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On the Characterization of Butterfly and
Multiloop Hysteresis Behavior

Marco Augusto Vasquez-Beltran , Bayu Jayawardhana , Senior Member, IEEE, and Reynier Peletier

Abstract—While it is widely used to represent hysteresis
phenomena with unidirectional-oriented loops, we study in
this article the use of Preisach operator for describing hys-
teresis behavior with multidirectional-oriented loops. This
complex hysteresis behavior is commonly found in ad-
vanced materials, such as, shape-memory alloys or piezo-
electric materials, that are used for high-precision sensor
and actuator systems. We provide characterization of the
Preisach operators exhibiting such input–output behaviors
and we show the richness of the operators that are capable
of producing intricate loops.

Index Terms—Analytical models, hysteresis, modeling.

I. INTRODUCTION

THE term “hysteresis” comes from the Greek “to lag be-
hind” and was originally coined by Ewing in 1885 to

describe a phenomenon occurring in the magnetization process
of soft iron caused by reversal and cyclic changes of the input
magnetic field. Currently, hysteresis is known to be present in
several classes of physical systems such as ferroelectric and
ferromagnetic materials, shape memory alloys, and mechanical
systems with friction. In the literature that studies hysteresis
behavior in these systems, the hysteresis is typically identified
by the distinguishing loop in the quasi-static input–output phase
portrait, which is also known as the hysteresis loop [1]–[3].

There are various different mathematical formulations of
hysteresis operators in the literature. A generic definition is
presented in [4], which defines the hysteresis operator by the
causality and rate-independence properties. A stronger defini-
tion is presented in [5] and [6], where the consistency of the
hysteresis loop is also part of the definition. While the latter def-
inition captures main nonlinear behaviors of hysteretic systems,
it also admits linear systems described by partial differential
equations as studied in [3]. As our starting point, we will use
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the framework as presented in [4]. In practice, there are two
distinctive hysteresis models proposed in the literature, namely,
the physics-based models and phenomenological models. The
former focuses on describing the hysteresis phenomenon from
the particular physical relations of the system under considera-
tion, whereas the latter focuses on the empirical description of
the input–output behavior. Due to the simplicity and ability to
encapsulate many typical characteristics of hysteresis behavior,
the phenomenological models have been widely studied for the
past decades. Two of the phenomenological models that have
been widely used are the Preisach operator [7], [8], whose
formulation incorporates other operator-based models such as
the Prandlt operator; and the Duhem model [9], [10] whose
formulation incorporates other models based on nonsmooth
integrodifferential equations such as the Bouc–Wen model and
the Dahl model.

In the literature, there are numerous works that investigate
the mathematical properties of these phenomenological mod-
els [11]–[13]. Subsequently, these characterization works are
directly applicable for the stability analysis and the control
design for systems that consist of subsystems exhibiting hystere-
sis behavior. For instance, the construction of an approximate
inverse model is pursued in [14] in order to stabilize a control
system containing hysteretic elements. In recent years, it has
been shown that these phenomenological hysteresis models
can exhibit passivity/dissipativity property, which is a typical
property of physical systems. The dissipativity of Duhem model
has been shown in [15] and [16] while that of Preisach model
is presented in [17]. These dissipativity properties are closely
related to the orientation of the hysteresis loops.

Despite these numerous endeavors, most of the works in
hysteresis modeling have focused on the characterization of the
hysteresis behavior whose phase plot describes single-oriented
loop as illustrated in Fig. 1. Common examples of single-
oriented loop occur in the relation between polarization and
electric fields of piezoelectric materials or the relation between
magnetization and magnetic field of magnetostrictive materi-
als. However, there exists another class of hysteresis behavior
reported in the literature (see, for instance, [18]– [21]) whose
phase plot describes two loops with opposite orientations and
connected at an intersection point as depicted in Fig. 2. From the
resemblance to the wings of a butterfly, this behavior is known as
butterfly hysteresis behavior. Examples of this type of hysteresis
behavior occur in the relation between strain and electric field
of piezoelectric materials and the relation between strain and
magnetic field of magnetostrictive materials.
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Fig. 1. Illustration of a simple hysteresis loop Hu,y that typically de-
scribes the relation between polarization and electric fields of piezoelec-
tric materials or the relation between magnetization and magnetic field
of magnetostrictive materials.

Fig. 2. Illustration of a butterfly loop Hu,y that can describe the relation
between strain and electric field of piezoelectric materials or the relation
between strain and magnetic field in magnetostrictive materials.

To the authors’ best knowledge, there are only three works
providing mathematical analysis for the modeling of butterfly
hysteresis or multiple loops hysteresis behavior. First, in [22],
a modified Bouc-Wen is studied, which can describe a partic-
ular class of asymmetric double hysteresis loop behavior by
introducing position and/or acceleration information into the
model equation. Moreover, when the parameters of the model
satisfy particular conditions, it has been shown that passivity
property holds [23]. Second, in [24], a framework to transform
butterfly loops to single-oriented loops is proposed. Although
this approach facilitates the use of the well-studied hysteresis
models and enables the possibility of implementing some of
its known control strategies in systems including elements that
exhibit hysteresis with butterfly loops, it relies on the existence
of a convex mapping and restricts the loop shape to have exactly
two minima with the same value. Third, in the recent work [25],
a specific form of the Duhem model proposed by [26] is studied,
which can describe multiple-loop hysteresis behavior.

Although it has been shown experimentally and numerically
that a Preisach operator, whose weighting function is not re-
stricted to be sign-definite, can describe butterfly hysteresis
loops (see, for instance [27], [28]), the mathematical analysis of
such Preisach operator is still lacking. In this work, we extend the
results and include the proof of propositions in [29], where we
presented a Preisach hysteresis operator capable of exhibiting
butterfly loops. It is used to model the relation between strain
and electric field of a particular piezoelectric material. We first
present the analysis of a class of Preisach operators whose
weighting function has one positive and one negative domain.
We show that under mild assumptions over the distributions of
these domains, the input–output behavior of Preisach operator
can exhibit butterfly loops. Subsequently, we introduce a general
class of Preisach operator whose weighting function can assume

TABLE I
NOTATION

more than one positive and one negative domain. We show
that the input–output behavior of these operators can exhibit
hysteresis loops with two or more subloops. Hysteresis operator
with multiple subloops has been illustrated in [24], and also
shown experimentally in [30] in the magnetization of SrRuO3
films. Therefore, we apply the results in [31] and present the
stability analysis of a Lur’e system with multiloop hysteresis
element.

The rest of this article is organized as follows. In Section II, we
give some preliminaries that include the definition of hysteresis
operator, operators with clockwise and counterclockwise input–
output behavior, and the standard definition of the Preisach oper-
ator. In Section III, we present the Preisach butterfly operator and
the proof of the main results in [29]. In Section IV, we introduce a
characterization of the self-intersections in a hysteresis loop and
their relation to the weighting function of a Preisach multiloop
operator and Section V presents the absolute stability analysis
of the Lur’e system with a Preisach multiloop operator. Finally,
Section VI concludes this article.

II. PRELIMINARIES

The notation used throughout this article is presented in Table
I. Additionally, we call the map Φ between two spaces of
functions an operator. Moreover, we say a function f : U →
Y is monotonically increasing (resp. decreasing) if for every
u1, u2 ∈ U such that u1 < u2 we have that f(u1) ≤ f(u2)
(resp. f(u1) ≥ f(u2)).

A. Clockwise, Counterclockwise, and Butterfly Loops

In order to define hysteresis operators, we introduce below
three auxiliary concepts: time-transformation, rate-independent
operator, and causal operator.

Definition 2.1: A function φ : R+ → R+ is called a time
transformation if φ(t) is continuous and increasing with φ(0) =
0 and limt→∞ φ(t) = ∞. �

Definition 2.2: An operator Φ is said to be rate independent
if

[Φ(u ◦ φ)] = [Φ(u)] ◦ φ
holds for all u ∈ AC(R+,R) and all admissible time transfor-
mation φ. �
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Definition 2.3: The operator Φ is said to be causal if for all
τ > 0 and all u1, u2 ∈ AC(R+,R) it holds that

u1(t) = u2(t) ∀t ∈ [0, τ ]

⇒ [Φ(u1)] (t) = [Φ(u2)] (t) ∀t ∈ [0, τ ].

�
Based on the definitions above, we define a hysteresis operator

following the formulation in [4] as follows.
Definition 2.4: An operator Φ is called a hysteresis operator

if Φ is causal and rate-independent. �
For the past decades, hysteresis operators have been widely

studied and characterized (see, for instance, the exposition
in [10, ch. 3]), [12, ch. 2], [32, ch. 1]. When a simple pe-
riodic input with a single maximum and a single minimum
in its periodic interval is applied to a hysteresis operator, the
input–output phase plot will undergo a periodic closed orbit,
which is commonly referred to as hysteresis loop. Similar to the
periodic input–output map introduced in [5, Definition 2.2] for
Duhem models, we can define a hysteresis loop as follows.

Definition 2.5: Consider a hysteresis operatorΦ and an input–
output pair (u, y)with y = Φ(u). Let u be periodic with a period
of T > 0, with one maximum umax ∈ R and with one minimum
umin ∈ R in its periodic interval. Assume that there exists a
constant tp ≥ 0 such that y is periodic in the interval [tp,∞).
The periodic orbit given by Hu,y = {(u(t), y(t)) | t ∈ [tp,∞)}
is called a hysteresis loop if there exists a υ ∈ R such that

card [{(υ, γ) ∈ Hu,y | γ ∈ R}] = 2

where card denotes the cardinality of a set. �
Remark 2.6: The hysteresis loop as defined above means that

the curve defined by Hu,y can have at most two elements (υ, γ1)
and (υ, γ2) for any admissible point υ. This is due to the fact that
we consider inputs with only one maximum and one minimum in
its periodic interval and consequently we exclude the possibility
of the curve Hu,y to have inner minor loops. Nevertheless, it
is possible to have multiple input–output loops formed by self-
intersections of the curveHu,y that will be studied further in this
article.

As shown in [15], [16], [33], and [34], the input–output
behavior of hysteresis operators can be classified by the type
of hysteresis loops they produce. Simple hysteresis loops can
have a clockwise or counterclockwise orientation, which is
given in terms of the signed-area enclosed by its phase plot.
Following from Green’s theorem, the signed-area enclosed by an
input–output pair (u, y) that forms a closed curve in an interval
[t1, t2] is given by

A :=
1

2

∫ t2

t1

[u(τ)ẏ(τ)− y(τ)u̇(τ)] dτ. (1)

Hence, generalizing this notion we can say that a hysteresis
loop Hu,y is clockwise (resp. counterclockwise) if its signed-
area A given by (1) with t1 ≥ tp and t2 = t1 + T satisfies A <
0 (resp. A > 0). In a similar manner, we say that a hysteresis
operator Φ exhibits clockwise (resp. counterclockwise) input–
output behavior if there exists at least one hysteresis loop Hu,y

corresponding to an input–output pair (u, y) with y = Φ(u),
which is clockwise (resp. counterclockwise).

Based on these concepts, we can study hysteresis operators Φ
that give rise to butterfly loops using the enclosed signed-area
as in (1) of the resulting hysteresis loops. However, as depicted
in Fig. 2, we would like to note that the so-called butterfly loops
are composed of two subloops connected by a self-intersection
point, where one of loops is clockwise and the other is coun-
terclockwise. Thus, the total signed-area of the butterfly loop
could be either positive or negative depending on the difference
between the individual signed-area of each subloop. For this
reason, we define a butterfly hysteresis operator as follows.

Definition 2.7: A hysteresis operator Φ is called a butterfly
hysteresis operator if there exists a hysteresis loop Hu,y with
y = Φ(u) such that A = 0, where A is defined as in (1) with
t1 ≥ tp and t2 = t1 + T . �

Remark 2.8: The butterfly hysteresis operator as defined
above only requires the existence of a single input–output pair
whose total enclosed area is zero and we do not impose restric-
tion on the rest of the input–output pairs to have zero enclosed
area or to be symmetric. Moreover, this definition is equivalent
to the one that we have introduced in [29, Definition 2.2] and this
article we have used the concept of hysteresis loop in Definition
2.5 for defining the butterfly hysteresis operator with a particular
input–output pair (u, y) that forms a periodic orbit, e.g., on the
interval [t1, t1 + T ].

Remark 2.9: It is not straightforward to use the characteriza-
tion presented in [35] to characterize a butterfly hysteresis oper-
ator since a butterfly hysteresis operator may exhibit hysteresis
loops with negative enclosed area. For this reason, Definition 2.7
focuses on finding one input–output pair whose total enclosed
area is zero.

B. Clockwise and Counterclockwise Relay Operator

One of the simplest hysteresis operators is the relay operator,
which we introduce below in its counterclockwise and clock-
wise versions. We define the counterclockwise relay operator
R�

α,β : AC(R+,R)× {−1, 1} → Cpw(R+,R) with switching
parameters α > β and initial condition r0 by

[
R�

α,β(u, r0)
]
(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

+1, if u(t) > α
−1, if u(t) < β

[
R�

α,β(u, r0)
]
(t−),

if β ≤ u(t) ≤ α

and t > 0

r0,

if β ≤ u(t) ≤ α

and t = 0

.

(2)
Similarly, we define the clockwise relay operator R�

α,β :
AC(R+,R)× {−1, 1} → Cpw(R+,R) with switching param-
eters α > β and initial condition r0 by

[
R�

α,β(u, r0)
]
(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, if u(t) > α
+1, if u(t) < β

[
R�

α,β(u, r0)
]
(t−),

if β ≤ u(t) ≤ α

and t > 0

−r0,
if β ≤ u(t) ≤ α

and t = 0

.

(3)
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Fig. 3. Input–output phase plot of the counterclockwise relay operator
R�

α,β
as defined in (2) .

Fig. 4. Input–output phase plot of the clockwise relay operator R�
α,β

as defined in (3) .

We note that for a specified initial condition r0 ∈ {−1,+1} both
relay operators are hysteresis operators in the sense of Definition
2.4 with the form

Φ(u) = R�
α,β(u, r0) and Φ(u) = R�

α,β(u, r0).

The input–output phase plot of both relay operators is illus-
trated in Figs. 3 and 4. It can be observed from definitions
(2) and (3) that for equal initial condition r0, the output of a
counterclockwise relay is equivalent to the negative output of a
clockwise operator for every input, i.e., R�

α,β = −R�
α,β .

C. Preisach Operator

The Preisach operator is, roughly speaking, the weighted
integral of all infinitesimal (counterclockwise) relay operators,
also known as hysterons, whose switching values satisfy α > β.
To provide a formal definition of this, we need to introduce
two concepts. First, we denote by P the admissible plane of
relay operators defined by P := {(α, β) ∈ R2 | α > β} and it
is commonly referred to as the Preisach plane. Second, we denote
I the set of interfaces where each interface L ∈ I is a mono-
tonically decreasing staircase curve parameterized in the form
L = {σ(γ) ∈ P | γ ∈ R+} by a function σ(γ) ∈ C(R+, P ),
which satisfies limγ→∞ ‖σ(γ)‖ = ∞ and σ(0) = (α, α) for
some α ∈ R. By monotonically decreasing L we mean that
for every pair (α1, β1), (α2, β2) ∈ L we have that β1 ≤ β2
impliesα1 ≥ α2. Based on these concepts, the Preisach operator

P : AC(R+,R)× I → AC(R+,R) is formally expressed by

[P(u, L0)] (t) :=∫∫
(α,β)∈P

μ(α, β)
[
R�

α,β(u, rα,β(L0))
]
(t) dαdβ (4)

where μ ∈ Cpw(P,R) is a weighting function, L0 ∈ I is the
initial interface, and rα,β : I → {−1,+1} is an auxiliary func-
tion that determines the initial condition of every relay R�

α,β

according to its position (α, β) ∈ P with respect to the initial
interface L0 and is defined by

rα,β(L0) :={
+1, if L0 ∩ {(α1, β1) ∈ P | α ≤ α1, β ≤ β1} 
= ∅
−1, otherwise

.

In other words, the value of the function rα,β will be +1 if the
point (α, β) ∈ P is above the initial interface L0, and will be
−1 if the point (α, β) ∈ P is below the initial interface L0. It is
important to note from (2) that the actual initial state of a relay
operator R�

α,β is determined by r0 only when β ≤ u(0) ≤ α.
This can produce an inconsistency between the values of the
function rα,β(L0) and the actual initial state of relay operators
[R�

α,β(u, rα,β(L0))](0) with α < u(0) or β > u(0). Therefore,
for well-posedness, we assume in general that the initial interface
L0 in the Preisach operator (4) satisfies [u(0), u(0)] ∈ L0. As
with the relay operator, the Preisach operator is a hysteresis oper-
ator in the sense of Definition 2.4 for specified initial conditions
L0 ∈ I in the form Φ(u) = P(u, L0).

As one of the most important hysteresis operators, the memory
behavior and geometric interpretation of the Preisach operator
defined by (4) has been studied well in the literature. Funda-
mentally, it can be said that the output of the Preisach operator is
determined instantaneously with the variations of the input as all
the relays in P react instantaneously and simultaneously to the
applied input u. For this reason, the initial interface L0 evolves
continuously and at every time instance t ≥ 0 there exists an
interface Lt ∈ I that divides the Preisach plane into two sub-
domains P+

t and P−
t , where all relays Rα,β with (α, β) ∈ P+

t

are in state +1 while all relays Rα,β with (α, β) ∈ P−
t are in

state −1.

III. PREISACH BUTTERFLY OPERATOR

The classical definition of the Preisach operator [7], [8] con-
siders that the weighting function μ is positive with counter-
clockwise relays as in (2). This assumption restricts all realiz-
able hysteresis loops to be counterclockwise (for any periodic
input–output pairs). On the other hand, when negative weighting
function μ is assumed (with the same counterclockwise relays)
then the realizable hysteresis loops become clockwise (see [36]).
This is mainly due to the fact that R�

α,β = −R�
α,β , in which

case, a Preisach operator with negative weighting function μ
and counterclockwise relays is equivalent to a Preisach operator
with a positive weighting function μ and clockwise relays.

Inspired by the latter observation and considering that a but-
terfly hysteresis operator must exhibit both clockwise and coun-
terclockwise input–output behavior, it is intuitive to think that
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a Preisach operator with both clockwise and counterclockwise
relays and a sign-definite weighting function, or equivalently
with only clockwise or only counterclockwise relays and whose
weighting function μ has positive and negative domains, can,
under certain conditions, exhibit a butterfly hysteresis operator.
We formalize this idea introducing a Preisach operator whose
weighting function μ has particular structure and whose input–
output behavior exhibits a butterfly loop that satisfies the zero
signed-area condition of Definition 2.7. For this purpose, let us
introduce the following lemma that allows us to compute the
enclosed area of the hysteresis loop of a single relay operator.

Lemma 3.1: Consider the counterclockwise relay operator
R�

α,β as in (2) with α > β. For every periodic signal u with a
period ofT and with one maximumumax ∈ R and one minimum
umin ∈ R in the periodic interval, the signed-area A correspond-
ing to the input–output pair (u, y) with y = R�

α,β(u, r0) and
r0 ∈ {−1,+1} is given by

A =

{
2(α− β), if umin < β and umax > α
0, otherwise

.

Proof: It can be checked that the influence of relay initial
condition to the output signal y = R�

α,β(u, r0) disappears after
one period. In other words, the pair (u, y) will form a hysteresis
loopHu,y or a line in the time interval [t1,∞)with t1 ≥ tp = T .
When the range of the input covers both switching points of the
relay, i.e.,umin < β andumax > α, then the relay will switch pe-
riodically forming a hysteresis loopHu,y as in Fig. 3. Otherwise,
it will be a line. If it is a hysteresis loopHu,y then the signed-area
that is produced is given by the area of the corresponding
rectangle in the phase plot of {(u(τ), y(τ)) | τ ∈ [t1, t1 + T ]},
which is equal to 2(α− β). If it is a line then the signed area is
equal to zero.

Remark 3.2: Lemma 3.1 is formulated to consider the hys-
teresis loop obtained from any simple periodic input with one
maximum and one minimum. However, since the relay operator
has only two output values−1 and+1, applying any input whose
maxima and minima are greater and lower than the switching
valuesα andβ, correspondingly, would produce an input–output
phase plot with the same shape. Therefore, an immediate con-
sequence of Lemma 3.1 is that the signed-area enclosed by the
hysteresis loop of a clockwise relay operator R�

α,β defined by
(3) is given by −2(α− β) when umin < β and umax > α.

We recall now the result presented in [29], which considers a
particular class of Preisach operator with two-sided weighting
function μ whose input–ouput behavior can exhibit butterfly
loops, and whose proof is the main result of this section. By
two-sided, we mean that there exists a simple curve B that
divides the Preisach domainP into two disjoint subdomainsB+

andB− such thatP = B+ ∪B− ∪B and whereμ(α, β) ≥ 0 for
every (α, β) ∈ B+ and μ(α, β) ≤ 0 for every (α, β) ∈ B−.

Theorem 3.3: ([29, Proposition 3.1]) Consider a Preisach
operator P as in (4) with μ be a two-sided weighting function.
Suppose that the first order lower and upper partial moments of
μ satisfy ∫ ∞

r

μ(α, β)βdβ = ∞ (5)

∫ r

−∞
μ(α, β)αdα = ∞ (6)

for all (α, β) ∈ P . Assume that the boundary curve B is mono-
tonically decreasing. Then, P is a butterfly hysteresis operator.

Proof: Let us take arbitrary (α1, β1) ∈ B with α1 > β1 (i.e.,
the point (α1, β1) is not on the boundary of P ). Consider a sub-
set of Preisach domain P1 := {(α, β) ∈ P | α < α1, β > β1},
which is a solid triangle whose vertices are at (α1, β1), (α1, α1),
and (β1, β1). Note that since B is monotonically decreasing, it
separates P in two polar regions where weighting function μ
assigned to the domain above B has different sign with that
belowB. Without loss of generality, we consider the case where
B1− is below B and B1+ is above B. The arguments below are
still valid when we consider the reverse case.

Due to the monotonicity of B, if we consider the extended
area on left of P1, which is given by P ext

1− := {(α, β) ∈ P | β <
β1, α < α1}, the weight μ in this area will have the same sign
as that in B1−. The same holds for the extended area above P1,
where the weight μ in P ext

1+ := {(α, β) ∈ P | β > β1, α > α1}
has the same sign as that in B1+.

Let us now analyze the input–output behavior when the input
u of the Preisach operator is a periodic signal with a period of T
and with one maximum umax = α1 and one minimum umin =
β1. It is clear that for every t ≥ tp = T , the initial conditions
of all relays in P1 no longer affect output y and it becomes
periodic. Therefore, the relays R�

α,β whose states are switching
periodically correspond to the domain P1 while the state of all
the relays in P\P1 remains the same as given by the initial
condition. Consequently, following from Lemma 3.1, the signed
area of the hysteresis loop Hu,y obtained from the input–output
pair (u, y) is given by

A = 2

∫∫
(α,β)∈P1

μ(α, β) [α− β] dαdβ

= 2

∫∫
(α,β)∈B1+

|μ(α, β)| [α− β] dαdβ

︸ ︷︷ ︸
A+

− 2

∫∫
(α,β)∈B1−

|μ(α, β)| [α− β] dαdβ

︸ ︷︷ ︸
A−

.

When the variation of μ is such that A+ = A−, we have
obtained the condition forP to be a butterfly hysteresis operator,
where the chosen periodic input signal u ensures that A = 0.
However since in general the variation in μ can be asymmetric,
the signed area A+ may not be equal to A−.

Let us consider the case when A− > A+ (i.e., the negative
weight is dominant in P1). In this case, we modify the periodic
input signal u such that its maximum umax is parametrized by
λ > α1. Similar as before, we have that the relays R�

α,β whose
states are switching periodically correspond to the domains
P1 and P ext,λ

1+ := {(α, β) ∈ P | β > β1, λ > α > α1} while

the state of relays corresponding to P\(P1 ∪ P ext,λ
1+ ) remains
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the same as given by the initial condition. Hence, using again
Lemma 3.1, the signed-area of the hysteresis loop Hu,y corre-
sponding to the input–output pair (u, y) with modified u is now
given by

A = 2(A+ − A−) + 2

∫∫
(α,β)∈P ext,λ

1+

|μ(α, β)| [α− β] dαdβ

︸ ︷︷ ︸
h(λ)

.

Since μ is a piecewise continuous function, the function h(λ)
is also continuous function, h(α1) = 0 and is strictly increasing
(as μ > 0 in P ext

1+). Due to the unboundedness of the first-order
upper partial moment of μ as in (5), it follows that h(λ) → ∞
as λ → ∞. This implies that there exists α2 > α1 such that
h(α2) = A− − A+. In this case, by taking a periodic signal
with its maximum umax = α2 and its minimum umin = α1, the
signed-area of the corresponding hysteresis loop Hu,y is equal
to zero as claimed.

On the other hand, when A+ > A−, we can use vis-a-vis
similar arguments as above where umin is now parametrized
by λ < β1, instead of parameterizing umax as before. For this
situation, the additional relays that are affected by the modified
input correspond to the domain P ext,λ

1− := {(α, β) ∈ P | λ <
β < β1, α < α1}. The claim then follows similarly as above
where the additional signed-area of the corresponding hysteresis
loopHu,y is a continuous functionh(λ) that is strictly increasing
and approaches −∞ as λ → −∞.

Finally, we can follow the same reasoning as above for the
case when B1− is above B and B1+ is below B.

In Theorem 3.3, we consider a general case where μ can be
any two-sided function, as long as, its decay to zero, which is
measured by its upper and lower partial moments, is not too
fast. If this condition is not satisfied, we may not be able to
find an extended subset in P parametrized by λ (as used in the
proof of Theorem 3.3) such that the total signed-area A of the
hysteresis loop Hu,y with the modified u is zero. Nevertheless,
the conditions over the upper and lower partial moments of μ
can be relaxed if we focus on a small region close to the meeting
point ofB and the line {(α, β) | α = β}. This is the case for the
class Preisach operator considered in the next result which was
also presented in [29].

Corollary 3.4: ( [29, Proposition 3.2]) Consider a Preisach
operator Φ as in (4) with a two-sided weighting function μ.
Assume that the boundary curve of μ is given byB = {(α, β) ∈
P | α = −β + κ} where κ ∈ R+ is an offset and μ is antisym-
metric with respect toB, i.e., μ(α, β) = −μ(−α,−β) holds for
all (α, β) ∈ P . Then, Φ is a butterfly hysteresis operator.

The previous corollary follows directly from the proof of The-
orem 3.3. In this case, it suffices to have a periodic input signal
u whose maximum and minimum satisfy umax = −umin + 2κ.
The relays Rα,β whose state switches periodically will lie
in a subset of P , which has the form of isosceles and right
triangle. Since the weighting function is antisymmetric with
respect toB then the signed area of the hysteresis loopHu,y will
be zero.

Fig. 5. Weighting function μ(α, β) defined by (7).

As a particular case of study, we analyze in the next example
a class of Preisach butterfly operator in Proposition 3.4 with
symmetrical two-sided weighting function.

Example 3.5: LetB := {(α, β) ∈ P |α = −β} (withκ = 0)
and consider a point (−β1, β1) ∈ B such that P1 := {(α, β) ∈
P | α < β1, β > −β1}. In this case the subdomain of interest
P1 in the Preisach plane is an isosceles triangle with vertices
in (α1, α1), (α1,−α1), and (−α1,−α1). Let us define the
weighting function by

μ(α, β) :=

⎧⎨
⎩

−1, if α ≤ −β, (α, β) ∈ P1

1, if α > −β, (α, β) ∈ P1

0, otherwise
. (7)

An illustration of the weighting function (7) is included in
Fig. 5. The Preisach operator with this weighting function clearly
satisfies the conditions of Proposition 3.3 and consequently it is
a butterfly hysteresis operator. It follows from this proposition
that we no longer need the extended areas P ext

1− and P ext
1+. The

subset of the Preisach domain P1 is now subdivided in four
disjoint regions defined by

P 1
1 := {(α, β) | α ≤ 0, β ≤ 0}
P 2
1 := {(α, β) | α > 0, β ≤ 0, α ≤ −β}
P 3
1 := {(α, β) | β ≤ 0, α > −β}
P 4
1 := {(α, β) | α > 0, β > 0}.

Note that the output can be determined by the individual
behavior of each region in the form

[P(u, L0)] (t) := −
∫∫

(α,β)∈P 1
1

[
R�

α,β(u, rα,β(L0))
]
(t) dαdβ

−
∫∫

(α,β)∈P 2
1

[
R�

α,β(u, rα,β(L0))
]
(t) dαdβ
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Fig. 6. Input–output phase plot using the Preisach butterfly hysteresis
operator with symmetric two-sided weighting function. (a) Plot of input
signal u in a periodic time interval [t1, t5]. (b) Corresponding plot of
output signal y. (c). Input–output phase plot of input and output signal,
which shows a symmetric butterfly loop and whose signed area is equal
to zero.

+

∫∫
(α,β)∈P 3

1

[
R�

α,β(u, rα,β(L0))
]
(t) dαdβ

+

∫∫
(α,β)∈P 4

1

[
R�

α,β(u, rα,β(L0))
]
(t) dαdβ.

(8)

Let us analyze the input–output behavior when a periodic
input u with period T and with one maximum umax = β1 and
one minimum umin = −β1 is applied to this operator. Consider
five time instances t1 < t2 < t3 < t4 < t5 with t1 ≥ T and
such thatu(t1) = umin = −β1,u(t2) = 0,u(t3) = umax = β1,
u(t4) = 0, and u(t5) = umin = −β1. It is clear that u(t) is
monotonically increasing in the interval t1 ≤ t < t3 and mono-
tonically decreasing in the interval t3 ≤ t < t5. An example of
an input signal u satisfying these conditions is illustrated in
Fig. 6(a). Using such input signal, the output signal y(t) can be
computed analytically for every t ∈ [t1, t5] (i.e., for one periodic
interval when the phase plot forms a hysteresis loopHu,y) based
on (8) and is given by

[P(u, L0)] (t) =⎧⎪⎪⎨
⎪⎪⎩

− [umax + u(t)]2 , if t1 ≤ t < t2
− [umax − u(t)] [umax + 3u(t)] , if t2 ≤ t < t3
− [umax − u(t)]2 , if t3 ≤ t < t4
− [umax + u(t)] [umax − 3u(t)] , if t4 ≤ t < t5

. (9)

Fig. 6(b) shows the corresponding output signal. By plotting
the phase plot as in Fig. 6(c), we can see immediately that the
resulting butterfly loop is symmetric as expected. Furthermore,
using (1) it can be validated that the signed-area enclosed by this
curve is equal to zero.

Remark 3.6: Note that the assumption of the boundary B
that separates the polar regions of the weighting function being
monotonically decreasing is made to simplify the analysis in
Proposition 3.3. Such assumption guarantees that it is always
possible to find the extended domains P ext,λ

1+ or P ext,λ
1− where

the weighting function is sign-definite. However, according to
Definition 2.7 and Lemma 3.1, we have that P is a Preisach
butterfly operator as long as we can find a hysteresis loop Hu,y

with an inputuwhose minimum and maximum can parameterize
a subdomain P1 of the form P1 := {(α, β) ∈ P | umin ≤ β ≤
α, umin ≤ α ≤ umax} which satisfies∫∫

(α,β)∈P1

μ(α, β) [α− β] dαdβ = 0.

It follows that the monotonically decreasing property of the
boundary B is sufficient but not necessary to obtain a Preisach
butterfly operator.

Remark 3.7: Constructing the weighting function to describe
an specific butterfly hysteresis loop can be addressed by the
classical identification scheme presented in [37], as it has been
done in [29] for the butterfly hysteresis loop exhibited in the
relation between strain and electric field of a Preisach operator.

IV. PREISACH MULTILOOP OPERATOR

In the previous section, we have shown that a butterfly hys-
teresis operator can be obtained from a Preisach operator with a
two-sided weighting function. Following from the condition of
zero total signed area in Definition 2.7, the previous analysis is
based on finding an input u such that each subloop contribution
to the total signed area of the hysteresis loop canceled each other.
This analysis exploits the particular two-sided structure of the
weighting function μ. However, imposing this structure to the
weighting function μ is only a sufficient condition to obtain a
butterfly hysteresis operator which, in addition, restricts all the
hysteresis loops obtained from the Preisach operator to have at
most two subloops.

In this section, we study a larger class of Preisach operators
with more complex weighting functions that are not necessarily
two sided. The Preisach operators in this class can produce
hysteresis loops with more than two subloops. Therefore, using
an analysis based only on the total enclosed signed-area of the
hysteresis loops is no longer applicable for studying this class
of hysteresis operators since the signed area does not determine
directly the number of subloops in a given hysteresis loop.
In this case, we must note that if a hysteresis loop has two
or more subloops each one of the subloops is connected to
another subloop by at least one self-intersection point of the
hysteresis loop. We will call these points the crossover points of
a hysteresis loop and characterize them as follows. Consider a
hysteresis loop Hu,y obtained from an input–output pair (u, y)
of a hysteresis operator Φ with y = Φ(u). Let us select t1 ≥ tp
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such that t1 < t2 < t1 + T is a monotone partition of one pe-
riodic interval of u and u(t) is monotonically increasing when
t ∈ [t1, t2] and monotonically decreasing when t ∈ [t2, t1 + T ].

We can split the hysteresis loop Hu,y into two segments that
correspond to the subintervals of the monotone partition given
by

H+
u,y := {(u(t), y(t)) | t ∈ [t1, t2]} (10)

H−
u,y := {(u(t), y(t)) | t ∈ [t2, t1 + T ]}. (11)

We define formally a crossover point as follows.
Definition 4.1: Consider a hysteresis loop Hu,y . A point

(uc, yc) ∈ Hu,y is called a crossover point if (uc, yc) ∈ H+
u,y ∩

H−
u,y . �
Remark 4.2: A hysteresis loop Hu,y will always have at

least two crossover points corresponding to the points, where
the input u achieves its extrema (umin, y1), (umax, y2) ∈ Hu,y

with (umin, y1) = (u(t1), y(t1)) = (u(t1 + T ), y(t1 + T )) and
(umax, y2) = (u(t2), y(t2)). Moreover, it is possible for a hys-
teresis loop Hu,y to have an infinite number of crossover points
if, for instance, there exists a segment of intersection between
H+

u,y and H−
u,y , i.e., there exists a time subinterval [t3, t4] ⊂

[t1, t1 + T ] with t4 > t3 such that (y(t), u(t)) ∈ H+
u,y ∩H−

u,y

for every t ∈ [t3, t4].
Note that the numbers of subloops in a hysteresis loop Hu,y

is not determined by the number of crossover points but by the
number of maximal connected subsets in H+

u,y ∩H−
u,y , where

each maximal connected subset can be a singleton in the case
that the corresponding crossover point does not belong to a
segment of intersection between H+

u,y and H−
u,y . By a maximal

connected subset inA, we mean a connected subsetB ⊂ Awith
the property that there does not exist other connected subset
C ⊂ A such that B ⊂ C.

Using these notions, we introduce the definition of multiloop
hysteresis operator as follows.

Definition 4.3: A hysteresis operator Φ is called a multi-
loop hysteresis operator if there exists a hysteresis loop Hu,y ,
where y = Φ(u), with at least one maximal connected sub-
set C ⊂ H+

u,y ∩H−
u,y such that umin 
= uc 
= umax for every

(uc, yc) ∈ C. �
Definition 4.3 is asking for the existence of at least one

maximal connected subset of crossover points besides the ones
that contain the crossover points corresponding to the maximum
and minimum values of the input. The existence of this maxi-
mal connected subset guarantees that the hysteresis loop will
composed of at least two subloops. Moreover, it is clear that
every butterfly hysteresis operator is then a multiloop hysteresis
operator. Before characterizing the class of Preisach operators
that satisfy the conditions to be multiloop hysteresis operators,
we introduce next lemma that allows us to relate the existence of
a crossover point in a hysteresis loop obtained from a Preisach
operator with the integration of its weighting function μ over a
rectangular region of P delimited by the maximum and mini-
mum values of the input.

Lemma 4.4: Consider a hysteresis loop Hu,y obtained from
an input–output pair (u, y) of a Preisach operator P with a
weighting function μ. A point (uc, yc) ∈ Hu,y is a crossover

point if and only if

∫∫
(α,β)∈Ωc

μ(α, β) dαdβ = 0 (12)

where the region Ωc is defined by Ωc := {(α, β) ∈ P | uc <
α < umax, umin < β < uc}.

Proof: (Sufficiency) Let (uc, yc) be the crossover point of a
hysteresis loop Hu,y and consider the corresponding subsets
H+

u,y and H−
u,y of Hu,y as defined in (10) and (11) with a

monotone partition t1 < t2 < t1 + T of the periodic input u.
When uc = umin = u(t1) = u(t1 + T ) or uc = umax = u(t2),
the region Ωc is empty and (12) holds trivially. Therefore, let us
consider the case when there exist two time instants τ1 ∈ (t1, t2)
and τ2 ∈ (t2, t1 + T ) such that (uc, yc) = (u(τ1), y(τ1)) =
(u(τ2), y(τ2)) with umin = uc = umax.

Let us analyze the input–output behavior of the Preisach oper-
ator in the intervals (t1, t2) and (t1, t2 + T ). For this, consider
a subdomain of the Preisach plane given by P1 := {(α, β) ∈
P |α < umax, β > umin}, which is a triangle whose vertices are
at (umax, umin), (umax, umax), and (umin, umin). It is clear that
at every time instance t ≥ tp = T , the state of relays in P\P1

remains the same as given by the initial condition. We define
three time varying disjoint regions of P1 whose boundaries
depend on the instantaneous value of the input u(t) and which
are given by

Ω1(t) := {(α, β) ∈ P1 | u(t) < β} (13)

Ω2(t) := {(α, β) ∈ P1 | β < u(t) < α} (14)

Ω3(t) := {(α, β) ∈ P1 | α < u(t)} . (15)

The region Ω1(t) is a triangle whose vertices are at
(u(t), u(t)), (umax, u(t)), and (umax, umax), the region Ω3(t)
is a triangle whose vertices are at (u(t), u(t)), (u(t), umin), and
(umin, umin), and the region Ω2(t) is a rectangle whose vertices
are at (u(t), u(t)), (umax, umin), (u(t), umin), and (umax, u(t)).
It can be checked that for every time instance t ∈ [t1, t1 + T ],
all relays corresponding to the regions Ω1(t) and Ω3(t) are in
state −1 and +1, respectively. Moreover, at time instances τ1
and τ2 we have that Ω2(τ1) = Ω2(τ2) = Ωc.

The required condition (12) is obtained computing the output
of the Preisach operator at both time instances τ1 and τ2 using the
regions Ω1(t), Ω2(t), and Ω3(t) as follows. At time instance t1,
the input u reaches its minimum value. Thus, we have u(t1) =
umin, which implies that all relays in the subdomainP1 are in−1
state. As the input increases, at every time instance t ∈ (t1, t2)
the region Ω3(t) indicates the relays whose state has changed
from −1 to +1 while in the regions Ω2(t) and Ω1(t) all relays
remain in −1 state. Therefore, at time instance τ1 the output of
the Preisach operator is given by

y(τ1) = [P(u, L0)] (τ1)

−
∫∫

(α,β)∈Ω1(τ1)

μ(α, β) dαdβ −
∫∫

(α,β)∈Ω2(τ1)

μ(α, β) dαdβ
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+

∫∫
(α,β)∈Ω3(τ1)

μ(α, β) dαdβ

+

∫∫
(α,β)∈P \P1

μ(α, β)
[
R�

α,β(u, rα,β(L0))
]
(τ1) dαdβ. (16)

At time instance t2, the input u reaches now its maximum
value. Thus, in this case we have u(t2) = umax, which implies
that all relays in the subdomainP1 are in+1 state. Subsequently,
as the input decreases, at every time instance t ∈ (t2, t1 + T )
the region Ω1(t) indicates the relays whose state has changed
from +1 to −1 while in the regions Ω2(t) and Ω3(t) all relays
remain in +1 state. Therefore, at time instance τ2 the output of
the Preisach operator is given by

y(τ2) = [P(u, L0)] (τ2)

−
∫∫

(α,β)∈Ω1(τ2)

μ(α, β) dαdβ +

∫∫
(α,β)∈Ω2(τ2)

μ(α, β) dαdβ

+

∫∫
(α,β)∈Ω3(τ2)

μ(α, β) dαdβ

+

∫∫
(α,β)∈P \P1

μ(α, β)
[
R�

α,β(u, rα,β(L0))
]
(τ2) dαdβ. (17)

Subtracting (17) and (16), we have

0 = y(τ2)− y(τ1)

=

∫∫
(α,β)∈Ω2(τ2)

μ(α, β) dαdβ +

∫∫
(α,β)∈Ω2(τ1)

μ(α, β) dαdβ

= 2

∫∫
(α,β)∈Ωc

μ(α, β) dαdβ. (18)

(Necessity) Assume that (12) holds for some value uc ∈
[umin, umax]. Consider the time instance τ1 ∈ [t1, t2] when
u(τ1) = uc. At this time instance, the output y(τ1) is given as in
(16) and (u(τ1), y(τ1)) ∈ H+

u,y . Similarly, let τ2 ∈ [t2, t1 + T ]
be the time instance when u(τ2) = uc. At this time instance,
the output y(τ2) is given as in (17) and (u(τ2), y(τ2)) ∈ H−

u,y .
Since (12) holds, by subtracting (17) and (16) we obtain (18)
again. It follows that y(τ2) = y(τ1) = yc, and consequently
(uc, yc) ∈ H+

u,y ∩H−
u,y .

It is clear that Lemma 4.4 can be used to find the crossover
points of a hysteresis loop obtained from a Preisach operator.
However, noting that the region Ωc in (12) depends explicitly
on the maximum and minimum of the input u applied to the
Preisach operator, we could also use Lemma 4.4 to estimate an
input u that produces a hysteresis loop with crossover points
additional to the trivial ones corresponding to the maximum and
minimum value of the input.

Example 4.5: Let us recall the Preisach operator from Exam-
ple 3.5 whose weighting function μ is defined in (7). We can
check that a nonempty region Ωc satisfying (12) is given by

Ωc = {(α, β) ∈ P | 0 < α < β1, −β1 < β < 0} (19)

Fig. 7. Weighting function μ(α, β) of Example 3.5 defined in (7) where
the region Ωc given by (7) and that satisfies (12) is indicated by the
dashed line.

which is illustrated in Fig. 7 . Therefore, noting the limits of
region Ωc in (19), it follows that applying to this Preisach oper-
ator an inputuwith one maximumumax = β1 and one minimum
umin = −β1 yields a crossover point (uc, yc) with uc = 0 as it
has been shown in the phase plot of Fig. 6. Furthermore, using
(9) we can find that yc = −u2max.

We illustrate with the next example that only the existence of
crossover points does not guarantee that the hysteresis loop is
composed of subloops with different orientation.

Example 4.6: Consider a subdomain of Preisach plane P1 =
{(α, β) ∈ P | α < β1, β > −β1} with β1 > 0 and define a
weighting function μ given by

μ(α, β) :=

⎧⎨
⎩

−1, if (α, β) ∈ P1−
1, if (α, β) ∈ P1\P1−
0, otherwise

(20)

where P1− = {(α, β) ∈ P1 | − β1 < β < 0, 0 < α < β +
β1}. It can be checked that the same region Ωc given as in (19)
satisfies condition (12) with the weighting function μ defined
by (20). Fig. 8 illustrates this weighting function with the region
Ωc indicated by a dashed line. It follows that the hysteresis loop
obtained from a Preisach operator with a weighting function μ
defined by (20) and whose inputu has one maximumumax = β1
and one minimum umin = −β1 has a crossover point with
coordinates (uc, yc) = (0, 0), where yc is computed using (16)
or (17). Nevertheless, by simple inspection of the phase plot in
Fig. 9 , we can check that the hysteresis loop is composed of
two subloops with the same orientation.

We introduce now a theorem that shows how a multiloop
hysteresis operator can be obtained from a Preisach operator.

Theorem 4.7: Consider a Preisach operator P as in (4) with a
weighting functionμ. Assume that there exists a point (α0, β0) ∈
P with α0 > β0 and three values α1− < α1 < α1+ such that
β0 < α1− and α1+ < α0, and (12) holds for the region

Ωα1
= {(α, β) ∈ P | α1 < α < α0, β0 < β < α1} (21)
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Fig. 8. Weighting function μ(α, β) of a Preisach operator which can
produce a hysteresis loop whose subloops have the same orientation.
The region Ωc that satisfies (12) is indicated by the dashed line.

Fig. 9. Input–output hysteresis response using the multiple loops
Preisach multiloop operator. (a) Plot of input signal u in a periodic time
interval [t1, t1 + T ]. (b) Corresponding plot of output signal y. (c) Input–
output phase plot of input and output signal, which shows hysteresis
loop with two subloops in the same orientation.

but does not hold for the regions

Ωα1− = {(α, β) ∈ P | α1− < α < α0, β0 < β < α1−} (22)

Ωα1+
= {(α, β) ∈ P | α1+ < α < α0, β0 < β < α1+}.

(23)

Then, P is a multiloop hysteresis operator.

Proof: Consider the hysteresis loop Hu,y obtained from the
input–output pair (u, y) with the input u being periodic with
one maximum umax = α0 and one minimum umin = β0, and
y = P(u, L0). Let t1 < t2 < t1 + T be the monotonic partition
of the input that divides Hu,y into H−

u,y and H+
u,y with u(t1) =

u(t1 + T ) = umin and u(t2) = umax, and consider six time
instances τ1− , τ1, τ1+ ∈ [t1, t2] and τ2− , τ2, τ2+ ∈ [t2, t1 + T ]
with τ1− < τ1 < τ1+ and τ2− > τ2 > τ2+ such that u(τ1−) =
u(τ2−) = α1− , u(τ1) = u(τ2) = α1 and u(τ1+) = u(τ2+) =
α1+ .

Using Lemma 4.4 with the region Ωα1
defined in (21), the

hysteresis loop Hu,y has a crossover point (uc, yc) with uc =
u(τ1) = u(τ2) = α1 and where yc = y(τ1) = y(τ2) is given by
(16) or (17).

Without loss of generality, let C be the maximal connected
subset of H+

u,y ∩H−
u,y that contains (uc, yc). To check that

C does not contain a crossover point of the form (umin, y1),
observe that since (12) does not hold for region Ωα1− , then
using again Lemma 4.4, we have that (u(τ1−), y(τ1−)) and
(u(τ2−), y(τ2−)) are not crossover points and are not in H+

u,y ∩
H−

u,y . Consequently, there does not exist connected subset of
H+

u,y ∩H−
u,y that could contain both (uc, yc) and (umin, y1).

Similarly, we can check thatC does not contain a crossover point
of the form (umax, y2) by noting that (12) does not hold for the
regionΩα1+

, which by Lemma 4.4 implies that (u(τ1+), y(τ1+))
and (u(τ2+), y(τ2+)) are not crossover points and are not in
H+

u,y ∩H−
u,y . It follows again that there does not exist connected

subset of H+
u,y ∩H−

u,y that could contain both (uc, yc) and
(umax, y2).

Remark 4.8: It is possible to consider more than one region
Ωα, where (12) holds. Letμbe a weighting function and consider
values

αi− < αi < αi+ , where i ∈ {1, . . . ,m} and m ∈ Z+

with β0 < α1− and αm+ < α0, and such that for every j ∈
{1, . . . ,m− 1}we have thatαj+ < α(j+1)− . Assume that using
these values, we can construct regions given by

Ωαi
= {(α, β) ∈ P | αi < α < α0, β0 < β < αi}

such that (12) holds but does not hold for regions given by

Ωαi− = {(α, β) ∈ P | αi− < α < α0, β0 < β < αi−}
Ωαi+

= {(α, β) ∈ P | αi+ < α < α0, β0 < β < αi+}
for every i ∈ {1, . . . ,m}. It follows immediately from Theorem
4.7 that a Preisach operator with this weighting function is a
multiloop hysteresis operator. Moreover, it can be checked that
in this case the hysteresis loopHu,y obtained from such Preisach
operator with an input whose maximum is umax = α0 and
minimum is umin = β0 will be composed of m+ 1 subloops.

The final example of this section illustrates a Preisach operator
with a weighting function that has a complex distribution of
positive and negative domains and whose hysteresis loops has
four subloops.

Example 4.9: Consider a subset of Preisach domain P1 :=
{(α, β) | − 1 < β < 1, β < α < 1} and a weighting function
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Fig. 10. Weighting function μ(α, β) defined in (24) corresponding to a
Preisach multiloop operator.

defined by

μ(α, β) :=

{
sin (2π (α− β)) + sin (2π (α+ β)) , if (α, β) ∈ P1

0, otherwise.
(24)

The weighting function μ defined in (24) is illustrated in Fig.
10 . For this weighting function, there exist three nonempty
regions Ωα1

, Ωα2
, and Ωα3

that satisfy (12) and which are given
by

Ωα1
= {(α, β) ∈ P1 | − 0.5 < α < 1, −1 < β < −0.5}

Ωα2
= {(α, β) ∈ P1 | 0 < α < 1, −1 < β < 0}

Ωα3
= {(α, β) ∈ P1 | 0.5 < α < 1, −1 < β < 0.5}. (25)

Moreover, it can be verified that (12) does not hold for every
of next the regions

Ωα1− = {(α, β) ∈ P1 | − 0.75 < α < 1,−1 < β < −0.75}
Ωα1+

= {(α, β) ∈ P1 | − 0.25 < α < 1,−1 < β < −0.25}
Ωα2− = {(α, β) ∈ P1 | − 0.25 < α < 1,−1 < β < −0.25}
Ωα2+

= {(α, β) ∈ P1 | 0.25 < α < 1,−1 < β < 0.25}
Ωα3− = {(α, β) ∈ P1 | 0.25 < α < 1,−1 < β < 0.25}
Ωα3+

= {(α, β) ∈ P1 | 0.75 < α < 1,−1 < β < 0.75}.

Fig. 12 illustrates the three regions Ωα1
, Ωα2

, and Ωα3
with

a dashed line and Fig. 11 shows the input–output phase plot of
the Preisach operator with the weighting function (24) with a
periodic input whose maximum and minimum are umin = −1
and umax = 1. It can be verified that the hysteresis loop is com-
posed of four subloops and that there exist three crossover points
additional to the trivial ones corresponding to the maximum and
minimum of the input.

Fig. 11. Input–output hysteresis response using the multiple loops
Preisach multiloop operator. (a) Plot of input signal u in a periodic
time interval [t1, t1 + T ]. (b) Corresponding plot of output signal y. (c)
Input–output phase plot of input and output signal, which shows the
hysteresis loop with more than two subloops in different orientations.

Fig. 12. Weighting function μ(α, β) defined in (24) corresponding to a
Preisach multiloop operator. The regions defined in (25) that satisfy (12)
are indicated by the dashed line: Ωα1 in (a), Ωα2 in (b), and Ωα3 in (c).

V. SET STABILITY OF A LUR’E SYSTEM WITH A PREISACH

MULTILOOP OPERATOR IN THE FEEDBACK LOOP

In the previous sections, we have characterized the Preisach
butterfly and multiloop operator by analyzing the property of
the weighting function for particular periodic input–output pairs
exhibiting butterfly or multiloop. In this section, we present a
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brief example of the stability of a Lur’e-type system, where the
nonlinearity in the feedback loop is described by a Preisach
multiloop operator as a bounded operator whose input and
output are in AC(R+,R). We based our analysis on the results
introduced in [31], where a bounded relation between the input
and output rate of the Preisach operator has been found and
apply the same result to show that a Preisach multiloop operator
can be equally considered in the feedback loop. For this, let us
consider a Lur’e system which is described by

Σ1 : ẋ(t) = Ax(t) +Bw(t), x(0) = x0

z(t) = Cx(t)

Σ2 : y(t) = [P(u, L0)] (t), L0 ∈ I
with w(t) = −y(t), u(t) = z(t) (26)

where Σ1 is a linear system with time t ∈ R+, and x(t) ∈ Rn,
z(t), v(t), y(t) ∈ R, andA,B,C are the system’s matrices with
suitable dimension, and transfer function of Σ1 is given by
G(s) = C(sI −A)−1B. Additionally, Σ2 is a Preisach multi-
loop operator. This Lur’e system has a set of equilibria given
by

E = {(x̄, L̄) ∈ Rn × I | Ax̄−BP(Cx̄, L̄) = 0}.
Following from [31, Proposition 3.2 and 3.3], when the weight-
ing function μ of the Preisach operator is compactly supported,
the relation between the input and output rate can be expressed
by

ẏ(t) = ψ(t)u̇(t), a.a. t ∈ R+

where λm ≤ ψ(t) ≤ λM with λm and λM given by

λm = 2 min

⎧⎨
⎩ inf

(γ,κ)∈P

γ∫
κ

μ(γ, β)dβ, inf
(γ,κ)∈P

γ∫
κ

μ(α, κ)dα

⎫⎬
⎭

λM = 2 max

⎧⎨
⎩ sup

(γ,κ)∈P

γ∫
κ

μ(γ, β)dβ, sup
(γ,κ)∈P

γ∫
κ

μ(α, κ)dα

⎫⎬
⎭ .

We refer the interested readers to [31] for the details and
proofs of these claims. We state the next corollary, which follows
directly from [31, Proposition 4.1].

Corollary 5.1: Let P be the Preisach multiloop operator with
a compactly supported μ. Assume that (A,C) is observable and
(A,B) is controllable. Assume that G(jω) given by

G (jω) := (1 + λMG(jω)) (1 + λmG(jω))
−1

is strictly positive real with λM > 0 and λm < 0 being the upper
and lower bound of ψ(t). Then, (x(t), Lt) → E as t→ ∞.

Example 5.2: Consider a Lur’e system as defined in (26)
whose linear system matrices are given by

A =

⎡
⎣ 0 1 0

0 0 1
−26 −28 −3

⎤
⎦ , B =

⎡
⎣ 0

0
−26

⎤
⎦ , C =

[
1 0 0

]
.

Let the Preisach multiloop operator P in this Lur’e sys-
tem have the weighting function defined by (24) in Exam-
ple 4.6. It can be checked that λM = 4

π and λm = − 1
2π .

Moreover, it can be checked that conditions of Corollary 5.1

Fig. 13. Results of a simulation of a Lur’e system whose nonlinearity
is the Preisach multiloop operator with a weighting function defined as in
(24). (a) Input–output phase plot. The black dashed line shows the major
hysteresis loop, the red dashed line indicates the input–output pairs that
correspond to states (x̄, L̄) ∈ E , and the simulation is indicated by the
blue line where the initial input–output (y(0), u(0)) is indicated by the
circle and the final input–output (y(tf ), u(tf )) is marked by the cross.
(b) Linear system states.

are satisfied. The results of a simulation of this Lur’e system
with initial conditions of the linear system given by x0 =
[0.8,−1.0,−1.0]� and initial interface for the Preisach mul-
tiloop operator given by L0 = {(α, β) ∈ P | 0 < α < 1, β =
−0.9} ∪ {(α, β) ∈ P |α = 1, β < −0.9} ∪ {(α, β) ∈ P |α =
0, −0.9 < β} is illustrated in Fig. 13.

VI. CONCLUSION

In this article, we have introduced the concepts of butterfly
hysteresis operator based on the characterization of the enclosed
signed-area of its hysteresis loops and multiloop hysteresis op-
erator based on the self-intersections of its hysteresis loops.
We have studied the Preisach operator and provided conditions
over its weighting function such that a butterfly or a multiloop
hysteresis operator can be obtained. Moreover, we analyzed the
classical problem of a Lur’e system using a Preisach multiloop
as feedback loop.
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