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Abstract

Application of interpretable machine learning techniques on medical datasets facilitate
early and fast diagnoses, along with getting deeper insight into the data. Furthermore,
the transparency of these models increase trust among application domain experts. Medi-
cal datasets face common issues such as heterogeneous measurements, imbalanced classes
with limited sample size, and missing data, which hinder the straightforward application
of machine learning techniques. In this paper we present a family of prototype-based (PB)
interpretable models which are capable of handling these issues. The models introduced
in this contribution show comparable or superior performance to alternative techniques
applicable in such situations. However, unlike ensemble based models, which have to com-
promise on easy interpretation, the PB models here do not. Moreover we propose a strategy
of harnessing the power of ensembles while maintaining the intrinsic interpretability of the
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PB models, by averaging the model parameter manifolds. All the models were evaluated
on a synthetic (publicly available dataset) in addition to detailed analyses of two real-world
medical datasets (one publicly available). Results indicated that the models and strate-
gies we introduced addressed the challenges of real-world medical data, while remaining
computationally inexpensive and transparent, as well as similar or superior in performance
compared to their alternatives.

1. Introduction

With the emergence of better and affordable sensors and other data collection tools in var-
ious domains the availability of data has exploded. Application of machine learning (ML)
techniques in these domains accelerate in-depth analysis of the collected data. ML tech-
niques are being increasingly used in healthcare, judiciary, insurance, logistics, and finance,
among other anthropocentric sectors. Therefore it is crucial that the decision-making mech-
anism of the applied machine learning algorithms are understandable and explainable by
human experts. Wang et al. (2020); Holzinger et al. (2017); Tjoa and Guan (2021); Ghosh
(2021) raise an interesting observation that we tend to hold Al to a harsher explanatory
standard than we do for drugs and clinicians. The motivation behind this is that clini-
cians sometimes cannot explain the reason for arriving at a particular diagnosis: a decision
may appear intuitive to them but might not actually be explainable. Similarly, certain
effective drugs had been used widely even before their working mechanism was understood
(Wang et al., 2020). Nevertheless, when the decision-making process of a human-expert
or a ML algorithm is understandable to the stakeholders, then their trust in the decision
increases (Tjoa and Guan, 2021). Additionally, this ensures improved fairness and prevent
biased learning (Ghosh et al., 2020; Arrieta et al., 2020). Currently, most ML researchers
prioritise results and performance. This tendency, however, comes typically at the cost of
reducing transparency. It obscures the inner workings of the ML models, thus precluding
any way of verifying the fairness of the system (Backhaus and Seiffert, 2014; Bibal and
Frénay, 2016). Nevertheless, science and society require much more than just performance
metrics of an ML model to be able to adopt it for large scale implementations in the real
world, with accountability, fairness, and transparency at the core (Arrieta et al., 2020; Luo
et al., 2019; Tjoa and Guan, 2021). This has consequently ushered in the era of Explainable
ML or Explainable Artificial Intelligence (XAI) (Carvalho et al., 2019).

There are certain terminologies associated with XAI which are used interchangeably in
some publications (Tjoa and Guan, 2021), while others have explained their subtle differ-
ences (Arrieta et al., 2020). Two such terms are interpretability and explainability. In-
terpretability, unlike explainability, is not necessarily an active characteristic of a model
Arrieta et al. (2020); Luo et al. (2019). There are three types of interpretability:

(I) pre-model interpretability, which involves data exploration techniques such as PCA,
k-means clustering (Alpaydin, 2020) and t-ditributed Stochastic Neighbor Embedding
(tSNE) (Maaten and Hinton, 2008);

(IT) post-model interpretability, in which model-agnostic techniques are applied on black-
box models to analyze them locally, such as Local interpretable model-agnostic ex-
planations (LIME) (Arrieta et al., 2020), DeepView (Schulz et al., 2020), Feature
Relevance Information (FRI) (Pfannschmidt et al., 2019) and SHapley Additive ex-
PLanations (SHAP)(Lundberg and Lee, 2017) just to name a few;
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(ITI) intrinsically interpretable models are those which are explainable by themselves, such
as decision trees (DTs), linear/logistic regression, K-nearest neighbours (KNNs) (Ar-
rieta et al., 2020), and nearest prototype based classifiers (NPCs) Ghosh et al. (2020).
While neither of the first two techniques give access to the working-logic of the model, the
third type includes transparent models (Arrieta et al., 2020). However, how the intrinsic
interpretability of different classifiers can be compared have often been debated, especially
when comparing models of distinct types.
Backhaus and Seiffert proposed 3 criteria to answer the aforementioned question (Backhaus
and Seiffert, 2014; Bibal and Frénay, 2016; Ghosh et al., 2020):
(1) the model’s intrinsic ability to select features from the input pattern,
(2) the ability to provide class-specific representative data points, and
(3) model parameters which have information about the decision boundary directly en-
coded.

(Tjoa and Guan, 2021) describes the criteria (1) as saliency. It further classifies inter-
pretability on the basis of its mathematical structure or whether it is perceptive visually,
or verbally, and so on. Unlike (Arrieta et al., 2020) this paper also uses the terms explain-
ability and interpretability interchangeably. To the best of our knowledge there has not yet
been an agreement on the correct usage of the aforementioned terminologies in this field,
and we do not intend to establish any agreement on this subject in this study. In this
paper we present three newly developed prototype-based classifiers which are competitive
not just in terms of performance, but are also easily and intuitively interpretable. Fur-
thermore, they can be visualised, thus allowing intrinsic interpretation and explainability
in terms of Backhaus and Seiffert criteria 1-3. These classifiers use a Nearest Prototype
Classification (NPC) scheme, where a new sample is assigned to the class of its closest
prototype. Techniques implementing this concept, such as Generalized Learning Vector
Quantization (GLVQ) (Sato and Yamada, 1996) often allow interpretation of the proto-
types as representatives of class information, which ensures transparency with regards to
(2). Generalized Relevance LVQ (GRLVQ) (Hammer and Villmann, 2002) is an extension
of GLVQ which additionally provides feature relevance (criterion 1) by introduction of an
adaptive parameterized dissimilarity, which weights features according to their importance
for the classification. Further extensions like Generalized Matrix Relevance LVQ (GMLVQ)
developed in Schneider et al. (2007, 2009) make multi-variate and class-wise feature analy-
sis possible. The limited rank version of GMLVQ (LiRaM-LVQ) introduced in Bunte et al.
(2012) facilitates the visualisation of decision boundaries (criterion 3). In addition to ver-
ifying model fairness, medical experts are increasingly interested in detailed information
about how a classification is obtained.

Certain types of real-life datasets pose the challenges of (a) heterogeneous measure-
ments, (b) missing data, and (c¢) imbalanced classes, which hinder the straight-forward
application of the existing XAl techniques. Heterogeneous measurements arise when data
of varying range and types is obtained from different sources. Ignoring that a dataset con-
tains heterogeneous measurements may lead to poorly trained classifier models (Tan et al.,
2016). Missing data is prevalent in control based applications such as traffic monitoring,
telecommunications management, financial/business applications, and biological and med-
ical data analysis (Garcia-Laencina et al., 2010). Missingness can arise due to a variety of
reasons. Some causes are arbitrary, such as an entry forgotten by medical personnel or a
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subject choosing to drop out of a study mid-way. Some causes are more systematic such
as a sensor being unable to measure values beyond a certain range or due to disruption
in communication between data collectors Garcia-Laencina et al. (2010). Little and Rubin
have categorised missingness into three types (Garcia-Laencina et al., 2010; Little and Ru-
bin, 2019): (i) missing completely at random (MCAR), (ii) missing at random (MAR), and
(iii) missing not at random (MNAR). These will be discussed in detail in subsections 2.1
and 2.1.1. Lastly, when a dataset being investigated contains significantly unequal numbers
of samples per class, it is said to represent an imbalanced class problem. This is common in
real-world data sets from sectors such as astronomy, e.g. for finding particular types of galax-
ies (Mohammadi et al., 2019); telecommunications management, for detection of fraudulent
calls; geo-spatial image analysis, for rubble and oil-spills detection Chawla et al. (2002); and
medicine. If not addressed, class imbalance can cause complications such as a biased and
poorly developed classifier. There are classifier formulations that can naturally handle class
imbalance, such as Bayesian classifiers employing class priors (Mujalli et al., 2016). Others
need model-agnostic strategies such as oversampling, undersampling, or boosting exempli-
fied by Synthetic Minority Oversampling TEchnique (SMOTE) presented in Chawla et al.
(2002).

In Ghosh et al. (2017) the authors introduced Angle General Relevance Learning Vector
Quantization (AGRLVQ), which is capable of learning from partially observed spaces, thus
enabling learning from relatively small data sets containing missing values. This contri-
bution also suggested strategies to deal with imbalanced classes and introduced a geodesic
variant of SMOTE (Chawla et al., 2002). Ghosh et al. (2020) introduced angle-dissimilarity
based variant of Generalized Matrix LVQ (GMLVQ) and Local GMLVQ), which in addition
to being able to learn from variable dimensional spaces can also tackle more complex prob-
lems, while maintaining a superior performance, extracting enhanced knowledge about the
dataset they were trained on, and providing visualisation of the classification. The newly
introduced angle-dissimilarity based LV(Q variants do not require imputation, which saves
on time complexity and computational costs for high dimensional datasets while retaining
the original information. The intrinsic interpretability of these classifiers lead to intuitive
visualisations and knowledge gain. In this contribution we first introduce a probabilistic
variant of ALVQ, which in addition to visualization and feature relevance determination,
also provides the confidence of the classifier’s decision when assigning different class labels
to a new sample. Furthermore, we introduce a geodesic average model which can exploit
the power of ensembling without compromising on the model interpretability.

In the following sections we discuss common problems associated with biomedical
datasets and existing reference standard ML techniques (such as Random Forest (RF),
KNN, and LDA), which can partially handle some of the issues. This is followed by the
motivations for the newly developed classifiers and the new contributions themselves. We
compared our proposed methods to the state-of-the-art shallow ML techniques and RF, on
a synthetic dataset and two real-life medical datasets. Finally, we present our findings and
discuss the extracted knowledge from the real-world medical datasets.
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2. Challenges and methods for the analysis of biomedical data

As mentioned earlier, many data domains frequently pose challenges such as heterogeneous
measurements, missing data, and imbalanced classes, due to limitations in sensor equip-
ment, collection methods or because of high variation in the occurrences of the analysed
phenomenon itself. In the medical domain these problems often appear in combination.
The healthy normal range itself varies due to the physiological features of subjects (such as
age or sex or BMI), and the data collection techniques, thereby adding to the heterogeneity
of the data. If such data is not scaled properly, an unimportant feature which has a higher
range of values might be considered more important than it actually is, thereby contribut-
ing noisy dimensions. Meanwhile, a feature which is actually important but has values in
a lower range might be ignored by the classifier, leading to loss of information. Next, we
will discuss in detail the problem of missing values, and imbalanced classes, followed by
strategies proposed to handle them.

2.1 Missing data

As outlined in (Little, 1988b; Little and Rubin, 2019) there are broadly three categories
of missingness. Rubin, in 1976 (Garcia-Laencina et al., 2010), defined the missingness
to be of type missing completely at random (MCAR) if f(r|x°",x™,T) = f(r|Y) for
all x observed (obs) and missing (miss), where r is the missingness indicator variable,
f is probability or density function, and Y is any unknown parameter which caused the
missingness. It indicates that the missingness is neither dependent on the observed nor
on the missing values of the dataset y € IRN*P (Little, 1988b; Little and Rubin, 2019).
A common example of MCAR would be a blood vial of a subject from a study that is
accidentally broken resulting in blood parameters being not measurable (Garcia-Laencina
et al., 2010). On the other hand, Rubin defined missingness to be of type missing at random
(MAR) if the missingness is independent of the missing values but likely to be dependent on
the observed values, i.e., when f(r|x°P%, x™, T) = f(r|x°®, ) (Little, 1988b; Little and
Rubin, 2019). An example of such missingness is a sensor occasionally failing to acquire
data due to power outage. In this scenario the actual variables where data are missing are
the cause of some other external influence, such as availability of power, which are recorded
(Garcia-Laencina et al., 2010). The third category of missingness, known as missing not at
random (MNAR) is dependent on the missing values themselves. The cause for this can
be systematic, such as the instrument failing to record a parameter when its values are
lower than or higher than a certain limit with such data being defined as censored (Garcia-
Laencina et al., 2010). Another example of MNAR might be a dataset compounded from
different studies or labs, which were not measuring the same parameters.
Garcia-Laencina et al. (2010) broadly defines four strategies to handle missing data:

(1) deletion of incomplete cases and performing classification on complete samples only,

(2) imputation of missing values using observed data,

(3) generative modelling of the data distribution,

(4) using ML techniques capable of classifying an incomplete dataset.
Besides, without a doubt, being the most straightforward and simplest strategy, (1) po-
tentially loses a lot of information, especially when many instances with partially observed
features exist. Furthermore, we often do not have an abundance of data for analysis in many
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domains such as Medicine, where any loss of information is undesirable, and hence we will
not discuss it in this contribution. Strategies to handle missing values of type MNAR are a
difficult endeavour, generally requiring knowledge about the process causing the missingness
and modeling it accordingly (Van Buuren, 2018). However for the medical datasets which
we have come across this is not possible as the mechanisms of missingness are unknown.

2.1.1 IMPUTATION

In most classification tasks of data with missing values it is assumed that missingness is
of type MCAR or MAR. Following this assumption the missing values are imputed during
pre-processing of data, with strategies broadly divided into (1) single and (2) multiple
imputation. These approaches are model agnostic, meaning that afterwards any standard
classifier can be applied. Imputation generally is a quite common strategy for missing data
of type MAR and MCAR (Chechik et al., 2008).

Single imputation denotes strategies to fill missing attributes, for example with mean
or median of all or a subset of instances that do not miss that feature, such as the k-nearest
neighbours (KNN). When the missing variables of interest are correlated with the observed
variables from complete samples, regression is the appropriate imputation technique, since
it preserves the variance and covariance of the features with missing data. However, for
the same reason it fails when imputing missing values in an independent feature, since the
imputed value will be correlated and thus changing the original characteristics of the data.
Additionally the variance in the dataset is lost when applying this imputation technique
(Garcia-Laencina et al., 2010). Two other categories of single imputation are hot and cold
deck imputation. In hot deck imputation the missing components of a data vector are
replaced by the corresponding values found in the complete data vector which is closest to
the former data vector (whose missing values are being imputed). The disadvantage of this
technique is that global properties of the dataset are ignored, since this imputation is based
on only the single complete closest data vector. In cold deck imputation the data source
to obtain values and the dataset to be imputed are separate datasets (Garcia-Laencina
et al., 2010). Single imputation is often adopted due to its simplicity and low complexity.
However, in contrast to multiple imputation, it provides one ezxact value and can therefore
not reflect the uncertainty of the prediction of the missing value (Arnab, 2017).

Multiple imputation (MI) is used to impute the missing values in the dataset with a
set of different likely values. A very well respected strategy is a regression-based technique
called Multivariate Imputation by Chained Equations (MICE)! (Royston et al., 2011). Tt es-
sentially uses a type of hot-deck imputation performed multiple times. Among the available
matching techniques for the hot-deck part, predictive mean matching (PMM) proposed by
Little (1988a) is often recommended and works as follows: Let x°" denote the n; observed
and ™ the ny missing entries within one incomplete target variable . Correspondingly,
assume for simplicity Z°P% and 2™ to be the fully observed n; x ¢ and ng x ¢ matrix of
predictors for the observed and missing data in x, respectively. The first step of PMM
bases on Bayesian imputation under the normal linear model, namely it computes the least

squares estimate regression weights ¢ from the observed data and draws sample values ¢

1. The MICE package is publicly available in R (Royston et al., 2011)
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from the posterior distribution using the standard non-informative priors for each of the
parameters. Instead of imputing the linear regression result directly the weights are used
to define a matching metric to find a small set of candidate donors, typically 3, 5 or 10, for
hot-deck imputation of each missing entry j = 1,...,ng9. Among several possible metrics
usually Type 1 is chosen, such that k closest observed candidates are chosen according to
the similarity of the estimated value of the observed target entries and the missing value

estimate based on the draw from the posterior: ]EObsgﬁm — Eﬁissgb]. From the candidate

pool of each missing entry X;-niss a donor is chosen randomly and its value used to impute.
Using a posterior sample in the metric considers the sampling variability and the stochastic
element also induces between-imputation variation to avoid selecting the same donors too
often, which is useful for multiple imputation. Once the incomplete variable x is imputed
the procedure is repeated for the next variable with missing values and so forth. This
process is repeated for a user-defined number of times to form multiple imputed sets (in
the MICE implementation in R the default is 5 times). Details and extension for multiple
regression can be found in (Royston et al., 2011; Van Buuren, 2018). PMM is often used for
two main reasons: (1) to prevent imputation by unrealistic values potentially outside the
range of available observations, and (2) to obviate the need for an explicit model to capture
the cause of missingness. In practice MI creates several imputed datasets and the same
classifier is applied on each of them. The final decision is then made from this ensemble of
predictors trained on the different possible completed datasets.

2.1.2 MACHINE LEARNING ON INCOMPLETE DATA

Imputation is usually model agnostic and after an incomplete dataset has been imputed,
any classifier, such as k-nearest neighbor (KNN), Random Forest (RF), Support Vector
Machines (SVM) and so on, can be applied on each of the imputed sets.

Random Forest (RF) introduced in (Breiman, 2001) is an ensemble of decision trees
(DTs) using bootstrap aggregation (Bagging). A decision tree is a rule based model which
can be used for both classification and regression (Kubat, 2017) and due to its transparency
it is often used by the medical community. Even though an unpruned decision tree could
have a low error rate on the training set, it is prone to overfitting on the validation set. This
effect is mitigated in Random Forest because of Law of Large Numbers (Breiman, 2001).
According to (Breiman, 2001) the error rate in RF depend on two criteria: (a) the correlation
between any two trees, and (b) the strength of each individual tree, constituting the forest.
When the correlation between the trees is high then even increasing the number of trees
would not lead to gain in new knowledge, and thus the error rate of RF will not improve.
However, error rate of RF decreases with increasing strength of the constituent individual
trees of the forest. In Breiman’s RF the decision trees are unpruned and each tree learns from
a different subset of instances. For classification the final decision is given by the majority
vote over an ensemble of all the decision trees. In the Tree Bagger MATLAB implementation
the randomness is generated by the random subset selection, which is 30—45% of the training
set given as input to the classifier, along with selection of a random subset of predictors
(which by default, is equal to the square-root of the original number of predictors) to
be evaluated and used at each parent node. Even though it is a robust classifier, due
to ensembling RF loses some of the transparency of the decision trees. It also provides
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only limited information about the decision boundaries and representative examples of
classes. One way of estimating the relevance of certain features for the classification is the
permutation importance or mean decrease in accuracy (MDA), in which observations of
a variable are randomly permuted and the influence on the performance computed. If a
feature is not important the permutation should not increase the error made by the model
significantly. Conversely if the permutation causes the error to be high it implies that the
feature is important (Fisher et al., 2019). The other strategy for finding feature importance
is Gini Importance or mean decrease in impurity (MDI) in which, given a predictor the
decrease in impurity is averaged over all the trees. Among its drawbacks, it is biased in
the presence of correlated features and favour categorical variables with multiple categories
(Scornet, 2020). The Tree Bagger in MATLAB uses the former strategy, i.e., MDA which
resolves the aforementioned issues of MDI. Random Forest cannot handle missing data
directly in its original formulation. Therefore, one can apply multiple imputation on a
dataset with missing values before classification with Random Forest.

However multiple imputation is expensive with regards to time and memory with in-
creasing amounts of missingness. Especially in a cross-validation setting this is costly, since
it needs to be performed for every training set independently to obtain the parameters for
imputing the corresponding test set for fair comparison of the generalization error. To avoid
imputation of any kind machine learning techniques, which deal with partially observed
data were introduced. Prominent examples of strategies based on generative modeling fol-
lowed by Linear Discriminant Analysis (LDA), as for example analyzed by (Marlin, 2008).
These methods show promising results for missing data of ignorable types MCAR and MAR
and cannot necessarily be assumed to work well on MNAR. Alternatively, prototype based
strategies have recently emerged to deal with datasets containing missing values (van Veen,
2016; Ghosh et al., 2020).

Generative modeling strategies are often used for (un)supervised data analysis or
as preprocessing for partially observed data. When dealing with high dimensional data
containing a relatively small number of instances, factor analysis (FA) is often used for
structured covariance approximation. FA, which is one of the most common latent variable
models, assumes that a set of latent or unobservable factors t;,7 = 1...(Q are linearly
combined to generate y. FA aims to relate a D-dimensional observed data vector x to its
corresponding @)-dimensional vector of latent variables t (@Q < D) (Tipping and Bishop,
1999; Marlin, 2008). Vectors x and t are related by

X=t+pu+e (1)

Conventionally ¢ ~ N(0, ) (with Identity matrix I) and € ~ N (0, V), i.e., both the latent
variables and the noise model are Gaussian. The latent variants are also independent of each
other by convention and W is a square diagonal matrix. 1 contains the factor loadings and
is of dimension D x Q. Therefore the observed variables x ~ N (i, ¥) where ¥ = 777 4 .
The parameters 1, ¥ and p are optimized for a dataset using the expectation maximization
(EM) algorithm. This model illustrates the dependencies between the data variables x
through the latent variables ¢ (Tipping and Bishop, 1999; Marlin, 2008; Severson et al.,
2017). In other words, when variables in the input space are highly correlated, it can be
assumed that they have a common source. Additionally FA has a term to explain what was
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not explainable by the factors, denoted by ¢;. Probabilistic Principal Component Analysis
(PPCA) is a special case of FA, where instead of the diagonal matrix ¥ the covariance
is simplified to ¢2I. Since the covariance matrix is assumed to be spherical, PPCA is
rotation-invariant with regards to the observed data (Marlin, 2008; Tipping and Bishop,
1999). Note, that classical PCA is a special case of probabilistic PCA where the noise limit
or covariance o is zero.

For supervised analysis these generative model strategies are followed by classification,
for example with Linear Discriminant Analysis (LDA) (Marlin, 2008). Even though LDA
can classify data containing missing values, when the dataset is high dimensional or has
small sample size, it is preferable according to (Marlin, 2008) to use a structured covariance
approximation, such as that given by FA and PPCA. Since our medical dataset is both high
dimensional and only has a few samples in certain conditions, we followed the suggestion in
(Marlin, 2008). Hence we use LDA on the Q-dimensional dataset (¢), which in addition to
being of lower dimension does not contain missingness. We use PPCA instead of classical
PCA because the former is a generative probabilistic model, which makes it amendable
to missing data Tipping and Bishop (1999); Severson et al. (2017). Further interesting
information comparing using PPCA and MICE for learning from data containing missing
values can be found in Hegde et al. (2019).

Prototype-based machine learning methods can intuitively deal with missing data
by adapting prototypes and comparing to new data samples based on the observed di-
mensions only. A powerful family of prototype based classifiers is based on the concept
of Learning Vector Quantization (LVQ), which follows a Nearest Prototype Classification
(NPC) scheme, where a new vector is assigned the class label of the prototype to which
it is closest, according to a chosen dissimilarity measure. Assume the data consist of N
instances x; € IRP accompanied by labels 1; denoting one of C classes and let w’ € IRP
denote one of C prototypes with labels c(w’). Now, Generalized LVQ (GLVQ) performs a
supervised training procedure aimed at minimizing the following cost function (Sato and
Yamada, 1996), which exhibits a large margin principle (Hammer et al., 2005):

N J _ K
P —d

E:;f()\i),where Azzm .

(2)

Here, the dissimilarity of each data sample x; to its nearest correct prototype with y; =
c(w’) is defined by df and by dX for the nearest wrong prototype (y; # c(w’)). fis a
monotonic function and we use the identity (f(a) = a) in this contribution. Extensions to
GLVQ introduced parameterized dissimilarity measures, such as the quadratic form:

(2

dl = (x; — wL)TA(ch- — wL) with ZAu‘ =1, (3)

with a positive semi-definite matrix A € IRP*P containing additional parameters for opti-

mization. This led to a family of relevance and matrix extensions (GRLVQ and GMLVQ)
that provide intrinsic interpretability in the form of relevance of the features for classification
determined by the diagonal of A (Hammer and Villmann, 2002; Schneider et al., 2007, 2009)
and discriminant visualization using low-rank decompositions of A (Bunte et al., 2012).
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In Ghosh et al. (2017) the authors introduced two variants of Generalized Matrix LVQ
(GMLVQ) which can deal with missing values. The first variant called NaN-GMLV(Q bases
on the intuitive idea that one can update the prototypes w’ and matrix A in the observed
dimensions only for each training sample x;. Accordingly, a new sample is classified with
the label of the closest prototype computing the distance Eq. (3) without the missing
dimensions. This is achieved by applying the Partial Distance strategy (PDS), shown in
(Dixon, 1979; Doquire and Verleysen, 2012; Eirola et al., 2013; van Veen, 2016), on Eq.
(3). It introduces a weighting factor proportional to the number of mutually observed
dimensions that can be used in the distance Eq. (3) between the incomplete training sample
with observed dimension indices D, and a prototype by:

~ D
dZL = m Z (Ii,m — wyl,/@)Am,n(xi,n - erL/) . (4)

m,n€Dops

However, PDS ignores the general variability of the data and has a tendency to underesti-
mate distances due to using only locally known components. The effect is generally more
severe when comparing vectors that both have missing components and hence restricting
only to mutually known dimensions. This is typically avoided with prototype-based tech-
niques, since only the samples are expected to be incomplete. It practically requires a
feature being missing for all samples within a class to result in prototypes with missingness
(which has more negative implications for the learning than a mismatch in scale). Note,
that assuming the prototypes never miss any dimensions, the PDS factor is only dependent
on the sample x; and hence the same for any prototype and d/ and d¥ in Eq. (2). There-
fore, it effectively cancels in the computation of the costs and derivatives. However, a large
variation in the number of missing features across different classes can still lead to stronger
repulsion of prototypes of classes with more missingness, effectively pushing prototypes
away from classes with less missingness. Countering these effects served as motivation for
the development of an LVQ method that classifies on the hypersphere, instead of Euclidean
space, based on an angular dissimilarity measure (ALVQ) as detailed in section 4.1.

2.2 Imbalanced classes

In many domains we face the situation that occurrences of instances from different classes
vary in frequency and, on top of it, experts are often most interested in samples of the
minority class(es). In the medical field for example, while it is promising that there are
more healthy subjects than reported patients, this fact generally poses a challenge in training
machine learning models. The issue of class imbalance is even more pronounced when the
investigated conditions are rare diseases. The main difficulty with training in the presence
of class imbalance is that many classifiers tend to become biased towards the majority
class. This is due to the fact that the minority class is under-represented or possibly even
absent during training. Moreover, performance evaluation measures can also be affected,
e.g. when looking at one overall accuracy. Literature, e.g. Alpaydin (2020), suggests that the
most prominent strategies to handle imbalanced data comprise of bagging, boosting, and
sampling, including undersampling and oversampling. In Ghosh et al. (2017) we introduced
a geodesic oversampling strategy and a strategy of penalizing certain misclassifications which
yielded promising results. These are explained in the following sections.
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Figure 1: Depiction of geodesic SMOTE to generate synthetic samples s on the hypershpere
to oversample minority classes for imbalanced data using Riemannian geometry.

2.2.1 SYNTHETIC MINORITY OVERSAMPLING

A well known oversampling method is Synthetic Minority Over-sampling Technique
(SMOTE) (Chawla et al., 2002). It increases the sample size of the minority classes by
creating randomized artificial new training samples between k nearest neighbours of the
same class. More formally:

Tnew =T + - (Ty — ), (5)

where a €]0,1], Tnew is a generated synthetic sample, and x, is one of the k nearest
neighbours of . However this simple solution might not be the best choice when the
applied classifier operates on a manifold as in (Ghosh et al., 2017). In such a case SMOTE
can be performed on that manifold. For example, the authors introduced a geodesic variant
of the original SMOTE, which synthesized samples on the hypersphere instead of Fuclidean
space, since the transformed data points were known to lie on a hypersphere. To achieve this
an important tool of Riemannian geometry is used, which is the exponential map (Fletcher
et al., 2004; Wilson et al., 2014). The exponential map has an origin G, which defines
the point for the construction of the tangent space 7¢ of the manifold. Let ¢ be a point
on the manifold and f the corresponding point in the tangent space with f = Logs(¢),
¢ = ExpG(f) and dy(¢,G) = de(f, G) with dy being the geodesic distance between the
points on the manifold and d. being the Euclidean distance on the tangent space. Log and
Exp denote a mapping of points from the manifold to the tangent space and vice versa.
As described in (Ghosh et al., 2017) we present a point x from class ¢ on the unit sphere
with fixed length ||z| = 1, that becomes the origin of the tangent space. Next, k nearest
neighbours of the selected sample @ are found from the same class @, € N, using the
geodesic distance between the vectors § = cos™!((®"@y)/r2) and (in our case) r = 1. Each
random neighbour x, is then projected onto that tangent space using only the available
features and the Log transformation for spherical manifolds:

. 9
2y = Log,(xy) = sinﬁ(mw —xcosh) . (6)
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Finally, a synthetic sample is produced either on the tangent space with a formula similar
to the original SMOTE, namely 8 = « - &, that is subsequently projected onto the sphere
via Exp transformation: s = Exp,(8). Or we produce the new samples on the geodesic
directly using the new angle § = |2y and the Exp transformation:

s = x cos(fa) + sm(éﬁa) &y with a €]0,1] . (7)

This procedure of synthetic sample generation is depicted in figure 1 and repeated with other
random samples from the class until the desired number of training samples is reached.
We propose to oversample each of the minority classes in the training set until they are
equivalent in size to the majority class. This avoids the original SMOTE hyperparameter
selection, namely the percentage of oversampling for each minority class.

2.2.2 VARIABLE PENALTY/REWARD COST WEIGHT MATRIX

Unlike the oversampling strategy which is model agnostic, this strategy to handle imbal-
anced classes is integrated in the LVQ model training. The LVQ cost function induces an
update of the model parameters based on a presented training sample. Therefore, majority
classes with significantly more samples can introduce bias in the final model by simply caus-
ing more updates to the parameters during training than the minority classes. An intuitive
way to circumvent this is by introducing a weighting dependent on the number of samples in
the class, effectively reducing the update strength for majority class samples. This principle
can be furthermore used to incorporate expert knowledge and preferences in cases where an
error free classification cannot be achieved. Some errors might be more costly than others,
such as a misclassification of a patient as healthy that would not get treated. A misclas-
sification of a disease for another where the treatment is similar on the other hand might
be more acceptable. The model can be incentivised to reduce certain misclassifications by
making the error costlier with higher weights. Following the suggestion in (Pazzani et al.,
1994), a hypothetical cost matrix I' = {yep}ep=1,..c With >°. Ve = 1 was introduced, so
as to boost learning of difficult or minority classes, thus enabling enhanced differentiation
between minority classes (all disease classes) and the majority class (healthy class). The
rows of this matrix correspond to the actual classes ¢ and columns denote the predicted
classes p of the current model parameters. When user-defined costs are unavailable and
one simply wants to correct for the class imbalance, equal costs can be assigned to all 7.
This ensures that the weight contribution of each class is inversely proportional to the class
strength. These costs are included in our cost function Eq.(8), as shown below:

E = Z - Z 70,3}1-)\1' ) (8)

c=1""¢ |z;,s.t.y;=c

where ¢ = y; is the class label of training sample x;, n. defines the number of samples
within that class, §; is the predicted label (label of the nearest prototype c(w?”)), and \; is
the cost function value of sample ¢ Eq. (2). To chose the matrix one can run the algorithm
with equal entries first and adapt it according to the undesired misclassifications observed.
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3. Biomedical motivation

In this section two biomedical datasets, exhibiting typical problems, such as missing data
and imbalanced classes, which provided motivation for our research are described: (1)
a real-world medical dataset containing urinary steroid excretion data measured by Gas
Chromatography—Mass Spectrometry (GC-MS) measurements in patients with inborn dis-
orders of steroidogenesis and healthy controls, from the Institute of Metabolism and Systems
Research (IMSR), University of Birmingham; and (2) a publicly available real-world heart
disease dataset from the UCI repository.

3.1 Urine steroid metabolite dataset

Inborn disorders of steroidogenesis are genetic diseases which affect the Endocrine system
that synthesizes hormones for a variety of bodily functions, such as blood pressure regula-
tion, stress response, sex differentiation and puberty. Mutations in genes encoding distinct
enzymes can cause blockages in hormone production leading to several forms of Congen-
ital Adrenal Hyperplasia (CAH) and Differences in Sex Development (DSD) (Baranowski
et al., 2018). Early detection is essential, since some of these rare conditions can be life-
threatening. Rapid diagnosis would allow life-saving treatment to be delivered in a more
efficient manner, thereby reducing the distressing time of diagnostic uncertainty for pa-
tients and their families. Furthermore, it would also enable doctors to plan and advice
future treatment strategies more promptly. Accurate biochemical diagnosis can be made by
measuring characteristic patterns of individual steroid metabolites altered in these enzyme
deficiencies, however, the complexity of this data means computer aided approaches for
diagnosis are highly desirable. The IMSR at the University of Birmingham, UK, collected a
unique and extensive dataset of urinary steroid metabolite excretion data in patients with
inborn steroidogenic disorders, which were collected over a period of two decades. As of-
ten seen for the analysis of rare diseases, the data exhibits several common difficulties for
straightforward approaches for computer-aided diagnosis. For example, in some of the sam-
ples in the dataset certain steroid metabolites were not measured as at the time of analysis
these steroids were not yet part of the assay used for steroid multi-profiling. Since the data
was collected over a long period of time the clinicians’ understanding of which are impor-
tant metabolites have improved, as has the GCMS method itself. Together, these issues
gave rise to systematic missingness in this dataset. In this database, 32 steroid metabolite
concentrations, referred henceforth as biomarkers, have been measured using GCMS. The
dataset contains measurements from 829 healthy controls and 178 patients with inborn dis-
orders of steroidogenesis (ISD-1: 22, ISD-2: 12, ISD-3: 30, ISD-4: 26; ISD-5: 37; ISD-6:
51). The number of subjects in each class clearly shows the presence of high levels of class
imbalance. The class imbalance in this dataset arises from the opportunistic nature of how
these samples were collected, rather than the imbalance being representative of the popula-
tion prevalence of these diseases. The third challenge is the presence of very heterogeneous
measurements. Large variations in biomarker profiles are observed across subjects even
within the same condition class due to individual physiological features, such as age, sex,
etc. There is also heterogeneity in sample collection method, including single urine sample
collections, urine extracted from nappies for babies, and full 24-hour urine collections. It has
been proposed that using ratios of metabolites reduces some of this heterogeneity, allowing
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Figure 2: Heat-maps showing the presence of systematic missingness in each of the condi-
tions of steroidogenic disorders and healthy subjects contained in the GCMS dataset.

direct comparison of results obtained from different urine collection methods (Arlt et al.,
2004; Storbeck et al., 2019; Baranowski et al., 2018). Hence, we also used this approach,
but from a completely data-driven perspective, and 496 potentially informative ratios were
built by pair-wise combinations of the 32 biomarkers. The heatmaps in figure 2 illustrate
the missingness in each condition of the GCMS dataset.

3.2 Cleveland heart disease dataset from UCI repository

This dataset contains 13 features from 164 healthy subjects and 139 subjects with varying
degrees of heart problems. The predictor variable is originally 5 unique values, 0 indicating
healthy (164), while 1 (55 subjects), 2 (36 subjects), 3 (35 subjects), and 4 (13 subjects)
indicating patients with different heart conditions. Furthermore, six subjects contain miss-
ing values. According to Janosi et al. (1988) the missing values in the data were replaced
by a value of —9. Exploratory analysis showed that while there is a very good separa-
tion between healthy and HD subjects considered in binary classification, the multi-class
problem differentiating between the 4 classes of HD patients turns out to be remarkably
difficult. In this study we investigated this dataset for the five class problem, as suggested
in Ghosh et al. (2020); Ghosh (2021). The dataset originally consisted of 76 features but

14



PREPRINT

most research has been done on the publicly available subset of 13 of these. Further details
about them can be found at the UCI repository Janosi et al. (1988).

In classification problems addressing any type of missingness is challenging, because for
most mainstream classifiers managing missing values is not straightforward (Marlin, 2008).
As seen in Figure 2 the urine GCMS dataset contains both random and systematic miss-
ingness. For the GCMS dataset the systematic missingness arose from different studies
measuring different metabolites and the time when the measurement was made. Informa-
tion about the cause of missingness in the heart disease dataset is unavailable to us. As
mentioned in 2.1.2 the presence of missingness, especially systematic missingness, cannot be
straightforwardly handled by existing intrinsically interpretable classifiers to the best of our
knowledge, and imputation is likely to induce bias in the data. The combination of compli-
cations arising in biomedical problems such as these, motivated the development of a novel
family of geodesic prototype-based classification strategies as outlined in the following.

4. Geodesic prototype-based classification

In Ghosh et al. (2020) the authors introduced a prototype-based classification method using
a parameterized angular dissimilarity classifying on the hypersphere. The Angle Learning
Vector Quantization (Angle LVQ) strategy (denoted henceforth as LV Q%) shows promising
results facing systematically missing values and very heterogeneous data where the absolute
values are not informative, while enabling intrinsic interpretability by biomarker detection
and visualization of the decision boundaries. In this contribution we systematically investi-
gate the influence of missing values of types MCAR and MNAR, the amount of missingness
and the training set size to compare the classification performance of several common strate-
gies to deal with such problems. Furthermore, we extend the LV Q* algorithm to a geodesic
prototype-based classification framework? including: (1) A probabilistic variant which pro-
vides better interpretability to the user in terms of confidence of the classifier’s decision;
(2) a rank-preserving average of matrix LVQ models, formulated using the geodesic on
the Riemannian manifold the parameters lay on; and (3) a strategy to cluster LVQ models
based on the geodesic distance of their metric tensors to identify and interpret local optima.
Interestingly, the rank-preserving mean often shows a more robust performance than that
of a single classifier, however, unlike an ensemble approach, it retains the interpretability
and transparency of an individual LVQ model.

4.1 Angle LVQ

Angle GRLVQ and angle GMLVQ (Ghosh et al., 2020) were developed as the angle-based
variants of their Euclidean counterparts optimizing the same cost function as the GRLVQ
and GMLVQ, namely Eq. (2). The angle based variants (referred to as LV Q* henceforth)

replace the quadratic form dZ{J’K} in Eq. (3) by a parameterized angle-based dissimilarity:

2. Matlab code is made publicly available at https://github.com/kbunte/geodesicLVQ_toolbox
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Here, the exponential function gg(b) transforms the cosine b = cos@ € [—1,1] into dissimi-
larities in the range [0,1]. The dissimilarity measure diL itself can be parameterized enabling
several powerful extensions with varying potential for further interpretation (Ghosh et al.,
2020; Ghosh, 2021). This includes the number of prototypes used to represent each class
(which is fixed to one throughout this contribution) and the choice of the metric tensor.
The simplest choice for the metric tensor is restricting A to a diagonal matrix with A;; = 0
Vi # j and Aj; > 0 Vi = j to learn the relevance of each feature for the classification.
More complex is the use of a global metric tensor trained by decomposing A = Q7§ with
Q € RMXP for M < D to ensure positive semi-definiteness of A. Strictly speaking, if M # D
we work with a pseudo-Riemannian, also called a semi-Riemannian manifold (Amari, 2016).
For simplicity we still refer to the general positive semi-definite A as “metric”, abusing the
mathematical terminology slightly. In addition to the weighting of the individual dimen-
sions A;; this enables rotating the coordinate system towards discriminant directions for
classification (Biehl et al., 2013) and the linear transformation € allows for visualization of
the decision boundaries if M € {2,3} similar to (Ghosh et al., 2020).

The cost function Eq. (2) is non-convex and can for example be optimized using stochas-
tic gradient descent or conjugate gradient methods with the following derivatives for the
parameters ® € {{w’}}_,, Q}:
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where z;, denotes dimension n of vector &; and m = 1,..., M. In the presence of
missing data the cosine dissimilarity b and its derivatives are computed with the available
dimensions only. This aspect is similar to the Euclidean version, referred to as NaNLVQ),
which was presented in Ghosh et al. (2017); Ghosh (2021). However, in contrast to NaNLV(Q
which uses the normalization strategy in Eq. (4), this parameterized angle measure contains
a normalization that corrects the comparison of vectors of different length more robustly
especially for increasing missingness. The generalization bounds can be estimated using the
Rademacher complexity similar to LGMLVQ (Schneider et al., 2009).

In Ghosh et al. (2020) we also introduced the angle variant of the localized GMLVQ
(LGMLVQ), denoted hereon by LV Q¥ Schneider et al. (2009) by attaching metric tensors
A° to each prototype or each class. The diagonal of the local metric tensors AJ = Q77T QJ
contain local or class-wise feature relevances, which enables more complex modeling in
addition to providing class-specific discriminative information. The local LV Q% extension
(denoted by LV Q%) is therefore written as:

TQLTQL L
b= b = = (16)
il oz f[w" o
with corresponding derivatives of bqr:
Obqr :a:iQLTQLHwLH%L — 2, QFTQLw! - wlQETOL (17)
dwt lzillor 1™ (6
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The update rules of LVQ#, similar to their Euclidean predecessors, contain forces at-
tracting the closest correct prototype towards each data sample, and forces of repulsion
pushing away the closest one with a different class label. In an imbalanced class problem
the Euclidean variant might push the minority class prototype far away from the data all
together, since it is being repelled more often by the majority class than attracted by the
minority class. However, the LVQ# variants classify on the surface of the hypersphere.
Whereas in Euclidean space repelled prototypes can increase their distance to all proto-
types simultaneously, which may lead in some cases to infinite repulsion. This cannot
happen in LV Q4 since a repelled prototype inevitably gets closer to another prototype due
to the nature of the hypershpere, leading to a more stable behaviour when facing imbalance.
Furthermore, the hyper-parameter § in Eq. (9) influences the slope of the dissimilarity con-
version. Therefore, 5 — 0 leads to a near linear relationship between the update strength
dependent on the distance of the sample to the the corresponding prototype. The 3 in
the exponential function influences the strictness of the classifier’s decision boundary. The
larger the value of 8 the more effectively it reduces the contribution of a sample to the
update of a prototype from which is it very far away, and increases the influence of a nearby
sample. In other words, the greater the distance between a sample and a prototype, the
lesser is the contribution of that sample towards the update strength of the prototype, and
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the value of 8 determines how much greater or lesser the contribution is based on the dis-
tance. In this contribution we use § = 1 unless explicitly stated otherwise, and therefore
denote the angle LVQ simply by LVQ* instead of LVQAﬂ.

4.2 A probabilistic approach to classifying data with missingness

In the medical domain, patients can have multiple comorbidities instead of a single crisp
condition, they may be on the borderline between two or more conditions, or they can
have a diagnosis which shows phenotypic similarity or overlap with other conditions. If
the classifier could estimate the probability of a patient belonging to condition-1 and the
probability of belonging to condition-2 then this would constitute useful information, for
instance for the planning of further, 