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Abstract
Background  One of the challenges in the management of patients with follicular lymphoma (FL) is the identification of 
individuals with histological transformation, most commonly into diffuse large B-cell lymphoma (DLBCL). [18F]FDG-PET/
CT is used for staging of patients with lymphoma, but visual interpretation cannot reliably discern FL from DLBCL. This 
study evaluated whether radiomic features extracted from clinical baseline [18F]FDG PET/CT and analyzed by machine 
learning algorithms may help discriminate FL from DLBCL.
Materials and methods  Patients were selected based on confirmed histopathological diagnosis of primary FL (n=44) or 
DLBCL (n=76) and available [18F]FDG PET/CT with EARL reconstruction parameters within 6 months of diagnosis. Radi-
omic features were extracted from the volume of interest on co-registered [18F]FDG PET and CT images. Analysis of selected 
radiomic features was performed with machine learning classifiers based on logistic regression and tree-based ensemble 
classifiers (AdaBoosting, Gradient Boosting, and XG Boosting). The performance of radiomic features was compared with 
a SUVmax-based logistic regression model.
Results  From the segmented lesions, 121 FL and 227 DLBCL lesions were included for radiomic feature extraction. In total, 
79 radiomic features were extracted from the SUVmap, 51 from CT, and 6 shape features. Machine learning classifier Gradi-
ent Boosting achieved the best discrimination performance using 136 radiomic features (AUC of 0.86 and accuracy of 80%). 
SUVmax-based logistic regression model achieved an AUC of 0.79 and an accuracy of 70%. Gradient Boosting classifier had 
a significantly greater AUC and accuracy compared to the SUVmax-based logistic regression (p≤0.01).
Conclusion  Machine learning analysis of radiomic features may be of diagnostic value for discriminating FL from DLBCL 
tumor lesions, beyond that of the SUVmax alone.

Keywords  [18F]FDG-PET/CT, machine learning, radiomic features, follicular lymphoma, diffuse large B-cell lymphoma 
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Introduction

One of the challenges in the management of patients with fol-
licular lymphoma (FL) is the identification of individuals with 
histological transformation, most commonly into diffuse large 

B-cell lymphoma (DLBCL). The annual rate of histological 
transformation is 1–2% and unlike patients with low-grade 
follicular lymphoma, those with transformed follicular lym-
phoma have an adverse prognosis (median overall survival of 
one to two years) requiring prompt identification and initiation 
of chemoimmunotherapy [1–5].

Identification of transformation remains a clinical challenge, 
and several studies have attempted to identify various biologi-
cal parameters [1, 5–8]. Although no single factor has been 
identified, commonly reported biological parameters include 
altered Eastern Cooperative Oncology Group performance sta-
tus, elevated lactate dehydrogenase, and low hemoglobin [5, 7].

Newly diagnosed FL patients undergo a combination of 
clinical assessment and imaging, frequently with 2-[18F]
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fluoro-2-deoxy-D-glucose positron emission tomography/
computed tomography ([18F]FDG PET/CT) [9]. Current visual 
interpretation of [18F]FDG PET/CT can identify fast-growing 
lesions with high focal intense uptake but cannot reliably dis-
cern between FL, transformed FL, and DLBCL [10]. Ulti-
mately, upon clinical suspicion of histological transformation, 
patients will undergo an invasive biopsy, which may be limited 
by sampling errors or lead to complications.

Several studies have evaluated the role of [18F]FDG PET/
CT standardized uptake values (SUVs) in identifying unfa-
vorable prognosis and histological transformation of FL [11, 
12]. However, while some studies found SUV valuable to 
identify transformation of FL and predict survival, others pre-
sented contradictory results [11–13]. Despite being the most 
frequently investigated parameter, SUVs remain limited in 
their capability to characterize microenvironment and tumor 
phenotype [14]. Such parameters omit intratumoral [18F]FDG 
spatial distribution, and in particular SUVmax is susceptible to 
noise artifacts as it relies on a single voxel representation of 
the lesion [15].

In radiomics, large amounts of quantitative data are extracted 
from medical images, which may more accurately represent 
in vivo tumor conditions than SUV alone [16]. Moreover, the 
application of machine learning methods to radiomics is suited 
for classification modeling and capable of handling its inher-
ent high-dimensionality [17]. Preliminary data on [18F]FDG 
PET radiomic feature analysis suggests that machine learning 
algorithms may distinguish between DLBCL, FL, mantle cell 
lymphoma, and Hodgkin’s lymphoma [18, 19]. Furthermore, 
a support vector machine classifier based on 105 features 
obtained from [18F]FDG PET/CT has been shown to dis-
criminate aggressive lymphoma lesions from hypermetabolic 
inflammatory/physiological uptake (brown fat, inflammation, 
infection, physiologic thymic uptake) [20]. Regarding therapy 
response and outcome prediction, analysis of [18F]FDG PET 
radiomic features has been shown to correlate with survival 
makers in DLBCL, FL, and marginal zone lymphoma [21–23].

The aim of this study was to determine whether radiomic 
features extracted from clinical baseline [18F]FDG PET/CT 
and analyzed by machine learning algorithms can be used to 
discriminate between FL and DLBCL tumor lesions in patients 
with a histopathologically confirmed diagnosis. If [18F]FDG 
PET/CT radiomic features allow for the differentiation between 
FL and DLBCL tumor lesions, it may help identify patients 
with transformation of FL during the course of disease.

Materials and methods

Study design and patient selection

A retrospective cohort was selected from the electronic 
patient records at the University Medical Center Groningen 

(UMCG) between the years 2010 and 2020. Patients were 
selected based on the confirmed histopathological diagnosis 
of primary FL or DLBCL and available [18F]FDG PET/CT 
with European Association of Nuclear Medicine Research 
(EARL) program reconstruction parameters within 6 months 
of diagnosis. Patients with co-existing disease (i.e., infec-
tion, other malignancy, autoimmune disease), grade III FL, 
and previously treated lymphoma and those where accurate 
segmentation was not possible (i.e., central nervous system, 
adjacent to areas of high physiologic uptake) were excluded. 
Histopathological diagnosis was based on core biopsy or 
lymph node excision. The study was conducted in accord-
ance with the ethical principles of the Declaration of Hel-
sinki and with the approval of the Medical Ethics Review 
Board of the UMCG (202100165, 02-03-2021). The Medical 
Ethics Review Board waived informed consent of all study 
participants.

[18F]FDG PET/CT acquisition

[18F]FDG PET/CT scans were performed using a Siemens 
Biograph mCT or Siemens Biograph Vision (Siemens 
Healthcare, Knoxville, Tennessee, USA) according to the 
European Association of Nuclear Medicine (EANM) pro-
cedure guidelines for tumor imaging [24]. Imaging protocol 
included a minimum fasting of 6 h with glucose levels < 
11mmol/L. A weight-based [18F]FDG dose of 3MBq [18F]
FDG per kg body weight was administered, followed by 60 
min of rest. Low-dose CT was performed with 100kV and 
30mAs. Subsequently, a whole-body (vertex to mid-thigh) 
PET scan with 2–3 min per bed position was acquired. 
Integrated [18F]FDG PET/CT images were corrected for 
scattering and attenuation based on CT information. For 
standardized calculation purposes, all scans were recon-
structed according to the specifications of the EARL pro-
gram [25–27].

[18F]FDG PET/CT image preprocessing and lesion 
segmentation

EARL compliant [18F]FDG PET images and low-dose CT 
images were used for the extraction of radiomic features. 
Images from both modalities were resampled to the same 
reconstruction slice spacing. Images with larger recon-
struction slice spacing were downsized to avoid genera-
tion of extra image information. Lesions were segmented 
in two phases. In a first phase, lesions were preselected 
in line with PERCIST recommendations with a semiau-
tomatic segmentation tool on Hermes Hybrid 3D soft-
ware (Hermes Medical Solutions AB, Stockholm, Swe-
den) by FMJ and blinded for histopathologic diagnosis 
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(Figure 1) [28]. Lesions not automatically segmented but 
suspected of malignancy were manually added, while 
any metabolically active foci interpreted as physiological 
were removed. In a second phase, lesions smaller than 
3ml were excluded (to avoid partial volume effects), and 
the five lesions with the highest SUVmax (highest uptake 
voxel within the volume of interest) were selected for the 
radiomic feature extraction.

Radiomic feature extraction and selection

Radiomics workflow is shown in Figure 2. [18F]FDG PET 
images were first converted to SUVmaps. SUVmaps and 
CT images were discretized using a fixed bin size of 0.25 
SUV and five Hounsfield units, respectively. A total of 93 

features were extracted from [18F]FDG PET and 93 features 
from CT according to the image biomarker standardization 
initiative (IBSI) [29]. Radiomic features were extracted 
from the volume of interest on co-registered [18F]FDG PET 
and CT images. A total of 18 were first-order statistic fea-
tures (including SUVmax and SUVmean), 24 gray-level co-
occurrence matrix features, 16 gray-level size zone matrix 
features, 16 gray-level run-length matrix features, five 
neighboring gray-tone difference matrix features, and 14 
gray-level dependence matrix features [29, 30]. Seventeen 
3D shape-based features were extracted from the segmented 
tumor lesions. After univariate feature selection, features 
shown to have a statistically significant variation (p≤0.05) 
between the labels (FL and DLBCL) were retained in the 
selected radiomic feature subset. Feature extraction and 

Fig. 1   Example of lesion 
segmentation in a patient with 
DLBCL. A Fused [18F]FDG 
PET/CT shows in coronal view 
the delineation of segmented 
lymph nodes on both sides of 
the neck, as performed with the 
“Tumor Finder” application in 
Hermes Hybrid 3D. Fused [18F]
FDG PET/CT (B) and CT (C) 
show corresponding delineation 
in axial view

Fig. 2   Radiomics workflow. [18F]FDG PET and CT images were first preprocessed. Then radiomic features were extracted from the segmented 
lesions. Machine learning classifiers were trained by the combination of radiomic features from [18F]FDG PET and CT as well as shape features
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selection were performed with Python 3.7.9 in the open-
source library with PyRadiomics 3.0 and library scikit-learn 
0.23.2, respectively [31, 32].

Machine learning classifiers

Machine learning classifiers were trained on a per lesion 
basis. A random training set was selected from the study 
cohort containing 80% of tumor lesions and classifier fea-
tures modulated through a 5-fold cross-validation. Machine 
learning classifiers were based on logistic regression and 
tree-based ensemble classifiers. L1 (lasso regression) and 
L2 (ridge regression) regularization were used in the logis-
tic regression classifier to avoid overfitting on the training 
set. Tree-based classifiers were trained with three ensemble 
methods, including AdaBoosting, Gradient Boosting, and 
XG Boosting [33–35]. Feature importance for the tree-based 
models was measured with Gini importance (mean decrease 
in impurity). Discrimination performance was evaluated 
based on the area under the receiver-operating characteris-
tic (ROC) curve (AUC) in a test set containing 20% of the 
tumor lesions, independent of the training set. Confidence 
intervals of machine learning classifier outputs were calcu-
lated using bootstrap analysis [36]. Classifiers were built 
with Python 3.7.9 and library scikit-learn 0.23 [32].

SUVmax‑based classification

As SUVmax is the most recognized [18F]FDG PET/CT semi-
quantitative parameter and has been the focus of previous 
studies on this topic, we evaluated a SUVmax-based logistic 
regression model on the test set [12, 13, 37]. The AUC and 
accuracy of the SUVmax-based logistic regression model 
were compared with those of the machine learning classifiers 
utilizing bootstrapping of 1000 repetitions [36]. Statistical 
significance was set at p≤0.05. Analysis was performed with 
Python 3.7.9 and library scikit-learn 0.23 [32].

Results

Demographic characteristics

The study cohort included 76 patients with DLBCL and 44 
patients with FL. We excluded 25 patients with an unclear or 
inconclusive pathology report, 17 with co-existing disease, 
16 where accurate segmentation was not possible, nine with 
grade III FL, and eight with previously treated lymphoma. 
There were 71 (59%) males and 49 (41%) females, with a 
median age at diagnosis of 65 years (Table 1). Patients with 
DLBCL had a low-, intermediate-, and high-risk interna-
tional prognostic index (IPI) in 7%, 43%, and 50% of cases, 
respectively. FL patients were evenly distributed across the 

follicular lymphoma prognostic index (FLIPI) risk groups, 
with 34%, 25%, and 41% of patients included in risk group 
0–1, 2, and ≥3, respectively. Counts and percentages regard-
ing each variable included in the calculation of the IPI and 
FLIPI can be found in Table 1.

Radiomic model

Radiomic features were extracted from 121 FL and 227 
DLBCL segmented tumor lesions. In total, 79 features were 
extracted from the SUVmap, 51 from CT, and six 3D shape 

Table 1   Demographic characteristics (n=120)

Abbreviations: DLBCL, diffuse large B-cell lymphoma; ECOG, East-
ern Cooperative Oncology Group performance status; FL, follicular 
lymphoma; FLIPI, follicular lymphoma prognostic index; IPI, inter-
national prognostic index; LDH, lactate dehydrogenase

DLBCL n=76 FL n=44

Gender
  Male 45 (59%) 18 (41%)
  Female 31 (41%) 26 (59%)
Age (years)
  Median 67 63
  Q1–Q3 57–74 55–71
Ann arbor staging
  I–II 23 (30%) 14 (32%)
  III–IV 53 (70%) 30 (68%)
Elevated LDH
  Yes 42 (55%) 5 (12%)
  No 34 (45%) 38 (86%)
  NA 1   (2%)
IPI
  0 5   (7%)
  1–2 33 (43%)
  3–5 38 (50%)
ECOG performance status
  0–1 68 (89%)
  ≥2 8 (11%)
>1 extra-nodal site
  Yes 33 (43%)
  No 43 (57%)
FLIPI 
  0–1 15 (34%)
  2 11 (25%)
  ≥3 18 (41%)
>4 nodal sites
  Yes 23 (52%)
  No 21 (48%)
Hemoglobin <120 g/L
  Yes 5 (12%)
  No 38 (86%)
  NA 1   (2%)
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features. The sensitivity, specificity, accuracy, and AUC of 
different classifiers are listed in Table 2 with corresponding 
ROC curves plotted in Figure 3. The best performing model 
was achieved with Gradient Boosting, reaching an AUC 
of 0.86 and an accuracy 80%. The SUVmax-based logistic 
regression model had an AUC of 0.79 and an accuracy of 
70%. Gradient Boosting and XG Boosting achieved a sig-
nificantly greater AUC and accuracy than the SUVmax-based 
logistic regression model (AUC comparison p ≤ 0.01, accu-
racy comparison p ≤ 0.01).

The top five radiomic features selected based on weight 
ranking for each machine learning classifier are listed in 
Tables 3 and 4. In the best performing machine learning 
classifiers (Gradient Boosting and XG Boosting), all top five 
radiomic features were SUV dependent (Table 4). The entire 
radiomic feature list and corresponding weight ranking for 
each classifier can be found in Supplementary Table 1.

Discussion

The present study aimed to determine whether radiomic 
features extracted from clinical baseline [18F]FDG PET/
CT and analyzed by machine learning algorithms may be 
used to discriminate between FL and DLBCL tumor lesions 
in patients with a histopathologically confirmed diagnosis. 
Machine learning classifier Gradient Boosting achieved 
the best AUC of 0.86 and an accuracy of 80%, outperform-
ing SUVmax-based logistic regression model (AUC of 0.79 
and accuracy of 70%). Gradient Boosting model achieved 
a significantly greater AUC and accuracy compared to the 
SUVmax-based logistic regression.

Unlike biopsy, [18F]FDG PET/CT semiquantifica-
tion is not limited by geographical sampling, allowing 
for simultaneous visualization and semiquantification of 
tumor lesions. Should [18F]FDG PET/CT facilitate clini-
cal identification of FL from DLBCL tumor lesions, it may 
more readily and more accurately identify patients with 
FL transformation than current standards. Early [18F]FDG 
PET/CT semiquantification studies reported higher SUVs 

in aggressive non-Hodgkin’s lymphoma than in indolent 
subtypes [38–40]. Subsequently, a similar rationale was 
implemented in studies evaluating SUV differences in FL 
compared to DLBCL and prediction of histological trans-
formation in FL [12, 13, 37, 41–43]. SUVmax cutoffs of 10, 
14, and 17 have been proposed to identify patients at higher 
risk for transformation and previous studies reported AUCs 
between 0.80 and 0.85 for SUVmax to distinguish aggressive 
from indolent non-Hodgkin’s lymphoma [37, 38, 42, 44]. 
Nevertheless, heterogenous methodologies, different camera 
systems, small study cohorts, and contradictory results have 
prevented clinical translation of SUVmax as a tool to differen-
tiate FL from DLBCL and potentially identify patients with 
FL transformation.

Previous literature largely focused on determining 
SUVmax cutoff values to distinguish aggressive from indo-
lent non-Hodgkin’s lymphoma (while combining various 

Table 2   Performance of different machine learning classifiers and SUVmax logistic regression

Area under the curve and accuracy of each machine learning classifier are compared with SUVmax-based logistic regression model and statisti-
cally tested by bootstrapping method. Abbreviations: AUC, area under the curve; CI, confidence interval; SUV, standardized uptake value

Classifiers Sensitivity [95%CI] Specificity [95%CI] Accuracy [95%CI] p value accuracy AUC [95%CI] p value AUC​

Lasso regression 0.68 [0.62,0.76] 0.76 [0.71,0.81] 0.73 [0.68,0.77] 0.26 0.81 [0.78, 0.85] 0.16
Ridge regression 0.72 [0.65,0.81] 0.76 [0.71,0.81] 0.74 [0.7,0.78] 0.15 0.81 [0.78, 0.86] 0.23
Ada boosting 0.76 [0.7,0.84] 0.76 [0.71,0.81] 0.76 [0.72,0.8] 0.04 0.82 [0.78, 0.86] 0.10
Gradient boosting 0.68 [0.61,0.76] 0.87 [0.84,0.92] 0.8 [0.77,0.83] <0.01 0.86 [0.83, 0.89] <0.01
XG boosting 0.76 [0.7,0.85] 0.82 [078,0.87] 0.8 [0.77,0.83] <0.01 0.85 [0.82, 0.89] 0.01
SUVmax 0.56 [0.48,0.65] 0.78 [0.74,0.83] 0.7 [0.67,0.75] - 0.79 [0.76,0.85] -

Fig. 3   ROC curves of different classifiers. Graphical representation of 
ROC with respective AUC obtained from tree-based classifiers (Ada-
Boosting (red), Gradient Boosting (blue) and XG Boosting (brown)), 
L1 (lasso regression) (yellow) and L2 (ridge regression) (green) 
logistic regression classifiers, and SUVmax-based logistic regression 
model (black)
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lymphoma histological subtypes into the aggressive and 
indolent groups) or identifying patients with indolent lym-
phoma at high risk for transformation. As the aim and meth-
odologies significantly differ from that of our study, we can-
not directly compare the results obtained [12, 37, 38, 42, 
43]. Nevertheless, a study by Wu and colleagues reported 
a SUVmax AUC of 0.80 to distinguish FL from DLBCL, 
similar to the AUC of 0.79 obtained with our SUVmax-based 
logistic regression model [44].

Our study is innovative in its application of radiomic fea-
ture extraction and machine learning algorithms to discrimi-
nate between patients with FL from DLBCL using [18F]FDG 
PET/CT. Additionally, it combines EARL compliant [18F]
FDG PET images and low-dose CT images for extraction 
of radiomic features. Previous studies have relied on SUV 
obtained from [18F]FDG PET for lesion semiquantification. 
Yet, commonly used SUV parameters (SUVmax, SUVmean, 
SUVpeak) are based exclusively on the distribution of indi-
vidual voxel values without concern for spatial relationships. 
Particulary SUVmax, which is the most frequently studied 
[18F]FDG PET/CT semiquantitative parameter, is suscepti-
ble to noise artifacts as it is calculated from a single voxel 
representation within the volume of interest [14, 15, 45]. 
Compared to second-order or higher order radiomics, which 
take into consideration the interrelationships between neigh-
boring voxels, SUVs are limited in their capability to char-
acterize microenvironment and tumor phenotype [45–47].

A limited number of previous studies have reported 
improved model discrimination of [18F]FDG PET/CT radi-
omic features as compared to [18F]FDG PET/CT SUV semi-
quantification in lymphoma. Addition of [18F]FDG PET/CT 
radiomic features to SUV improved the assessment of bone 
marrow involvement in patients with mantle cell lymphoma, 
with a reported AUC increase from 0.66 to 0.81 [48]. Simi-
larly, selected [18F]FDG PET radiomic features improved 

discriminatory performance of central nervous system 
lymphomas from glioblastoma multiforme as compared to 
SUVmax, with AUCs of 0.99 and 0.94 respectively [48].

Our study highlights improvements of a radiomic 
approach compared to SUVmax-based semiquantification 
when applied to the differentiation of patients with FL from 
DLBCL. We present a selection of radiomic features which 
may be explored to identify FL patients with histological 
transformation. We observe that all top five features obtained 
with our best performing model (Gradient Boosting) are 
SUV dependent and predominately first-order radiomics. 
Therefore, it may be suggested that metabolic differences 
(as measured by SUV) regardless of spatial relationships are 
essential for the differentiation of FL from DLBCL tumor 
lesions. This observation is consistent with previous studies, 
reporting higher SUVs in aggressive non-Hodgkin’s lym-
phoma than in indolent subtypes [38–40]. Nevertheless, we 
must be aware that our methodology for lesion selection may 
have influenced our results. As we based our lesion selection 
on the five lesions with the highest SUVmax, we may have 
biased our model towards SUV-based parameters. Currently, 
there are no lymphoma-specific guidelines for radiomic anal-
ysis, which may aid researchers in post-acquisition method-
ology pertaining to lesion selection and lesion segmentation. 
Although our exploratory study may serve as the compari-
son for future studies, the optimal methodology for lesion 
selection and lesion segmentation remains undefined. Future 
studies may also focus on expanding the clinical validity of 
our methods. In the present study, in order to avoid introduc-
ing bias to model, we performed machine learning training 
on a per lesion basis and did not include any transformed 
FL patients due to the limited number of cases. These lim-
itations can be mitigated by applying current methods to 
larger, multicenter cohorts which include a greater number 
of patients, including cases of transformed FL.

Table 4   Top five radiomic features in tree-based ensemble classifiers

Abbreviations: GLCM, gray-level co-occurrence matrix; GLSZM, gray-level size zone matrix; SUV, standard uptake value

Weight ranking Radiomic features

AdaBoosting Gradient Boosting XG Boosting

Source Feature class Feature name Source Feature class Feature name Source Feature class Feature name
1st SUV GLSZM Low gray 

level zone 
emphasis

SUV First order Range SUV First–order Minimum

2nd SUV First–order Median SUV First order Median SUV First–order Median
3rd SUV First–order Minimum SUV GLCM Correlation SUV First–order Total energy
4th SUV First–order Range SUV First order Kurtosis SUV GLSZM Low gray-

level zone 
emphasis

5th SUV First order Minimum SUV First–order Range
Total n° features 4 136 117
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Other improvements to future radiomic analysis on this 
topic may include the inclusion of clinical parameters to the 
training of our machine learning classifier. The combina-
tion of [18F]FDG PET/CT radiomic features with clinical 
features has been shown to improve discriminatory perfor-
mance of models in other clinical scenarios [48, 49]. As 
routine clinical parameters such as altered Eastern Coopera-
tive Oncology Group performance status, elevated lactate 
dehydrogenase and low hemoglobin have been suggested 
as risk factors for transformation, they may further improve 
the model, and may be investigated in future studies [5, 7]. 
Finally, researchers may consider including diagnostic CT 
images, instead of low-dose CT, in an attempt to improve 
tumor characterization.

Conclusion

Machine learning analysis of radiomic features may be of 
diagnostic value for discriminating FL from DLBCL tumor 
lesions, beyond that of the SUVmax alone.
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