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     Abstract. Deep learning has achieved great successes in performing many 

visual recognition tasks including object detection. Nevertheless, existing deep 

networks are computationally expensive and memory intensive, hindering their 

deployment in resource-constrained environments, such as mobile or embedded 

devices that are widely used by city travellers. Recently, estimating city-level 

travel patterns using street imagery has shown to be a potentially valid way ac-

cording to a case study with Google Street View (GSV), addressing a critical 

challenge in transport object detection. This paper presents a compressed deep 

network using tensor decomposition to detect transport objects in GSV images, 

which is sustainable and eco-friendly. In particular, a new dataset named 

Transport Mode Share-Tokyo (TMS-Tokyo) is created to serve the public for 

transport object detection. This is based on the selection and filtering of 32,555 

acquired images that involve 50,827 visible transport objects (including cars, 

pedestrians, buses, trucks, motors, vans, cyclists and parked bicycles) from the 

GSV imagery of Tokyo. Then a compressed convolutional neural network 

(termed SVDet) is proposed for street view object detection via tensor train de-

composition on a given baseline detector. Experimental results conducted on 

the TMS-Tokyo dataset demonstrate that SVDet can achieve promising perfor-

mance in comparison with conventional deep detection networks. 

Keywords: Convolutional Neural Networks, Street-view Object Detection, 

Tensor Train Decomposition. 

1 Introduction 

Object detection is a vital branch of computer vision, aiming to locate the exact lo-

cations of target objects from complex images while determining the specific category 

of every object by annotating its bounding box. Particularly, the transport object de-

tection task in street view images is to determine whether a street view image contains 

multiple transport objects belonging to the class of interest. Convolutional neural 
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network (CNN) based detectors can be technical enablers with significant potential 

for such applications, offering a great advantage in terms of detection accuracy over 

traditional pattern matching-based algorithms. However, hardware implementation of 

deep learning is restricted by the model size and the number of floating-point opera-

tions required. Whilst the usual millions of parameters in a convolutional model may 

have a powerful expression after training, the storage and loading of these parameters 

have high requirements on memory and disk, and meanwhile, the computation of 

convolutional operations on high-resolution images is often substantial. In the devel-

opment of deep learning, the usual massive model size is not considered sustainable 

and eco-friendly in the long term due to its massive parameters and lengthy training, 

With the consideration of sustainability and environmental impacts, how to imple-

ment the research results based on deep learning in a cost-effective manner has 

emerged as an urgent challenge for the machine vision community. One of the pre-

vailing trends is to compress the model size by a certain percentage, while still ex-

pecting the model performance to attain a relatively decent level of accuracy. 

Recent studies have indicated that city transport conditions have a significant im-

pact upon future urban planning as well as upon the public health [22]. In recognition 

of this point, it would be beneficial to investigate the transportation mode share in a 

given city, in order to assess travel patterns and transport use. Transport mode share is 

an essential reference for urban planning domain, serving as a strategic method for the 

development of Smart Cities [12]. Particularly, street imagery has proven to be a 

promising data source that provides visual information of the streets globally, typical-

ly in the form of panoramic images [11]. Compared with traditional methods for trav-

el surveys, street view counts facilitate a more cost-effective approach for transport 

mode share analysis. Inspired by this observation, a new dataset named Transport 

Mode Share-Tokyo (TMS-Tokyo) is herein developed to provide a basis upon which 

to conduct transport object detection and city-level transport mode share analysis.This 

is carried out in an effort to achieve improved performance for processing street view 

imagery in resource-constrained environments over existing object detection ap-

proaches, with a higher accuracy and detection speed. 

The main contributions of this paper are as follows. TMS-Tokyo is the largest an-

notated transport object dataset with aimed categories to date, offering a significant 

potential to develop and examine detectors designed for public road users. In particu-

lar, 32,555 images are selected and filtered that contain 50,827 visible transport ob-

jects from GSV imagery of Tokyo. The images are manually annotated individually-

with bounding box annotations into 8 categories of target road users, which include 

cars, pedestrians, buses, trucks, motors, vans, cyclists and parked bicycles. A com-

pressed convolutional network (SVDet) is then constructed for transport object detec-

tion based on Tensor Train (TT) decomposition. Compared with the baseline model 

RetinaNet [18] that represents the state-of-the-art in the relevant literature, SVDet 

achieves a mAP gain of 0.9%, while saving more than 68.8% of parameters and 

52.3% computational time.  

The rest of this paper is organised as below. Section 2 presents a brief review of 

the relevant background. Section 3 introduces in detail of the dataset. Section 4 de-

scribes the proposed approach. Section 5 provides an experimental study and discuss-



 

es the results in comparison with the existing literature. Finally, Section concludes 

this research and points out interesting further work. 

2 Related Work   

For academic completeness, the state-of-the-art deep learning based techniques for 

object detection in general, and the specific approach for compression-based model 

decomposition in particular are herein introduced. 

2.1 Object Detection Models 

A modern CNN-based object detector is usually composed of three consecutive 

parts, a backbone, a neck and a head. The backbone that is used for image feature 

extraction may often be implemented via VGG [29], ResNet [13], DenseNet [14]. The 

neck is devised to exploit the features extracted from different stages by the backbo-

ne, normally consisting of several bottom-up paths and several top-down paths. Typi-

cal neck modules may include Feature Pyramid Network (FPN) [17], Path Aggrega-

tion Network (PAN) [19], BiFPN [31], and NAS-FPN [9]. The head, which is used to 

predict classes and bounding boxes of objects, is usually categorised into two types, 

namely, one-stage detector and two-stage detector. The most representative two-stage 

detectors are those belonging to the R-CNN [10] series (including fast R-CNN [18], 

faster R-CNN [26], R-FCN [5], and Libra R-CNN [24]), and the most one-stage rep-

resentative models are YOLO [2, 25], SSD [20], and RetinaNet [18]. 

2.2 Low-rank Decomposition Based Model Compression 

Model compression and acceleration refer to the distillation of redundant parame-

ters in a neural network to obtain a small-scale model with fewer parameters and a 

more compact structure, under a certain degree of algorithm completion. Low-rank 

filters have been utilised to accelerate convolution for a long history (e.g., separable 

1D filters were introduced using a dictionary learning approach [27]). Regarding deep 

neural network (DNN) models, efforts have also been made for low-rank approxima-

tion, as reported in [7]. In such work, the speed of a single convolutional layer was 

increased by a factor of 2, but the classification accuracy was decreased by 1%. In 

[15], a different tensor decomposition scheme was proposed, achieving a 4.5-fold 

speedup with the same rate of accuracy loss. 

There exist a number of low-rank methods for compressing 3D convolutional lay-

ers. For instance, Canonical Polyadic (CP) decompositions for kernel decomposition 

adopt nonlinear least squares to compute the CP decomposition [16]. Also, batch 

normalization (BN) is employed to transform the activation of the internal hidden 

units [30], aiming at training low-rank constrained CNNs from scratch.  Meanwhile, 

many approaches have been proposed to exploit low-rankness in the fully connected 

layers, including the use of low-rank methods to reduce the volume of dynamic pa-

rameters [6]. A specific development is for acoustic modelling, where a low-rank 



matrix factorization of the final weight layer is introduced in the DNN [28]. In order 

to compact deep learning models for multi-tasks, the truncated singular value decom-

position (SVD) has been well adapted to decompose fully connected layers in order to 

develop compact multitask deep learning architectures [21]. Of direct interest to the 

present work is the  attempt to adopt TT decomposition to compress the convolutional 

layers and fully connected layers in a network, which entails significant compression 

rates only with a slight drop in accuracy. 

3 TMS-Tokyo Dataset  

     Object detection is a vital task to be addressed in computer vision while large da-

tasets for training is instrumental in developing the relevant techniques in the subject 

area. There are a variety of street-view datasets in computer vision. Indeed, many 

open-source databases are available that reflect diversity and richness in terms of 

category types and sample sizes and thereby, may be utilised to support performing a 

range of machine vision tasks.  However, urban mobility needs cannot be satisfied 

with such datasets mainly due to their ineligible sample categories captured with dif-

ferent ratios. To aid in advancing transport object detection research in street view 

scenes, this section introduces a large-scale street-view imagery dataset named 

Transport Mode Share-Tokyo Dataset (TMS-Tokyo). 

Google Street View Imagery eliminates the difficulty of capturing a high-

resolution perspective view of scenes with rich color and texture information, ena-

bling the gathering of accurate, timely and representative mobility data, which is a 

trivial task for machine vision[1]. In preparation of the TMS-Tokyo dataset, the 

bounding boxes of 32,555 Google Street View images are herein manually annotated 

involving a total of 50,827 labelled transport objects of eight categories. Each GSV 

image is of a fixed size of 512×512 pixels, containing transport objects in different 

scales on the road.  

 

Fig. 1. Illustrative transport mode samples with annotations  



 

This dataset consists of a massive amount of eight defined classes of transport ob-

jects that vary widely in appearance, scale, occlusion and viewpoint. In particular, the 

target categories of road users include cars, pedestrians, buses, trucks, motor, vans, 

cyclists and parked cycles. This is implemented by reviewing the common transport 

modes that frequently appear in Tokyo. Notably, single instances of road users are 

annotated individually. An excerpt of eight transport mode samples is illustrated in 

Fig. 1. To reflect the complexity of the introduced dataset, the basic properties of 

TMS-Tokyo are listed in Table 1, together with those of other more established 

transport datasets, including Tsinghua-Daimler Cyclist Benchmark [33], KITTI [8], 

and CityScape [4]. Note that whilst TMS-Tokyo is not the largest image dataset intro-

duced for object detection, it is the Google Street View dataset of the larges size spe-

cifically devised for transport object detection. 

Table 1. Street-view image datasets involving transport objects, where BBox stands for bound-

ing box. 

Dataset Annotation #Categories #Instances #Images 

Tsinghua-Daimler Cyclist [33] Horizontal BBox 7 32,361 14,674 
Cityscape [4] Segmentation 30 NA 25,000 

KITTI [8] Segmenation 5 80,256 14,999 
Mapillary Vistas [23] Segmentation 66 >2 M 25,000 

BDD 100K [34] Horizontal BBox 10 3.3M 100,000 
TMS-Tokyo Horizontal BBox 8 50,827 33,461 

4 Proposed Approach 

This section presents a novel approach for the development of decomposed CNN-

based transport object detection in street view imagery. 

 

4.1 Data Augmentation 

For street view imagery, the backgrounds of street views can be various and com-

plicated in different locations and scenes. Road users often appear in different orienta-

tions, positions, scaling, and brightness. In practice, it is easy to fall into the trap of 

overfitting with limited data in the face of trillions of parameters in a deep neural 

network. The data augmentation technique helps increase the relevance of the data, 

thereby minimizing the possibility of neural networks learning irrelevant features, 

radically improving overall performance.   

An interesting approach for data augmentation is the Mosaic method first proposed 

in YOLOv4 [2], of which the main idea is to randomly crop a small number (four in a 

typical implementation) of images and to stitch them onto one image as training data. 

This paper adopts Mosaic data augmentation technique on the dataset TMS-Tokyo, 

while turning off this operation in a number (say, 15) of the last epochs of training to 

prevent the images generated by data enhancement from  interfering with  the real 

distribution of natural images. An instance of Mosaic in TMS-Tokyo is illustrated in 

Fig. 2. 



 

Fig. 2. Examples of Mosaic data augmentation. 

4.2 Tensor Train Decomposition 

Tensor Train (TT) decomposition is a tensor chain decomposition based on Matrix 

Product State (MPS) model, which decomposes input tensor into a series of adjacent 

three-dimensional and two-dimensional tensors. Typically, TT decomposition can be 

achieved by (N-1) times singular value decomposition. For a fourth-order tensor, for 

instance, the decomposition takes the following form: 

 𝑋(𝑖,𝑗,𝑘,𝑙)=∑𝑟1,𝑟2,𝑟3,𝑟4𝐺1(𝑖,𝑟1)𝐺2(𝑟1,𝑗,𝑟2)𝐺3(𝑟2,𝑘,𝑟3)𝐺4(𝑟3,𝑙) (1) 

The process of such an algorithm can be divided into four steps as follows: 

Step 1. Decomposing the convolutional kernel in the original neural network into a 

fourth-order core tensor, producing a factor matrix by TT decomposition.  

Step 2. Completing the factor matrix of the decomposition and filling the convolu-

tional kernel parameters.  

Step 3. Assigning the new convolutional kernel parameters to the new convolu-

tional kernel.  

Step 4. Replacing the original convolution kernel with the new two-layer mini-

convolution. 

The advantage of TT decomposition is that it is linear in relation to the number of 

entries (and hence, storage) and computation time, enabling higher dimensional prob-

lems to be addressed. In particular, when dealing with matrices, the TT decomposition 

is equivalent to the singular value decomposition..  

Finding the optimal rank is a key issue when compressing the model through low 

rank decomposition. Rank is the only hyperparameter that controls computational 

complexity and accuracy in compressed convolutional neural networks. An excessive-

ly large rank clearly does not achieve maximum compression, whilst a rank that is too 

small may make accuracy recovery problematic. Instead of choosing the rank by time-

consuming iterative trials, the Empirical Variational Bayes Matrix Factorization 

(EVBMF) method is employed to automatically compute the rank.  

In this work, a superior selection is shown to be attainable for full Variational 

Bayes Matrix Factorization (VBMF). More specifically, the global optimum is a re-

weighted SVD of the observation matrix, and each weight can be obtained by solving 

a quadratic equation whose coefficients are a function of the observed singular values. 

Therefore, EVBMF, where the hyperparameters learned from the data, is adopted in 

our work to achieve the global optimal solution. 



 

4.3 Overall Structure of SVDet 

Recall the original design intention, which is to develop a compact and high-

precision model for traffic object detection. Considering the objective of dealing with 

(and hence, combining the metrics of) both detection accuracy and model complexity, 

the RetinaNet model is chosen as the baseline detector to perform low-rank decompo-

sition in an effort to obtain a compact model. In implementation, SVDet consists of 

two steps: first decomposing and replacing the convolutional kernels (network 

weights) of the backbone and head parts of RetinaNet using the TT decomposition 

algorithm, and then fine-tuning the compressed model to reduce the impact of the 

decomposition on the resulting model accuracy. 

Table 2 presents the statistics of computational and parametric quantities for the 

backbone, neck and head parts of RetinaNet with Mosaic data augmentation for the 

dataset investigated. It can be seen that the backbone, as the feature extraction part of 

the detection model, accounts for a relatively large amount of computation and num-

ber of parameters, and the number of parameters accounts for 64.2% of the entire 

model. The head part is detected on multiple feature layers and its parameters are 

shared, so that the number of parameters in it is low but the computation is larger, 

reaching 51.1% of the entire model. In this paper, low-rank decomposition is per-

formed on these two components. The overall algorithm structure of the low-rank 

decomposition of the backbone network of SVDet using TT decomposition is shown 

in Fig. 4. 

Table 2. FLOPs and Params for different parts of baseline model 

Parts FLOPs (G) Params (M) 

Baseline 53.07 36.25 

Backbone 21.52(40.6%) 23.28(64.2%) 

Neck 4.42(8.3%) 8.0(22%) 

Head 27.13(51.1%) 4.97(13.7%) 

 

Fig. 3. Algorithm structure of SVDet, where red, blue and green dotted boxes indicate Back-

bone, Neck, and Head part of SVDet, respectively 



5 Experimental Results and Analysis 

The performance of DVNet is examined in comparison with other baselines on the 

TMS-Tokyo Dataset in accomplishing the multi-class transport object detection task. 

The algorithm benchmarks employed are the state-of-the-art deep CNN methods with 

proven superior performance and representativeness when applied for object detec-

tion,  including ResNet-50 and ResNet-101 based RetinaNet [18], Faster RCNN [26], 

Cascade RCNN [3], FCOS [32], and Darknet-based YOLOv3 [25]. 

5.1 Implementation configuration 

All experiments reported in the paper were performed on a 64-bit Ubuntu 18.04 

operating system. The hardware is a GTX 1080 Ti GPU with 12GB of RAM and a 

10-core Intel(R) Xeon(R) CPUE5-2640 v4@2.40GHz CPU with 32GB of RAM. The 

entire dataset is divided into three sets of training, validation and testing according to 

the ratio of 6:2:2. In presenting the following experimental results, the unit of FLOPs 

is GFLPOs (1GFLOPs = 109FLOPs) and that of Params is megabytes (M).  

5.2 Comparative Results 

The results of SVDet are compared with those achieved by the other object detec-

tors investigated on the TMS-Tokyo Dataset, as listed in Table 3. Judged by mean 

Average Precision (mAP), SVDet outperforms the others. Through its balanced de-

sign, SVDet achieves 77.6 on mAP with ResNet-50. In particular, as a lightweight 

single-stage object detection method, SVDet significantly outperforms both typical 

one-stage and two-stage methods in terms of computational parameters. From the 

perspective of overall efficiency and effectiveness, SVDet is shown to be the most 

promising transport object detector. 

Table 3. Numerical results based on TMS-Tokyo 

Methods Backbone mAP (%) FLOPs (G) Params (M) 

Faster R-CNN 
[12]  

R50 76.20 63.28 41.16 

R101 76.60 82.76 60.15 

Cascade 

R-CNN [45]  

R50 76.80 91.07 69.95 

R101 77.10 110.55 87.94 

YOLOv3 [16] Darknet 76.10 49.66 61.56 

FCOS [46] 
R50 74.50 50.41 31.85 

R101 75.60 69.88 50.79 

RetinaNet [18]  
R50 75.90 53.07 36.25 

R101 76.30 72.55 55.24 

ATSS [47] R50 75.30 51.63 31.90 

SVDet R50 77.60 16.52 17.29 



 

5.3  Ablation Studies  

    For ablation experiments, the SVDet model trained on TMS-Tokyo serves as the 

pre-trained model for network initialization. In so doing, all model parameters are 

distributed in a performance-strong range at the beginning of training, alleviating 

potential overfitting while speeding up the convergence of the underlying model. 

RetinaNet is taken as the baseline due to its promising performance among classical 

detectors. To validate the design of the proposed model, experiments are conducted to 

test the influence of different model compression methods and that of low-rank de-

composition of different modules, regarding the model performance and the number 

of computational parameters respectively.  

5.3.1 Comparison with other model compression algorithms 

A comparative experimental test is carried out against the baseline algorithm and 

three other classical model compression algorithms, namely CP decomposition, Tuck-

er decomposition and Stripe-Wise Pruning.  

Table 4. Comparison with other model compression algorithms. 

Methods mAP (%) FLOPs (G) Params (M) 

Baseline 76.9 53.07 36.25 

Stripe-Wise Pruning 72.37(5.9%↓) 31.31(41.0%↓) 18.85(48.0%↓) 

CP decomposition 56.80(26.1%↓) 11.42(78.5%↓) 12.72(64.9%↓) 

Tucker decomposition 68.20(11.3%↓) 15.21(71.3%↓) 14.68(59.5%↓) 

TT decomposition 77.60(0.9%↑) 16.52(68.9%↓) 17.29(52.3%↓) 

 

The results as given in Table 4 show that while the other three methods experi-

enced accuracy loss SVDet (i.e., TT decomposition) gained higher accuracy instead. 

Particularly, in terms of computational and parametric quantities, CP decomposition 

reduced the maximum complexity but its accuracy significantly fallen behind the rest. 

In summary, SVDet is demonstrated to be a low-rank decomposition that can balance 

the accuracy loss and computational parametric reduction, beating the existing model 

compression algorithms. 

5.3.2. Influence of decompositions on different model modules 

To investigate the influence of decompositions of different modules on model per-

formance and computational capacity, a number of experiments are devised to de-

compose different components of the baseline algorithm using three low-rank decom-

positions. Each is initialized with pre-trained model parameters, while noting that 

SVDet simultaneously performs a low-rank TT decomposition of both Backbone and 

Head modules for the baseline. 

From the results of Table 5, it can be seen that the TT decomposition of Backbone 

and Head of the baseline method offers the most promising outcome. It achieves less 



than one-half of the number of parameters and that of computation of the uncom-

pressed model while the accuracy also gains a little over the uncompressed model. 

Table 5. TT decomposition on different modules 

Backbone Head mAP (%) FLOPs (G) Params (M) 

× × 76.9 53.07 36.25 

√ × 78.10(1.6%↑) 41.43(21.9%↓) 21.85(39.7%↓) 

× √ 77.80(1.2%↑) 28.17(46.9%↓) 31.69(12.6%↓) 

√ √ 77.60(0.9%↑) 16.52(68.9%↓) 17.29(52.3%↓) 

 

Amongst the three components implemented for object detection, the maximum 

gain is achieved when performing low-rank decomposition on both the Backbone and 

the Head, because these components own the majority of the entire model parameters. 

Tucker decomposition is better than CP decomposition, but both of them have limita-

tions: the former requires more storage space while lacking correlation information 

between any two patterns, and the latter lacks correlation information between the 

tensor and other different patterns that Tucker decomposition can obtain. However, 

the tensor train (TT) decomposition shows a strong higher-order processing capability 

and is well suited for the decomposition of neural network models. This is feasible 

because SVDet is of a fourth-order tensor, with TT having a great advantage for the 

third-order and above.  

6 Conclusion  

This paper has proposed an innovative approach using deep learning to detect 

transport objects from Google Street View imagery. A GSV imagery dataset (named 

TMS-Tokyo) has been introduced for the first time, involving eight categories of road 

users and containing 50,827 instances and 32,555 images. It is the largest Google 

Street View dataset specially designed for transport object detection. To adopt and 

reflect evolving urban transport conditions, TMS-Tokyo will be continuously updated 

and  extended in size and scope, by involving more cities on a global scope.  

Further to the introduction of a new dataset, low-rank tensor decomposition has 

been proposed to compress the street view object detector from the perspective of 

compression parameters, in order to tackle the challenging problem of high computa-

tional cost and parametric volume of the detection model. The resulting system 

SVDet applies Tensor Train decomposition to both the Backbone and the Head of the 

underlying model. It is able to achieve a mAP value of 77.6% on TMS-Tokyo, with a 

parametric number of 17.29M and a computational volume of 16.52GFLOPs, signifi-

cantly outperforming the state-of-the-art methods in the literature. Thanks to  such  a 

lightweight design based on low-rank tensor decomposition the present approach can 

contribute to helping address the important issue of environmental sustainability. How 

this system may be further developed to cope with the TMS-Tokyo dataset that is to 

be significantly expanded remains active research.  



 

Acknowledgements 

This work is supported in part by the Strategic Partner Acceleration Award (80761-

AU201), funded under the Ser Cymru II programme, UK. The first author is support-

ed with a full International PhD Scholarship awarded by Aberystwyth University. 

References 

1. Anguelov, D. et al.: Google Street View: Capturing the World at Street Level. Computer. 

43, 6, 32–38 (2010). https://doi.org/10.1109/MC.2010.170. 

2. Bochkovskiy, A. et al.: YOLOv4: Optimal Speed and Accuracy of Object Detection. 

arXiv:2004.10934 [cs, eess]. (2020). 

3. Cai, Z., Vasconcelos, N.: Cascade R-CNN: Delving into High Quality Object Detection. 

arXiv:1712.00726 [cs]. (2017). 

4. Cordts, M. et al.: The Cityscapes Dataset for Semantic Urban Scene Understanding. 

arXiv:1604.01685 [cs]. (2016). 

5. Dai, J. et al.: R-FCN: Object Detection via Region-based Fully Convolutional Networks. 

arXiv (2016). https://doi.org/10.48550/arXiv.1605.06409. 

6. Denil, M. et al.: Predicting Parameters in Deep Learning. arXiv:1306.0543 [cs, stat]. 

(2014). 

7. Denton, E. et al.: Exploiting Linear Structure Within Convolutional Networks for Effi-

cient Evaluation. arXiv:1404.0736 [cs]. (2014). 

8. Geiger, A. et al.: Are we ready for autonomous driving? The KITTI vision benchmark 

suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. pp. 3354–3361 

(2012). https://doi.org/10.1109/CVPR.2012.6248074. 

9. Ghiasi, G. et al.: NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object 

Detection. arXiv:1904.07392 [cs]. (2019). 

10.Girshick, R. et al.: Rich feature hierarchies for accurate object detection and semantic 

segmentation. arXiv:1311.2524 [cs]. (2014). 

11.Goel, R. et al.: Estimating city-level travel patterns using street imagery: A case study of 

using Google Street View in Britain. PLOS ONE. 13, 5, e0196521 (2018). 

https://doi.org/10.1371/journal.pone.0196521. 

12.Grimsrud, M., El-Geneidy, A.: Transit to eternal youth: lifecycle and generational trends 

in Greater Montreal public transport mode share. Transportation. 41, 1, 1–19 (2014). 

https://doi.org/10.1007/s11116-013-9454-9. 

13.He, K. et al.: Deep Residual Learning for Image Recognition. arXiv:1512.03385 [cs]. 

(2015). 

14.Huang, G. et al.: Densely Connected Convolutional Networks. arXiv (2018). 

https://doi.org/10.48550/arXiv.1608.06993. 

15.Jaderberg, M. et al.: Speeding up Convolutional Neural Networks with Low Rank Ex-

pansions. arXiv:1405.3866 [cs]. (2014). 

16.Lebedev, V. et al.: Speeding-up Convolutional Neural Networks Using Fine-tuned CP-

Decomposition. arXiv:1412.6553 [cs]. (2015). 



17.Lin, T.-Y. et al.: Feature Pyramid Networks for Object Detection. arXiv:1612.03144 [cs]. 

(2017). 

18.Lin, T.-Y. et al.: Focal Loss for Dense Object Detection. arXiv:1708.02002 [cs]. (2018). 

19.Liu, S. et al.: Path Aggregation Network for Instance Segmentation. arXiv (2018). 

https://doi.org/10.48550/arXiv.1803.01534. 

20.Liu, W. et al.: SSD: Single Shot MultiBox Detector. arXiv:1512.02325 [cs]. 9905, 21–37 

(2016). https://doi.org/10.1007/978-3-319-46448-0_2. 

21.Lu, Y. et al.: Fully-Adaptive Feature Sharing in Multi-Task Networks with Applications 

in Person Attribute Classification. In: 2017 IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR). pp. 1131–1140 (2017). https://doi.org/10.1109/CVPR.2017.126. 

22.Mueller, N. et al.: Health impacts related to urban and transport planning: A burden of 

disease assessment. Environment International. 107, 243–257 (2017). 

https://doi.org/10.1016/j.envint.2017.07.020. 

23.Neuhold, G. et al.: The Mapillary Vistas Dataset for Semantic Understanding of Street 

Scenes. In: 2017 IEEE International Conference on Computer Vision (ICCV). pp. 5000–5009 

(2017). https://doi.org/10.1109/ICCV.2017.534. 

24.Pang, J. et al.: Libra R-CNN: Towards Balanced Learning for Object Detection. 

arXiv:1904.02701 [cs]. (2019). 

25.Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement. arXiv:1804.02767 

[cs]. (2018). 

26.Ren, S. et al.: Faster R-CNN: Towards Real-Time Object Detection with Region Pro-

posal Networks. arXiv:1506.01497 [cs]. (2016). 

27.Rigamonti, R. et al.: Learning Separable Filters. In: 2013 IEEE Conference on Computer 

Vision and Pattern Recognition. pp. 2754–2761 (2013). 

https://doi.org/10.1109/CVPR.2013.355. 

28.Sainath, T.N. et al.: Low-rank matrix factorization for Deep Neural Network training 

with high-dimensional output targets. In: 2013 IEEE International Conference on Acoustics, 

Speech and Signal Processing. pp. 6655–6659 (2013). 

https://doi.org/10.1109/ICASSP.2013.6638949. 

29.Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image 

Recognition. arXiv (2015). https://doi.org/10.48550/arXiv.1409.1556. 

30.Tai, C. et al.: Convolutional neural networks with low-rank regularization. 

arXiv:1511.06067 [cs, stat]. (2016). 

31.Tan, M. et al.: EfficientDet: Scalable and Efficient Object Detection. arXiv (2020). 

https://doi.org/10.48550/arXiv.1911.09070. 

32.Tian, Z. et al.: FCOS: Fully Convolutional One-Stage Object Detection. Presented at the 

(2019). 

33.Xiaofei Li et al.: A new benchmark for vision-based cyclist detection. In: 2016 IEEE In-

telligent Vehicles Symposium (IV). pp. 1028–1033 (2016). 

https://doi.org/10.1109/IVS.2016.7535515. 

34.Yu, F. et al.: BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learn-

ing. arXiv:1805.04687 [cs]. (2020). 

 


