This is a pre-copyedited, author-produced version of an article accepted for publication in FEMS Microbiology Letters following peer review. The version of record Toshifumi Tomoyasu, Masaki Matoba, Ayuko Takao, Atsushi Tabata, Robert A Whiley, Nobuko Maeda, Hideaki Nagamune, Rapid screening method for detecting highly pathogenic Streptococcus intermedius strains carrying a mutation in the lacR gene, FEMS Microbiology Letters, Volume 365, Issue 3, February 2018, fnx258 is available online at: https://doi.org/10.1093/femsle/fnx258

1 Rapid screening method for detecting highly pathogenic *Streptococcus intermedius*

\sim		•		•	41	1 D	
7	strains	carrying a	a mutation	in	the	Iack	gene.
		cur jing i	· mata carton		vii e		501101

4	Toshifumi Tomoyasu ^{1,2,3} , Masaki Matoba ³ , Ayuko Takao ⁴ , Atsushi Tabata ^{1,3} , Robert A.
5	Whiley ⁵ , Nobuko Maeda ⁴ , Hideaki Nagamune ^{1,3,*}
6	¹ Field of Biomolecular Functions and Technology, Department of Bioscience and
7	Bioindustry, Graduate School of Bioscience and Bioindustry, Tokushima University
8	Graduate School, Minami-josanjima-cho, Tokushima 770-8513, Japan; ² Department of
9	Resource Circulation Engineering, Center for Frontier Research of Engineering,
10	Tokushima University Graduate School, Minami-josanjima-cho, Tokushima 770-8506,
11	Japan; ³ Department of Biological Science and Technology, Institute of Technology and
12	Science, Tokushima University Graduate School, Minami-josanjima-cho, Tokushima
13	770-8506, Japan; ⁴ Department of Oral Microbiology, School of Dental Medicine,
14	Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku 230-8501, Japan; ⁵ Department of
15	Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Bart's and The London
16	School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street,

17	London	E1	2AT,	United	Kingdom.
----	--------	----	------	--------	----------

19	Corresponding author. Department of Bioscience and Bioindustry, Graduate School of
20	Bioscience and Bioindustry, Tokushima University Graduate School,
21	Minami-josanjima-cho, Tokushima 770-8513, Japan. Tel and Fax: +81-88-656-7525;
22	E-mail: <u>nagamune@tokushima-u.ac.jp</u> .
23	
24	Key words: Streptococcus intermedius, Intermedilysin, Screening, MsgA, NanA, LacR.
25	
26	One sentence summary: Rapid screening method for highly pathogenic S. intermedius
27	strains based on the ratio of activities of MsgA and NanA resulting from lacR
28	mutations.

29 ABSTRACT

Streptococcus intermedius is a member of the normal human commensal flora and 30 31 secretes a human-specific cytolysin intermedilysin (ILY) as a major virulence factor. 32 Expression of *ily* is repressed by LacR and loss-of-function mutations of LacR are 33 observed in many ILY high-producing strains isolated from deep-seated abscesses, 34 suggesting that high ILY production is necessary for increased virulence. However, 35 because ILY exhibits no β-hemolysis on animal blood agar plates, differentiating ILY 36 high- and low-producing strains using conventional laboratory methods is not possible. 37 Interestingly, S. intermedius also produces glycosidases, including MsgA and NanA, 38 which exhibit *N*-acetyl-β-D-glucosaminidase and neuraminidase activities, respectively. 39 Moreover, MsgA expression, but not NanA, is negatively regulated by LacR. Here we 40 measured the activities of MsgA, NanA and ILY in strains isolated from clinical 41 specimens and dental plaque to determine the correlation between these glycosidase 42 activities and ILY hemolytic activity. Hemolytic activity showed a strong positive 43 correlation with MsgA and a weak negative correlation with NanA activities. Therefore, 44 we calculated the ratio of MsgA and NanA activity (M/N ratio). This value showed a

- 45 stronger positive correlation (r = 0.81) with ILY hemolytic activity and many strains
- 46 with high M/N ratios (> 2) were ILY high-producers with loss-of-function mutations in

47 LacR.

49 INTRODUCTION

50	Streptococcus intermedius is a facultatively anaerobic, opportunistic pathogen that
51	belongs to the Anginosus group of streptococci (Whiley et al. 1990; Jensen et al. 2013).
52	This pathogen is associated with oral infections, including periodontal disease and
53	recurrent tonsillitis, and with deep-seated purulent infections such as brain and lung
54	abscesses (Whiley et al. 1992; Jerng et al. 1997; Tanner et al. 1997; Gray 2005;
55	Takayanagi et al. 2010; Weaver et al. 2010; Saito et al. 2012; Noguchi et al. 2015; Yost
56	et al. 2015). S. intermedius produces a human-specific cytotoxin intermedilysin (ILY)
57	of the cholesterol-dependent cytolysin (CDC) family, encoded by the <i>ily</i> gene
58	(Nagamune et al. 1996). ILY is believed to be a crucial virulence factor for infectivity
59	and toxicity to human cells, because knockout mutations of <i>ily</i> or inactivation of ILY
60	using an anti-ILY antibody result in greatly decreased cytotoxicity (Sukeno et al. 2005).
61	In contrast to other CDC family members, ILY does not use cholesterol as a primary
62	binding receptor and can specifically recognize a glycosylphosphatidylinositol-linked
63	human cell membrane protein, CD59 (Giddings et al. 2004). Therefore, S. intermedius
64	is considered to be a strictly human-specific pathogen.

65	Two transcriptional repressors that can regulate <i>ily</i> expression have been reported
66	thus far: catabolite control protein (CcpA) and lactose phosphotransferase system
67	repressor (LacR) (Tomoyasu et al. 2010; Tomoyasu et al. 2013). LacR can repress
68	transcription of the <i>ily</i> operon by binding to the <i>ily</i> promoter (Tomoyasu <i>et al.</i> 2013).
69	Disruption of <i>lacR</i> in <i>S. intermedius</i> has been shown to cause constitutive
70	overproduction of ILY and increased toxicity to the human hepatoma cell line HepG2
71	(Tomoyasu et al. 2013). Because a loss-of-function mutation in LacR is observed in
72	almost all ILY high-producing strains isolated from deep-seated abscesses, high
73	production of ILY seems to be necessary for increased virulence of this bacterium
74	(Tomoyasu <i>et al.</i> 2013).
75	S. intermedius produces glycosidases such as MsgA and NanA (Takao et al. 2010;
76	Imaki <i>et al.</i> 2014). MsgA has four glycosidase activities (β -D-galactosidase,
77	β -D-fucosidase, <i>N</i> -acetyl- β -D-glucosaminidase, and <i>N</i> -acetyl- β -D-galactosaminidase)
78	(Imaki et al., 2014) which are stably conserved across all S. intermedius strains reported
79	to date (Jensen et al. 2013; Imaki et al. 2014). Because msgA is localized in the lac
80	operon, its expression, like that of <i>ily</i> , is regulated by LacR (Imaki et al. 2014). In

addition, *S. intermedius* is the only species among the Anginosus group of streptococci
reported to exhibit neuraminidase activity. This glycosidase activity (NanA) is stably
conserved in all *S. intermedius* strains (Jensen *et al.* 2013).

84 Because of the correlation between higher production of ILY and increased 85 virulence of S. intermedius an accurate and rapid method for detecting ILY high-producing strains is required. However, since human-specific ILY does not 86 produce β -hemolysis on animal blood agar plates (Nagamune *et al.* 1996), the detection 87 88 of ILY high-producing strains and differentiation from ILY low-producing strains by 89 conventional laboratory testing is not routinely possible. Therefore, we developed a 90 rapid and simple method for discriminating these strain types by calculating the ratio 91 between *N*-acetyl-β-D-glucosaminidase (MsgA) and neuraminidase (NanA) activities.

92 MATERIALS AND METHODS

- 93 Bacterial strains and growth conditions.
- 94 The bacterial strains and the positions of amino acid substitutions in LacR are listed
- 95 in Table 1 (Takao et al. 2004; Tomoyasu et al. 2013). S. intermedius was cultured at
- 96 37 °C under anaerobic conditions (N₂:H₂:CO₂ = 85:10:5). Brain-heart infusion (BHI)
- 97 broth (Becton-Dickinson, Palo Alto, CA, USA) and 3-(N-morpholino)propanesulfonic
- 98 acid-buffered BHI (MOPS-BHI) broth were used as the culture media (Tomoyasu *et al.*
- 99 2010).
- 100

101 Nucleotide sequences of *lacR* from *S. intermedius* clinical isolates.

- 102 Fragments of the *lacR* gene from strains TK-I2, TK-I15, TK-I19, TK-I16, TK-I20,
- 103 TU-C11, TU-C41, TU-C43, TU-C45, TU-C46, IW-I1 and IW-I2 were amplified by
- 104 PCR and sequenced as previously described (Tomoyasu *et al.* 2013).
- 105
- 106 Measurement of *N*-acetyl-β-D-glucosaminidase and neuraminidase activities.

107	S. intermedius strains were pre-cultured in 10 mL BHI broth at 37 °C for 24 h.
108	Subsequently, 50 μ L of pre-culture was inoculated in 5 mL MOPS–BHI broth and
109	cultured at 37 °C for 24 h under anaerobic conditions. The optical density at 600 nm
110	(OD ₆₀₀) of the bacterial culture was measured for the hemolysis assay, and then the
111	culture supernatant and the cells were separated by centrifugation. The culture
112	supernatant was used for the hemolysis assay and the cell pellet was used for the
113	measurement of glycosidase activities as described below. The cell pellet was suspended
114	in 20 mM Tris-HCl buffer (pH 7.5) to $OD_{600} = 1.0$. Cell-associated glycosidase
115	activities were determined using chromogenic substrates. Assays were carried out in
116	96-well plates with a final volume of 100 μ l/well. <i>N</i> -acetyl- β -D-glucosaminide activity
117	(MsgA activity) was determined using 10 μ L of cell suspension in 70 mM sodium
118	citrate buffer (pH 5.5) containing 500 μ M 4-nitrophenyl <i>N</i> -acetyl- β -D-glucosaminide.
119	Neuraminidase activity (NanA activity) was determined using 50 μL or 15 μL of cell
120	suspension in 70 mM sodium citrate buffer (pH 5.5) containing 200 μ M
121	2-O-(<i>p</i> -Nitrophenyl)- α -D-N-acetylneuraminic acid. The 96-well plate was incubated in a
122	PST-100HL plate shaker thermostat (Biosan, Riga, Latvia) at 50°C for 1 h with shaking

123	at 1000 rpm. After the reaction, 100 μ L of 0.5 M sodium carbonate buffer (pH 10.2) was
124	added to terminate the enzymatic reaction and development of the color. Subsequently,
125	the A405 of each well was measured in a Multiskan FC microplate photometer (Thermo
126	Fisher Scientific Inc., MA, USA). MsgA and NanA activities relative to these activities
127	observed with PC574 as a reference strain were calculated as follows: Relative activity
128	= $[A_{405} \text{ of the sample after incubation} - A_{405} \text{ of the sample without incubation}/(A_{405} \text{ of } A_{405} of $
129	PC574 after incubation – A ₄₀₅ of PC574 without incubation]. The MsgA/NanA (M/N)
130	ratio was calculated as follows: M/N ratio = Relative activity of MsgA/Relative activity
131	of NanA.

133 Hemolysis assay.

Hemolysis was assayed as described previously (Tomoyasu *et al.* 2017). Relative
hemolytic activity = (dilution rate of culture supernatant sample giving 50% of
hemolysis/dilution rate of culture supernatant of reference strain UNS38 giving 50% of
hemolysis) × 10.

- 139 Statistics.
- 140 All experiments were performed in triplicate. Results were expressed as means \pm
- 141 standard deviations. Correlation between glycosidase activities or M/N ratios and
- 142 hemolytic activities was evaluated by Pearson's product-moment correlation coefficient.

144 RESULTS AND DISCUSSION

145	Evidence has shown ILY expression to be a major virulence factor in S .
146	intermedius. Furthermore, the majority of highly pathogenic S. intermedius strains
147	isolated from deep-seated abscesses have a loss-of-function mutation in LacR which
148	causes higher production of ILY than in the less pathogenic strains most frequently
149	isolated from normal sites (Nagamune et al. 2000, Tomoyasu et al. 2017). Therefore, it
150	is important to develop a rapid detection method for the presence of ILY
151	high-producing strains. S. intermedius strains can be identified at the species level by
152	rapid PCR methods that amplify <i>ily</i> or a ribosomal RNA coding region (Nagamune <i>et al.</i>
153	2000, Takao et al. 2004). Whereas ILY acts specifically on human cells, S. intermedius
154	does not exhibit β -hemolysis on animal blood agar (Nagamune <i>et al.</i> 1996) and
155	therefore it is impossible to discriminate the ILY high-producing strains from the ILY
156	low-producing ones of this species by routine laboratory blood agar culture.
157	Furthermore, the strategy of using nucleotide sequencing of <i>lacR</i> of all isolates to check
158	for amino acid substitutions is not realistic, as this is costly and time-consuming. In
159	addition, amino acid substitutions alone cannot be used to estimate LacR activity. For

160	example, a mutation from cysteine to tyrosine at position 135 (C135Y) in LacR is a
161	neutral mutation (Tomoyasu et al. 2013) and has been observed in 17/64 strains
162	including both ILY low- and high-producing strains used in this study (data not shown).
163	MsgA activity is increased by disruption of <i>lacR</i> , because <i>msgA</i> localizes in the <i>lac</i>
164	operon repressed by LacR (Imaki et al. 2014). Therefore, we examined the relationship
165	between MsgA activity and ILY mediated hemolytic activity within strains. MsgA and
166	hemolytic activities were assayed in 56 strains isolated from clinical specimens (11 of
167	which had a loss-of-function mutation in LacR), 7 strains isolated from dental plaque,
168	and the type strain (NCDO2227) (Table 1 and supplementary Table 1). MsgA has two
169	catalytic domains (LacZ and CH20); the LacZ domain confers β -D-galactosidase
170	activity and the CH20 domain confers N-acetyl- β -D-glucosaminidase activity (Imaki et
171	<i>al.</i> 2014). Because <i>N</i> -acetyl- β -D-glucosaminidase activity had a higher k_{cat}/K_m value and
172	higher thermostability than β -D-galactosidase (Imaki <i>et al.</i> 2014), we measured
173	<i>N</i> -acetyl- β -D-glucosaminidase activity as an index of MsgA activity at 50 °C. The
174	results obtained demonstrate that MsgA activities of strains showed a strong positive
175	correlation with hemolytic activities (Pearson's product-moment correlation coefficient;

176	r = 0.73) (Fig. 1a). Exceptions were only observed with three ILY high-producing
177	strains (NMH2, UNS32, and UNS45) which had a loss-of-function mutation in LacR
178	but showed lower MsgA activity than some ILY low-producing strains (supplementary
179	Table 1). We determined hemolytic activity of the strains that showed more than 10% of
180	the activity of UNS38 and thereby were classified as an ILY high-producing strains.
181	The majority of ILY low-producing strains have only weak hemolytic activity, these
182	activity levels were sufficiently low to preclude accurate determinations and these were
183	therefore scored as zero.
184	Previously, we observed approximately 50 % reduction in NanA activity for a strain
185	with disrupted <i>lacR</i> compared to a wild-type strain, although the reason for this is still
186	unknown (Imaki et al. 2014). Therefore, we examined the correlation between NanA
187	activity and hemolytic activity (Fig. 1b, supplementary Table 2). Because the optimal
188	temperature for NanA activity is 52°C (unpublished data), this activity could be
189	measured under the same conditions as for determining MsgA activity. A weak negative
190	correlation ($r = -0.28$) was observed between NanA and hemolytic activities for all

strains tested and with an increased negative correlation (r = -0.54) observed for the 16

192 ILY high-producing strains tested.

193	Because MsgA and NanA activities showed positive and negative correlations with
194	hemolytic activity respectively, we calculated the ratio between relative activity of
195	MsgA and NanA (M/N ratio) (Fig. 2). The M/N ratio was strongly correlated with
196	hemolytic activity ($r = 0.81$). Among 14 strains with a high M/N ratio (> 2), 12 strains
197	were high producers of ILY and 11 strains had loss-of-function mutations in LacR. No
198	strain that had a loss-of-function mutations in LacR had an M/N ratio $<$ 2. ILY
199	high-producing strain TK-I2 had a R143C mutation in LacR. Because arginine residue
200	143 of S. intermedius LacR is well-conserved among the LacR homologs of
201	streptococci (data not shown), this mutation seems to cause reduction in, or inactivation
202	of LacR function. On the other hand, in strain HW7 a loss-of-function mutation in LacR
203	did not lead to overproduction of ILY (Tomoyasu et al. 2013).
204	Based on these results we conclude that determining the M/N ratio is an effective
205	index for discriminating between potentially clinically significant, highly toxigenic

206 (ILY high-producing) strains with *lacR* mutations and ILY low-producing strains.

207	Interestingly, some exceptions were observed: ILY high-producing strain UNS40 and
208	ILY low-producing strain JICC32122 both had wild-type LacR, but showed higher M/N
209	ratios. Strains F600, JICC33405, JICC674, and UNS42 exhibited ILY high-producing
210	phenotypes but had wild-type LacR and lower M/N ratios (< 2). These data suggest that
211	ily expression in these strains is activated by a mutation other than in the LacR gene.
212	Further elucidation of the mechanisms underlying ILY expression levels in S.
213	intermedius will contribute to a greater understanding of the variation in virulence
214	observed for strains of this human pathogen.
215	It has been shown that S. intermedius is more virulent in patients
216	immunocompromised due to aging, diabetes, cirrhosis and cancer than in
217	immunocompetent individuals (Murray et al. 1978; Jacobs et al. 1995; Jerng et al.
218	1997; Bert et al. 1998; Takayanagi et al. 2010; Noguchi et al. 2015). It is thought that
219	this is especially so for ILY high-producing strains which would pose a higher risk to
220	immunocompromised individuals (Tomoyasu et al. 2017). Therefore, an increasing
221	number of serious infections with ILY high-producing strains can be anticipated in
222	populations with increasing proportions of elderly people. Our screening method

223	adopting the ratio of two glycosidase activities can be carried out in virtually identical
224	test formats making testing simpler and therefore less prone to experimental error. This
225	screening method will be useful for predicting the existence of highly pathogenic strains
226	in the normal flora and at the site of focal infections. An earlier diagnosis might help to
227	prevent serious infections by highly pathogenic strains.

229 ACKNOWLEDGMENTS

230 We thank Ms. Miyako Ishizu for experimental assistance.

231

232 FUNDING

- 233 This work was supported by KAKENHI (Grants-in-Aid for Scientific Research (C)
- 234 26460528) from the Ministry of Education, Culture, Sports, Science, and Technology
- 235 (MEXT) of the Japanese Government.

236

237 The authors of this article have no conflicts of interest.

239 Figure legends

240 Fig 1 Correlation between MsgA activity and hemolytic activity (a). Vertical axis shows 241 relative MsgA activity (PC574 set as 1) and horizontal axis represents relative 242 hemolytic activity (UNS38 set as 10). Correlation between NanA activity and hemolytic 243 activity (b). Vertical axis shows relative NanA activity (PC574 set as 1) and horizontal 244 axis represents relative hemolytic activity. Relative activities of each strain are 245 represented as open circles. Relative hemolytic activity of ILY-low producing strains 246 (less than 10 % activity of UNS38) is plotted as 0 on the horizontal axis. Error bars 247 show standard deviations from three independent experiments. 248

Fig 2 Correlation between M/N ratio and hemolytic activity. All cells were grown in MOPS–BHI broth for 24 h at 37 °C. Left vertical axis shows M/N ratio (PC574 set as 1), right vertical axis shows relative hemolytic activity (UNS38 set as 10), and strain name is shown on the horizontal axis. Black bars show M/N ratio of strains that have a loss-of-function mutation in LacR. Gray bar shows M/N ratio of strain TK-I2, which

- 254 has an uncharacterized mutation in LacR. White bars show M/N ratio of strains with
- 255 wild-type LacR. The hemolytic activity of each strain is shown with red circles. The
- **256** hemolytic activity of the strains without open circle is < 1.

Strains	Isolation source	Mutation ^a
UNS38	Brain abscess	V21D
UNS46	Liver abscess	L48F
A4676a	Brain abscess	R37L
JICC 33616	Brain abscess	42Q_44Ldup
JICC 40138-2	Infective endocarditis	42Q_44Ldup
UNS32	Liver abscess	S117I
UNS45	Liver abscess	V30A
UNS35	Brain abscess	R50W
HW7	Brain abscess	S117N
ЛСС 32122	Brain abscess	_
UNS40	Liver abscess	_
JICC 1063	Liver abscess	V30A
TK-I2	unknown	$R143C^b$
NMH2	Brain abscess	V21D
PC7466	Dental plaque	_
DP101	Dental abscess	_
ЛСС 32135	Empyema, mediastinitis	_
F600	Abdominal abscess	_
HW13	Abdominal Umbilical	_
DP102	Dental plaque	_
P58	Gingivitis	_
TK-I15	unknown	_
TK-I19	unknown	_
AC4720	Dental plaque	_
CDC415/87	Brain abscess	_
GN472	Dental plaque	_
TU-C11	dental abscess	_
2Q	Brain abscess	—
P88	Gingivitis	_

Table 1. *S. intermedius* strains used for this study.

ЛСС 33405	Empyema, mediastinitis	_
ЛСС 689	Infective endocarditis	_
HW58	Brain abscess	_
TK-I16	unknown	_
ЛСС 32132	Brain abscess	_
ЛСС 32100	Septicemia	_
NMH8	Unknown	_
P101	Gingivitis	_
ЛСС 53299	Suppurative arthritis	_
WS100s	Bite wound, hand	_
AC5803	Dental plaque	_
TK-I20	Unknown	_
PC574	Dental plaque	_
P22	Gingivitis	_
ЛСС 33404	Pelvic abscess	_
NCDO2227	Type strain	_
ЛСС 33620	Brain abscess	_
TU-C41	dental abscess	_
JICC 674	Septicemia	_
ЛСС 32138	mediastinitis	_
AC800	Dental plaque	_
ЛСС 32151	Empyema, mediastinitis	_
ЛСС 33412	Subcutaneous abscess	_
P68	Gingivitis	_
F458s	Abdominal mass	_
UNS42	Liver abscess	_
HW69	Brain abscess	_
TU-C43	dental abscess	_
E691	Еуе	_
ЛСС 33494	Brain abscess	_
ЛСС 33425	Subcutaneous abscess	_
TU-C46	dental abscess	_

IW-I2	unknown	-
TU-C45	dental abscess	_
IW-I1	unknown	-

258 ^a- No loss-of-function mutation in LacR. ^b Function of LacR R143C was not

259 determined.

260 **REFERENCES**

- Bert F, Bariou-Lancelin M, Lambert-Zechovsky N Clinical significance of bacteremia
 involving the "Streptococcus milleri" group: 51 cases and review. *Clin Infect Dis*1998; 27: 385-37.
- Giddings KS, Zhao J, Sims PJ, *et al.* Human CD59 is a receptor for the
 cholesterol-dependent cytolysin intermedilysin. *Nat Struct Mol Biol* 2004; 11:
 1173-8.
- Gray T. *Streptococcus anginosus* group: Clinical significance of an important group of
 pathogens. *Clinical Microbiology Newsletter* 2005; 27: 155-9.
- Imaki H, Tomoyasu T, Yamamoto N, *et al.* Identification and characterization of a novel
 secreted glycosidase with multiple glycosidase activities in *Streptococcus intermedius. J Bacteriol* 2014; 196: 2817-26.
- Jacobs JA, Pietersen HG, Stobberingh EE, Soeters PB Streptococcus anginosus,
 Streptococcus constellatus and Streptococcus intermedius. Clinical relevance,
 hemolytic and serologic characteristics. Am J Clin Pathol 1995; 104: 547-53.
- Jensen A, Hoshino T, Kilian M Taxonomy of the Anginosus group of the genus
 Streptococcus and description of *Streptococcus anginosus* subsp. *whileyi* subsp. nov.
 and *Streptococcus constellatus* subsp. *viborgensis* subsp. nov. *Int J Syst Evol Microbiol* 2013; 63: 2506-19.
- Jerng JS, Hsueh PR, Teng LJ, *et al.* Empyema thoracis and lung abscess caused by
 viridans streptococci. *Am J Respir Crit Care Med* 1997; **156**: 1508-14.
- 281 Murray HW, Gross KC, Masur H, et al. Serious infections caused by Streptococcus
 282 milleri. Am J Med 1978; 64: 759-64.
- Nagamune H, Ohnishi C, Katsuura A, *et al.* Intermedilysin, a novel cytotoxin specific
 for human cells secreted by *Streptococcus intermedius* UNS46 isolated from a
 human liver abscess. *Infect Immun* 1996; 64: 3093-100.
- Nagamune H, Whiley RA, Goto T, *et al.* Distribution of the intermedilysin gene among
 the anginosus group streptococci and correlation between intermedilysin production
 and deep-seated infection with *Streptococcus intermedius*. *J Clin Microbiol* 2000;
 38: 220-6.
- Noguchi S, Yatera K, Kawanami T, *et al.* The clinical features of respiratory infections
 caused by the *Streptococcus anginosus* group. *BMC Pulm Med* 2015; 15: 133.

- Saito N, Hida A, Koide Y, *et al.* Culture-negative brain abscess with *Streptococcus intermedius* infection with diagnosis established by direct nucleotide sequence
 analysis of the 16s ribosomal RNA gene. *Internal medicine (Tokyo, Japan)* 2012;
 51: 211-6.
- Sukeno A, Nagamune H, Whiley RA, *et al.* Intermedilysin is essential for the invasion
 of hepatoma HepG2 cells by *Streptococcus intermedius*. *Microbiol Immunol* 2005;
 49: 681-94.
- Takao A, Nagamune H, Maeda N Identification of the anginosus group within the genus
 Streptococcus using polymerase chain reaction. *FEMS Microbiol Lett* 2004; 233:
 83-9.
- Takao A, Nagamune H, Maeda N Sialidase of *Streptococcus intermedius*: a putative
 virulence factor modifying sugar chains. *Microbiol Immunol* 2010; 54: 584-595.
- 304 Takayanagi N, Kagiyama N, Ishiguro T, *et al.* Etiology and outcome of
 305 community-acquired lung abscess. *Respiration; international review of thoracic*306 *diseases* 2010; **80**: 98-105.
- 307 Tanner A, Maiden MF, Lee K, *et al.* Dental implant infections. *Clin Infect Dis* 1997; 25
 308 Suppl 2: S213-7.
- 309 Tomoyasu T, Yamasaki T, Chiba S, *et al.* Positive and negative control pathways by
 310 blood components for intermedilysin production in *Streptococcus intermedius*.
 311 *Infect Immun.*2017; **85**: e00379-17.
- Tomoyasu T, Tabata A, Hiroshima R, *et al.* Role of catabolite control protein A in the
 regulation of intermedilysin production by *Streptococcus intermedius*. *Infect Immun*2010; **78**: 4012-21.
- Tomoyasu T, Imaki H, Masuda S, *et al.* LacR mutations are frequently observed in *Streptococcus intermedius* and are responsible for increased intermedilysin
 production and virulence. *Infect Immun* 2013; 81: 3276-86.
- Weaver E, Nguyen X, Brooks MA Descending necrotising mediastinitis: two case
 reports and review of the literature. *European respiratory review : an official journal of the European Respiratory Society* 2010; **19**: 141-9.
- Whiley RA, Fraser H, Hardie JM, et al. Phenotypic differentiation of *Streptococcus intermedius*, *Streptococcus constellatus*, and *Streptococcus anginosus* strains within
 the "Streptococcus milleri group". *J Clin Microbiol* 1990; 28: 1497-501.
- 324 Whiley RA, Beighton D, Winstanley TG, et al. Streptococcus intermedius,

- 325 Streptococcus constellatus, and Streptococcus anginosus (the Streptococcus milleri
 326 group): association with different body sites and clinical infections. J Clin
 327 Microbiol 1992; 30: 243-4.
- Yost S, Duran-Pinedo AE, Teles R, *et al.* Functional signatures of oral dysbiosis during
 periodontitis progression revealed by microbial metatranscriptome analysis. *Genome medicine* 2015; 7: 27.

Strain