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• We modelled a diverse set of aquatic eco-
system services against human stressors.

• Weighted expert judgement and data
analyses informed the model.

• Non-linearity of biological processes is
common, but frequently overlooked.

• Stressor interactions influence ecosystem-
service responses.

• Case studies showed similarities and dif-
ferences in ecosystem service responses.
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Rivers are a key part of the hydrological cycle and a vital conduit of water resources, but are under increasing threat
from anthropogenic pressures. Linking pressures with ecosystem services is challenging because the processes
interconnecting the physico-chemical, biological and socio-economic elements are usually captured using heteroge-
nous methods. Our objectives were, firstly, to advance an existing proof-of-principle Bayesian belief network (BBN)
model for integration of ecosystem services considerations into river management. We causally linked catchment
stressors with ecosystem services using weighted evidence from an expert workshop (capturing confidence among ex-
pert groups), legislation and published literature. The BBN was calibrated with analyses of national monitoring data
(including non-linear relationships and ecologically meaningful breakpoints) and expert judgement. We used a
novel expected index of desirability to quantify the model outputs. Secondly, we applied the BBN to three case
study catchments in Ireland to demonstrate the implications of changes in stressor levels for ecosystem services in dif-
ferent settings. Four out of the seven significant relationships in data analyses were non-linear, highlighting that non-
linearity is common in ecosystems, but rarely considered in environmental modelling. Deficiency of riparian shading
was identified as a prevalent and strong influence, which should be addressed to improve a broad range of societal ben-
efits, particularly in the catchments where riparian shading is scarce. Sediment load had a lower influence on river
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biology in flashy rivers where it has less potential to settle out. Sediment interacted synergistically with organic matter
and phosphate where these stressors were active; tackling these stressor pairs simultaneously can yield additional
societal benefits compared to the sum of their individual influences, which highlights the value of integrated manage-
ment. Our BBNmodel can be parametrised for other Irish catchments whereas elements of our approach, including the
expected index of desirability, can be adapted globally.
1. Introduction

While not always explicitly stated, ecosystem services protection and res-
toration are central to many policies at the global (Sustainable Development
Goals, Convention on Biological Diversity), European (Water Framework
Directive, EU Green Deal and EU Biodiversity Strategy) and local scales
(river basin management planning). Yet aquatic ecosystem services remain
poorly integrated into water resources management decisions, including in
freshwaters (AQUATAP-ES, 2020; Geneletti et al., 2020). This partly relates
to the paucity of practical guidance on how best to link pressures and
associated stressors to impacts on ecosystem services, a key step in ecosystem
services assessment frameworks (Bruen et al., 2022).

Rivers are a key part of the global hydrological cycle and are vital for the
delivery of aquatic ecosystems services. They are hotspots of biological
activity, supporting disproportionally high biodiversity compared to terres-
trial ecosystems (Dudgeon et al., 2006), and producing a wide range of
aquatic ecosystem services that benefit human societies for their survival,
prosperity and well-being, such as the provision of water for abstraction
and recreational uses, angling, and wildlife value (Feeley et al., 2017;
Böck et al., 2018; Christie et al., 2021). The morphology and hydrology
of river networks are widely manipulated by humans, which together
with water pollution, mainly from sediment and excess nutrients, make
rivers one of the world's most degraded and threatened ecosystems (Reid
et al., 2019). Climate change is already adding to these pressures through
changes in flow and temperature regimes (Gudmundsson et al., 2021).
Stressors can interact (Davis et al., 2018; Birk et al., 2020; Lemm et al.,
2021) and managing the complexity of their behaviour presents a major
challenge (Hering et al., 2015).

Maintaining and improving the health of the aquatic environments in
Europe is driven by the Water Framework Directive (EEA, 2018). Despite
the considerable monitoring effort and management actions undertaken
so far, only 40 % of Europe's surface waters are achieving satisfactory
conditions (EEA, 2018). Ireland is no exception, with almost half of its
rivers failing to meet their environmental objectives (EPA, 2021).
Moreover, the number of high-status rivers in Ireland has declined precipi-
tously from over 500 to 22 since the 1990s, and there have been recent
signs of reversals in previous positive trends (EPA, 2020). This necessitates
a paradigm shift in the approach to environmental management. Current
river assessment focuses on a favourable ecological state based on biologi-
cal components, supporting physico-chemical and hydro-morphological
conditions, and on chemical pollutants (Poikane et al., 2014). These
endpoints have been chosen because their conditions are of inherent inter-
est and/or have established causal relationships with catchment pressures
and associated stressors, but they are not necessarily well-suited to convey-
ing the ecosystem services value of rivers. However, managementmeasures
must take account of this value because it places emphasis on objectives to
which stakeholders,managers and politicians can relate (MEA, 2005; Kelly-
Quinn et al., 2021).

Linking pressures with ecosystem services relies on a series of steps
interconnecting abiotic and biological components, with an additional
component of human value perception. These elements tend to be captured
and represented using a range of different methods. Abiotic processes are
frequently described quantitatively by physical-chemical (process-based)
models, ecological dependencies tend to be restricted to empirical (data-
driven) models or expert knowledge (either qualitative or quantitative),
whereas socio-economic information is frequently only presented
qualitatively or quantitatively usingmonetary values. Bringing such diverse
2

information sources together in a common cause-effect chain is challenging
(AQUATAP-ES, 2021). Bayesian belief networks (BBN) can handle this
complexity (Smith et al., 2018). BBNs model relationships using condi-
tional probabilities, i.e., the probabilities of each of the different outcomes
of a state or process, under the different conditions of its influencing
variables. The causal dependencies of each process can be then linked in
a feedforward network to form a relationship chain between the input
and output variables of interest using Bayes' theorem (Kjærulff and
Madsen, 2013; Feld et al., 2020). Importantly, BBNs can combine qualita-
tive and quantitative information sources to inform the conditional proba-
bilities in the same network. Because of this versatility, BBNs have been
increasingly used in ecosystem services frameworks (Haines-Young, 2011;
McVittie et al., 2015; Mantyka-Pringle et al., 2017; Forio et al., 2020).

Here, our overarching aim was to develop a BBN model for integration
of ecosystem services considerations into river management that would
ultimately form the ‘backbone’ of a decision support tool (the ProgRES
tool; Kelly-Quinn et al., in press). To achieve that, we advanced an existing
proof-of-principle BBN (Bruen et al., 2022) to causally link catchment
stressors with ecosystem services by (i) strengthening the evidence using
weighted evidence from an expert workshop, and (ii) calibrating the
model using national monitoring data and expert judgement. Relative to
the starting BBN, we extended the range of ecosystem services in the BBN
for amore integrated assessment (Grizzetti et al., 2016) and used individual
environmental conditions as inputs instead of explicit management options
to permit a greater flexibility. We then applied the improved BBN to three
case study catchments in Ireland to demonstrate the implications of
changes in the intensity of individual and combined stressors for ecosystem
services and their trade-offs in different settings.

2. Material and methods

BBNs represent relationships among variables as a network of nodes inter-
connected with arrows, The direction, form and strength of each relationship
are quantified through a set of probabilities. These give the conditional prob-
abilities of occurrence of each possible categorical state of a target variable
(child node) depending on the states of the variables (parent nodes) that
directly influence it (Kjærulff and Madsen, 2013; Scutari and Denis, 2014).
Netica 6.09 was used to develop the BBN (Norsys Software, Vancouver,
Canada), and GeNIe Modeler 3.0 was used for the strength of influence and
sensitivity analyses (BayesFusion, Pittsburgh, PA, USA). GeNIe sensitivity
analysis algorithm calculates a complete set of derivatives of the posterior
probability distributions over the target node(s) over each of the numerical
parameters of the network. These derivatives indicate the importance of
precision of numerical parameters in the network for calculating the posterior
probabilities of the target nodes (BayesFusion, 2020).

2.1. BBN inputs and outputs

The BBN underwent multiple iterations of development from the initial
BBN (Bruen et al., 2022). This was done, firstly, to encapsulate a broader
selection of ecosystem services. Secondly, owing to concerns of the
consulted experts about the advisability of using just a limited number of
explicit land management options as the input variables in the BBN, these
were replaced with explicit user control of each of the individual stressors
that are predominant in the study area and can be managed realistically
(Potschin and Haines-Young, 2016), and general river characteristics
were used instead as inputs. This was because using a fixed range of



M.R. Penk et al. Science of the Total Environment 851 (2022) 158065
management options as the inputs would limit the future applicability of
the model, for instance if new measures were developed or when the
effectiveness of a measure depended on the river characteristics, i.e. other
exogenous variables. Thus, by having physico-chemical and other charac-
teristics of the river as the direct input variables, amore general andflexible
model could be produced. The intermediate nodes and connections were
restructured to facilitate these changes.

After these iterations, the BBN inputs consisted of six environmental
conditions which can be altered by catchment management: riparian shad-
ing level, sediment load, organic matter concentration (quantified by
biochemical oxygen demand; BOD), phosphate concentration, oxidised
nitrogen concentration (the sum of nitrate and nitrite) and total ammonia
concentration (the sum of ionised and gaseous ammonia). The BBN inputs
also included three general characteristics of the river (alkalinity, flow
regime and coarse fish presence, the latter including species such as
roach, pike and perch (Rutilus rutilus, Esox lucius and Perca fluviatilis, respec-
tively), which are generally not manageable, but support applicability of
the BBN in different catchment settings. And finally, the BBN included a
climate scenario input (Table 1). Downscaled predictions of future mean
temperatures are available for Ireland (Nolan and Flanagan, 2020).
However, downscaled predictions of other climate change impacts, such
as temperature extremes and flow regime impacts were insufficiently
conclusive for Ireland to support robust implementation in the BBN
(Fealy et al., 2018; Nolan and Flanagan, 2020). Thus, the current BBN likely
underestimates the effect of future climate change.

The BBN has six output variables reflecting different provisioning,
regulating and cultural ecosystem services or their biological/functional
indicators, selected as the most likely to be valued by people and also the
most likely to respond to catchment management. The number of mayfly
species (insects of the taxonomic order Ephemeroptera) and the density
Table 1
BBN inputs, including environmental conditions and general characteristics.

Node Node state

Environmental conditions
Climate projection (mean temperature) Baseline (1981

RCP 4.5 (2041
RCP 8.5 (2041

Riparian shading intensity (growing season) Scarce
Light
Moderate
Heavy

Sediment load High
Medium
Low

Organic matter concentration (biochemical oxygen demand, mean; BOD) High
Medium
Low

Phosphate concentration (mean) High
Medium
Low

Oxidised nitrogen concentration (mean) High
Medium
Low

Total ammonia concentration (mean) High
Medium
Low

General characteristics
Flow regime Flashy

Intermediate
Slow

Alkalinity (mean) Calcifying
High
Medium
Low
Very low

Coarse fish presence Present
Absent

a Dodder.
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of breeding pairs of white-throated dipper (Cinclus cinclus) were included
as indicators of the value of wildlife as a cultural ecosystem service. Both
positively correlate with river quality, and they appeal to a variety of
river interest groups (Ormerod and Tyler, 1993; Ormerod et al., 1985;
Kelly-Quinn and Bracken, 2000). Nutrient assimilation potential
was included as a regulating service to encapsulate the capacity of the
river to intercept phosphorus and nitrogen pollution, to self-purify and
protect areas further downstream, including estuaries and marine waters.
Recreational water quality (cultural service) and abstraction water quality
(provisioning service) were included to reflect the potential for in-situ
and ex-situwater uses, respectively. And finally, salmonid angling potential
was included because it is ameasure of a key recreational activity in Ireland
that reflects a cultural ecosystem service (Table 2).

2.2. Parametrising the model

2.2.1. Expert knowledge
A one-dayworkshopwas held on 29 January 2020 at University College

Dublin with the participation of 17 experts from the national agencies with
aquatic environment remits (e.g. Environmental Protection Agency, Inland
Fisheries Ireland), and national and international universities (Table A.1 in
Appendix A). The experts were asked to express their judgements on the
nature and strength of the relationships between key nodes in the network
by estimating the probability of responses conditional on selected environ-
mental conditions (conditional probabilities). The experts were split into
six teams of 2–3 participants, with each team providing independent judge-
ments about the same set of network relationships that could not be deter-
mined independently from available data. In particular, each expert group
was asked to estimate conditional probabilities for the following intermedi-
ate biological variables: ‘Coarse fish density’, ‘Trout density’, ‘Salmon
State boundaries Case study river baseline

–2000) – aDod. Suir Moy
–2060) + 1.2 °C
–2060) + 1.8 °C

< 20 % shade Suir Moy
20–50 Dod.
50–70 %
> 70 %
> 30 t km−2 y−1

10–30 t km−2 y−1 Suir Moy
< 10 t km−2 y−1 Dod.
> 1.5 mg O2 L−1

1.3–1.5 mg O2 L−1 Moy
< 1.3 mg O2 L−1 Dod. Suir
> 0.035 mg P L−1 Suir
0.025 − 0.035 mg P L−1 Dod.
≤ 0.025 mg P L−1 Moy
> 3.0 mg N L−1

0.9–3.0 mg N L−1 Dod. Suir
< 0.9 mg N L−1 Moy
> 0.065 mg N L−1

0.04–0.065 mg N L−1 Dod. Suir
≤ 0.04 mg N L−1 Moy

Responds rapidly to rainfall, variable flow Dod. Moy
Substantial flow, no rapid pulses
Steady flow Suir
CaCO3 precipitation
> 100 mg CaCO3 L−1 Dod. Suir Moy
10–100 mg CaCO3 L−1

5–10 mg CaCO3 L−1

< 5 mg CaCO3 L−1

– Suir
– Dod. Moy



Table 2
BBN outputs, including ecosystem services or their biological/functional indicators.

Node Node
state

State boundaries

Mayfly richness (wildlife
value)

Very
high

8 species on average

High 6 species on average (sensitive taxa scarce to
common)

Medium 2 species on average (sensitive taxa absent)
Poor 0–1 species on average

Dipper density (wildlife
value)

High > 5 breeding pairs 10 km−1

Medium 2–5 breeding pairs 10 km−1

Low < 2 breeding pairs 10 km−1

Recreational water quality High Suitable for all uses
Medium Potential limitations
Low Extremely limited

Abstraction water quality High Minimal or no treatment required
Medium Advanced treatment required
Low Low grade abstraction only

Nutrient assimilation
potential

High Optimal for the river type
Medium Underutilised
Low Severely compromised

Salmonid angling
potential

High Good density of catchable fish in good
condition

Medium Some catchable fish in good condition
Low Few fish
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density’, ‘Algal biofilm abundance’ and ‘Filamentous algae cover’. Probabil-
ities were populated for each combination of the states of all parent nodes,
so they captured any perceived interactions among them. Each group was
asked to state their confidence level in their own expertise knowledge of
each variable on a scale from 1 to 10. Probabilities across the six expert
groups were then averaged after weighting by their stated confidence
level for the BBN (Appendix A). The experts were also asked to comment
on the BBN structure; in particular, if any intermediate variables or links
were missing or redundant, and if the states of the BBN variables were
adequately defined and quantified.

2.2.2. Other information sources
In Irish environmental law, Statutory Instrument (S.I.) number 77 of

2019 implements the European Union Environmental Objectives (Surface
Waters) (Amendment) Regulations 2019 and sets boundary concentrations
defining moderate, good and high status for water protection in Ireland,
which were used here as the primary information source for defining
model node states for oxygen, BOD, phosphate and ammonia. For these
nodes, the legislative limits superseded any other information sources to
link explicitly the BBN state specifications to the legal thresholds and facil-
itate their understanding and use by stakeholders. Because oxidised nitro-
gen does not have legislative thresholds, surrogate thresholds are used,
based on the recommendations of the Environmental Protection Agency
(EPA, 2011). Peer reviewed literature and reports from Ireland provided
an evidence base for the biological effects of sediment in particular, either
as a sole or co-occurring stressor (Garcia-Molinos and Donohue, 2009;
Conroy et al., 2016; Davis et al., 2018). International sources were used
throughout the BBN, but in particular to investigate the influences on ben-
thic algae (Welch et al., 1988; Wagner et al., 2015), fish (e.g., Solomon and
Lightfoot, 2008; with references therein), dipper (Ormerod and Tyler,
1993; Ormerod et al., 1985) and nutrient assimilation (Hall et al., 2009;
Tank et al., 2018; Kikuchi et al., 2020). The findings of the SILTFLUX
project (Bruen et al., 2017) were used to inform sediment load thresholds.

2.3. Model calibration

2.3.1. National monitoring data
Data from the national river monitoring programme were a key source

of quantitative information for calibrating the BBN. The data consisted of
(i) counts of benthic macroinvertebrates from 2007 to 2018, collected
once every three years from176 sites; (ii) hydro-morphology (RiverHabitat
Assessment Technique; RHAT) 2007–2018, usually collected together with
4

the macroinvertebrate data; (iii) phytobenthos 2016–2018, collected once
every year from 200 sites and (iv) physico-chemistry 2007–2018; collected
at varying frequency from 4154 sites, but usually monthly from the biolog-
ical sites.

The analyses comprised the examination of (i) data distribution, using
histograms and summary statistics, (ii) linear and non-linear relationships
between variables, using generalized additive models (GAM; Wood,
2017) and (iii) thresholds in individual data distributions or in the relation-
ships between variables, using classification and regression tree analysis
(CART; Hothorn et al., 2006; Appendix Table B.1). For the analysis of rela-
tionships and thresholds, physico-chemical datawere screened for those lo-
cations matching the biological monitoring sites and aggregated (as the 5th
percentile for dissolved oxygen and as the mean value for all else) over the
time intervals of the biological data to match their temporal frequency.

GAMwas used to initially analyse (i) how BOD, average summer water
temperature and filamentous algae cover influenced dissolved oxygen satu-
ration; (ii) how inorganic nutrient excess (quantified as the mean of total
ammonia, oxidised nitrogen and phosphate, each first scaled by dividing
by the Water Framework Directive pass/fail threshold), summer water
temperature, shading score and siltation score influenced filamentous
algae cover; (iii) how alkalinity, dissolved oxygen saturation and RHAT
hydro-morphology score influenced mayfly richness; (iv) how shading
score influenced summer water temperatures. Fewer data points were
available for the variables filamentous algae and siltation score than for
the other variables in the same model and thus these curtailed the model
sample size. They were subsequently dropped in the final models of
dissolved oxygen saturation and filamentous algae cover, respectively.

Each variable was Box-Cox transformed to reduce heteroscedasticity,
then centred at its mean and scaled by its standard deviation. Repeated
assessment rounds were included in each model as a random factor. GAM
models were initially fitted with all terms as smoothers and replaced with
linear terms one by one in the order of increasing estimated degrees of free-
dom. Non-linearity was detected for a particular explanatory variable, and
a smoother term was retained, if a change of a smoother into a linear term
increased Akaike information criterion by ≥2. In the other cases a linear
term was chosen instead. We used CART on the untransformed data to
seek break points in the same relationships. All data analyses were
performed in R v4.0.2 (R Core Team, 2020).

These analyses were used to calibrate (i) numerical ranges of the different
categories for a given variable (i.e. states), (ii) the relative strength of the
different influences on a particular target variable (hierarchy), and (iii) the
relative strength of the different intensities of a particular influence on a
particular target variable (to identify non-linear relationships; Appendix B).

2.3.2. Expert judgement
The entire BBN was additionally ‘sense-checked’ by the project team

using their expertise and scientific literature. The BBN was also checked
to ensure that any adjustments of one parent variable had not distorted
the effect of another, and if any indirect effect on a particular parent node
did not distort the overall effect. This was done by examining the responses
of posterior probabilities of child nodes to changes in the states of parent
nodes. Furthermore, we checked if the overall behaviour of the network,
including strength of influence and sensitivity, aligned with the general
understanding of river functioning. In addition, the outcomes of the
network applied to the three case study catchments were checked for align-
ment with the general knowledge of each catchment’s functioning. These
calibration steps prompted further rounds of adjustments. Finally, the
BBN was tested using an online demonstration interface (Kelly-Quinn
et al., in press) by external experts against their knowledge of the relevant
cause-effect relationships, which resulted in one more adjustment refining
the effects of increasing shading intensity.

2.4. Case study catchments

To demonstrate the BBN, we performedmodel simulations based on the
catchment-scale data of selected three case study rivers representing
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different characteristics and pressures (Fig. 1): (i) River Dodder, a predom-
inantly urban catchment in the east of Ireland; (ii) River Suir, an intensively
agricultural catchment in the south of Ireland; and (iii) River Moy (part), a
mixed land-use catchment with peaty soils in the west of Ireland. Owing to
the size and high spatial heterogeneity of pressures in the Moy, we focused
on one of its sub-catchments ‘Moy SC 010’ (area of 178 km2), which has
abundant coniferous forestry and rural housing with septic tanks. See
Kelly-Quinn et al. (2020) for further description of these catchments. The
BBN input states for these three catchments have been determined and
set to 100%probability based on 2018–2020 EPAdata forwater chemistry,
aerial photography for riparian shading intensity (by the ESManage pro-
ject), modelled values for sediment load (from equations developed by
the SILTFLUX project; Bruen et al., 2017), Inland Fisheries Ireland data
for coarse fish presence and Office of Public Works water level data for
flow regime.
2.5. Generating BBN outputs

The average strength of the influences on each node throughout the
entire BBN (based on Euclidean distance) and the sensitivity of the ecosys-
tem service outputs to each of the environmental conditions inputs were
analysed using GeNIe Modeler to investigate the general behaviour of the
Fig. 1. Location of the three case study areas in Ireland. Backgrou

5

BBN, independently from any catchment settings (see BayesFusion, 2020
for details of these methods). For the three case study rivers, the effects of
changing individual stressor intensities on individual ecosystem services
were quantified based on the change in the probabilities of their states
relative to the baseline conditions for each river. To investigate combined
effects of stressors, we looked at binary interactions by descriptively com-
paring pairs of stressors. Thus, we compared the predicted improvements
of ecosystem services from baseline conditions for each river resulting
from simultaneous improvement of stressor pairs to their most desirable
conditions with their combined individual effects. Greater simultaneous
effects would denote synergism, i.e. stronger ecosystem-service benefit
from simultaneous improvement of the two stressors than predicted from
the sum of their individual effects, whereas smaller simultaneous effects
would denote antagonism.
2.5.1. Expected index of desirability
BBN outcomes are typically presented as the change in the probability

of a selected target state(s) of the output nodes in response to a change of
inputs (e.g. Forio et al., 2015; Xue et al., 2017; Feld et al., 2020; Pham
et al., 2021). When an output node has only two states, this approach
captures all the available information. This is because probabilities across
all states of a node always add to 1 (and their changes add to 0), so only
nd maps: OpenStreetMap. Shapefiles adapted from gis.epa.ie.

http://gis.epa.ie
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n – 1 states are free to vary. However, if an output node has more than two
states, relative changes among multiple target or multiple non-target states
cannot be completely determined from a change in the probability of an
individual state, and yet they may be of interest. For example, in our
BBN, the output node ‘Mayfly richness’ has four states: ‘low’, ‘medium’,
‘high’ and ‘very high’. The last two are intuitively desirable, but if their
cumulative probability change were selected as the target response, we
would not be able to distinguish any changes from ‘high’ to ‘very high’, or
from ‘low’ to ‘medium’, and yet they both would be ecologically meaning-
ful. To reduce such information loss from the aggregation of changes to
multiple states of a given output as the model result (but not information
loss from discretisation also associated with BBN models), we quantified
the posterior probabilities of each output node as an expected index of
desirability. This was derived as weighted probabilities across all its states,
with the weighting factor distributed at equal intervals between 0 and 1
from the least to the most desirable states, respectively (0, 0.5 and 1 for
three-state nodes; 0, 0.33, 0.67 and 1 for four-state nodes). Our expected
index of desirability is influenced by the probabilities of the output node
states, and any changes to them, in a metric that intuitively ranges from 0
to 1 for any number of numerical or categorical states (corresponding to
the full probability of the least and the most desirable states, respectively;
Appendix C). Even though this index is constructed based on the probabilis-
tic output of the model, it does not reflect a probability of an outcome, but
rather the most probable outcome.

3. Results

The final BBN consisted of 36 nodes representing model variables, 76
links representing relationships between variables and5018 conditional prob-
ability values quantifying these relationships (Fig. 2; Appendices D and E).
Fig. 2. Final BBN structure. Nodes in bold font are environmental condition inputs (le
influence. Arrow colour denotes the sign of the correlation: green is positive, purple is n
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3.1. Linear and non-linear relationships

Summer dissolved O2 concentration 5 %-ile was found to decrease line-
arly with summer temperature (t = −3.93, P < 0.0001), and non-linearly
with BOD (F = 67.33, P < 0.0001), whereby its decrease rate accelerated
with increasing BOD (adjusted R2 = 10.3 %). CART analysis identified
BOD splitting values of 0.96 mg O2 L−1, 1.98 mg O2 L−1 and 2.46 mg O2

L−1 (Appendix B). Filamentous algae cover increased linearly with summer
temperature (t = 5.88, P < 0.0001) and with nutrient concentration (t =
2.68, P = 0.0076; adjusted R2 = 9.7 %). CART identified temperature
splitting values of 13.8 °C and 16.2 °C. Mayfly richness changed non-
linearly with habitat quality (F = 3.88, P = 0.0161) and with alkalinity
(F = 4.63, P = 0.0065), whereby it initially increased with both of these
characteristics, but with no further increase beyond intermediate habitat
quality, and with an apparent decline at high alkalinity (adjusted R2 =
8.3 %). CART identified habitat quality RHAT score splitting value of
0.42. Summer water temperature decreased non-linearly with shading
intensity (F = 10.64, P < 0.0001), whereby its decrease rate accelerated
with increasing shading (adjusted R2 = 24.8 %). CART identified shading
score splitting value of 2, denoting light tomoderate shading (Appendix B).

3.2. Sensitivity analysis of the general BBN model

Sensitivity analysis of the BBN showed that among the different input
environmental conditions represented in the BBN, organic matter, closely
followed by sediment load and then riparian shading deficiency had the
strongest effects on the chosen ecosystem services (Fig. 3a). Organic matter
pollution acts in the BBN in several ways, its decomposition lowers
dissolved oxygen and contributes to excess nutrients, and it shares sources
with Escherichia coli contamination (sewage and slurry; Fig. 2). Sediment,
ft) and ecosystem service outputs (right). Arrow thickness denotes the strength of
egative, yellow is changing direction over the parent node gradient (unimodal).



Fig. 3. Sensitivity of ecosystem services to environmental conditions in the BBN represented by the thickness of the connecting shapes in the overall BBN (a) and for the three
case study catchments (b, c). The height of the boxes denotes the overall relative influence of each environmental condition, and the overall relative sensitivity of each
ecosystem service (in the same order in all three panels), across all scenarios represented in the BBN.
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when deposited, smothers riverbed habitats and, when suspended in the
flow, directly impacts water quality for abstraction and recreation. Riparian
shading subdues filamentous algae growth and cools stream water, while
promoting habitat quality and heterogeneity via associated inputs of
foliage, coarse woody material, underwater roots and overhangs. Among
inorganic nutrients, phosphate had the strongest effect on riverine ecosys-
tem services, followed by total ammonia and oxidised nitrogen. All three
contribute in our BBN to the nutrient excess and in addition, ammonia is
toxic to animals in its un-ionised form (as dissolved gas, as opposed to
ions). Future climate change was predicted to negatively affect ecosystem
services through increased summer water temperature (Fig. 2).

Among the different ecosystem services represented in the BBN, recrea-
tional water quality, closely followed by abstractionwater quality, were the
most sensitive to the input environmental condition, predominantly to
sediment and organic matter (Figs. 2 and 3a). Salmonid angling potential
was most sensitive to organic matter, followed by riparian shading defi-
ciency and ammonia. Nutrient assimilation potential was most sensitive
to riparian shading. The two indicators of wildlife value, mayfly richness
and dipper density, had a similar sensitivity, strongest to organic matter.

3.3. Catchment-specific outcomes

All three case study catchments had high alkalinity, which is typical of
many parts of Ireland. The Dodder and the Moy were flashy, whereas the
Suir was slow flowing, thus the latter was more prone to sediment settling
on the riverbed (Table 1; Fig. 3b, c). The Dodder and the Moy did not have
coarse fish, whereas the Suir did. The latter’s competition with salmonids,
and to some degree also the salmonids' higher susceptibility to water
quality deterioration owing to its slower flow, diminished the relative
importance of ammonia in the Suir (Table 1; Fig. 3b, c).

The three catchments varied in the set of active stressors and their sever-
ity to some degree, but with some overlaps (Table 1). Increasing riparian
7

shading was predicted to considerably benefit all ecosystem services,
more so in the Suir, because of its high phosphate levels and slow flow.
The latter is conducive to more time for heat transfer and thus, without
shading, would lead to higher temperatures, and together with phosphate
favour proliferation of nuisance algae, all of which can be inhibited by
shading. The least benefit from increased shading was projected for the
Dodder catchment, which had already a higher shading intensity than the
Suir or Moy (Table 3). Decreasing sediment load was predicted to consider-
ably improve various aspects of water quality in the Suir andMoy. Decreas-
ing organic matter concentration could bring considerable improvements
to all ecosystem services in the Moy. Reducing phosphate inputs was pre-
dicted to considerably benefit most ecosystem services in the Dodder and
especially in the Suir which has the higher baseline concentration of phos-
phate. A reduction of total ammonia from the baseline levels was projected
to benefit salmonid angling potential in the Dodder, but not so much in the
Suir where multiple other stressors affect salmonids even when ammonia
concentrations are low (e.g., phosphate, sediment, nitrate, low levels of
shading and coarse fish). Decreasing oxidised nitrogen concentration had
little influence in any of the catchments because it was never higher than
‘medium’ and phosphate is thought to bemore limiting of algal productivity
than inorganic nitrogen in freshwaters (Table 3).

3.3.1. Combined effects of stressors
Simultaneous reduction in stressor pairs from among oxidised nitrogen,

total ammonia and phosphate always resulted in marginally stronger
improvements of ecosystem services compared to the sum of their individ-
ual effects, possibly denoting weak synergism. The same was observed for
the combination of sediment with either oxidised nitrogen or total ammo-
nia (Table 4). The combined effects of sediment with organic matter or
phosphate were usually synergistic. On the other hand, the combination
of shading with organic matter or phosphate was always antagonistic.
The simultaneous effects of shading combined with either oxidised



Table 3
Condition of ecosystem services in three river catchments expressed as an expected index of desirability ranging from0 to 1 (i.e., worst to best; in bold) and predicted changes
to these services resulting from alterations of environmental conditions. The direction and degree of change are indicated by the colour and intensity of shading: purple
denotes a deterioration, green denotes an improvement.

Climate Shading Sediment Organic matter Phosphate N, oxidised Ammonia, total

Ba
se

lin
e

R
C

P 
4.

5

R
C

P 
8.

5

Sc
ar

ce

Li
gh

t

M
od

er
at

e

H
ea

vy

Lo
w

M
ed

iu
m

H
ig

h

Lo
w

M
ed

iu
m

H
ig

h

Lo
w

M
ed

iu
m

H
ig

h

Lo
w

M
ed

iu
m

H
ig

h

Lo
w

M
ed

iu
m

H
ig

h

RIVER DODDER Index
Mayfly richness (wildlife) 0.51 

B
as

el
in

e 
co

n
d
it

io
n

–0.03 –0.04 –0.13

B
as

el
in

e 
co

n
d
it

io
n

+0.06 –0.11

B
as

el
in

e 
co

n
d
it

io
n

–0.01 –0.02

B
as

el
in

e 
co

n
d
it

io
n

–0.12 –0.20 +0.10

B
as

el
in

e 
co

n
d
it

io
n

–0.08 +0.02

B
as

el
in

e 
co

n
d
it

io
n

–0.02 +0.02

B
as

el
in

e 
co

n
d
it

io
n

–0.02

Dipper density (wildlife) 0.45 –0.02 –0.03 –0.09 +0.05 –0.06 –0.01 –0.01 –0.08 –0.13 +0.07 –0.06 +0.01 –0.01 +0.01 –0.01

Abstraction water quality 0.69 –0.03 –0.04 –0.08 +0.08 +0.08 –0.32 –0.47 –0.19 –0.36 +0.08 –0.08 +0.02 –0.02 +0.02 –0.02

Recreational water quality 0.64 –0.02 –0.03 –0.08 +0.08 +0.09 –0.15 –0.37 –0.18 –0.34 +0.09 –0.10 +0.02 –0.02 +0.02 –0.02

Nutrient assimilation potential 0.68 –0.00 –0.00 –0.10 +0.08 +0.10 –0.01 –0.02 –0.01 –0.02 +0.02 –0.02 +0.00 –0.00 +0.00 –0.00

Salmonid angling potential 0.44 –0.05 –0.07 –0.11 +0.09 +0.01 –0.01 –0.01 –0.07 –0.12 +0.06 –0.05 +0.01 –0.01 +0.12 –0.08

RIVER SUIR Index
Mayfly richness (wildlife) 0.16 

B
as

el
in

e 
co

n
d
it

io
n

–0.02 –0.02

B
as

el
in

e 
co

n
d
it

io
n

+0.11 +0.18 +0.08 +0.03

B
as

el
in

e 
co

n
d
it

io
n

–0.01

B
as

el
in

e 
co

n
d
it

io
n

–0.06 –0.09 +0.13 +0.06

B
as

el
in

e 
co

n
d
it

io
n

+0.01

B
as

el
in

e 
co

n
d
it

io
n

–0.01 +0.01

B
as

el
in

e 
co

n
d
it

io
n

–0.01

Dipper density (wildlife) 0.19 –0.02 –0.02 +0.08 +0.14 +0.07 +0.03 –0.01 –0.05 –0.06 +0.10 +0.04 +0.01 –0.01 +0.01 –0.01

Abstraction water quality 0.31 –0.02 –0.02 +0.05 +0.09 +0.10 +0.18 –0.12 –0.10 –0.19 +0.09 +0.04 +0.01 –0.01 +0.01 –0.01

Recreational water quality 0.41 –0.02 –0.02 +0.07 +0.12 +0.13 +0.03 –0.17 –0.11 –0.23 +0.13 +0.06 +0.01 –0.01 +0.01 –0.01

Nutrient assimilation potential 0.45 –0.00 –0.00 +0.10 +0.19 +0.24 +0.09 –0.03 –0.00 –0.01 +0.03 +0.01 +0.00 –0.00 +0.00 –0.00

Salmonid angling potential 0.19 –0.03 –0.03 +0.07 +0.13 +0.10 +0.03 –0.01 –0.04 –0.05 +0.08 +0.03 +0.01 –0.01 +0.03 –0.02

RIVER MOY (part) Index
Mayfly richness (wildlife) 0.33 

B
as

el
in

e 
co

n
d
it

io
n

–0.01 –0.01

B
as

el
in

e 
co

n
d
it

io
n

+0.10 +0.16 –0.00 +0.01
B

as
el

in
e 

co
n
d
it

io
n

–0.01 +0.25

B
as

el
in

e
co

n
d
it

io
n

–0.13

B
as

el
in

e 
co

n
d
it

io
n

–0.04 –0.08

B
as

el
in

e 
co

n
d
it

io
n

–0.02 –0.04

B
as

el
in

e 
co

n
d
it

io
n

–0.02 –0.04

Dipper density (wildlife) 0.33 –0.01 –0.01 +0.06 +0.10 –0.00 +0.01 –0.01 +0.17 –0.08 –0.02 –0.05 –0.01 –0.02 –0.01 –0.02

Abstraction water quality 0.27 –0.02 –0.02 +0.04 +0.08 +0.08 +0.24 –0.12 +0.17 –0.16 –0.03 –0.06 –0.02 –0.03 –0.02 –0.03

Recreational water quality 0.38 –0.02 –0.03 +0.05 +0.10 +0.10 +0.11 –0.16 +0.20 –0.22 –0.06 –0.10 –0.03 –0.05 –0.03 –0.05

Nutrient assimilation potential 0.58 –0.00 –0.00 +0.10 +0.18 +0.19 +0.01 –0.01 +0.03 –0.03 –0.01 –0.02 –0.01 –0.01 –0.01 –0.01

Salmonid angling potential 0.40 –0.02 –0.03 +0.10 +0.17 +0.08 +0.01 –0.01 +0.18 –0.09 –0.03 –0.05 –0.01 –0.03 –0.10 –0.17

M.R. Penk et al. Science of the Total Environment 851 (2022) 158065
nitrogen, total ammonia or sediment relative to the sum of their individual
effects varied among rivers and ecosystem services between additive, syner-
gistic or antagonistic (Table 4).

4. Discussion

4.1. BBN outcomes and management implications

This study set out to develop the model as a tool to advance efforts to
incorporate ecosystem services into decision making related to the protec-
tion and management of freshwater resources. The anthropocentric focus
of the ecosystem services approach may help to communicate the urgency
Table 4
Predicted improvements of ecosystem services frombaseline conditions in three river catc
from improvement of stressor pairs to theirmost desirable conditions expressed as the dif
denote synergism (green shading; stronger ecosystem-service benefit from simultaneou
effects), negative values denote antagonism (purple shading; weaker ecosystem-service
the sum of their individual effects).
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Dipper density (wildlife) +0.02 +0.01 +0.01 +0.00 +0.01 +0.00 +0.00 +0.00
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Nutrient assimilation potential +0.01 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

Salmonid angling potential +0.02 +0.01 +0.02 +0.01 +0.00 +0.00 +0.01 +0.00
1Dodder.
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of addressing water quality declines (MEA, 2005). By linking these changes
to anthropogenic stressors, our BBN can help identify potential beneficial or
detrimental effects of management measures targeting these stressors.

Based on the aggregated information and BBN modelling, deficiency in
riparian shading was identified in this study as a prevalent and highly influ-
ential stressor, which should be addressed to improve a broad range of river
ecosystem services and thus societal benefits. This is particularly important
to safeguard river biodiversity and functioning and would also help miti-
gate the effects of heatwaves and further climatic changes (Seavy et al.,
2009; O'Briain et al., 2017). Notably, well-managed riparian vegetation
can support stream functioning in multiple ways (Feld et al., 2018) and
can generate societal benefits of their own, such as recreational andwildlife
hments (measured as an expected index of desirability ranging from 0 to 1) resulting
ference between joint and individual effect of pairs of active stressors. Positive values
s improvement of the two stressors than predicted from the sum of their individual
benefit from simultaneous improvement of the two stressors than predicted from
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values (Nóbrega et al., 2020; Riis et al., 2020). Whereas oxidised nitrogen
had little influence in any of the case study catchments, it controls algal
productivity in coastal waters (O'Boyle et al., 2015; Malone and Newton,
2020), where it can affect a broad range of marine-based ecosystem
services (Kermagoret et al., 2019), which were outside of the scope of this
study. Integrated catchment management needs to consider such far-
reaching influences.

The prevalence of the individual land-use-related stressors (sediment,
organic matter, inorganic nutrients), and the ecosystem service benefits of
their reduction varied among the three case study catchments to some
degree, depending on the river conditions and interactions between
stressors. Increasing riparian vegetation would be most beneficial where
it is currently scarce (the Suir and the Moy catchments) and its ecosystem
service benefits are likely to be more substantial in slow- than in fast-
flowing rivers (the Suir). Sediment load interacted synergistically with or-
ganic matter and phosphate in the Moy and the Suir, the two key drivers
of eutrophication in freshwaters, producing a greater impact than expected
from the sum of their individual influences across all ecosystem services in
our BBN. This is likely because each of these pairs has a different and
multifacetedmode of action. They are among the most ubiquitous stressors
on rivers (Birk et al., 2020) and tackling them simultaneouslywas predicted
by the BBN to yield additional societal benefits. Sediment load was also
involved in some synergistic interactions with shading intensity, but this
varied among rivers and ecosystem services.

Stressor rank identified in this study represents average conditions
across the entire range of scenarios represented in the BBN, but it may
vary according to site-specific conditions. In particular, inorganic nutrients
(oxidised nitrogen, total ammonia and phosphate) ranked among the least
influential environmental condition across all scenarios because their effect
was partly conflated with organic matter, which both contributes nutrients
through mineralisation, and has an additional direct effect on oxygen con-
centration. Thus, inorganic nutrients may be of higher importance in the
absence of organic pollution. Another example of synergy is that riparian
shading can have an even stronger effect on ecosystem services under
high nutrient concentrations and future climate warming, because of the
increased role of shading for cooling the stream water and subduing light
for algal productivity. Ammonia in its toxic form can result in pulses of
fish kills, but it is less likely to be in its toxic form in low alkalinity waters
(IPCS, 1986), sediment is likely to get periodically washed out in flashy
rivers (Bruen et al., 2017), and so on. Furthermore, our BBN represents
average conditions over the modelled catchment, but this can vary among
specific locations, and thus a smaller spatial scale of modelling may be
more appropriate for some applications, depending on the scales being
considered. Therefore, specific management advice should always explic-
itly consider such context-dependencies and spatial heterogeneity. These
findings may also inform the hypotheses of research seeking to disentangle
multiple stressor effects/interactions, including direct and indirect effects
on ecosystem services.

Each element of our BBN model underwent multiple iteration to assure
that it is robust, but data were only available for the subset of the relation-
ships. We trust the model predictions qualitatively, in terms of stressor
importance hierarchy and the sensitivity rank of ecosystem services.
However, the quantitative predictions of the likelihood or degree of
improvement need to be interpreted with caution.

4.2. BBN methodological advances

Unlike the approach of only quantifying BBN model output based on
selected target state(s) that is common in the literature (Forio et al., 2015;
Xue et al., 2017; Feld et al., 2020), our expected index of desirability
reduces information loss regardless of the number of node states. Although
we used equal intervals of the weighting factor among node states, the
numerical node states themselves were distributed at varying intervals
(for ‘Mayfly richness’ and ‘Dipper density’), reflecting their non-linear
scaling with environmental conditions. Furthermore, the weighting factor
among node states can be set at varying intervals if this better suits the
9

objectives of a particular modelling scenario. The full response of any
node with numerical states can be also captured by its expected value,
derived as a sum of the product of each state and its corresponding proba-
bility (Landuyt et al., 2015), but this was not possible for our nodes with
categorical states. Thus, our expected index of desirability is a simple,
intuitive and flexible approach to capture the full BBN outcomes, for both
numerical and categorical node states.

The Water Framework Directive requires comprehensive monitoring of
aquatic ecosystems across the EU (EEA, 2018), and these data can be used
to supplement expert opinions and other information sources for the BBN,
as we have done here. Importantly, four out of the seven significant rela-
tionships were non-linear (Appendix B). This highlights that non-linearity
is common in real ecosystems, but it is not considered in many ecosystem
service models. We hope that our work will promote more targeted
research on non-linearity and synergies in future decision support tools.
Where comprehensive data exist, they can strengthen the BBN, provided
that they are compatible with the BBN structure. A BBN can in fact be
built entirely from data (Scutari and Denis, 2014; Feld et al., 2020), but
this is not always possible, due to data limitations. The purpose of our
BBN was to specifically connect ecosystem service outcomes to specific
stressors, which dictated the BBN structure. This is not necessarily aligned
with the goal of national environmental monitoring, which focuses on read-
ily quantifiable abiotic and biotic conditions pertaining to ecological health
per se. Such quantifiable metrics for the specific ecosystem services are yet
to be developed and could be included in the national monitoring
programmes. For example, we used mayfly richness as an indicator of wild-
life value. The Irish monitoring data for river invertebrates are generally
collected at a coarse taxonomic resolution, but it is reasonably fine for may-
flies (Feeley et al., 2020). Thus, our mayfly richness index could be approx-
imated from the existing monitoring data and, consequently, we used it in
data analyses. However, the available monitoring data was not adequate
to quantify to the same extent any of the other ecosystem services.

4.2.1. Limitations
Broad-scale field data tend to contain multiple sources of variance,

which may not all be quantified and thus are difficult to account for in
statistical analysis. Consequently, even for well-known relationships, our
analysis resulted in a relatively low coefficient of determination. Indeed,
field data tend to be ‘noisy’, which complicates predictivemodelling. None-
theless, data analyses informed the strength and shape of some of the
relationships, strengthening our BBN.

Expert opinions tend to be a key part of BBN development (McVittie
et al., 2015; Constantinou et al., 2016). The conditional probabilities inher-
ently incorporate uncertainty of outcomes by distributing them among the
different node states, but this does not necessarily account for other sources
of uncertainty, such as variability among experts. In our workshop, we split
the expert pool into six groups to address this problem. The additional
benefit of such an approach is that it down-weights a potential influence
from particularly dominant personalities, which then becomes restricted
to their own sub-group. This element itself is not novel (Kuhnert et al.,
2010; Kelly-Quinn et al., 2020), but our weighting of expert opinions
advances this method. We asked the experts to declare the degree of their
confidence in their expertise relating to each node examined at the work-
shop and used this information in weighting their probability estimates.
However, people can be overly conservative or overly confident so this
can be improved in future through more objective metric of expertise
(e.g. a publication output metric) or experience (e.g. number of years
active professionally), and by validating the model against empirical
evidence/experiments.

5. Conclusions

Management needs to reconcile the competing interests of landscape
elements set against the costs and benefits of management actions. An
ecosystem services modelling framework such as our BBN-informed
decision support system can support this.
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Key advances of the BBN methodology presented here include refined
expert knowledge, analyses of national monitoring datasets and the
expected index of desirability to quantify the outcomes. Relative to our
starting BBN, we extended the range of ecosystem services. We incorpo-
rated a regulating service (nutrient assimilation potential), albeit only
qualitatively owing to a knowledge gap in this respect. The BBN can be
further refined by wider testing and emerging evidence.

While the model was demonstrated for three case study catchments, it
can be generalized to some degree. It can be readily parametrised for
most other Irish freshwater catchments by choosing appropriate input
settings and possibly in the temperate zones more broadly by adjusting its
structure. Furthermore, a similar general approach can be adapted to
other regions, to other ecosystem types and to address different societal
values. Developing and advancing support systems for complex decision-
making scenarios, as we have done here, is important to inform manage-
ment and policy.
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