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Abstract: Feature selection (FS) is a vital step in data mining and machine learning, especially for
analyzing the data in high-dimensional feature space. Gene expression data usually consist of a few
samples characterized by high-dimensional feature space. As a result, they are not suitable to be
processed by simple methods, such as the filter-based method. In this study, we propose a novel
feature selection algorithm based on the Explosion Gravitation Field Algorithm, called EGFAFS. To
reduce the dimensions of the feature space to acceptable dimensions, we constructed a recommended
feature pool by a series of Random Forests based on the Gini index. Furthermore, by paying more
attention to the features in the recommended feature pool, we can find the best subset more efficiently.
To verify the performance of EGFAFS for FS, we tested EGFAFS on eight gene expression datasets
compared with four heuristic-based FS methods (GA, PSO, SA, and DE) and four other FS methods
(Boruta, HSICLasso, DNN-FS, and EGSG). The results show that EGFAFS has better performance
for FS on gene expression data in terms of evaluation metrics, having more than the other eight FS
algorithms. The genes selected by EGFAGS play an essential role in the differential co-expression
network and some biological functions further demonstrate the success of EGFAFS for solving FS
problems on gene expression data.

Keywords: heuristic algorithm; Explosion Gravitation Field Algorithm; feature selection; gene
expression data

1. Introduction

In recent years, a huge amount of data has been produced from several domains, such
as business, economics, industry, biology, and medicine. It is difficult to obtain useful
information from these raw data, with many points being irrelevant or redundant. A very
high-dimensional dataset chokes the models due to the exponentially increased training
time and an increased risk of overfitting. Therefore, feature selection (FS) is vital in data
mining and machine learning model development for preparing the data properly [1]. The
primary objective of FS is to find the optimal subset with representative features from the
original feature space by removing irrelevant and redundant features. The gene expression
data often consist of a few samples, along with high-dimensional features [2–4]. Irrelevant
or redundant features lead to unsatisfactory classification accuracy and make it difficult to
find potentially meaningful knowledge [5–7]. The main target of FS is to find a subset with
highly representative features that result in satisfactory classification accuracy. Therefore,
choosing an appropriate FS method for gene expression data is essential in obtaining
satisfactory classification accuracy.

In recent decades, researchers from various fields have conducted a wide range of
studies on aspects of FS, including statistics, data mining, pattern recognition, and bioin-
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formatics data analysis [8–11]. These widely used FS methods are classified into four
categories: (1) Filter-based methods evaluate features depending on their inherent prop-
erties, such as the statistical properties of the data. The most popular filter methods are
chi-square [12], the gain ratio [13], information gain [14], ReliefF [15] and minimum Re-
dundancy Maximum Relevance (mRMR) [16]. The main advantages of filter methods
are that they are not dependent on classifiers and are fast and straightforward in terms
of computation. The filter methods are usually used in low-dimensional feature space.
A common disadvantage is that they usually ignore the dependence between different
features and process the feature individually; (2) Wrapper methods need to employ op-
timization algorithms for FS, such as Boruta [17], Genetic Algorithm (GA) [18], Particle
Swarm Optimization (PSO) [19], and other heuristic-based methods, to find subsets of fea-
tures. They usually offer better accuracy than filter methods, but they are computationally
intensive for high-dimensional datasets because of the adoption of optimization algorithms;
(3) Embedded methods such as EGSG [20], HSIC Lasso [21], and DNN-FS [22] have built-in
approaches to select the valuable features. The process of FS is usually one part of the
classification model. They are less computationally intensive than the wrapper methods,
and the link between the classifier and FS is tighter; (4) Hybrid methods are usually the
combination of other approaches. The filter and wrapper methods are generally merged
to form hybrid methods [23]. Hybrid methods utilize the advantages of the two kinds
of methods. They offer better accuracy and computational complexity than filter-based
and wrapper methods. All in all, the four categories of FS methods each have their own
advantages and disadvantages.

FS is a common discrete optimization problem. An FS problem with d features contains
2d − 1 possible subsets (solutions). The difficulty of FS for high-dimensional data is that the
search space increases exponentially with the increment in the size of the features. Then,
how to best choose an appropriate approach to search for the optimal subset from the
original feature space is a crucial issue. In recent years, heuristic-based approaches have
been used successfully to deal with FS problems [24–26].

Heuristic-based approaches can usually solve any optimization problems since the
search process is a black box, and no domain knowledge or prior knowledge needs to be
obtained in advance. These heuristic-based approaches are randomly initialized with a
variety of candidate solution(s) in the search space and iteratively refine the solution(s)
based on the heuristic functions. Due to the population mechanism, heuristic-based
approaches produce a variety of solutions during a search, which makes it suitable for
multi-objective FS [27], especially in dealing with the balance between the size of the
feature and the classification accuracy. However, heuristic search does not always ensure
an optimal solution, and it still has the risk of falling into local optimal solutions, especially
when dealing with high-dimensional data such as gene expression data. Tremendous
research efforts are being made in the field of FS; related works are introduced in detail in
the next section.

All kinds of FS methods work well on single or multiple datasets, but there is room
for improvement, especially when dealing with data with high-dimensional features. As
the theorem “no free lunch” [28] states that no optimization method outperforms other
optimization methods for all problems, or even the same problem in different instances, the
field of FS remains open to the study of the viability of other methods, such as the Explosion
Gravitation Field Algorithm (EGFA). EGFA was proposed for continuous problems by our
research group in 2019, mimicking the formation process of planets based on SNDM [29].
In this study, we propose a general FS approach based on EGFA, called EGFAFS. The main
contributions of this study can be concluded as follows: (1) A novel FS algorithm based
on EGFA is proposed, called EGFAFS. (2) EGFA is applied to combinatorial optimization
problems for the first time. (3) A recommended feature pool is constructed for initialization
to improve the search efficiency. (4) All features in the original feature space are considered
during the explosion process to decrease the probability of the algorithm falling into local
optima. (5) Experiments are conducted to verify the performance of our EGFAFS.
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The organization of this paper is arranged as follows. Section 2 contains three parts:
(1) the introduction of related works, (2) the description of the original EGFA, and (3) the
improvement and implementation of EGFA for solving the combinatorial optimization
problem: feature selection. Section 3 contains details about the experiments, such as a
description of the datasets, the evaluation metrics, the comparison results of different FS
methods, etc. Section 4 reports the discussion and Section 5 discusses the conclusions.

2. Materials and Methods
2.1. Related Works

Feature subset selection using exhaustive search is an NP-hard problem. Using
heuristic-based methods to solve optimization problems has become increasingly pop-
ular due to their ability to efficiently search for a global optimum. Most heuristic-based
algorithms are motivated by natural phenomena. For instance, the Simulated Annealing
(SA) algorithm [30] is inspired by annealing in metallurgy. Genetic Algorithm (GA) and
Differential Evolution (DE) [31] emulate the process of natural evolution. Particle Swarm
Optimization (PSO) simulates social behavior. All of the above heuristic search methods
have been extensively used in several domains.

However, regardless of the viability of such classical heuristic search algorithms, they
cannot provide optimal solutions for all kinds of optimization problems, especially when
dealing with high-dimensional optimization problems. Thus, a range of novel optimization
algorithms have been proposed in recent years. In 2014, Xing et al. [32] identified a vast
number of novel heuristic algorithms (134 in total) and categorized them into four classes:
biology-based (99 in total), physics-based (28 in total), chemistry-based (5 in total), and
mathematics-based (2 in total) heuristic search algorithms. The efficacy of these heuristic
algorithms has been verified in various domains of research. Accordingly, some heuristic
algorithms have successfully been utilized for the FS problem. Some heuristic-based
approaches for FS are discussed as follows.

There is a tremendous number of recent studies in the literature that utilize heuristic
search algorithms for FS. For instance, in [33], The BBO-SVM-RFE proposed by Dheeb
Albashish et al. in 2021 is designed to solve FS problems based on Binary Biogeography
Optimization (BBO) followed by the application of Support Vector Machine Recursive
Feature Elimination (SVM-RFE). In [34], binary variants of the ant lion optimizer (ALO) are
proposed to select the optimal feature subset for classification. In [35], Hossam Faris et al.
propose an efficient binary Salp Swarm Algorithm (SSA) with a crossover scheme for
FS problems. In [36], a Binary Crow Search Algorithm with Time Varying Flight Length
(BCSA-TVFL) is applied to feature selection problems in wrapper mode. In [37], a binary
moth-flame optimization (B-MFO) is proposed to select effective features from small and
large medical datasets. In [38], a novel GSA-based algorithm with evolutionary crossover
and mutation operators is proposed to deal with FS tasks. The authors of [39] propose a
novel approach to dimensionality reduction by using the Henry gas solubility optimization
(HGSO) algorithm for selecting significant features in order to enhance the classification
accuracy. In [40], an improved binary particle swarm optimization (IBPSO) algorithm is
proposed to solve the FS problem. Reference [41] proposes four different improved versions
of the Sine Cosine Algorithm (ImpSCAs) for FS.

Some heuristic-based algorithms have been used extensively for feature selection
on gene expression datasets. For instance, reference [42] proposes a novel distributed
method consisting of the MR-based Fisher score (mrFScore), MR-based ReliefF (mrRefiefF),
and MR-based probabilistic neural network (mrPNN) using a weighted chaotic grey wolf
optimization technique (WCGWO). In [43], a hybrid algorithm is proposed using simu-
lated annealing (SA) and the Rao algorithm (RA) for selecting the optimal gene subset
and classifying cancer. Reference [44] proposes the Cuckoo search method as a feature
selection algorithm, guided by the memory-based mechanism to save the most informative
features that are identified by the best solutions. In [45], Lu et al. introduce a novel hybrid
FS method that combines Mutual Information Maximization (MIM) and the Adaptive
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Genetic Algorithm (AGA), named MIMAGA-Selection. In [46], a hybrid method that uses
a Genetic Algorithm with Dynamic Parameter setting (GADP) for feature selection on
microarray data is proposed. Chuang et al. [47] propose a new hybrid method for gene
selection that combines Correlation-based Feature Selection (CFS) and the Taguchi-Genetic
Algorithm (TGA). Reference [48] proposes a novel evolutionary method for gene selection
on microarray data based on the Genetic Algorithm (GA) and artificial intelligence, named
the Intelligent Dynamic Genetic Algorithm (IDGA).

In addition to the methods introduced above, there are still many recent heuristic-based
methods for FS in bioinformatics. They all try to solve FS problems with high-dimensional
feature space. The significant advantage of heuristic-based approaches is that they do
not need any prior knowledge nor any assumption of the feature search space, such as
the space being linearly or nonlinearly separable. The fact that a number of datasets in
bioinformatics, such as those containing gene expression data, are composed of mutual
dependence and interacting features in high-dimensional search space makes heuristic
approaches suitable to process these data. In this study, we propose a general feature
selection approach based on EGFA, called EGFAFS. A detailed description of EGFAFS will
be introduced in Section 2.3.

2.2. The Original Explosion Gravitation Field Algorithm (EGFA)

This section provides a full description of the EGFA in two different parts. The
inspiration for the EGFA is given in Section 2.2.1, while the procedural steps of the EGFA
are outlined in Section 2.2.2.

2.2.1. Inspiration for EGFA

The Explode Gravitation Field Algorithm (EGFA) is a novel nature-inspired heuristic
algorithm and was proposed in 2019 by our research team. The basic idea of EGFA is to
simulate the formation process of planets based on SNDM and the Big Bang Theory [49].
In EGFA, an individual is abstracted as a dust particle with four attributes: location, group,
flag, and mass. There are two kinds of dust particles in EGFA, the center dust particle with
the heaviest mass value in the group, and other dust particles, i.e., the surrounding dust
particles. Due to the gravitation field, each center dust particle attracts surrounding dust,
and all surrounding dust particles move toward the center dust particle. For every dust
particle, the location corresponds to a solution to an optimization problem. The value of the
group is an integral number. The flag is a Boolean indicating whether it is a center particle.
Additionally, the mass value is calculated by a heuristic function.

2.2.2. Procedural Steps of EGFA

The procedure of EGFA is divided into seven main steps, as shown in Figure 1. These
steps help other researchers to use or modify EGFA when utilized to solve optimization
problems. The pseudo-code of EGFA is given in Algorithm 1. The procedural steps of
EGFA in detail are described as follows:
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Step 1. Initialize. Initialize n dust particles in the search space randomly. Calculate
their mass value by the mass function, which is usually based on the objective function or
the benchmark function. The dust population can be formulated as Equation (1).

Dust = [dust1, dust2, · · · , dustn] (1)

Step 2. Group. Randomly divide the dust population (composed of n dust particles)
into g groups. For every group, sort the dust particles by the value of their mass, and assign
the dust particle with the maximum mass as the center dust particle, the attribute f lag of
which is updated to value 1.

Algorithm 1. The pseudo-code of the Explosion Gravitation Field Algorithm.

1. Input: the size of dust population n, the No. of groups g, the No. of iterations Tmax
2. Initialize the dust population of size n, calculate the mass for each dust particle
3. while t < Tmax do
4. Divide the dust population into g groups
5. Move surrounding dust particles to their center by Equations (2)–(4)
6. Some surrounding dust particles are absorbed by their center
7. Explosion strategy produces some dust particles by Equation (5)
8. t = t + 1
9. end while
10. return the best solution

Step 3. Move and rotate. The surrounding dust particles move toward their center
dust particle, which remains stationary. The pace of movement is defined as Equation (2).

pacei = w× disi (2)

disi = center.location− dusti.location (3)

where disi is the difference between the location of dusti and its center, w is a weight for
dis, and its default value is 0.068 in [50]. In this step, the location for dusti is updated as
Equation (4).

dusti.location = dusti.lcation + w1 ∗ disi ∗ (1− dusti. f lag) + w2 ∗ rand (4)

where w1 > 0, w2 > 0 are the weights, and the default value of w1 = 0.068 is equal to w;
the default value of w2 is 0.01 in [50].

Step 4. Absorb. Some surrounding dust particles close to the center dust particle are
absorbed by their center. In this process, the size of the dust population will decrease.

Step 5. Explode. Some new dust particles will be generated by the explosion strategy
based on the center dust particle. In this process, the size of the dust population will
increase to the original scale. The new dust particle generated in this step is represented by
the following formulation:

dusti = center.location + radius ∗ rand (5)

where radius is the radius for the explosion strategy.
Step 6. Check the stopping condition. If the stopping condition is not met, go to step 3;

otherwise, stop the loop.
The flow chart of EGFA is given in Figure 1.
The original EGFA is proposed to solve continuous optimization problems, such as the

Sphere, or Ackley benchmark problems in low-dimensional search space, having 2, 3, 5, 10,
or 20 dimensions. The EGFA has achieved excellent performance in terms of efficiency and
accuracy. However, at the same time, EGFA faces challenges when dealing with problems
in higher dimensions in terms of accuracy and running time, like all population-based
search algorithms.
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2.3. EGFA for Feature Selection

It is well known that FS is an NP-hard problem. Finding the best subset from a high-
dimensional search space is a combinatorial optimization problem. In this study, we utilize
EGFA to solve the combinatorial optimization problem, i.e., feature selection for datasets
with high-dimensional feature space, called EGFAFS. To verify the performance of EGFAFS,
we test EGFAFS on eight gene expression datasets with high-dimensional features. It is
noted that the concept of “feature selection” for a general dataset corresponds to the concept
of “gene selection” for gene expression data. Since gene expression data usually consist of
relatively few samples characterized by high-dimensional features, simple feature selection
methods, such as filter-based methods, are not suitable to deal with gene expression data.
Our proposed EGFAFS constructs a recommended feature pool for initialization. Attaching
more attention to the features in the recommended feature pool, rather than all features
in the original feature space, can help find the best solution more efficiently. In addition,
considering all features in the original search space during the Explosion process of EGFAFS
decreases the probability of being trapped in local optima.

2.3.1. Construct a Recommended Feature Pool

Since gene expression data consist of high-dimensional features, we construct a rec-
ommended feature pool based on a series of Random Forests (RF) [51]. Based on the
recommended feature pool, we are able to pay more attention to the features in the rec-
ommended feature pool, rather than all features in the original feature space. To build the
recommended feature pool, we utilize Random Forest (RF) to measure the importance of
each input feature based on the Gini coefficient. The pseudo-code of this strategy is given
in Algorithm 2.

Algorithm 2. The pseudo-code of constructing a recommended feature pool.

1. Input: The No. of RFs num, the No. of features selected for every RF c, the size of the
recommended feature pool q
2. While i < num do
3. Sample c features from the original feature space randomly for RFi
4. Feed the samples sliced by c features to RFi
5. Compute the importance scores for features in RFi in Equations (6)–(10)
6. End while
7. Merge all the importance scores for all features of the num RFs
8. Rank all features by sorting the scores of importance
9. return q features with maximum scores of importance to build the recommended feature pool

The procedural steps of this strategy are described in detail, as follows:
Step 1. Use the Python package named sklearn.ensemble to initialize num Random

Forests (RFs).
Step 2. Randomly sample c features from the original feature space (19,214 features)

for num times as the input features for the RFs initialized by Step 1.
Step 3. Feed the samples with c features picked by Step 2 to every RF generated by

Step 1 for training.
Step 4. Compute the importance scores of features in RF based on the Gini index.
Step 5. Merge all the importance scores of features computed by num RFs.
Step 6. Rank all the features by sorting the scores of importance obtained by Step 5;

the q features with maximum scores of importance are composed of the recommended
feature pool.

In this study, we set num = 2000, c = 50, and q = 300. Due to the recommended
feature pool jointly determined by num = 2000 Random Forests, the default values
of all parameters for Random Forests are adopted. Specifically, n_estimators = 100,
criterion = “gini”, min_samples_split = 2, and min_sample_lea f = 1. The detailed de-
scription of Step 4 is as follows.
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A Random Forest is composed of several decision trees (binary trees), and the features
selected are used to decide to which class the input data belong. In this study, the average
loss of the entropy criterion, such as the Gini index, is adopted for growing decision trees.
The Gini index for each split node m in each decision tree is presented as GIm and can be
calculated using Equation (6).

GIm =
K

∑
1

pmk(1− pmk), (6)

where K is the number of classes, and pmk is the proportion belonging to the k-th class in
node m. Then, the score of the importance of feature xj in node m is presented as VIMgini

jm ,
which can be calculated by Equation (7).

VIMgini
jm = GIm − GIl − GIr, (7)

where GIl and GIr are the Gini indexes of newly generated nodes after node m splitting. M
is defined as the set of nodes that selects the feature xj in the i-th tree. Then, for the i-th
tree, the score of importance for feature xj can be calculated by Equation (8).

VIMgini
ij = ∑

m∈M
VIMgini

jm (8)

Therefore, if a Random Forest consists of n trees, the score of importance for feature xj
can be calculated using Equation (9).

VIMgini
ij =

n

∑
i=1

VIMgini
ji (9)

The final score is given as Equation (10) after normalization.

VIMj =
VIMj

c
∑

i=1
VIMi

(10)

2.3.2. EGFA for Feature Selection Based on a Recommended Feature Pool

The original EGFA is a novel nature-inspired heuristic search algorithm proposed by
our research team in 2019 for continuous optimization problems. Detailed information
about EGFA is introduced in Section 2.2. This paper utilizes EGFA to solve the combinatorial
optimization problem, i.e., feature selection, called EGFAFS. To investigate the performance
of EGFAFS, we test EGFAFS on eight gene expression datasets. Because gene expression
data consist of high-dimensional features, we construct a recommended feature pool by
ranking the features’ importance based on a series of Random Forests. Then, we can pay
more attention to the features in the recommended feature pool rather than all features
in the original search space. The introduction of this strategy is described in Section 2.3.1
in detail. The overall flow chart of EGFAFS is depicted in Figure 2. The pseudo-code of
EGFAFS is given in Algorithm 3.

Step 1. Construct a recommended feature pool based on a series of Random Forests
by ranking the scores of features’ importance. This step is described in Section 2.3.1 in
detail. After this step, we can obtain the subset M of features with size q, which is the
recommended feature pool.
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Step 2. With initial n dust particles, the location of i-th dust is defined by Equation (11).

dusti.location =
[
xi, x2, · · · xj, · · · , xc

]
, xj ∈ M, (11)

where xj is the j-th feature selected randomly from the recommended feature pool M,
which is built in Step 1. c is the number of selected features. Then, the location of each dust
particle is a feature subset with size c. We set n = 50, and c = 50. In this study, the mass
value for each dust particle is calculated based on the Matthews Correlation Coefficient
(MCC) [52] as Equation (12).

dusti.mass = eMCCi , (12)

where MCC is a metric to evaluate the dust (solution). A detailed description of MCC is
given in Section 3.2. In addition, to simplify the process of EGFAFS, the number of groups
is set as 1 in this study. There is then only one center in the population. Except for the
center dust particle, the other dust particles are the surrounding dust particles.

Algorithm 3. The pseudo-code of EGFA for feature selection (EGFAFS).

1. Input: The size of the recommended feature pool q, the size of dust population n, the size of the
features found by EGFAFS c, the No. of Random Forests (RF) num, the No. of iterations Tmax
2. Construct a recommended feature pool by RFs based on the Gini index
3. Initialize the dust population of size n by Equation (9), calculate the mass of each particle by
Equation (10)
4. while t < Tmax do
5. Move the surrounding dust particles toward their center as Figure 3
6. Some surrounding dust particles are absorbed by their center
7. Explosion strategy produces some dust particles as Figure 4
8. t = t + 1
9. End while
10. Return the optimal subset of features
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Step 3. Move the surrounding dust particles toward their center. For the i-th surround-
ing dust particle (dusti. f lag = 0), this step is depicted in Figure 3.

• Select a feature from the location of dusti randomly, which is named r.
• Select a feature from the location of its center randomly, which is named s.
• Replace the feature r by feature s.

In addition, the features represented by the center will be shuffled in this step, which
is the strategy of rotating used in this study.

Step 4. The surrounding dust particles with a relatively smaller value of mass are
absorbed by their center. Define basic_mass as the p-th percentile of the mass values for
population dust. For dusti (assume that it is surrounding dust, i.e., dusti. f lag = 0), if
dusti.mass < basic_mass, dusti will be absorbed; otherwise, it will remain for the next
iteration. In this step, the size of the population will decrease. In addition, we set p = 80.

Step 5. Several dust particles will be generated by the explosion strategy based on
the center dust. The new dusti is generated as shown in Figure 4, which consists of the
following procedures.

• Copy center.location to dusti.location.
• Select u features from ceter.location randomly as S (consists of red highlighted fea-

tures), and select u features from the original feature space as O (consists of green
highlighted features). We set u = 5 in this study.

• For dusti.location, replace the features in S with features in O one by one.

The main loop from Step 3 to Step 5 will run for several epochs (50 epochs in this
study). During the main loop, to evaluate a dust particle (a solution, i.e., a subset of fea-
tures), we feed the training data sliced by the subset of features represented by the dust
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to the Support Vector Classification (SVC) [53] for training. After training, we utilize the
Matthews Correlation Coefficient (MCC), which is a metric for evaluating the performance
of classification on the validation dataset, in order to evaluate the dust. A detailed descrip-
tion of MCC is given in Section 3.2. Once the main loop ends, the best subset of features
will be found, and the features selected are tested on the independent test dataset to obtain
the final performance metrics.

It is noted that the original EGFA was proposed for continuous optimization prob-
lems, such as Ackley and Sphere benchmark problems, but that EGFAFS is an improved
version of EGFA for solving combinatorial optimization problems (i.e., feature selection) for
real-world data, such as gene expression data. Due to the different types of optimization
problems solved by EGFAFS and the original EGFA, the processes of Move and Explode
in EGFAFS are different from those in the original EGFA, as introduced in Section 2.2. In
addition, the original EGFA has good performance for continuous optimization problems
in low-dimensional search space, having 2, 3, 5, 10, or 20 dimensions, but the EGFAFS
proposed in this manuscript is improved and implemented to solve a combinatorial op-
timization problem, i.e., feature selection, in high-dimensional search space, containing
19,214 dimensions.

Finally, we have to emphasize that EGFAFS is a general feature selection algorithm
which is capable of processing any type of numerical dataset, such as gene expression data.

3. Experimental Results and Discussion
3.1. Datasets

The Cancer Genome Atlas (TCGA) [54], a landmark cancer genomics program, molec-
ularly characterized over 20,000 primary cancers and matched normal samples spanning
33 cancer types. In this study, eight expression datasets (HNSC, LIHC, LUAD, LUSC,
PRAD, READ, STAD, THCA, and UCEC) sliced by 19,214 protein-coding genes are adopted,
sourced from TCGA. The eight original datasets consist of more than 60,000 features (ex-
pression values), which are marked by Ensembl id [55]. Among these expression values,
19,214 expression values are annotated as protein-coding genes. The eight expression
datasets sliced by the 19,214 protein-coding genes are used to verify the performance of
EGFAFS and another eight well-known FS methods. Each dataset is composed of approxi-
mately 300–600 samples but with 19,214 features (i.e., 19,214 protein-coding genes).

In this study, each dataset we employ has few samples but is characterized by high-
dimensional feature space. Additionally, for each dataset, the number of cases of each
type of tumor is approximately ten times greater than the number of normal cases, which
increases the difficulty of distinguishing between the tumor cases and the normal cases.
Detailed information about the eight datasets is given in Table 1.

Table 1. Detailed information of eight cancer datasets.

ID Dataset No. of Genes No. of Normal No. of Tumor

1 HNSC 19,214 44 502
2 LIHC 19,214 50 373
3 LUAD 19,214 59 515
4 LUSC 19,214 49 501
5 PRAD 19,214 52 496
6 STAD 19,214 32 375
7 THCA 19,214 50 510
8 UCEC 19,214 35 544

3.2. Evaluation Metrics

To comprehensively evaluate the performance of EGFAFS, seven widely used evalu-
ation metrics are employed, including accuracy (ACC), F-measure (F1), Recall, Precision
(PRE), Matthew’s correlation coefficient (MCC), the area under the Precision and Recall
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curve (AP) and the area under the ROC curve (AUC) [56] to measure EGFAFS against five
widely used methods. The metrics are calculated by the following Equations:

ACC =
TP + TN

P + N
, (13)

F1 =
2× TP

2× TP + FP + FN
, (14)

Recall =
TP

TP + FN
, (15)

PRE =
TP

TP + FP
, (16)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (17)

where TP, TN, FP, and FN represent the number of true positives, true negatives, false
positives, and false negatives, respectively. In our research, tumor cases are labeled as the
positive class and normal cases are labeled as the negative class.

The metrics (ACC, F1, Recall, PRE, and MCC) are defined as Equations (13)–(17). The
PR curve is a curve with the Precision (PRE) and the Recall rate as the axes, and the area
under the PR curve is the AP. The ROC curve is a curve with the false positive rate (FP-rate)
and the true rate (TP-rate) as the axes, and the area under the curve is the AUC.

The value of ACC, F1, Recall and PRE range from 0 to 1, MCC ranges from −1 to 1,
and AP and AUC usually range from 0.5 to 1. In general, the closer these values are to 1,
the better the performance they represent.

3.3. Verification of the Effectiveness of the Recommended Feature Pool

This section introduces the advantages of using the recommended feature pool. The
number of iterations for EGFAFS is set to 50, the number of the Random Forests is set to
2000, the size of the recommended feature pool is set to 300, and the classifier is SVC.

Both the EGFAFS initialized based on the recommended feature pool and the EGFAFS
initialized in the original feature space are tested on the eight gene expression datasets.
Regarding the three datasets: LUSC, THCA, and UCEC, the former has the same perfor-
mance as the latter in all metrics (ACC = 1.0000, F1 = 1.0000, Recall = 1.0000, PRE = 1.0000,
MCC = 1.0000, AP = 1.0000, AUC = 1.0000). The comparison results for the other five gene
expression datasets are shown in Table 2. Part A shows the results of EGFAFS initialized
based on the recommended feature pool. Part B shows the results of EGFAFS initialized in
the original feature space. The comparison results show that adopting the recommended
feature pool can achieve better performance than not using this strategy. In addition, after
initialization based on the recommended feature pool, fewer iterations are needed to find a
satisfactory subset.

Table 2. The comparison of EGFAFS with and without the recommended feature pool.

Dataset ACC F1 Recall PRE MCC AP AUC

A

HNSC 0.9909 0.9090 0.8333 1.0000 0.9085 0.9333 0.9935
LIHC 0.9764 0.9166 0.9166 0.9166 0.9029 0.9085 0.9897
LUAD 0.9913 0.9600 0.9230 1.0000 0.9560 0.9897 0.9984
PRAD 0.9636 0.7142 0.6250 0.8333 0.7035 0.8561 0.9791
STAD 0.9512 0.6000 0.5000 0.7500 0.5885 0.7164 0.9451

B

HNSC 0.9909 0.9090 0.8333 1.0000 0.9085 1.0000 1.0000
LIHC 0.9882 0.9600 1.0000 0.9230 0.9541 1.0000 1.0000
LUAD 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 1.0000
PRAD 0.9909 0.9333 0.8750 1.0000 0.9308 0.9416 0.9914
STAD 0.9634 0.6666 0.5000 1.0000 0.6935 0.8854 0.9817
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3.4. Analysis of the Parameters for EGFAFS
3.4.1. Analysis of the Size of The Target Subsets

The parameter c is the number of features for the subset found. For a thorough
investigation, EGFAFS is tested to find the feature subsets with different sizes on eight
datasets; more specifically, the size of the feature subsets is set to 30, 50, 100, and 150. The
comparison results are shown in the supplementary materials, Table S1. The results show
that the size of the target subset has little effect on the accuracy of classification. Specifically,
EGFAFS has better performance when the number of the features is set to 30 for some
datasets. However, for gene expression data, the correctly classified genes (features) are not
necessarily the best pathogenic genes (features). Therefore, it is necessary to slightly expand
the scope of selection so that more possible pathogenic genes can be found. Additionally,
we can then draw meaningful conclusions in biological analysis. It is noted that the larger
the size of the subset, the longer the running time is. In view of this, we set the number of
subsets to c = 50 for all FS methods.

3.4.2. Analysis of the Population Size of EGFAFS

The parameter n represents the population size of EGFAFS. To investigate the perfor-
mance of EGFAFS with different population sizes, we test EGFAFS with n = 30, 50, 100
on the HNSC dataset and show the results in Figure 5. The horizontal axis represents the
number of iterations, and the vertical axis is the scores of the metrics: MCC. Figure 5 shows
that EGFAFS has better performance when n = 50 or n = 100 than when n = 30. It is noted
that the running time increases with the increase in the population size. In this study, we
set n = 50 for EGFAFS.
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3.4.3. Analysis of the Size of the Recommended Feature Pool

The parameter q is the size of the recommended feature pool. To investigate the
performance of EGFAFS initialized based on recommended feature pools of different sizes,
we test EGFAFS with q = 100, 300, 500 on the HNSC dataset and show the results in the
Supplementary Materials, Table S2. Table S2 shows that EGFAFS has the best performance
on three datasets with q = 100, has the best performance on seven datasets with q = 300,
and has the best performance on two datasets with q = 500. Therefore, we set q = 300 in
this study and construct the recommended feature pool for initialization using EGFAFS
and four heuristic-based methods (GA, PSO, SA, and ED).

3.4.4. Analysis of the Number of RFs

The parameter num is the number of Random Forests, which we used to construct
the recommended feature pool. We test EGFAFS with num = 500, 1000, 1500, 2000 on
the HNSC datasets, respectively, and show the results in Figure 6. Figure 6 shows that
EGFAFS has more stable performance with num = 1500 or num = 2000 and has the best
performance with num = 2000. It is noted that constructing the feature pool takes relatively
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less time over the whole FS process. Then, we set num = 2000 in this study to obtain a
more stable performance.
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3.5. Comparison of the Performance of EGFAFS with Eight FS Methods

To verify the performance of EGFAFS, four heuristic-based FS methods (GA, PSO, SA,
and DE) and four other FS methods (Boruta, HSIC Lasso, DNN-FS, and EGSG) are adopted
for comparison. The four heuristic-based FS methods are implemented based on a Python
package called scikit-opt (https://scikit-opt.github.io/, accessed on 12 March 2022) and
initialized based on the recommended feature pool. During training, MCC is employed
as the heuristic function for four heuristic-based methods to select features. The value of
MCC ranges from −1 to 1, where −1 indicates the prediction is completely wrong, and 1
indicates that the prediction is completely correct. For a fair comparison, the number of the
population is set to 50 and the maximum iteration is also set to 50 for five heuristic-based
methods (GA, PSO, SA, DE, and EGFAFS). For other methods, the default values of all the
parameters are adopted. The target size of the features subset is set at 50, and each dataset
is split into a learning dataset and an independent dataset with a proportion of 8:2. The
learning dataset is further split into a training and a validation dataset by a random seed
with a proportion of 6:4. Different random seeds lead to different training and validation
datasets. Each method is trained on a training dataset and is validated on the corresponding
validation dataset. After each method converges, the final selected features are evaluated
on an independent test dataset. Seven commonly used metrics (ACC, F1, Recall, PRE, MCC,
AP, and AUC) are employed to compare the performance.

The detailed comparison results of EGFAFS and eight FS methods in seven metrics are
represented in the Supplementary Materials, Tables S3–S10. Because the number of cases
of each type of tumor (positive class) is approximately ten times greater than the number
of normal cases (negative class) for each dataset, some metrics, such as ACC, Recall, and
Precision (PRE), cannot evaluate well the real ability of methods to distinguish the negative
cases. Then, we select three metrics with great differences relating to the performance of
nine FS methods and show the results in Figure 7.

Figure 7 suggests that our EGFAFS has the best performance in three metrics (F1, MCC,
and AP) on eight gene expression datasets. In addition, SA, DE and HSICLssso have better
performance than the other FS methods. It is noted that all the heuristic-based methods
have a similar performance. Such methods are initialized based on the recommended
feature pool, which reduces the dimensions of the feature space to acceptable dimensions
so as to improve the accuracy of classification. Detailed information on the comparison
results can be found in the Supplementary Materials, Tables S3–S10. All in all, our EGFAFS
works well for FS and outperforms the eight well-known FS methods in most evaluation
metrics on eight gene expression datasets.

https://scikit-opt.github.io/
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3.6. Comparison the Running Time of EGFAFS with Eight FS Methods

To compare the time cost, we test EGFAFS and another eight FS methods on eight
datasets. The comparison results are shown in Table 3. The total running time of nine
methods on eight datasets is shown in the rightmost column of Table 3. The EGSG has
the shortest total running time (approximately 235 s), and Boruta has the longest total
running time (approximately 1563 s). Our EGFAFS has the third longest running time
(approximately 1091 s) during five heuristic-based FS methods and has the fifth longest
total running time during the nine FS methods.
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Table 3. Comparison of the running time of EGFAFS with eight FS methods.

Method HNSC LIHC LUAD LUSC PRAD STAD THCA UCEC Total

GA 167.42 134.33 167.65 155.10 188.16 130.12 172.39 162.00 1277.17
PSO 52.41 43.33 50.38 48.11 59.48 44.53 51.93 51.70 401.87
SA 190.29 148.71 186.36 175.60 221.18 151.78 203.82 187.39 1465.13
DE 79.14 62.51 77.43 70.20 87.37 63.52 79.46 76.00 595.63
EGSG 29.49 26.85 30.41 30.59 30.33 26.91 30.80 29.88 235.26
Boruta 209.31 195.87 191.85 180.71 194.19 197.39 201.10 192.56 1562.98
HSICLasso 48.10 37.22 50.17 52.37 47.23 35.88 47.87 50.32 369.16
DNN-FS 142.47 115.33 148.91 141.82 141.28 109.35 146.92 149.16 1095.24
EGFAFS 143.49 109.79 151.83 138.50 147.37 106.78 153.12 140.49 1091.37

3.7. Analysis the Distribution of Genes Found by Nine FS Methods

To investigate whether the genes found by nine FS methods have consistency, we
analyzed the distribution of the genes and showed the results in the Supplementary
Materials, Table S11. Table S11 shows that the genes found by nine FS methods have
less consistency. All the population-based FS methods (GA, SA, PSO, DE, and EGFAFS) are
initialized randomly based on the recommended feature pool, and that leads to different
solutions (gene subsets). In fact, for a certain population-based FS method such as GA, the
solutions it finds are not always fixed; it usually obtains different solutions with similar
evaluation scores. Besides the population-based methods, the gene subsets found by other
FS methods including EGSG, Boruta, HSICLasso, and DNN-FS have less consistency too,
as shown in Table S11. No gene selected by DNN-FS has been selected by the other eight
FS methods.

3.8. Analysis of the Degrees of the Selected Genes in the Differential Co-Expression Network

To further verify the significance of our EGFAFS for feature selection, we utilize
GEPIA2 [57] for tumor/normal differential expression analysis on eight datasets. GEPIA2
provides customizable functions such as tumor/normal differential expression analysis,
profiling according to cancer type or pathological stage, patient survival analysis, simi-
lar gene detection, correlation analysis, and dimensionality reduction analysis, and was
developed by Zefang Tang, Tianxiang Chen, Chenwei Li, and Boxi Kang of Zhang Lab,
Peking University.

By employing the GEPIA2 tool, we select the genes under the conditions of FC ≥ 2
and q < 0.01 from the original feature space (19,214 genes) to construct the differential
co-expression networks [58,59] by linking two nodes (genes) when their absolute value
of Pearson Correlation Coefficient [60] is larger than 0.5. For the eight gene expression
datasets, approximately 500–4000 genes with obvious differences between tumor and
normal cases are selected. We can then calculate the degree of each node (gene) of the
differential co-expression network. The degrees of the genes (features) selected by EGFAFS
in differential co-expression networks for eight datasets are represented in Figure 8.

In this study, we present the median values of degrees in the differential co-expression
networks with the symbol M_D, refer to the total number of genes selected by EGFAFS with
the symbol No_T, and present the number of genes selected by EGFAFS in the co-expression
networks with the symbol No_select. Additionally, we refer to the number of genes, the
degree of which is greater than M_D, with the symbol No_G. Detailed information of the
genes selected by EGFAFS in differential co-expression networks is given in Table 4 and
Figures S1–S8. Figure 8 shows the degrees of genes selected by EGFAFS for LIHC dataset
in differential co-expression network.
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Table 4. The information of genes selected by EGFAFS in differential co-expression networks.

ID Dataset M_D No_G No_Select No_Total

1 HNSC 30 25 38 50
2 LIHC 48 15 25 50
3 LUAD 56 29 34 50
4 LUSC 52 27 37 50
5 PRAD 108 11 16 50
6 STAD 20 20 29 50
7 THCA 93 16 24 50
8 UCEC 35 45 49 50

The results depicted in Table 4 and Figure 8 show that most genes selected by EGFAFS
on eight gene expression datasets are in the differential co-expression network, and the
degrees of the genes selected by EGFAFS are more than the median value of the whole
differential co-expression network. In addition, the fact that the genes selected by our
EGFAFS play important roles in the differential co-expression network demonstrates the
significance of our EGFAFS for feature selection.

3.9. GO Enrichment Analysis for Genes Selected by EGFAFS

To help us to understand the biological meaning behind the genes selected by EGFAFS,
we utilize the Database for Annotation, Visualization, and Integrated Discovery (DAVID) [61]
to perform enrichment analysis. The DAVID provides a comprehensive set of functional
annotation tools, which are powered by the comprehensive DAVID Knowledgebase built
upon the DAVID Gene concept and pulls together multiple sources of functional annotations.

In general, the Gene Ontology (GO) [62] database describes knowledge of the biologi-
cal domain concerning three aspects: Biological Process (BP), Cellular Component (CC),
and Molecular Function (MF). A gene is usually involved in multiple biological functions
with the above aspects. We feed the 50 genes for each dataset selected by EGFAFS into the
enrichment analysis tool, DAVID (2021 Update), to discover enriched function-related gene
groups. During this process, all the biological functions are selected under the condition of
p < 0.05. The closer the value is to zero, the more significant the GO term associated with
the group of genes is. The results of GO enrichment on eight datasets with three aspects
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(BP, CC, and MF) are given in Figures S9–S16. Figure 9 shows the results of GO enrichment
on LIHC dataset.
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In Figure 9, the IDs of biological functions are represented on the x-axis, the counts
of enriched function-related genes are represented on the y-axis, and the three kinds of
colors present the three top-level biological functions (BP, CC, and MF). For a particular GO
term, the more genes are annotated, the more genes work on the corresponding biological
function, and the more significant the term is.

For the HNSC, 40 of the 50 genes are annotated to a GO term in the MF aspect.
Moreover, four gene groups with approximately 20 genes are annotated to four GO terms
in the CC aspect. The GO terms in the BP aspect are not significant. For the LIHC, a
gene group with more than 30 selected genes is annotated to a GO term in the MF aspect.
Additionally, two gene groups with more than 20 selected genes are annotated to two
GO terms in the CC aspect. For the LUAD and LUSC, a gene group with approximately
20 selected genes is annotated to a GO term in the CC aspect. The GO terms in the BP
and MD aspects are not significant. For the PRAD and THCA, all GO terms concerning
three aspects are not significant, since the counts of genes for GO terms are less. For the
STAD, four gene groups with 20–25 selected genes are annotated to four GO terms in the
CC aspect, which is significant. For the UCEC, a gene group with more than 40 genes is
annotated to a GO term in the MF aspect, and four gene groups with more than 20 genes
are annotated to four GO terms in the CC aspect.

We performed enrichment analysis on the gene sets selected by EGFAFS on eight
datasets. For six datasets, the genes selected by EGFAFS are enriched in some GO terms
with large counts of genes, and the GO terms are significant, belonging to high-level
biological functions: CC and MF. For the other two datasets, the enriched GO terms are
not significant due to the smaller counts of enriched genes. The overall results shown in
Figure 9 demonstrate that most genes selected by EGFAFS play an essential role in some
biological functions.

4. Discussion

In this study, we propose a novel FS algorithm based on EGFA, called EGFAFS. To
investigate the performance of EGFAFS, we tested EGFAFS on eight gene expression
datasets compared with eight FS methods.

To implement the EGFAFS, we first utilize a series of Random Forests to measure
the importance of the features based on the Gini coefficient. We then select 300 features
with maximum scores of importance to build the recommended feature pool. When this
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process is completed, we initialize the dust population based on the recommended feature
pool and calculate the mass of each dust particle based on a metric Matthews Correlation
Coefficient (MCC). The main loop for EGFA consists of three steps: (1) Move and Rotate,
(2) Absorb, and (3) Explode. We first pay attention to the features in the recommended
feature pool (300 features) in the process of Move and Rotate, and then consider all features
in the original search space (19,214 features) in the process of Explode. The experiments
demonstrate that we should not only pay attention to the features in the recommended
feature pool, but also consider all features in the original feature space, meaning that our
EGFAFS works well for feature selection in a high-dimensional search space.

To verify the performance of EGFAFS, we test our EGFAFS on eight gene expression
datasets and compare it with four classical heuristic-based FS algorithms (GA, PSO, SA,
and DE) and four other FS methods (Boruta, HSIC Lasso, DNN-FS, and EGSG). Seven
commonly used metrics (ACC, F1, Recall, PRE, MCC, AP, and AUC) are employed to
evaluate the performance of the five methods. The experimental results show that EGFAFS
ensures better classification metrics than the other eight FS approaches.

To further verify the significance of our EGFAFS for feature selection, we utilize
GEPIA2 for tumor/normal differential expression analysis and construct differential co-
expression networks for eight datasets. The results show that most of the genes our EGFAFS
selected from eight gene expression datasets are in the differential co-expression network.
In addition, the degrees of the selected genes are greater than the median value of the
whole differential co-expression network.

To investigate the biological meaning behind the genes selected by EGFAFS, we utilize the
DAVID to perform enrichment analysis. For almost all datasets, the genes selected by EGFAFS
are enriched for some biological functions, with large counts of genes. The results demonstrate
that the genes selected by EGFAGS play an essential role in some biological functions.

In summary, EGFAFS has good performance for feature selection on eight gene expres-
sion datasets, compared with eight other well-known FS methods. In addition, the genes
selected by our EGFAFS play an important role in the differential co-expression network
and in some biological functions. We believe that EGFAFS works well for feature selection.

5. Conclusions

In this study, we developed a feature selection algorithm based on EGFA, called
EGFAFS. To reduce the dimensions of the feature space to acceptable dimensions, we
constructed a recommended feature pool by a series of Random Forests based on the Gini
index. We then paid more attention to the features in the recommended feature pool. To
verify the performance of EGFAFS for feature selection, we tested EGFAFS on eight gene
expression datasets compared with eight well-known FS methods. The results show that
among the nine FS algorithms, EGFAFS has the best performance for feature selection
on gene expression data in most evaluation metrics. Further analysis of the differential
co-expression network and GO enrichment on eight datasets demonstrates that the genes
selected by EGFAFS play an essential role in the differential co-expression network and in
some biological functions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/e24070873/s1, Table S1 shows the results of EGFAFS with different
sizes of subsets. Specifically, the size of the feature subsets is set to 30, 50, 100, and 150; Table S2 shows
the results of EGFAFS with different sizes of the feature recommended pool. Specifically, the size of
the feature recommended pool is set to 100, 300, and 500, respectively; Tables S3–S10 represent the
detailed information of comparison results of our EGFAFS and eight well-known FS methods (GA,
PSO, SA, DE, EGSG, Boruta, HSICLasso, and DNN-FS) on eight gene expression datasets (HNSC,
LIHC, LUAD, LUSC, PRAD, STAD, THCA, and UCEC); Table S11 shows the distribution of genes
found by nine FS methods (GA, SA, PSO, ED, EGSG, Boruta, HSICLasso, DNN-FS, and EGFAFS) on
HNSC. Figures S1–S8 show the degrees of the genes (features) selected by EGFAFS in differential
co-expression networks for eight datasets (HNSC, LIHC, LUAD, LUSC, PRAD, STAD, THCA, and
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UCEC); Figures S9–S16 show the results of GO enrichment on eight datasets (HNSC, LIHC, LUAD,
LUSC, PRAD, STAD, THCA, and UCEC) with three aspects (BP, CC, and MF).
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