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Abstract –Accurate forecasting of the solar wind has grown in importance as society becomes increasingly
dependent on technology susceptible to space weather events. This work describes an inner boundary con-
dition for ambient solar wind models based on tomography maps of the coronal plasma density gained from
coronagraph observations, providing a novel alternative to magnetic extrapolations. The tomographical
density maps provide a direct constraint of the coronal structure at heliocentric distances of 4–8 R�, thus
avoiding the need to model the complex non-radial lower corona. An empirical inverse relationship con-
verts densities to solar wind velocities, which are used as an inner boundary condition by the Heliospheric
Upwind Extrapolation (HUXt) model to give ambient solar wind velocity at Earth. The dynamic time warp-
ing (DTW) algorithm is used to quantify the agreement between tomography/HUXt output and in situ data.
An exhaustive search method is then used to adjust the lower boundary velocity range in order to optimise
the model. Early results show up to a 32% decrease in mean absolute error between the modelled and ob-
served solar wind velocities compared to the coupled MAS/HUXt model. The use of density maps gained
from tomography as an inner boundary constraint is thus a valid alternative to coronal magnetic models and
offers a significant advancement in the field, given the availability of routine space-based coronagraph
observations.

Keywords: Sun: corona / Sun: CMEs / Sun: solar wind

1 Introduction

Rapid changes in solar wind conditions have a direct impact
on Earth’s magnetosphere (e.g., Meziane et al., 2014), iono-
sphere (e.g., Milan et al., 2007), and both ground-based and
space-based technology (e.g., Baker et al., 2004; Doherty
et al., 2004; Imken et al., 2018). Estimates of the economic
impact of space weather on European power grids alone range
from €10s to 100s billion (e.g., Eastwood et al., 2018). Risk can
be mitigated considerably by early warnings of impending space
weather, currently undertaken by organisations such as the
Meteorological Office in the UK. We believe that improvements
in space weather forecasting depend primarily on three related
categories: (1) Better observations of the Sun, corona, and solar
wind; (2) Greater understanding of the physical processes oper-
ating in the corona and solar wind; (3) Improvements in data
analysis and forecasting methods. This work presents a novel
boundary condition to solar wind models based on tomography
maps created from coronagraph observations of the solar atmo-
sphere, thus an advancement that belongs to the third category
and can contribute to the second.

The use of tomography maps as an inner boundary condi-
tion to a solar wind model, combined with an ensemble
approach, plays a key role in the Coronal Tomography
(CorTom) module to the Space Weather Empirical Ensemble
Package (SWEEP) project. SWEEP is funded by the UK gov-
ernment’s Space Weather Instrumentation, Measurement, Mod-
elling, and Risk (SWIMMR) scheme and will provide an
operational space weather prediction package to the UK Mete-
orological Office by 2023. The SWEEP package operates a
robust, complementary framework of multiple models using dif-
ferent boundary conditions, including the tomography described
in this paper and both simple and more sophisticated magnetic
models (Weinzierl et al., 2016; Yeates et al., 2018; Gonzi et al.,
2021).

Approaches to space weather forecasting can be broadly
placed in two groups: simulations that use observations of the
Sun’s photosphere to drive a model of the solar wind (e.g.,
Wang–Sheeley–Arge (WSA)/ENLIL: Arge & Pizzo, 2000;
Wang & Sheeley, 1990) and a persistence-based approach
which extrapolates the future behaviour of the solar wind based
on its past behaviour over various timescales (Owens, 2018). A
persistence-based approach assumes that the ambient solar wind
does not evolve drastically over a solar rotation. This is shown*Corresponding author: kab84@aber.ac.uk
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in observational data by a weak recurrence in geomagnetic
activity and solar wind conditions (Diego et al., 2010) over a
~27-day period. Hence a persistence approach can provide a
baseline for comparison of solar wind forecasting models
(Owens et al., 2013). The heliospheric simulations are primarily
based on remote solar observations and depend on photospheric
magnetic field observations to build a model of the corona (e.g.,
MAS: Linker et al., 1999; Riley et al., 2012, AWSom: der Holst
et al., 2014, etc.). It is the modelled conditions of the outer cor-
ona that forms the inner boundary for heliospheric solar wind
models (e.g., ENLIL: Odstrcil, 2003, EUHFORIA: Pomoell &
Poedts, 2018, HUXt: Owens et al., 2020).

The Magnetohydrodynamic Algorithm outside a Sphere
(MAS) coronal model uses photospheric magnetic field obser-
vational data in order to gain the magnetic field configuration
at the solar wind base (Linker et al., 1999; Riley et al., 2012).
MAS derives an inner boundary condition at 30 R� that can
be used in solar wind heliospheric models to predict solar wind
conditions at 1AU (Owens & Riley, 2017). In this work, the
MAS inner boundary condition is used to benchmark the results
of the tomography-derived inner boundary condition. MAS
adopts a simplified coronal “polytropic” model, which assumes
the thermal pressure is greater or equal to the magnetic pressure
at distances closer to the Sun (i.e., b� 1). This is used to empir-
ically convert the pressure, and density gained via simplified
physical laws into a solar wind solution (Parker et al., 1964).
Magnetohydrodynamic (MHD) equations are used and inte-
grated forward in time until the solar wind parameters reach a
steady state and give a full three-dimensional state of the solar
wind at heights greater than the solar wind Alfvén point (Linker
et al., 1999; Riley et al., 2012). MHD heliospheric models use
this information at 30 R� as inner boundary conditions in order
to propagate the solar wind conditions to 1AU (Odstrcil, 2003;
Riley & Lionello, 2011; Owens et al., 2020). Three-dimensional
MHD models offer a comprehensive physical model of the solar
wind at large scales but are computationally expensive.

Riley & Lionello (2011) proposed that the magnetic, gravi-
tational, and pressure gradient forces of the solar wind plasma
can be neglected at distances greater than 30 R� and that a
purely radial flow of the ambient solar wind plasma can be
assumed, thus vastly reducing the complexity of the MHD
equations. Heliospheric models that use this reduced physical
approach have a greatly increased computational efficiency at
the expense of reduced physics while still yielding results com-
parable to full 3D MHD models (e.g., Owens et al., 2020).
Owens et al. (2020) have adapted this reduced physical model
for the time domain, namely the “Time-dependent Heliospheric
Upwind Extrapolation” (HUXt) model. The model complexity
is reduced further when limited to only radial components of
the equatorial plane, allowing the model to run on a standard
desktop computer in seconds, even with a moderate angular
(~2.8�), radial (1.5 R�), and time (~4 h) resolution.

While space weather forecasting has developed enormously
over the past few decades, there is still room for further
improvement. One of the main constraints on the accuracy of
space weather forecasting is the lack of adequate observational
data that constrains direct empirical models between the photo-
sphere and Earth. According to the concluding sentences of
MacNeice et al. (2018): “the pace of [physical model] develop-
ment has outstripped the pace of improvements in the quality of
the input data which they consume, and until this is remedied,

these models will not achieve their full forecasting potential”.
This statement is a strong argument for new instruments and
missions focused on operational space weather to provide
higher quality data. It is also an argument for full exploitation
of current resources: new or improved constraints on coronal
structure and density at the coronal-heliosphere boundary are
therefore important. Recent efforts focus on improving the diag-
nostics from photospheric observations through advanced mag-
netic modelling or using alternative observations such as radio
scintillation (Gonzi et al., 2021). Our efforts are focused on
using coronagraph observations through coronal rotation
tomography to provide a direct constraint on solar wind models.
A less direct approach developed by Poirier et al. (2021) is to
use coronagraph observations to constrain magnetic models
without resolving the line of sight (LOS).

There are ample, routine observations of the coronal-
heliospheric boundary region by space-based coronagraphs
(e.g., LASCO: Brueckner et al., 1995, COR2: Howard et al.,
2008). These are largely neglected in the context of ambient solar
wind modelling due mainly to the LOS problem: given the com-
plex spatial distribution of high- and low-density streams along
the LOS, it is impossible, from a single observation, to estimate
this distribution. Coronal rotational tomography techniques aim
to find a distribution of electron density in a 3D corona which
best satisfies a set of coronagraphic polarised brightness (pB)
observations made over half a solar rotation (half a rotation since
both east and west limbs are observed), subject to some reason-
able assumptions such as the smoothness of the reconstruction,
thus helping to rectify the LOS problem. A comprehensive
review is given by Aschwanden (2011). An iterative regularised
least-square fitting method was presented by Frazin (2000) and
developed and applied to other cases (e.g., Butala et al., 2005).
A similar method has been applied to very low heights in the
corona (Kramar et al., 2014) and expanded to include a time-
dependency (e.g., Vibert et al., 2016). A novel method for creat-
ing qualitative maps of the distribution of coronal structure was
introduced byMorgan et al. (2009), resulting in a comprehensive
study of coronal structure over a solar cycle (Morgan & Habbal,
2010) and measurements of coronal rotation rates (Morgan,
2011a). Machine learning approaches are currently being devel-
oped (Jang et al., 2021). A new quantitative method based on
spherical harmonics is presented by Morgan (2019), utilising
the calibration and processing methods of Morgan (2015).
Further refinements to the method, and initial results, are pre-
sented inMorgan& Cook (2020), and a study of coronal rotation
rates based on tomography is made by Edwards et al. (2022).
The method is based on a spherical harmonic model of the
coronal electron density and gives reconstructions at distances
of 4–10 R�. At these heights and above, the corona can be
assumed to flow radially outward. The tomography results when,
compared at different heights, confirm this radial structure
(Morgan & Cook, 2020). A desirable goal over the next decade
would be an unified approach, where solar wind models are
driven by coronal models based on as many empirical constraints
as possible, including magnetic field extrapolations, coronal den-
sity estimations, and any other routine empirical constraints such
as outflow velocity estimations. A crucial advancement would be
the inclusion of a time-dependent inner boundary condition
based on time-dependent magnetic models (e.g. Yeates et al.,
2008; Weinzierl et al., 2016) and time-dependent tomography
(e.g. Vibert et al., 2016; Morgan, 2021). Morgan (2021) states
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that the time-dependent method requires further development for
routine use; thus, our current work uses the static tomography
method of Morgan & Cook (2020).

This work aims to improve the accuracy of predictions of
the ambient solar wind velocity at Earth and to investigate the
relationship between coronal electron density and solar wind
velocity at a distance of 8 R�. Although iterative tomography
methods have been coupled with MHD models to forecast space
weather before (e.g., HELTOMO: Jackson et al., 2020), these
models and studies are primarily focused on coronal mass
ejections (CME) (Jackson et al., 2010) and use an iterative inte-
grated kinematic model in order to predict ambient solar wind
conditions (Jackson et al., 2013). Such heliospheric models
incorporate CME models such as the cone model (Odstrcil
et al., 2004), which use observational constraints on CME
characteristics in order to model CME propagation throughout
the heliosphere. CMEs are not considered further in this work,
although our method and results are relevant to CME propaga-
tion and arrival time predictions.

This work proposes to use the tomography results as a new
inner boundary condition for heliospheric solar wind models
(HUXt), describes an initial implementation, and presents initial
results compared to boundary conditions based on MAS as
proof of concept. The methodology used in this study, as well
as the simple empirical relationship used to derive solar wind
velocity from density at a distance of 8 R�, are described in
Section 2. The iterative method used to improve the model’s
match to in situ data through adjustment of input parameters
is given in Section 3.1. MAS inner boundary conditions, when
coupled with 3D MHD heliospheric models, have produced
results that compare well with in situ (OMNI) bulk solar wind
velocity data (e.g., Owens & Riley, 2017). The optimised model
output is compared to results gained using MAS-derived inner
boundary conditions and in situ data obtained via Operating
Missions as Nodes on the Internet (OMNI) satellite network
in Section 3.2. The tomography-based model is then applied
to dates at different stages of the solar cycle 24 in Section 3.3.
Section 3.4 explores the operational feasibility of the tomogra-
phy inner boundary condition by adopting a persistence-based
approach. Section 4 presents an implementation of an ensemble
model that demonstrates how uncertainties can be quantified by
the system. Conclusions are given in Section 5.

2 Method

This section gives a brief overview of the tomography
method (Sect. 2.1), outlines the method to generate the inner
boundary velocity condition from the tomography density maps
(Sect. 2.2), gives an overview of the heliospheric solar wind
model (Sect. 2.3), and an overview of the dynamic time warping
(DTW) algorithm and how this will be exploited in the context
of this study (Sect. 2.4).

2.1 Tomography maps of the solar corona

The COR2 coronagraphs are part of the Sun–Earth
Connection Coronal and Heliospheric Investigation (SECCHI:
Howard et al., 2008) suite of instruments aboard the twin
Solar Terrestrial Relations Observatory (STEREO A & B:

Kaiser, 2005). Density maps are calculated from COR2A data
in 3 main steps:

� Calibration is applied to COR2 polarised brightness (pB)
observations over a period of half a Carrington rotation
(±1 week from the required date) using the procedures
of Morgan (2015). The processing includes a method to
reduce the signal from coronal mass ejections (CMEs)
(Morgan et al., 2012). Following calibration, the data is
remapped in solar polar coordinates, and an annular slice
at the required distance from the sun centre is extracted
over several hundred observations taken over time.
Figure 1a shows an example of data used as input for
the tomography. For this example, the central date is
2018/11/11 12:00, the data spans from 2018/11/04
00:00 to 2018/11/17 23:08, and the distance chosen is
8 R�. This date range corresponds approximately to the
mid-date of Carrington rotation (CR) 2210.

� Tomography is applied to the data using the regularised
spherical-harmonic optimisation approach of Morgan
(2019). The method is based on a spherical harmonic dis-
tribution of density at the height of reconstruction, with an
r�2.2 decrease in density above this inner height; thus, a
purely radial density structure is prescribed. Line-of-sight
integrations are made of the spherical-harmonic based
densities; thus, a set of brightnesses are gained, one for
each order, with the lines-of-sight corresponding to the
COR2A observations. The problem is then reduced to
finding the coefficients of each order based on a regu-
larised least-squares fitting between the observed bright-
ness and the spherical harmonic brightnesses. In this
work, a 22nd order spherical harmonic basis results in a
density reconstruction with 540 longitude and 270 latitude
bins for a chosen distance (restricted to between 4 and
�10 R�, with this range limited by the instrument’s useful
field of view). In this work, we use only the reconstruc-
tions for a distance of 8 R�. Note that the tomography
reconstruction is static and has no time dependence.

� High-density streamers are narrowed, and a correction for
“excess” density, possibly F-corona contamination
(Morgan & Habbal, 2007c), is applied according to the
method of Morgan & Cook (2020). The narrowing
method is applied based on the gradients within the initial
tomography density map, with the degree of narrowing
controlled by a single parameter. This parameter is
adjusted to find an optimal fitting to the observations.
The “excess density” is estimated based on an analysis
of densities within large low-density regions (coronal
holes) between tomography maps made at a range of
distances (4–8 R�) and consideration of mass flux.

Figure 1a shows the observed coronal polarised brightness.
This distribution is similar to the reconstructed polarised bright-
ness shown in Figure 1b. The reconstructed brightness results
from synthetic observations that use the electron density distri-
bution. The tomography density map resulting from the above
steps is shown in Figure 1c. This visualises the distribution of
electron density at a distance of 8 R� resulting from the steps
described above. Note that this is a static reconstruction since
it gives a non-time-dependent density distribution that is
spatially smooth and best satisfies the data.
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The distribution of the reconstruction shows a good agree-
ment with the observed, and all the large-scale streamer features
are well reconstructed. However, the reconstruction lacks the
fine-scale detail of the observed, including a general “fuzziness”
of the brightness and temporal changes over timescales of less
than a day. To reconstruct fine-scale detail, it is necessary to
apply the time-dependent tomography described by Morgan
(2021). There is considerable small-scale variation in the nas-
cent slow solar wind (e.g., Alzate et al., 2021, and references
within), and the evolution of this variation in the heliospheric

wind is an active field of research. For operational forecasting
of the ambient solar wind, our immediate problem is to model
the large spatial scale and longer-timescale variations, and the
static tomography reconstruction is adequate for this purpose.

2.2 Generating the inner boundary condition

We wish to use the tomography density map as an inner
boundary condition to the HUXt model and to compare the
resulting solar wind velocities near Earth with the results of

Fig. 1. (a) The observed coronal polarised brightness at a distance of 8 R�, plotted as a function of position angle (measured counter-clockwise
from solar north) and time. This is used as input to the tomography method. (b) The reconstructed polarised brightness, or synthetic
observations gained from the tomographical density distribution. (c) The electron density at a distance of 8 R� mapped in Carrington longitude
and latitude.
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using a MAS-based inner boundary. HUXt allows the user to
set the heliocentric distance of the inner boundary. In this work,
a distance of 8 R� is used for the tomography-based inner
boundary and 30 R� for the MAS-based inner boundary. For
the purpose of solar wind modelling in the Sun-Earth equatorial
plane, a slice of density is extracted from the tomography map
at Earth’s Carrington latitude at the initiation of the Carrington
rotation (this latitude is 4.8� for the 2018 November example).
The heliospheric model requires only 128 solar wind velocity
values at equally spaced longitudes with increments of �2.8�.
The extracted tomography longitudinal profile is rebinned to
this size. Figure 2 shows the density profile at this latitude as
a blue curve.

The solar wind model requires a set of radial outward veloc-
ities as an inner boundary condition. We adopt a simple linear
inverse relationship between densities and velocities, approxi-
mately consistent with the general properties of the solar wind
as revealed by both in situ and remote observations (e.g.,
Habbal et al., 1997; Schwenn, 2006; Allen et al., 2020), given by:

V ¼ V max � n� nmin

nmax � nmin

� �
V max � V minð Þ

� �
; ð1Þ

where V and n are the solar wind velocity and electron particle
density, respectively, nmax and nmin are the maximum and
minimum densities in the equatorial plane, respectively, and
Vmax and Vmin are model parameters specifying the maximum
and minimum solar wind velocity at the height of the inner
boundary (8 R�). Whereas the density values (nmax and nmin)
are defined by the tomography data at 8 R�, the range of the
velocity values is unknown. This highlights the need for an
optimisation process with the aim of finding optimal values
of Vmax and Vmin. This optimisation process is described in
Section 3.1. Figure 2 demonstrates the conversion of the elec-
tron density to the solar wind velocity at the inner boundary
for the 2018 November (CR2210) example with Vmax and
Vmin set to their optimal values of 480 and 220 km s�1,
respectively. Note that these optimal values are found in the
following section.

This simple inverse linear relationship of equation (1) is
likely oversimplistic compared to the true relationship between
density and velocity in the corona but serves the purpose of

providing a proof of concept of a direct relationship for this
study. Future efforts will experiment with optimising this empir-
ical relationship; for example, an inverse Sigmoid function or an
exponential relationship may better model the likely bimodal
slow and fast wind patterns in the nascent solar wind and
may reveal a global model that can provide an optimised model
of the solar wind over several years, or a solar cycle. We note
that converting the density into an estimate of velocity is similar
to that used by magnetic models, where an empirical relation-
ship is required to transform the magnetic field distribution to
velocity (e.g., Gonzi et al., 2021).

2.3 Heliospheric upwind extrapolation model

HUXt is an incompressible solar wind model that solves a
reduced Burgess equation along 1D vectors of velocities in
the radial domain. The “upwind” conditions only allow outward
flow and thus forbids any sunward motion of the solar wind.
Therefore, considerations for stream interaction are included
through adjustments in solar wind speed to uphold the upwind
conditions (or at a greater distance in the radial coordinate)
(Riley & Lionello, 2011). For the purposes of forecasting, the
results of this model compare well to full 3D MHD models
for both predictions of the ambient solar wind and CME events
(Owens et al., 2020; Hinterreiter et al., 2021). In this work, we
use the static tomographical reconstruction and, therefore, a
time-constant boundary condition.

The HUXt model includes a parameter to account for resid-
ual solar wind acceleration. Riley & Lionello (2011) used an
exponential function to impose a velocity profile that
approached its final value asymptotically over a distance range
between the lower boundary and �50 R� (an acceleration
parameter of 0.15, built into the HUXt model). This work uses
this acceleration parameter for both slow and fast wind streams.
Investigating this parameter is a central focus of our future
work: it is well known that the slow wind reaches its final veloc-
ity at a greater distance from the Sun compared with that of the
fast (e.g., Schwenn, 1990).

HUXt uses a five-day “spin-up” time. All longitudinal and
radial model points are initialised with a value of 400 km s�1.
The velocity at the inner boundary condition is rotated through

Fig. 2. Coronal electron density (blue, right axis) taken from the tomographical map of Figure 1c at Earth’s latitude, and solar wind velocity at
8 R� (black, left axis) gained from the density using the simple inverse relationship of equation (1). For this example, Vmax = 480 km s�1 and
Vmin = 220 km s�1.
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� �66� (equal to the solar rotation over five days), and the solar
wind conditions are iteratively propagated outward while the
boundary condition is rotated forward with time. Therefore,
after the five-day “spin-up” period, propagated solar wind
velocity values have reached distances beyond the orbit of
Earth. Following the spin-up period, the solar wind velocity
conditions are simulated forward in time by 27.27 days (or
one rotation). Results generated during the spin-up period are
discarded from the model output (Owens et al., 2020). For this
study, the inner boundary condition is used as a static state
which is not altered during the model run.

The evolution of solar wind velocity can be plotted as a
function of time at any point in space within the model. In this
work, we limit the results to Earth, allowing a direct comparison
with in situ measurements. We use the reduced 5-min resolution
combined satellite network data provided by OMNI. Sporadic
short periods of missing solar wind velocity values are linearly
interpolated and then binned to form an hourly average with an
associated standard deviation. This is then smoothed with a 10-h
moving window average.

2.4 Dynamic time warping

Dynamic time warping (DTW) is an effective algorithm to
quantify the agreement between two-time series and is used here
to compare the model and in situ solar wind velocities. The
DTW algorithm was initially used to aid automated speech
recognition and has recently been used in a variety of fields such
as economics (Franses & Wiemann, 2020), biology (Skutkova
et al., 2013), and space weather (Owens & Nichols, 2021;
Samara et al., 2022).

DTW requires two vectors (1D arrays, A and B) as input.
Vectors A and B are not required to be the same length. The
Euclidean distance is calculated between every point in set A
to every point in set B and is thus assigned a cost function
for every possible alignment between the two data sets. This
DTW cost or “DTW distance” metric is then minimised to find
the optimal alignment between data set A and B (Berndt &
Clifford, 1994). Effectively, DTW is non-linearly stretching
and compressing each data set by connecting like-for-like struc-
tures between the sets. More efficient versions of this algorithm
have been generated for a reduced computational expense, such
as the Python FastDTW algorithm package used in this study
(see: Salvador & Chan, 2004).

The requirements of the DTW algorithm are as follows:

� The two sets are ordered in time.
� Both sets start and end at the same time, or A0 is anchored
to B0, and An�1 is anchored to Bm�1, where n and m are
the number of elements in A and B, respectively.

� Every element in data set A will be matched with at least
one corresponding data point from data set B, and vice
versa.

� The optimum path must not “cross” between elements
(for example, if Ai is paired to Bj, then Ai+1 or later cannot
be paired with Bj�1 or earlier).

A metric used in this study in order to quantify the DTW
distance is the sequence similarity factor (SSF). SSF, as defined
by Samara et al. (2022), is described in equation (2):

SSF ¼ DTWDistðO;MÞ
DTWDistðO; �OÞ

ð2Þ

where M represents the modelled solar wind velocity, and �O
represents the average magnitude of the observed in situ data
(O). SSF allows a direct comparison of the modelled data to
that of the average in situ data and provides a surrogate score
of the model. For context, if SSF is > 1, the predicted solar
wind velocities are worse than that of a constant mean
observed solar wind value across the full-time period of the
prediction. If SSF = 0, a perfect prediction has been made,
and the modelled data matches the in situ data exactly.

3 Results

3.1 Velocity optimisation using dynamic time warping

This section describes and implements a simple method to
derive optimised values of both the Vmin and Vmax terms and
shows how this approach yields a far improved agreement
between the model and measured solar wind velocities at Earth,
as well as the time of arrival of fast solar wind streams.

Figure 3 demonstrates the effect of using arbitrary (and
inaccurate) Vmax and Vmin velocity terms on the solar wind
model values at Earth. Vmax and Vmin parameters are set at
600 km s�1 and 250 km s�1 (shown in Fig. 3a) and
380 km s�1 and 110 km s�1 (shown in Fig. 3b). This figure also

Fig. 3. DTW optimal path (red) between in situ data and two Tomography/HUXt model runs for CR2210 with (a) overestimated Vmax and Vmin

terms of 600 and 250 km s�1 respectively, and (b) underestimated Vmax and Vmin terms of 380 and 110 km s�1, respectively.
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visualises the DTW connections between the model and OMNI
measurements along the optimum DTW path (shown in red),
with the overall DTW distance being visualised by the sum of
the length of the red lines. Both overestimation and underesti-
mation of the velocity parameters will cause inaccurate predic-
tions of the solar wind at Earth and thus give a larger DTW path
distance compared to a model run with optimised or “best fit”
velocity parameters. For example, the magnitude of the DTW
path distance metrics for the model runs seen in Figures 3a
and 3b are 6.03 � 104 (SSF value of 1.34) and 7.66 � 104

(SSF value of 1.71), respectively. Therefore, both model runs
shown in Figure 3 provide a greater DTW distance compared
to a constant average observed velocity across the full Carring-
ton rotation. In order to obtain velocity values that give an opti-
mal fit (or lowest DTW distance) between the model and in situ
data, the efficiency of the HUXt model is exploited in an
exhaustive search method. The tomography/HUXt model is
run repeatedly with incrementally changing Vmax and Vmin
terms, and the total DTW distance is recorded for each run.

Figure 4a shows the relationship of optimal DTW path dis-
tance between the in situ and Tomography/HUXt model solar
wind velocity at 1AU with incrementally changing velocity
terms in equation (1). The velocity ranges used in this study
are 50–350 km s�1 and 350–650 km s�1 for Vmin and Vmax,
respectively in order to account for a wide velocity range for
each parameter while also constraining each parameter to values
that are consistent with physical solar wind velocities. We use
30 increments between these extremes (30 � 30 = 900 model
evaluations). Figure 4a shows a minimum optimal DTW path
distance for the tomography-derived inner boundary condition
corresponding to velocity magnitudes of 220 and 480 km s�1

for Vmin and Vmax, respectively. This is represented by the white
cross in Figure 4a. These values are lower than observed on
Earth due to the HUXt heliospheric model incorporating an
acceleration parameter. A comparison between smoothed

OMNI satellite data and the HUXt output with the optimal Vmin
and Vmax is shown in Figure 5a and demonstrates a very strong
correlation between the OMNI data and the output of the
tomography/HUXt model (for statistical analysis, see Table 1).
The time of arrival of the faster solar wind streams agrees to
±1 day, with the velocities agreeing with ±20 km s�1.

In order for a fair comparison between tomography and
MAS-based inner boundary condition (see Sect. 3.2), the
MAS inner boundary condition requires a similar exhaustive
optimisation process to be applied. This optimisation process
effectively scales the initial MAS inner boundary condition
between two values (VMmin and VMmax), with the aim of min-
imising the DTW path distance between the modelled and
in situ data. During the optimisation process and for following
comparisons, the MAS inner boundary height was set at 30 R�.
The results of this optimisation can be seen in Figure 4b, with
the minimum DTW path distance corresponding to VMmin
and VMmax values of 290 and 580 km s�1, respectively.

Further details of the agreement of model and observation in
the context of a DTW analysis are shown in Figure 5. Figure 5a
visualises the DTW optimal alignment via the red lines.
Figure 5b shows that the DTW path of the optimal alignment
rarely deviates over two days from the “ideal” path, which rep-
resents a near-perfect agreement between model and in situ data
shown in grey. The largest disagreement is seen at 18–24 days,
which is seen in both the long red lines between data points in
Figure 5a and by the biggest dispersion between the DTW opti-
mum path and the ideal path seen in Figure 5b. This is due to a
model overestimation of speed during this period. The his-
tograms demonstrate the differences in time of arrival and the
magnitude of solar wind velocity between the modelled and
observational data along the optimum path. Figure 5c shows
that there is a bias towards negative values. This suggests
the model is predicting a later time of arrival with a mean
DT(insitu�model) of �0.45 days and a standard deviation of

Fig. 4. (a) Contour plot of DTW path lengths with a varying magnitude of the Vmax and Vmin terms for the tomography-derived inner boundary
condition. The minimum DTW path distance is marked by a white cross, and this point gives the optimal values of Vmax and Vmin of 480 and
220 km s�1, respectively. (b) DTW path lengths as a function of varying scale parameters for the MAS-derived inner boundary condition with
the white cross showing the optimum VMmin and VMmax parameters of 280 and 580 km s�1 respectively.
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1.16 days. Figure 5d is also biased towards negative values,
suggesting velocity overestimation by the model. The mean
DV(insitu�model) is �3.64 km s�1 with a standard deviation of
19.79 km s�1.

3.2 Validation of model output

Figure 6 shows a comparison of the CR2210 tomography/
HUXt velocity output (Blue) with OMNI in situ measurements
(Black) at 1AU and MAS/HUXt velocity output (Orange). The
tomography-based inner boundary parameters Vmin and Vmax are
set at 220 and 480 km s�1, respectively. The MAS inner bound-
ary condition has scale parameters of VMmin and VMmax of 290
and 580 km s�1 as described in Section 3.1.

From Figure 6, both models have similar profiles, and the
main changes between slow and fast wind tend to agree. The
first small peak (shown in the tomography data 2018, October
29–31) is not present in the MAS data. The solar wind velocity
between the second (2018, November 2–5) and third peak
(2018 November 10–14) drops to intermediate velocities
(�440 km s�1) for the tomography-driven model, while the
MAS model drops to slower velocity (�350 km s�1). This is
significant as the in situ data, as shown in black in Figure 6,
shows an intermediate velocity (�440 km s�1) of the more
undisturbed solar wind between the two fast peaks (2018
November 7–10). The magnitude of solar wind velocity during
this time is better represented by the tomography inner bound-
ary condition model.

Fig. 5. Further analysis of the optimal DTW path. (a) Comparison of modelled solar wind velocities at Earth (grey) with in situ data (black) and
DTW optimised path (red). (b) Alignment of the modelled and in situ data along the optimised DTW path with respect to time. (c) Difference in
time between observation and modelled data of aligned points along optimal DTW path (DT(insitu�model)). (d) Velocity difference between
observation and modelled data of aligned points along optimal DTW path (DV(insitu�model)).

Table 1. Statistical analysis of the comparison between the tomography/HUXt model and the MAS/HUXt model, with in situ data.

Model MAE (km s�1) Pearson DTW path dist (�104) SSF

MAS/HUXt 53.58 0.567 2.11 0.47
Tomography/HUXt 47.90 0.7413 1.80 0.40
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Table 1 presents statistical details of the comparison
between models. The Pearson correlation coefficient between
in situ measurements and models is considerably higher for
the tomography/HUXt model. The mean absolute error
(MAE) of velocities between measurement and MAS/HUXt is
approximately 11% higher than the tomography/HUXt, while
also showing a higher SSF. These results show that the general
profile and magnitudes of solar wind velocity are closer to the
data using the tomography boundary condition compared to
the optimised MAS model. This demonstrates both the potential
value of tomographical density maps as an inner boundary con-
dition and the benefit of searching for an optimised velocity
range at the inner boundary. Note that such an optimisation
would not be possible without an efficient solar wind model
such as HUXt.

Both models fail to give the exact time of arrival of various
features. For example, the rapid rise from slow to fast wind
observed on November 4 arrives approximately one day early
in both models. The start of the decrease from fast to slow wind
on November 13 comes late in the tomography/HUXt model,
and the decrease is less rapid than observed. The main reasons
for these differences are listed and discussed in Section 5.
Despite the differences, the comparison of tomography/HUXt
to in situ data is promising – the large-scale features of the mea-
sured velocity are present in the predicted velocities, and the
timings are reasonable given the initial simple implementation
of the inner boundary condition. The model fails to replicate
smaller-scale structures on timescales of a day or less. One rea-
son for this is that the tomography densities are inherently
smooth – this is an unavoidable result of finding a static tomo-
graphical solution which is discussed further in Section 5. Other
reasons for differences between model and measurements
include the reduced physics approach of HUXt and the limited
resolution of computational modelling.

3.3 Application to other dates

Here we apply the Tomography/HUXt method to two dif-
ferent periods during the solar cycle 24. The model is applied
to 2014 May (CR2150, near solar maximum) and 2018 March
(CR2202, at the start of the current solar minimum). The
tomography maps for these two dates are shown in Figure 7.
Figures 8a and 8c show the comparison of modelled solar wind
velocity at Earth and in situ data for CR2202 and CR2150
respectfully, with optimised velocity parameters which are
gained from the contour plots seen in Figures 8b and 8d.

For CR2202, Figure 8b demonstrates a minimum optimal
DTW path distance at a Vmax value of 440 km s�1 and a Vmin
value of 230 km s�1. For this period, the model and observation
data agree well. However, one disparity is present between 2018
March 29 – 2018 April 4, where the in situ data shows a region
of higher solar wind velocity, which is not present in the
modelled data. The mean velocity difference between in situ
and modelled data along the optimal DTW warped path is
0.49 km s�1. The time domain also shows an acceptable agree-
ment, with a mean time difference of 1.12 days.

CR2150 spans an active period close to the height of the
solar maximum. Figure 8c shows a significant fast solar wind
stream in 2014, May 22–25, which is seen in both model and
measurement. However, there is a large discrepancy between
a peak seen in the model in 2014, May 14–16 and one seen
in measurement 3 days earlier. Figure 8d demonstrates a mini-
mum optimal DTW path distance at 400 and 240 km s�1 for
Vmax and Vmin, respectively. The velocity difference has a mean
value of �0.9 km s�1. These values are close to the previous
case studies. However, the time difference is much greater in
comparison to previous Carrington rotations, with a mean of
�1.6 days and a standard deviation of 2.3 days. Such a deteri-
orated agreement is likely due to the increased solar activity

Fig. 6. Comparison of optimised tomography/HUXt (blue) and optimised MAS/HUXt (orange) model predictions of the solar wind velocity at
Earth with insitu data (black) for CR2210.
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during this time, which both disrupts the tomography process,
makes the time-independent static tomography approach less
valid, and increase the chance of CMEs in the in situ
measurements.

Table 2 shows a statistical comparison between both
optimised tomography/HUXt and MAS/HUXt models with
in situ data for CR2150 and CR2202. For CR2150, the
tomography/HUXt model combination yields a lower MAE
(38.44 km s�1) compared to the MAS/HUXt model
(40.12 km s�1). The MAE for CR2202 offers a significant
32% reduction for the tomography/HUXt model (39.31 km s�1)
compared to that of the MAS/HUXt model (57.93 km s�1). For
both periods, the tomography/HUXt model shows a smaller
DTW path distance and a smaller SSF than MAS/HUXt model.

The model solar wind speeds for Carrington rotations 2150
and 2202 show a more gradual transition between high and low
solar wind velocities than in the observational data. This is
likely due to the smoothness of the density given by the tomog-
raphy and the upwind dependence of HUXt. The significant
velocity overestimation of �75–100 km s�1 seen between
2014 May 27–29 (Fig. 8c) could be due to the upwind depen-
dence of HUXt, or due to slow wind from equatorial coronal
holes. Parker solar probe (PSP) has detected low density –

low-velocity solar wind structures at distances close to the
Sun that are thought to originate from equatorial coronal holes
(see: Bale et al., 2019; Kasper et al., 2019). This specific struc-
ture of solar wind contradicts the simple inverse relationship of

equation (1), which assumes a consistent low density – high-
velocity relationship. This will result in overestimating solar
wind velocities at the inner boundary and, therefore, at Earth.
A low density – low-velocity structure could well explain the
velocity overestimation of 2014 May 27–29, as this region maps
back to approximately 150� longitude, a section between two
coronal holes (see Fig. 7a). However, this area has obvious
key implications for solar wind forecasting that demands further
research.

3.4 A persistence approach

In this section, a persistence-based approach is adopted in
order to attempt to predict solar wind velocities in a realistic
operational context. Unlike a traditional persistence model,
which predicts a near-exact repetition of the observed ambient
solar wind conditions for the solar rotation prior (see Owens
et al., 2013), in this case, the inner boundary condition is
updated. The coronal densities (and therefore nmax and nmin
terms in Eq. (1)) are extracted as described in Section 2.2. How-
ever, this inner boundary condition will not undergo the exhaus-
tive optimisation process described in Section 3.1 but instead,
use the optimised Vmax and Vmin terms unchanged from Carring-
ton rotation prior. For example, Figure 9a shows the comparison
between in situ data and the forecast data for CR2203 with Vmax
and Vmin values of 440 and 230 km s�1, which are the optimised
parameters for CR2202. Likewise, Figure 9b compares in situ

Fig. 7. Electron density as estimated using coronal tomography at a distance of 8 R�, for Carrington rotations (a) 2150.5 and (b) 2202.5. The
red boxes labelled A and B in (a), and the white box in (b) are relevant for the ensemble results of Section 4.
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data with forecast data for CR2151 with Vmax and Vmin of 400
and 240 km s�1 (optimised values for CR2150).

Figure 9a shows a relatively good agreement with the in situ
data in terms of the time of arrival of the fast solar wind streams
(see Table 3 for statistical analysis). However, there are dispar-
ities in the magnitude of the peaks. For example, in the first
peak (seen in the in situ data on 2018, April 21–22), the
in situ data predicts a velocity of �600 km s�1, whereas the
model predicts a solar wind velocity of �500 km s�1 . The sec-
ond peak (2018 May 6–11) shows a similar difference. This
suggests that the Vmax term is underestimated. Likewise, the

slower, more settled solar wind present in between these two
peaks (2018, April 25 – 2018, May 5) is underestimated by
the model, suggesting that the Vmin term is also underestimated.
Table 3 shows an SSF value of 0.65 for CR2203. This shows
that a persistence approach to the tomography-based model
can yield more accurate results compared to a single mean
value.

Figure 9b shows a weaker agreement between the modelled
and in situ data. The profiles are different, with the in situ data
demonstrating a double peak between the dates of 2018, June
8–13, whereas the model predicts a single peak around this

Fig. 8. (a) Comparison of model and OMNI solar wind velocities for CR 2202 for the optimal fit in terms of minimum DTW path distance
(marked by a white cross in Fig. 8b), with Vmin and Vmax set to 230 and 440 km s�1 respectively. (b) Contour plot showing the DTW path
distance as a function of Vmin and Vmax for CR 2202. (c) Same as (a), but for CR 2150, with Vmin and Vmax set to 240 and 400 km s�1,
respectively (represented by white cross in Fig. 8d). (d) Same as (b), but for CR2150.

Table 2. Statistics of HUXt model run with both tomography and MAS inner boundaries, with the type of inner boundary indicated by the IB
column. The CR column gives the Carrington rotation number, the Vmax column gives the tomography Vmax and the MAS VMmax parameters,
and the Vmin column gives the tomography Vmin and the MAS VMmin parameters.

CR IB Vmax (km s�1) Vmin (km s�1) DT (days) DV (km s�1) MAE (km s�1) DTW dist (�104) SSF

2150 Tom 400 240 �1.57 ± 2.31 �0.80 ± 9.83 38.44 0.79 0.42
2150 MAS 390 270 3.61 ± 2.19 0.78 ± 16.10 40.12 1.78 0.95
2202 Tom 440 230 1.12 ± 1.69 0.50 ± 14.92 39.31 1.25 0.34
2202 MAS 420 290 2.98 ± 3.21 �3.34 ± 28.09 57.93 2.39 0.66
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time. The magnitude of this peak also disagrees by �150
km s�1. This again suggests that the Vmax term is underesti-
mated. Table 3 shows generally weaker statistics for CR2151
compared to that of CR2203. An SSF value of 1.20 infers that
a mean solar wind velocity across the full-time period would
yield a smaller DTW distance and potentially better predictions
of solar wind velocity compared to a persistence-based ap-
proach during this time period. During periods near solar max-
imum (such as CR2151), we would expect a persistence-based
approach to yield worse results. This is due to the coronal state
changing at a significantly faster rate than during solar mini-
mum and the tomography reconstruction failing to accurately
map the true coronal density. Therefore, the inner boundary
condition will differ significantly from the physical state of
the solar corona. This highlights the need for a time-dependent
tomography approach in an operational context.

Overall, here we show that a persistence model could poten-
tially be used in an operational context as a worst-case scenario
without updating the Vmin and Vmax parameters. However, the
model certainly loses accuracy when deployed in this fashion,
especially during periods near the solar maximum. This stresses
the need for either a time-dependent boundary condition or a
more complex, global relationship between coronal electron
density and solar wind velocity at the height of 8 R�. Both of
these issues are the focus of our current efforts.

4 An ensemble approach

The high efficiency of the HUXt model allows an ensemble
approach to estimating the uncertainty in model outputs based
on selected uncertainties at the inner boundary. The tomogra-
phy density distribution, as shown in Figures 1 and 7, shows
thin elongated structures that tend to lie longitudinally and
can be very narrow in latitude. Therefore, a small error in the

distribution given by the tomography method, or small latitudi-
nal deviance of the solar wind during propagation to Earth, can
significantly alter the inner boundary condition and the pre-
dicted solar wind conditions at Earth. An ensemble approach
is a straightforward way of investigating and quantifying the
effect small variations in the latitude of the extracted tomo-
graphical data at the inner boundary can have on the resulting
solar wind velocities on Earth. Another uncertainty to which
we can apply the ensemble approach is the choice of Vmax
and Vmin. Here, we use the map of the DTW cost function aris-
ing from the exhaustive search of Vmax and Vmin values to define
a range of velocity terms at the inner boundary for 2014 May
(CR2150) and 2018 March (CR2202).

4.1 Latitudinal dependence

Figure 7 shows two density maps that demonstrate two
extremes of solar activity. CR2150, as shown in Figure 7a,
demonstrates a complicated density distribution with many
high-density streamers positioned at a wide range of latitudes
and which span across the equator. Figure 7b shows a quiet
solar corona where the streamer belt is longitudinally aligned
near the equator and a more uniform low electron density at
higher latitudes. The main density enhancements are found
exclusively in the equatorial region.

A model run was conducted as described in Section 3.3 with
Vmax and Vmin remaining fixed at the optimised values of 400
and 240 km s�1 for CR2150 and 440 and 230 km s�1 for
CR2202. We adjust the inner boundary velocity profile by
extracting densities from the tomography map with ±3� of the
latitude of Earth with 1� increments. This range of latitudes
was chosen with the aim of comfortably covering the latitudinal
movement of Earth during one full Carrington rotation and,
more importantly, the unknown drift of the solar wind in lati-
tude between the Sun and Earth. Comparisons between the

Fig. 9. Comparison of predicted solar wind conditions of (a) CR2203 (Vmax and Vmin of 440 and 230 km s�1 respectively) and (b) CR2151
(Vmax and Vmin of 400 and 240 km s�1 respectively). The Vmax and Vmin values are that of the optimised velocity terms of the Carrington
rotation prior (obtained in Sect. 3.3).

Table 3. Statistical analysis of the comparison between the tomography/HUXt model with in situ data using optimal velocity parameters gained
for the Carrington rotation prior.

Car rot. Vmax (km s�1) Vmin (km s�1) MAE (km s�1) Pearson DTW path dist (�104) SSF

2203 440 230 63.74 0.74 3.77 0.65
2151 400 240 62.07 0.09 4.42 1.20
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resulting model and measured solar wind conditions on Earth
are shown in Figure 10. The largest variations in the ensemble
velocities during CR2150 (see Fig. 10a) are present before 2014
May 13. During this time, we find that the relatively small lat-
itude variation of ±3� leads to a wide variation in velocity. For
example, the largest velocity range is �50 km s�1, observed on
2014 May 10. For the remainder of the period, varying the lat-
itude leads to only a small variation in velocity (�20 km s�1).
This can be explained by examining the density map in
Figure 7a. The solar wind streams at Earth, corresponding to
the early part of the period, map back approximately to the re-
gion bounded by the red box labelled A in the tomography map.
This location was calculated by considering the solar wind
speed, the distance from Earth to the tomography map location,
and the solar rotation rate. This region spans the boundary be-
tween a high-density streamer to the north and a low-density
coronal hole to the south. Therefore, the northern latitudes in

Figure 10a yield considerably slower solar wind velocities com-
pared to southern latitudes during this time. Thus varying the
latitude by small values can lead to large changes in the density
profile and, therefore, the inner boundary velocity.

All ensemble model runs fail to match the steep decrease in
velocity during 2014 May 25. The coordinates of this decrease
near the Earth map back to the region bounded by the red box
labelled B in the tomography map. This is a narrow region of
low density lying between longitudinally extended regions of
higher density to the north and south. Either the tomography
map is incorrect in this small area, and that this region should
contain a higher density and thus map to slow velocities, or
the simplistic inverse linear relationship mapping densities to
velocities, as given by equation (1) fails in this region. If the
latter, then the relationship should not be linear and should
give the highest velocities only for the very lowest density
features in the tomography map. Current efforts are focused

Fig. 10. Comparison of in situ data with the results of multiple tomography/HUXt model runs for (a) CR2150 and (b) CR2202, with the
latitude of the inner boundary condition varied in one-degree increments between ±3� from the latitude of Earth.

K.A. Bunting and H. Morgan: J. Space Weather Space Clim. 2022, 12, 30

Page 13 of 20



on investigating an improved relationship between coronal
electron density and solar wind velocity at 8 R�.

All ensemble members consistently predict a higher velocity
peak on a date 2014, May 14–16. This feature is not seen on
these dates in the in situ data. This peak maps back to the small
low-density feature at Carrington longitude 270� as seen in the
equatorial region of the tomography map seen in Figure 7a. We
note that the density of this feature is low but not at the mini-
mum densities estimated for coronal holes seen in this map
and others. Conversely, the peak at intermediate velocities seen
in the data around 2014 May 12 is not present on this date in
any of the models runs. This feature maps back to a longitude
of around 305�, close to the boundary between the low-density
region at 270�. It is likely that the velocity peak seen in all
ensemble members (2014, May 14–16) is the same peak seen
in the in situ data during 2014, May 12. The amplitude of both
peaks is comparable. There are several reasons why the model

predicted a later time of arrival at Earth for this specific struc-
ture, including the modelling limitations of HUXt (e.g., the
acceleration parameter) or a defect in the tomography map.

Figure 11 shows how the density of the corona changes in
the time of just three Carrington rotations. During CR2149,
shown in Figure 11a, there is a large and very low-density coro-
nal hole spanning the equator and reaching to high latitudes.
There is a clearly defined western boundary to this coronal hole
at longitude 280� near the equator. By CR2150, as shown in
Figure 11b, the coronal hole has greatly reduced in size and
does not reach the low densities of the previous rotation. Con-
sequently, the western boundary is not clearly defined. The fol-
lowing rotation in Figure 11c shows the western streamer
encroaching into the region previously occupied by the coronal
hole and the coronal hole limited to southern regions. This rapid
change in structure is the best explanation for the differences
between the model and in situ measurements between dates

Fig. 11. The rapidly changing density of the corona between (a) CR2149, (b) CR2150, and (c) CR2151.
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2015, May 12 and 18, and shows that a time-dependent inner
boundary becomes critical during solar maximum.

The results for CR2202 in Figure 10b show that the variabil-
ity in solar wind prediction is largest between 2018, April 1–8,
where the model velocities vary by more than 100 km s�1. This
region maps back to the white boxed region in Figure 7b. This
region spans the northern boundary of a high-density streamer,
thus small variations in latitude lead to large variations in den-
sity and velocity. This result shows that even during quiet peri-
ods, large uncertainties can arise from small deviations in
latitude. This is a significant problem for solar wind forecasting,
particularly considering that the high-density streamer belt may
actually be narrower than that reconstructed using tomography.
The measured fast wind peak during 2018, on April 11 reached
speeds of almost 600 km s�1. The models over all latitudes con-
sistently underestimate this peak. This feature maps back to the
low-density equatorial region near Carrington longitude 145�.
This is likely due to the tomography map overestimating the
density at this point, a flaw in the oversimplistic relationship be-
tween density and velocity, or a combination of both.

4.2 Velocity dependence

Figure 12 shows the DTW path distance as a function of
Vmax and Vmin, used to select the optimal parameters. In order
to create a velocity-based ensemble, we wish to identify a region
within this parameter space where the DTW distance is lower
than a set threshold.

Figure 12 shows that there is a selection of velocity values
that give an acceptable fit for in situ data, defined as SSF �
0.95. This range of velocity magnitudes defines an uncertainty
which is incorporated into the ensemble. The velocity terms
for each ensemble member are randomly generated from a
normal distribution, with a mean set at the optimal velocity
parameters and a range within three standard deviations of the
values that yield an SSF of 0.95 or lower. These regions are

highlighted by the white contour in Figure 12. For example,
CR2150 has mean (optimal) values of 400 and 240 km s�1

and a standard deviation of 20 km s�1 for Vmax and Vmin,
respectively. For CR2202, mean velocity values are 440 and
230 km s�1 with a standard deviation of 30 km s�1. Care
was taken in order to ensure the Vmax term was greater than
the Vmin term for every ensemble member.

Figure 13 compares in situ data with seven tomography/
HUXt outputs, each with a different combination of Vmax and
Vmin magnitudes for CR2150 and CR2202. This highlights
the sensitivity of the output to the velocity range. An underesti-
mated Vmax value will affect the magnitude of the solar wind
peaks predicted at Earth but will also cause the fast solar wind
peak to arrive later. For example, in Figure 13a, the model with
Vmax = 350 km s�1 (red) shows a 2–3 day delay in the time of
arrival of the fast solar wind on 2018 May 26, compared with a
model run with Vmax = 460 km s�1 (green). Both these terms
dictate how rapid the transition between fast and slow solar
wind occurs.

4.3 Ensemble results

We create an ensemble with 10,000 unique inner boundary
conditions generated with randomly selected pairs of Vmax and
Vmin taken from a normal distribution around the optimal veloc-
ities and a line of latitude randomly selected between ± 3� from
Earth’s latitude at the initiation of the Carrington rotation. Once
generated, the 10,000 inner boundary conditions were used for
the HUXt model, and the results of solar wind velocities at
Earth were recorded. The results of the ensemble are shown
in Figure 14. A choice of 10,000 ensemble runs was a compro-
mise between quantifying the sensitivity of the results to the
parameter uncertainties with a sensible computation time.

Figure 14a shows a strong correlation between the mean of
the ensemble runs (white line) and the optimal HUXt model for
the true latitude of Earth (blue line), with a maximum velocity

Fig. 12. Contour plots of the DTW path distance as a function of minimum and maximum inner boundary velocity for Carrington rotations (a)
2150 and (b) 2202. The white contour bounds the area that yields a DTW path distance under the threshold chosen (SSF � 0.95), and the white
pixels in the lower right corner represent invalid model parameters where Vmin > Vmax. Note that the Vmax range is altered to 300–600 km s�1 in
this plot.
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difference of 12 km s�1. The standard deviation of the ensemble
around the mean is shown as the dark grey region, and the aver-
age standard deviation across the full-time series is 20.06
km s�1. The most significant deviations between the in situ data
and the model data lie at three intervals centred on 2014, May
12, May 15 (as discussed in Sect. 3.3), and May 27. The final
disparity shows a steep transition between the fast and slow so-
lar wind (seen around 2014 May 28 in the in situ data) that is
not predicted by any of the 10,000 ensemble models runs.

CR2202, as seen in Figure 14b, also demonstrates a
good agreement with the in situ data with the maximum velocity
difference between the mean and the in situ data being
79 km s�1. CR2202 shows a greater variability of the ensemble
model runs (as shown by the height of both dark grey and light
grey regions) compared to that of CR2150, with the average

standard deviation across the full time-series being
41.7 km s�1. This is approximately double that of CR2150. It
would be expected that the value is larger than that for
CR2150 due to the larger standard deviation entered into the
velocity terms (20 km s�1 and 30 km s�1 for CR2150 and
CR2202, respectively).

5 Discussion and conclusions

A new inner boundary condition for solar wind heliospheric
models is derived from coronal electron density tomography
maps. The tomography/HUXt model results give general good
agreement with in situ data provided by the OMNI satellite
network, with a significant increase in the accuracy of solar

Fig. 13. Comparison of in situ data with the results of multiple tomography/HUXt model runs for (a) CR2150 and (b) CR2202, with a range of
Vmax and Vmin combinations.
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wind velocity prediction compared to a HUXt model run with a
traditional MAS derived inner boundary condition for the time
periods used in this study. The time periods investigated in this
study were intentionally chosen to demonstrate the model at dif-
ferent stages of the solar activity cycle. Given further develop-
ment, a future study will explore a larger dataset.

We can identify several aspects of the inner boundary con-
dition and modelling that lead to inaccuracies and are possible
to address with some further work. They are:

� The use of a static tomography reconstruction to represent
a dynamic corona. We have recently developed a frame-
work for providing time-dependent tomographical densi-
ties that will help address this, although further
development is needed (Morgan, 2021).

� The overly smooth reconstruction given by tomography
compared to the true density. The coronal streamer belt
likely consists of very narrow high-density structures
(Morgan & Habbal, 2007a, 2007b, 2010) that are highly
variable on small temporal (e.g., Alzate et al., 2021)
and spatial scales (Thernisien & Howard, 2006; Poirier
et al., 2020). Again, developments in tomographical
methods and observations can lead to reconstructions that
bring us closer to these scales.

� The use of a single, fixed acceleration profile for both fast
and slow wind. We are developing our own upwind
model that includes both velocities and densities, and
includes the acceleration profile as a search parameter.
This method uses iteration to improve the fit to in situ
measurements. Early results are promising and may

Fig. 14. Results of the ensemble for (a) CR2150 and (b) CR2202 with the mean predicted solar wind velocity at each time step shown as white,
the light grey area representing all predicted solar wind velocities, and the darker grey representing one standard deviation from the mean. The
non-ensemble model results with the optimal velocity values at the Carrington latitude of Earth is the blue line.
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provide a constraint on acceleration. Another approach is
to use a set of tomographical maps over a range of dis-
tances (4–10 R�) to constrain the early acceleration pro-
file of the slow wind, similar to that shown by Morgan
& Cook (2020).

� The simplistic inverse relationship of equation (1). We are
investigating the replacement of the simple inverse rela-
tionship of equation (1) with a Sigmoid or exponential
function, which gives a simple relationship, based on a
small number of parameters, to model the transition from
slow to fast wind as a function of the density.

� Use of a standard, possibly incorrect, coronal rotation
rate. Long time series of tomographical maps can give
improved estimates of the variable coronal rotation rate
(Morgan, 2011b; Edwards et al. 2022). Near the equator,
the coronal rotation rate may vary by a degree per day or
more from the Carrington rate, leading to systematic lon-
gitudinal errors in solar wind model results.

� The omission of coronal mass ejections (CME) that may
be present in the in situ data. This can be addressed to
an extent using the current approach for operational fore-
casting: simple parameters describing a cone model of a
CME can be input to HUXt, and the CME carried with
the solar wind, giving an estimate of the time of arrival
at Earth.

A persistence-based approach was made in order to test the
operational feasibility of this model. The persistence results
showed a large difference in accuracy between periods near
solar minimum and maximum. The rate of evolution of the
physical corona during solar maximum is such that a persistence
approach will break down over the timescales of a Carrington
rotation. However, during solar minimum, results were more
acceptable yet less accurate than a non-persistence approach.
This highlights the need for a time-dependent inner boundary
condition, and a more advanced relationship between density
and velocity than that given by equation (1).

The efficiency of the HUXt model allows an ensemble
framework, which can quantify the uncertainties of the pre-
dicted solar wind velocities. The ensembles were based on sam-
pling an appropriate range of latitudes and velocities at the
model inner boundary. The ensemble results confirm that both
these uncertainties have a significant effect on the model output
velocities on Earth. Latitudinally narrow, longitudinally-aligned
streamer belt structures can lead to high uncertainties in the out-
put based on small latitudinal uncertainties at the inner bound-
ary. The choice of velocity range at the inner boundary also has
a large impact on the model results.

In the context of operational space weather forecasting, this
paper shows the use of a tomography-based inner boundary
condition to drive the HUXt model as part of the CORTOM
module of the SWEEP project for the UK Met Office is an
approach that can offer certain improvements on current sys-
tems. The use of multiple models over extended periods will
enable an extensive analysis of their relative performance, and
the improvements described in this paper will be implemented
within SWEEP over the coming years.
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