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Integrating Part-Object Relationship and Contrast
for Camouflaged Object Detection

Yi Liu, Dingwen Zhang, Qiang Zhang, and Jungong Han

Abstract—Object detectors that solely rely on image contrast
are struggling to detect camouflaged objects in images because
of the high similarity between camouflaged objects and their
surroundings. To address this issue, in this paper, we investigate
the role of the part-object relationship for camouflaged object
detection. Specifically, we propose a Part-Object relationship
and Contrast Integrated Network (POCINet) covering both
search and identification stages, where each stage adopts an
appropriate scheme to engage the contrast information and part-
object relational knowledge for camouflaged pattern decoding.
Besides, we bridge these two stages via a Search-to-Identification
Guidance (SIG) module, in which the search result, as well
as decoded semantic knowledge, jointly enhances the features
encoding ability of the identification stage. Experimental results
demonstrate the superiority of our algorithm on three datasets.
Notably, our algorithm raises Fβ of the best existing method by
approximately 17 points on the CPD1K dataset. The source code
will be released soon.

Index Terms—Camouflaged object detection, contrast, part-
object relationships, encoder-decoder, multi-stage.

I. INTRODUCTION

IN visual surveillance [1]–[6], camouflaged object detection
is an interesting yet challenging task, where the goal is

to search and segment out those objects concealed in their
surroundings. High intrinsic similarity between the target ob-
ject and the background makes camouflaged object detection
much more challenging than the traditional visual detection
tasks, such as salient object detection [7]–[15] and gener-
ic object detection [16]–[18]. Recently, camouflaged object
detection has been receiving increasing attention due to its
potential applications in real-life scenarios, including wild
animals preservation, new species discovery, medical image
segmentation [19], integrated circuits testing [20], [21], and
art [22], [23], etc.

Early camouflaged object detectors attempt to extract dis-
criminative hand-crafted features [24], e.g., color, edge, and
texture. Despite their simpleness, such features have limited
representation capacity in extracting useful visual patterns.
In light of the extraordinary representation ability of deep
features, research focus has shifted recently onto deep learning
based frameworks for camouflaged object detection [25]–
[27]. From a systemic perspective, these methods explore rich
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Fig. 1: Problem illustrations for the contrast and part-object
relational cues used for camouflaged object detection. (a) Im-
age; (b) GT; (c) PSPNet [28]; (d) BASNet [29]; (e) SINet [27];
(f) TSPOANet [30]; (g) OURS. Contrast-induced approaches
(i.e., (c)-(e) in the figure) miss some object parts, especially the
object boundaries. Part-object relational method (i.e., (f) in the
figure) produces blurry object boundaries and some “holes”.

distinguishable features with primitive contrast information
to identify the camouflaged object in a scene. However,
a striking resemblance between foreground and background
challenges the extraction of distinguishable features, giving
rise to a failure to recognize the camouflaged object from
the background. For instance, as shown in Fig. 1(c)-(e), some
parts of the camouflaged object, especially the object bound-
aries, cannot be identified from its surroundings, resulting in
the incomplete segmentation of the camouflaged object. The
above observation reveals that the exploitation of the contrast
information only could not be able to solve the problem.

In nature, an object is composed of several relevant parts,
and on the other hand, associated parts can form a whole ob-
ject. Such part-object relational property can aid in addressing
the above problem of incomplete segmentation. Especially in
[30], it successfully captures the complete salient object by
finding relevant object parts, rather than distinctive regions, in
a scene. Inspired by its promising results, this paper takes the
initiative to incorporate such part-object relational property in-
to camouflaged object detection. Fig. 1 shows the comparison
between the part-object relational approach (TSPOANet1 [30],
i.e., Fig. 1(f)) and three contrast-induced approaches (Fig. 1(c)-
(e)). It is clear that TSPOANet [30] is advantageous, especially
when considering the completeness of the segmented objects.
However, a closer look at the result generated by directly using
TSPOANet [30] for camouflaged object detection reveals that
it is far from satisfactory due to: 1) blurry object boundaries;

1We re-train TSPOANet [30] using the camouflaged object detection
benchmarks.
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Fig. 2: Illustration for different interactions between con-
trast and part-object relational cues. (a) TSPOANet [30]; (b)
OURS. The deconvolutional decoding mechanism pays ZERO
attention to the engagement of the contrast and part-object
relational cues. Alternatively, we integrate these two cues in
the decoder via the proposed POGU module, which will be
introduced in Sec. III.

2) “holes” within the object. We further analyze the decoder of
TSPOANet [30], and realize that the deconvolutional decoding
mechanism pays ZERO attention to the engagement of part-
object relational knowledge and contrast cues, which is shown
in Fig. 2(a). No interaction of these two informative cues may
adversely make both of their representation abilities weaker
after prolonged deconvolutions, thus leading to the issues of
the blurry boundary and the inner details deletion.

To address the above problem, in this paper, we propose
a Part-Object relationship and Contrast Integrated Network
(POCINet) containing two stages of search and identification
for camouflaged object detection, each of which adequately
engages contrast information and part-object relational knowl-
edge during decoding. Specifically, the encoder cascades a
Contrast Information Exploration (CIE) subnetwork and a
Part-Object Relationship Exploration (PORE) subnetwork. In
such a way, contrast features learned by CIE could provide rich
features for PORE at the deep layers to explore part-object
relational knowledge. The decoder enables the combination
of the two critical information via a Part-Object relationship
Guidance Upsampling (POGU) module, which is shown in
Fig. 2(b). Concretely, the part-object relational knowledge
provides object completeness as prior information, which in
turn guides the contrast features to achieve more primitive
camouflaged cues. Doing so helps to locate the camouflaged
object by extracting tight relevant object boundaries in the
search stage, as well as grabbing inner object details and
complete object shapes in the identification stage.

In addition, the existing approaches either parallel a classi-
fication network and a segmentation network [26] (as shown
in Fig. 3(a)) or directly feed features from the search network
into the identification network [27] (as shown in Fig. 3(b))
without equipping the well-coupled search and identification
streams. These pipelines may cause some problems. As shown
in Fig. 4, the parallel pipeline may cause a failure to serach
the camouflaged object (top two rows of Fig. 4) or background
noises (bottom two rows of Fig. 4), thereby having no abilities
to segmenting the camouflaged object out from the scene.
As shown in the second and fourth rows of Fig. 4, the

Fig. 3: Different camouflaged object detection pipelines. (a)
An identification branch and a search branch are parallelized;
(b) The features of the search branch are directly fed into the
identification branch; (c) OURS: A bridge block is put in place
to connect the search and identification stages.

Fig. 4: Problem illustrations for different camouflaged object
detection pipelines. (a) Image; (b) Parallel [26]; (c) Direct
feeding [27]; (d) OURS; (e) GT. A parallel of two may cause
a failure to search the camouflaged object (top two rows in
the figure) or background noises (bottom two rows in the
figure). Direct feeding may cause object details missed. Our
framework can cater to these problems with accurate object
locations and sufficient object details.

direct feeding pipeline may cause some object details missed.
To solve this problem, we develop a Search-to-Identification
Guidance (SIG) module to bridge these two stages (as shown
in Fig. 3(c)), resulting in a SIG-induced CIE subnetwork
in the identification stage. Here, the search result and the
hybrid features decoded from the search stage are employed
to empower the feature extraction ability of the identification
stage. As highlighted in Fig. 1 and Fig. 4, such a framework
enables our model to detect more complete camouflaged
objects than other models do.

To sum up, the contributions of this paper are described as
follows.

(1) We propose a POCINet to detect the camouflaged object,
enabling to integrate the contrast information and part-object
relational knowledge via a POGU module. To the best of our
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knowledge, it is the earliest attempt to involve the part-object
relational property in camouflaged object detection, and also
initiates the integration of the deep contrast and part-object
relational cues.

(2) We present a SIG module to bridge the search and
identification stages for camouflaged object detection so that
the search result and decoded camouflaged cues of the search
stage empower the feature extraction ability of the identifica-
tion stage.

(3) Extensive experiments demonstrate the superiority of
our algorithm on three datasets. Especially on the CPD1K [31]
dataset, our algorithm surpasses the best existing algorithm up
to 17 points on Fβ .

The paper is organized as follows. Sec. II reviews the
works related to our method. Sec. III details the proposed
camouflaged object detection network. Sec. IV conducts ex-
periment and analysis to evaluate the proposed method. Sec.
V concludes this paper.

II. RELATED WORK

In this section, we review the works that are highly relevant
to our method, covering camouflaged object detection, part-
object representation, and multi-stage strategy.

A. Camouflaged object detection

Research devoted to camouflaged region detection has a
long and rich history [32], [33]. For example, Pan et al. [34]
attempted to detect camouflaged objects via a 3D convexity
model. Liu et al. [35] detected the foreground object by
optimizing top-down information. Sengottuvelan et al. [35]
recognized the camouflaged object via a co-occurrence matrix
method. An overall review of this history can be found in [36].

The above methods encountered performance bottlenecks
because of the limited representation abilities of handcrafted
features. In view of the powerful representation ability of deep
features, Zheng et al. [25] explored the possibility of using a
deep CNN to detect camouflaged people. From the biological
perspective, Le et al. [26] developed a segmentation stream
to segment the camouflaged object out, and a classification
stream to recognize the existence of the camouflaged object in
parallel. Fan et al. [27] consolidated this research by proposing
a deep search identification network. Despite growing interest-
s, the research on deep camouflaged object detection requires
more dedication, given unsatisfactory results until now.

Our work differs from the existing works in two aspects: 1)
Instead of solely relying on deep contrast semantics for cam-
ouflaged object detection, we involve the part-object relational
property in camouflaged object detection, and further integrate
the contrast cues and part-object relational cues to predict the
object details and object shape of the camouflaged object in the
complex scene. 2) Rather than simply connecting the search
and identification streams, we design a more sophisticated
connection, i.e., SIG, to bridge the gap between the search
and identification stages.

B. Part-object representation

The study of part-object representation can date back sev-
eral decades ago. For example, Biederman [37] proposed
a recognition-by-component theory for image understanding.
Krivic and Solina [38] recognized articulated objects based
on part-level descriptions obtained by the Segmentor system
[39]. Pentland [40] segmented an image into roughly convex
component parts for further recognition and prediction via 3D
deformable models. Felzenszwalb [41] used the deformable
part models for cascade object detection. Girshick [42] de-
signed a CNN to formulate the deformable part model using
a distance transform pooling, object geometry filters, and
maxout units. Hinton et al. [43]–[45] explored the part-whole
spatial relationships by a Capsule Network (CapsNet), which
routes low-level capsules (parts) to their familiar high-level
ones (wholes). Liu et al. [30] involved the part-object rela-
tional property to solve the incomplete segmentation problem
of salient object detection.

Inspired by [30] that explored the part-object relationships
encoded in CapsNet [45] for salient object segmentation,
in this paper, we adopt CapsNet as the PORE subnetwork.
However, beyond simple exploitation of several deconvolu-
tions for decoding [30], our decoder integrates the contrast
information and the part-object relational knowledge, thus
helping to predict the complete object shape with sufficient
object details.

C. Multi-stage strategies

Multi-stage networks have been widely used and explored
in many computer vision tasks. For example, Cheng et al. [46]
proposed a multi-stage encoder-decoder structure for semantic
segmentation, where a supervise-and-excite framework was
designed to connect two stages. Newell et al. [47] stacked
multiple hourglass networks for pose estimation. Yu et al.
[48] repeatedly applied the segmentation probability map
from the previous iterations as spatial priors to refine the
current iteration. Shen et al. [49] utilized multiple side outputs
with different-size receptive fields from the lower stage to
provide multi-scale contextual boundary information for the
consecutive learning. Wang et al. [50] refined the salient object
detection performance via multiple stages, in each of which
a refinement network merged high-level semantic knowledge
encoded by the master network with rich low-level features
encoded by the refinement network. Deng et al. [51] refined
the initial saliency prediction map with a sequence of residual
refinement blocks.

In contrast, we simultaneously adopt the coarse camouflaged
map and features of the search stage to enhance the ability of
feature extraction of the following identification stage.

III. PROPOSED FRAMEWORK

Fig. 5 exhibits the overall architecture of the proposed deep
camouflaged object detection network, which consists of the
search and identification stages. Corresponding to each stage,
a CIE subnetwork and a PORE subnetwork are cascaded in the
encoder. On top of that, these two camouflaged semantics are
integrated into the decoder via a POGU module. Especially,
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Fig. 5: The overall architecture of the proposed framework, which consists of two stages for search and identification. Within
each stage, a CIE subnetwork and a PORE subnetwork are cascaded in the encoder, while these two camouflaged semantics
are integrated into the decoder via a POGU module. Besides, a SIG module is designed to connect two stages, resulting in
a SIG-induced CIE subnetwork in the identification stage. The final camouflaged map is achieved by integrating those maps
output by two stages.

we bridge these two stages via a SIG module, resulting in a
SIG-induced CIE subnetwork in the identification stage. The
final camouflaged map is achieved by integrating those maps
output by two stages. The details will be elaborated in the
following.

A. Search stage

The search stage of POCINet consists of a CIE subnetwork
and a PORE subnetwork in the encoder, and a POGU module
in the decoder.

1) CIE subnetwork: For the search stage, the CIE subnet-
work stacks five layers with different sized receptive fields
to encode different semantics. Following the previous works,
we choose the VGG16 [52] model as the backbone network.
Concretely, five layers are initialized by Conv1 2, Conv2 2,
Conv3 3, Conv4 3, and Conv5 3 of the pretrained VGG16
[52] model, respectively.

2) PORE subnetwork: Inspired by the success of the explo-
ration of the part-object relationship by CapsNet in solving the
problem of incomplete object segmentation in [30], we adopt
CapsNet to implement PORE subnetwork. Concretely, we
involve a mirror CapsNet to capture the part-object relational
cues. As shown in the PORE subnetwork of Fig. 5, the
features obtained by the CIE subnetwork are transformed into
capsule feature maps by a Primary Capsule (PrimaryCaps)
layer. On top of that, a Convolutional Capsule (ConvCaps)
layer and a Deconvolutional Capsule (DeconvCaps) layer are
designed for capsules routing via the EM routing algorithm
[53] to form a mirror CapsNet, which is aimed to explore
the part-object relationships of the input image. The details of

PrimaryCaps and ConvCaps can be found in [30]. Especially
in the DeconvCaps layer, the previous capsule feature maps
are upsampled for routing, which can output high-resolution
capsule feature maps while retaining part-object relationships.

3) POGU: The encoded contrast semantics and part-object
relational semantics help to capture the object details and
the object completeness, respectively. Therefore, two kinds of
semantic knowledge can complement each other. Considering
this point, the decoder is designed to integrate these two
semantics with the purpose of generating more primitive cam-
ouflaged cues for further prediction, which is implemented by
a POGU module. The architecture of POGU is shown in Fig.
6, which consists of three phases, i.e., features combination,
self-attention promotion, and Part-Object Relationship (POR)
guidance. Suppose XCIE and XPORE are the encoded contrast
and part-object relational semantics, respectively, and XDec is
the decoded deep-level semantics. W , H , and C represent
the width, height, and channel number of the corresponding
feature maps, respectively. Each phase will be elaborated in
the following.

Features combination. Features combination intends to
incorporate the encoded contrast semantics and the decoded
semantics. As illustrated in Fig. 6, the combined features
FCom ∈ RW×H×C can be computed by

FCom =

fCat (fDia (XCIE;WDia) , fU (XDec;WU);WCat) ,
(1)

where fDia is a stack of multiple dilation layers with dilation
rates of 1, 3, 5, and 7, helping to capture rich context
information under various receptive fields without increasing
the network parameters. fU is an upsampling layer. fCat is
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Fig. 6: Illustration for POGU, which consists of three phases,
i.e., features combination, self-attention promotion, and POR
guidance. XCIE and XPORE are the encoded contrast and part-
object relational semantics, respectively, and XDec is the de-
coded deep-level semantics. W , H , and C represent the width,
height, and channel number of the corresponding feature maps,
respectively. CPOR is the number of the corresponding capsule
types. N =W ×H .

implemented by one concatenation and one 1×1 convolution.
W∗ represents the learned network parameters.

Self-attention promotion. Self-attention promotion is used
to promote those informative features while suppressing less
important ones by a channel-wise attention. As shown in Fig.
6, the process can be illustrated below.

Step 1: Channel attention. The combined feature maps
FCom is used to compute the channel attention map fCh ∈
RC×1, i.e.,

fCh = fRes (FCom)⊗ fCh (FCom;WCh) , (2)

where fRes represents the reshape operation. fCh is im-
plemented by one 1 × 1 convolution and reshape. ⊗
means the matrix multiplication. fRes (FCom) ∈ RC×N ,
fCh (FCom;WCh) ∈ RC×1, and N =W ×H .

Step 2: Features promotion. The promoted feature maps
FPro ∈ RW×H×C can be achieved by

FPro = FCom � ftile (fCh) , (3)

where ftile and � are the operations of tensor expansion and
element-wise multiplication, respectively.

Difference to self-attention in transformer networks.
Transformer networks implement self-attention by learning
query, key, and value components and then determining the
self-attention by computing the similarity between query and
key components. While our self-attention promotion simply
computes the channel importance for further promoting those

informative channels, which helps to promote the features
themselves. Therefore, our self-attention promotion is simpler
than that in transformer networks.

Difference to the attention mechanism in SINet [27]. The
difference between the attention mechanisms in our model
and SINet [27] can be illustrated as follows. SINet [27]
adopted a Gaussian filter and a maximum function as the
attention mechanism, which can filter out some noises while
highlighting the detected regions, regardless of whether they
are the camouflaged regions or not. Differently, we carry out
a channel-wise attention via a series of operations to highlight
those informative channels of feature maps, which helps to find
the important channels that capture the camouflaged regions.

POR guidance. POR guidance is proposed to adopt the
encoded part-object relational semantics, which captures the
object wholeness prior, to guide the promoted features FPro

for more accurate and complete camouflaged semantics.
XPORE is first upsampled into FPOR ∈ RW×H×CPOR ,

where CPOR is the number of the corresponding capsule types.
The current guided feature maps FDec, which are also the
feature maps of the current decoder layer, can be achieved by

FDec = fCat (FPOR,FPro;WCat) . (4)

FDec efficiently integrates the encoded contrast and part-
object relational semantics. Such practice helps to decode more
primitive camouflaged cues for prediction.

B. Identification stage

The identification stage consists of a SIG-induced CIE
subnetwork and a PORE subnetwork in the encoder, and a
POGU module in the decoder. The PORE subnetwork and the
POGU module are similar to those of the search stage.

1) SIG-induced CIE subnetwork: As shown in Fig. 7, the
SIG-induced CIE subnetwork consists of three phases: features
combination, searching guidance, and features aggregation.
Suppose YCIE is the encoded features of the identification
stage. YDec and YSearch are the decoded features and the
coarse detection result of the search stage. The details of SIG
will be presented in the following.

Features combination. Features combination is designed
to combine the encoded contrast information YCIE of the
identification stage and the decoded feature maps YDec of the
search stage. Doing so allows the decoded semantics YDec of
the search stage to improve the features encoding ability of
the current encoder of the identification stage. To be specific,
the combined features GCom ∈ RW×H×C can be computed
by

GCom = fCat (fpool (YCIE) , fDia (YDec;WDia);WCat) ,
(5)

where fpool is the average pooling operation. fDia represents
the dilation operation, as can be found in Fig. 6.

Searching guidance. Searching guidance is motivated to
apply the search result YSearch of the search stage to guide
the combined feature maps GCom. On the one hand, YSearch

provides a coarse detection prior including the object location
and rough details for GCom to capture more accurate camou-
flaged cues. On the other hand, GCom provides rich spatial
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Fig. 7: Illustration for the SIG-induced CIE subnetwork, which
consists of three phases, called features combination, searching
guidance, and features aggregation. YCIE is the encoded
features of the identification stage. YDec and YSearch are the
decoded features and the coarse detection result of the search
stage.

details to refine YSearch. Concretely, YSearch is downsampled
and concatenated with GCom, i.e.,

GCat = fCat (fDW (YSearch;WDW) ,GCom;WCat) , (6)

where fDW represents the downsampling operation.
Simultaneously, the search prediction YSearch of the search

stage roughly predicts the camouflaged value of each position,
which provides a pixel-level attention. Therefore, we utilize
YSearch to attend each channel of feature maps GCom. Specif-
ically, YSearch is first downsampled and then multiplied with
GCom. The details can be formulated as

GMul = ftile (fDW (YSearch;WDW))�GCom. (7)

GCat attends the features by the search prediction. GMul

masks the features with the searched camouflaged value at
each pixel position. Especially, GCat attends the features by
jointly taking into account the search map and features from
all the channels of GCom, while GMul attends the features by
involving the search result and the current channel of GCom.
Therefore, GCat tends to preserve accurate spatial details,
whereas GMul prefers to produce an accurate camouflaged
prediction for each pixel.

Features aggregation. To encode camouflaged cues with
good accuracy and spatial details, we integrate these three
types of information together, including GCom, GCat, and
GMul, i.e.,

GCIE = GCom ⊕GCat ⊕GMul, (8)

where ⊕ means the operation of element-wise addition.
GCIE represents the feature maps of the current-layer SIG-

induced CIE subnetwork. In Eq. (8), three enhanced features
are integrated to enhance the features encoding ability of the
identification stage, helping identify the camouflaged object in
a complex scene.

C. Loss function

We adopt the cross-entropy loss function (lce) used in [54]
and the IoU boundary loss function (liou) to train the proposed
camouflaged object detection network. Suppose P and Q are
the predicted saliency map and corresponding ground truth.
The cross-entropy loss function lce is written as follows

lce (P,Q) = −
∑
i

[Gi log (Pi) + (1−Qi) log (1− Pi)],

(9)
where i is the pixel index.

The IoU boundary loss function liou is defined as

liou (P,Q) = 1−

∑
i

P (i)Q (i)∑
i

[P (i) +Q (i)− P (i)Q (i)]
. (10)

The joint loss function combines the cross-entropy loss
function and the IoU Boundary loss function, i.e.,

l(P,Q) = lce(P,Q) + liou(P,Q). (11)

IV. EXPERIMENT AND ANALYSIS

In this section, we will conduct various experiments to
evaluate our proposed method.

A. Dataset

We evaluate the performance of our model on three bench-
mark datasets, details of which are described as follows.

CHAMELEON [55] is an unpublished dataset that has only
76 images collected from the Internet via the Google search
engine using “camouflaged animal” as a keyword.

CPD1K [31] is the earliest dataset for camouflaged people
detection, which contains 1000 images covering two scene
types, namely woodland and snowfield. The test subset has
400 images.

COD10K [27], which is collected from multiple pho-
tography websites, contains 10000 images, including 5066
camouflaged images, 3000 background images, and 1934 non-
camouflaged images. The test subset includes 2026 images.

CAMO [26] has 1250 images, which are divided into 1000
training images and 250 testing images.

B. Evaluation metrics

We evaluate the performance of our model as well as other
state-of-the-art methods using average weighted F-measure
(Fβ) [56], Mean Absolute Error (MAE) [56], S-measure (Sm)
[57], and E-measure (Em) [58].

A binary mask B is achieved by thresholding the saliency
map P . Precision is defined as Precision = |B ∩Q|/|B|,
and recall is defined as Recall = |B ∩Q|/|Q|, where Q is
the corresponding ground truth. The PR curve is plotted under
different thresholds. The F-measure is an overall performance
indicator, which is computed by

Fβ =

(
1 + β2

)
Precision×Recall

β2Precision+Recall
. (12)

As suggested in [56], β2 = 0.3.
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TABLE I: Performance comparisons for ablation analysis. (ED
+ POGU) = POCINet-search. (ED + POGU + SIG) = SIG
= POCINet. The best method is marked by bold in each
subsection.

Subsection Model COD10K [27]
Fβ ↑ MAE ↓ Sm ↑ Em ↑

(a) Sec. IV-D1
ED 0.4920 0.0746 0.6887 0.7319

ED + POGU 0.5623 0.0598 0.7266 0.7902
ED + POGU + SIG 0.6143 0.0514 0.7515 0.8253

(b) Sec. IV-D2 ED + POGU 0.5623 0.0598 0.7266 0.7902
ED + POGU-C 0.5307 0.0652 0.6762 0.7959

(c) Sec. IV-D3 POCINet-search 0.5623 0.0598 0.7266 0.7902
TSPOANet [30] 0.5119 0.0667 0.7162 0.7510

(d) Sec. IV-D4 SIG 0.6143 0.0514 0.7515 0.8253
SIG-D 0.5884 0.0550 0.7448 0.8069

(e) Sec. IV-D5 POCINet-PORE 0.5380 0.0656 0.6987 0.7836
POCINet-search 0.5623 0.0598 0.7266 0.7902

MAE is defined as

MAE =
1

w × h

w∑
i=1

h∑
j=1

|P (i, j)−Q (i, j)|, (13)

where w and h are the width and height of the image,
respectively.

S-measure [57] computes the object-aware and region-aware
structure similarities, denoted as So and Sr, between the
prediction and the ground truth. The S-measure value Sm can
be computed as

Sm = αSo + (1− α)Sr, (14)

where α is set to 0.5 [57].
E-measure [58] (Em) combines local pixel values with

the image-level mean value to jointly evaluate the similarity
between the prediction and the ground truth.

C. Implementation details

The proposed model is implemented in Tensorflow [59].
To avoid over-fitting caused by training from scratch, the five
stacked convolutional layers in the search stage are initialized
by the Conv1 2, Conv2 2, Conv3 3, Conv4 3, and Conv5 3
of the pretrained VGG16 [52], respectively. The other weights
are initialized randomly with a truncated normal (σ = 0.01),
and the biases are initialized to 0. The Adam optimizer [60] is
used to train our model with an initial learning rate of 10−5,
β1 = 0.9, and β2 = 0.999. The training datasets of CAMO
[26] and COD10K [27] are chosen as the training dataset
with horizontal flipping as the data augmentation technique.
We adopt the joint loss function [30], including the cross-
entropy loss function and the IoU loss function, to train our
deep framework. The inference time for each image cropped
into 352× 352 is 0.1s, which is twice faster than SINet [27].

D. Ablation analysis

In this subsection, we will carry out a series of experiments
to investigate the role of each component in our framework.

1) Different components: To better understand our frame-
work, we train different components for comparisons, includ-
ing the Encoder-Decoder (ED) model, ED + POGU, and
ED + POGU + SIG. As shown in Table I(a), the proposed
POGU module significantly improves the performance of ED,
which benefits from the integration of the contrast information
and the part-object relational knowledge. The proposed SIG
module achieves a further performance improvement, which
demonstrates the importance of the guidance from the search
stage for the feature extraction of the identification stage.
Besides, Fig. 8 displays the detection results of different com-
ponents. Specifically, ED that relies on contrast information
only can hardly identify the camouflaged object with low
contrast between foreground and background (top two rows
of Fig. 8) or just can capture discriminatively local regions
(bottom two rows of Fig. 8). With the aid of the proposed
POGU module that integrates the contrast information and
the part-object relational knowledge, the camouflaged object
can be localized distinguishably. Furthermore, the SIG-induced
identification stage helps to segment out the camouflaged
object wholly.

Fig. 8: Visual comparisons for different components. (a)
Image; (b) ED; (c) ED + POGU; (d) ED + POGU + SIG;
(e) GT.

2) POGU: To investigate the effectiveness of the proposed
POGU module, we compare (ED + POGU) and a modified
version, i.e., (ED + POGU-C), which is implemented by
directly concatenating the contrast information and the part-
object relational cues. Quantitatively in Table I(b), our POGU
achieves better performance with respect to Fβ , MAE, and
Sm, compared to POGU-C. Visually in the top two rows
of Fig. 9, our POGU achieves better object wholeness than
POGU-C does. As illustrated in the bottom two rows of Fig.
9, our POGU achieves sufficient object details while POGU-C
produces some holes. This efficiently verifies the superiority
of the intelligent integration between the contrast information
and the part-object relational cues in our POGU.

3) The part-object relationship decoded strategy: To inves-
tigate the superiority of the part-object relationship decoded
strategy adopted in our model, we compare the search stage of
POCINet (POCINet-search) with TSPOANet [30]. For a fair
comparison, we re-train TSPOANet for camouflaged object
detection. As shown by Table I(c), POCINet-search achieves
a significant performance gain over TSPOANet. Besides, as
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Fig. 9: Visual comparisons for POGU. (a) Image; (b) ED +
POGU-C; (c) ED + POGU; (d) GT.

Fig. 10: Visual comparisons for the part-object relationship de-
coded strategies. (a) Image; (b) TSPOANet [30]; (c) POCINet-
search; (d) GT.

shown in the top two rows of Fig. 10, POCINet-search gets
more clear and complete object shapes than TSPOANet does.
As illustrated in the bottom two rows of Fig. 10, TSPOANet
misses some object details and thereby produces some holes,
which can be addressed by POCINet-search. This benefits
from the proposed POGU enabling the integration between
the contrast information and the part-object relational cues,
which helps to grab more object details and more accurate
part-object relationships in a complex scene.

4) SIG: To investigate the effectiveness of our connections
between search and identification stages, we compare our
entire model with a modified version, called SIG-D, which is
implemented by directly concatenating the search result and
decoded features of the search stage, and the encoded features
of the identification stage. As shown in Table I(d), our SIG
outperforms SIG-D by a clear margin. As illustrated in Fig.
11, SIG suppresses confusing background noises (the top two
rows of Fig. 11), and captures more complete object shapes
(the bottom two rows of Fig. 11), compared to SIG-D. This

Fig. 11: Visual comparisons for SIG. (a) Image; (b) SIG-D;
(c) SIG; (d) GT.

improvement arises from the primitive integration between
contrast and part-object relational cues in the SIG module.

Fig. 12: Visual comparisons for the role of PORE in the iden-
tification stage. (a) Image; (b) POCINet-PORE; (c) POCINet-
search; (d) GT.

5) Role of PORE in the identification stage: To investigate
the role of the PORE subnetwork in the identification stage,
we train a modified version, in which the identification stage
directly shares the PORE subnetwork of the search stage,
called POCINet-PORE. As shown in Table I(e), POCINet-
PORE is inferior to POCINet-search. This might be because
the searched part-object relationships just coarsely locate the
target object with some noisy reasonings, which will degrade
the performance when applied to the identification stage. As
well, as illustrated in Fig. 12, POCINet-PORE misses some
object parts (top two rows of Fig. 12), introduces some
background noises (third row of Fig. 12), or even cannot
identify the camouflaged object (bottom row of Fig. 12),
compared to POCINet-search, which is due to the over-search.
Therefore, an individual PORE subnetwork is essential in the
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TABLE II: Standard deviations of different metrics for our method and SINet [27]. Smaller standard deviation is marked by
bold.

CHAMELEON [61] CPD1K [31] CAMO [26] COD10K [27]
Fβ MAE Sm Em Fβ MAE Sm Em Fβ MAE Sm Em Fβ MAE Sm Em

OURS 0.0042 0.0012 0.0034 0.0038 0.0090 1.7889e-04 5.8052e-04 0.0098 0.0084 0.0013 0.0067 0.0108 0.0029 4.0373e-04 8.1854e-04 0.0042
SINet [27] 0.0133 0.0041 0.0099 0.0072 0.0228 0.0010 0.0083 0.0222 0.0087 0.0045 0.0109 0.0060 0.0113 0.0022 0.0069 0.0100

TABLE III: Fβ , MAE, Sm, and Em values of different methods. Top two methods are marked by red and blue, respectively.
CHAMELEON [61] (76 images) CPD1K [31] (400 images) CAMO [26] (250 images) COD10K [27] (2026 images)

Backbone Fβ ↑ MAE ↓ Sm ↑ Em ↑ Fβ ↑ MAE ↓ Sm ↑ Em ↑ Fβ ↑ MAE ↓ Sm ↑ Em ↑ Fβ ↑ MAE ↓ Sm ↑ Em ↑
OURS VGG 0.7976 0.0417 0.8663 0.9080 0.6717 0.0067 0.8640 0.8682 0.6623 0.1101 0.7017 0.7768 0.6143 0.0510 0.7515 0.8253

TSPOANet [30] VGG 0.7038 0.0586 0.8276 0.8574 0.4830 0.0097 0.8195 0.7270 0.6410 0.1179 0.7088 0.7985 0.5119 0.0667 0.7162 0.7510
PFANet [62] VGG 0.5168 0.1443 0.6792 0.7322 0.2185 0.0425 0.6580 0.4545 0.5511 0.1721 0.6589 0.7350 0.3848 0.1282 0.6357 0.6186
SINet [27] ResNet 0.7755 0.0438 0.8685 0.8988 0.5066 0.0103 0.8489 0.7247 0.7086 0.0997 0.7515 0.8345 0.5931 0.0511 0.7710 0.7971

PoolNet [63] ResNet 0.6486 0.0811 0.7764 0.8243 0.2633 0.0256 0.6316 0.5360 0.6275 0.1286 0.7025 0.7895 0.4788 0.0744 0.7051 0.7081
HTC [64] ResNet 0.3271 0.1292 0.5166 0.4898 0.4725 0.0192 0.7026 0.6657 0.3378 0.1722 0.4764 0.4423 0.2984 0.0878 0.5478 0.5209

EGNet [65] ResNet 0.7373 0.0502 0.8483 0.8785 0.4051 0.0188 0.5881 0.6924 0.6802 0.1036 0.7319 0.8267 0.5480 0.0561 0.7369 0.7772
BASNet [29] ResNet 0.5458 0.1179 0.6874 0.7419 0.4841 0.0178 0.7563 0.7507 0.5252 0.1590 0.6182 0.7191 0.4213 0.1054 0.6343 0.6756
PiCANet [11] ResNet 0.6676 0.0847 0.7686 0.8363 0.2967 0.0240 0.7540 0.5430 0.5382 0.1560 0.6087 0.7534 0.4225 0.0899 0.6491 0.6782

FPN [66] ResNet 0.6758 0.0750 0.7935 0.8351 0.3917 0.0126 0.7861 0.6217 0.6416 0.1310 0.6838 0.7907 0.4837 0.0747 0.6972 0.7109
MaskRCNN [67] ResNet 0.6119 0.0992 0.6430 0.7802 0.3214 0.0371 0.6145 0.6723 0.5207 0.1511 0.5738 0.7164 0.4702 0.0805 0.6132 0.7504
MSRCNN [68] ResNet 0.5290 0.0914 0.6372 0.6881 0.5784 0.0099 0.7425 0.7916 0.5442 0.1327 0.6171 0.6704 0.4860 0.0734 0.6413 0.7077

PSPNet [28] ResNet 0.6501 0.0850 0.7734 0.8139 0.3173 0.0167 0.7650 0.5524 0.6053 0.1390 0.6630 0.7779 0.4507 0.0801 0.6778 0.6876

Fig. 13: PR and F-measure curves of different methods on camouflaged object detection datasets.

identification stage for segmenting out the camouflaged object,
as can be verified by the performance improvement of the
entire model.

6) Robustness compared with SINet [27]: To explore the
robustness of our model with different initial parameters and
randomnesses of the training, we re-train our model and
SINet [27] for another four times. Together with the final
results of our model and SINet [27] listed in this paper,
we compute the standard deviations of different metrics for
different datasets. Table II lists the standard deviations. It
can be seen that our standard deviations of different metrics
are mostly smaller than that of SINet [27] (except Em for
CAMO [26]). This demonstrates that our model achieves
more consistent performance with different initial randomized
parameters when training than SINet [27] does, showing better
robustness than SINet [27].

E. Comparison with the state-of-the-art methods

In this subsection, to verify the superiority of our model,
we compare our method with one deep camouflaged object
detector, i.e., SINet [27]. Besides, due to the lack of deep cam-
ouflaged object detection networks, ten deep object detectors
are taken into account for comparisons, including TSPOANet
[30], PoolNet [63], HTC [64], BASNet [29], PiCANet [11],
PFANet [62], FPN [66], MaskRCNN [67], MSRCNN [68],
and PSPNet [28], which are re-trained for camouflaged object
detection.

1) Quantitative comparison: Table III illustrates the quan-
titative comparisons. For CHAMELEON [61], our method
performs best in terms of Fβ , MAE, and Em, and is slightly

inferior to SINet [27] with respect to Sm. For CPD1K [31]
that only contains camouflaged persons, we achieve the best
performance. Especially, we achieve 16.51 and 14.35 points
higher than the best compared method, i.e., SINet [27], with
respect to Fβ and Em, respectively, which indicates our model
can especially address the camouflaged people detection. For
COD10K [27], we beat the other approaches with respect to
Fβ , MAE, and Em, but are slightly inferior to SINet [27]
in terms of Sm. Obviously, we achieve consistently superior
performance on these three datasets. For CAMO [26], we
are inferior to SINet [27] but superior to the other methods.
Fig. 13 plots the PR curves of different methods. Specifically,
on CHAMELEON [61] and CPD1K [31], we achieve the
best PR performance. On COD10K [27] and CAMO [26],
our method is inferior to SINet [27] but significantly better
than the other methods. However, it is worth noting that our
proposed method uses a primitive backbone VGG [52] while
other competitors, including SINet [27], take advantage of
a ResNet [69] backbone, which is well-known for its better
performance. The reason for using VGG [52] is to make our
network as thin and lightweight as possible.

Fig. 14 illustrates the detection results of different methods
on images with various distortions, including scaling, slender
objects, and various shapes. To be specific, for those objects
with different sizes, the compared methods usually miss some
object parts of the large object, and hardly identify the small
object. While our method can segment out the large objects
with good wholeness and the small object clearly under the
complex scenes. For the slender objects, our approach can
identify them and segment them out with clear object bound-
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Fig. 14: Detection results of different methods.

aries, while the others fail to recognize these objects owing
to the high similarity between foreground and background.
For those objects with various shapes, the compared methods
mostly cannot label the whole object boundaries and thereby
fail at segmenting them out, while our method can well detect
the whole object shape with clear boundaries.

2) Deeper insight into CAMO [26]: As the dataset CAMO
[26] contains real-life (CAMO-RE) images (e.g., Fig. 14) and
synthetic (CAMO-SY) images (e.g., Fig. 15), we divide the
whole dataset into two subsets: CAMO-RE and CAMO-SY,
respectively. We believe, the comparisons on two subsets, as
well as the whole dataset, are fair and will be more insightful.
As shown in Table IV, we achieve the best performance on
CAMO-RE while obtaining the second-best performance On
CAMO-SY, which is unfortunately inferior to SINet [27].

Why SINet [27] is superior to our method on CAMO-
SY? The reason why SINet is superior to our model can be
interpreted as follows. SINet relies on the deep network to
extract the robust features of the input image to carry out the
task of camouflaged object detection. While we attempt to
detect the camouflaged object from the part-object relational
perspective, which identifies the whole camouflaged object by
finding the relevant object parts. This manner prefers to work
for real-life scenes because part-object relationships appear
truly on the real-life scenes. In contrast, the part-object rela-
tionships (at the feature layers) in those man-made synthetic
images on CAMO-SY have been strained due to unnatural
pixels. Consequently, our model based on the part-object
relational view is inferior on CAMO-SY, compared to SINet.
However, SINet is inferior to our model on real-life scenes
because SINet has a limited ability for feature extraction on
low-contrast real-life scenes, which can be addressed easily by
our model because that our part-object relationships extraction

is not weakened on various camouflaged scenes.
As illustrated in Fig. 15, some synthetic scenes confuse the

proposed camouflaged object detector, resulting in a failure
at recognizing the camouflaged object from the surroundings.
This observation reveals that synthetic images might be less
useful for training the network with a CapsNet structure.
Again, we want to emphasize that our entire framework is
built upon a primitive VGG [52] backbone.

TABLE IV: Fβ , MAE, Sm, and Em values of different
methods on CAMO [26]. Top two methods are marked by
red and blue, respectively.

CAMO-RE CAMO-SY
Fβ ↑ MAE ↓ Fβ ↑ MAE ↓

OURS 0.7476 0.0681 0.5654 0.1577
SINet [27] 0.7413 0.0682 0.6715 0.1354

TSPOANet [30] 0.6792 0.0866 0.5975 0.1534
PoolNet [63] 0.6627 0.0950 0.5876 0.1669

HTC [64] 0.3637 0.1475 0.3084 0.2002
PiCANet [11] 0.6040 0.1220 0.4633 0.1946
PFANet [62] 0.5743 0.1512 0.5247 0.1959

FPN [66] 0.6654 0.0984 0.6145 0.1681
MaskRCNN [67] 0.5871 0.1203 0.4453 0.1682
MSRCNN [68] 0.6118 0.0991 0.4673 0.1708

PSPNet [28] 0.6361 0.1099 0.5702 0.1721

Fig. 15: Confusing synthetic images.
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TABLE V: Distributions of real-life and synthetic images on
CAMO [26].

Training dataset Testing dataset
CAMO-RE + COD10K CAMO-SY CAMO-RE CAMO-SY

Number of images 867 + 3640 = 4507 133 133 117
Ratio 33.9 1 1.1 1

To have a better understanding of the reason of why the
proposed model performs unsatisfactorily on CAMO-SY, we
take a study on the data distribution of the real-life images
against synthetic images during training and testing. As il-
lustrated in Table V, when training the proposed camouflaged
object framework, the number of real-life images and synthetic
images are 4507 and 133, respectively, resulting in a ratio of
33.9 : 1. However, when testing for the dataset CAMO [26],
the real-life images and synthetic images become 133 and
117, respectively, resulting in a ratio of 1.1 : 1. Obviously,
the marginal number of synthetic images, whose statistical
distribution is not in accordance with that of real-life images,
in the training subset cannot train our PORE subnetwork that is
a CapsNet structure to explore primitive part-object relational
cues, which further wearkens the proposed camouflaged object
detector to perform that promising on synthetic images. This
will be taken into account in our future work.

3) Overall comparison on CHAMELEON [61], CPD1K
[31], COD10K [27], and CAMO [26]: To better exhibit the
performance of the proposed method, we compute an overall
performance on four datasets, including CHAMELEON [61],
CPD1K [31], COD10K [27], and CAMO [26]. Specifically, we
propose a simple yet effective indicator to calculate overall
values of Fβ , MAE, Sm, and Em. The indicator can be
represented as

φj=

4∑
i=1

(αiϕij)

/
4∑
i=1

αi, (15)

where i(i = 1, 2, 3, 4) and j(j = 1, 2, 3, 4) represent different
datasets (CHAMELEON [61], CPD1K [31], COD10K [27],
and CAMO [26]) and different metric values (Fβ , MAE, Sm,
and Em). ϕij is the jth metric value for the ith dataset.
αi is the number of images on the ith dataset. φj is the
jth overall metric value. Using Eq. (15), Table VI lists the
overall performance of different metrics. It can be found in
Table VI,the proposed method achieves the best performance
in terms of Fβ , MAE, and Em, and competitive performance
in terms of Sm that is slightly inferior to SINet [27]. Taking
into account Table VI, III, and IV, our method prefers to
solve the problem of camouflaged object detection on real-life
scenes. Again, it is noticed that such a promising performance
is achieved based on a primitive VGG [52] backbone, showing
that the integration of the contrast information and part-object
relational knowledge indeed helps detect camouflaged objects.

F. Failure cases

Although the proposed model has achieved good perfor-
mance on various cases, there still exist some challenging
cases to be solved. Fig. 16 illustrates some confusing detection

TABLE VI: Average of Fβ , MAE, Sm, and Em values on
four datasets, including CHAMELEON [61], CPD1K [31],
COD10K [27], and CAMO [26], of different methods. The
top two methods are marked by red and blue, respectively.

Method Metric
Fβ ↑ MAE ↓ Sm ↑ Em ↑

OURS 0.6321 0.0496 0.7665 0.8294
SINet [27] 0.5961 0.0497 0.7832 0.7928

TSPOANet [30] 0.5247 0.0628 0.7336 0.7548
PoolNet [63] 0.4657 0.0724 0.6961 0.6937

HTC [64] 0.3281 0.0866 0.5630 0.5339
PiCANet [11] 0.4215 0.0862 0.6640 0.6697
PFANet [62] 0.3794 0.1202 0.6423 0.6085

FPN [66] 0.4900 0.0708 0.7116 0.7086
MaskRCNN [67] 0.4571 0.0811 0.6106 0.7368
MSRCNN [68] 0.5059 0.0701 0.6537 0.7160

PSPNet [28] 0.4509 0.0764 0.6918 0.6796

results of our model on complex scenes. More precisely, those
objects in the top two rows of Fig. 16 cannot be segmented
out wholly, which is because that these large objects have
unclear part-object hierarchies within their identical inner
regions. Besides, those images in the bottom two rows of Fig.
16 introduce noises in their camouflaged maps, which owes
to the confusing backgrounds that conceal the camouflaged
patterns. Also, these scenes are challenging for the contrast
based method (i.e., SINet [27]) and the part-object relational
method (i.e., TSPOANet [30]). In the future, we will dig into
more robust part-object relationships exploration mechanisms
to improve our method for various camouflaged patterns via
taking into account robust deep learning [70].

Fig. 16: Some failure cases.

V. CONCLUSION

In this paper, we have proposed a POCINet covering the
search stage and the identification stage for camouflaged
object detection by engaging the contrast information and
the part-object relational knowledge for decoding. Besides, a
SIG module is designed to biologically connect two stages
for location and segmentation of the camouflaged object in
complex scenes. Extensive experiments have verified the supe-
riority of the proposed camouflaged object detection network.
One possible future work might be the enhancement of our
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part-object relationships exploration for various camouflaged
scenes by incorporating robust deep learning mechanisms.
Another possible future work might be the performance im-
provement of our model by using more powerful backbone
networks, e.g., ResNet [69] and DenseNet [71].
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