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1. Introduction

A del Pezzo surface of degree four X over a number field k is a smooth projective 
surface in P 4 given by the complete intersection of two quadrics defined over k. They are 
the simplest class of del Pezzo surfaces that have a positive dimensional moduli space 
and for which interesting arithmetic phenomena happen. Indeed, del Pezzo surfaces of 
degree at least 5 with a k-point are birational to P 2

k and, in particular, have a trivial 
Brauer group. They satisfy the Hasse Principle and weak approximation. The Brauer 
group BrX = H2

ét(X, Gm) of X is a birational invariant which encodes important arith-
metic information such as failures of the Hasse principle and weak approximation via 
the Brauer–Manin obstruction. We refer the reader to [Poo17, §8.2] for an in-depth de-
scription of this obstruction. The image Br0 X of the natural map Br k → BrX does 
not play a rôle in detecting a Brauer–Manin obstruction and thus one can consider the 
quotient BrX/ Br0 X instead of BrX. We say that X has a trivial Brauer group when 
this quotient vanishes.

In contrast to del Pezzo surfaces of higher degree, the Hasse principle may fail for del 
Pezzo surfaces of degree four [JS17]. Yet, they form a tractable class. Colliot-Thélène and 
Sansuc conjectured in [CTS80] that all failures of the Hasse principle and weak approxi-
mation are explained by the Brauer-Manin obstruction. This is established conditionally 
for certain families ([Wit07], [VAV14]).

In [VAV14] Várily-Alvarado and Viray proved that del Pezzo surfaces of degree four 
that are everywhere locally soluble have a vertical Brauer group. In particular, given a 
Brauer element A, they show that there is a genus one fibration g, with at most two 
reducible fibres, for which A ∈ g∗(Br(k(P 1))). The aim of this paper is to study this 
fibration in detail for a special family of quartic del Pezzo surfaces which we investigated 
from arithmetic and analytic point of view in [MS20].

Let a = (a0, . . . , a4) be a quintuple with coordinates in the ring of integers Ok of k. 
Define Xa ⊂ P 4

k by the complete intersection

x0x1 − x2x3 = 0,

a0x
2
0 + a1x

2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 = 0

(1.1)

and assume from now on that Xa is smooth. The latter is equivalent to (a0a1 −
a2a3) 

∏4
i=0 ai �= 0. This altogether gives the following family of interest to us in this 

article:
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F = {Xa as in (1.1) : a ∈ O5
k and (a0a1 − a2a3)

4∏
i=0

ai �= 0}.

There are numerous reasons behind our choice of this family. Firstly, surfaces in F
admit two distinct conic bundle structures, making their geometry and hence their 
arithmetic considerably more tractable. Moreover, for such surfaces the conjecture of 
Colliot-Thélène and Sansuc is known to hold unconditionally [CT90], [Sal86]. Secondly, 
our surfaces can be thought of as an analogue of diagonal cubic surfaces as they also sat-
isfy the interesting equivalence of k-rationality and trivial Brauer group. This is shown 
in Lemma 3.4 which is parallel to [CTKS87, Lem. 1.1].

Our aim is to take advantage of the two conic bundle structures present in the surfaces 
to give a thorough description of a genus one fibration with two reducible fibres for which 
a Brauer element is vertical. More precisely, after studying the action of the absolute 
Galois group on the set of lines on the surfaces, we show that the two reducible fibres 
are of type I4 and that the field of definition of the Mordell–Weil group of the associated 
elliptic surface depends on the order of the Brauer group modulo constants which in our 
case is 1, 2 or 4 [Man74], [SD93]. The presence of the two conic bundle structures plays 
an important rôle forcing a bound on the degree and the shape of the Galois group of the 
field of definition of the lines. We show in Theorem 1.1 that surfaces with Brauer group 
of size 2 are such that the genus one fibration only admits a section over a quadratic 
extension of k, while those with larger Brauer group, namely of order 4, have a section 
for the genus 1 fibration already defined over k.

Theorem 1.1. Let Xa ∈ F and let E be the genus one fibration on Xa described in §4.2. 
Then the following hold.

(i) If BrXa/ Br0 Xa � Z/2Z, then the genus 1 fibration E is an elliptic fibration i.e., 
admits a section, over a quadratic extension. Moreover, it admits a section of infinite 
order over a further quadratic extension. The Mordell–Weil group of E is fully defined 
over at most a third quadratic extension.

(ii) If BrXa/ Br0 Xa � (Z/2Z)2, then E is an elliptic fibration with a 2-torsion section 
and a section of infinite order over k. Moreover, the full Mordell–Weil group of E is 
defined over a quadratic extension.

Not surprisingly, this is in consonance with the bounds obtained in our earlier paper 
[MS20, §1] when k = Q, as surfaces with Brauer group of size 2 are generic in the family 
while those with larger Brauer group are special.

This paper is organized as follows. Section 2 contains some generalities on quartic 
del Pezzo surfaces that admit two conic bundles. There we also describe the two conic 
bundles on the surfaces of interest to us. Section 3 is devoted to the study of the action 
of the absolute Galois group on the set of lines on Xa. We have also included there a 
description of the Brauer elements using lines, by means of results of Swinnerton-Dyer, 
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giving the tools to, in Section 4, describe a genus one fibration with exactly two reducible 
fibres for which a Brauer element is vertical.
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2. Two conic bundles

Let X be a quartic del Pezzo surface over a number field k. From this point on we 
assume that X is k-minimal and moreover that it admits a conic bundle structure over 
k. It follows from [Isk71] that there is a second conic bundle structure on X. In this 
context, given a line L ⊂ X then L plays simultaneously the rôle of a fibre component 
and of a section depending on the conic bundle considered.

Fix a separable closure k̄ of k. In what follows we analyse the possible orbits of lines 
under the action of the absolute Galois group Gal(k̄/k) when BrX �= Br0 X in the light of 
the presence of two conic bundle structures over k. Firstly, we recall [BBFL07, Prop. 13]
that tells us the possible sizes of the orbits of lines. In the statement of this proposition 
the authors consider a quartic del Pezzo surface over Q but its proof establishes the 
result for a del Pezzo surface of degree four over any number field.

Lemma 2.1. [[BBFL07, Prop. 13]] Let X be a del Pezzo surface of degree four over k. 
Assume that BrX/ Br0 X is not trivial. Then the Gal(k̄/k)-orbits of lines in X are one 
of the following:

(2, 2, 2, 2, 2, 2, 2, 2), (2, 2, 2, 2, 4, 4), (4, 4, 4, 4), (4, 4, 8), (8, 8).

Remark 2.2. Recall that we have assumed that X is minimal. In particular, every orbit 
contains at least two lines that intersect. Since each conic bundle is defined over k and the 
absolute Galois group acts on the Picard group preserving intersection multiplicities, we 
can conclude further that each orbit is formed by conic bundle fibre(s). In other words, 
if a component of a singular fibre of a conic bundle lies in a given orbit, then the other 
component of the same fibre also lies in it.

2.1. A special family with two conic bundles

We now describe the two conic bundle structures over k in the del Pezzo surfaces 
given by (1.1). It suffices to consider F(1, 1, 0) = P (OP1(1) ⊕OP1(1) ⊕OP1) which one 
can think of as ((A2 \ 0) × (A3 \ 0))/G2

m, where G2
m acts on (A2 \ 0) × (A3 \ 0) as follows:

(λ, μ) · (s, t;x, y, z) = (λs, λt; μx, μy, μz).

λ λ
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The map F(1, 1, 0) → P 4 given by (s, t; x, y, z) �→ (sx : ty : tx : sy : z) defines an 
isomorphism between Xa and

(a0s
2 + a2t

2)x2 + (a3s
2 + a1t

2)y2 + a4z
2 = 0 ⊂ F(1, 1, 0). (2.1)

A conic bundle structure π1 : Xa → P 1 on Xa is then given by the projection to (s, t).
Similarly, one obtains π2 : Xa → P 1 via (s, t; x, y, z) �→ (tx : sy : ty : sx : z). It gives 

a second conic bundle structure on Xa as shown by the equation

(a0t
2 + a3s

2)x2 + (a1s
2 + a2t

2)y2 + a4z
2 = 0 ⊂ F(1, 1, 0). (2.2)

This puts us in position to refine Lemma 2.1 upon restricting our attention to surfaces 
in the family F .

Lemma 2.3. Let X be a k-minimal del Pezzo surface of degree four described by equation 
(1.1). Then the Gal(k̄/k)-orbits of lines in X are one of the following:

(2, 2, 2, 2, 2, 2, 2, 2), (2, 2, 2, 2, 4, 4), (4, 4, 4, 4).

Proof. We only have to eliminate the possibility of orbits of size 8. One can see readily 
from (2.1) and (2.2) that each line on X is defined over at most a biquadratic extension 
of k. �
3. Lines and Brauer elements

Following Swinnerton-Dyer [SD99] we detect the double fours that give rise to Brauer 
classes. Firstly, we show that a del Pezzo surface of degree 4 given by (1.1) has a trivial 
Brauer group if and only if it is rational over the ground field (see Lemma 3.4). In 
particular, no k-minimal del Pezzo surface of degree 4 given by (1.1) has a trivial Brauer 
group. We take a step further after Lemma 2.3 and note that for a del Pezzo surface 
of degree 4 with a conic bundle structure the sizes of the orbits of lines are determined 
by the order of the Brauer group (but, of course, not vice-versa as a surface with eight 
pairs of conjugate lines can have both trivial or non-trivial Brauer group for example). 
On the other hand, if one assumes that the Brauer group is non-trivial then the size of 
the orbits does determine that of the Brauer group (see Lemma 3.10). Moreover, given a 
non-trivial Brauer element, we describe in detail a genus one fibration with exactly two 
reducible fibres as in [VAV14] for which this element is vertical. We obtain a rational 
elliptic surface by blowing up four points, namely two singular points of fibres of the 
conic bundle (2.1) together with two singular points of fibres of the conic bundle (2.2). 
The field of definition of the Mordell–Weil group of the elliptic fibration is determined 
by the size of the Brauer group of Xa. In general, it is fully defined over a biquadratic 
extension. We also show that the reducible fibres are both of type I4.
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3.1. Conic bundles and lines

Let Xa be given by (1.1). Then it admits two conic bundle structures given by (2.1)
and (2.2). Each conic bundle has two pairs of conjugate singular fibres with Galois group 
(Z/2Z)2 acting on the 4 lines that form each of the two pairs. The intersection behavior 
of the lines on Xa is described in Fig. 1. Together, these 8 pairs of lines give the 16 lines 
on Xa.

We now assign a notation to work with the lines. We set d := a0a1 − a2a3. Given 
i ∈ {1, · · · , 4}, the union of two lines L+

i and L−
i denotes the components of a singular 

fibre of the conic bundle (2.1). Similarly, the union of two lines M+
i and M−

i denotes 
the singular fibres of the conic bundle (2.2). More precisely, using the variables (x0 : x1 :
x2 : x3 : x4) to describe the conic bundles, we have the following

(L±
1 ) x0x1 = x2x3 = −

√
−a2

a0
, x4 = ±

√
d

−a0a4
x1,

(L±
2 ) x0x1 = x2x3 =

√
−a2

a0
, x4 = ±

√
d

−a0a4
x1,

(L±
3 ) x0x1 = x2x3 = −

√
−a1

a3
, x4 = ±

√
d

a3a4
x2,

(L±
4 ) x0x1 = x2x3 =

√
−a1

a3
, x4 = ±

√
d

a3a4
x2,

(M±
1 ) x0x1 = x2x3 = −

√
−a0

a3
, x4 = ±

√
d

a3a4
x2,

(M±
2 ) x0x1 = x2x3 =

√
−a0

a3
, x4 = ±

√
d

a3a4
x2,

(M±
3 ) x0x1 = x2x3 = −

√
−a2

a1
, x4 = ±

√
d

−a0a4
x1,

(M±
4 ) x0x1 = x2x3 =

√
−a2

a1
, x4 = ±

√
d

−a0a4
x1.

One can readily determine the intersection behavior of these lines, which we describe 
in Lemma 3.1. We also take the opportunity to identify fours and double fours defined 
over small field extensions. Recall that a four in a del Pezzo surface of degree 4 is a set 
of four skew lines that do not all intersect a fifth one. A double four is four together with 
the four lines that meet three lines from the original four ([SD93, Lemma10]).

Lemma 3.1. Let i, j, k, l ∈ {1, · · · , 4} be pairwise distinct. Consider L+
i , L

−
i , M

+
i and M−

i

as above. Then

(a) L+
i intersects L−

i , M
−
i and M+

j , while L−
i intersects L+

i , M
+
i , and M−

j .



V. Mitankin, C. Salgado / Journal of Number Theory 236 (2022) 463–478 469
L+
1 L−

1 1 L+
2 L−

2 L+
3 L−

3 L+
4 L−

4

M−
1

M+
1

M−
2

M+
2

M−
3

M+
3

M−
4

M+
4

Fig. 1. The lines on Xa and their intersection behavior. The intersection points of pairs of lines are marked 
with •.

(b) M+
i intersects M−

i , L−
i and L+

j , while M−
i intersects M+

i , L+
i and L−

j .
(c) The lines L+

i , L
+
j , M

−
k , M−

l and the lines L−
i , L

−
j , M

+
k , M+

l , with i + j ≡ k + l ≡
3 mod 4, form two fours defined over the same field extension L/k of degree at most 
2. Together they form a double four defined over k.

Proof. Statements (a) and (b) are obtained by direct calculations. For the line L+
1 , for 

instance, one sees readily that it intersects L−
1 , M

−
1 , M+

2 , M+
3 and M+

4 respectively at 
the points (−

√
−a2
a0

: 0 : 1 : 0 : 0), (−
√

−a2
a0

: −
√

−a0
a3

: 1 : −
√

a2
a3

: −
√

d
a4a3

), (−
√

−a2
a0

:√
−a0
a3

: 1 :
√

a2
a3

:
√

d
a4a3

), (−
√

−a2
a0

: −
√

−a2
a1

: 1 : a2√
a0a1

: −
√

da2
a4a0a1

) and (−
√

−a2
a0

:√
−a2
a1

: 1 : − a2√
a0a1

:
√

da2
a4a0a1

). Part (c) follows from (a) and (b). To see that one of such 

fours is defined over an extension of degree at most 2, note that each subset {L+
i , L

+
j }

and {M−
k , M−

l } is defined over the same extension of degree 2. For instance, taking 
i = 1, j = 2, k = 3 and l = 4, we see that the four is defined over k(

√
−a0a4d). The 

double four is defined over k since both {L+
i , L

+
j , L

−
i , L

−
j } and {M+

k , M+
l , M−

k , M−
l } are 

Galois invariant sets. �
Among the 40 distinct fours on a del Pezzo surface of degree 4, the ones that appear 

in the previous lemma are special. More precisely, given a four as in Lemma 3.1 such 
that its field of definition has degree δ ∈ {1, 2}, the smallest degree possible among such 
fours, then any other four is defined over an extension of degree at least δ.

Definition 3.2. Given a four as in Lemma 3.1 part (c), we call it a minimal four if the 
field of definition of its lines has the smallest degree among such fours.

For the sake of simplicity and completion we state a result proved in [MS20, Prop. 2.2]
that determines the Brauer group of Xa in terms of the coefficients a = (a0, · · · , a4). 
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We remark that the statement of the proposition below does not require that the set of 
adelic points Xa(Ak) of Xa is non-empty and that the proof presented in [MS20] works 
over an arbitrary number field k. The reader will readily observe that the assumptions 
on the coefficients of the defining equations of Xa are stable under permutation of a0

and a1, and of a2 and a3, as later is made explicit in Section 3.5.

Proposition 3.3. Let (∗) denote the condition that −a0a4d /∈ k(
√−a0a2)∗2, −a1a4d /∈

k(
√−a1a3)∗2 and that one of −a0a2, −a1a3 or a0a1 is not in k∗2. Then we have

BrXa/Br0 Xa =

⎧⎪⎪⎨
⎪⎪⎩

(Z/2Z)2 if a0a1, a2a3,−a0a2 ∈ k∗2 and − a0a4d /∈ k∗2,

Z/2Z if (∗),
{id} otherwise.

Recall the definition of a rank of a fibration [Sko96], which (as in [FLS18]) for the 
sake of clarity to be distinguished from the Mordell–Weil rank or the Picard rank we call 
complexity here. The rank or complexity of a fibration is the sum of the degrees of the 
fields of definition of the non-split fibres. It is clear that the conic bundles in Xa have 
complexity at most four. This allows us to obtain in our setting the following lemma.

Lemma 3.4. Let k be a number field and Xa given by (1.1). Assume that Xa(Ak) �= ∅. 
Then Xa is k-rational if and only if BrXa = Br k.

Proof. The if implication holds for any k-rational variety since BrXa is a birational 
invariant of smooth projective varieties. To prove the non-trivial direction, we make use 
of [KM17] which shows that conic bundles of complexity at most 3 with a rational point 
are rational. Firstly, note that the assumption Xa(Ak) �= ∅ implies that Br k injects 
into BrXa. If BrXa/ Br k is trivial, then either −a0a4d ∈ k(

√−a0a2)∗2 or −a1a4d ∈
k(
√−a1a3)∗2 by Proposition 3.3. Thus the complexity of the conic bundle π1 is at most 

2. It remains to show that Xa admits a rational point. This follows from the independent 
work in [CT90] and [Sal86] which shows that the Brauer–Manin obstruction is the only 
obstruction to the Hasse principle for conic bundles with 4 degenerate geometric fibres. 
There is no such obstruction when BrXa/ Br k is trivial. Under the assumption X(Ak) �=
∅ we conclude that Xa admits a rational point and hence is rational. �
Remark 3.5. Lemma 3.4 is parallel to [CTKS87, Lem. 1] which deals with diagonal cubic 
surfaces whose Brauer group is trivial. Moreover, a simple exercise shows that in our 
case, if the Brauer group is trivial, then the surface is a blow up of a Galois invariant 
set of four points in the ruled surface P 1 × P 1, while the diagonal cubic satisfying the 
hypothesis of [CTKS87, Lem. 1] is a blow up of an invariant set of six points in the 
projective plane. The Picard group over the ground field of the former is of rank four 
while that of the latter has rank three.
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3.2. Brauer elements and double fours

The following two results of Swinnerton-Dyer allow one to describe Brauer elements 
via the lines in a double four, and to determine the order of the Brauer group.

The first result is contained in [SD99, Lem. 1, Ex. 2].

Theorem 3.6. Let X be a del Pezzo surface of degree 4 over a number field k and α
a non-trivial element of BrX. Then α can be represented by an Azumaya algebra in 
the following way: there is a double-four defined over k whose constituent fours are not 
rational but defined over k(

√
b), for some non-square b ∈ k. Further, let V be a divisor 

defined over k(
√
b) whose class is the sum of the classes of one line in the double-four 

and the classes of the three lines in the double-four that meet it, and let V ′ be the 
Galois conjugate of V . Let h be a hyperplane section of X. Then the k-rational divisor 
D = V + V ′ − 2h is principal, and if f is a function whose divisor is D then α is 
represented by the quaternion algebra (f, b).

The following can be found at [SD93, Lem. 11].

Lemma 3.7. The Brauer group BrX cannot contain more than three elements of order 
2. It contains as many as three if and only if the lines in X can be partitioned into four 
disjoint cohyperplanar sets Ti, i = 1, .., 4, with the following properties:

(1) the union of any two of the sets Ti is a double-four;
(2) each of the Ti is fixed under the absolute Galois group;
(3) if γ is half the sum of a line λ in some Ti, the two lines in the same Ti that meet λ, 

and one other line that meets λ, then no such γ is in PicX ⊗Q + Pic X̄.

We proceed to analyse how the conic bundle structures in Xa and the two results 
above can be used to describe the Brauer group of Xa.

3.3. The general case

We first describe the general case, i.e., on which there are four Galois orbits of lines 
of size four.

Proposition 3.8. Let Xa ∈ F and assume that a satisfies hypothesis (∗) of Proposition 3.3. 
Then there are exactly two distinct double fours on Xa defined over k with constituent 
fours defined over a quadratic extension. In other words, there are exactly 4 minimal 
fours which pair up in a unique way to form two double fours defined over k.

Proof. Part (c) of Lemma 3.1 tells us that the minimal fours are given by the double 
four formed by the fours {L+

1 , L
+
2 , M

−
3 , M−

4 }, {L−
1 , L

−
2 , M

+
3 , M+

4 } and that formed by 
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{L+
3 , L

+
4 , M

−
1 , M−

2 } and {L−
3 , L

−
4 , M

+
1 , M+

2 }. By the hypothesis, each four is defined 
over a quadratic extension and the two double fours are defined over k. The hypothesis 
on the coefficients of the equations defining Xa also imply that any other double four is 
defined over a non-trivial extension of k. For instance, consider a distinct four containing 
L+

1 . For a double four containing this four to be defined over k, we need that the second 
four contains L−

1 and that one of the fours contains L+
2 and the other L−

2 . The hypothesis 
that each four is defined over a degree two extension gives moreover that L+

2 is in the 
same four as L+

1 and hence, due to their intersecting one of the lines, M+
1 and M+

2
cannot be in the same four. We are left with L+

3 , L
+
4 , M

+
3 , M+

4 and their conjugates. But 
if L+

3 is in one of the fours then L−
3 would be in the other four. This is impossible as 

neither L+
3 nor L−

3 intersect L−
1 or L−

2 , and each line on a double four intersects three 
lines of the four that do not contain it. �
Corollary 3.9. Let Xa be as above. Then BrXa/ Br0 Xa is of order 2.

Proof. This is a direct consequence of Proposition 3.8 together with Theorem 3.6. �
We shall now allow further assumptions on the coefficients of Xa to study how they 

influence the field of definition of double fours and hence the Brauer group.

3.4. Trivial Brauer group

Suppose that one of −a0a4d, −a1a4d, a2a4d, a3a4d is in k∗2. Assume, to exemplify, 
that −a0a4d is a square. Consider the conic bundle structure given by (2.1). Then the 
lines L+

1 and L+
2 are conjugate and, clearly, do not intersect. Indeed, they are components 

of distinct fibres of (2.1). Contracting them we obtain a del Pezzo surface of degree 6. If 
Xa has points everywhere locally, the same holds for the del Pezzo surface of degree 6 
by Lang–Nishimura [Lan54], [Nis55]. As the latter satisfies the Hasse principle, it has a 
k-point. In particular, Xa is rational, which gives us an alternative proof of Lemma 3.4.

3.5. Brauer group of order four

For the last case, assume that a0a1, a2a3, −a0a2 ∈ k∗2, −a0a4d, −a1a4d, a2a4d, a3a4d /∈
k∗2. We produce two double fours that give distinct Brauer classes. Firstly, note that all 
the singular fibres of the two conic bundles are defined over k. In particular, their singu-
larities are k-rational points. Therefore Xa(k) �= ∅ and hence there is no Brauer–Manin 
obstruction to the Hasse principle. Moreover, we have Br0 Xa = Br k. Furthermore, 
every line is defined over a quadratic extension, but no pair of lines can be con-
tracted since each line intersects its conjugate. Secondly, note that since −a0a2 is a 
square, thus k(

√
−a0a4d) = k(

√
a2a4d). We have the double four as above, given by 

L+
1 , L

+
2 , M

−
3 , M−

4 and the correspondent intersecting components, and a new double 
four given by {L+

1 , L
+
3 , M

−
2 , M−

4 }, {L+
2 , L

+
4 , M

−
1 , M−

4 }, which under this hypothesis is 
formed by two minimal fours.
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The Picard group of Xa is generated by L+
1 , L

+
2 , L

+
3 , L

+
4 , a smooth conic and a 

section, say M+
1 of the conic fibration (2.1). We can apply Lemma 3.7 with Ti =

{L+
i , L

−
i , M

+
i , M−

i } to check that in this case the Brauer group has indeed size four.
The following lemma synthesizes the discussion on the previous subsections around 

the action of the absolute Galois group on the lines and the size of the Brauer group.

Lemma 3.10. Let Xa be as in (1.1). Assume that Xa does not contain a pair of skew 
conjugate lines or, equivalently, Xa is not k-rational. Then the following hold:

(i) # BrXa/ Br0 Xa = 4 if and only if the set of lines on Xa has orbits of size 
(2, 2, 2, 2, 2, 2, 2, 2).

(ii) # BrXa/ Br0 Xa = 2 if and only if the set of lines on Xa has orbits of size 
(2, 2, 2, 2, 4, 4) or (4, 4, 4, 4).

Proof. This is an application of [SD93, Lem. 11] or a reinterpretation of Proposition 3.3
together with the description of the lines given in this section and the construction of 
Brauer elements via fours given by Swinnerton-Dyer (see for instance [SD93, Lem. 10]
and [BBFL07, Thm 10] for the construction of the Brauer elements via fours). �
4. A genus 1 fibration and vertical Brauer elements

In what follows we will give a description of the genus 1 fibration Xa ��� P 1 from 
[VAV14] for which a given Brauer element is vertical. First we recall some basic facts 
about elliptic surfaces. We then obtain the Brauer element and the genus 1 fibration 
as in [VAV14] to afterwards reinterpret it in our special setting of surfaces admitting 
two non-equivalent conic bundles over the ground field. We study how the order of the 
Brauer group influences the arithmetic of this genus 1 fibration. More precisely, after 
blowing up the base points of the genus one pencil, we show that the field of definition 
of its Mordell–Weil group depends on the size of the Brauer group.

4.1. Background on elliptic surfaces

Let k be a number field.

Definition 4.1. An elliptic surface over k is a smooth projective surface X together with 
a morphism E : X → B to some curve B whose generic fibre is a smooth curve of genus 
1, i.e., a genus 1 fibration. If it admits a section we call the fibration jacobian. In that 
case, we fix a choice of section to act as the identity element for each smooth fibre. The 
set of sections is in one-to-one correspondence with the k(B)-points of the generic fibre, 
hence it has a group structure and it is called the Mordell–Weil group of the fibration, 
or of the surface if there is no doubt on the fibration considered.
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Remark 4.2. If X is a rational surface and an elliptic surface, we call it a rational elliptic 
surface. If the fibration is assumed to be minimal, i.e., no fibre contains (−1)-curves 
as components, then by the adjunction formula the components of reducible fibres are 
(−2)-curves. In that case, the sections are precisely the (−1)-curves and the fibration is 
jacobian over a field of definition of any of the (−1)-curves.

Given a smooth, projective, algebraic surface X its Picard group has a lattice structure 
with bilinear form given by the intersection pairing. If X is an elliptic surface then, thanks 
to the work of Shioda, we know that its Mordell–Weil group also has a lattice structure, 
with a different bilinear pairing [Shi90]. Shioda also described the Néron–Tate height 
pairing via intersections with the zero section and the fibre components. This allows 
us to determine, for instance, if a given section is of infinite order and the rank of the 
subgroup generated by a subset of sections. We give a brief description of the height 
pairing below.

Definition 4.3. Let E : X → B be an elliptic surface with Euler characteristic χ. Let O
denote the zero section and P, Q two sections of E . The Néron–Tate height pairing is 
given by

〈P,Q〉 = χ + P ·O + Q ·O − P ·Q−
∑

F∈ reducible fibres
contrF (P,Q),

where contrF (P, Q) denotes the contribution of the reducible fibre F to the pairing and 
depends on the type of fibre (see [Shi90, §8] for a list of all possible contributions). Upon 
specializing at P = Q we obtain a formula for the height of a section (point in the generic 
fibre):

h(P ) = 〈P, P 〉 = 2χ + 2P ·O −
∑

F∈ reducible fibres
contrF (P ).

Remark 4.4. The contribution of a reducible fibre depends on the components that P
and Q intersect. In this article we deal only with fibres of type I4, thus for the sake of 
completion and brevity we give only its contribution. Denote by Θ0 the component that 
is met by the zero section, Θ1 and Θ3 the two components that intersect Θ0, and let 
Θ2 be the component opposite to Θ0. If P and Q intersect Θi and Θj respectively, with 
i ≤ j then contrI4(P, Q) = i(4−j)

4 .

4.2. Vertical elements

Definition 4.5. Let X be a smooth surface. Given a genus 1 fibration π : X → P 1, the 
vertical Picard group, denoted by Picvert, is the subgroup of the Picard group generated 
by the irreducible components of the fibres of π. The vertical Brauer group Brvert is 
given by the algebras in Br k(P 1) that give Azumaya algebras when lifted to X (see 
[Bri06, Def. 3]).
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There is an isomorphism BrX/ Br0 X � H1(k, Pic X̄) and, as described by Bright 
[Bri06, Prop.4], a further isomorphism between B := {A ∈ Br k(P 1) : π∗A ∈ BrX}/ Br k
and H1(k, Picvert X̄). Combining these with Theorem 3.6, allows us to describe vertical 
Brauer elements as those for which the lines in Theorem 3.6 are fibre components of π.

Definition 4.6. We call a Brauer element horizontal w.r.t. π if it admits a representation 
as in Theorem 3.6 with lines that are sections or multisections of π.

Remark 4.7. As a line cannot be both a fibre component and a (multi)-section simul-
taneously, a Brauer element that is horizontal cannot be vertical and vice-versa. For a 
general fibration π some Brauer elements might be neither horizontal nor vertical.

The following result shows that for a specific elliptic fibration, all Brauer elements are 
either horizontal or vertical.

Lemma 4.8. Assume that the Brauer group of Xa is non-trivial. Let F = L+
1 + L+

2 +
M+

3 + M+
4 and F ′ = L−

1 + L−
2 + M−

3 + M−
4 . The pencil of hyperplanes spanned by F

and F ′ gives a genus one fibration with exactly two reducible fibres on Xa which are of 
type I4, for which a non-trivial element of its Brauer group is vertical. The other Brauer 
elements are horizontal.

Proof. The linear system spanned by F and F ′ is a subsystem of | −KXa
|. Hence it gives 

a genus one pencil on Xa. Its base points are precisely the four singular points of the 
following fibres of the conic bundle fibrations: L+

1 ∪L−
1 , L

+
2 ∪L−

2 , M
+
3 ∪M−

3 , M+
4 ∪M−

4 . 
The blow up of these four base points produces a geometrically rational elliptic surface1

with two reducible fibres given by the strict transforms of F and F ′. Since each of 
the latter is given by four lines in a square configuration and the singular points of this 
configuration are not blown up, these are of type I4 (Fig. 2). There are no other reducible 
fibres as the only (−2)-curves are the ones contained in the strict transforms of F and 
F ′. Let E denote the fibration map.

The Azumaya algebra (f, b) with f and b as in Theorem 3.6 taking as double four 
the components of F and F ′, gives a Brauer element which is vertical for the genus one 
fibration E . Indeed, the lines that give such a double four are clearly in Picvert X̄a) and 
hence the algebra (f, b) lies in the image of H1(k, Picvert X̄a) → H1(k, X̄a). By [Bri06, 
Prop. 4] it gives an element of the form E∗A, where A is in Br k(P 1).

The other Brauer elements on Xa are described by double fours, i.e., pairs of sets 
of four (−1)-curves on Xa, subject to intersection conditions. Since each component 
intersects each reducible fibre in exactly one point, after passing to its field of definition, 
these give sections of the genus one fibration. That is, such Brauer elements are horizontal 
with respect to this genus one fibration. �
1 Not necessarily with a section over the ground field.
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Θ0,1 = L+
1

Θ1,1 = M+
3

Θ2,1 = L+
2

Θ3,1 = M+
4

E4

E3

E2

E1

Θ0,2 = L−
1

Θ1,2 = M−
3

Θ2,2 = L−
2

Θ3,2 = M−
4

Fig. 2. The reducible fibres of the genus one fibration E. The eight • denote fibre components and the four 
◦ denote sections given by the blow up of the 4 base points.

Remark 4.9. The genus one fibration for which a Brauer element is vertical described 
in [VAV14] has in general two reducible fibres given as the union of two geometrically 
irreducible conics, i.e., they are of type I2. In our setting all the conics are reducible and 
hence give rise to fibres of type I4. More precisely, let C1 ∪ C2 and C ′

1 ∪ C ′
2 be the two 

reducible fibres with Ci and C ′
i conics, then C1 ∪ C ′

1 is linearly equivalent to one of the 
fours, say L+

1 ∪L+
2 ∪L−

1 ∪L−
2 and C1∪C ′

2 is linearly equivalent to M+
3 ∪M+

4 ∪M−
3 +M−

4 . 
This seems to be very particular of the family considered in this note. More precisely, 
the presence of two conic bundle structures does not seem to be enough to guarantee 
that the reducible fibres of the genus one fibration are of type I4. For that one needs 
that the largest Galois orbit of lines has size at most four and moreover that the field of 
definition of two of such orbits is the same.

4.3. Mordell–Weil meets Brauer

In what follows we will keep the letter E for the genus one fibration on the blow up 
surface just described. We now give a proof of our main result, Theorem 1.1.

Proof. To prove (i) notice that the hypothesis of Proposition 3.3 implies that the four 
blown up points form two distinct orbits of Galois conjugate points. To exemplify, we 
work with the genus one fibration given by F and F ′ as in Lemma 4.8. Let Pi be the 
intersection point of L+

i and L−
i for i = 1, 2 and that of M+

i and M−
i , for i = 3, 4. Denote 

by Ei the exceptional curve after the blow up of Pi. Then {E1, E2} and {E3, E4} give 
two pairs of conjugate sections of E . Moreover, the sections on a pair intersect opposite, 
i.e., disjoint, components of the fibres given by F and F ′. Fixing one as the zero section 
of E , say E1, then a height computation gives that E2 is the 2-torsion section of E . 
Indeed, as we have fixed E1 as the zero section, the strict transform of L+

1 and L−
1 are 

the zero components of the fibres F and F ′, respectively. We denote them by Θ0,j with 
j = 1, 2 respectively. Keeping the standard numbering of the fibre components, the strict 
transforms of L2 and L′

2 are denoted by Θ2,j , with j = 1, 2, respectively. Finally, in this 
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notation, M+
3 and M−

3 correspond to Θ1,j while M+
4 and M−

4 correspond to Θ3,j , for 
j = 1, 2 respectively (Fig. 2).

To compute the height of the section E2 we need the contribution of each I4 to the 
pairing which in this case is 1 (see [SS10, §11] for details on the height pairing on elliptic 
surfaces and the contribution of each singular fibre to it). We have thus

〈E2, E2〉 = 2 − 0 − 1 − 1 = 0.

In particular, E2 is a torsion section. Since E2 is distinct from the zero section E1 and such 
fibrations admit torsion of order at most 2 (see [Per90] for the list of fibre configurations 
and torsion on rational elliptic surfaces), we conclude that E2 is a 2-torsion section. The 
two other conjugate exceptional divisors E3 and E4 give sections of infinite order as one 
can see after another height pairing computation

〈E3, E3〉 = 〈E4, E4〉 = 2 − 0 − 3/4 − 3/4 = 1/2.

Since E3 and E4 are disjoint, the computation above implies moreover that each of 
them generates a lattice A∗

1. To conclude this part we observe that the Mordell–Weil 
group of a rational elliptic surface with two reducible fibres of type I4 and admitting a 
nontrivial two torsion section is isomorphic to (A∗

1)2 ⊕Z/2Z ([OS91, Main Thm. l.35]).
To show (ii) it is enough to notice that the hypothesis of Proposition 3.3 implies 

that the four base points of the linear system spanned by F and F ′ are defined over k. 
From the discussion above we conclude that the zero section, the 2-torsion and also a 
section of infinite order, say E3, are defined over k since each of them is an exceptional 
curve above a k-point. The height matrix of the sections E3 and E4 has determinant 
zero, hence the section E4 is linearly dependent on E3. Moreover, it follows from the 
Shioda–Tate formula for Pic(X)Gal(k̄/k) that any section defined over k of infinite order 
is linearly dependent on E3. Indeed, the rank of the Picard group of the rational elliptic 
surface is 6 since that of Xa has rank 2 and we blow up 4 rational points. The non-trivial 
components of the two fibres of type I4 give a contribution of 3 to the rank. The other 3 
come from the zero section, a smooth fibre and a section of infinite order, say E3. For a 
second section of infinite order which is independent in the Mordell–Weil group of E3 one 
can consider the pull-back of a line in Xa. The hypothesis on the Brauer group implies 
that Xa has no lines defined over k but each line is defined over a quadratic extension. 
The same argument as in the end of part (i) applies here to prove that we obtain the 
full Mordell–Weil group after passing to this quadratic extension. �
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