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Characterisation of Ppy-lineage cells clarifies the functional
heterogeneity of pancreatic beta cells in mice
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Abstract
Aims/hypothesis Pancreatic polypeptide (PP) cells, which secrete PP (encoded by the Ppy gene), are a minor population of
pancreatic endocrine cells. Although it has been reported that the loss of beta cell identity might be associated with beta-to-PP
cell-fate conversion, at present, little is known regarding the characteristics of Ppy-lineage cells.
Methods We used Ppy-Cre driver mice and a PP-specific monoclonal antibody to investigate the association between Ppy-
lineage cells and beta cells. The molecular profiles of endocrine cells were investigated by single-cell transcriptome analysis and
the glucose responsiveness of beta cells was assessed by Ca2+ imaging. Diabetic conditions were experimentally induced in mice
by either streptozotocin or diphtheria toxin.
Results Ppy-lineage cells were found to contribute to the four major types of endocrine cells, including beta cells. Ppy-lineage
beta cells are a minor subpopulation, accounting for 12–15% of total beta cells, and are mostly (81.2%) localised at the islet
periphery. Unbiased single-cell analysis with a Ppy-lineage tracer demonstrated that beta cells are composed of seven clusters,
which are categorised into two groups (i.e. Ppy-lineage and non-Ppy-lineage beta cells). These subpopulations of beta cells
demonstrated distinct characteristics regarding their functionality and gene expression profiles. Ppy-lineage beta cells had a
reduced glucose-stimulated Ca2+ signalling response and were increased in number in experimental diabetes models.
Conclusions/interpretation Our results indicate that an unexpected degree of beta cell heterogeneity is defined by Ppy gene
activation, providing valuable insight into the homeostatic regulation of pancreatic islets and future therapeutic strategies against
diabetes.
Data availability The single-cell RNA sequence (scRNA-seq) analysis datasets generated in this study have been deposited in the
Gene Expression Omnibus (GEO) under the accession number GSE166164 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE166164).
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Abbreviations
[Ca2+]i Intracellular Ca2+ concentration
DEG Differentially expressed gene
DT Diphtheria toxin
DTA Diphtheria toxin A
FOLR1 Folate receptor 1
GCG Glucagon
GFP Green fluorescent protein
GO Gene ontology
INS Insulin
NPY Neuropeptide Y
PP Pancreatic polypeptide
PYY Peptide YY
scRNA-
seq

Single-cell RNA sequence

SPP1 Secreted phosphoprotein 1
SST Somatostatin
STZ Streptozotocin
TSPAN8 Tetraspanin 8

UCN3 Urocortin 3
UMAP Uniform manifold approximation and projection
UMI Unique molecular identifiers
WT Wild-type
YFP Yellow fluorescent protein

Introduction

The islets of Langerhans consist of alpha, beta and delta
cells and a fourth type of islet cell, namely, pancreatic
polypeptide (PP) cells. PP cells are located at the periph-
ery of the islets and secrete PP [1–3], encoded by the Ppy
gene. PP is a member of the neuropeptide Y (NPY) family
of peptides, which also includes peptide YY (PYY) and
NPY, all reported to be involved in appetite regulation [4,
5]. However, the precise physiological functions of these
peptides, including their roles in glucose homeostasis,
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remain poorly understood. A previous study demonstrated
that Ppy-lineage cells were indispensable for the differen-
tiation of a substantial fraction of endocrine cells by the
diphtheria toxin (DT)-induced ablation of Ppy-lineage
cells [6]. However, owing to the lack of specificity of
the available PP antibody and the fidelity of the Ppy
promoter used, the precise roles of Ppy-lineage cells have
not yet been clarified.

Beta cell failure is the main hallmark of type 2 diabetes
and it has been reported that inactivation of pancreatic and
duodenal homeobox 1 (encoded by Pdx1) in mature beta
cells results in the loss of beta cell identity and a beta-to-
alpha cell fate conversion in vivo [7, 8]. Moreover, a
reduction in the gene dose of Pdx1 by heterozygous dele-
tion of its evolutionarily conserved enhancer region
caused an increase not only in the number of alpha cells
but also in the number of PP cells in the pancreatic islets
of adult mice, together with insufficient beta cell devel-
opment [9]. In another report, Rip-Cre-mediated deletion
of Abcc8 in mice caused a sustained increase in intracel-
lular Ca2+ concentrations, whereas beta cells underwent a
fate switch to PP cells [10]. These findings suggest that
unhealthy beta cells may shift not only towards alpha
cells but also towards a PP cell fate.

Previous reports have highlighted the functional
heterogeneity of beta cells. Many of these reports have
particularly focused on the immature population of beta
cells. For instance, they characterised immature beta cells
located at the islet periphery, which are called ‘virgin beta
cells’ [11], and low GLUT2-expressing immature beta
cells with robust proliferative potential and resistance to
streptozotocin (STZ)-induced cytotoxicity [12–16]. Other
reports described Wnt-signal-regulated Fltp (also known
as Cfap126)-positive beta cells [17] or NPY-positive
immature beta cells [18]. The characterisation of beta cell
subpopulations from the viewpoint of functionality and
plasticity is especially important in the field of diabetes
treatment for the further identification of beta cell sources
with robust regenerative potential.

Methods

Animals The study protocol was reviewed and approved by
the Committee for Insti tutional Animal Care and
Experimentation at Gunma University. All animals were
housed in specific pathogen-free barrier facilities, main-
tained under a 12 h light/dark cycle, fed standard rodent
food (CLEA Japan, Tokyo, Japan) and had access to water
ad libitum. Male C57BL/6J mice (CLEA Japan, Tokyo,
Japan) were used in all experiments, except for the single-
cell RNA sequence (scRNA-seq) analysis and Ca2+ imaging
experiments, in which male B6.Cg-Tg(Ins1-EGFP)1Hara/J

(MIP-GFP) mice (stock number 006864; The Jackson
Laboratory, Bar Harbor, ME, USA; https://www.jax.org/
strain/006864) [19], which have a mixed background of
CD-1 and C57BL/6J, were used. Ppy-Cre knockin mice
were established previously (12-week-old male mice,
weighing 23–26 g, were used), with the protein-coding
region of Ppy in exon 2 being precisely replaced with that
of NLS-Cre [20]. Ppy-DTA knockin mice, in which the
diphtheria toxin A (DTA)-coding sequence was inserted in
the Ppy locus, were also established by CRISPR/Cas9-
mediated genome editing (12-week-old male mice,
weighing 23–26 g, were used). Ins-TR1 (C57BL/6-human
INS promoter-DTR TRECK) transgenic mice [21] have
been descr ibed previously . B6.129X1-Gt(ROSA)
26Sortm1(EYFP)Cos/J (Rosa26-YFP) mice (stock number
006148; The Jackson Laboratory; https://www.jax.org/
strain/006148) and B6;129S6-Gt(ROSA)26Sortm14(CAG-

tdTomato)Hze/J (Rosa26-tdTomato) mice (stock number
007908; The Jackson Laboratory; https://www.jax.org/
strain/007908) were used as reporter mice. Randomisation
and blinding were not carried out in this study. Mice outside
of the indicated weight range were excluded from the
experiments. We repeated all experiments at least twice,
except for scRNA-seq analysis, which was validated by
additional immunohistochemistry. To perform the IPGTT,
2 g/kg of glucose was injected intraperitoneally into mice
and blood glucose levels were measured at the indicated
times.

Immunohistochemistry and cell quantification Harvested
pancreases were divided into the head and tail and fixed in
4% vol./vol. paraformaldehyde at 4°C overnight. Then,
pancreases were immersed in sucrose solution for 24 h prior
to embedding in O.C.T compound (Sakura Finetek Japan,
Osaka, Japan). Frozen pancreas blocks were sectioned at
14 μm thickness and immunostained. The following primary
antibodies were used at the stated dilutions: guinea pig anti-
insulin (INS; 1:100; DAKO, Glostrup, Denmark; catalogue
no. IR002); mouse anti-glucagon (GCG; 1:1000; Abcam,
Cambridge, UK; catalogue no. ab10988); rabbit anti-GCG
(1:1000; Abcam; catalogue no. ab92517); rabbit anti-
somatostatin (SST; 1:1000; Peninsula Laboratories, San
Carlos, CA, USA; catalogue no. T-4103), mouse anti-PP
(1:1000; IBL, Gunma, Japan; catalogue no. 23-2D3 [20]);
chicken anti-green fluorescent protein (GFP; 1:1000;
Abcam; catalogue no. ab13970); rabbit anti-chromogranin-A
(1:100; Abcam; catalogue no. ab15160); rabbit anti-GLUT2
(1:200; Abcam; catalogue no. ab54460); rabbit anti-urocortin
3 (UCN3; 1:500; Phoenix Pharmaceuticals, Burlingame, CA,
USA; catalogue no. H-019-29); rat anti-tetraspanin 8
(TSPAN8; 1:50; R&D Systems, Minneapolis, MN, USA;
catalogue no. MAB6524); rabbit anti-folate receptor 1
(FOLR1; 1:100; Thermo Fisher Scientific, Waltham, MA,
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USA; catalogue no. PA5-42004); and rabbit anti-secreted
phosphoprorein 1 (SPP1; 1:500; Sigma-Aldrich;, St Louis,
MO, USA; catalogue no. AB10910). Primary antibodies were
detected with the secondary antibodies listed in electronic
supplementary material (ESM) Table 1, all used at 1:1000
dilution. DAPI (Dojindo, Kumamoto, Japan) was used for
nuclear counterstaining. Fluorescence images were captured
using an FV1000-D confocal microscope (Olympus, Tokyo,
Japan). The total number of hormone- and yellow fluorescent
protein (YFP)-positive cells in five to ten islets per pancreas
from four mice per genotype were manually counted using
Adobe Photoshop 2021 (Adobe, San Jose, CA, USA). Beta
cell mass was measured as described previously [22].

Diabetes induction Diabetes was induced either by the injec-
tion of STZ (Sigma-Aldrich) into Ppy-Cre;Rosa26-YFP mice
or by the injection of DT (Sigma-Aldrich) into Ppy-
Cre;Rosa26-YFP;Ins-TR1 mice. Blood glucose levels were
monitored using Glutest mint (Sanwa Kagaku Kenkyusyo,
Aichi, Japan). STZ was dissolved in citrate buffer (pH 4.5)
prior to injection, and a single dose of 200 mg/kg was injected
intraperitoneally into 6-week-old male mice (18–22 g). DT
was dissolved in PBS prior to injection and a single dose of
100 ng/kg was injected intraperitoneally into 6-week-old male
Ppy-Cre;Rosa26-YFP;Ins-TR1 mice. Mice were killed at
7 days or 5 weeks after the injection.

Ca2+ imaging Islets were isolated from the pancreases of 8-
to 10-week-oldMIP-GFP;Ppy-Cre;Rosa26-tdTomatomice
(22–25 g), as described previously [23]. Isolated beta cells
were seeded onto poly-L-lysine-coated glass-bottomed
dishes (MatTek Corporation, Ashland, MA, USA) 24 h
before observation. Cells were washed with modified
KRB buffer. Cells were loaded with 2 μmol/l Fura 2-AM
(Dojindo, Kumamoto, Japan) and 0.01% vol./vol.
Cremophor EL (Sigma-Aldrich) in a humidified incubator
(95% air and 5% CO2 at 37°C) for 30 min. After washing
with modified KRB, the cells were visualised using an
Olympus UPlanAPO 10× water objective lens (Olympus).
To obtain fluorescence images, the AQUACOSMOS/
ASHURA 3CCD-based fluorescence energy transfer imag-
ing system (Hamamatsu Photonics, Tokyo, Japan) was
used. The ratio of 340/380 nm fluorescence was calculated
and values were normalised to F0.

Statistical analysis (other than for scRNA-seq analysis data)
Statistical analysis was performed using GraphPad Prism
9 software (GraphPad Software, San Diego, CA, USA).
Data were expressed as means ± SEMs. Statistical
comparisons between two groups were performed by the
two-tailed Student’s t test, and one-way ANOVA follow-
ed by the Bonferroni post hoc test was used for compar-
isons between groups. A p value of less than 0.05 was

considered to indicate a statistically significant difference
between groups.

scRNA-seq analysis Islet cells were isolated from an 8-week-old
maleMIP-GFP;Ppy-Cre;Rosa26-tdTomato mouse. Cell quali-
ty was checked under a microscope before loading cells onto
the chip, and cell viability was confirmed to be 84%. Cells that
met one or more of the following three criteria, including
doublets, were excluded from further analysis: (1) cells with
200 or less, or 8000 or more detected genes per cell; (2) cells
with 80,000 or more unique molecular identifiers (UMIs) per
cell; and (3) cells with 5% or more mitochondrial gene UMIs /
the number of total gene UMIs per cell. Isolated single cells
were loaded for scRNA-seq analysis using the Chromium
System (10x Genomics, Pleasanton, CA, USA), following the
manufacturer’s protocol of Single Cell 3′Library kit v3.1. RNA
libraries were sequenced on a Nova Seq6000 platform
(Illumina, SanDiego, CA,USA)with the following sequencing
parameters: 28 bp read 1; 8 bp index 1; 91 bp read 2.

Analysis of scRNA-seq data Sequencing data were aligned to
the mouse genome, Genecode release M25/GRCm38.p6 with
GFP and tdTomato sequences, and UMI-collapsed with the
Cell Ranger (v3.1.0) pipeline (10x Genomics).

For pre-processing of data, the Seurat (v3.1) R package for
quality control filtering was used. Genes that were detected in
at least three cells, and cells with more than 200 detected
genes were selected. In addition, only cells with less than
8000 detected genes, less than 5% of mitochondrial genes,
and less than 80,000 detected UMIs were retained.

Normalisation was performed using the global-scaling
normalisation method, which normalises gene expression
measurements for each cell by total gene expression, and
then multiplies them by 10,000, and finally log-transforms
the results. The variable genes were identified using the
‘vst’ method. Data were scaled to regress out the cell
cycle score, the number of UMIs and the percentage of
mitochondrial gene expression.

Based on the extracted variable genes, dimensionality
reduction was performed by principal component analy-
sis. A total of 50 dimensions were used for whole-cell
analysis and 75 dimensions for beta cell analysis. Cell
clustering was performed according to the Shared
Nearest Neighbors method and was visualised in two-
dimension by uniform manifold approximation and
projection (UMAP).

Differentially expressed genes (DEGs) were identified
by comparing the expression levels of the cluster cells with
all other cells. For the analysis of statistical significance, the
likelihood ratio test was performed by modelling as a two-
part generalised regression model using model-based anal-
ysis of single-cell transcriptomics [24], and the Bonferroni
method was used for multiple comparison adjustment. The

2806 Diabetologia (2021) 64:2803–2816



mean fold change of expression was calculated by the
following formula:
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f

g
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Fig. 1 Analysis of Ppy-lineage cells using novel Ppy-Cre mice. (a) Ppy-
Cre mice were crossed with Rosa26-YFP mice to generate Ppy-
Cre;Rosa26-YFP mice. (b) YFP+ PP+ cells (yellow arrowheads) and
YFP single-positive cells (green arrowheads) in the head of the pancreas
of adult Ppy-Cre;Rosa26-YFP mice. Representative images of n = 4
mice. Scale bar, 50 μm. (c–e) YFP+ INS+ cells (c), YFP+ GCG+ cells
(d) and YFP+ SST+ (e) double-positive cells in the head of the pancreas of

adult Ppy-Cre;Rosa26-YFPmice (yellow arrowheads for all). Scale bars,
50 μm. (f) The ratio of YFP+ INS+/GCG+/SST+/PP+ (YFP+ hormone+)
cells to total YFP+ cells in the pancreas of adult Ppy-Cre;Rosa26-YFP
mice (n = 4). (g) The ratio of YFP+ hormone+ cells to each type of
hormone+ cell in the pancreas of adult Ppy-Cre;Rosa26-YFP mice (n =
4). Data are shown as the mean ± SEM. *p < 0.05, **p < 0.01, (two-
tailed Student’s t test)
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Mean fold change of expression

¼ mean expression of the cluster þ 1ð Þ=
mean expression of all cells other than the cluster þ 1ð Þ

Results

Ppy-lineage cells contribute to the four major types of endo-
crine cells The findings that the loss of beta cell identity
may be associated with beta-to-PP cell-fate conversion led
us to investigate the association between Ppy-lineage cells
and beta cells. For this purpose, we analysed the fate of
Ppy-expressing cells by developing a novel Ppy-knockin
Cre driver, in which the coding region of the Ppy locus
was replaced by that of Cre recombinase (Fig. 1a), and a
PP-specific antibody (23-2D3) with no cross-reactivity to
PYY or NPY [20]. In 12-week-old male Ppy-Cre;Rosa26-
YFP mice, about 90% of the cells positive for PP encoded
by the Ppy gene were positive for YFP, indicating high
fidelity of this reporter (Fig. 1b). Notably, there were
some YFP+ cells that were negative for PP (Fig. 1b,
green arrowheads). Immunostaining analysis demonstrat-
ed that Ppy-lineage YFP+ cells contained cells that were
costained for INS, GCG, SST or PP, indicating that Ppy-
lineage cells contribute to all the four major types of endo-
crine cells (Fig. 1c–f). Some YFP+ GCG+ cells and YFP+

SST+ cells were also positive for PP, but there were very
few YFP+ INS+ PP+ triple-positive cells (ESM Fig. 1a–c).
The frequency of Ppy-lineage beta cells among total islet
cells was similar between the head (14.9%) and tail
(12.4%) of the pancreas, whereas the frequency of Ppy-
lineage alpha (GCG+), delta (SST+) and PP cells differed
between the two regions of the pancreas (Fig. 1g). We
counted at least 1400 INS+ cells and 230 SST+ cells in
the pancreatic head and tail of each mouse, and the

number of each cell type was comparable between the
two regions in each mouse. Importantly, we counted
365–489 GCG+ cells for each pancreatic tail but only
96–223 for each pancreatic head, and 258–436 PP+ cells
for each pancreatic head but only 7–53 for each pancreatic
tail. This difference in the population of endocrine cells
between the head and tail is consistent with a previous
report [25]. Ppy-lineage beta cells were mostly located at
the peripheral region of the islets (81.2%), with a few cells
in the central core of the islets (18.8%) (Fig. 1c and ESM
Fig. 1a). As PP cells are much more abundant in the head
of the pancreas, which is supposed to reflect the dynamics
of Ppy-lineage and PP cells more accurately than the tail
of the pancreas, we used this region for all subsequent
analyses, unless otherwise stated.

Ppy-DTA mice, which lack Ppy-lineage endocrine cells,
demonstrate normal glucose tolerance We next investigated
the physiological roles of Ppy-lineage cells and PP cells using
12-week-old malePpy-DTAmice (Fig. 2a). In Ppy-DTAmice,
Ppy-lineage cells are designed to express DTA, and these cells
eventually die owing to the accumulation of DTA. The
composition of islet cells in Ppy-DTA mice was significantly
different from that of wild-type (WT) mice, particularly
regarding non-beta endocrine cells. PP cells were almost
completely absent in 12-week-old Ppy-DTA mice (Fig. 2b),
and the ratio of alpha and delta cells to total islet cells was
significantly lower in the head of the pancreas of Ppy-DTA
mice than in WT mice (Fig. 2c–h). These data are consistent
with the results that a substantial number of alpha and delta
cells have a history of Ppy activation (Fig. 1g). Although beta
cell mass was also significantly smaller in the head of the
pancreas of Ppy-DTA mice compared with WT mice (Fig.
2i), Ppy-DTA mice showed normal glucose tolerance (Fig.
2j). This indicates that Ppy-lineage cells, including Ppy-line-
age beta cells and PP cells, are dispensable for maintaining
glucose tolerance at least in physiological conditions.

scRNA-seq analysis clarified the heterogeneity of Ppy expres-
sion in beta cells To investigate the molecular profiles of Ppy-
lineage beta cells, we performed scRNA-seq analysis of islets
(both the pancreatic head and tail) from an 8-week-old MIP-
GFP;Ppy-Cre;Rosa26-tdTomato mouse. We profiled a total
of 3949 cells using scRNA-seq analysis, and they were divid-
ed into 16 clusters (Fig. 3a–f). Each cluster was mapped to
endocrine cells, exocrine cells or other known cell types. We
also identified the recently described Procr+ progenitor cells,
reproducing a recent study [26]. The PP cell population
demonstrated the expression of unique signature genes,
including the previously reported Ppy, Pyy, Tspan8 and
Folr1 genes (ESM Fig. 2a, ESM Table 2) [26]. tdTomato
was also detected as a marker gene for PP cells. Violin plots
of tdTomato showed similar profiles to Ppy (Fig. 3e,f),

�Fig. 2 Analysis of Ppy-DTAmice. (a) Diagram of genotype of Ppy-DTA
knockin mice. (b) Immunohistochemical analysis revealed almost
complete deletion of PP cells in the head of the pancreas of adult Ppy-
DTAmice. Representative images of n = 4 mice. CHGA, chromogranin-
A. Scale bar, 50 μm. (c, d) Immunohistochemical analysis of INS+ and
GCG+ cells in the head of the pancreas of adult WT mice (c) and Ppy-
DTA mice (d). Representative images of n = 4 mice. Scale bars, 50 μm.
(e) Ratio of GCG+ cells to total islet cells in adult WT vs Ppy-DTA mice
(n = 4). (f, g) Immunohistochemical analysis of INS+ and SST+ cells in
the head of the pancreas of adult WT mice (f) and Ppy-DTA mice (g).
Representative images of n = 4 mice. Scale bars, 50 μm. (h) Ratio of
SST+ cells to total islet cells in adult WT vs Ppy-DTA mice (n = 4). (i)
Beta cell mass in the head of the pancreas of Ppy-DTAmice vs WT mice
(n = 6). (j) Results of IPGTT performed on adult WTmice and Ppy-DTA
mice. Data are shown as the mean ± SEM. *p < 0.05, **p < 0.01, (two-
tailed Student’s t test)
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corresponding to the Ppy-Cre-mediated activation of the
tdTomato gene. Signals of tdTomato were detected not only
in PP cells but also in alpha and delta cells (Fig. 3f). Therefore,
the above data are consistent with the results that a significant
fraction of alpha and delta cells have a history of Ppy activa-
tion (Fig. 1g).

To gain further insight into the heterogeneity of beta cells,
transcriptomic characterisation of INS+ beta cells containing
clusters beta-1, -2 and -3 was performed (see Fig. 3a). Refined
clustering of beta cells demonstrated the presence of seven
clusters (Fig. 3g–l, ESM Fig. 2b). In total, 24.6% of beta cells
expressed Ppy mRNA and, importantly, such cells were
enriched in clusters 4, 6 and 3, rather than being scattered
among all beta cells, which is consistent with the enrichment
of tdTomato mRNA (Fig. 3k,l). In cluster 3, however, the
enrichment of Ppy and tdTomato mRNA was highly hetero-
geneous, in contrast to the homogeneous and clear enrichment
ofPpy and tdTomatomRNA in clusters 4 and 6 (violin plots in
Fig. 3k,l). For this reason, clusters 4 and 6 were annotated as
Ppy-lineage beta cells and clusters 0, 1, 2 and 5 were annotat-
ed as non-Ppy-lineage beta cells in this study, and they were
subjected to further analysis, including DEG and Gene
Ontology (GO) analyses.

DEG analysis between Ppy-lineage and non-Ppy-lineage
beta cells (ESM Table 3) demonstrated that Ppy-lineage beta
cells show an upregulation of some of the signature genes for
PP cells, including Tspan8, Folr1, Spp1 and Pyy in addition to
Ppy, indicating that these beta cells share molecular character-
istics with canonical PP cells. Moreover, these beta cells
showed the downregulation of key genes for beta cell matu-
ration and INS secretion (e.g. Slc2a2,Ucn3, Ins1, Ins2,MafA,
Nkx6.1 [also known as Nkx6-1], Neurod1, G6pc2, Sytl4 and
Ero1lb [also known as Ero1b]; ESM Table 3). GO analysis of
the DEGs identified the upregulation of several cell pathways,

including the cell proliferation pathway, and the downregula-
tion of the transport and INS secretion pathway in Ppy-lineage
beta cells compared with non-Ppy-lineage beta cells (Fig.
3m,n).

TSPAN8 is a marker for Ppy-lineage beta cells Next, to vali-
date the molecular profiles of Ppy-lineage beta cells shown by
scRNA-seq analysis at the protein level, we performed immu-
nohistochemical analysis of some of the upregulated and
downregulated markers extracted from DEG analysis and
compared them inPpy-lineage and non-Ppy-lineage beta cells.
Among the markers analysed, we found that TSPAN8 was
specifically expressed in Ppy-lineage beta cells. TSPAN8 is
a member of the tetraspanin transmembrane protein family
and has been reported as a PP-cell signature gene [26].
Approximately 40% of Ppy-lineage beta cells expressed
TSPAN8, and, importantly, no expression was observed in
non-Ppy-lineage beta cells (Fig. 4a).

As a negative marker, we found a low expression of
GLUT2/Slc2a2 in Ppy-lineage beta cells at the islet periphery
(Fig. 4b). We also observed a lower expression of UCN3, a
beta cell maturation marker, in Ppy-lineage beta cells
compared with non-Ppy-lineage beta cells (Fig. 4c). These
immunohistochemical results further confirm the PP-cell-like
molecular characteristics and immaturity of Ppy-lineage beta
cells indicated by scRNA-seq analysis.

Ppy-lineage beta cells demonstrate reduced glucose-
stimulated Ca2+ responses Our scRNA-seq analyses demon-
strated lower expression of a group of genes implicated in beta
cell maturation and INS secretion in Ppy-lineage beta cells
compared with non-Ppy-lineage beta cells (ESM Table 3).
We hence postulated that Ppy-lineage beta cells may demon-
strate decreased glucose responsiveness. To assess this, islets
from 8- to 10-week-old MIP-GFP;Ppy-Cre;Rosa26-
tdTomato mice were dispersed into single cells and then the
increase in intracellular Ca2+ concentrations ([Ca2+]i), which
is the final trigger of INS exocytosis, was measured in isolated
non-Ppy-lineage (GFP+) and Ppy-lineage (GFP+ tdTomato+)
beta cells during exposure to basal (2.8 mmol/l) and high
(25 mmol/l) glucose concentrations (Fig. 5a). Single-cell
Ca2+ imaging demonstrated that 25 mmol/l glucose increased
[Ca2+]i in both beta cell types (Fig. 5b). The peak Ca2+

response was smaller in Ppy-lineage beta cells than in non-
Ppy-lineage beta cells (Fig. 5c,d). Accordingly, the AUC of
[Ca2+]i was significantly decreased in Ppy-lineage beta cells.
A similar increase in [Ca2+]i was observed in both beta cell
types when cells were depolarised by a 40 mmol/l K+ stimu-
lation (Fig. 5e). Taken together, the results of our physiolog-
ical studies demonstrated that Ppy-lineage beta cells show a
smaller glucose-stimulated Ca2+ response, supporting our
molecular findings.

�Fig. 3 Single-cell transcriptome analysis of Ppy-lineage beta cells. (a)
UMAP visualisation (in two dimensions [UMAP_1 and UMAP_2] of
3949 islet cells from an 8-week-old male MIP-GFP;Ppy-Cre;Rosa26-
tdTomato mouse. Cell counts of each cluster are presented in brackets.
(b–f) Feature plot and violin plot of Ins2 (b),Gcg (c), Sst (d), Ppy (e) and
tdTomato (f) mRNA expression in the various islet cell clusters. Relative
expression index (arbitrary units) is shown on y-axes. (g) Reclustering of
beta cells by UMAP visualisation identified seven subclusters (no. 0 to
no. 6). (h–l) Feature plot and violin plot of Ins2 (h), Gcg (i), Sst (j), Ppy
(k) and tdTomato (l) mRNA expression in the various beta cell clusters
shown in (g). Relative expression index (arbitrary units) is shown on y-
axes. (m, n) GO analysis based on DEGs between Ppy-lineage and non-
Ppy-lineage beta cells was performed using ShinyGO v0.61 Gene
Ontology Enrichment Analysis. GO biological process output to
comma-separated values files were saved, and all pathways with an
adjusted p value of less than 0.01 were selected for the analysis.
Commonly recurring and highly ranked GO pathways, which were
highly enriched in genes derived from the differential gene expression
analysis were selected. p values were normalised using the following
formula: –log10(p value). GO pathways upregulated (m) and
downregulated (n) in Ppy-lineage beta cells are shown. P&S, Procr+

and stellate
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Ppy-lineage beta cells with low GLUT2 expression become
dominant after STZ administration to mice To characterise
the behaviour of Ppy-lineage beta cells in diabetes, a single
dose of 200 mg/kg STZ was administered to 6-week-old male
Ppy-Cre;Rosa26-YFPmice. Mice were killed after 7 days and
their pancreatic tissue was analysed. Mice became
hyperglycaemic shortly after STZ injection and Ppy-lineage
beta cells became relatively dominant (Fig. 6a,b), accounting
for 48.8% of the remaining beta cells. TSPAN8+ INS+ beta
cells also became dominant (ESM Fig. 3a–c), consistent with
the results shown in Fig. 4a. However, the induction of
hyperglycaemia by the administration of DT to 6-week-old
male Ppy-Cre;Rosa26-YFP;Ins-TR1mice, in which beta cells
can be ablated by the administration of DT acting on the DT
receptors that they express, did not change the proportion of
Ppy-lineage beta cells among the remaining beta cells 7 days
after DT administration (Fig. 6c,d). Considering that STZ is
transported into beta cells via GLUT2, the increased popula-
tion of Ppy-lineage beta cells in the islets of mice with STZ-
induced diabetes is thought to correspond to the Ppy-lineage
beta cells with low expression of Slc2a2/GLUT2 observed by
scRNA-seq analysis and immunohistochemistry. Intriguingly,
Ppy-lineage beta cells became dominant also in Ppy-
Cre;Rosa26-YFP;Ins-TR1 mice 5 weeks after DT administra-
tion (Fig. 6e,f), suggesting thatPpy-lineage beta cells are more
resistant to prolonged hyperglycaemia than non-Ppy-lineage
beta cells.

Discussion

In this study, lineage tracing and scRNA-seq analysis using
lineage tracers were performed to characterise PP cells and
Ppy-lineage cells. YFP and tdTomato were detected in alpha
and delta cells, in addition to beta cells (Figs 1c–e, 3f),
suggesting that a substantial fraction of endocrine cells have
a history of Ppy gene activation. Indeed, scRNA-seq analysis
of adult WT islets showed that a subpopulation of alpha, beta
and delta cells express Ppy mRNA, and the coexpression of
PP and other endocrine hormones in these cells was confirmed
at the protein level (ESM Fig. 1a–c). The substantial reduction
of alpha and delta cell numbers in Ppy-DTA mice (Fig. 2c–h)
also supports the idea that activation of the Ppy gene occurs in
these endocrine cell types.

Ppy-lineage cells can contribute to all four major types of
endocrine cells. The results of cell-lineage tracing may simply
reflect the heterogeneity of beta cells, in which a subpopula-
tion of beta cells express Ppy. Beta cell heterogeneity has
attracted much attention and provides additional insight into
the homeostatic regulation of islet function in the progression
and treatment of diabetes. ‘Virgin beta cells’ [11] showed
similar characteristics to the Ppy-lineage beta cells, with low
levels of GLUT2 expression and their localisation at the islet
periphery. However, these beta cells were shown to be
induced via alpha-to-beta transdifferentiation, as assessed by
Gcg-Cre-mediated lineage tracing. Therefore, ‘virgin beta
cells’ were considered as a neogenic niche, a continuous

YFP /GLUT2 
INS

b

YFP /UCN3
INS

c

a
YFP TSPAN8 INS Merge

Fig. 4 Ppy-lineage beta cells show higher expression of TSPAN8 and
lower expression of GLUT2 and UCN3 than non-Ppy-lineage beta cells.
(a) Immunohistochemical analysis of YFP+, TSPAN8+ and INS+ cells in
the head of the pancreas of Ppy-Cre;Rosa26-YFPmice. Enlarged images
of the inset are shown, with YFP+ TSPAN8+ INS+ cells indicated by
arrowheads. Scale bar, 50 μm. (b) Immunohistochemical analysis of
YFP+, GLUT2+ and INS+ cells in the head of the pancreas of Ppy-

Cre;Rosa26-YFP mice. Enlarged images of the inset are shown, with
YFP+ GLUT2− INS+ cells indicated by the dotted area. Scale bar,
50 μm. (c) Immunohistochemical analysis of YFP+, UCN3+ and INS+

cells in the head of the pancreas of Ppy-Cre;Rosa26-YFPmice. Enlarged
images of the inset are shown, with YFP+ UCN3− INS+ cells indicated by
the dotted area. Representative images of n = 4 mice. Scale bar, 50 μm
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supply of cells provided from alpha cells. There are reports of
other beta cell subpopulations showing low levels of GLUT2
expression, robust proliferative capacity and resistance to
STZ-induced cytotoxicity [12–16], possibly sharing the char-
acteristics of Ppy-lineage beta cells shown in the present study
(i.e. immaturity and impaired function confirmed by the low
expression of GLUT2 and UCN3 and a low glucose-
stimulated Ca2+ response). However, these previous studies
lacked analysis using a molecular marker that identifies
specific types of beta cells, and we propose that Ppy gene
expression is a candidate for such a marker.

Additional analysis of the pathophysiological characteris-
tics of Ppy-lineage beta cells in diabetic conditions using Ppy-
CreERT2 knockin mice, which we generated together with
Ppy-Cre knockin mice (data not shown), is expected to
provide further useful information. However, as the pulse-
and-chase labelling efficiency of these mice (particularly in

their Ppy-lineage beta cells) is low, it is difficult to analyse
the dynamics of Ppy-lineage beta cells within a specific time
window in these mice. This insufficient labelling efficiency of
Ppy-lineage beta cells might be owing to suppressed activity
of the Ppy promoter during their differentiation into beta cells.
The establishment of tools and techniques for detecting low
levels of Ppy gene transcription in endocrine cells within a
specific timewindowwill resolve this limitation of our present
study.

In this study, we found that 40% of the Ppy-lineage beta
cells express TSPAN8 (Fig. 4a), a member of the tetraspanin
transmembrane protein family that is mainly expressed in the
gastrointestinal tract in both mice and humans [27]. Tspan8
has been reported as a PP-cell signature gene [26] that is
highly expressed in human pancreatic ductal progenitors
[28]. Other PP-cell signature markers, such as PP (ESM Fig.
1a), FOLR1 and SPP1 (ESM Fig. 4a,b), were rarely merged
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Fig. 5 Comparison of glucose-stimulated Ca2+ influx between Ppy-line-
age and non-Ppy-lineage beta cells. (a) Diagram of the method of iden-
tification of Ppy-lineage and non-Ppy-lineage beta cells using two
reporters, GFP and tdTomato. (b) Ca2+ response to high-glucose stimu-
lation in non-Ppy-lineage beta cells (green cells; n = 223) and Ppy-line-
age beta cells (yellow cells; n = 84) from a total of n = 10 mice (n = 5
mice per group). Fura2-ratio is the ratio of 340/380 nm fluorescence. (c,

d) Representative time course of Ca2+ responses in green cells (n = 111
cells) (c) and yellow cells (n = 44 cells) (d) from n = 1 mouse at glucose
concentrations of 2.8 mmol/l (G2.8) and 25 mmol/l (G25). (e) Ca2+

response to 40 mmol/l K+ stimulation in non-Ppy-lineage beta cells
(green cells; n = 62) and Ppy-lineage beta cells (yellow cells; n = 49)
from a total of n = 8 mice (n = 4 mice per group). Data are shown as the
mean ± SEM. **p < 0.01, (two-tailed Student’s t test)
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with Ppy-lineage beta cells [26, 29]. Some recent reports
showed that TSPAN8 regulates cell proliferation, invasion
and metastasis in various types of tumours, including

pancreatic adenocarcinoma [30]. Further investigation of the
physiological role of TSPAN8 in Ppy-lineage beta cells will
also clarify the physiological role of Ppy-lineage beta cells,

a

c

e

YFP INS Merge

YFP INS Merge

YFP INS Merge

0

10

20

30

40

50 **

b

d

f

80

60

40

20

25

20

15

10

0

5

0

Y
F

P
+
 IN

S
+
 c

el
ls

/
to

ta
l I

N
S

+
 c

el
ls

 (
%

)
Y

F
P

+
 IN

S
+
 c

el
ls

/
to

ta
l I

N
S

+
 c

el
ls

 (
%

)
Y

F
P

+
 IN

S
+
 c

el
ls

/
to

ta
l I

N
S

+
 c

el
ls

 (
%

)

Ctrl STZ

Ctrl DT

Ctrl DT

**

Fig. 6 Characteristics of Ppy-lineage beta cells under hyperglycaemic
conditions. (a) Immunohistochemical analysis of YFP+ INS+ cells
(arrowheads) in the head of the pancreas of Ppy-Cre;Rosa26-YFP mice
7 days after 200 mg/kg STZ injection. Scale bar, 50 μm. (b) Ratio of
YFP+ INS+ cells to total INS+ cells in the head of the pancreas of Ppy-
Cre;Rosa26-YFP mice 7 days after 200 mg/kg STZ injection compared
with control mice (n = 4). Control mice were treated with citrate buffer.
(c) Immunohistochemical analysis of YFP+ INS+ cells (arrowheads) in
the head of the pancreas of Ppy-Cre;Rosa26-YFP;Ins-TR1 mice 7 days
after 100 ng/kg DT injection. Scale bar, 50 μm. (d) Ratio of YFP+ INS+

cells to total INS+ cells in the head of the pancreas of Ppy-Cre;Rosa26-

YFP;Ins-TR1 mice 7 days after 100 ng/kg DT injection compared with
control mice (n = 4). Control mice were treated with PBS. (e)
Immunohistochemical analysis of YFP+ INS+ cells (arrowheads) in the
head of the pancreas of Ppy-Cre;Rosa26-YFP;Ins-TR1 mice 5 weeks
after 100 ng/kg DT injection. Scale bar, 50 μm. (f) Ratio of YFP+ INS+

cells to total INS+ cells in the head of the pancreas of Ppy-Cre;Rosa26-
YFP;Ins-TR1 mice 5 weeks after 100 ng/kg DT injection compared with
control mice (n = 4). Control mice were treated with PBS. Ctrl, control
mice. Data are shown as the mean ± SEM. **p < 0.01 (two-tailed
Student’s t test)
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particularly those associated with their proliferative character-
istics. Regarding cell proliferation, DEG analysis identified
the upregulation of cell proliferation markers in Ppy-lineage
beta cells (e.g. Jun, Junb, Fyn, Fgfr1, Pdgfb and Reg1). Of
these enriched genes, Pdgfb and Reg1 are of particular inter-
est, as they have been reported to regulate beta cell prolifera-
tion during ageing and in some models of diabetes [31–34].
The upregulation of these genes associated with beta cell
proliferation indicates that Ppy-lineage beta cells are a prom-
ising therapeutic target in diabetes.

In summary, we found an unexpected degree of beta cell
heterogeneity while investigating the characteristics of Ppy-
lineage cells. High-resolution single-cell transcriptome analy-
sis demonstrated that this subpopulation of beta cells shows
unique functional characteristics and gene expression profile.
We can speculate thatPpy-lineage beta cells with low levels of
GLUT2 and UCN3 expression may be generated by the
pancreas to survive conditions of metabolic stress under
hyperglycaemia, at the expense of glucose-induced INS secre-
tion. Identification of this unique subpopulation of beta cells is
expected to provide valuable insight into the homeostatic
regulation of islet function and contribute towards the devel-
opment of novel therapeutic strategies to cure diabetes.
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