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The evolution of complex signals has often been explored by testing multiple
functional hypotheses regarding how independent signal components pro-
vide selective benefits to offset the costs of their production. In the present
study, we take a different approach by exploring the function of complexity
per se. We test the hypothesis that increased vibratory signal complexity—
based on both proportional and temporal patterning—provides selective
benefits to courting male Schizocosa stridulans wolf spiders. In support of
this hypothesis, all of our quantified metrics of vibratory signal complexity
predicted the mating success of male S. stridulans. The rate of visual
signalling, which is mechanistically tied to vibratory signal production,
was also associated with mating success. We additionally found evidence
that males can dynamically adjust the complexity of their vibratory signal-
ling. Together, our results suggest that complexity per se may be a target
of female choice.
1. Background
Many animals communicate with complex displays consisting of multiple
signals or components within and across sensory modalities [1–6]. Given the
costs of producing multiple signal components, such as time/energy loss and
increased predation risk [1,7,8], complex signals are hypothesized to have selec-
tive benefits like better signal transmission [9–11], increased accuracy in mate
assessment [12–14] or increased quantity of information [15–17]. Indeed,
there exists a multitude of functional hypotheses regarding why animals
engage in complex multi-modal signalling (reviewed in [3]).

To test the potential selective benefits of complex signals, researchers have
investigated the functions of complex signals as (i) a simple summing of dis-
crete or overlapping functions of individual signal components [12,14,18,19]
or (ii) the emergent properties from the architectures or temporal patterns of
multiple signal components [4,14,18–24]. Selection on signal complexity
per se, however, both within and between sensory modalities, has received
less recent attention. Nonetheless, signal complexity has been quantified and
studied using various measures—e.g. the number of discrete signals/
components [18,25–27], the proportions or the temporal order of signal com-
ponents [28–31]. Many previous studies have focused on either the function
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Figure 1. Examples of discrete vibratory signal components by manual classification (revs—blue, idle—orange and leg-tap—green).
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of individual components or the number of signal com-
ponents/repertoires [14,18,25,26,32], or the function of
signal interactions, overall display architecture or temporal
order [4,20–24,33–35].

Animals can use a diversity of mechanisms or processes
to encode meaning in communication displays [21,36], and
thus the integration of multiple approaches is essential to
understanding the evolution of complex signals [36,37].
For instance, if a larger courtship signal repertoire reflects
better signaller quality (i.e. European starling; [27]), then
the quantification of signal complexity only based on the
variation in temporal orders may not fully capture the selec-
tive benefits of complex signalling. Similarly, when visual
ornamentations are presented to receivers through complex
behavioural gestures, analysing the diversity of ornamenta-
tions alone may only partially elucidate why complexity
evolved [38,39]. In the present study, we compare multiple
metrics of vibratory signal complexity and signalling rate
in a multi-modal signalling wolf spider to test the hypo-
thesis that increased vibratory signal complexity provides
males with fitness benefits.

Male Schizocosa stridulanswolf spiders producemulti-modal
courtship displays consisting of two discrete substrate-borne
vibratory components and static/dynamic visual signal com-
ponents [40–44]. Females are more likely to mate with males
that produce more dynamic visual signals (leg-taps) [45], but it
has not yet been tested whether the complexity of vibratory
signals influences male mating success (additional information
in electronic supplementarymaterial, S1). This study investigates
potential mechanisms of complex signal evolution by quantify-
ing and comparing male vibratory signal complexity using
multiple complexity metrics and determining how they relate
to male mating success.
2. Material and methods
(a) Study animals
We collected penultimate (one moult before final maturation)
Schizocosa stridulans females and males from Marshall Co., MS,
USA (34°400 N 89°280 W) on May 17–18, 2008. In the laboratory
space with a controlled light cycle (12 L : 12 D cycle) and temp-
erature (23 ± 2°C), we housed animals in individual plastic
cages (60 × 60 × 80 mm; electronic supplementary material, S1).

(b) Mate choice assays
We conducted mating trials in a circular, plastic-walled exper-
imental arena (125 mm diameter) within a soundproof chamber
(500 × 370 × 430 mm; Super Soundproofing Co., San Marcos,
CA, USA). We used filter paper (Whatman™; 125 mm radius)
as the substrate upon which the spiders courted and from
which we recorded vibrations. To elicit male courtship, a
mature female S. stridulans resided on the filter paper for 1 h
before the trial, during which time she deposited pheromone-
laden silk on the substrate [46].

During a mating trial, we introduced a female 5 min before a
male and then let the female and male interact for 20 min. We
recorded male courtship displays with a laser Doppler vibrom-
eter (Polytec PDV-100, Polytec GmbH, Waldbronn, Germany)
and a webcam camera (Logitech Webcam Pro 9000, Logitech,
Fremont, CA, USA). To increase the signal strength from the vib-
rometer, we put a piece of reflective tape (5 × 5 mm; 3M Diamond
Grade, 3M, Saint Paul, MN, USA) at the centre of the filter paper.
The sound and video recordings were encoded into an AVI file
on an Apple PowerBook. We used the first 5 min of male court-
ship for data analysis. We conducted a total of 44 mating trials.
(c) Quantification of vibratory signal complexity
To quantify vibratory courtship signal complexity, we converted
vibratory signals into a temporal sequence of discrete signal com-
ponents—rev, idle, and leg-tap [47]—by manual classification
(figure 1). We quantified the signal complexity of individual
signalling males using three different metrics; (i) Lempel-Ziv
complexity [48], (ii) Shannon entropy (hereafter, entropy) [49]
and (iii) first-order Markov entropy rate (hereafter, entropy
rate) [50] (electronic supplementary material, S2). We tested the
underlying assumption of the metrics (electronic supplementary
material, S3).
(d) Quantification of courtship rate
As a more traditional proxy of signal complexity, we calculated
(i) multi-modal and (ii) visual-only courtship rates by dividing
the total number of (i) all signal components (vibratory + visual =
multi-modal) or (ii) only visual-associated signal components
(visual only) by the total courtship duration.
(e) Statistical analysis
To test the hypothesis that increased vibratory complexity pro-
vides males with a reproductive advantage, we constructed
binary logistic regression models with each of the vibratory
signal complexity metrics as predictor variables and mating suc-
cess as the response variable. We also used the same binomial
logistic regression models with the two proxies of courtship
rate as predictor variables—multi-modal and visual-only court-
ship rates. We used the lm() and glm() in the lme4{} R package
[51] and the p-values of predictors were calculated using the
Anova() in the car{} R package [52]. All statistical tests were
conducted using R v. 3.6.1 for Windows [53].

We also investigated the effects of (i) female feedback and (ii)
female weight on male vibratory courtship signals (see electronic
supplementary material, S4–S6).

All the data and codes for analysis are given in the Dryad
Digital Repository [54].



Table 1. Comparison of morphological traits and signal characteristics between non-copulated and copulated trials (mean ± s.d., Welch’s t-test).

mating N
male body
mass (g)

female body
mass (g)

body mass ratio
(female/male)

number of
components latency (s)

N 35 0.041 ± 0.008 0.051 ± 0.010 1.283 ± 0.380 93.9 ± 61.6 89.5 ± 86.1

Y 9 0.039 ± 0.007 0.057 ± 0.012 1.489 ± 0.453 103.0 ± 46.7 77.0 ± 83.6

statistical

significance

t = 0.608, d.f. =

13.866, p = 0.553

t =−1.454, d.f. =

11.080, p = 0.174

t = −1.257, d.f. =

11.068, p = 0.235

t = −0.538, d.f. =

15.998, p = 0.598

t = −0.422, d.f. =

12.740, p = 0.683

Table 2. Complexity metrics and multi-modal/visual courtship rate of non-copulated and copulated male S. stridulans (mean ± s.d.). Significant predictors of
mating success are shown in italics.

mating
normalized
Lempel-Ziv entropy entropy rate

multi-modal
courtship rate visual courtship rate

N 0.741 ± 0.162 0.145 ± 0.169 0.174 ± 0.191 0.459 ± 0.201 0.013 ± 0.013

Y 0.959 ± 0.214 0.467 ± 0.255 0.488 ± 0.255 0.447 ± 0.117 0.064 ± 0.040

statistical

significance

Wald x21 ¼ 8:663,

p = 0.003

Wald x21 ¼ 13:481,

p < 0.001

Wald x21 ¼ 11:744,

p = 0.001

Wald x21 ¼ 0:032,

p = 0.859

Wald x21 ¼ 24:081,

p < 0.001
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3. Results
Among the 44 Schizocosa stridulans males, we had nine males
that copulated within 25 min (four males within 5 min; five
males within an additional 20 min). There was no significant
difference between female and male body mass, body mass
ratio between females and males, the latency to the first vibra-
tory component, or the number of vibratory components
between trials in which males did or did not copulate
(table 1).

Copulated males produced more complex signals (as
calculated by each of our complexity metrics) than non-
copulated males (table 2 and figure 2). Multi-modal courtship
rate was not a significant predictor of male mating success,
but the visual-only courtship rate was, with higher visual
courtship rates in copulated males (table 2 and figure 2).
4. Discussion
Male vibratory courtship complexity, as quantified using pro-
portional (entropy) and temporal patterning (Lempel-Ziv
complexity and entropy rate), was associated with mating
success of Schizocosa stridulans males. Assuming that male
mating success is dictated by female mate choice in our
experiments, our results are consistent with the hypothesis
that vibratory courtship signal complexity itself is under
direct selection from female choice. Vibratory signal complex-
ity predicted a male’s mating success regardless of which
complexity metric, and thus which dimension of signal com-
plexity, we used. This similarity across metrics may be due to
the highly stereotyped pattern of signal components in this
species. In other words, there is little opportunity for tem-
poral patterns to vary independently of variation in
component occurrence in our particular species. Usually, S.
stridulans males produce 1–2 idle/leg-taps after many revs,
and the consecutive occurrence of more than 2 idle/leg-taps
is very rare (N. Choi 2020, personal observation; figure 1).
Therefore, within S. stridulans, the complexity metrics
change similarly with differences in the numbers of revs
before idle/leg-taps, which vary among or within
individuals.

A more traditional analysis using visual-only courtship
rate, but not multi-modal courtship rate, was also a signifi-
cant predictor of male mating success. The component of
signalling used to calculate visual courtship—i.e. leg-taps—
does, however, occur coincident with the idle vibratory
signal component. Thus, more idles necessarily equate to
more leg-taps. This fits with the results from simulated
sequences (electronic supplementary material, S3), which
suggests that the proportion of visual-associated signal com-
ponents (i.e. idles) may play a major role in the variation in
vibratory signal complexity among males. The similarity in
findings across our approaches (vibratory complexity versus
visual-only courtship rate) raises interesting questions about
how these spiders might functionally alter vibratory signal-
ling and whether it is (i) a simple summing of functions of
individual signal components [12,14,18,19] or (ii) the emer-
gent complexity from the architectures or temporal patterns
that is driving increased likelihood to mate.

We have identified four non-mutually exclusive expla-
nations for the discovered link between our calculated
complexity metrics: visual-only courtship rate and male
mating success. First, female preferences for other traits
may result in a non-causal correlation between male mating
success and vibratory signal complexity/visual courtship
rates. For example, females may be receptive to males for
other reasons unrelated to courtship behaviour (e.g. size
and degree of ornamentation) and may provide feedback to
these males. In response to such positive feedback, males
may increase their courtship rate [55] by integrating more
leg-taps (with idles), which necessarily results in increased
vibratory signal complexity. Previous studies on S. stridulans
found an increase in revs and idles immediately before
mounting [42,56]. We attempted to test this possibility by
comparing male courtship complexity during the first and
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second halves of our observed courtship window (electronic
supplementary material, S4). In support of males altering
signal complexity throughout an interaction, we did find
that copulated males significantly increased the transition
patterns among signal components (Lempel-Ziv complexity
and entropy rate) but did not change the proportion of
signal components or the number of unit signal components
(entropy and multi-modal signal complexity) in the second
half of courtships. Additional results of our study similarly
demonstrate that (i) male S. stridulans can alter the complex-
ity of their vibratory signalling according to female body
condition (electronic supplementary material, S6) and (ii)
males that produced more complex signals decreased the
duration of revs and increased the number of idles (electronic
supplementary material, S7). Given these two findings, it
seems likely that males alter their signalling complexity and
the associated acoustic characters according to female feed-
back and receptivity [55,57,58].

A hypothesis of female feedback driving increased signal
complexity might also predict that positive feedback is tied to
male characteristics such as size. In our study, however, we
found no difference in body mass between copulated and
non-copulated males. Similarly, Rosenthal & Hebets [45]
showed that the feeding history of S. stridulans males
during juvenile or adult life stages did not influence the
male size, secondary sexual traits and/or mating success.
Thus, the variation in visual courtship rate and signal com-
plexity is likely not facilitated by the difference in male
body condition and related female feedback.

Similar to our initial hypothesis that the relationship
between vibratory signal complexity and mating success
may be the result of female preference and positive feedback
on non-signalling traits (e.g. size, degree of ornamentation),
this pattern may also be a by-product of the functional vari-
ation among isolated vibratory or visual signal components.
For example, an increasing proportion of idles/leg-taps necess-
arily leads to higher calculated complexity metrics. It remains
possible that the numbers of idles and/or leg-taps are most
important in mating success, not the vibratory signal complex-
ity per se. A prior study in S. stridulans that explored the role of
vibratory versus visual signalling in mating success, however,
found no support for a role of visual signalling in the absence
of vibratory signalling [11]. Furthermore, we found no evi-
dence that either vibratory complexity or visual courtship
rate influenced female orientation behaviour; a behaviour
used previously as a proxy of a female’s interest in mating
[41,59,60] (electronic supplementary material, S5). Copulating
males in our study also did not increase the occurrence of
particular courtship components (idles/leg-taps), as measured
by entropy or courtship rate, in the second half of courtship.
Taken together, these results suggest that it is not the visual-
vibratory-associated courtship components (idles/leg-taps)
that are driving our mating success results, but vibratory
signal complexity itself.

In contrast to the by-product explanations, females may
prefer more complex male signalling. This may be due to a
variety of factors such as increased messaging or content
[61,62], a sensory or processing bias [63,64], or preference
for complexity per se [47,65,66]. Rev, idle and leg-tap signal
components, each of which is produced through different
production mechanisms [47], may convey different infor-
mation about male quality. While we do not have evidence
to test these hypotheses, previous studies suggested that
the larger amount of information in male courtship signals
may increase mating success in other species [17,67–69]. In
addition, selection exerted through female mate choice
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might also favour higher signal complexity itself. Such selec-
tion could be driven by (i) female preference for high-quality
males as indicated by their ability to increase courtship
complexity [17,67–69], (ii) sensory biases in females for the
structural complexity in male vibratory signals [70,71], or
even (iii) aesthetic preferences and/or selection for decreased
processing costs [72]. Future work is necessary to tease apart
these hypotheses.

In summary, our data provide evidence of direct fitness
benefits to male S. stridulans that engage in more complex vibra-
tory courtship signalling. Exactly why females are more likely
to accept males with more complex displays, however, remains
an open question. Nonetheless, despite presumably higher costs
of increased signal complexity [7], our data demonstrate that S.
stridulans males can and will actively alter their signal complex-
ity and that this ability may be under direct selection from
females. We anticipate that future work investigating the costs
and benefits of complexity per se across disparate animal dis-
plays, with a special focus on the relationships between
modality-specific signalling and overall complexity, will greatly
enhance our understanding of how and why many observed
animal displays are so complex.
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sitory: https://doi.org/10.5061/dryad.vt4b8gttk [54].

The data are provided in the electronic supplementary material [73].
Authors’ contributions. N.C.: conceptualization, formal analysis, investi-
gation, methodology, validation, visualization and writing—
original draft; M.A.: investigation and writing—review and editing;
K.F.-F: conceptualization, investigation, methodology and writing—
review and editing; E.K.: investigation and writing—review and edit-
ing; M.R.: formal analysis, investigation and writing—review and
editing; A.R.: conceptualization, investigation, methodology and
writing—review and editing; R.D.S.: conceptualization, investigation,
methodology and writing—review and editing; D.W.: conceptualiz-
ation, investigation, methodology and writing—review and editing;
E.A.H.: conceptualization, data curation, funding acquisition, investi-
gation, methodology, project administration, resources, supervision
and writing—review and editing.

All authors gave final approval for publication and agreed to be
held accountable for the work performed therein.
Conflict of interest declaration. We declare we have no competing interests.

Funding. This work was supported by NSF CAREER grant to E.A.H.
(grant no. IOS – 1037901), Searle Scholar Program funding to
E.A.H., SLU Research Institute funding and NSF GRFP to K.F.-F.
Acknowledgements. We would like to thank P. Miller and G. Stratton for
their help in collecting spiders. We thank D. Wickwire for his help in
collecting and caring for spiders. We thank present and past mem-
bers of Basolo, Wagner and Shizuka lab (UNL Behaviour Group)
for helpful comments on data analysis and an earlier version of
this manuscript.
References
1. Bro-Jørgensen J. 2010 Dynamics of
multiple signalling systems: animal
communication in a world in flux. Trends
Ecol. Evol. 25, 292–300. (doi:10.1016/j.tree.2009.
11.003)

2. Candolin U. 2003 The use of multiple cues in mate
choice. Biol. Rev. Camb. Philos. Soc. 78, 575–595.
(doi:10.1017/S1464793103006158)

3. Hebets EA, McGinley RH. 2019 Multimodal
signaling. In Encyclopedia of animal behavior, pp.
487–499. Amsterdam, The Netherlands: Elsevier
Academic Press.

4. Hebets EA, Papaj DR. 2005 Complex signal function:
developing a framework of testable hypotheses.
Behav. Ecol. Sociobiol. 57, 197–214. (doi:10.1007/
s00265-004-0865-7)

5. Partan SR, Marler P. 1999 Communication goes
multimodal. Science 283, 1272–1273. (doi:10.1126/
science.283.5406.1272)

6. Partan SR, Marler P. 2005 Issues in the classification
of multimodal communication signals. Am. Nat.
166, 231–245. (doi:10.1086/431246)

7. Roberts JA, Taylor PW, Uetz GW. 2007 Consequences
of complex signaling: predator detection of
multimodal cues. Behav. Ecol. 18, 236–240. (doi:10.
1093/beheco/arl079)

8. Zuk M, Kolluru GR. 1998 Exploitation of sexual
signals by predators and parasitoids. Q. Rev. Biol.
73, 3–22. (doi:10.1086/420058)

9. Endler JA. 1992 Signals, signal conditions, and the
direction of evolution. Am. Nat. 139, S125–S153.
(doi:10.1086/285308)

10. Gordon SD, Uetz GW. 2011 Multimodal
communication of wolf spiders on different
substrates: evidence for behavioural plasticity. Anim.
Behav. 81, 367–375. (doi:10.1016/j.anbehav.2010.
11.003)

11. Hebets EA, Elias DO, Mason AC, Miller GL, Stratton
GE. 2008 Substrate-dependent signalling success in
the wolf spider, Schizocosa retrorsa. Anim. Behav.
75, 605–615. (doi:10.1016/j.anbehav.2007.06.021)

12. Gibson JS, Uetz GW. 2008 Seismic communication
and mate choice in wolf spiders: components of
male seismic signals and mating success. Anim.
Behav. 75, 1253–1262. (doi:10.1016/j.anbehav.
2007.09.026)

13. Uetz GW, Roberts JA, Taylor PW. 2009 Multimodal
communication and mate choice in wolf spiders:
female response to multimodal versus unimodal
signals. Anim. Behav. 78, 299–305. (doi:10.1016/j.
anbehav.2009.04.023)

14. Zuk M, Ligon JD, Thornhill R. 1992 Effects of
experimental manipulation of male secondary sex
characters on female mate preference in red jungle
fowl. Anim. Behav. 44, 999–1006. (doi:10.1016/
S0003-3472(05)80312-4)

15. Birkhead TR, Fletcher F, Pellatt EJ. 1998 Sexual
selection in the zebra finch Taeniopygia guttata:
condition, sex traits and immune capacity. Behav.
Ecol. Sociobiol. 44, 179–191. (doi:10.1007/
s002650050530)

16. Blanco G, De La Puente J. 2002 Multiple elements
of the black-billed magpie’s tail correlate with
variable honest information on quality in different
age/sex classes. Anim. Behav. 63, 217–225. (doi:10.
1006/anbe.2001.1909)

17. Doucet SM, Montgomerie R. 2003 Multiple sexual
ornaments in satin bowerbirds: ultraviolet plumage
and bowers signal different aspects of male quality.
Behav. Ecol. 14, 503–509. (doi:10.1093/beheco/
arg035)

18. Hebets EA, Vink CJ, Sullivan-Beckers L, Rosenthal
MF. 2013 The dominance of seismic signaling and
selection for signal complexity in Schizocosa
multimodal courtship displays. Behav. Ecol.
Sociobiol. 67, 1483–1498. (doi:10.1007/s00265-013-
1519-4)

19. Rivera-Gutierrez HF, Pinxten R, Eens M. 2010
Multiple signals for multiple messages: great tit,
Parus major, song signals age and survival. Anim.
Behav. 80, 451–459. (doi:10.1016/j.anbehav.2010.
06.002)

20. Hebets EA, Barron AB, Balakrishnan CN, Hauber ME,
Mason PH, Hoke KL. 2016 A systems approach to
animal communication. Proc. R. Soc. B 283,
20152889. (doi:10.1098/rspb.2015.2889)

21. Patricelli GL, Hebets EA. 2016 New dimensions in
animal communication: the case for complexity.
Curr. Opin. Behav. Sci. 12, 80–89. (doi:10.1016/j.
cobeha.2016.09.011)

22. Romero-Diaz C, Campos SM, Herrmann MA, Soini
HA, Novotny MV, Hews DK, Martins EP. 2021
Composition and compound proportions affect the
response to complex chemical signals in a spiny
lizard. Behav. Ecol. Sociobiol. 75, 1–11. (doi:10.
1007/s00265-021-02987-5)

23. Rosenthal MF, Wilkins MR, Shizuka D, Hebets EA.
2018 Dynamic changes in display architecture
and function across environments revealed
by a systems approach to animal communication.
Evolution 72, 1134–1145. (doi:10.1111/evo.
13448)

https://doi.org/10.5061/dryad.vt4b8gttk
https://doi.org/10.5061/dryad.vt4b8gttk
http://dx.doi.org/10.1016/j.tree.2009.11.003
http://dx.doi.org/10.1016/j.tree.2009.11.003
http://dx.doi.org/10.1017/S1464793103006158
http://dx.doi.org/10.1007/s00265-004-0865-7
http://dx.doi.org/10.1007/s00265-004-0865-7
http://dx.doi.org/10.1126/science.283.5406.1272
http://dx.doi.org/10.1126/science.283.5406.1272
http://dx.doi.org/10.1086/431246
http://dx.doi.org/10.1093/beheco/arl079
http://dx.doi.org/10.1093/beheco/arl079
http://dx.doi.org/10.1086/420058
http://dx.doi.org/10.1086/285308
http://dx.doi.org/10.1016/j.anbehav.2010.11.003
http://dx.doi.org/10.1016/j.anbehav.2010.11.003
https://doi.org/10.1016/j.anbehav.2007.06.021
http://dx.doi.org/10.1016/j.anbehav.2007.09.026
http://dx.doi.org/10.1016/j.anbehav.2007.09.026
http://dx.doi.org/10.1016/j.anbehav.2009.04.023
http://dx.doi.org/10.1016/j.anbehav.2009.04.023
http://dx.doi.org/10.1016/S0003-3472(05)80312-4
http://dx.doi.org/10.1016/S0003-3472(05)80312-4
http://dx.doi.org/10.1007/s002650050530
http://dx.doi.org/10.1007/s002650050530
http://dx.doi.org/10.1006/anbe.2001.1909
http://dx.doi.org/10.1006/anbe.2001.1909
http://dx.doi.org/10.1093/beheco/arg035
http://dx.doi.org/10.1093/beheco/arg035
http://dx.doi.org/10.1007/s00265-013-1519-4
http://dx.doi.org/10.1007/s00265-013-1519-4
http://dx.doi.org/10.1016/j.anbehav.2010.06.002
http://dx.doi.org/10.1016/j.anbehav.2010.06.002
http://dx.doi.org/10.1098/rspb.2015.2889
http://dx.doi.org/10.1016/j.cobeha.2016.09.011
http://dx.doi.org/10.1016/j.cobeha.2016.09.011
http://dx.doi.org/10.1007/s00265-021-02987-5
http://dx.doi.org/10.1007/s00265-021-02987-5
http://dx.doi.org/10.1111/evo.13448
http://dx.doi.org/10.1111/evo.13448


6

royalsocietypublishing.org/journal/rsbl
Biol.Lett.18:20220052
24. Wilkins MR, Shizuka D, Joseph MB, Hubbard JK,
Safran RJ. 2015 Multimodal signalling in the North
American barn swallow: a phenotype network
approach. Proc. R. Soc. B 282, 20151574. (doi:10.
1098/rspb.2015.1574)

25. Gamba M, Friard O, Riondato I, Righini R, Colombo
C, Miaretsoa L, Torti V, Nadhurou B, Giacoma C.
2015 Comparative analysis of the vocal repertoire of
lemur: a dynamic time warping approach.
Int. J. Primatol. 36, 894–910. (doi:10.1007/s10764-
015-9861-1)

26. Gil D, Slater PJB. 2000 Multiple song repertoire
characteristics in the willow warbler (Phylloscopus
trochilus). Behav. Ecol. Sociobiol. 47, 319–326.
(doi:10.1007/s002650050672)

27. Mountjoy DJ, Lemon RE. 1996 Female choice for
complex song in the European starling: a field
experiment. Behav. Ecol. Sociobiol. 38, 65–71.
(doi:10.1007/s002650050218)

28. Da Silva ML, Piqueira JRC, Vielliard JME. 2000 Using
Shannon entropy on measuring the individual
variability in the Rafous-bellied thrush Turdus
rufiventris vocal communication. J. Theor. Biol. 207,
57–64. (doi:10.1006/jtbi.2000.2155)

29. Suzuki R, Buck JR, Tyack PL. 2006 Information
entropy of humpback whale songs. J. Acoust.
Soc. Am. 119, 1849–1866. (doi:10.1121/
1.2161827)

30. Kershenbaum A. 2014 Entropy rate as a measure of
animal vocal complexity. Bioacoustics 23, 195–208.
(doi:10.1080/09524622.2013.850040)

31. Palmero AM, Espelosín J, Laiolo P, Illera JC. 2014
Information theory reveals that individual birds do
not alter song complexity when varying song
length. Anim. Behav. 87, 153–163. (doi:10.1016/j.
anbehav.2013.10.026)

32. Ord TJ, Blumstein DT, Evans CS. 2001 Intrasexual
selection predicts the evolution of signal complexity
in lizards. Proc. R. Soc. Lond. B 268, 737–744.
(doi:10.1098/rspb.2000.1417)

33. Arnold K, Zuberbühler K. 2008 Meaningful
call combinations in a non-human primate.
Curr. Biol. 18, 202–203. (doi:10.1016/j.cub.2008.01.
040)

34. Seyfarth RM, Cheney DL. 2010 Production, usage, and
comprehension in animal vocalizations. Brain Lang.
115, 92–100. (doi:10.1016/j.bandl.2009.10.003)

35. Suzuki TN, Wheatcroft D, Griesser M. 2018 The
syntax–semantics interface in animal vocal
communication. Proc. R. Soc. B 375, 20180405.
(doi:10.1098/rstb.2018.0405)

36. Kershenbaum A et al. 2016 Acoustic sequences in non-
human animals: a tutorial review and prospectus. Biol.
Rev. 91, 13–52. (doi:10.1111/brv.12160)

37. Benedict L, Najar NA. 2019 Are commonly used
metrics of bird song complexity concordant? Auk
136, 1–11. (doi:10.1093/auk/uky008)

38. Ligon RA, Diaz CD, Morano JL, Troscianko J,
Stevens M, Moskeland A, Laman TG, Scholes E. 2018
Evolution of correlated complexity in the
radically different courtship signals of birds-of-
paradise. PLoS Biol. 16, 1–24. (doi:10.1371/journal.
pbio.2006962)
39. Miles MC, Fuxjager MJ. 2018 Synergistic selection
regimens drive the evolution of display complexity
in birds of paradise. J. Anim. Ecol. 87, 1149–1159.
(doi:10.1111/1365-2656.12824)

40. Stratton GE. 2005 Evolution of ornamentation and
courtship behavior in Schizocosa: insights from a
phylogeny based on morphology (Araneae. Lycosidae).
J. Arachnol. 33, 347–376. (doi:10.1636/04-80.1)

41. Stratton GE, Uetz GW. 1983 Communication via
substratum-coupled stridulation and reproductive
isolation in wolf spiders (Araneae: Lycosidae). Anim.
Behav. 31, 164–172. (doi:10.1016/S0003-
3472(83)80185-7)

42. Elias DO. 2006 Seismic signal production in a wolf
spider: parallel versus serial multi-component
signals. J. Exp. Biol. 209, 1074–1084. (doi:10.1242/
jeb.02104)

43. Hebets EA. 2008 Seismic signal dominance in the
multimodal courtship display of the wolf spider
Schizocosa stridulans Stratton 1991. Behav. Ecol. 19,
1250–1257. (doi:10.1093/beheco/arn080)

44. Stratton GE. 1997 Investigation of species
divergence and reproductive isolation of Schizocosa
stridulans (Araneae: Lycosidae) from Illinois. Bullet.
Br. Arachnol. Soc. 10, 313–321.

45. Rosenthal MF, Hebets EA. 2015 Temporal patterns
of nutrition dependence in secondary sexual traits
and their varying impacts on male mating success.
Anim. Behav. 103, 75–82. (doi:10.1016/j.anbehav.
2015.02.001)

46. Tietjen WJ. 1979 Is the sex pheromone of Lycosa
rabida (Araneae: Lycosidae) deposited on a
substratum? J. Arachnol. 6, 207–212.

47. Elias DO, Land BR, Mason AC, Hoy RR. 2006
Measuring and quantifying dynamic visual signals
in jumping spiders. J. Comp. Physiol. A 192,
785–797. (doi:10.1007/s00359-006-0116-7)

48. Lempel A, Ziv J. 1976 On the complexity of finite
sequences over a finite set. IEEE Trans. Inf. Theory
22, 75–81. (doi:10.1109/TIT.1976.1055501)

49. Shannon C. 1948 A mathematical theory of
communication. Bell Syst. Tech. J. 27, 379–423.
(doi:10.1002/j.1538-7305.1948.tb01338.x)

50. Cover TM, Thomas JA. 1999 Elements of
information theory. New York, NY: John Wiley &
Sons, Inc.

51. Cover TM, Thomas JA. 1999 Elements of information
theory, 2nd edn. Hoboken, NJ: John Wiley & Sons
Inc.

52. Fox J, Weisberg S. 2018 An R companion to applied
regression. Beverley Hills, CA: Sage publications.

53. R Core Team. 2019 R: a language and environment
for statistical computing. Vienna, Austria: R
Foundation for Statistical Computing. See http://
www.R-project.org/.

54. Choi N et al. 2022 Data from: Datasets for the
manuscript ‘Increased signal complexity is
associated with increased mating success.’
Dryad Digital Repository. (doi:10.5061/dryad.
vt4b8gttk)

55. Sullivan-Beckers L, Hebets EA. 2011 Modality-
specific experience with female feedback increases
the efficacy of courtship signalling in male wolf
spiders. Anim. Behav. 82, 1051–1057. (doi:10.1016/
j.anbehav.2011.07.040)

56. Stratton GE. 1991 A new species of wolf spider,
Schizocosa stridulans (Araneae, Lycosidae).
J. Arachnol. 19, 29–39.

57. Sullivan-Beckers L, Hebets EA. 2014 Tactical
adjustment of signalling leads to increased mating
success and survival. Anim. Behav. 93, 111–117.
(doi:10.1016/j.anbehav.2014.04.021)

58. Patricelli GL, Coleman SW, Borgia G. 2006 Male
satin bowerbirds, Ptilonorhynchus violaceus, adjust
their display intensity in response to female
startling: an experiment with robotic females. Anim.
Behav. 71, 49–59. (doi:10.1016/j.anbehav.2005.03.
029)

59. Hebets EA, Uetz GW. 1999 Female responses to
isolated signals from multimodal male courtship
displays in the wolf spider genus Schizocosa
(Araneae: Lycosidae). Anim. Behav. 57, 865–872.
(doi:10.1006/anbe.1998.1048)

60. Scheffer SJ, Uetz GW, Stratton GE. 1996 Sexual
selection, male morphology, and the efficacy of
courtship signalling in two wolf spiders (Araneae:
Lycosidae). Behav. Ecol. Sociobiol. 38, 17–23.
(doi:10.1007/s002650050212)

61. Girard MB, Elias DO, Kasumovic MM. 2015 Female
preference for multi-modal courtship: multiple
signals are important for male mating success in
peacock spiders. Proc. R. Soc. B 282, 20152222.
(doi:10.1098/rspb.2015.2222)

62. Johnstone RA. 1996 Multiple displays in animal
communication: ‘backup signals’ and ‘multiple
messages.’. Phil. Trans. R. Soc. Lond. B 351,
329–338. (doi:10.1098/rstb.1996.0026)

63. Richardson C, Lengagne T. 2010 Multiple signals
and male spacing affect female preference at
cocktail parties in treefrogs. Proc. R. Soc. B 277,
1247–1252. (doi:10.1098/rspb.2009.1836)

64. Rowe C. 1999 Receiver psychology and the evolution
of multicomponent signals. Anim. Behav. 58,
921–931. (doi:10.1006/anbe.1999.1242)

65. Coleman SW, Patricelli GL, Borgia G. 2004 Variable
female preferences drive complex male displays.
Nature 428, 742–745. (doi:10.1038/nature02419)

66. Reichert MS, Finck J, Ronacher B. 2017 Exploring
the hidden landscape of female preferences for
complex signals. Evolution 71, 1009–1024. (doi:10.
1111/evo.13202)

67. Martín J, López P. 2010 Multimodal sexual
signals in male ocellated lizards Lacerta lepida:
vitamin E in scent and green coloration may signal
male quality in different sensory channels.
Naturwissenschaften 97, 545–553. (doi:10.1007/
s00114-010-0669-8)

68. Pfaff JA, Zanette L, MacDougall-Shackleton SA,
MacDougall-Shackleton EA. 2007 Song repertoire
size varies with HVC volume and is indicative of
male quality in song sparrows (Melospiza melodia).
Proc. R. Soc. B 274, 2035–2040. (doi:10.1098/rspb.
2007.0170)

69. Spencer KA, Buchanan KL, Goldsmith AR, Catchpole
CK. 2003 Song as an honest signal of
developmental stress in the zebra finch (Taeniopygia

http://dx.doi.org/10.1098/rspb.2015.1574
http://dx.doi.org/10.1098/rspb.2015.1574
http://dx.doi.org/10.1007/s10764-015-9861-1
http://dx.doi.org/10.1007/s10764-015-9861-1
http://dx.doi.org/10.1007/s002650050672
http://dx.doi.org/10.1007/s002650050218
http://dx.doi.org/10.1006/jtbi.2000.2155
http://dx.doi.org/10.1121/1.2161827
http://dx.doi.org/10.1121/1.2161827
http://dx.doi.org/10.1080/09524622.2013.850040
http://dx.doi.org/10.1016/j.anbehav.2013.10.026
http://dx.doi.org/10.1016/j.anbehav.2013.10.026
http://dx.doi.org/10.1098/rspb.2000.1417
http://dx.doi.org/10.1016/j.cub.2008.01.040
http://dx.doi.org/10.1016/j.cub.2008.01.040
http://dx.doi.org/10.1016/j.bandl.2009.10.003
http://dx.doi.org/10.1098/rstb.2018.0405
http://dx.doi.org/10.1111/brv.12160
http://dx.doi.org/10.1093/auk/uky008
http://dx.doi.org/10.1371/journal.pbio.2006962
http://dx.doi.org/10.1371/journal.pbio.2006962
http://dx.doi.org/10.1111/1365-2656.12824
http://dx.doi.org/10.1636/04-80.1
http://dx.doi.org/10.1016/S0003-3472(83)80185-7
http://dx.doi.org/10.1016/S0003-3472(83)80185-7
http://dx.doi.org/10.1242/jeb.02104
http://dx.doi.org/10.1242/jeb.02104
http://dx.doi.org/10.1093/beheco/arn080
http://dx.doi.org/10.1016/j.anbehav.2015.02.001
http://dx.doi.org/10.1016/j.anbehav.2015.02.001
http://dx.doi.org/10.1007/s00359-006-0116-7
http://dx.doi.org/10.1109/TIT.1976.1055501
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://dx.doi.org/10.5061/dryad.vt4b8gttk
http://dx.doi.org/10.5061/dryad.vt4b8gttk
http://dx.doi.org/10.1016/j.anbehav.2011.07.040
http://dx.doi.org/10.1016/j.anbehav.2011.07.040
https://doi.org/10.1016/j.anbehav.2014.04.021
http://dx.doi.org/10.1016/j.anbehav.2005.03.029
http://dx.doi.org/10.1016/j.anbehav.2005.03.029
http://dx.doi.org/10.1006/anbe.1998.1048
http://dx.doi.org/10.1007/s002650050212
http://dx.doi.org/10.1098/rspb.2015.2222
http://dx.doi.org/10.1098/rstb.1996.0026
http://dx.doi.org/10.1098/rspb.2009.1836
http://dx.doi.org/10.1006/anbe.1999.1242
http://dx.doi.org/10.1038/nature02419
http://dx.doi.org/10.1111/evo.13202
http://dx.doi.org/10.1111/evo.13202
http://dx.doi.org/10.1007/s00114-010-0669-8
http://dx.doi.org/10.1007/s00114-010-0669-8
http://dx.doi.org/10.1098/rspb.2007.0170
http://dx.doi.org/10.1098/rspb.2007.0170


7

royalsocietypub
guttata). Horm. Behav. 44, 132–139. (doi:10.1016/
S0018-506X(03)00124-7)

70. Clark CJ, Feo TJ. 2010 Why do Calypte
hummingbirds ‘sing’ with both their tail and their
syrinx? An apparent example of sexual sensory bias.
Am. Nat. 175, 27–37. (doi:10.1086/648560)
71. Collins SA. 1999 Is female preference for
male repertoires due to sensory bias? Proc. R. Soc.
Lond. B 266, 2309–2314. (doi:10.1098/rspb.
1999.0924)

72. Renoult JP, Mendelson TC. 2019 Processing
bias: extending sensory drive to include efficacy
and efficiency in information processing. Proc. R. Soc.
B 286, 20190165. (doi:10.1098/rspb.2019.0165)

73. Choi N et al. 2022 Datasets for the manuscript
‘Increased signal complexity is associated with
increased mating success.’ Figshare. (https://doi.
org/10.6084/m9.figshare.c.5926212)
l
ishi
ng.org/journal/rsbl
Biol.Lett.18:20220052

http://dx.doi.org/10.1016/S0018-506X(03)00124-7
http://dx.doi.org/10.1016/S0018-506X(03)00124-7
http://dx.doi.org/10.1086/648560
http://dx.doi.org/10.1098/rspb.1999.0924
http://dx.doi.org/10.1098/rspb.1999.0924
http://dx.doi.org/10.1098/rspb.2019.0165
https://doi.org/10.6084/m9.figshare.c.5926212
https://doi.org/10.6084/m9.figshare.c.5926212

	Increased signal complexity is associated with increased mating success
	Background
	Material and methods
	Study animals
	Mate choice assays
	Quantification of vibratory signal complexity
	Quantification of courtship rate
	Statistical analysis

	Results
	Discussion
	Data accessibility
	Authors' contributions
	Conflict of interest declaration
	Funding
	Acknowledgements
	References


