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Abstract
Canard cycles are periodic orbits that appear as special solutions of fast-slow systems (or
singularly perturbed ordinary differential equations). It is well known that canard cycles are
difficult to detect, hard to reproduce numerically, and that they are sensible to exponentially
small changes in parameters. In this paper, we combine techniques from geometric singu-
lar perturbation theory, the blow-up method, and control theory, to design controllers that
stabilize canard cycles of planar fast-slow systems with a folded critical manifold. As an
application, we propose a controller that produces stable mixed-mode oscillations in the van
der Pol oscillator.

Keywords Canard cycles · Singular perturbations · Feedback control

Mathematics Subject Classification (2010) 34E17 · 93C70 · 93D15

1 Introduction

Fast-slow systems (also known as singularly perturbed ordinary differential equations, see
more details in Section 2) are often used to model phenomena occurring in two or more time
scales. Examples of these are vast and range from oscillatory patters in biochemistry and
neuroscience [6, 18, 25, 26], all the way to stability analysis and control of power networks
[10, 14], among many others [41, Chapter 20]. The overall idea behind the analysis of fast-
slow systems is to separate the behavior that occurs at each time scale, understand such
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behavior, and then try to elucidate the corresponding dynamics of the full system. Many
approaches have been developed, such as asymptotic methods [17, 34, 51, 52], numeric and
computational tools [24, 32], and geometric techniques [20, 31, 33], see also [41, 46, 56].
In this article, we take a geometric approach.

Although the time scale separation approach has been very fruitful, there are some cases
in which it does not suffice to completely describe the dynamics of a fast-slow system,
see the details in Section 2. The reason is that, for some systems, the fast and the slow
dynamics are interrelated in such a way that some complex behavior is only discovered
when they are not fully separated. An example of the aforementioned situation are the
so-called canards [7, 8, 15], see Section 2.1 for the appropriate definition. Canards are
orbits that, counter-intuitively, stay close for a considerable amount of time to a repelling
set of equilibrium points of the fast dynamics. Canards are extremely important not only
in the theory of fast-slow systems, but also in applied sciences, and especially in neuro-
science, as they have allowed, for example, the detailed description of the very fast onset
of large amplitude oscillations due to small changes of a parameter in neuronal models [18,
26] and of other complex oscillatory patterns [9, 12, 47]. Due to their very nature, canard
orbits are not robust, meaning that small perturbations may drastically change the shape
of the orbit.

On the other hand, the application of singular perturbation techniques in control theory
is far-reaching. Perhaps, as already introduced above, one of the biggest appeals of the the-
ory of fast-slow systems is the time scale separation, which allows the reduction of large
systems into lower dimensional ones for which the control design is simpler [29, 37, 38].
Applications range from the control of robots [28, 53, 54], all the way to industrial bio-
chemical processes, and large power networks [13, 35, 36, 43, 49, 50]. However, as already
mentioned, not all fast-slow systems can be analyzed by the convenient time scale sepa-
ration strategy, and although some efforts from very diverse perspectives have been made
[2–5, 22, 23, 29, 30], a general theory that includes not only the regulation problem but also
the path following and trajectory planning problems is, to date, lacking.

The main goal of this article is to merge techniques of fast-slow dynamical systems with
control theory methods to develop controllers that stabilize canard orbits. The idea of con-
trolling canards has already been explored in [16], where an integral feedback controller is
designed for the FitzHugh-Nagumo model to steer it towards the so-called canard regime.
In contrast, here we take a more general and geometric approach by considering the folded
canard normal form, see Section 2.1. Moreover, we integrate control techniques with Geo-
metric Singular Perturbation Theory (GSPT) and propose a controller design methodology
in the blow-up space. Later, we apply such geometric insight to the van der Pol oscillator
where we provide a controller that produces any oscillatory pattern allowed by the geometric
properties of the model, see Section 4.

The rest of this document is arranged as follows: in Section 2, we present definitions
and preliminaries of the geometric theory of fast-slow systems and of folded canards, which
are necessary for the main analysis. In Section 3, we develop a controller that stabilizes
folded canard orbits, where the main strategy is to combine the blow-up method with state-
feedback control techniques to achieve the goal. Afterwards in Section 4, as an extension to
our previously developed controller, we develop a controller that stabilizes several canard
cycles and is able to produce robust complex oscillatory patters in the van der Pol oscillator.
We finish in Section 5 with some concluding remarks and an outlook.
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2 Preliminaries

A fast-slow system is a singularly perturbed ordinary differential equation (ODE) of the
form

εẋ = f (x, y, ε, λ)

ẏ = g(x, y, ε, λ),
(1)

where x ∈ R
m is the fast variable, y ∈ R

n the slow variable, 0 < ε � 1 is a small
parameter accounting for the time scale separation between the aforementioned variables,
λ ∈ R

p denotes other parameters, and f and g are assumed sufficiently smooth. In this
document, the over-dot is used to denote the derivative with respect to the slow time τ . It is
well-known that, for ε > 0, an equivalent way of writing Eq. 1 is

x′ = f (x, y, ε, λ)

y′ = εg(x, y, ε, λ),
(2)

where now the prime denotes the derivative with respect to the fast time t := τ/ε.
One of the mathematical theories that is concerned with the analysis of Eqs. 1– 2 is

Geometric Singular Perturbation Theory (GSPT) [41]. The overall idea of GSPT is to study
the limit equations that result from setting ε = 0 in Eqs. 1– 2. Then, one looks for invariant
objects that can be shown to persist up to small perturbations. Such invariant objects give a
qualitative description of the behavior of Eqs. 1– 2. Accordingly, setting ε = 0 in Eqs. 1– 2
one gets

0 = f (x, y, 0, λ) x ′ = f (x, y, 0, λ)

ẏ = g(x, y, 0, λ) y′ = 0,
(3)

known, respectively, as the reduced slow subsystem (which is a constrained differential
equation [55] or a differential algebraic equation [42]) and the layer equation. The afore-
mentioned limit systems are not equivalent any more, but they are related by the following
important geometric object.

Definition 1 (The critical manifold) The critical manifold is defined as

C0 = {
(x, y) ∈ R

m × R
n | f (x, y, 0, λ) = 0

}
. (4)

We note that the critical manifold is the phase-space of the reduced slow subsystem and
the set of equilibrium points of the layer equation. The properties of the critical manifold
are essential to GSPT, in particular the following.

Definition 2 (Normal hyperbolicity) Let p ∈ C0. We say that p is hyperbolic if the matrix
Dxf (p, 0, λ)|C0 has all its eigenvalues away from the imaginary axis. If every point p ∈ C0
is hyperbolic, we say that C0 is normally hyperbolic. On the contrary, if for some p ∈ C0
the matrix Dxf (p, 0, λ)|C0 has at least one of its eigenvalues on the imaginary axis, then
we say that p is a non-hyperbolic point.

It is known from Fenichel’s theory [19, 20] that a compact and normally hyperbolic
critical manifold S0 ⊆ C0 of Eq. 3 persists as a locally invariant slow manifold Sε under
sufficiently small perturbations. In other words, Fenichel’s theory guarantees that in a neigh-
borhood of a normally hyperbolic critical manifold the dynamics of Eqs. 1–2 are well
approximated by the limit systems Eq. 3.
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Remark 1 Along this paper, we use the notation Sa
0 and S r

0 to denote, depending on the
eigenvalues of Dxf (x, y, 0, λ)|S0 , the attracting an repelling parts of the (compact) critical
manifold S0. Accordingly, the corresponding slow manifolds are denoted as Sa

ε and S r
ε .

On the other hand, critical manifolds may lose normal hyperbolicity, for example, due to
singularities of the layer equation, see Fig. 1. It is in fact due to loss of normal hyperbolicity
that, as in this paper, some interesting and complicated dynamics may arise in seemingly
simple fast-slow systems. Fenichel’s theory, however, does not hold in the vicinity of non-
hyperbolic points. In some cases, depending on the nature of the non-hyperbolicity, the
blow-up method [27] is a suitable technique to analyze the complicated dynamics that arise.
In the forthcoming section, we introduce the particular type of orbits that we are concerned
with and that arise due to loss of normal-hyperbolicity of the critical manifold: the so-called
canards.

2.1 Planar Folded Canards

In this section, we briefly describe folded canards and folded canard cycles in the plane. As
we mention below, the adjective “folded” is due to a fold singularity. However, we remark
that canards (and canard cycles) can be related to other types of singularities. The interested
reader is refereed to, e.g. [15, 39, 57], references therein and, in particular, [41, Chapter 8]
and [27, Section 3] for more detailed information.

Let us start by recalling that the canonical form of a canard point [39] is given by

x′ = −yh1(x, y, ε, α) + x2h2(x, y, ε, α) + εh3(x, y, ε, α)

y′ = ε (xh4(x, y, ε, α) − αh5(x, y, ε, α) + yh6(x, y, ε, α)) ,
(5)

where (x, y) ∈ R
2, 0 < ε � 1, and α is a parameter. Furthermore,

h3(x, y, ε, α) = O(x, y, ε, α)

hi(x, y, ε, α) = 1 + O(x, y, ε, α), i = 1, 2, 4, 5,
(6)

and h6 is smooth. For simplicity of notation, we rewrite Eq. 5 together with Eq. 6 as

x′ = −y + x2 + f̃ (x, y, ε, α)

y′ = ε(x − α + g̃(x, y, ε, α)),
(7)

Fig. 1 Singular flow of Eq. 7 near the origin. The gray parabola depicts the critical manifold S0 which is
partitioned in its attracting Sa

0 = S0|{x<0} and repelling Sr
0 = S0|{x>0} parts, while the origin (the fold point)

is non-hyperbolic. If α = 0, the origin is also called canard point. In this latter case, the orbit along the
critical manifold is also known as singular maximal canard
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Fig. 2 Orbits of Eq. 10 obtained as level sets of Eq. 11. The dashed gray curve is the critical manifold.
Compare with α = 0 in Fig. 1

where f̃ and g̃ denote the corresponding higher order terms, that is:

f̃ (x, y, ε, α) := −yO(x, y, ε, α) + x2O(x, y, ε, α) + εO(x, y, ε, α),

g̃(x, y, ε, α) := xO(x, y, ε, α) − αO(x, y, ε, α) + yh6(x, y, ε, α).
(8)

The critical manifold is locally (near the origin) a perturbed parabola and is given by

S0 =
{
(x, y) ∈ R

2 | − y + x2 + f̃ (x, y, 0, α) = 0
}

. (9)

The (slow and fast) reduced flow corresponding to Eq. 7 is as shown in Fig. 1.

Remark 2 To fix ideas, consider for a moment Eq. 7 with zero higher order terms,1 that is

x′ = −y + x2

y′ = ε(x − α).
(10)

Then, it is straightforward to check that, for ε > 0 and α = 0, the orbits of Eq. 10 are given
by level sets of

H(x, y, ε) = 1

2
exp

(
−2y

ε

) (
y

ε
− x2

ε
+ 1

2

)
. (11)

Some orbits of Eq. 10 are shown in Fig. 2, and in fact it is known [39] that canard cycles
exist for H ∈ (0, 1

4 ).

What is remarkable is that there are orbits that closely follow the unstable branch of the
critical manifold for slow time of order O(1). Such type of orbits are known as canards.
There is a particular canard, which is called maximal canard and is given by {H = 0} that
connects the attracting slow manifold Sa

ε with the repelling one S r
ε . More relevant to this

paper are periodic orbits with canard portions, which called canard cycles.
In the following section, we design feedback controllers for Eq. 5 that render a particular

canard cycle asymptotically stable. In other words, we consider the path following control
problem where a canard orbit is the reference.

1Refer to [39] for the much more complicated case that includes the higher order terms.
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3 Controlling Folded Canards

We propose to study two control problems, namely

x′ = −y + x2 + f̃ (x, y, ε, α) + u(x, y, ε, α)

y′ = ε(x − α + g̃(x, y, ε, α)),
(12)

which we call the fast control problem and

x′ = −y + x2 + f̃ (x, y, ε, α)

y′ = ε(x − α + g̃(x, y, ε, α) + u(x, y, ε, α)),
(13)

to be referred to as the slow control problem. Recall that f̃ and g̃ stand for the higher order
terms as in Eq. 8. The objective is to stabilize a certain reference canard cycle to be denoted
by γh.

Remark 3 – The choice of the above control problems is motivated by applications, espe-
cially in neuron models, see [16, 18, 26], where the input current appears in the fast
(voltage) variable and regulates the distinct firing patterns. However, if one is interested
in the fully actuated case, a combination of the techniques presented here shall also be
useful.

– Throughout this document, we assume that one has full knowledge of the functions f̃

and g̃. This means that for the fast (resp. slow) control problem, we assume f̃ = 0
(resp. g̃ = 0). Otherwise, one considers a controller of the form u = −f̃ + v (resp.
u = −g̃ + v) where now v is to be designed.

Notice that in the case of the fast-control problem Eq. 12, the controller changes the fast
dynamics. This means that the controller can change the type of singularities the critical
manifold may present. To be more precise, consider for a moment Eq. 12 with u = −kx,
k > 0, a simple proportional feedback controller. The closed-loop system then reads as

x′ = −kx − y + x2 + f̃ (x, y, ε, α)

y′ = ε(x − α + g̃(x, y, ε, α)),
(14)

for which the origin is now normally hyperbolic. This means that the feedback controller
has changed the type of singularity (at the origin) from a fold to a regular one. It is clear that
these type of controllers are not compatible with our task. So, we shall design controllers
that do not change the type of singularity of the open-loop system. To formalize what we
mean by “not changing the type of singularity”, let us first recall the following definition:

Definition 3 (k-jet equivalence) Let F : Rn → R
n and G : Rn → R

n be smooth maps.
We say that F and G are (k-jet) equivalent at p ∈ R

n if F(p) = G(p) and F(x) −
G(x) = O(||x − p||k+1) as x → p. An equivalence class defined by the previous notion of
equivalence is called the k-jet of F at p, and shall be denoted by jkF (p) [1].

Next, we have a formal definition of what we refer to as a compatible controller:

Definition 4 (Compatible controller) Consider a control system

ζ̇ = f (ζ, λ, u), (15)

where ζ ∈ R
n is the state variable, λ ∈ R

p denotes system parameters (possibly including
0 < ε � 1), and u ∈ R

m stands for the controller. Suppose that for the open-loop system,
that is when u = 0, the origin ζ = 0 ∈ R

n is a nilpotent equilibrium point of ζ̇ = f (ζ, 0, 0)
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and that there is a k ∈ N such that k is the smallest number so that jkf (0) �= 0. Let u be a
state-feedback controller, that is u = u(ζ, λ, �), where � ∈ R

m stands for parameters of the
controller such as controller gains, and denote by ζ̇ = F(ζ, λ, �) the closed-loop system.
We say that u is a compatible controller if the open-loop vector field f (ζ, λ, 0) and the
closed-loop vector field F(ζ, λ, �) are k-jet equivalent at the origin for λ = 0.

We emphasize that once one fixes coordinates on R
n, a k-jet equivalence between two

maps means that such maps coincide on their partial derivatives up to order k.
As an example of the above definition, recall that a planar fast-slow system with a generic
fold at the origin is given by

x′ = f (x, y, ε)

y′ = εg(x, y, ε),
(16)

with the defining conditions f (0, 0, 0) = 0, ∂f
∂x

(0, 0, 0) = 0, ∂2f

∂x2 (0, 0, 0) �= 0, and the

non-degeneracy condition ∂f
∂y

(0, 0, 0) �= 0. Next, let u = u(x, y, ε) be a state-feedback
controller and suppose one considers the fast-slow control system

x′ = f (x, y, ε) + u(x, y, ε)
︸ ︷︷ ︸

=:F(x,y,ε)

y′ = εg(x, y, ε).
(17)

Then, u is a compatible controller if the closed-loop system verifies: F(0, 0, 0) = 0,
∂F
∂x

(0, 0, 0) = 0, ∂2F

∂x2 (0, 0, 0) �= 0, and ∂F
∂y

(0, 0, 0) �= 0, which implies that the controller
does not change the class of the singularity, since the origin is still a fold point of the
closed-loop system.

3.1 The Fast Control Problem

In this section, we study the control problem defined by

x′ = −y + x2 + u(x, y, ε, α)

y′ = ε(x − α + g̃(x, y, ε, α)).
(18)

Due to the fact that the slow dynamics are not actuated, we are going to stabilize canards
centered at (x, y) = (α, 0). Then, it is convenient to define x̂ = x − α, which brings Eq. 18
into

x̂ ′ = −y + (x̂ + α)2 + û(x̂, y, ε, α)

y′ = ε(x̂ + ĝ(x̂, y, ε, α)),
(19)

where û(x̂, y, ε, α) = u(x̂ + α, y, ε, α) and similarly for ĝ, we have ĝ(x̂, y, ε, α) = g(x̂ +
α, y, ε, α).

Theorem 1 Consider Eq. 19 and let Ĥ = H(x̂, y, ε) be defined by Eq. 11. Then, the
following hold:

1. The compatible controller

û = −2αx̂ − α2 + c1x̂ε1/2 exp(c2yε−1)(Ĥ − h), (20)

where c1 > 0, c2 ∈ R and h ≤ 1
4 , renders the canard orbit γ̂h =

{
(x̂, y) ∈ R

2 | Ĥ = h
}

locally asymptotically stable for ε > 0 sufficiently small.
2. Let Γ̂ ⊂ R

2 be a neigborhood of γ̂h for h ∈ (0, 1
4 ). Suppose that, additionally to

Eq. 8, ĝ is of the form ĝ = x̂φ̂(x̂, y, ε, α) for some function φ̂, and that φ̂ �= 1 for all
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(x̂, y) ∈ Γ̂ . Then, the compatible controller

û = −2αx̂ − α2 + c1x̂ε1/2(Ĥ − h) exp(c2yε−1) − (y − x̂2)φ̂, (21)

where c1 > 0, c2 ∈ R renders the canard orbit γ̂h =
{
(x̂, y) ∈ R

2 | Ĥ = h
}
locally

(within Γ̂ ) asymptotically stable.

Remark 4 – The choice of the controller gain c2 in Theorem 1 has an important impact in
numerical simulations due to the fact of it appearing as an argument of the exponential
function. The choice c2 = 2 yields the better numerical results when stabilizing canard
cycles, that is for h ∈ (0, 1

4 ). However, to stabilize the maximal canard (h = 0), it is
necessary to choose c2 < 2 to ensure that the controller remains bounded as y → ∞.
See more detail in Section 3.1.2.

– We recall that although from Theorem 1 one is able to stabilize any canard (because
h ≤ 1

4 ), canard cycles exist only for h ∈ (0, 1
4 ), see Fig. 2 and [39].

– The second item of Theorem 1 holds for any ε > 0.

The proof of Theorem 1 follows from the forthcoming analysis and is summarized in
Section 3.1.3. We show in Fig. 3 a simulation of the results contained in Theorem 1.

As already anticipated, the idea is to design the controller û in the blow-up space.
Therefore, let us consider a coordinate transformation defined by

x̂ = r̄ x̄, y = r̄2ȳ, ε = r̄2ε̄, û = r̄2μ̄, α = r̄ ᾱ, (22)

Fig. 3 In all three columns we show, in the first row the (x̂, y) phase portrait of the closed-loop system Eq. 19
and in the second row the time-series of the corresponding controller. In all these simulations, ε = 0.01.
(a) The case for which ĝ = 0 and with parameters (α, c1, c2, h) = (−0.1, 1, 2, 1

4 e−400). We remark here

that in order for the constant h = 1
4 e−400 to be numerically feasible, one has to input h exp(c2yε−1) =

1
4 exp(c2yε−1 − 400) into the numerical integration algorithm. The desired canard cycle to be followed
is shown in dashed-gray. (b) The maximal canard case with ĝ = 0 and with parameters (α, c1, c2, h) =
(0, 1, 2−e−15, 0). Notice that, indeed, trajectories follow the unstable branch Sr

ε for a large “height” and that
the corresponding controller remains bounded. (c) An example of the effect of the extra term in Eq. 21 where
we show two trajectories with the same initial conditions. The unstable one is obtained with the controller
Eq. 20 while the stable one with Eq. 21. The desired canard cycle to be followed is shown in dashed-gray.
The large spike in the controller is observed every time the trajectory crosses the y-axis long a fast fiber. For
such simulation, we have used (α, c1, c2, h) = (0, 5, 2, 1

4 e−400) and g = 100x(y − x2). For more details,
see Sections 3.1.1 and 3.1.2
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where (x̄, ȳ, ε̄, μ̄, ᾱ) ∈ S
4, with S

4 denoting the 4-sphere, that is {x̄2 + ȳ2 + ε̄2 + μ̄2 +
ᾱ2 = 1}, and r̄ ∈ [0, ∞). As is usual with the blow-up method [27], instead of working in
spherical coordinates, we consider local coordinates in local charts. In our particular context,
these local charts parametrize different hemi-spheres of S4. Analogous to the analysis of the
canard point in [39], we consider the charts K1 = {ȳ = 1} and K2 = {ε̄ = 1}. To distinguish
the local coordinates in these charts, we let (r1, x1, ε1, μ1, α1) be local coordinates in K1,
and (r2, x2, y2, μ2, α2) be local coordinates in K2. In this way, these local coordinates are
defined by:

K1 : x̂ =r1x1, y =r2
1 , ε=r2

1 ε1, û=r2
1 μ1, α=r1α1, for y ≥0,

K2 : x̂ =r2x2, y =r2
2 y2, ε=r2

2 , û=r2
2 μ2, α=r2α2, for ε≥0.

(23)

In particular, it is worth noting that in chart K1 the coordinate r1 is a rescaling of the
“original coordinate” y for y ≥ 0, while in chart K2, the coordinate r2 is a rescaling of
ε ≥ 0. Furtheremore, in a qualitative sense, in chart K1 one studies trajectories of Eq. 19 as
they approach and leave a small neighborhood of the fold point in the positive y direction,
while in chart K2 one investigates the trajectories of Eq. 19 within a sufficiently small
neighborhood of the fold point.

The coordinates in the above charts are related by the transition maps:

κ12 : K1 → K2, r2 =r1ε
1/2
1 , x2 =x1ε

−1/2
1 , y2 = ε−1

1 , μ2 =μ1ε
−1
1 , α2 = α1ε

−1/2
1 ,

(24)
for ε1 > 0 and

κ21 : K2 → K1, r1 =r2y
1/2
2 , x1 =x2y

−1/2
2 , μ1 = μ2y

−1
2 , ε1 = y−1

2 , α1 =α2y
−1/2
2 ,

(25)
for y2 > 0.

3.1.1 Analysis in the Rescaling Chart K2

The blown-up (and desingularized) local vector field in this chart reads as

x′
2 = −y2 + (x2 + α2)

2 + μ2
y′

2 = x2 + g2,
(26)

where g2 = g2(r2, x2, y2, α2) is smooth and defined by the blow-up of ĝ. More precisely,
from Eq. 8 and keeping in mind the usual desingularization step, one has that

g2 = x2O(r2x2, r
2
2 y2, r

2
2 , r2α2)+α2O(r2x2, r

2
2 y2, r

2
2 , r2α2)+ r2yh̄6(x2, y2, r2, α2), (27)

where h̄6 is smooth. Then, it is clear that g2 ∈ O(r2). Similarly, μ2 = μ2(x2, y2, r2, α2) is
the blown-up state-feedback controller to be designed. Observe that, analogously to what is
described in Remark 2, we have that for r̄ = ᾱ = μ̄ = 0 the orbits of Eq. 26 are given as
level sets of the function

H2(x2, y2) = 1

2
exp(−2y2)

(
y2 − x2

2 + 1

2

)
. (28)

Having this in mind, we are going to design μ2 in such a way that for a trajectory
(x2(t2), y2(t2)) of Eq. 26 one has limt2→∞ H2(x2(t2), y2(t2)) = h, where h defines the
desired canard cycle and t2 denotes the time-parameter of Eq. 26.
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We approach the design of μ2 as follows: we start by restricting to {r̄ = 0} and define
H̃2 = H2 − h, where h ∈ (0, 1

4 ).2 Next, we define a candidate Lyapunov function given by

L2(x2, y2) = 1

2
H̃ 2

2 , (29)

and note that L2 > 0 for all H̃2 �= 0 and that L2 = 0 if and only if H̃2 = 0, if and only if
(x2, y2) ∈ γh, where by γh we denote the reference canard cycle, that is

γh =
{
(x2, y2) ∈ R

2 | H̃2 = 0
}

. (30)

It follows that
L′

2 = −x2 exp(−2y2)H̃2

(
2ᾱx2 + ᾱ2 + μ0

2

)
, (31)

where μ0
2 = μ2(0, x2, y2, ᾱ). Naturally, we want to design μ0

2 such that L′
2 < 0, or at least

L′
2 ≤ 0. We now see that a convenient choice of μ0

2 is

μ0
2 = −2ᾱx2 − ᾱ2 + c1x2 exp(c2y2)H̃2, (32)

where c1 > 0 and c2 ∈ R are the controller gains. Using Eq. 32 we have

L′
2 = −c1x

2
2 exp((c2 − 2)y2)H̃

2
2 ≤ 0. (33)

Note that, because the exponential function is positive, the previous inequality holds for
every value of c2 ∈ R; however, a particular choice of c2 may drastically change the per-
formance of the controller, hence its inclusion in Eq. 32. This can be readily seen if we
substitute H̃2 in Eq. 32:

μ0
2 = −2ᾱx2 − α2

2 + 1

2
c1x2 exp((c2 − 2)y2)

(
y2 − x2

2 + 1

2

)
− c1x2 exp(c2y2)h. (34)

Let D ⊂ R
3 be a bounded domain. We see that μ0

2 is bounded for all (ᾱ, x2, y2) ∈ D.
However, since c2 appears inside the exponential, the upper bound of |μ0

2| can vary widely
depending on the choice of c2. The relevance of c2 shall be detailed in Section 3.1.2.

By Lasalle’s invariance principle [44] we have that, under the controller Eq. 32 and
r2 = 0, the trajectories of Eq. 26 eventually reach the largest invariant set contained in

I =
{
(x2, y2) ∈ R

2 | L′
2 = 0

}
= {x2 = 0} ∪ {

H̃2 = 0
}

(35)

Note, however, that {x2 = 0} is generically not invariant for the closed-loop dynamics
Eq. 26. Indeed, the closed-loop system Eq. 26 (restricted to r2 = 0) reads as

x′
2 = −y2 + x2

2 + c1x2 exp(c2y2)H̃2

y′
2 = x2, (36)

where setting x2 = 0 leads to (x′
2, y

′
2) = (−y2, 0). Therefore, we now have that all tra-

jectories of Eq. 26 eventually reach I2 = {(x2, y2) = (0, 0)} ∪ {
H̃2 = 0

}
. Since the origin

is an equilibrium point of Eq. 36,3 we have that every trajectory with initial conditions
(x2(0), y2(0)) ∈ R

2\ {(0, 0)} eventually reaches the set
{
H̃2 = 0

}
as t2 → ∞. With the

previous analysis we have shown the following:

2In principle, our analysis holds for h ≤ 1
4 , but only the considered interval provides canard cycles, which

are our main focus. See also Section 3.1.2.
3In fact it is straightforward to further show that the origin is an unstable equilibrium point of Eq. 36.
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Proposition 1 Consider Eq. 26. Then, for r2 ≥ 0 sufficiently small a controller of the form

μ2 = −2α2x2 − α2
2 + c1x2 exp(c2y2) (H2 − h) + O(r2), (37)

where c1 > 0 and c2 ∈ R and with H2 is as in Eq. 28, renders the orbit γh locally
asymptotically stable.

Proof As described above, the stability of γh for Eq. 37 is equivalent to the stability of the
zero solution of

H̃ ′
2 = −x2 exp(−2y2)(2α2x2 + α2

2 + μ0
2) + O(r2). (38)

Substituting Eqs. 32 in 38 we get

H̃ ′
2 = −c1x

2
2 exp((c2 − y2))H̃2 + O(r2). (39)

We have shown that for r2 = 0, the origin is locally asymptotically stable for Eq. 39. An
apparent issue in Eq. 39 is the term x2

2 . However, we have also shown that {x2 = 0} is not
invariant. Therefore, Eq. 39 is a particular case of the non-autonomous scalar equation

H̃ ′
2 = −a(t2)H̃2 + O(r2), (40)

where a(t2) ≥ 0 for all t2 and a(t2) > 0 for almost all t2 (here t2 is the time parameter in the

chart K2). The solution of the unperturbed Eq. 40 is H2(t2) = k exp
(
− ∫ t2

t0
a(s2)ds2

)
, for

some k ∈ R. So, due to the properties of a(t2), the trivial solution of Eq. 40, with r2 = 0,
is asymptotically stable, which is preserved under sufficiently small perturbations O(r2)

[11].

We show in Fig. 4 a simulation of the result postulated in Proposition 1.
Let us emphasize at this point that designing the controller in the rescaling chart jus-

tifies using H2 to define a convenient Lyapunov function, even if there are higher order

Fig. 4 Simulation of Eq. 26 with the controller Eq. 32. The parameters for the simulation are (r2, α2, c1,

c2, h) = (0, 1, 1, 2, 1 × 10−16). The desired periodic orbit is depicted as the dashed curve
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terms in the original vector field Eq. 19. We also point out that the maximal canard becomes
unbounded in this chart. Such a case shall be studied in chart K1 (see Section 3.1.2 below).
Next we digress on how to deal with a certain class of higher order terms even if r2
(equivalently ε) is not small.

Lemma 1 Consider Eq. 26 with r2 > 0 fixed and let Γ2 ⊂ R
2 be a neighbourhood of γh.

Assume that the function g2 satisfies

1. g2 = x2φ2(r2, x2, y2, α2), where φ2 is smooth and vanishes at the origin.
2. The function φ2 satisfies 1 + φ2(r2, 0, y2, α2) �= 0 for all (0, y2) ∈ Γ2.
3. The function φ2 satisfies 1 + φ2(r2, x2, y2, α2) �= 0 for all (x2, y2) ∈ γh.

Then, a controller of the form

μ2 = −2α2x2 − α2
2 + c1x2 exp(c2y2) (H2 − h) − (y2 − x2

2 )φ2, (41)

where c1 > 0 and c2 ∈ R, renders γh locally asymptotically stable in Γ2.

Proof First, we recall that g2 ∈ O(r2), see Eq. 27. Therefore, under the assumptions of
the Lemma we can write g2 = x2φ2 = r2x2ψ2 for some function ψ2. Next, and similar to
the analysis performed above, we consider Eq. 26 but now with an extra O(r2)-term in the
controller, namely

x′
2 = −y2 + (x2 + α2)

2 + μ0
2 + r2v2

y′
2 = x2 + g2,

(42)

where μ0
2 is as in Eq. 32 and now v2 = v2(r2, x2, y2, α2) is to be designed. Consider, as

before, the candidate Lyapunov function Eq. 29. After substituting μ0
2 and g2 = r2x2ψ2, we

get

L′
2 = −c1x

2
2H̃ 2

2 exp((c2 − 2)y2) − r2x2H̃2 exp(−2y2)(v2 + (y2 − x2
2 )ψ2). (43)

The above expression suggests to set v2 = −(y − x2
2 )ψ2. By doing so one gets Eq. 31 again

and therefore, invoking again Lasalle’s invariance principle, we now take a look at the set
I = {x2 = 0} ∪ {

H̃2 = 0
}

related to the closed-loop system. To be more precise we now
focus on

x′
2 = −y2 + x2

2 + c1x2 exp(c2y2)H̃2 − (y2 − x2
2 )φ2

y′
2 = x2 + x2φ2,

(44)

where we have used r2ψ2 = φ2, and consider its dynamics restricted to I . On {x2 = 0}
one has (x′

2, y
′
2) = (−y2

(
1 + φ2|{x2=0}

)
, 0

)
. Therefore, to avoid {x2 = 0} being invariant

we impose the condition 1 + φ2(r2, 0, y2, α2) �= 0. Note that the aforementioned condition
would already suffice to show that trajectories converge towards

{
H̃2 = 0

}
; however, there

may still be a stable equilibrium point contained in
{
H̃2 = 0

}
. The restriction of Eq. 44 to{

H̃2 = 0
}

reads as

x′
2 = (−y2 + x2

2 )(1 + φ2)

y′
2 = x2(1 + φ2), (x2, y2) ∈ γh.

(45)

Now it suffices to give conditions on φ2|{(x2,y2)∈γh} such that Eq. 45 does not have equilib-
rium points (keep in mind that (0, 0) /∈ γh for h ∈ (0, 1/4)). Such a condition is simply
1 + φ2(r2, x2, y2, α2) �= 0 for all (x2, y2) ∈ γh, completing the proof.
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Remark 5 – If the third assumption of Lemma 1 does not hold, then trajectories converge
to an equilibrium point contained in the set

{
H̃2 = 0

}
.

– A simpler to check and sufficient condition on φ2 satisfying the hypothesis of Lemma
1 is φ2(r2, x2, y2, α2) �= 1 for all (x2, y2) ∈ Γ2. Also, if g = xφ(x, y, ε, α) and g2 =
x2φ2 is its blown-up version, then φ2(r2, x2, y2, α2) = φ(r2x2, r2

2y2, r2
2, r2α2) =

φ(x, y, ε, α). Therefore, φ2 �= 1 implies φ �= 1. These two arguments are the ones we
use for Theorem 1.

We show in Fig. 5 a simulation regarding Lemma 1.

3.1.2 Analysis in the Directional Chart K1

We are now going to look at the controlled dynamics in the chart K1. This serves two
purposes: the first is of giving a more precise meaning to the constant c2 in the controller
Eq. 37; the second is to corroborate that the controller designed previously is indeed able to
also stabilize the (unbounded) maximal canard. Using the definition on K1 as in Eq. 23, we
have that the dynamics in this chart read as

r ′
1 = 1

2 r1ε1x1 + O(r1ε1)

x′
1 = −1 + (x1 + α1)

2 − 1
2ε1x

2
1 + μ1 + O(r1ε1)

ε′
1 = −ε2

1x1 + O(r1ε1)

α′
1 = − 1

2ε1x1 + O(r1ε1),

(46)

where, in particular, μ1 denotes the controller written in the local coordinates of this chart.
Since we have already designed a controller in the chart K2, see Eq. 37, we can use the
transformation Eq. 25 to express μ1 as

μ1 = κ21(μ2) = −2α1x1 − α2
1 + c1ε

1/2
1 x1 exp(c2ε

−1
1 )H̃1 + O(r1ε

3/2
1 ), (47)

where, analogous to what we have done in chart K2, we define H̃1 = H1 − h with

H1 = κ21(H2) = 1

2
exp

(
−2ε−1

1

)(
ε−1

1 − ε−1
1 x2

1 + 1

2

)
. (48)

Fig. 5 An example of a phase portrait corresponding to Eq. 26 with the particular choice: r2 = 1, α2 = 1,
φ2 = y2 − x2

2 and (c1, c2) = (10, 2). Due to the way the local coordinates in this chart are defined, choosing
r2 = 1, essentially amounts to considering ε = 1 in Eq. 19. On the left, we show the orbits corresponding
to v2 = 0, and on the right, those for v2 given as in Lemma 1. Observe on the left that trajectories do not
follow the desired canard while on the right they do. This means that the extra term v2 is suitable to render
the canard asymptotically stable when the perturbations of order O(r2) in Eq. 26 are not small
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Remark 6 – μ1 is bounded along any reference canard γh = {
H̃1 = 0

}
with h ∈ (0, 1

4 ).
– If h �= 0, then μ1 becomes unbounded as ε1 → 0 unless H̃1 = 0 (previous observation).

This is to be expected as, in the limit ε1 → 0 the only canard orbit to stabilize is the
maximal canard since limε1→0 H1 = 0. Therefore, we are going to study the closed-
loop dynamics Eq. 46 for the particular choice of h = 0 and for the limit ε1 → 0.
Our goal is to refine the constant c2 so that μ1 remains bounded whenever h = 0 and
ε1 → 0. Moreover, recalling that for this chart we have ε1 = y

ε
, the limit ε1 → 0

corresponds to the limit y → ∞ for fixed ε > 0.

So from now on, we let h = 0, that is H̃1 = H1 = 1
2 exp

(
−2ε−1

1

) (
ε−1

1 − ε−1
1 x2

1 + 1
2

)
.

We also restrict to {r1 = 0}. In such a case we have

μ1 = −2α1x1 − α2
1 + 1

2
c1ε

1/2
1 x1 exp

(
(c2 − 2)ε−1

1

) (
ε−1

1 − ε−1
1 x2

1 + 1

2

)
, (49)

and the closed loop system reads as

x′
1 = −1 + x2

1 − 1
2ε1x

2
1 + 1

2c1ε
1/2
1 x1 exp(c2ε

−1
1 )H1

ε′
1 = −ε2

1x1

α′
1 = − 1

2ε1x1.
(50)

It shall also be relevant to consider H ′
1, namely

H
array

1 = − 1
2c1ε

−1/2
1 x2

1 exp
(
(c2 − 2)ε−1

1

)
H1

= − 1
2c1ε

−1/2
1 x2

1 exp
(
(c2 − 4)ε−1

1

) (
ε−1

1 − ε−1
1 x2

1 + 1
2

)
.

(51)

First of all, we note that limε1→0 H1 = 0, and limε1→0 H ′
1 = 0 for c2 < 4. Next, we focus

on Eq. 49 where we observe that in order for the controller to be bounded as ε1 → 0the
constant c2 should be less than 2. To be more precise:

Lemma 2 Let (α1, x1) be bounded and c1 > 0. Then, limε1→0 |μ1| < ∞ if and only if
c2 < 2.

Proof Straightforward computations.

From Lemma 2 we have that, to follow the maximal canard (h = 0) one must choose
c2 < 2 to ensure that the controller is bounded. Although analytically any choice of
c2 < 2 suffices, a particular choice may influence drastically numerical simulations since
c2 appears in the exponential. For instance, we see from the first line of Eq. 51 that c2 < 2
but arbitrarily close to 2 reduces the contribution of the exponential term, which may induce
issues in numerical simulations. For all other canards, c2 ∈ R is sufficient. However, again
from the computational perspective, c2 = 2 is the appropriate choice as it eliminates the
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exponential term in Eq. 49 and in Eq. 51, which is rather convenient for simulations. We
remark that a completely analogous analysis, which we omit for brevity, follows for the
chart K3 = {x̄ = 1} where canards corresponding to h < 0 can be considered. The argu-
ments and the conclusion are the same, namely, for h < 0 one should set c2 < 2 so that the
controller remains bounded along the unbounded canards.

3.1.3 Proof of Theorem 1

To prove Theorem 1, we first blow-down the controller μ1. To keep it simple, we shall
blow-down Eq. 37, but of course the same holds for Eq. 41. So, recall from Eq. 37 that the
blown-up controller is

μ2 = −2α2x2 − α2
2 + c1x2 exp(c2y2) (H2 − h) . (52)

Next, from Eq. 23, we have

û = εμ2 = −2αx̂ − α2 + c1x̂ε1/2 exp
(
c2yε−1

)
(Ĥ − h), (53)

where Ĥ = Ĥ (x̂, y, ε) = 1
2 exp

(
− 2y

ε

) (
y
ε

− x̂2

ε
+ 1

2

)
as stated in the first item of Theorem

1. Under Eq. 53, the closed-loop system corresponding to Eq. 19 reads as

x̂′ = −y + x̂2 + c1x̂ε1/2 exp
(
c2yε−1

)
(Ĥ − h)

y′ = ε(x̂ + g̃).
(54)

Next, it is important to observe that limε→0 Ĥ = 0. This means that for ε = 0 the only
reference canard that is reachable is the maximal canard.4 The maximal canard corresponds
to h = 0. So, setting h = 0, and since one chooses c2 < 2 (recall Section 3.1.2), it follows
that limε→0 c1x̂ε1/2 exp

(
c2yε−1

)
Ĥ = 0, meaning that the layer equation for Eq. 54 is

x̂′ = −y + x̂2

y′ = 0,
(55)

which indeed has the same type of singularity at the origin as the open-loop system, a fold.
This shows that Eq. 53 is a compatible controller in the sense of Definition 4.

3.2 The Slow Control Problem

In this section, we consider the slow-control problem

x′ = −y + x2 + f (x, y, ε, α)

y′ = ε(x − α + u(x, y, ε, α)),
(56)

where the objective is, as in Section 3.1, to stabilize a prescribed canard γh. Due to space
constraints, and because the analysis is similar to the one performed in Section 3.1, we only
state the relevant result.

4As it is expected, the controller becomes unbounded in the limit ε → 0 for any other canard, as they do not
exist in such a limit.
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Theorem 2 Consider Eq. 56 and let Ĥ = H(x, y, ε) be defined by Eq. 11. Then, the
compatible controller

u = α + c1(y − x2)ε−1/2 exp(c2yε−1)(H − h), (57)

where c1 > 0, c2 ∈ R and h ≤ 1
4 renders the canard orbit γh = {

(x, y) ∈ R
2 | H = h

}

locally asymptotically stable for ε > 0 sufficiently small. A convenient choice of controller
gain c2 for the maximal canard is c2 < 2. By convenient we mean that such a choice ensures
that the controller remains bounded as y → ∞.

In Fig. 6, we illustrate the statement of Theorem 2.

4 Controlling Canard Cycles for the Van Der Pol Oscillator

In this section, we are going to extend the ideas developed previously to control canard
cycles in the van der Pol oscillator. The main idea is to adapt and extend the controller
proposed in Theorem 1, and to use it to control canard cycles of the van der Pol oscillator.
In this context, we distinguish two types of canard cycles: (a) canards with head and (b)
canards without head. Canards with head refer to canard cycles with two fast segments,
while canards without head have only one fast segment, see Fig. 8. Furthermore, due to its
relationship with some neuron models, like the Fitzhugh-Nagumo model [21, 48], we shall
consider that the controller acts on the fast variable only. The idea is that the controller
represents input current. Thus, let us study

x′ = −y + x2 − 1
3x3 + u

y′ = εx.
(58)

Fig. 6 The first column corresponds to the control of a bounded canard cycle (shown in dashed-gray), while
the second column to the control of the maximal canard. The first row shows the phase-portrait in (x, y)-
coordinates. The second row shows the time series of the corresponding controller. We show on the lower-
right diagram a detail of the controller’s signal for time close to 0
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Remark 7 For simplicity, we have chosen to present the case α = 0. However, the case α �=
0 follows straightforwardly from considering the arguments at the beginning of Section 3.1.

The corresponding critical manifold reads as,

S0 =
{
(x, y) ∈ R

2 : y = x2 − 1

3
x3

}
. (59)

The repelling and attracting parts of S0 are denoted respectively by S r
0 and Sa

0, and are given
by

S r
0 = {(x, y) ∈ S0 : 0 < x < 2}

Sa
0 = {(x, y) ∈ S0 : x < 0} ∪ {(x, y) ∈ S0 : x > 2} .

(60)

Furthermore, system Eq. 58 has two fold points, one at the origin and one at (x, y) =
(2, 4

3 ). In fact, the origin is a canard point and the singular limit of Eq. 58 is as shown in
Fig. 7.

To state our main result, let N1 ⊂ R
2 be a region containing a subset of the repelling

critical manifold S r
0 and N2 ⊂ R

2 a small region containing a subset of S0 around the
origin. Although it is not necessary to be precise on such regions, since several choices are
possible, an example of N1 and N2 is as follows

N1 =
{
(x, y) ∈ R

2 : | − y + x2 − 1
3x3| < β1, 0 < x < 2, ymin < y < yh

}

N2 = {
(x, y) ∈ R

2 : | − y + x2| < β2, −xmin < x < xmax
}
,

(61)

where the defining positive constants are such thatN1 andN2 have a non-empty intersection
in the first quadrant, and 0 < ymin ∈ O(ε) and ymin < yh < 4

3 . The precise meaning of
these bounds is given in Sections 4.1 and 4.2, and is already sketched in Fig. 7.

Proposition 2 Consider Eq. 58, let ψi be a bump function with support Ni , and let the
repelling slow manifold S r

ε be given by the graph of x = φ(y, ε). Then, one can chooseNi ,
positive constants c1 and k1, and a small constant x∗, |x∗| � 1, such that the controller

u = 1

2
u1ψ1 + 1

2
u2ψ2, (62)

where

u1 = −F0 − Fx∗ + v1

u2 = c1xε−1/2
(
y − x2 + ε

2

)
,

(63)

and with

Fx∗(x, y, ε) = −y + (x − x∗√y)2 − (x−x∗√y)2ε

2y
− 1

3 (x − x∗√y)3

v1(y, ε) = 2φ+x∗√y

φ

(
−y + φ2 − ε

2y
φ2 − 1

3φ3
)

−
(

ε
y
φ + √

yφ2 + k1
√

y
)

(x − φ − x∗√y),

(64)
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stabilizes a canard cycle with height yh. Moreover, if x∗ < 0 then the canard is without
head, while if x∗ > 0 then the canard is with head.

Sketch of proof: As before, all the analysis is carried-out in the blow-up space. The overall
idea is as follows: the controller to be designed acts only within a small neighbourhood of
{0}∪S r

ε , mainly because the rest of the slow manifold is already stable, so there is no need of
stabilizing it. The desired height of the canard is regulated by the constant yh. The controller
u2 controls the trajectories near the canard point and therefore is given by Theorem 1, where
we have made the choice h = 0 and c2 = 2. So, the new analysis is performed in the chart
K1 = {ȳ = 1}, where the objective is to stabilize the (normally hyperbolic) repelling branch
of the slow manifold S r

ε resulting in the controller u1. Later, in Section 4.2, we combine
the two controllers and justify the form of the controller given in the Proposition. The most
important feature of u1 is to control the location of the orbits relative to S r

ε as it is precisely
such location that determines the direction of the jump once the orbits reach the desired
height. To avoid smoothness issues, the regions where the controllers are active are defined
via bump functions. A schematic representation of this idea is provided in Fig. 7, while the
details of the proof follows from Sections 4.1 and 4.2.

In Fig. 8, we show some simulations using the proposed controller.
Before proceeding with the proof of Proposition 2, let us point out that it is straightfor-

ward to use the proposed controller to produce robust mixed-mode oscillations (MMOs)
[12]. One way to do this is as follows: first of all, we assume that we are able to count the
number of small amplitude oscillations (SAOs) and of large amplitude oscillations (LAOs).
Next, let us say that we start by following a canard without head, so we set the controller
constant x∗ < 0 and yh to the desired height. After the number of desired SAOs has been
reached, we change the controller constant x∗ to x∗ > 0 and, if desired, yh to a new height
value. So, the controller will now steer the system to follow a canard with head. This pro-
cess can be repeated to produce any other pattern allowed by the geometry of the van der
Pol oscillator. We show in Fig. 9 an example of stable MMOs that are obtained using the
controller of Proposition 2.

Fig. 7 Strategy for the control design: first, within a small neighborhood of the canard point (red-shaded
region), we use the controller designed in Section 3. Afterwards, a second controller is designed in chart
K1 and whose task is to stabilize the (normally hyperbolic) repelling branch Sr

ε . This second controller is
active on a neighborhood of Sr

0 (green-shaded region). Furthermore, it is via such controller that we steer the
orbits towards either side of Sr

ε . This induces that the trajectories jump towards the desired direction once the
second controller is inactive. The two orbits illustrate the aforementioned strategy
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Fig. 8 Numerical simulations illustrating the controller of Proposition 2. In all these simulations, we have
used ε = 0.01 and (c1, k1) = (1, 1)

4.1 Analysis in the Directional Chart K1

Similar to the analysis in Section 3.1.2, we use a directional blow-up defined by

x = r1x1, y = r2
1 , ε = r2

1 ε1, u = r2
1 μ1, α = r1α1. (65)

Therefore, the local vector field associated to Eq. 58 reads as

r ′
1 = 1

2 r1ε1x1

ε′
1 = −ε2

1x1

x′
1 = −1 + x2

1 − 1
2x2

1ε1 − 1
3 r1x

3
1 + μ1.

(66)

To have a better idea of what we are going to achieve with the controller, it is worth to
first look at the uncontrolled dynamics.

Fig. 9 A sample of a mixed-mode oscillation (MMO) with 3 large amplitude oscillations (LAOs) and 4 small
amplitude oscillations (SAOs) obtained using the controller of Proposition 2
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Let us define a domain

D1 =
{
(r1, ε1, x1) ∈ R

3 | 0 ≤ r1 ≤ ρ1, 0 ≤ ε1 ≤ δ1, x1 ∈ R

}
. (67)

Lemma 3 Consider Eq. 66 with μ1 = 0. Then, one can choose constants ρ1 > 0 and
δ1 > 0 such that the following properties hold within the domain D1.

1. There exist semi-hyperbolic equilibrium points p1,± = (r1, ε1, x1) = (0, 0, ±1). The
point p1,− is attracting while p1,+ is repelling along the x1-axis.

2. LetM1 be defined by

M1 =
{

(r1, ε1, x1) ∈ R
3 | ε1 = 0, r1 = 3

(
1

x1
− 1

x3
1

)}

. (68)

The setM1 corresponds to the set of equilibrium points of Eq. 66 restricted to {ε1 = 0}.
Moreover, let us denote the subsets

M1,− = {(r1, ε1, x1) ∈ M1 | x1 < 0} ,

M1,+ = {(r1, ε1, x1) ∈ M1 | x1 ≥ 1} .
(69)

The subset M1,− is attracting and the subset M1,+ can be partitioned as M1,+ =
Mr

1,+ ∪
{(

3−√
3√

3
, 0,

√
3
)}

∪ Ma
1,+ where

Mr
1,+ =

{
(r1, ε1, x1) ∈ M1,+ | 1 ≤ x1 <

√
3
}

,

Ma
1,+ =

{
(r1, ε1, x1) ∈ M1,+ | x1 >

√
3
} (70)

are the repelling and attracting branches ofM1,+, respectively.
3. Restricted to {r1 = 0} there exist 1-dimensional local center manifolds E1,− and E1,+

located, respectively, at the points p1,− and p1,+. Such manifolds are given by

E1,± =
{
(r1, ε1, x1) ∈ R

3 | r1 = 0, x1 = h1,±(ε1)
}

, (71)

where

h1,±(ε1) = ±
(

1 + ε1

2

)1/2
. (72)

The flow along E1,− is directed away from the point p1,− and the flow along E1,+ is
directed towards the point p1,+. Furthermore, the center manifolds E1,± are unique.

4. There exist 2-dimensional local centre manifolds W1,± that contain, respectively, the
point p1,±, the branch of equilibrium pointsM1,±, and the centre manifold E1,±. These
centre manifolds are unique and, moreover,W1,− is attracting andW1,+ is repelling.

Sketch of the proof, see [40] for details The first two items are obtained by straightfor-
ward computations. The expression of the centre manifolds follow from the fact that
the restriction of Eq. 4.1 to {r1 = 0} has the invariant (just as in the fold case) H1 =
1
2 exp

(
−2ε−1

1

) (
ε−1

1 − ε−1
1 x2

1 + 1
2

)
. Therefore, the functions h1,± are given by the solu-

tions of H1 = 0. The flow on E1,± follows from the equation ε′
1 = −ε2

1x1. The uniqueness
of E1,± is due to the fact that p1,± is a semi-hyperbolic saddle of the dynamics of Eq. 66
restricted to {r1 = 0}. Finally, the existence and properties of W1,± follow from local anal-

ysis at p1,±, centre manifold theory, the previous arguments, and by choosing ρ1 < 3−√
3√

3
.

The previous choice of ρ1 is particularly necessary for the stability property of W1,+.

536 Hildeberto  Jardón-Kojakhmetov  and  Christian  Kuehn



Remark 8 W1,+ is related, via the blow-up map, to S r
ε . Therefore, the task of the controller

is going to be to stabilize the centre manifold W1,+.

Remark 9 In what follows, we are going to define some geometric objects, in particular
centre manifolds, for the closed-loop dynamics. To make a clear distinction between their
open-loop counterparts, and to be able to compare them, we shall denote relevant geometric
objects of the closed-loop system by a cl superscript.

In this section, we are going to be interested only in (x1, ε1) ∈ R
2+. So, to simplify

notation let

hcl
1 (ε1) = h1,+(ε1) =

(
1 + ε1

2

)1/2
. (73)

Furthermore, let us assume that the centre manifold W1,+ (recall Lemma 3) is given by
the graph of

x1 = φ1(r1, ε1). (74)

Note that φ1(0, ε1) = hcl
1 (ε1). Therefore, one can in fact write

φ1(r1, ε1) = hcl
1 (ε1) +

∑

i≥1
j≥0

σij r
i
1ε

j

1 , (75)

for some coefficients σij ∈ R. We now proceed with the following steps.

1. Reverse the direction of the flow in the x1-direction: Define f1(r1, ε1, x1) = −1+x2
1 −

1
2x2

1ε1 − 1
3 r1x

3
1 and let μ1 = −f1(r1, ε1, x1)−f1(r1, ε1, x1 −x1

∗)+v2, where x1
∗ ∼ 0

is a constant (the usefulness of x1
∗ will become evident below) and v2 = v2(r1, ε1, x1)

is to be further designed. With this step we have that Eq. 66 now reads as

r ′
1 = 1

2 r1ε1x1

ε′
1 = −ε2

1x1
x′

1 = −f1(r1, ε1, x1 − x∗
1 ) + v2.

(76)

2. Design v2 so that Eq. 76 has Wcl
1 := {

(r1, ε1, r1) ∈ R
3 | x1 = x∗

1 + φ1(r1, ε1)
}
as a

closed-loop centre manifold: this step requires standard centre manifold computations.
By performing them we find that

v2 = 2φ1 + x∗
1

φ1

(
−1 + φ2

1 − 1

2
φ2

1ε1 − 1

3
r1φ

3
1

)
. (77)

Note that, if we restrict to {r1 = 0}, Eq. 76 now reads as

ε′
1 = −ε2

1x1

x′
1 = 1 − (x1 − x∗

1 )2 + 1
2 (x1 − x∗

1 )2ε1 + ε2
1

2hcl
1 +x∗

1
4hcl

1
.

(78)

We know that Eq. 78 has a centre manifold Ecl
1 :=

{
(ε1, x1) ∈ R

2≥0 | x1 =
x∗

1 + hcl
1 (ε1)

}
. Furthermore, it follows from straightforward computations that the

equilibrium point p∗
1 := (0, 0, 1 + x∗

1 ) is attracting along the x1-axis. This means that
Ecl

1 , and also Wcl
1 , are locally (near p∗

1) attracting. Next we improve such stability.
3. Design a variational controller that rendersWcl

1 locally exponentially stable: For this,
it is enough to take the x1-component of the variational equation. So, let z1 = x1 −
φ1 − x1

∗. The corresponding variational equation along Wcl
1 is

z′
1 = (−2 + ε1 + r1φ1)φ1z1. (79)
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Recall from Eq. 75 that φ1 > 0 for r1 ≥ 0 sufficiently small. Then, we propose to
introduce in Eq. 79 a variational controller w1(ε1, z1) of the form

w1 = −(ε1φ1 + r1φ
2
1 + k1)z1, (80)

where k1 ≥ 0. With w1 as above, the closed-loop variational equation becomes

z′
1 = − (2φ1 + k1) z1, (81)

and we readily see that, for r1 ≥ 0 sufficiently small, z1 → 0 exponentially as t1 →
∞ (where by t1 we denote the time-parameter in this chart). We also notice that the
constant k1 helps to improve the contraction rate towards Wcl

1 . Moreover, since w1

vanishes along Wcl
1 , the variational controller does not change the closed-loop centre

manifold Wcl
1 . Finally, observe that the role of the small constant x∗

1 is to shift the
position of Wcl

1 relative to its open-loop counterpart W1,+. This is important in order
to tune the direction along which the trajectory jumps once the controller is inactive.

4. Restrict next to {ε1 = 0}: Note that v2(r1, 0, x1) = 0, then we have

r ′
1 = 0

ε′
1 = 0

x′
1 = −f1(r1, 0, x1 − x∗

1 ).
(82)

Similar to the previous step, the new line of equilibrium points is slightly shifted
according to x∗

1 . In fact, the relevant set of stable equilibrium points of Eq. 82 is given
as

Mcl
1 = 3

{
(r1, ε1, x1) ∈ R

3 | ε1 = 0, r1 = 3

(
1

x1 − x∗
1

− 1

(x1 − x∗
1 )3

)
, r1 <

2√
3

}
.

(83)
Linearization of Eq. 82 along Mcl

1 shows that Mcl
1 is exponentially attracting in the

x1-direction. Therefore, we can conclude that Wcl
1 is located at x1 = 1 + x∗

1 , and that it
contains the exponentially attracting centre manifold Ecl

1 and the curve of exponentially
attracting equilibrium points Mcl

1 .
5. Note that the flow along the centre manifold Wcl

1 has not changed and is given, up to
smooth equivalence and away from its corner at x1 = 1 + x∗

1 , by

r ′
1 = 1

2 r1
ε′

1 = −ε1.
(84)

In other words, the flow along Wcl
1 is of saddle type.

With the previous steps, we can now prove the main result of this section. For this, let us
define the domain D+

1 = D1|x1≥0 and the sections

Σen
1 = {

(r1, ε1, x1) ∈ D+
1 | ε1 = δ1

}
,

Σex
1 =

{
(r1, ε1, x1) ∈ D+

1 | r1 = ρ1, 0 < ρ1 < 2√
3

}
.

(85)

Also, define a small rectangle

R1 =
{
(r1, ε1, x1) ∈ Σen

1 | |x1 − hcl
1 − x∗

1 | ≤ σ1, r1 ≤ ρ̃1 < ρ1

}
, (86)

Proposition 3 Consider Eq. 66 with the controller

μ1 = −f1(r1, ε1, x1) − f1(r1, ε1, x1 − x∗
1 ) + v2(ε1, x1), (87)
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Fig. 10 On the left, we show the qualitative behavior of the open-loop (that is with μ1 = 0) system Eq. 66,
while on the right, we show the closed-loop system obtained with the controller of Proposition 3. In both
cases, the 2-dimensional surface illustrates the centre manifolds W1,+ on the left and Wcl

1 . The relative
position of Wcl

1 with respect to W1,+ is determined by x∗
1 . In the sketch on the right we show that Wcl

1 is to
the left of W1,+, which is indicated by the dashed curves

where

f1(r1, ε1, x1) = −1 + x2
1 − 1

2x2
1ε1 − 1

3 r1x
3
1 ,

v2(ε1, x1) = 2φ1+x∗
1

φ1

(
−1 + φ2

1 − 1
2φ2

1ε1 − 1
3 r1φ

3
1

)

− (ε1φ1 + r1φ
2
1 + k1)(x1 − x1

∗ − φ1),

(88)

and the function φ1(r1, ε1) is defined by the open-loop centre manifold W1,+. Then, one
can choose sufficiently small constants (δ1, ρ1, σ1, ρ̃1) such that the following hold for the
closed-loop system.

1. D+
1 is forward invariant under the flow of Eq. 66.

2. The centre manifoldWcl
1 is locally exponentially attracting for r1 ≥ 0 sufficiently small,

ε1 ≥ 0 sufficiently small and for r2
1 ε1 ≥ 0 sufficiently small.

3. If x∗
1 = 0, the centre manifolds Wcl

1 and W1,+ coincide. On the other hand, if x∗
1 < 0

(resp. if x∗
1 > 0) then Wcl

1 is located “to the left” (resp. “to the right”) of W1,+ in the
x1-direction.

4. The image of R1 under the flow of Eq. 66 is a wedge-like region at �ex
1 ∩ Mcl

1 .

Proof The proof follows directly from our previous analysis. In particular, the second
item is implied by the stability properties of Wcl

1 |{r1=0}, Wcl
1 |{ε1=0}, and the fact that

r2
1 ε1 = ε.

The closed-loop dynamics corresponding to Eq. 66 under the controller Eq. 87 are as
sketched in Fig. 10.

To finalize this section, we blow-down the controller of Proposition 3, as it will be used
in the forthcoming section.

Lemma 4 Let u1 denote the blow-down of μ1. Then,

u1 = −F0 − Fx∗
1

+ v1, (89)
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where

Fx∗
1
(x, y, ε) = −y + (x − x∗

1
√

y)2 − (x−x∗
1
√

y)2ε

2y
− 1

3 (x − x∗
1
√

y)3

v1(y, ε) = 2φ+x∗
1
√

y

φ

(
−y + φ2 − ε

2y
φ2 − 1

3φ3
)

−
(

ε
y
φ + √

yφ2 + k1
√

y
)

(x − φ − x∗
1
√

y),

(90)

and where φ = φ(y, ε) is defined by S r
ε , that is by S r

ε = {x = φ(y, ε)}.

Proof The expression of u1 follows from straightforward computations using Eqs. 65 in 87.
To check φ is as stated, note that the blow-down induces the relation {x1 = φ1} ↔{
x = √

yΦ(φ1) = φ
}
, where by Φ(φ1) we are denoting the blow-down of φ1.

4.2 Composite Controller and Proof of Proposition 2

In this section, we gather the controllers designed in the central chart K2 and in the direc-
tional chart K1 into a single one. Our arguments follow from the next general design
methodology.

1. Let us start with an open-loop vector field X : RN → R
N such that X(0) = 0 (here pos-

sible parameters λ ∈ R
p are already included in the vector field by the trivial equation

λ̇ = 0).
2. Let B = S

N−1 × I where S is the unit sphere and I ⊆ R is an interval that contains
the origin. Here, we shall be interested in I = [0, r0], r0 > 0. Recall that the blow-up
map is defined as Φ : B → R

N . Moreover, the blow-up transformation induces the
so-called “blown-up” vector field X̄, which is the vector field that makes the following
diagram commute.

In other words, X̄ and X are related by the push-forward of X̄ by Φ, that is Φ∗(X̄) =
X, in the sense DΦ ◦ X̄ = X ◦ Φ.5

3. Let A = {(Ki, Φi)}, with i = 1, . . . , M , be a smooth atlas of B. This means that
(Ki, Φi) is a chart of B, the open sets Ki cover B, and Φi : Ki ⊂ B → R

N is
a diffeomorphism. Then, there are local vector fields X̄i defined on Ki and given by
X̄i = DΦ−1

i ◦ X ◦ Φi .
4. On each chart Ki , let us introduce a local controller ūi , and define as X̄cl

i
:= X̄i + ūi

the local closed-loop vector field. Naturally, ūi is a local vector field on Ki .

5Recall that X̄ is well defined: for r > 0 because of Φ|{r>0} being a diffeomorphism, and on r = 0 due
to continuous extension to the origin, see [41]. Moreover, if the origin is nilpotent, one defines the desingu-
larized vector field X̃ = 1

rk X̄ for some k > 0, which is smoothly equivalent to X̄ for r > 0, and all the

forthcoming arguments hold equivalently for X̃.
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5. Let ψ̄i : Ki → R be a bump function with compact support N̄i ⊂ Ki . We choose each
N̄i such that if Ki ∩ Kj �= ∅ then N̄i ∩ N̄j �= ∅ as well. Note that

ϕ̄i := ψ̄i
∑M

i=1 ψ̄i

(91)

is a partition of unity subordinate to the open cover {Ki}Mi=1.
6. The sum

ū :=
M∑

1=1

ϕ̄i ūi (92)

is, by virtue of the partition of unity, well defined as a global controller on B. Therefore,
the global closed-loop vector field X̄cl := X̄ + ū is also well defined.

7. Let us now blow-down X̄cl. To be more precise, we now define the closed-loop vector
field Xcl on R

N by Φ∗(X̄cl) = Xcl. So, we have

Xcl = Φ∗(X̄cl) = Φ∗(X̄ + ū) = Φ∗(X̄) + Φ∗(ū) = X + Φ∗(ū), (93)

where we have used the fact that the push-forward is linear [45]. Next we define u :=
Φ∗(ū) and compute

u = Φ∗(ū) = Φ∗
(∑M

i=1 ϕ̄i ūi

)
= ∑M

i=1 Φ∗(ϕ̄i ūi ) = ∑M
i=1(Φi)∗(ϕ̄i ūi )

= ∑M
i=1 ϕi · (Φi)∗(ūi),

(94)

where ϕi := ϕ̄i ◦ Φ−1
i for i = 1, . . . , M , and it is clear from its definition that {ϕi} is

a partition of unity a neighborhood of the origin 0 ∈ R
N subordinate to the open cover

{Φi(Ki)}.
With the previous methodology, we define the controller that stabilizes canard cycles of

the van der Pol oscillator as

u = 1

2
ψ1u1 + 1

2
ψ2u2, (95)

where u1 is as given by Lemma 4 and u2 as in Theorem 1, and where ψ1 is a bump function
with support N1 containing the repelling branch S r

0 and N2 the parabola
{
y = x2

}
around

the origin. Although several choices for these neighbourhoods are possible, we recall an
example given at the beginning of Section 4:

N1 =
{
(x, y) ∈ R

2 : | − y + x2 − 1
3x3| < β1, 0 < x < 2, ymin < y < yh

}

N2 = {
(x, y) ∈ R

2 : | − y + x2| < β2, −xmin < x < xmax
}
,

(96)

with suitably chosen positive constants β1, β2, xmin, xmax, ymin, yh < 4
3 . We note that one

must choose 0 < ymin ∈ O(ε) in order to ensure that the slow manifold S r
ε is within distance

O(ε) of the critical manifold S r
0. Here, yh controls the height of the desired canard cycle,

therefore yh < 4
3 . The neighborhood N1 and N2 are sketched in Fig. 7.

With the controller as in Eq. 95, and given the analysis in Section 4.1, one has that orbits
of Eq. 58 passing close to the origin follow closely the repelling branch of the slow manifold
S r

ε up to a height determined by yh. Once orbits leave the neighborhood N1 ∪ N2, they
are governed by the open-loop dynamics. Finally, the controller of Proposition 2 is indeed
Eq. 95. We have just dropped the subscript of the constant x∗

1 .
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5 Conclusions and Outlook

In this paper, we have presented a methodology combining the blow-up method with
Lyapunov-based control techniques to design a controller that stabilizes canard cycles. The
main idea is to use a first integral in the blow-up space to regulate the canard cycle that the
orbits are to follow. Later on, we have extended the previously developed method to con-
trol canard cycles in the van der Pol oscillator. Roughly speaking, this procedure follows
two steps: first one needs a controller that stabilizes a folded maximal canard within a small
neighborhood of the canard point. Next, one needs to stabilize the unstable branch of the
open-loop slow manifold and to tune the position of the closed-loop orbits with respect to
it. This is essential to determine whether the closed-loop canard has a head or not. Finally,
one combines such controllers by means of a partition of unity. We have further shown that
the proposed controller can be used to produce stable MMOs.

Several new questions and possible extensions arise from our work, and we would like to
finish this paper by briefly mentioning a couple of ideas. First of all, it becomes interesting
to adapt the controllers designed here to neuron models such as the FitzHugh-Nagumo,
Morris-Lecar, or Hodgkin-Huxley models. Another relevant extension is to develop optimal
controllers to control canards. Although from a theoretical point of view one would be
interested in arbitrary cost functionals, some particular choices might be more suitable for
applications. For instance, one may one want to design minimal energy controllers. It is also
not completely clear whether the strategy of combining the blow-up method and control
techniques still applies as the optimal controllers may be time-dependent. Finally, the notion
of controlling MMOs definitely requires further investigation, as here we have just given
a simple sample of the possibilities. Thus, for example, extending the ideas of this paper
to higher-dimensional fast-slow systems with non-hyperbolic points is a direction to be
pursued in the future.

Funding Open access funding provided by the University of Groningen. HJK gratefully acknowledges
support by a fellowship of the Alexander-von-Humboldt Foundation. CK acknowledges partial support by
the DFG via the SFB/TR109 Discretization in Geometry and Dynamics and support by a Lichtenberg
Professorship of the VolkswagenFoundation.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Arnol’d VI, Varchenko AN, Gusein-Zade SM. Singularities of differentiable maps: Volume I : Classifica-
tion of critical points, caustics and wave fronts. Berlin: Springer Science & Business Media; 2012.

2. Artstein Z. Asymptotic stability of singularly perturbed differential equations. J Diff Equ. 2017;262(3):1603–16.
3. Artstein Z. Invariance principle in the singular perturbations limit. Discrete Contin Dynam Syst - B.

2019;24:3653.
4. Artstein Z, Gaitsgory V. Tracking fast trajectories along a slow dynamics: a singular perturbations

approach. SIAM J Control Optim. 1997;35(5):1487–1507.

542 Hildeberto  Jardón-Kojakhmetov  and  Christian  Kuehn

http://creativecommons.org/licenses/by/4.0/


5. Artstein Z, Leizarowitz A. Singularly perturbed control systems with one-dimensional fast dynamics.
SIAM J Control Optim. 2002;41(2):641–58.

6. Banasiak J, Lachowicz M. Methods of small parameter in mathematical biology. Berlin: Springer; 2014.
7. Benoı̂t E. Chasse au canard. Collectanea Math. 1981;31-32(1-3):37–119.
8. Benoı̂t E. Canards et enlacements. Publications Mathématiques de l’Institut des Hautes É,tudes
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