et al., 2020) this paper also uses the terms explain-
ability and interpretability interchangeably. To the best of our knowledge there has not yet
been an agreement on the correct usage of the aforementioned terminologies in this field,
and we do not intend to establish any agreement on this subject in this study. In this
paper we present three newly developed prototype-based classifiers which are competitive
not just in terms of performance, but are also easily and intuitively interpretable. Fur-
thermore, they can be visualised, thus allowing intrinsic interpretation and explainability
in terms of Backhaus and Seiffert criteria 1-3. These classifiers use a Nearest Prototype
Classification (NPC) scheme, where a new sample is assigned to the class of its closest
prototype. Techniques implementing this concept, such as Generalized Learning Vector
Quantization (GLVQ) (Sato and Yamada, 1996) often allow interpretation of the proto-
types as representatives of class information, which ensures transparency with regards to
(2). Generalized Relevance LVQ (GRLVQ) (Hammer and Villmann, 2002) is an extension
of GLVQ which additionally provides feature relevance (criterion 1) by introduction of an
adaptive parameterized dissimilarity, which weights features according to their importance
for the classification. Further extensions like Generalized Matrix Relevance LVQ (GMLVQ)
developed in Schneider et al. (2007, 2009) make multi-variate and class-wise feature analy-
sis possible. The limited rank version of GMLVQ (LiRaM-LVQ) introduced in Bunte et al.
(2012) facilitates the visualisation of decision boundaries (criterion 3). In addition to ver-
ifying model fairness, medical experts are increasingly interested in detailed information
about how a classification is obtained.

Certain types of real-life datasets pose the challenges of (a) heterogeneous measure-
ments, (b) missing data, and (c) imbalanced classes, which hinder the straight-forward
application of the existing XAI techniques. Heterogeneous measurements arise when data
of varying range and types is obtained from different sources. Ignoring that a dataset con-
tains heterogeneous measurements may lead to poorly trained classifier models (Tan et al.,
2016). Missing data is prevalent in control based applications such as traffic monitoring,
telecommunications management, financial/business applications, and biological and med-
ical data analysis (Garćıa-Laencina et al., 2010). Missingness can arise due to a variety of
reasons. Some causes are arbitrary, such as an entry forgotten by medical personnel or a
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subject choosing to drop out of a study mid-way. Some causes are more systematic such
as a sensor being unable to measure values beyond a certain range or due to disruption
in communication between data collectors Garćıa-Laencina et al. (2010). Little and Rubin
have categorised missingness into three types (Garćıa-Laencina et al., 2010; Little and Ru-
bin, 2019): (i) missing completely at random (MCAR), (ii) missing at random (MAR), and
(iii) missing not at random (MNAR). These will be discussed in detail in subsections 2.1
and 2.1.1. Lastly, when a dataset being investigated contains significantly unequal numbers
of samples per class, it is said to represent an imbalanced class problem. This is common in
real-world data sets from sectors such as astronomy, e.g. for finding particular types of galax-
ies (Mohammadi et al., 2019); telecommunications management, for detection of fraudulent
calls; geo-spatial image analysis, for rubble and oil-spills detection Chawla et al. (2002); and
medicine. If not addressed, class imbalance can cause complications such as a biased and
poorly developed classifier. There are classifier formulations that can naturally handle class
imbalance, such as Bayesian classifiers employing class priors (Mujalli et al., 2016). Others
need model-agnostic strategies such as oversampling, undersampling, or boosting exempli-
fied by Synthetic Minority Oversampling TEchnique (SMOTE) presented in Chawla et al.
(2002).

In Ghosh et al. (2017) the authors introduced Angle General Relevance Learning Vector
Quantization (AGRLVQ), which is capable of learning from partially observed spaces, thus
enabling learning from relatively small data sets containing missing values. This contri-
bution also suggested strategies to deal with imbalanced classes and introduced a geodesic
variant of SMOTE (Chawla et al., 2002). Ghosh et al. (2020) introduced angle-dissimilarity
based variant of Generalized Matrix LVQ (GMLVQ) and Local GMLVQ, which in addition
to being able to learn from variable dimensional spaces can also tackle more complex prob-
lems, while maintaining a superior performance, extracting enhanced knowledge about the
dataset they were trained on, and providing visualisation of the classification. The newly
introduced angle-dissimilarity based LVQ variants do not require imputation, which saves
on time complexity and computational costs for high dimensional datasets while retaining
the original information. The intrinsic interpretability of these classifiers lead to intuitive
visualisations and knowledge gain. In this contribution we first introduce a probabilistic
variant of ALVQ, which in addition to visualization and feature relevance determination,
also provides the confidence of the classifier’s decision when assigning different class labels
to a new sample. Furthermore, we introduce a geodesic average model which can exploit
the power of ensembling without compromising on the model interpretability.

In the following sections we discuss common problems associated with biomedical
datasets and existing reference standard ML techniques (such as Random Forest (RF),
KNN, and LDA), which can partially handle some of the issues. This is followed by the
motivations for the newly developed classifiers and the new contributions themselves. We
compared our proposed methods to the state-of-the-art shallow ML techniques and RF, on
a synthetic dataset and two real-life medical datasets. Finally, we present our findings and
discuss the extracted knowledge from the real-world medical datasets.
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2. Challenges and methods for the analysis of biomedical data

As mentioned earlier, many data domains frequently pose challenges such as heterogeneous
measurements, missing data, and imbalanced classes, due to limitations in sensor equip-
ment, collection methods or because of high variation in the occurrences of the analysed
phenomenon itself. In the medical domain these problems often appear in combination.
The healthy normal range itself varies due to the physiological features of subjects (such as
age or sex or BMI), and the data collection techniques, thereby adding to the heterogeneity
of the data. If such data is not scaled properly, an unimportant feature which has a higher
range of values might be considered more important than it actually is, thereby contribut-
ing noisy dimensions. Meanwhile, a feature which is actually important but has values in
a lower range might be ignored by the classifier, leading to loss of information. Next, we
will discuss in detail the problem of missing values, and imbalanced classes, followed by
strategies proposed to handle them.

2.1 Missing data

As outlined in (Little, 1988b; Little and Rubin, 2019) there are broadly three categories
of missingness. Rubin, in 1976 (Garćıa-Laencina et al., 2010), defined the missingness
to be of type missing completely at random (MCAR) if f(r|χobs, χmiss,Υ) = f(r|Υ) for
all χ observed (obs) and missing (miss), where r is the missingness indicator variable,
f is probability or density function, and Υ is any unknown parameter which caused the
missingness. It indicates that the missingness is neither dependent on the observed nor
on the missing values of the dataset χ ∈ IRN×D (Little, 1988b; Little and Rubin, 2019).
A common example of MCAR would be a blood vial of a subject from a study that is
accidentally broken resulting in blood parameters being not measurable (Garćıa-Laencina
et al., 2010). On the other hand, Rubin defined missingness to be of type missing at random
(MAR) if the missingness is independent of the missing values but likely to be dependent on
the observed values, i.e., when f(r|χobs, χmiss,Υ) = f(r|χobs,Υ) (Little, 1988b; Little and
Rubin, 2019). An example of such missingness is a sensor occasionally failing to acquire
data due to power outage. In this scenario the actual variables where data are missing are
the cause of some other external influence, such as availability of power, which are recorded
(Garćıa-Laencina et al., 2010). The third category of missingness, known as missing not at
random (MNAR) is dependent on the missing values themselves. The cause for this can
be systematic, such as the instrument failing to record a parameter when its values are
lower than or higher than a certain limit with such data being defined as censored (Garćıa-
Laencina et al., 2010). Another example of MNAR might be a dataset compounded from
different studies or labs, which were not measuring the same parameters.

Garćıa-Laencina et al. (2010) broadly defines four strategies to handle missing data:
(1) deletion of incomplete cases and performing classification on complete samples only,
(2) imputation of missing values using observed data,
(3) generative modelling of the data distribution,
(4) using ML techniques capable of classifying an incomplete dataset.

Besides, without a doubt, being the most straightforward and simplest strategy, (1) po-
tentially loses a lot of information, especially when many instances with partially observed
features exist. Furthermore, we often do not have an abundance of data for analysis in many
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domains such as Medicine, where any loss of information is undesirable, and hence we will
not discuss it in this contribution. Strategies to handle missing values of type MNAR are a
difficult endeavour, generally requiring knowledge about the process causing the missingness
and modeling it accordingly (Van Buuren, 2018). However for the medical datasets which
we have come across this is not possible as the mechanisms of missingness are unknown.

2.1.1 Imputation

In most classification tasks of data with missing values it is assumed that missingness is
of type MCAR or MAR. Following this assumption the missing values are imputed during
pre-processing of data, with strategies broadly divided into (1) single and (2) multiple
imputation. These approaches are model agnostic, meaning that afterwards any standard
classifier can be applied. Imputation generally is a quite common strategy for missing data
of type MAR and MCAR (Chechik et al., 2008).

Single imputation denotes strategies to fill missing attributes, for example with mean
or median of all or a subset of instances that do not miss that feature, such as the k-nearest
neighbours (KNN). When the missing variables of interest are correlated with the observed
variables from complete samples, regression is the appropriate imputation technique, since
it preserves the variance and covariance of the features with missing data. However, for
the same reason it fails when imputing missing values in an independent feature, since the
imputed value will be correlated and thus changing the original characteristics of the data.
Additionally the variance in the dataset is lost when applying this imputation technique
(Garćıa-Laencina et al., 2010). Two other categories of single imputation are hot and cold
deck imputation. In hot deck imputation the missing components of a data vector are
replaced by the corresponding values found in the complete data vector which is closest to
the former data vector (whose missing values are being imputed). The disadvantage of this
technique is that global properties of the dataset are ignored, since this imputation is based
on only the single complete closest data vector. In cold deck imputation the data source
to obtain values and the dataset to be imputed are separate datasets (Garćıa-Laencina
et al., 2010). Single imputation is often adopted due to its simplicity and low complexity.
However, in contrast to multiple imputation, it provides one exact value and can therefore
not reflect the uncertainty of the prediction of the missing value (Arnab, 2017).

Multiple imputation (MI) is used to impute the missing values in the dataset with a
set of different likely values. A very well respected strategy is a regression-based technique
called Multivariate Imputation by Chained Equations (MICE)1 (Royston et al., 2011). It es-
sentially uses a type of hot-deck imputation performed multiple times. Among the available
matching techniques for the hot-deck part, predictive mean matching (PMM) proposed by
Little (1988a) is often recommended and works as follows: Let χobs denote the n1 observed
and χmiss the n0 missing entries within one incomplete target variable χ. Correspondingly,
assume for simplicity Ξobs and Ξmiss to be the fully observed n1 × q and n0 × q matrix of
predictors for the observed and missing data in χ, respectively. The first step of PMM
bases on Bayesian imputation under the normal linear model, namely it computes the least
squares estimate regression weights ϕ̂ from the observed data and draws sample values ϕ̇

1. The MICE package is publicly available in R (Royston et al., 2011)
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from the posterior distribution using the standard non-informative priors for each of the
parameters. Instead of imputing the linear regression result directly the weights are used
to define a matching metric to find a small set of candidate donors, typically 3, 5 or 10, for
hot-deck imputation of each missing entry j = 1, . . . , n0. Among several possible metrics
usually Type 1 is chosen, such that k closest observed candidates are chosen according to
the similarity of the estimated value of the observed target entries and the missing value
estimate based on the draw from the posterior: |Ξobsϕ̂[i] − Ξmiss

[j] ϕ̇|. From the candidate
pool of each missing entry χmiss

j a donor is chosen randomly and its value used to impute.
Using a posterior sample in the metric considers the sampling variability and the stochastic
element also induces between-imputation variation to avoid selecting the same donors too
often, which is useful for multiple imputation. Once the incomplete variable χ is imputed
the procedure is repeated for the next variable with missing values and so forth. This
process is repeated for a user-defined number of times to form multiple imputed sets (in
the MICE implementation in R the default is 5 times). Details and extension for multiple
regression can be found in (Royston et al., 2011; Van Buuren, 2018). PMM is often used for
two main reasons: (1) to prevent imputation by unrealistic values potentially outside the
range of available observations, and (2) to obviate the need for an explicit model to capture
the cause of missingness. In practice MI creates several imputed datasets and the same
classifier is applied on each of them. The final decision is then made from this ensemble of
predictors trained on the different possible completed datasets.

2.1.2 Machine Learning on incomplete data

Imputation is usually model agnostic and after an incomplete dataset has been imputed,
any classifier, such as k-nearest neighbor (KNN), Random Forest (RF), Support Vector
Machines (SVM) and so on, can be applied on each of the imputed sets.

Random Forest (RF) introduced in (Breiman, 2001) is an ensemble of decision trees
(DTs) using bootstrap aggregation (Bagging). A decision tree is a rule based model which
can be used for both classification and regression (Kubat, 2017) and due to its transparency
it is often used by the medical community. Even though an unpruned decision tree could
have a low error rate on the training set, it is prone to overfitting on the validation set. This
effect is mitigated in Random Forest because of Law of Large Numbers (Breiman, 2001).
According to (Breiman, 2001) the error rate in RF depend on two criteria: (a) the correlation
between any two trees, and (b) the strength of each individual tree, constituting the forest.
When the correlation between the trees is high then even increasing the number of trees
would not lead to gain in new knowledge, and thus the error rate of RF will not improve.
However, error rate of RF decreases with increasing strength of the constituent individual
trees of the forest. In Breiman’s RF the decision trees are unpruned and each tree learns from
a different subset of instances. For classification the final decision is given by the majority
vote over an ensemble of all the decision trees. In the Tree Bagger MATLAB implementation
the randomness is generated by the random subset selection, which is 30−45% of the training
set given as input to the classifier, along with selection of a random subset of predictors
(which by default, is equal to the square-root of the original number of predictors) to
be evaluated and used at each parent node. Even though it is a robust classifier, due
to ensembling RF loses some of the transparency of the decision trees. It also provides
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only limited information about the decision boundaries and representative examples of
classes. One way of estimating the relevance of certain features for the classification is the
permutation importance or mean decrease in accuracy (MDA), in which observations of
a variable are randomly permuted and the influence on the performance computed. If a
feature is not important the permutation should not increase the error made by the model
significantly. Conversely if the permutation causes the error to be high it implies that the
feature is important (Fisher et al., 2019). The other strategy for finding feature importance
is Gini Importance or mean decrease in impurity (MDI) in which, given a predictor the
decrease in impurity is averaged over all the trees. Among its drawbacks, it is biased in
the presence of correlated features and favour categorical variables with multiple categories
(Scornet, 2020). The Tree Bagger in MATLAB uses the former strategy, i.e., MDA which
resolves the aforementioned issues of MDI. Random Forest cannot handle missing data
directly in its original formulation. Therefore, one can apply multiple imputation on a
dataset with missing values before classification with Random Forest.

However multiple imputation is expensive with regards to time and memory with in-
creasing amounts of missingness. Especially in a cross-validation setting this is costly, since
it needs to be performed for every training set independently to obtain the parameters for
imputing the corresponding test set for fair comparison of the generalization error. To avoid
imputation of any kind machine learning techniques, which deal with partially observed
data were introduced. Prominent examples of strategies based on generative modeling fol-
lowed by Linear Discriminant Analysis (LDA), as for example analyzed by (Marlin, 2008).
These methods show promising results for missing data of ignorable types MCAR and MAR
and cannot necessarily be assumed to work well on MNAR. Alternatively, prototype based
strategies have recently emerged to deal with datasets containing missing values (van Veen,
2016; Ghosh et al., 2020).

Generative modeling strategies are often used for (un)supervised data analysis or
as preprocessing for partially observed data. When dealing with high dimensional data
containing a relatively small number of instances, factor analysis (FA) is often used for
structured covariance approximation. FA, which is one of the most common latent variable
models, assumes that a set of latent or unobservable factors tj , j = 1 . . . Q are linearly
combined to generate χ. FA aims to relate a D-dimensional observed data vector χ to its
corresponding Q-dimensional vector of latent variables t (Q < D) (Tipping and Bishop,
1999; Marlin, 2008). Vectors χ and t are related by

χ = kt+ µ+ ε (1)

Conventionally t ∼ N (0, I) (with Identity matrix I) and ε ∼ N (0,Ψ), i.e., both the latent
variables and the noise model are Gaussian. The latent variants are also independent of each
other by convention and Ψ is a square diagonal matrix. k contains the factor loadings and
is of dimension D×Q. Therefore the observed variables χ ∼ N (µ,Σ) where Σ = kk>+ Ψ.
The parameters k, Ψ and µ are optimized for a dataset using the expectation maximization
(EM) algorithm. This model illustrates the dependencies between the data variables χ
through the latent variables t (Tipping and Bishop, 1999; Marlin, 2008; Severson et al.,
2017). In other words, when variables in the input space are highly correlated, it can be
assumed that they have a common source. Additionally FA has a term to explain what was
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not explainable by the factors, denoted by εi. Probabilistic Principal Component Analysis
(PPCA) is a special case of FA, where instead of the diagonal matrix Ψ the covariance
is simplified to σ2I. Since the covariance matrix is assumed to be spherical, PPCA is
rotation-invariant with regards to the observed data (Marlin, 2008; Tipping and Bishop,
1999). Note, that classical PCA is a special case of probabilistic PCA where the noise limit
or covariance σ is zero.

For supervised analysis these generative model strategies are followed by classification,
for example with Linear Discriminant Analysis (LDA) (Marlin, 2008). Even though LDA
can classify data containing missing values, when the dataset is high dimensional or has
small sample size, it is preferable according to (Marlin, 2008) to use a structured covariance
approximation, such as that given by FA and PPCA. Since our medical dataset is both high
dimensional and only has a few samples in certain conditions, we followed the suggestion in
(Marlin, 2008). Hence we use LDA on the Q-dimensional dataset (t), which in addition to
being of lower dimension does not contain missingness. We use PPCA instead of classical
PCA because the former is a generative probabilistic model, which makes it amendable
to missing data Tipping and Bishop (1999); Severson et al. (2017). Further interesting
information comparing using PPCA and MICE for learning from data containing missing
values can be found in Hegde et al. (2019).

Prototype-based machine learning methods can intuitively deal with missing data
by adapting prototypes and comparing to new data samples based on the observed di-
mensions only. A powerful family of prototype based classifiers is based on the concept
of Learning Vector Quantization (LVQ), which follows a Nearest Prototype Classification
(NPC) scheme, where a new vector is assigned the class label of the prototype to which
it is closest, according to a chosen dissimilarity measure. Assume the data consist of N
instances xi ∈ IRD accompanied by labels yi denoting one of C classes and let wj ∈ IRD

denote one of C prototypes with labels c(wj). Now, Generalized LVQ (GLVQ) performs a
supervised training procedure aimed at minimizing the following cost function (Sato and
Yamada, 1996), which exhibits a large margin principle (Hammer et al., 2005):

E =
N∑
i=1

f (λi) , where λi = dJi − dKi
dJi + dKi

. (2)

Here, the dissimilarity of each data sample xi to its nearest correct prototype with yi =
c(wJ) is defined by dJi and by dKi for the nearest wrong prototype (yi 6= c(wK)). f is a
monotonic function and we use the identity (f(a) = a) in this contribution. Extensions to
GLVQ introduced parameterized dissimilarity measures, such as the quadratic form:

dLi = (xi −wL)>Λ(xi −wL) with
∑
i

Λii = 1 , (3)

with a positive semi-definite matrix Λ ∈ IRD×D containing additional parameters for opti-
mization. This led to a family of relevance and matrix extensions (GRLVQ and GMLVQ)
that provide intrinsic interpretability in the form of relevance of the features for classification
determined by the diagonal of Λ (Hammer and Villmann, 2002; Schneider et al., 2007, 2009)
and discriminant visualization using low-rank decompositions of Λ (Bunte et al., 2012).
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In Ghosh et al. (2017) the authors introduced two variants of Generalized Matrix LVQ
(GMLVQ) which can deal with missing values. The first variant called NaN-GMLVQ bases
on the intuitive idea that one can update the prototypes wL and matrix Λ in the observed
dimensions only for each training sample xi. Accordingly, a new sample is classified with
the label of the closest prototype computing the distance Eq. (3) without the missing
dimensions. This is achieved by applying the Partial Distance strategy (PDS), shown in
(Dixon, 1979; Doquire and Verleysen, 2012; Eirola et al., 2013; van Veen, 2016), on Eq.
(3). It introduces a weighting factor proportional to the number of mutually observed
dimensions that can be used in the distance Eq. (3) between the incomplete training sample
with observed dimension indices Dobs and a prototype by:

d̂Li = D

|Dobs|
∑

m,n∈Dobs

(xi,m − wLm)Λm,n(xi,n − wLn ) . (4)

However, PDS ignores the general variability of the data and has a tendency to underesti-
mate distances due to using only locally known components. The effect is generally more
severe when comparing vectors that both have missing components and hence restricting
only to mutually known dimensions. This is typically avoided with prototype-based tech-
niques, since only the samples are expected to be incomplete. It practically requires a
feature being missing for all samples within a class to result in prototypes with missingness
(which has more negative implications for the learning than a mismatch in scale). Note,
that assuming the prototypes never miss any dimensions, the PDS factor is only dependent
on the sample xi and hence the same for any prototype and dJi and dKi in Eq. (2). There-
fore, it effectively cancels in the computation of the costs and derivatives. However, a large
variation in the number of missing features across different classes can still lead to stronger
repulsion of prototypes of classes with more missingness, effectively pushing prototypes
away from classes with less missingness. Countering these effects served as motivation for
the development of an LVQ method that classifies on the hypersphere, instead of Euclidean
space, based on an angular dissimilarity measure (ALVQ) as detailed in section 4.1.

2.2 Imbalanced classes

In many domains we face the situation that occurrences of instances from different classes
vary in frequency and, on top of it, experts are often most interested in samples of the
minority class(es). In the medical field for example, while it is promising that there are
more healthy subjects than reported patients, this fact generally poses a challenge in training
machine learning models. The issue of class imbalance is even more pronounced when the
investigated conditions are rare diseases. The main difficulty with training in the presence
of class imbalance is that many classifiers tend to become biased towards the majority
class. This is due to the fact that the minority class is under-represented or possibly even
absent during training. Moreover, performance evaluation measures can also be affected,
e.g. when looking at one overall accuracy. Literature, e.g. Alpaydin (2020), suggests that the
most prominent strategies to handle imbalanced data comprise of bagging, boosting, and
sampling, including undersampling and oversampling. In Ghosh et al. (2017) we introduced
a geodesic oversampling strategy and a strategy of penalizing certain misclassifications which
yielded promising results. These are explained in the following sections.
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ŝ

x̂ψ

xψ

s

Figure 1: Depiction of geodesic SMOTE to generate synthetic samples s on the hypershpere
to oversample minority classes for imbalanced data using Riemannian geometry.

2.2.1 Synthetic Minority Oversampling

A well known oversampling method is Synthetic Minority Over-sampling Technique
(SMOTE) (Chawla et al., 2002). It increases the sample size of the minority classes by
creating randomized artificial new training samples between k nearest neighbours of the
same class. More formally:

xnew = x+ α · (xψ − x), (5)

where α ∈]0, 1[, xnew is a generated synthetic sample, and xψ is one of the k nearest
neighbours of x. However this simple solution might not be the best choice when the
applied classifier operates on a manifold as in (Ghosh et al., 2017). In such a case SMOTE
can be performed on that manifold. For example, the authors introduced a geodesic variant
of the original SMOTE, which synthesized samples on the hypersphere instead of Euclidean
space, since the transformed data points were known to lie on a hypersphere. To achieve this
an important tool of Riemannian geometry is used, which is the exponential map (Fletcher
et al., 2004; Wilson et al., 2014). The exponential map has an origin G, which defines
the point for the construction of the tangent space τG of the manifold. Let ζ be a point
on the manifold and ζ̂ the corresponding point in the tangent space with ζ̂ = LogG(ζ),
ζ = ExpG(ζ̂) and dg(ζ,G) = de(ζ̂, G) with dg being the geodesic distance between the
points on the manifold and de being the Euclidean distance on the tangent space. Log and
Exp denote a mapping of points from the manifold to the tangent space and vice versa.
As described in (Ghosh et al., 2017) we present a point x from class c on the unit sphere
with fixed length ‖x‖ = 1, that becomes the origin of the tangent space. Next, k nearest
neighbours of the selected sample x are found from the same class xψ ∈ Nx using the
geodesic distance between the vectors θ = cos−1((x>xψ)/r2) and (in our case) r = 1. Each
random neighbour xψ is then projected onto that tangent space using only the available
features and the Log transformation for spherical manifolds:

x̂ψ = Logx(xψ) = θ

sin θ (xψ − x cos θ) . (6)

11
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Finally, a synthetic sample is produced either on the tangent space with a formula similar
to the original SMOTE, namely ŝ = α · x̂ψ, that is subsequently projected onto the sphere
via Exp transformation: s = Expx(ŝ). Or we produce the new samples on the geodesic
directly using the new angle θ̂ = ‖x̂ψ‖ and the Exp transformation:

s = x cos(θ̂α) + sin(θ̂α)
θ̂

· x̂ψ with α ∈]0, 1[ . (7)

This procedure of synthetic sample generation is depicted in figure 1 and repeated with other
random samples from the class until the desired number of training samples is reached.
We propose to oversample each of the minority classes in the training set until they are
equivalent in size to the majority class. This avoids the original SMOTE hyperparameter
selection, namely the percentage of oversampling for each minority class.

2.2.2 Variable penalty/reward cost weight matrix

Unlike the oversampling strategy which is model agnostic, this strategy to handle imbal-
anced classes is integrated in the LVQ model training. The LVQ cost function induces an
update of the model parameters based on a presented training sample. Therefore, majority
classes with significantly more samples can introduce bias in the final model by simply caus-
ing more updates to the parameters during training than the minority classes. An intuitive
way to circumvent this is by introducing a weighting dependent on the number of samples in
the class, effectively reducing the update strength for majority class samples. This principle
can be furthermore used to incorporate expert knowledge and preferences in cases where an
error free classification cannot be achieved. Some errors might be more costly than others,
such as a misclassification of a patient as healthy that would not get treated. A misclas-
sification of a disease for another where the treatment is similar on the other hand might
be more acceptable. The model can be incentivised to reduce certain misclassifications by
making the error costlier with higher weights. Following the suggestion in (Pazzani et al.,
1994), a hypothetical cost matrix Γ = {γcp}c,p=1,...,C with

∑
c,p γcp = 1 was introduced, so

as to boost learning of difficult or minority classes, thus enabling enhanced differentiation
between minority classes (all disease classes) and the majority class (healthy class). The
rows of this matrix correspond to the actual classes c and columns denote the predicted
classes p of the current model parameters. When user-defined costs are unavailable and
one simply wants to correct for the class imbalance, equal costs can be assigned to all γcp.
This ensures that the weight contribution of each class is inversely proportional to the class
strength. These costs are included in our cost function Eq.(8), as shown below:

Ê =
C∑
c=1

1
nc

 ∑
xi,s.t.yi=c

γc,ŷiλi

 , (8)

where c = yi is the class label of training sample xi, nc defines the number of samples
within that class, ŷi is the predicted label (label of the nearest prototype c(wJ)), and λi is
the cost function value of sample i Eq. (2). To chose the matrix one can run the algorithm
with equal entries first and adapt it according to the undesired misclassifications observed.
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3. Biomedical motivation

In this section two biomedical datasets, exhibiting typical problems, such as missing data
and imbalanced classes, which provided motivation for our research are described: (1)
a real-world medical dataset containing urinary steroid excretion data measured by Gas
Chromatography–Mass Spectrometry (GC-MS) measurements in patients with inborn dis-
orders of steroidogenesis and healthy controls, from the Institute of Metabolism and Systems
Research (IMSR), University of Birmingham; and (2) a publicly available real-world heart
disease dataset from the UCI repository.

3.1 Urine steroid metabolite dataset

Inborn disorders of steroidogenesis are genetic diseases which affect the Endocrine system
that synthesizes hormones for a variety of bodily functions, such as blood pressure regula-
tion, stress response, sex differentiation and puberty. Mutations in genes encoding distinct
enzymes can cause blockages in hormone production leading to several forms of Congen-
ital Adrenal Hyperplasia (CAH) and Differences in Sex Development (DSD) (Baranowski
et al., 2018). Early detection is essential, since some of these rare conditions can be life-
threatening. Rapid diagnosis would allow life-saving treatment to be delivered in a more
efficient manner, thereby reducing the distressing time of diagnostic uncertainty for pa-
tients and their families. Furthermore, it would also enable doctors to plan and advice
future treatment strategies more promptly. Accurate biochemical diagnosis can be made by
measuring characteristic patterns of individual steroid metabolites altered in these enzyme
deficiencies, however, the complexity of this data means computer aided approaches for
diagnosis are highly desirable. The IMSR at the University of Birmingham, UK, collected a
unique and extensive dataset of urinary steroid metabolite excretion data in patients with
inborn steroidogenic disorders, which were collected over a period of two decades. As of-
ten seen for the analysis of rare diseases, the data exhibits several common difficulties for
straightforward approaches for computer-aided diagnosis. For example, in some of the sam-
ples in the dataset certain steroid metabolites were not measured as at the time of analysis
these steroids were not yet part of the assay used for steroid multi-profiling. Since the data
was collected over a long period of time the clinicians’ understanding of which are impor-
tant metabolites have improved, as has the GCMS method itself. Together, these issues
gave rise to systematic missingness in this dataset. In this database, 32 steroid metabolite
concentrations, referred henceforth as biomarkers, have been measured using GCMS. The
dataset contains measurements from 829 healthy controls and 178 patients with inborn dis-
orders of steroidogenesis (ISD-1: 22, ISD-2: 12, ISD-3: 30, ISD-4: 26; ISD-5: 37; ISD-6:
51). The number of subjects in each class clearly shows the presence of high levels of class
imbalance. The class imbalance in this dataset arises from the opportunistic nature of how
these samples were collected, rather than the imbalance being representative of the popula-
tion prevalence of these diseases. The third challenge is the presence of very heterogeneous
measurements. Large variations in biomarker profiles are observed across subjects even
within the same condition class due to individual physiological features, such as age, sex,
etc. There is also heterogeneity in sample collection method, including single urine sample
collections, urine extracted from nappies for babies, and full 24-hour urine collections. It has
been proposed that using ratios of metabolites reduces some of this heterogeneity, allowing
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Figure 2: Heat-maps showing the presence of systematic missingness in each of the condi-
tions of steroidogenic disorders and healthy subjects contained in the GCMS dataset.

direct comparison of results obtained from different urine collection methods (Arlt et al.,
2004; Storbeck et al., 2019; Baranowski et al., 2018). Hence, we also used this approach,
but from a completely data-driven perspective, and 496 potentially informative ratios were
built by pair-wise combinations of the 32 biomarkers. The heatmaps in figure 2 illustrate
the missingness in each condition of the GCMS dataset.

3.2 Cleveland heart disease dataset from UCI repository

This dataset contains 13 features from 164 healthy subjects and 139 subjects with varying
degrees of heart problems. The predictor variable is originally 5 unique values, 0 indicating
healthy (164), while 1 (55 subjects), 2 (36 subjects), 3 (35 subjects), and 4 (13 subjects)
indicating patients with different heart conditions. Furthermore, six subjects contain miss-
ing values. According to Janosi et al. (1988) the missing values in the data were replaced
by a value of −9. Exploratory analysis showed that while there is a very good separa-
tion between healthy and HD subjects considered in binary classification, the multi-class
problem differentiating between the 4 classes of HD patients turns out to be remarkably
difficult. In this study we investigated this dataset for the five class problem, as suggested
in Ghosh et al. (2020); Ghosh (2021). The dataset originally consisted of 76 features but
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most research has been done on the publicly available subset of 13 of these. Further details
about them can be found at the UCI repository Janosi et al. (1988).

In classification problems addressing any type of missingness is challenging, because for
most mainstream classifiers managing missing values is not straightforward (Marlin, 2008).
As seen in Figure 2 the urine GCMS dataset contains both random and systematic miss-
ingness. For the GCMS dataset the systematic missingness arose from different studies
measuring different metabolites and the time when the measurement was made. Informa-
tion about the cause of missingness in the heart disease dataset is unavailable to us. As
mentioned in 2.1.2 the presence of missingness, especially systematic missingness, cannot be
straightforwardly handled by existing intrinsically interpretable classifiers to the best of our
knowledge, and imputation is likely to induce bias in the data. The combination of compli-
cations arising in biomedical problems such as these, motivated the development of a novel
family of geodesic prototype-based classification strategies as outlined in the following.

4. Geodesic prototype-based classification

In Ghosh et al. (2020) the authors introduced a prototype-based classification method using
a parameterized angular dissimilarity classifying on the hypersphere. The Angle Learning
Vector Quantization (Angle LVQ) strategy (denoted henceforth as LV QA) shows promising
results facing systematically missing values and very heterogeneous data where the absolute
values are not informative, while enabling intrinsic interpretability by biomarker detection
and visualization of the decision boundaries. In this contribution we systematically investi-
gate the influence of missing values of types MCAR and MNAR, the amount of missingness
and the training set size to compare the classification performance of several common strate-
gies to deal with such problems. Furthermore, we extend the LV QA algorithm to a geodesic
prototype-based classification framework2 including: (1) A probabilistic variant which pro-
vides better interpretability to the user in terms of confidence of the classifier’s decision;
(2) a rank-preserving average of matrix LVQ models, formulated using the geodesic on
the Riemannian manifold the parameters lay on; and (3) a strategy to cluster LVQ models
based on the geodesic distance of their metric tensors to identify and interpret local optima.
Interestingly, the rank-preserving mean often shows a more robust performance than that
of a single classifier, however, unlike an ensemble approach, it retains the interpretability
and transparency of an individual LVQ model.

4.1 Angle LVQ

Angle GRLVQ and angle GMLVQ (Ghosh et al., 2020) were developed as the angle-based
variants of their Euclidean counterparts optimizing the same cost function as the GRLVQ
and GMLVQ, namely Eq. (2). The angle based variants (referred to as LV QA henceforth)
replace the quadratic form d

{J,K}
i in Eq. (3) by a parameterized angle-based dissimilarity:

2. Matlab code is made publicly available at https://github.com/kbunte/geodesicLVQ toolbox
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dLi = gβ (b) with b = bΛ(xi,wL) = x>i ΛwL

‖xi‖Λ‖wL‖Λ
where (9)

‖v‖Λ =
√
v>Ω>Ωv , Λ = Ω>Ω ,

gβ(b) = e−β(b−1) − 1
e(2β) − 1

,
∑
i

Λii = 1 and L ∈ {J,K} .

Here, the exponential function gβ(b) transforms the cosine b = cos θ ∈ [−1, 1] into dissimi-
larities in the range [0,1]. The dissimilarity measure dLi itself can be parameterized enabling
several powerful extensions with varying potential for further interpretation (Ghosh et al.,
2020; Ghosh, 2021). This includes the number of prototypes used to represent each class
(which is fixed to one throughout this contribution) and the choice of the metric tensor.
The simplest choice for the metric tensor is restricting Λ to a diagonal matrix with Λij = 0
∀i 6= j and Λij > 0 ∀i = j to learn the relevance of each feature for the classification.
More complex is the use of a global metric tensor trained by decomposing Λ = Ω>Ω with
Ω ∈ IRM×D for M ≤ D to ensure positive semi-definiteness of Λ. Strictly speaking, if M 6= D
we work with a pseudo-Riemannian, also called a semi-Riemannian manifold (Amari, 2016).
For simplicity we still refer to the general positive semi-definite Λ as “metric”, abusing the
mathematical terminology slightly. In addition to the weighting of the individual dimen-
sions Λii this enables rotating the coordinate system towards discriminant directions for
classification (Biehl et al., 2013) and the linear transformation Ω allows for visualization of
the decision boundaries if M ∈ {2, 3} similar to (Ghosh et al., 2020).

The cost function Eq. (2) is non-convex and can for example be optimized using stochas-
tic gradient descent or conjugate gradient methods with the following derivatives for the
parameters Φ ∈ {{wj}kj=1,Ω}:

∂E

∂Φ =
N∑
i=1

∂f

∂Φ
∂µi
∂Φ with (10)

∂µi
∂Ω = 2dK

(dJ + dK)2 ·
∂dJ

∂Ω −
2dJ

(dJ + dK)2 ·
∂dK

∂Ω (11)

∂µi
∂wJ

= 2dK

(dJ + dK)2 ·
∂dJ

∂wJ
and ∂µi

∂wK
= −2dJ

(dJ + dK)2 ·
∂dK

∂wK
(12)

∂dLi
∂Φ =∂gβ(bΩ)

∂bΩ
· ∂bΩ
∂Φ (13)

∂bΩ(xi,wL)
∂wL

=xiΩ
>Ω‖wL‖2Ω − xiΩ>ΩwL ·wLΩ>Ω

‖xi‖Ω‖wL‖3Ω
(14)

∂bΩ(xi,wL)
∂Ωmn

=
xi,n

∑D
j Ωmjw

L
j + wLn

∑D
j Ωmjxi,j

‖xi‖Ω‖wL‖Ω

− xiΩ>ΩwL

[
xi,n

∑
j Ωmjxi,j

‖xi‖3Ω‖wL‖Ω
+
wLn

∑
j Ωmjw

L
j

‖xi‖Ω‖wL‖3Ω

]
, (15)
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where xi,n denotes dimension n of vector xi and m = 1, . . . ,M . In the presence of
missing data the cosine dissimilarity b and its derivatives are computed with the available
dimensions only. This aspect is similar to the Euclidean version, referred to as NaNLVQ,
which was presented in Ghosh et al. (2017); Ghosh (2021). However, in contrast to NaNLVQ
which uses the normalization strategy in Eq. (4), this parameterized angle measure contains
a normalization that corrects the comparison of vectors of different length more robustly
especially for increasing missingness. The generalization bounds can be estimated using the
Rademacher complexity similar to LGMLVQ (Schneider et al., 2009).

In Ghosh et al. (2020) we also introduced the angle variant of the localized GMLVQ
(LGMLVQ), denoted hereon by LV QLE Schneider et al. (2009) by attaching metric tensors
Λc to each prototype or each class. The diagonal of the local metric tensors Λj = Ωj>Ωj

contain local or class-wise feature relevances, which enables more complex modeling in
addition to providing class-specific discriminative information. The local LV QA extension
(denoted by LV QLA) is therefore written as:

b = bΩL = x>i ΩL>ΩLwL

‖xi‖ΩL‖wL‖ΩL
, (16)

with corresponding derivatives of bΩL :

∂bΩL

∂wL
=
xiΩL>ΩL‖wL‖2ΩL − xiΩ

L>ΩLwL ·wLΩL>ΩL

‖xi‖ΩL‖wL‖3ΩL
(17)

∂bΩL

∂ΩL
mn

=
xi,n

∑D
j ΩL

mjw
L
j + wLn

∑D
j ΩL

mjxi,j

‖xi‖ΩL‖wL‖ΩL
−

xiΩL>ΩLwL

[
xi,n

∑D
j ΩL

mjxi,j

‖xi‖3ΩL‖wL‖ΩL
+
wLn

∑D
j ΩL

mjw
L
j

‖xi‖ΩL‖wL‖3ΩL

]
. (18)

The update rules of LV QA, similar to their Euclidean predecessors, contain forces at-
tracting the closest correct prototype towards each data sample, and forces of repulsion
pushing away the closest one with a different class label. In an imbalanced class problem
the Euclidean variant might push the minority class prototype far away from the data all
together, since it is being repelled more often by the majority class than attracted by the
minority class. However, the LV QA variants classify on the surface of the hypersphere.
Whereas in Euclidean space repelled prototypes can increase their distance to all proto-
types simultaneously, which may lead in some cases to infinite repulsion. This cannot
happen in LV QA since a repelled prototype inevitably gets closer to another prototype due
to the nature of the hypershpere, leading to a more stable behaviour when facing imbalance.
Furthermore, the hyper-parameter β in Eq. (9) influences the slope of the dissimilarity con-
version. Therefore, β → 0 leads to a near linear relationship between the update strength
dependent on the distance of the sample to the the corresponding prototype. The β in
the exponential function influences the strictness of the classifier’s decision boundary. The
larger the value of β the more effectively it reduces the contribution of a sample to the
update of a prototype from which is it very far away, and increases the influence of a nearby
sample. In other words, the greater the distance between a sample and a prototype, the
lesser is the contribution of that sample towards the update strength of the prototype, and
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the value of β determines how much greater or lesser the contribution is based on the dis-
tance. In this contribution we use β = 1 unless explicitly stated otherwise, and therefore
denote the angle LVQ simply by LV QA instead of LV QAβ .

4.2 A probabilistic approach to classifying data with missingness

In the medical domain, patients can have multiple comorbidities instead of a single crisp
condition, they may be on the borderline between two or more conditions, or they can
have a diagnosis which shows phenotypic similarity or overlap with other conditions. If
the classifier could estimate the probability of a patient belonging to condition-1 and the
probability of belonging to condition-2 then this would constitute useful information, for
instance for the planning of further, often more expensive, confirmatory investigations or for
treatment planning. Moreover, some diseases may be difficult to diagnose, which may result
in different labels when several experts are consulted. This can be expressed as probability of
a class dependent on the fraction of experts that agree. Therefore, we develop a probabilistic
version of LV QA, which allows to express our uncertainty about the class label, given an
input, in the form of conditional probability distribution over the classes.

Authors of Villmann et al. (2018) and Schneider et al. (2011) used information theoretical
principles to generalize Robust Soft LVQ (RSLVQ), by using maximum likelihood and the
Cross-Entropy (CE) as the cost function. In our formulation we estimate the class when the
sample x is given, by minimizing the difference between the true class and our estimate i.e.,
by minimizing the Kullback-Leibler (KL) divergence (DKL) in the cost function. It is closely
related to the CE used in Villmann et al. (2018). It is interpreted in information theory
as the additional number of bits required to convey encode the data (Tse and Viswanath,
2005). Consider the unknown joint distribution p(x, c) = p(c|x)p(x) over the inputs and
labels that generated our training set {(xi, ci)}Ni=1. Our discriminative model produces an
estimate p̂(c|x) of p(c|x). The expected KL divergence measures the mismatch between
p̂(c|x) and p(c|x) can be approximated through the training sample as

H(p̂(c|·)) = Ep(x)[DKL(p̂(c|x) ‖ p(c|x))]

≈ 1
N

N∑
i=1

C∑
c=1

p̂(c|xi)[ln p̂(c|xi)− ln p(c|xi)] = 1
N

N∑
i=1

C∑
c=1

p̂(c|xi) ln p̂(c|xi)
p(c|xi)

.
(19)

Since we do not have access to the true distributions p(c|xi) the cost function is often
formulated by considering only the generated labels ci.

For the case of the generated sample (xi, ci) being noise-free p(ci|xi) = 1 (for example
when the diagnosis is genetically confirmed) other classes have a probability of 0 and KL
cannot be used. In such cases one can either simplify the cost function considering only ci
for xi: 1

N

∑N
i=1 p̂(ci|xi) ln p̂(ci|xi) or introduce some noise by substracting ε from the class

and adding ε/(C − 1) to the others. In the following we assume the latter and provide the
detailed derivatives for noisy labels.

For sample xi the p̂(c|xi) is computed by the following parameterized softmax function:

p̂(c|xi) =
gΘ
(

xiΛwc>

‖xi‖Λ‖wc‖Λ

)
∑C
j gΘ

(
xiΛwj>

‖xi‖Λ‖wj‖Λ

) with gΘ(b) = eΘ(b+1) − 1
e(2Θ) − 1

. (20)

18



PREPRINT

The parameter Θ can be interpreted as 1
kBT

where kB is the Boltzmann constant and
T is the absolute temperature. The derivatives of DKL(p̂(c|x) ‖ p(c|x)) (Eq. 19) with
‖v‖Ω =

√
v>Ω>Ωv are:

DKL(p̂(c|xi) ‖ p(c|xi))
∂Ω =

C∑
c=1

∂p̂(c|xi)
∂Ω ·

(
1 + ln p̂(c|xi)

p(c|xi)

)
(21)

and
DKL(p̂(c|xi) ‖ p(c|xi))

∂wj
=

C∑
c=1

∂p̂(c|xi)
∂wj

·
(

1 + ln p̂(c|xi)
p(c|xi)

)
(22)

Now ∂p̂(c|xi)
∂Ω can be expanded to

∂p̂(c|xi)
∂Ω =

∂gΘ(xi,wc)
∂Ω ·

∑C
j=1 gΘ(bΩ(xi,wj))− gΘ(bΩ(xi,wc)) ·

∑C
j=1

∂gΘ(bΩ(xi,wj))
∂Ω

(
∑C
j=1 gΘ(bΩ(xi,wj)))2

, (23)

similarly ∂p̂(c|xi)
∂wj

for j = c we have

∂p̂(c|xi)
∂wc

=
∂gΘ(xi,wc)

∂wc ·
∑C
j=1 gΘ(bΩ(xi,wj))− gΘ(bΩ(xi,wc)) · ∂gΘ(bΩ(xi,wc))

∂wc(∑C
j=1 gΘ(bΩ(xi,wj))

)2 , (24)

and the derivative for j 6= c is given by

∂p̂(c|xi)
∂wj

=
−gΘ(bΩ(xi,wc)) · ∂gΘ(bΩ(xi,wj))

∂wj(∑C
k=1 gΘ(bΩ(xi,wk))

)2 (25)

where
∂gΘ(bΩ(xi,wj))

∂Φ = ΘeΘ(bΩ+1)

e2Θ − 1 · ∂bΩ
∂Φ with Φ ∈ [Ω,wj ] . (26)

The partial derivatives ∂bΩ
∂w and ∂bΩ

∂Ω are defined as in Eq. (14) and (15).
This probabilistic variant of LV QA will henceforth be abbreviated as PLV QAΘ in con-

trast to the deterministic variant LV QAβ ). In both subsections 4.2 and 4.1 the cost weight
matrix introduced in 2.2.2 could be introduced as an alternative to minority class oversam-
pling, to handle class imbalance in an efficient manner, avoiding an increase in the number
of training samples.

4.2.1 Influence of Θ on classifier confidence

We created a three-dimensional synthetic dataset, each sample of which lies on the surface
of a sphere. This toy dataset contained 85000 samples which were distributed into three
classes in the proportion of 2:1:1, as shown in the Mollweide projection of this dataset (figure
3). Since we were interested in studying the effect of Θ alone on the region of significant
influence and area of regions of uncertainty, we fixed the Ω and the wc (where c = 1, .., C
and C = 3) of a trained PLV QAΘ model and varied only the value of its Θ before applying
the model on the mentioned toy data. In figure 4 each column corresponds to a value of
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cls1

cls2

cls3

prots

Figure 3: Mollweide projection of a 3D dataset for investigation of the effect of the Θ value.

Figure 4: Effect of the value of Θ in classification uncertainty. The o represents the proto-
type of the class highlighted in each row.

Θ ∈ {0.1, 1, 2, 5, 10, 50, 100} and each row depicts the regions of probability for class 1, 2
and 3. In each sub-figure the Mollweide projection of the samples of the toy dataset are
coloured according to the confidence of the model in assigning that sample the label of the
class whose prototype is highlighted (big white circle). The heatmaps illustrate how with
increasing value of Θ the regions of uncertainty decreased for all the three classes resulting
in more and more crisp decisions. Since we aimed for non-crisp decisions we kept the value
of Θ much below 20 in our experiments on real-world datasets.

4.3 Geodesic average model

Ensembling is a well known strategy to avoid overfitting and improve on the generalization
of machine learning algorithms (Breiman, 1996; Alpaydin, 2020). However, the improved
performance by combining independently trained models comes at the cost: first, increased
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computational and memory cost needed keeping all models the ensemble consists of and
second, loosing interpretability even if the individual models provide it. As mentioned
before the Random Forest is an example of an ensemble classifier based on decision trees
build from random subsets of the data. The memory and computational costs using the
Random Forest grows with the number of trees used and the interpretation in form of
feature relevances is proposed as post-processing. The transparency of an individual tree
as rules for classification is largely lost in the Forest, since the ensemble is a nontrivial
combination of partially overlapping subspaces. In this section we propose and investigate
a different strategy, namely to build a geodesic average model that retains interpretability
while avoiding overfitting effects by combining parameter information of independently
trained models.

4.3.1 Geodesic average over model parameters

In order to build an average of k models we compute the geometric mean of each of the model
parameters, namely the trained prototypes of each class Wc = {w{c,k}}ki=1 and the positive
semi-definite matrices Λk. We restrict the description for one prototype per class here, each
initialized close to the class means. With random initialization one might need to rotate
the coordinate system to align the prototypes before averaging. If using several prototypes
per class the correct index for averaging can be found using the geodesic distance of the set
of prototypes within each class. The β (or Θ) parameter is a positive scalar and typically
fixed or found by line search. Classification by geodesic LV QA variants (Eqs. (9), (16) and
(20)) takes place on the hypershpere and the geometric mean of the model prototypes of
each class wc ∈ M in the Riemannian interpretation, known as Karcher mean (Karcher,
1977), is the point in M that minimizes the sum of squared geodesic distances:

wc = arg min
w∈M

k∑
i=1

dgeod(w{c,i},w)2 with c ∈ {1, . . . , C} , (27)

with w{c,i} being the prototype of class c of individual model i. In the Euclidean LVQ
variants, GRLVQ, GMLVQ and LGMLVQ, the geodesic distance is simply Euclidean. In
case of M being the hypersphere the geodesic distance is dgeod(wi,wj) = cos−1( wiwj

‖wi‖‖wj‖).
This mean exists and is uniquely defined only as the set of prototypes Wc is contained in
an open half-sphere, which means a convexity radius of π/2, and is typically computed by
non-linear optimization methods (Karcher, 1977; Kendall, 1990; Krakowski et al., 2007).
However, computing the geometric mean of the positive semi-definite matrices Λk is less
straightforward.

The computation of geometric means of positive definite (PD) matrices as proposed by
Ando et al. (2004) has received considerable attention due to its relevance for numerous
applications, ranging from control theory, convex programming, mercer kernels and dif-
fusion tensors in medical imaging. However, the computation of this Ando mean is not
rank-preserving, resulting almost surely in a rank null for matrices with rank M < D/2
(Bonnabel et al., 2013). Due to the growing interest in low-rank approximations in large-
scale applications, Bonnabel and Sepulchre (2010); Bonnabel et al. (2013) introduced and
extended the geometric mean to the set of positive semi-definite (PSD) matrices S+(M,D)
of fixed rank M using a Riemannian framework. Their approach bases on the decomposition
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of each of the k metric tensors

Λi = UiR
2
iU
>
i for i = 1 . . . k (28)

exhibiting the geometric interpretation of PSD matrices in S+(M,D) as flat M -dimensional
ellipsoids in IRD. Here Ui is element of the Stiefel manifold St(M,D), which denotes the
set of all orthonormal M -frames in IRD.

Thus, the columns of each Ui forms an orthonormal basis of the M -dimensional subspace
the corresponding flat ellipsoid is embedded in and each R2

i is an M ×M PD matrix that
defines the ellipsoids shape in that low rank cone. Bonnabel et al. (2013) proposes that the
Karcher mean of the k M -dimensional subspaces Ui serves as a basis for the mean of the
Λk where all flat ellipsoids are brought to by a minimal rotation. In that common subspace
the problem reduces to the computation of the geometric mean of k rank M PD matrices.
The implementation of their proposed mean for an arbitrary number of PSD matrices is
outlined in Algorithm 13. For more information about the rank preserving PSD mean and
its properties we refer the reader to Bonnabel et al. (2013).

Algorithm 1 Computation of geometric rank preserving PSD mean
1: procedure PSDmean({Λi}k

i=1)
2: for i = 1→ k do
3: compute eigenvalue decomposition Λi = UiR

2
iU

>
i

4: compute an orthonormal basis V on the Stiefel manifold St(M,D) of the Karcher mean
of the k subspaces Ui

a

5: for i = 1→ k do
6: compute two orthogonal matrices Oi and OV

i by SVD of U>
i V

b

7: compute bases Yi = UiOi

8: compute bases Vi = V OV
i

9: with Ψ2
i = Y >

i ΛiYi the ellipsoid of Λi rotated to the mean subspace is ViΨ2
iV

>
i

10: express the ellipsoids in a common basis V : T 2
i = V >ViΨ2

iV
>

i V

11: compute the ando mean A(T 2
1 , . . . , T

2
k ) in the low-rank cone c

12: return the geometric mean Λ = V A(T 2
1 , . . . , T

2
k )V >

a. The Karcher mean of a set of M -dimensional subspaces of IRD on Grassmann manifold Gr(M,D)
is unique in a geodesic ball of radius less than π/(4

√
2) (Afsari, 2011) and can be found by minimal

rotation, as provided in the SuMMET package (Marrinan et al., 2014).
b. These bases remove ambiguity in the definition of the PSD mean chosing particular bases Yi of

the fibers UiO(M) and bases Vi of the mean subspace fiber V O(M) building the endpoints of the
geodesic in the Grassmann manifold (Bonnabel et al., 2013).

c. Methods are proposed in Ando et al. (2004); Arnaudon et al. (2012); BINI et al. (2010) and we used
the mmtoolbox implementation by the latter.

4.3.2 Convex combinations of models

LVQ models approximate the solution to non-convex problems and as such may converge
to different local optima in independent training runs and the complexity of the problem.
We expect that the model resulting from averaging over models from different local optima
might exhibit inferior performance compared to its original contributors. Therefore we

3. We provide the Matlab code at https://github.com/kbunte/geodesicLVQ toolbox
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investigate convex combinations of Matrix LVQ models empirically and propose a clustering
strategy to distinguish models to build local averages. For the prototypes of the models the
Karcher mean, Eq. (27), can be generalized to a weighted mean or convex combination:

ŵc = arg min
w∈M

k∑
i=1

αidgeod(w{c,i},w)2 with c ∈ {1, . . . , C}, αi ≥ 0 and
∑
i

αi = 1 . (29)

To the best of our knowledge an analytical solution for the weighted mean does not exist
and several iterative strategies were proposed (Clark and Thompson, 1984; Wagner, 1990,
1992; Watson, 1983; Alfeld et al., 1996). Two fast iterative solutions exhibiting linear and
quadratic convergence for spheres can be found in Buss and Fillmore (2001).

Bonnabel et al. (2013) provided an analytical solution for the weighted average of
two positive semi-definite matrices Λ1 and Λ2 ∈ S+(M,D), which can be summarized
as follows. It bases on the same decomposition as stated in Eq. (28), i.e. Λ1 = U1R

2
1U
>
1

and Λ2 = U2R
2
2U
>
2 defined up to an orthogonal transformation O ∈ O(M)4 and hence

Ai = UiR
2
iU
>
i = UiOi(O>i R2

iOi)O>i U>i . The equivalence classes UiO(M), called fibers,
denote all bases that correspond to the same M -dimensional subspace UiU>i . While the
orthongonal transformations do not affect the Grassmann5 mean of subspaces they do effect
the Ando mean of the low-rank PD matrices A(R2

1, R
2
2) 6= A(R2

1, O
>R2

2O) which causes the
problems with the definition of a geometric mean. To deal with the ambiguity Bonnabel
et al. (2013) proposed to compute particular representatives Y1 = U1O1 and Y2 = U2O2
as bases of the fibers, obtained by SVD of U>1 U2 = O1(cos Σ)O>2 using the matrix cosine.
These two bases correspond to the endpoints of the geodesic in the Grassman manifold
that minimize the distance between two fibers in the Stiefel manifold St(M,D). These are
than used to define a geodesic between Y1 and Y2 containing the convex combinations or
t-weighted mean

Y (t) = Y1 cos Σt+X sin Σt with t ∈ [0, 1] , (30)

where Σ is the diagonal matrix containing all principal angles and X = (Y2 −
Y1 cos Σ)(sin Σ)−1. Note that the half-way point Y (0.5) is the Riemannian mean of Y1
and Y 2. Than the representative PD matrices for the M -dimensional ellipsoids in the low
rank cone in the corresponding subspaces are given by Ψi = Y >i ΛiYi. Following Lawson
and Lim (2013) the convex combination (or t-weighted mean denoted by #t) of these two
PD matrices is computed as

Ψ1#tΨ2 = Ψ1/2
1

(
Ψ−1/2

1 Ψ2Ψ−1/2
1

)t
Ψ1/2

1 . (31)

Finally, having all the necessary ingredients, the convex combination of the SDM matrices
Λ1 and Λ2 is computed by the t-weighted mean (Bonnabel et al., 2013):

Λ(t) = Y (t)(Ψ1#tΨ2)Y (t)> . (32)

4. O(M) denotes the general orthogonal group in dimension M

5. Grassmann Gr(M,D) denotes the space of all M -dimensional linear projectors in IRD
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Figure 5: Visualizations of macro averaged accuracies in training and test of the convex
hull build by three PLV QA models from the same (a,b) and three different clusters (c,d).

4.3.3 Clustering of Matrix LVQ models

In order to avoid averaging across local optima we propose a clustering strategy based on the
Grassmann distance between the bases of the fibers Ui from the decomposition of the metric
tensors Λ, see Eq. (28) and the text above (30). The Grassmann distance dGr(Ui, Uj) =
‖Σ‖2 is computed using the principal angles [Σ1, . . . ,Σm], which are collected in the diagonal
matrix Σ obtained by SVD of the product of the subspaces U>i Uj = Oi(cos Σ)O>j . In case of
localized class-wise metric tensors Λc = Ωc>Ωc we compute the Grassmann distance for each
of the c projectors and use the average distance for clustering. We employ agglomerative
hierarchical clustering using Ward Linkage on the pairwise Grassman distances and extract
cluster memberships varying the numbers of clusters. Afterwards we compute the geodesic
average model using only members of the same cluster and compute the macro averaged
accuracy on the training set to select the best clustering. Of course different cluster methods
could be used as well, such as for example variations of Grassman k-Means (Turaga et al.,
2011; Shirazi et al., 2012; Carson et al., 2017). Furthermore, the Matlab ManOpt toolbox6

provides a rich collection of algorithms for a variety of manifold optimization problems.
However, we decided to use hierarchical clustering, since we have typically a comparable
low number of models, such that the squared complexity with the number of instances does
not state a problem and it avoids further introduction of local optima as is expected using
k-Means or Gaussian Mixture Model approaches. Furthermore, the cluster memberships
for different numbers of clusters can be easily extracted without the need of re-running the
method. Figure 5 shows the macro averaged accuracies of the convex hull build by three
probabilistic LV QA models trained on the GCMS data with rank M set to three. The
first two panels depict the training and test set performances of the closest models within
the same cluster, while the latter 2 panels show the performance of models taken from
three different clusters. It can be seen that the convex combination of metric tensors from
different clusters can lead to inferior performance, while it can improve using models from
the same cluster. Therefore, we propose to extract 2-k clusters, compute the average model
of each and look at an elbow in the training performance.

6. http://www.manopt.org
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Missing Available

Figure 6: Synthetic data: plot of the 3 informative dimensions (left) and class-wise heatmaps
of subject-wise average 60% missingness of type MNAR and MCAR (right).

5. Synthetic datasets and experiments

This section describes a synthetic dataset7 we modeled to simulate the aforementioned
problems, such as low amounts of training data and missing values, often encountered in
biomedical data analysis. On this synthetic dataset we introduce once the MNAR and once
the MCAR type of missingness, vary the amount of missing data, and the sample size of
the training data to study the influence of each of these variations on different classifiers
discussed in the previous sections.

5.1 Synthetic dataset description

The synthetic dataset χsyn was created with three informative dimensions in which three
classes are arranged on two-dimensional manifold arcs bending in 3D and overlapping with
their narrow parts in the center of a sphere. Similar to the real biomedical dataset the
absolute values are not very informative in this arrangement. We created 300 samples per
class as shown in the left panel of Figure 6. An independent test set consists of 30,072
samples generated similarly. To increase the complexity we augmented it with nonlinear
transformations of the three informative dimensions and five dimensions of uniform random
noise. The non-linear copies were created by taking the base 10 logarithmic transform, and
two exponential transforms eχ, χ3 and χ5, resulting in 20 dimensions in total. Next the
dataset is successively treated with increasing amount of missingnes of type MCAR and
MNAR starting from 10% to 60% in steps of 10. For the latter category the dataset was
divided into 3 groups randomly, such that the proportion of subjects in the groups were
0.4 : 0.4 : 0.2. Each group could be thought of as a different laboratory or study from which
the data was collected. The first two studies measure a few mutually exclusive features and
the third group measures all features of the 20 dimensional synthetic data. However, with
passage of time each of the first two labs started measuring a few more dimensions than they

7. The synthetic data is made publicly available in https://git.lwp.rug.nl/cs.projects/angleLVQtoolbox.git
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initially used to, and thus we have a time and study-dependent (systematic) missingness.
In reality randomly missing samples can exist in addition to systematically missing ones,
so we added some random missingness as well. The right panel in Figure 6 shows the most
complicated case with 60% MNAR, where black indicates missing values, while available
information is marked white.

5.2 Synthetic data experiments

To study the effect of the training set size on the generalization performance of the classi-
fication we successively reduced the amount of data from 80% to 20% of the original 900
samples in steps of 10. Now we compare several strategies for classification in the presence
of missing data on the synthetic datasets explained above by 10-fold cross-validation (CV).
The first strategy bases on generative modeling, namely learning a PPCA model from the
data as proposed by Tipping and Bishop (1999) followed by classification by LDA as pro-
posed in Marlin (2008). The algorithm is abbreviated by LDAQ in the following, where
the subscript Q denotes the latent dimension for Probabilistic PCA. PPCA performed on
the full training sets suggests an intrinsic dimensionality of 10 for each percentage of miss-
ingness. Another common strategy is multiple imputation, which is model agnostic and
can be performed as preprocessing. We imputed each training set using MICE following
the predictive mean matching (PMM) strategy (Royston et al., 2011; Azur et al., 2011)
and generated 10 imputed sets. The resulting model was used to impute the validation
and hold-out test set of each CV fold accordingly8. After imputation any classifier such as
Random Forest (RF) and k-nearest neighbour (KNN) can be used. For the KNN classifier
we varied number of nearest neighbours k and type of distance used, namely Euclidean and
Mahalanobis and abbreviate the method with iKNNEk and iKNNMk respectively. (Lall
and Sharma, 1996) suggests that the value of k should be chosen as the square root of the
number of training instances. However, since we varied the size of the training set and
simultaneously wanted to eliminate the effect of different values of this hyperparameter for
the different sizes of the training set, we selected the upper limit of k ≈

√
162 ≈ 12 for all

the sets according to the smallest set being 20% of the original samples. For RF we selected
the number of decision trees to be 150, which is large enough for a strong ensemble classifier
and still smaller than the smallest training set.

For prototype-based classification we compare the original Euclidean prototype based
classifiers GMLVQ with rank M on the imputed data abbreviated by iLV QEM and the
NaNLVQ able to deal with missing values, accordingly referred to as LV QEM . The geodesic
Angle LVQ extension (LV QAM ) is performed on the original and imputed data (iLV QAM )
as well to show the influence of the imputation on the performance. The novel probabilistic
Angle LVQ variant based on the Kullback-Leibler divergence is in the following abbreviated
by PLV QA

Θ
M . In this experiment we set the hyperparameter Θ = 1. Additionally we

reduced the rank M to 10 for direct comparison with the LDA strategy. The prototype-
based strategies are repeated 5 times with random initialization on each training set.

8. a recent out-of-sample extension for MICE called mice.reuse is available at https://github.com/
prockenschaub/Misc/tree/master/R/mice.reuse
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Table 1: Selected average training T zfN and hold-out test HOzfN errors for fraction f number
of training samples N and on average z% of missingness of type MNAR.

Classifier T 0%
N HO0%

N HO0%
0.2N HO30%

N HO30%
0.2N HO60%

N HO60%
0.2N

ikNNE12 0.06 (0.01) 0.15 (0.01) 0.23 (0.05) 0.22 (0.03) 0.28 (0.04) 0.41 (0.01) 0.45 (0.02)
ikNNM12 0.02 (0) 0.08 (0.01) 0.23 (0.07) 0.23 (0.04) 0.34 (0.05) 0.45 (0.01) 0.52 (0.02)
ikNNE5 0.05 (0.01) 0.17 (0.01) 0.26 (0.05) 0.26 (0.03) 0.30 (0.04) 0.43 (0.01) 0.47 (0.02)
ikNNM5 0.02 (0) 0.12 (0.01) 0.25 (0.06) 0.28 (0.04) 0.36 (0.05) 0.48 (0.01) 0.53 (0.02)
iRF150 0 (0) 0.01 (0) 0.02 (0.01) 0.06 (0.01) 0.08 (0.02) 0.25(0.01) 0.30(0.01)
iLV QE10 0.02 (0) 0.02 (0) 0.07 (0.04) 0.15 (0.02) 0.21 (0.04) 0.36 (0.01) 0.43 (0.03)
iLV QA10 0 (0) 0.01 (0) 0.08 (0.05) 0.14 (0.02) 0.20 (0.04) 0.35 (0.01) 0.41 (0.03)
iLV QE20 0.02 (0.01) 0.02 (0.01) 0.07 (0.03) 0.15 (0.02) 0.21 (0.04) 0.36 (0.01) 0.43 (0.03)
iLV QA20 0 (0) 0.01 (0) 0.08 (0.05) 0.14 (0.02) 0.20 (0.04) 0.35 (0.02) 0.42 (0.04)

LDAQ10 0.01 (0.01) 0.17 (0.03) 0.26 (0.07) 0.25 (0.03) 0.30 (0.05) 0.38(0.03) 0.40 (0.03)

LV QE20 0.02 (0.01) 0.02 (0.01) 0.07 (0.03) 0.15 (0.01) 0.21 (0.04) 0.30(0.01) 0.35(0.03)
LV QA20 0 (0) 0.01 (0.01) 0.07 (0.05) 0.14 (0.02) 0.20 (0.02) 0.27(0.01) 0.35(0.05)
LV QE10 0.02 (0) 0.02 (0) 0.07 (0.04) 0.15 (0.01) 0.23 (0.04) 0.31 (0.01) 0.37 (0.03)
LV QA10 0 (0) 0.01 (0) 0.08 (0.05) 0.14 (0.02) 0.21 (0.04) 0.27(0) 0.35(0.04)
PLV QA

1
10 0 (0) 0.01 (0) 0.01 (0) 0.15 (0.03) 0.16 (0.03) 0.27(0.01) 0.28(0.02)

LV QLA10 0.01 (0) 0.05 (0.03) 0.13 (0.07) 0.13 (0.02) 0.23 (0.05) 0.24 (0.02) 0.36 (0.04)

5.3 Synthetic data results

Table 1 reports the performance in terms of classification error (and standard deviation)
averaged over the 10 folds CV, when applied on the datasets with MNAR values. The clas-
sifier names are abbreviated as introduced before together with the main hyperparameters
shown in the subscript and superscript. Prefix i denotes that the classifier is trained and
tested on the imputed datasets. In the column names, T zfN exhibits the training error and
HOzfN the corresponding hold-out test error, where the factor f indicates the fraction of the
number of samples N used for training and z marks the average percentage of missingness
per sample. Table 1 shows that RF exhibits the lowest error in the hold-out test test. How-
ever we also observed that RF suffers from significant overfitting effect. This table further
indicates that throughout the experimental settings (variation of amounts of missingness
and available data for training), the performance of LV QA10 is more stable than that of
its Euclidean counterpart even for the lowest rank of Ω matrix. With regards to the KNN,
the choice of distance measure seems to have a stronger effect than the choice of k for this
data. Comparing the LDA and the LVQs we find that the effect of the number of principal
components is more pronounced in the former than the effect of rank of Ω is for the LVQs.

We investigate whether the superior performance by RF is due to ensembling. Therefore
we train a system of 150 LV QA20 on the exact same imputed subsets of training data that
each of the 150 DTs of the RF had trained on, on the most difficult setting (60% MNAR
and training set reduced to 20% of its original size). The mean generalization error from the
system of iLV QA20 is 0.39 (0.02) and that from LV QA20 is 0.32 (0.01) against RF’s 0.30
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Table 2: Selected average training T zfN and hold-out test HOzfN errors for fraction f number
of training samples N and on average z% of missingness of type MCAR.

Classifier T 0%
N HO0%

N HO0%
0.2N HO30%

N HO30%
0.2N HO60%

N HO60%
0.2N

ikNNE12 0.06 (0.01) 0.15 (0.01) 0.23 (0.05) 0.23 (0.01) 0.23 (0.01) 0.38 (0.01) 0.38 (0.01)
iRF150 0 (0) 0.01 (0) 0.02 (0.01) 0.06 (0) 0.06 (0) 0.23 (0.01 0.23(0.01)

LDAQ10 0.1 (0.01) 0.17 (0.03) 0.26 (0.07) 0.21 (0.03) 0.22 (0.03) 0.33 (0.03) 0.33 (0.03)

LV QE10 0.02 (0) 0.02 (0) 0.07 (0.04) 0.14 (0.01) 0.16 (0.02) 0.28 (0.01) 0.28 (0.02)
LV QA10 0 (0) 0.01 (0.01) 0.08 (0.05) 0.13 (0.01) 0.14 (0.02) 0.28 (0.02) 0.28 (0.03)

PLV QA10 0 (0) 0.01 (0) 0.01 (0) 0.15 (0.02) 0.16 (0.03) 0.29 (0.02) 0.29 (0.02)
LV QLA10 0.01 (0) 0.05 (0.03) 0.13 (0.07) 0.15 (0.02) 0.16 (0.03) 0.27 (0.02) 0.35 (0.03)

Figure 7: Overview of the classification error plots of 6 methods on the hold-out test set
for missingness of type MCAR (top) and MNAR (bottom). The letters F and R mark the
full and to 20% of the original size of the training set, while the number 1-3 indicates 0%,
30% and 60% missingness respectively.

(0.01). This additionally confirms that imputation does adversely affect the performance
of LV QA classifiers. Since ensembling compromises with the interpretability of a classifier
we applied geodesic averaging to our classifier, which resulted in a generalization error of
0.31 (0.01), thus comparable to RF with 150 DTs trained on the exact same subset of train-
ing data, indicating that ensembling and averaging strategies are indeed beneficial. Next
we compare and discuss the performance of the classifiers on the aforementioned MCAR
datasets. For each of the classifiers, only the most promising hyperparameter settings (based
on the validation set performance) were applied. Hence, in the following experiments we
omit imputation for algorithms that handle the missingness internally. Also since we know
that there are 10 intrinsic dimensions based on PPCA and EVD, we restrict the rank of Ω
to 10, and keep the latent dimension of covariance matrix 10 for the LDA.

Figure 7 provides visual summary of the generalization performance of the aforemen-
tioned classifiers, i.e., KNN with k = 12 neighbours, LV QA and GMLVQ trained on the
unimputed data, and LDA with latent dimension of 10. Figure 7 shows the performance of
PLV QA, LV QA, LV QE , and LDA trained on unimputed data and KNN and RF on the
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Figure 8: The cumulative variance shows that the 57 dimensions together explain 95%, and
100 dimensions explain more than 99% of the variance of the dataset.

imputed dataset. Comparison of tables 1 and 2, and figure 7 illustrate that the difference is
performance of the LVQ classifier with parameterized cosine dissimilarity measure and that
with Euclidean distance measure is prominent for systematic missingness only. Similarly
KNN and LDA are also less prone to error when the missingness type is MCAR. Thus,
while the LV QA classifier shows similar performance for MCAR missingnes, it is superior
with respect to its Euclidean counterparts when the missingness is of type MNAR. Even
though RF with 150 DTs have a slightly lower error rate that of the LVQ classifiers, our
invetigation confirmed that it is because of ensembling. Since the motivation behind table
1 was to show the difference in influence of the MCAR and MNAR type of missingness, we
have not repeated the experiment with ensembling for this part.

6. Computer aided diagnosis of inborn disorders of steroidogenesis, based
on urine steroid metabolite excretion data

Due to the limited number of samples for the rare disorders of steroidogenesis it is impossible
to keep a hold-out test. Therefore, we validate the performance of the classifiers using 5-
fold cross-validation, dividing the folds with a comparable number of subjects from each
condition (preserving the class distribution). Following the outcome from the series of
experiments performed on the synthetic datasets, we did not use imputation on this real-life
data for any algorithm which can handle missing data implicitly. The data is preprocessed
by z-score transform with the mean and standard deviation determined by each training set
and consecutively used in the corresponding test set. An exploratory analysis with EVD
and probabilistic PCA (with the number of latent dimensions Q = 300) is performed, to
estimate the number of intrinsic dimensions of the data. Both PPCA (figure 8) and EVD
suggest that ≈ 57 and 100 are able to explain 95% and 99% of the variances of the dataset,
respectively. EVD of Λ = Ω>Ω with Ω ∈ IR57×D revealed an intrinsic dimensionality for
classification of M = 6. We additionally experimented with Ω ∈ IR3×D that allows the
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Table 3: Experiments on the GCMS data. All experiments were performed on 5 folds of
cross-validation, using stratified sampling, and repeated random initializations per fold.

Algorithms Hyperparameters and experiment description

LDAQM PPCA for latent dimension of M=100 and 57, SMOTE (imbalance)
iKNNE

κ MICE (imputation), SMOTE (imbalance), and k ∈ {3, 5, 7}
iRFt MICE (imputation), SMOTE (imbalance), number of DTs t ∈ {7, 50, 100}

LV QEM SMOTE (imbalance), 1 prot/class, Rank(Λ) M ∈ {100, 57, 6, 3}
LV QA

β
M Geodesic SMOTE (imbalance), 1 prot/class, Rank(Λ) M ∈ {100, 57, 6, 3}

LV QLA
β
M Geodesic SMOTE (imbalance), 1 prot/class, Rank(ΛL) M ∈ {100, 57, 6, 3}

PLV QA
θ
M Geodesic SMOTE (imbalance), 1 prot/class, Rank(Λ) M ∈ {100, 57, 6, 3}

cPLV QA
θ
M Cost weight matrix γcp (imbalance), 1 prot/class, Rank(Λ) M ∈ {100, 57, 6, 3}

(cP )LV Q
A

{β,θ}
M

eη
Ensembling (majority vote) of η ∈ {5, 100} iterations of (cP )LV QA

{β,θ}
M for each fold with

Rank(Λ) M ∈ {100, 57, 6, 3}

(cP )LV Q
A

{β,θ}
M

#ηυ
Geodesic average of υ clusters over η = 100 (cP )LV QA

{β,θ}
M models for each fold with Rank(Λ)

M ∈ {6, 3}

visualization of the decision boundaries. Experiments on each fold were repeated at least 5
times with random initialization of elements Ωij ∈ [−1, 1].

Table 3 summarizes the experiments performed on the metabolite ratios of the GCMS
dataset. GMLVQ using Euclidean distance is indicated by LV QE , GMLVQ using angle-
based dissimilarity is represented by LV QA

β
M , where M denotes the rank of metric tensor

Λ and hyper-parameter β. For this dataset we also experimented with the more complex
local variant, namely LV QA with local metric tensors, which are referred to in the tables
as LV QLA. The probabilistic LV QA variant is abbreviated by PLV QA

Θ
M . For the top-

most block all the classifiers, except LDA, were applied on 10 imputed sets of training
data per fold. The variability in these classifiers arises from both the imputed sets and the
oversampling per iteration. The LDA performance variation per iteration in a fold stem
from oversampling only, since it can handle missing data intrinsically. Block 2 investigates
the LVQ variants with different hyperparameter settings, trained with at least 5 random
initializations in each fold. Most experiments used (geodesic) SMOTE to tackle the class
imbalance in a comparable way. Alternatively a cost weight matrix (as introduced in sec-
tion 2.2.2) can be used, that can penalize certain classification errors more than others.
We observed comparable results to the use of geodesic SMOTE and added one result with
costs γcp = 1/6 for demonstration. The diagonal γc=p and misclassified healthy controls cost
is 2/3, misclassifications of ISD-4 and ISD-5 for any other disease is 1/3, and the highest
penalty is induced by a patient being misclassified as healthy, setting the corresponding
column off-diagonal elements to 1. The third block indicates the ensembling experiment
settings using majority vote and the geodesic averaging strategy. We concentrate on the
best hyperparameter settings (based on training performances) of the newly presented in-
trinsically interpretable classifiers (LV QA, LV QLA, PLV QA and cPLV QA) from the block
before. The ensembling experiments are added for two reasons: first they constitute a fairer
performance comparison to RF (which is an ensemble of η DTs), and second the average
models (see section 4.3) lend themselves for easy interpretation. For all LVQ models we
ensembled first over the 5 initially trained models only, to get a first estimate of the per-
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formance gain. We only trained additional models for the most promising and interesting
hyperparameter settings. The experiments demonstrating the clustering strategy before
building the geodesic average model (see section 4.3.3) are abbreviated by (P )LV QA

{β,θ}
M

#ηυ .
υ = 1 indicates that all models were used and υ > 1 indicates the average was build in
clustered subsets. The former is the default setting since the latter is only beneficial if
there are significantly different local optima found, which usually is encountered when the
complexity of the model (global metric tensor, rank and/or number of prototypes) is too
small for the classification problem. The rank 3 restriction that allows visualization of the
decision boundaries is a typical situation where the clustering can be beneficial.

6.1 Performance comparison on the GCMS ratios data

In this section we present the results of the best hyperparameter settings (selected based on
training performance) described in table 3 for LDA, KNN and RF. For LVQ classifiers, their
performances on both imputed and unimputed (original ratios) were compared, however as
was seen for the synthetic dataset, imputation has an adverse effect and we do not show
them. We performed grid search to optimize the hyper-parameter settings of all methods
with respect to the training data. For KNN the performance corresponding to Euclidean
distance with κ = 5 nearest neighbours has been reported. For the PLV QAΘ

M , with rank
3 we found Θ = 10 and for rank M = 6 we found Θ = 15 to be good choices. We present
the generalization performance from those experimental settings which had best training
performance, were easy to interpret, and helped in considerable knowledge gain by the
medical community.

Table 4 shows the most interesting selection of performances of Angle LVQ (global and
local), RF (with 100 trees), imputed KNN with κ = 5, LDA with latent dimension Q = 100,
and the original matrix LV QEM (imputed and NaNLVQ) (Bunte et al., 2012; van Veen,
2016). Additionally the table also shows the performance from the PLV QAΘ

M to enable
comparison between deterministic and probabilistic versions. For a fair comparison with
RF, which is an ensemble of DTs, we also report the performances of the majority vote
ensemble and geodesic average model of 100 trained LV QA

β
M and PLV QAΘ

M models within
each fold. Since the class-wise accuracy of the healthy condition is the same as the specificity
we only report the former. The evaluation measure macro-averaged accuracy (MAvg) is the
mean of the class-wise accuracies of all the classes. Table 4 shows that the imputed RF
is superior to imputed KNN or LDA. Furthermore, the experiments demonstrate that the
use of the angular dissimilarity in the LVQ models is beneficial for this dataset. Note, that
the ALVQ models are also fairly robust with respect to the hyper-parameter setting, with
the exception of the rank 3 visualization models that trade some of the performance for
additional interpretability by visualization. Interestingly, the probabilistic variant shows
slightly better performance than the original formulation across the settings. PLV QA

Θ
M

even with ranks 3 and 6 of Λ and LV QLA
β
M with rank 3 local metric tensors ΛL show

comparable performance to RF. Following an ensembling strategy with 100 LVQ models
leads to a fair comparison and especially the PLV QA models achieve similar or superior
performance and exhibit higher sensitivity and macro-averaged accuracy when compared to
RF. However, any majority vote ensemble loses interpretability and hence we also reported
the clustered average model performance, as explained in section 4.3. The overall best
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Table 4: GCMS: mean validation performance (and standard deviation) across 5 folds. Evaluation measures include
sensitivity (all conditions versus healthy), macro-averaged accuracy (MAvg), and class-wise accuracy. The last 2 blocks
show the performance of majority vote ensembling ((cP )LV Qeη) and the fold-wise average model ((cP )LV Q#η).

Method Sensitivity MAvg Healthy ISD-1 ISD-2 ISD-3 ISD-4 ISD-5 ISD-6

iRF100 94.1(0.03) 92.4(0.03) 99.8 (0.00) 88.5 (0.16) 96.7 (0.07) 90.7 (0.14) 89.3 (0.17) 87.1 (0.09) 94.8 (0.06)

iKNNE5 86.2 (0.06) 79.6 (0.06) 98.0 (0.01) 61.1 (0.22) 82.7 (0.30) 82.7 (0.13) 84.9 (0.13) 66.6 (0.14) 80.9 (0.14)

LDAQ100 87.7 (0.03) 80.3 (0.02) 97.7 (0.01) 63.0 (0.29) 76.7 (0.22) 83.3 (0.12) 72.7 (0.23) 78.6 (0.07) 90.2 (0.00)

LVQE6 89.4 (0.04) 86.2 (0.06) 99.3 (0.00) 78.0 (0.14) 93.3 (0.15) 83.3 (0.12) 76.7 (0.33) 78.6 (0.15) 94.0 (0.05)

LVQ
A1

6 95.1 (0.04) 91.3 (0.03) 98.9 (0.01) 84.0 (0.22) 98.7 (0.03) 93.3 (0.10) 89.9 (0.12) 78.6 (0.17) 95.7 (0.05)

PLVQ
A10

3 95.8 (0.02) 89.8 (0.03) 98.2 (0.01) 81.0 (0.25) 95.3 (0.10) 90.7 (0.13) 86.9 (0.14) 81.6 (0.16) 94.5 (0.06)

PLVQ
A15

6 96.6(0.03) 91.8(0.03) 98.1 (0.01) 85.0 (0.24) 100 (0.00) 91.3 (0.12) 88.8 (0.17) 80.5 (0.13) 98.8 (0.03)

cPLV Q
A15

6 97.3(0.02) 91.1(0.04) 97.2 (0.02) 84.8 (0.20) 97.2 (0.10) 92.4 (0.09) 89.6 (0.15) 81.6 (0.14) 95.0 (0.06)

LVQ
LA1

3 95.2 (0.03) 91.1 (0.03) 99.0 (0.01) 85.0 (0.18) 97.3 (0.06) 92.7 (0.09) 88.0 (0.18) 78.2 (0.12) 97.3 (0.05)

LVQ
A1

3
e100 94.8 (0.03) 91.7 (0.02) 99.2 (0.01) 81.0 (0.21) 100 (0.00) 96.7 (0.07) 88.0 (0.18) 78.9 (0.14) 98.0 (0.04)

LVQ
A1

6
e100 94.3 (0.03) 91.4 (0.02) 99.0 (0.01) 81.0 (0.21) 100 (0.00) 96.7 (0.07) 88.0 (0.18) 78.9 (0.14) 96.2 (0.05)

PLVQ
A10

3
e100 96.6(0.03) 93.1(0.03) 98.9 (0.01) 86.0 (0.22) 100 (0.00) 96.7 (0.07) 88.0 (0.18) 81.8 (0.17) 100 (0.00)

PLVQ
A15

6
e100 96.6(0.03) 93.4(0.02) 98.7 (0.01) 86.0 (0.22) 100 (0.00) 96.7 (0.07) 88.0 (0.18) 84.3 (0.14) 100 (0.00)

cPLV Q
A15

6
e100 97.2(0.02) 92.7(0.03) 98.4 (0.02) 91.0 (0.12) 100 (0.00) 93.3 (0.09) 88.0 (0.18) 81.8 (0.17) 96.0 (0.05)

LVQ
LA1

3
e100 94.4 (0.02) 90.2 (0.02) 99.3 (0.01) 76.0 (0.25) 100 (0.00) 93.3 (0.09) 88.0 (0.18) 78.9 (0.14) 96.2 (0.05)

LVQ
A1

3
#1005

94.4 (0.02) 85.7 (0.08) 94.9 (0.09) 72.6 (0.20) 85.3 (0.23) 92.7 (0.09) 83.7 (0.15) 73.3 (0.18) 97.3 (0.04)

LVQ
A1

6
#1005

94.6 (0.02) 91.4 (0.01) 99.0 (0.01) 78.5 (0.22) 100 (0.00) 96.7 (0.07) 88.0 (0.18) 81.6 (0.12) 96.2 (0.05)

PLVQ
A10

3
#1004

96.5(0.01) 89.0 (0.03) 98.1 (0.01) 77.8 (0.24) 92.5 (0.07) 92.5 (0.07) 86.0 (0.22) 81.0 (0.14) 95.5 (0.04)

PLVQ
A15

6
#1001

96.6(0.02) 92.6(0.02) 98.4 (0.01) 86.4 (0.20) 99.9 (0.00) 93.8 (0.08) 88.0 (0.17) 82.8 (0.14) 99.3 (0.00)

cPLV Q
A15

6
#1001

97.8(0.01) 92.9(0.04) 98.1 (0.01) 91.0 (0.12) 100 (0.00) 93.3 (0.09) 88.0 (0.18) 81.8 (0.17) 98.0 (0.04)

LVQ
LA1

3
#1001

95.5 (0.01) 91.2 (0.02) 99.3 (0.01) 81.0 (0.21) 100 (0.00) 93.3 (0.09) 88.0 (0.18) 78.9 (0.14) 98.2 (0.04)

performance is achieved with PLV Q ensembles and the average model over 100 random
initializations (just one cluster). The cost weight matrix cPLV Q is a viable alternative
to oversampling and shows comparable performance. It can steer the training with prior
knowledge and avoids creating synthetic samples, which makes it cheaper to run.

6.2 Knowledge extraction from LV QA models

6.2.1 Visualisation of decision boundaries

The angle LVQ variants LV QA (both probabilistic and deterministic) with Λ of rank 3 can
be used to visualize the decision boundaries between the conditions, the positions of the
prototype of each class, and the subjects on a sphere. The average model (explained in sec-
tion 4.3) provides the advantages of an ensemble while preserving interpretability. The rank
3 model is not complex enough for the GCMS classification problem resulting in trade-off
in performance and several local optima, that we clustered before averaging. For figure 9
we selected a model from PLV Q

A10
3

#ηυ cluster 4 which averaged over 32 constituent models
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of fold 1. We visualize the sphere in two dimensions using the Mollweide projection9. The
reduction of the hypersphere of 496 dimensions to 3 dimensions for visualisation purpose
slightly compromised with the sensitivity and class-wise accuracies. However, this illustra-
tion provides an effective visual explanation for collaborators of how PLV Q

A10
3

#1004
performs

classification on the hypersphere and highlights the position of subjects which lie close to
decision boundaries which may be challenging to accurately classify.

ISD-1 ISD-2 ISD-3 Healthy

ISD-4 ISD-5 ISD-6 Prototypes

Figure 9: Mollweide projection of the decision boundaries, prototypes and samples induced
by one of the cluster models PLV QA

10
3

#1004
averaged over 32 individual models in fold 1.

6.2.2 Biomarker extraction

Matrix LVQ models enable the extraction of feature relevance information from the given
dataset. One can obtain similar general relevance information from the RF through a com-
paratively laborious process, using the model-agnostic MDA strategy explained in section
2.1.2. Figure 10 shows the feature relevance in form of occurrence frequency of each metabo-
lite measured in urine for the classification of inborn disorders of steroidogenesis, extracted
from the largest 20 ratios on diagonal of Λ in comparison with those extracted from 140
most important ratios of the RF (to cover 20 ratios × 7 classes). We reassuringly find
that the feature relevance and importance profiles obtained from PLV QA ad RF look very
similar, which one would expect for two classifiers with very similar performance.

While it is theoretically possible to extract condition specific information from RF, it
is not as intuitive or straightforward a process as it is to extract similar information from
all LV QA variants. Class-specific biomarker information is often vital for clinician under-
standing and interpretation, but often difficult to obtain from classification models. Being
prototype based classifiers, we can also extract how the measured biomarkers varied in

9. Matlab code available at https://github.com/drSreejitaGhosh/classificationSphereMollweide
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Figure 10: Biomarker relevance for inborn disorders of steroidogenesis as occurrence fre-
quency extracted from top 20 and 140 most relevant ratios with PLV QA and RF respec-
tively. Numbers 1-32 indicate the 32 metabolites extracted from urine for investigation.

magnitude to each other for each of the disease conditions. The information about the pro-
totype profiles can be obtained by both the global and local versions of LV QA. However,
the local version also provide information about which biomarker ratios (i.e. which feature
vectors) are relevant for distinguishing a particular condition from the rest, therefore pro-
viding clinicians with a unique “fingerprint” pattern of biomarkers most specific for each
condition. The feature relevance information for each condition is easily extracted from the
diagonal of the matrix LVQ variants with classwise local metric tensors ΛL. However, both
probabilistic and deterministic LVQ variants can provide the domain expert with far supe-
rior interpretability in this regard. Using the average models we can perform a descriptive
analysis of the classification terms (explained in sec 6.2.3) to investigate the statistical rel-
evance of features for the classification of a particular condition or any individual sample.
Extraction of such knowledge can give clinicians insight into the disease mechanisms for
each of these rare diseases and generate trust in the decision made by these classifiers by
transparency, and demonstration that the extracted knowledge makes clinical and biological
sense.

6.2.3 Descriptive analysis of Probabilistic LVQ decisions

Any matrix LVQ model allows the analysis of its decision making based on the classification
terms, which essentially serve similar purpose to that by the classification activation map
(CAM) as explained in (Tjoa and Guan, 2021). For the proposed variant PLV QA (Eq. (20))
for example a classification term is the product of the sample vector dimension xi,d1, the
relevance matrix element Λd1,d2, and a prototype dimension wc

d2, together with additional
factors or transformations dependent on the dissimilarity measure. A sample xi is classified
as class c if the sum of classification terms (T ic) including prototype wc is larger than for
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any other prototype:

p̂(c|xi) =
gΘ
(∑D

F1=1,F2=1 T
ic
F1,F2

)
∑C
j gΘ

(∑D
F1=1,F2=1 T

ic
F1,F2

) with T icF1,F2 = xi,F1ΛF1,F2w
c
F2

‖xi‖Λ‖wc‖Λ
.

While the generalization performance is demonstrated in the previous section we show
here the decision making statistics over the full data set, and hence a descriptive analysis.
Therefore, we build one model from the 5 fold cPLV Q

A15
6

#1001
models, using the geodesic

averaging strategy explained in section 4.3, that represents the average statistics of the
trained decision making process across all folds. Extracting the feature-wise relevances
from the diagonal of Λ and sorting in descending order reveals that 394 metabolite ratios
(out of 496) already contain over 95% of the total relevance and equivalent accuracy. We
remove the unimportant dimensions resulting in a reduced model for the following analysis,
that only misclassifies 15 out of 1007 samples in total. Among the latter are 10 healthy
controls, 1 ISD-1 patient missed as healthy, 2 ISD-3 patients missed as ISD-5 and 2 ISD-5
patients misclassified as ISD-4. The p̂(c|xi) provides the probability for sample i to belong
to class c and we can see that the second most likely class is often the correct one. However,
we are interested in the ratios and metabolites and how much (on average) they contribute
to the decision.

The matrix of classification terms T ic contain positive or negative entries indicating
the correlation of xi with the prototype wc induced by the metric tensor Λ. Since the
classification decision is based on the biggest sum over all arg max

c
(
∑
F1,F2 T

ic
F1,F2) the terms

can be sorted. Figure 11 shows biclusters of classification terms T ic averaged for all samples
of xi with yi = c for every condition c. The rows and columns are clustered using the
agglomerative Ward2 cluster algorithm (Jr., 1963; Murtagh and Legendre, 2014), grouping
similar entries simultaneously in rows and columns. Note that most of the classification
decisions for each condition are only based on comparably few metabolite ratios as many
terms are close to zero. In contract to Healthy Controls the disease samples show mostly
a clear important block of pairwise ratios dominating the decision. The misclassified ISD-
1 sample is shown in the lower left panel with the sorting adopted from its condition’s
average classification terms showing clearly that important ratios differ significantly from
the respective prototype.

Figure 12 depicts the performance change dependent on the number of top ratios used
in the model and the frequency of metabolites for each class. The left panel shows the
respective class specific sensitivity and specificity (as well as overall sensitivity and specificity
in terms of healthy vs disease) achieved by the model being reduced to the top x ratios
extracted from the sorted average classification terms T ic per class yi = c. And the right
panel depicts the frequency of metabolites among the top ratios and their appearance in
nominator or denominator, that indicates if it is over- or under-produced in the respective
class. We additionally report the number of top ratios per class that achieve 98% of the
balanced accuracy (BA, arithmetic mean of the sum of sensitivity and specificity of the class
versus the other classes combined) within each panel. Notably, the classification decision
for patients of some of the conditions, namely ISD-1, ISD-2, and ISD-4, is very accurate
with over 0.95 BA and on average based on fewer than 10 metabolite ratios (9, 5 and
8 respectively). Within those top ratios an overwhelming majority of over 80% contain
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Figure 11: Biclusters of classification terms T ic for the 394 metabolite ratio features F
averaged for all samples of xi with yi = c for every condition c. The terms of the missed
ISD-1 sample (lower left panel) are sorted according to the condition bicluster (top left).
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Figure 12: Descriptive analysis of ratio contribution (left) and metabolite frequency among
top ratios (right) for the classification of the inborn disorders of steroidogenesis.
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one specific metabolite in the numerator indicating an excess compared to healthy controls,
which constitutes an interesting biomarker for each of these conditions. The other conditions
ISD-3, ISD-6, ISD-5, and Healthy are more heterogeneous and an increasing number of ratios
and consequently metabolites are necessary to distinguish them. In summary, the classifier
exhibits excellent performance and readily provides ample insight into the contribution of
each feature for the decision of each individual samples, as well as the feature statistics
over all samples per class. This transparency constitutes an important characteristic for
the purpose of medical education, potentially biomarker discovery and to gain trust for
computer aided diagnosis with machine learning within the medical community.

7. Classification and analysis of the UCI heart disease dataset

In this section we compare the most promising classifiers as demonstrated on the real-world
urine GCMS data set on the publicly available UCI heart disease (HD) data. As mentioned
earlier, unlike many of the the existing classifiers the angle LVQ variants can learn even
in the presence of missing values, thus obviating the need for imputation or case deletion,
or the use of a pseudo value, such as -9 as suggested for this data set Janosi et al. (1988).
We follow the recommendation with the pseudo value for the RF training. Many previous
publications report performances simplifying the five classes, Healthy and HD1-HD4, to the
binary disease versus healthy problem, due to the difficulty. Since we were interested in
investigating this dataset as a multi-class problem and the smallest minority class contained
only 13 subjects, we use 5-fold stratified training-validation split for cross validation. We
use z-score transformation in each fold using the mean and standard deviation of the corre-
sponding training set. As before, we compare two strategies for handling class imbalance:
(a) SMOTE as described in Chawla et al. (2002) (or geodesic SMOTEg for the angle LVQ
variants, see section 2.2.1), and (b) assigning user-defined variable costs of misclassification
(see section 2.2.2). For RF we used only (a). We ensured that all the minority classes in the
training set were oversampled to contain the same number of samples as the majority class
(Healthy) and based on line search we chose k = 3 nearest neighbours for both SMOTE
and SMOTEg. For option (b) we set the cost-weight entries to 1, since we do not have
expert information about the severity of certain misclassifications and hence only handle
the imbalance. We varied the number of trees for the RFt from t =50 to 200 and the
hyper-parameters β and θ for angle LVQA

{β,θ}
M and the probabilistic version PLVQAθM is set

to 1 and 2 respectively after grid-search. To be comparable to the RF, which is an ensemble
of decision trees, we trained 100 LV QA models in each fold and additionally reported the
performance of their majority vote ensemble, abbreviated by (cP)LVQ∗e100. We trained the
100 LVQ models with a full metric tensor rank of M = 13 in each fold and also built a one
cluster geodesic average model abbreviated by (cP)LVQ∗#1001

for further analysis. Since the
majority of the probabilistic model tensors exhibited a rank of 12 after training, and we
need equal rank to build the average model, we limited the rank to 12 for all of them.

Table 5 summarizes the mean and standard deviations of the method performances
measured in Sensitivity (Healthy versus all diseases combined), macro averaged and class-
wise accuracies (Healthy and HD1-4). It can be seen immediately that the five class problem
is challenging with a macro averaged accuracy not much more than 30% achieved by the RF.
The two class problem of all heart disease versus healthy is easier, showing a sensitivity and
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Table 5: UCI HD data: mean performance (std), in terms of Sensitivity (Healthy versus H1-4 combined),
macro averaged (MAA) and class-wise accuracies, of RFt with t trees and angle LVQ models (cP )LV QA

β,θ
M

with rank M , and c indicating the use of cost weights, P probabilistic cost function (19) and the subscripts
eη and #ηυ marking the ensemble results with majority vote and average across η models and υ clusters.

Method Sens MAA Healthy HD1 HD2 HD3 HD4

RF100 73.48 (0.03) 31.82 (0.04) 86.37 (0.03) 15.64 (0.07) 19.36 (0.10) 25.71 (0.11) 12.0 (0.12)

RF150 74.45 (0.02) 33.60 (0.03) 86.25 (0.03) 15.27 (0.07) 23.14 (0.10) 28.00 (0.10) 15.33 (0.12)

RF200 74.63 (0.02) 31.68 (0.04) 86.12 (0.02) 14.18 (0.07) 19.36 (0.09) 27.43 (0.12) 11.33 (0.10)

PLVQ
A2

12 89.08 (0.05) 50.23 (0.04) 67.52 (0.03) 26.67 (0.09) 32.10 (0.03) 51.34 (0.15) 73.50 (0.13)

cPLV Q
A2

12 88.91 (0.05) 51.34 (0.06) 71.09 (0.03) 25.71 (0.09) 29.05 (0.07) 52.20 (0.15) 78.67 (0.17)

cLV Q
A1

13 83.26 (0.07) 30.94 (0.07) 63.97 (0.15) 21.29 (0.12) 21.47 (0.14) 15.49 (0.14) 32.50 (0.22)

PLVQ
A2

12
e100 88.33 (0.08) 58.55 (0.08) 74.41 (0.03) 32.73 (0.14) 30.36 (0.11) 68.57 (0.27) 86.67 (0.18)

cPLV Q
A2

12
e100 87.59 (0.08) 57.74 (0.04) 75.04 (0.04) 30.91 (0.19) 33.21 (0.07) 62.86 (0.26) 86.67 (0.18)

cLV Q
A1

13
e100 82.69 (0.09) 33.15 (0.10) 82.35 (0.06) 16.36 (0.12) 21.79 (0.18) 8.57 (0.08) 36.67 (0.41)

PLVQ
A2

12
#1001

91.24 (0.07) 50.07 (0.08) 61.02 (0.08) 29.09 (0.15) 25.00 (0.12) 48.57 (0.28) 86.67 (0.18)

cPLV Q
A2

12
#1001

92.75 (0.04) 50.95 (0.10) 65.34 (0.10) 34.55 (0.17) 28.21 (0.11) 40.00 (0.27) 86.67 (0.18)

cLV Q
A1

13
#1001

84.78 (0.09) 33.62 (0.12) 76.23 (0.05) 18.18 (0.14) 21.79 (0.18) 8.57 (0.08) 43.33 (0.43)

specificity (class-wise accuracy of the healthy class) of ≈ 74% and ≈ 86%. Interestingly this
data set shows a clear difference between the two different cost functions for the angle LVQ.
Ensembles of the version inspired by generalized LVQ (updating only the closest correct and
wrong prototypes) exhibit only slightly better performance than RF, while the probabilistic
version improves the sensitivity and macro averaged accuracy by more than 10%. This
effect might be caused by the influence of all classes in every update due to the use of the
parameterized softmax. Both strategies to handle the imbalance, namely cost weighted and
geodesic SMOTE, demonstrate similar performance.

The cost weighting has several benefits, such as, it is faster, operates on fewer sam-
ples and allows the user to indicate priorities for the classification and can therefore be
recommended. We observe that increase of accuracy for one class is usually accompanied
with a decrease of accuracy of another class. RF exhibits the best accuracy for the healthy
controls at the expense of accuracy for the diseases. However, performance with respect
to the class-wise accuracies of the disease classes are clearly surpassed by the angle LVQ
variants, which in turn demonstrates a high sensitivity for the two-class problem. Similar to
the previous section we can analyze the statistics of the contribution of the features to the
decision of the trained classifiers for each class using the classification terms of the average
model across all folds of the cPLV QA

2
12

#1001
experiment. Figure 13 illustrates the performance

of each class versus all others combined, as well as Healthy versus disease, when including
only the top features for the samples of the respective class in the right panel. Since we
do not consider ratios we can show the classification term contribution of the features for
each class directly as shown in the left panel. Especially the Healthy (Class 1) and HD1
(Class 2) exhibit a very similar pattern of important features, which explains the difficulty
to distinguish them. Figure 13 shows that the ’Oldpeak’, referring to ST depression in
the ECG signal, induced by exercise relative to rest, is an important feature to identify
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Figure 13: UCI HD: Class-wise feature importance for the classification of each class ex-
tracted from the terms (left) and the sensitivity and specificity considering healthy (Class 1)
versus disease (Class 2-5) as well as the respective class versus all others combined (right).

Healthy, HD1 and HD5 from the rest. Contrarily, ’Thalach’ which refers to the maximum
heart rate achieved, is important to discriminate HD3 and HD4 from the rest. While RF
can find the overall feature importance and there is a good overlap with the findings from
prototype based methods as illustrated in Ghosh et al. (2020), the classification terms from
LVQ models help in extraction of class-specific feature relevance as seen in figure 13.

8. Conclusion and Future work

Real-world data from certain domains, such as healthcare, often exhibit a multitude of com-
plications, such as heterogeneous measurements, imbalanced classes, limited size of available
data for training, and missing values which are often systematically missing. Furthermore,
the lack of explainability of many machine learning techniques has fueled an ongoing debate
for the responsible use of such methods in critical domains. All of these aspects typically
hinder the straightforward application of Machine Learning models. In this contribution we
present, analyze and demonstrate strategies for performing classification in the presence of
the aforementioned challenges. Our framework delivers robust and comparable or superior
performance, while maintaining the interpretability, which is considered essential in an an-
thropocentric application of machine learning, as desired in healthcare. This paper extends
our work of Ghosh et al. (2017, 2020) with three major contributions: (1) A comprehensive
framework of intrinsically explainable, angle-dissimilarity based nearest prototype classifiers
of varying complexity (Angle Learning Vector Quantization (LV QA)), that demonstrates
excellent performance even when facing heterogeneous measurements, imbalanced classes,
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limited data for training and systematically missing values. Additionally to training with
and output of crisp labels, the framework includes a probabilistic cost function that can be
trained with a combination of crisp (sure) as well as uncertain labels (for example when
experts disagree), while providing a probabilistic class output, reflecting the uncertainty
of the classification and hence providing additional insight into the model. (2) The intro-
duction of strategies to harness the power of ensembling of models, by computation of the
geodesic average LVQ model and a clustering strategy in case of the presence of multiple
local optima, which serve as more transparent alternatives to a traditional ensemble and
extends to other members of the adaptive metric family, such as the Euclidean LVQ vari-
ants and Large Margin Nearest Neighbor Weinberger and Saul (2009); Ramanan and Baker
(2011). (3) Furthermore, we demonstrate and compare the performance of the framework
and strategies to alternative techniques applicable in situations involving the multitude of
complications considered here. We provide our code and a detailed analysis and demon-
strate the transparency of our framework and how knowledge is extracted from real-world
medical datasets. Especially the findings for the inborn disorders of steroidogenesis are of
significant interest for the healthcare domain and additional details of the analysis of the
metabolites and their importance for every disease type will be presented in a separate
paper written for the medical community.

In the presence of heterogeneous measurements and systematic missingness the choice of
dissimilarity measure has a significant influence on the performance of the LVQ classifiers.
A cosine-based adaptive dissimilarity measure appears more robust than the parameterized
Euclidean distance in the presence of such complications. . We compared a state-of-the-art
model agnostic approach of handling missingness via multiple imputation and demonstrated
that it can have adverse impact on distance-based classification. Angle LVQ when applied
to data without imputation, displays similar or superior performance to applicable alter-
native techniques. However, the LV QA variants allow detailed insight into the influence of
features on the classification of every sample, every class, the data as a whole and, in spe-
cial cases, direct visualization of the data and decision boundaries. Random Forest (RF),
which is an ensemble of decision trees, generally shows quite good performance despite the
difficulties of the data. This fact inspired the development of a strategy to harness the
power of ensembling, which is typically accompanied with a loss of model transparency,
while preserving interpretability.

Through extensive examination of our real-life medical data we demonstrate that an
average model as replacement of an ensemble of 100 LVQ classifiers shows a comparable
or superior performance to RF with 100 DTs, with the additional benefit of increased
interpretability and eased knowledge extraction. Especially for the inborn disorders of
steroidogenesis our framework provided significant insights into the classification of six
rare disorders by comprehensive data-driven analysis of 496 pair-wise ratios of 32 urinary
biomarkers. The detailed medical findings will be presented in a forthcoming paper written
for the medical community. Additionally we presented the competitive performance of our
models on a publicly available real-world dataset and briefly illustrate the type of knowledge
that could potentially be extracted from it, in section 7 for reproducibility and verification.
Even though we have shown an application in medical domain, these novel strategies can
be applied to data from any other domain, and are particularly relevant where there is
missing data of any type. In the current era when the demand for algorithmic transparency,
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interpretability, and explainability are rising alongside the demand for higher performance,
from industry, judiciary, medicine, and society in general, the presented classifiers have
shown the potential to efficiently address both these needs.
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Benjamins, et al. Explainable artificial intelligence (xai): Concepts, taxonomies, oppor-
tunities and challenges toward responsible ai. Information Fusion, 58:82–115, 2020.

Melissa J Azur, Elizabeth A Stuart, Constantine Frangakis, and Philip J Leaf. Multiple
imputation by chained equations: what is it and how does it work? International journal
of methods in psychiatric research, 20(1):40–49, 2011.

Andreas Backhaus and Udo Seiffert. Classification in high-dimensional spectral data: Ac-
curacy vs. interpretability vs. model size. Neurocomputing, 131:15–22, 2014.

Elizabeth S Baranowski, Wiebke Arlt, and Jan Idkowiak. Monogenic disorders of adrenal
steroidogenesis. Hormone research in paediatrics, 89(5):292–310, 2018.
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Randa Oqab Mujalli, Griselda López, and Laura Garach. Bayes classifiers for imbalanced
traffic accidents datasets. Accident Analysis & Prevention, 88:37–51, 2016.

Fionn Murtagh and Pierre Legendre. Ward’s hierarchical agglomerative clustering method:
Which algorithms implement Ward’s criterion? Journal of Classification, 31:274–295,
2014. doi: 10.1007/s00357-014-9161-z. URL https://doi.org/10.1007/s00357-014-9161-z.

M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, and C. Brunk. Reducing misclassification
costs. In Proc. of the 11th ICML, San Francisco, 1994. Morgan Kauffmann.

45

https://www.pnas.org/content/110/39/15626
https://www.pnas.org/content/110/39/15626
https://doi.org/10.1109/CVPR.2014.142
https://doi.org/10.1007/s00357-014-9161-z


PREPRINT
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