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Learning Transformation-Invariant Local
Descriptors with Low-Coupling Binary Codes

Yunqi Miao, Zijia Lin, Xiao Ma, Guiguang Ding, Member, IEEE and Jungong Han

Abstract—Despite the great success achieved by prevailing bi-
nary local descriptors, they are still suffering from two problems:
1) vulnerable to the geometric transformations; 2) lack of an
effective treatment to the highly-correlated bits that are generated
by directly applying the scheme of image hashing. To tackle
both limitations, we propose an unsupervised Transformation-
invariant Binary Local Descriptor learning method (TBLD).
Specifically, the transformation invariance of binary local de-
scriptors is ensured by projecting the original patches and
their transformed counterparts into an identical high-dimensional
feature space and an identical low-dimensional descriptor space
simultaneously. Meanwhile, it enforces the dissimilar image
patches to have distinctive binary local descriptors. Moreover, to
reduce high correlations between bits, we propose a bottom-up
learning strategy, termed Adversarial Constraint Module, where
low-coupling binary codes are introduced externally to guide
the learning of binary local descriptors. With the aid of the
Wasserstein loss, the framework is optimized to encourage the
distribution of the generated binary local descriptors to mimic
that of the introduced low-coupling binary codes, eventually
making the former more low-coupling. Experimental results on
three benchmark datasets well demonstrate the superiority of the
proposed method over the state-of-the-art methods. The project
page is available at https://github.com/yoqim/TBLD.

Index Terms—binary local descriptor, patch matching, deep
learning.

I. INTRODUCTION

ALocal descriptor is used to characterize the region around
an interest point in an image, i.e., image patch. Local

descriptors are widely applied in visual tasks like visual search
[1], object recognition [2] and face recognition [3], [4], etc.
Therefore, learning effective local descriptors has become an
active topic in the community of computer vision. Recently,
binary local descriptors, due to the high compactness and high
matching speed, have become prevalent for applications with
large-scale data.

Over the past decade, numerous binary local descriptors
have been proposed, including hand-crafted ones (BRISK
[5], BRIEF [6], ORB [7], etc.), and learning-based ones
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(Binboost [8], LDAHash [9], etc.). Inspired by the advances of
deep learning techniques, deep learning approaches for binary
local descriptors have recently drawn increasing attention, like
DeepBit [10], DBD-MQ [11], L2-Net [12], and GraphBit [13].
Depending on whether the labeled data are required, deep bi-
nary local descriptors can be further categorized as supervised
[12], [14], [15] and unsupervised [10], [11], [13], [16] ones.
Supervised methods generally achieve better performance with
the supervision given by pairwise labels, indicating whether
two patches come from the same category or not. However,
such pairwise labels are too expensive to obtain in real-
world applications. Therefore, unsupervised learning methods
have gained more attention recently. Despite the remarkable
performance improvements, there are still problems that need
to be better addressed.

Firstly, an effective binary local descriptor should be robust
against geometric transformations, i.e., rotation, scaling, and
viewpoint changes. The robustness of local descriptors will
affect the matching accuracy in matching/retrieval tasks [17].
Earlier binary local descriptors [5]–[7] are built upon hand-
crafted sampling patterns or pairwise intensity comparisons,
which are vulnerable to geometric distortions due to the high
sensitivity of hand-crafted features. Thus, hand-crafted binary
local descriptors tend to have unstable performances [10]. On
the other hand, most existing deep unsupervised binary local
descriptors focus more on generating effective compact codes
but pay little attention to the robustness against geometric
transformations [11], [13]. A prior work, DeepBit [10], en-
hances the robustness of the descriptor against rotation via
minimizing the Hamming distance between the descriptors of
an original image and its transformed counterparts. Although
it provides an intuitive way to generate the transformation-
invariant local descriptors, a problem might be that such work
is based on the idea that an original image and its transformed
counterparts should be represented by different descriptors.
However, ideally, the same object is expected to be described
by exactly the same descriptor, regardless of the viewpoint or
distance changes. Therefore, simply minimizing the distance
between the original image and its transformed counterparts
is not the optimal solution.

Secondly, an effective binary local descriptor is supposed to
be informative, i.e., each bit carrying distinctive information.
However, previous learning-based descriptors generally follow
the scheme of image hashing. Yet an image patch, as a
small region around an interest point, generally contains much
less information than an image. Therefore, directly employing
image hashing schemes can probably lead to highly-correlated
bits, which means information contained in different bits
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Fig. 1. The pipeline of the proposed TBLD. Firstly, patches from the “Original set” are augmented by rotating and scaling to build “Transformed sets”. Then
visual features of the image patches from the “Original set” and “Transform sets” are extracted from the VGG16 network. Subsequently, visual features are
encoded by a Transformation-invariant Feature Encoder to obtain high-dimensional transformation-invariant features. On top of that, transformation-invariant
binary local descriptors are obtained by Binary Descriptor Generator. f , d denote the dimension of high-dimensional transformation-invariant features and
binary local descriptors, respectively. N is the number of training samples. Additionally, an Adversarial Constraint Module (ACM) is introduced to reduce
bit correlations.

can be redundant during encoding. That would make the
learned descriptor not compact enough. To explain the problem
of correlated bits, we first evaluate the average amount of
information conveyed by image patches and images with
Shannon entropy. Then, we derive hash codes and binary
local descriptors from images and patches, respectively, with
two popular hashing methods: DeepBit [10] and Bi-half Net
[18]. Later, we compare the correlations between bits under
different code length settings with mean Absolute Correlations
(mAC), which indicates the average correlation between bits.
A higher mAC means a higher bit correlations. Details of
mAC could be found in Section IV-D2. Specifically, the same
number of images and image patches are randomly selected
from an image dataset (CIFAR10 [19]) and an image patch
dataset (Brown [20]) and are resized to the same size. The
average Shannon entropy and mAC scores are illustrated in
Table I. Seen from the results, the mAC scores under 32 bits
and 64 bits settings are given by DeepBit since both source
code and trained models are provided. The mAC scores under
128 bits and 256 bits settings are obtained by reproducing Bi-
half Net based on the provided source code. Table I clearly
demonstrates that images, with a higher average Shannon
entropy, generally carry more complex information than image
patches. When image hashing schemes are directly employed
to derive binary local descriptors, the average correlations
between bits exceed that of images by 1.17%, 3.22%, 9.9%
and 10.13% under 32, 64, 128 and 256 bits settings in terms
of mAC scores, respectively. Strong correlations between
bits will undoubtedly deteriorate the representability of local
descriptors [15], [21]. To mitigate the problem, most existing
deep learning based works enforce the bits of binary local
descriptors to be evenly distributed [10], [13], [22], which
is performed on each training batch. However, such batch-

TABLE I
COMPARISON OF THE AVERAGE SHANNON ENTROPY BETWEEN IMAGES
AND IMAGE PATCHES, AND THAT OF MEAN ABSOLUTE CORRELATIONS

(MAC) (%) BETWEEN CORRESPONDING HASH CODES AND BINARY
DESCRIPTORS, UNDER DIFFERENT CODE LENGTH SETTINGS.

Entropy mAC
32 bits 64 bits 128 bits 256 bits

Images 9.21 4.16 4.95 5.67 6.04
Patches 4.28 5.39 8.17 15.57 16.17

based constraints generally suffer from a problem that the data
distribution of a single batch cannot well represent that of the
whole dataset due to the limited number of samples within a
batch.

To tackle both limitations, in this paper, we propose a novel
Transformation-invariant Binary Local Descriptor learning
method (TBLD), which is trained in an unsupervised manner.
The pipeline of TBLD is illustrated in Fig. 1. Specifically, it
takes the “Original set” and “Transformed sets” as input. The
former consists of the original image patches from the dataset,
while the latter is built by rotating and scaling the original
image patches. The framework aims to derive transformation-
invariant and low-coupling binary local descriptors.

To generate transformation-invariant binary local descrip-
tors, visual features extracted from original image patches and
their transformed counterparts are enforced to be projected into
an identical Euclidean subspace and an identical Hamming
subspace simultaneously. Meanwhile, the distinctiveness be-
tween binary local descriptors of dissimilar image patches are
maximized. To achieve that, instead of utilizing two separate
terms during the optimization, an integrated loss term, the
contrastive loss [23], is introduced here to propagate the
neighboring structures of data from a high-dimensional feature
space to a low-dimensional descriptor space. As a departure
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from [23], where ALL the transformed samples within a
training batch are employed as negative samples, we here
propose a Negative Pairs Selection Strategy to adaptively select
“Negative pairs” for each image patch during the training.
By doing so, similar image patches from the same batch
will form only ONE negative pair with a given image patch,
instead of multiple negative pairs, thus dramatically reducing
the computational costs. To the best of our knowledge, the
contrastive loss is, for the first time, applied in the binary
local descriptor learning work.

In the meantime, to reduce bit correlations, instead of man-
ually imposing deterministic regularization terms on a batch
of binary local descriptors, low-coupling binary codes are
introduced externally here to guide the learning of binary local
descriptors. Specifically, an Adversarial Constraint Module
(ACM), which adopts the scheme of generator-discriminator,
is adopted. The Wasserstein loss employed in the Discrim-
inator minimizes the distributional discrepancy between the
binary local descriptors generated by the framework and the
introduced low-coupling binary codes. Although the proposed
bottom-up learning strategy is employed at the batch level
as the most correlations regularizers do, the optimization of
Discriminator is an accumulated result of all previous batches,
meaning that the adopted adversarial regularization is not
restricted to the number of samples within a batch.

In summary, the contributions made in our work are mainly
three-fold:
• An unsupervised binary local descriptor, which unites

transformation-invariant and low-coupling properties, is
proposed. To ensure the transformation invariance of
binary local descriptors, the contrastive loss is, for the first
time, applied in the learning of binary local descriptors.
Instead of involving a large number of negative samples,
a Negative Pairs Selection Strategy is proposed to se-
lectively pick up a portion of “Negative pairs” for each
training batch.

• We highlight the problem of the high correlations be-
tween bits in binary local descriptors when directly
applying image hashing methods. To tackle that, we in-
troduce a bottom-up learning strategy, termed Adversarial
Constraint Module (ACM). Low-coupling binary codes
generated externally are employed to guide the learning of
binary local descriptors by minimizing their Wasserstein
distances. This, by all means, is distinct from existing
methods that simply using a hard threshold to enforce
each bit to be evenly-distributive.

• Experimental results on three benchmark datasets show
that our proposed descriptor surpasses existing binary
descriptors by a clear margin in various visual tasks.

II. RELATED WORK

A. Binary Local Descriptors

1) Hand-crafted binary local descriptors: Binary local
descriptors have attracted much attention due to their high
matching efficiency over the past decade. Early binary local
descriptors are typically hand-crafted and rely on intensity
comparisons with a predefined pattern, like BRIEF [6], BRISK

[5], and ORB [7], etc. These descriptors perform a set of pair-
wise intensity comparisons within image patches to generate
compact binary codes.

However, manually predefined sampling modes and inten-
sity comparisons are sensitive to the geometric transformations
and distortions on the original images, thereby leading to
unstable performance.

2) Learning-based binary local descriptors: Later on, in-
spired by learning to hash methods for image retrieval [4],
[24], learning-based binary local descriptors appeared [8],
[9]. For instance, LDAHash [9] jointly minimizes the intra-
class covariance of the descriptors and maximizes the inter-
class covariance with Linear Discriminant Analysis (LDA), to
produce a binary string from a SIFT descriptor. Binboost [8]
aims to learn the illumination and viewpoint invariant binary
descriptors with each bit being computed by a boosted binary
hash function, which achieves state-of-the-art performance
on patch matching task. However, these methods generally
adopt simple binary intensity tests and thus are incapable of
describing the domain-specific features of image patches [25].

Inspired by the advances in deep learning based image
hashing approaches [22], [26], deep learning based binary
descriptors have become dominant, which can be further cat-
egorized into supervised ones [12], [14], [15], [27] and unsu-
pervised ones [10], [11], [13]. Supervised methods, which rely
on the pair-wise/triplet-wise similarity labels of image patches
to learn the descriptors, generally achieve better performance.
L2-Net [12] is an end-to-end local descriptor learning frame-
work, which preserves the neighboring relationship between
matching pairs by enforcing the corresponding descriptors to
be the nearest neighbors. On top of that, HardNet [14] maxi-
mizes the distance between matching pairs and the closest non-
matching sample in a training batch, which extends the pair-
wise mining strategy to triplet-wise one. CDbin [15] proposes
a lightweight Convolutional Neural Network (CNN) to learn
binary local descriptors, where the neighboring relationship
of data is preserved and the bit information is enriched. Apart
from learning from pair/triplet similarity labels, DOAP [27]
proposes a novel list-wise learning-to-rank formulation for
learning local feature descriptors, which directly optimizes
a ranking-based retrieval performance metric, i.e., Average
Precision. Considering that annotated labels are expensive to
obtain, supervised methods can probably be unfavorable in
real-world applications.

Recently, unsupervised binary local descriptors [10], [11],
[13], which do not require pair-wise similarity labels, have
gained increasing attention. Existing works improve the repre-
sentability of binary local descriptors from mainly two aspects:
1) enhancing the robustness to geometric transformations; 2)
enriching the embedded information via reducing the bit corre-
lations. For the former, DBD-MQ [11] enhances the quality of
binary descriptors by applying a data-dependent binarization
strategy. A K-AutoEncoders network is trained along with
the holistic features to classify bits into the 0/1 categories
with the minimal reconstruction error. Such a distribution
strategy delivers stronger robustness, since bits from similar
holistic features are more likely to be quantized into the
same binary codes. Aside from improving the binarization
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functions, GraphBit [13] improves the robustness of local
descriptors by enhancing the responsibility of each bit. The
mutual information between inputs and related bits are max-
imized, so that the ambiguous bits could receive additional
instruction for confident binarization. DeepBit [10] augments
patches via rotation and scaling, and employs a Siamese
network to minimize the distances between the binary local
descriptors of original image patches and their augmented
counterparts. However, from the perspective of the essence of
local descriptors, which is to describe the content in an image
patch, we argue that the same content should be described by
the same local descriptors in spite of viewpoints, instead of
similar ones.

With respect to bit correlation reduction, existing works,
e.g., DH [22], DeepBit [10], GraphBit [13], UDBD [28],
simply enforce the learned local descriptors to be evenly-
distributive, i.e., encouraging the mean of each bit to be 0.5
with the bit value ranging in [0, 1]. On top of that, BinGAN
[16] embeds an adjusted Binarization Representation Entropy
Regularizer to increase the entropy of the particular pairs of
binary vectors that are not correlated in the high-dimensional
feature space. Generally, such constraints are performed within
training batches. However, the number of samples within a
training batch is limited, meaning that the feature distribution
of each batch cannot well represent that of the whole dataset.
Therefore, imposing batch-based constraints typically fails to
achieve the global optimum. Instead of performing constraints
directly on the derived binary local descriptors, the framework
here encourages to learn the mapping from the derived binary
local descriptors to the low-coupling binary codes, which are
introduced externally.

In the paper, the transformation invariance of binary local
descriptors is achieved by projecting original image patches
and their transformed counterparts into an identical Euclidean
subspace and an identical Hamming subspace with the help
of the contrastive loss. Additionally, we propose a bottom-up
learning strategy assisted with Wasserstein loss to reduce bit
correlations, where low-coupling binary codes are introduced
externally to guide the learning of binary local descriptors.

B. GAN based Local Descriptor

Generative Adversarial Network (GAN) [29] has been ex-
tensively involved in unsupervised learning, where synthetic
images are continuously generated to “fool” the network dur-
ing training for improving the discriminability of the network.
Inspired by its successful applications in feature learning [30],
[31] and text-to-image generation [32], GAN has been recently
introduced in the field of image hashing [33], [34]. HashGAN
[33] utilizes generators to synthesize diverse images, and
employs a discriminator to distinguish the synthetic images
and the real ones. Meanwhile, a Hash Encoder learns the
binary hash codes with the similarity information between
images being preserved. BGAN [34] employs an auto-encoder
to jointly learn binary hash codes in the middle and gener-
ate synthetic images at the end. The representability of the
learned binary hash codes is improved by minimizing the
distances between reconstructed images and the original ones.

Meanwhile, the neighboring structures of images and features
are also preserved. More recently, GAN has been applied
in the learning-based binary descriptors [16]. BinGAN [16]
takes an intermediate layer representation of a discriminator
as the compact local binary descriptor. Two regularizers are
also proposed to reduce the correlation between binary local
descriptors.

Contrary to our work, HashGAN [33] and BGAN [34] are
specifically designed for image retrieval task and use tanh-
like activation for binarization. However, our work focuses on
patch descriptor based tasks, like patch matching. Additionally,
instead of taking the intermediate representations from the
discriminator, we here employ Discriminator along with a
set of low-coupling binary codes to guide the network to
directly generate low-coupling binary local descriptors from
Descriptor Generator.

III. PROPOSED METHOD

A. Framework

To learn effective binary local descriptors, we propose
a Transformation-invariant Binary Local Descriptor learning
framework (TBLD), which improves the representability of
local descriptors in terms of the robustness and bit correlations.
To enable binary local descriptors to be invariant to trans-
formations, inspired by visual representation learning [23],
the contrastive loss is employed to preserve the neighboring
structures of data. Specifically, the original image patches and
their transformed counterparts are projected to an identical
Euclidean subspace and an identical Hamming subspace, while
the distinctiveness between binary local descriptors of dis-
similar image patches are maximized. Additionally, an Adver-
sarial Constraint Module (ACM) is introduced to reduce bit
correlations, where low-coupling binary codes are introduced
externally to guide the learning of binary local descriptors.

The pipeline of the proposed TBLD is depicted in Fig. 1.
Specifically, given an image patch set I0 = {I0i }ci=1 with c
patches, I0i refers to the i-th image patch. We firstly build v
transformed patch sets, with each containing one certain type
of transformation on the original image patches, like rotation
or scaling. Then, the whole training set I = {Ii}vi=0 is formed
by I0 and the v transformed patch sets {Ii}vi=1. After that,
visual features of all patches, T = {T i ∈ Rt×c}vi=0, are
extracted via the well-known VGG16 network [35], where t
refers to the feature dimension. Subsequently, visual features
are encoded by a Transformation-invariant Feature Encoder
to obtain r-dimensional transformation-invariant features X ∈
Rr×c. On top of that, a group of b-bit transformation-invariant
binary local descriptors B ∈ Rb×c are obtained by binarizing
the output of Binary Descriptor Generator F ∈ Rb×c as
follows:

B = sign(F ). (1)

Here, we assume that r>b. As claimed, image patches and
their transformed counterparts are united to the identical high-
dimensional features X and binary local descriptors B.
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Fig. 2. The selection of “Negative sets” in Negative Pairs Selection Strategy.
Visual features of image patches are firstly clustered into 32 clusters. For
a given batch during training, the corresponding “Negative set” is formed
according to the feature cluster of patches within the batch.

B. Transformation-invariant binary local descriptors

1) Selection of “Pseudo Positive pairs” and “Pseudo Neg-
ative pairs”: To preserve the neighboring structures of im-
age patches from the feature space to the descriptor space,
the contrastive loss is performed after both Transformation-
invariant Feature Encoder and Binary Descriptor Generator.
For both modules, the feature representations of “Pseudo Posi-
tive pairs” are projected to an identical Euclidean subspace and
an identical Hamming subspace. Meanwhile, the distinctive-
ness between the feature representations of “Pseudo Negative
pairs” are maximized. Since pair-wise matching labels are
not available here, we employ the neighboring relationships
of image patches to build both “Pseudo Positive pairs” and
“Pseudo Negative pairs”. For simplicity, we use “Positive
pairs” and “Negative pairs” to refer to “Pseudo Positive pairs”
and “Pseudo Negative pairs”, respectively.

Specifically, a “Positive pair” is built by an original patch
and any one of its transformed counterparts. And a “Negative
pair” is formed by an original patch and a sampled “Negative
set”. In our scenario, there are numerous image patches in the
dataset, which means exhaustively pairing the given original
patch with the rest of patches seems impractical in terms of the
computational costs. Therefore, we propose a Negative Pairs
Selection Strategy, which selectively picks up a “Negative set”
to form the “Negative pairs”. Concretely, given a batch with M
image patches, q different image patches are selected to form
a “Negative set” according to their “clusters”. The selection
of “Negative set” is illustrated in Fig. 2, where the extracted
visual features T are clustered into 32 clusters offline. During
training, for a given batch, the cluster distribution of the
image patches within the batch is analyzed. Then samples
are randomly selected from the uncovered clusters to build
the “Negative set”. If all the clusters are covered, samples are
selected randomly and evenly from each cluster to form the
“Negative set”. In the experiment, q is empirically set as 4096,

considering the balance between computational cost and data
diversity.

2) Contrastive loss: Given the “Positive pairs” and “Neg-
ative pairs”, the contrastive loss is performed after both
Transformation-invariant Feature Encoder and Binary De-
scriptor Generator to propagate the neighboring structures
from high-dimensional features to compact binary local de-
scriptors. The two loss terms are represented by LCr and
LCb , respectively, which enforce “Positive pairs” to have iden-
tical transformation-invariant high-dimensional features and
compact binary local descriptors, respectively. Meanwhile, the
distinctiveness between feature representations of “Negative
pairs” is maximized. Firstly, LCr is formulated as follows.

LCr = −
v∑
i=0

M∑
m=1

αγi
M
log

e−srDistE(xim,xm)

e−srDistE(xim,xneg)
, (2)

where xim denotes the output of Transformation-invariant
Feature Encoder of the m-th patch from the i-th “Transformed
sets”, and xm is the transformation-invariant high-dimensional
feature of the m-th patch. DistE(xim, xm) represents the
distance between xim and xm, which is formulated as follows,

DistE(xim, xm) = ‖xim − xm‖22. (3)

In the denominator, we adopt the average Euclidean distance
between xim and the corresponding high-dimensional “nega-
tive” set xneg formed by the real-valued representations of q
“negative” samples. which is denoted as,

DistE(xim, xneg) =
1

q

∑
xj∈xneg

‖xim − xj‖22. (4)

In Eq. (2), αi denotes the to-be-learned non-negative weight
w.r.t the i-th “Transformed sets”, which sums up to 1. γ is a
smoothing parameter and sr denotes the temperature parame-
ter for real-valued local descriptors, which are empirically set
as 3 and 0.1, respectively.

Similarly, the contrastive loss applied after Binary Descrip-
tor Generator, i.e., LCb , is defined as,

LCb = −
v∑
i=0

M∑
m=1

αγi
M
log

e−sbDistH(bim,bm)

e−sbDistH(bim,bneg)
, (5)

where bim denotes the binary feature representations of the
m-th patch in the i-th “Transformed sets”, and bm indicates
the transformation-invariant binary local descriptor of the m-
th patch. DistH denotes the Hamming distance and DistH
represents the average Hamming distance between the binary
string of the given image patch and the binary local descriptors
of its counterparts from the “Negative set” bneg . sb denotes
the temperature parameter for binary local descriptors, which
is empirically set as 0.1.

However, directly optimizing binary values will make the
back-propagation of the framework infeasible, which is known
as the ill-posed gradient problem [34]. In the paper, we
replace bim and bm in Eq. (5) with the relaxed real-valued
representations output by Binary Descriptor Generator before
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the binarization f im, and the to-be-binarized transformation-
invariant local descriptors fm, respectively. Then Eq. (5) can
be rewritten as follows.

LCb = −
v∑
i=0

M∑
m=1

αγi
M
log

e−sbDistE(fim,fm)

e−sbDistE(fim,fneg)
. (6)

The replacement requires a low quantization error between
the binary local descriptors and the corresponding relaxed real-
valued feature representations. Therefore, a quantization loss
term LQ is employed, which is denoted as,

LQ =

v∑
i=0

M∑
m=1

αγi
M
‖f im − bm‖22, (7)

where f im denotes the relaxed real-valued feature representa-
tions of the m-th patch in the i-th “Transformed sets”. And bm
refers to the transformation-invariant binary local descriptor of
the m-th patch, which refers to the m-th column in B.

C. Low-coupling binary local descriptors

Apart from enhancing the robustness of binary local descrip-
tors against transformations, decorrelating bits of the compact
descriptor is also of great importance. As revealed previously,
correlated bits convey overlapped information, thus weakening
the representation capacity of the binary local descriptors.
According to [36], Wasserstein distance can measure the
distance between two non-overlapped data distributions, which
perfectly fits the situation where discrete and continuous
distributions coexists. Inspired by this, we advocate the use of
Wasserstein loss to minimize the Wasserstein distance between
the data distribution of low-coupling binary codes and the
feature distribution of the derived binary local descriptors.
Although the Wasserstein loss has been successfully employed
in applications like person re-identification [37], [38], it has
never been employed to learn binary local descriptors yet.

In the paper, a bottom-up learning strategy is proposed to
reduce bit correlations, termed Adversarial Constraint Module
(ACM). The structure of ACM is depicted in Fig. 3, which
adopts the scheme of generator-discriminator in the adversarial
learning.

Specifically, the proposed framework serves as a Descriptor
Generator to derive binary local descriptors. Meanwhile, a
sampler is employed to generate low-coupling binary codes
by randomly and independently sampling 0/1 values from the
Bernoulli distribution with the probability p = 0.5, which
conforms to the principle of local descriptors in [10]. Given
the input, a Discriminator, consisting of 3 fully-connected (fc)
layers, is followed. The first two fc layers are followed by a
ReLU activation function. In Discriminator, the Wasserstein
loss is employed to encourage the derived binary local descrip-
tors to mimic the distribution of the low-coupling binary codes
by alternately optimizing the Discriminator and the Descriptor
Generator.

Formally, given a training batch with M image patches
I = {Ii}Mi=0, a batch of binary local descriptors B = {bi}Mi=0

could be learned by the Descriptor Generator. Similarly, to
avoid the ill-posed gradient problem, we replace the binary
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Fig. 3. The structure of Adversarial Constraint Module (ACM). The Dis-
criminator takes the derived binary local descriptors from the Descriptor
Generator and the low-coupling binary codes sampled from the Bernoulli
distribution as input. With the help of Wasserstein loss, Discriminator and
Descriptor Generator are alternately trained to learn the mapping from the
derived binary local descriptors to the low-coupling binary codes.

local descriptors B with the relaxed representations F =
{fi}Mi=0, which refers to the real-valued feature representations
output by the Binary Descriptor Generator before binarization.
Additionally, the low-coupling binary codes Br = {bri}Mi=0

are sampled under the Bernoulli distribution. The Wasserstein
distance between F and Br could be approximated by,

maxEbri∼b[D(bri)]− Efi∼Pf [D(fi)], (8)

where D refers to the discriminator. Pf and b refer to the
feature distribution of F and data distribution of Br, respec-
tively.

According to [36], Eq. (8) holds only when Lipschitz
constraint is satisfied. Therefore, following [39], Lipschitz
constraint is enforced by penalizing the p-norm of the gradient
of the discriminator w.r.t. the input, i.e., ‖∇xD(x)‖p ≤ 1.
According to [39], enforcing the gradient norm constraint
everywhere is intractable, so we only enforce it on the space
that is uniformly sampled from the feature distribution Pf
and the data distribution b. Integrating the regularizer to the
objective function, Wasserstein loss employed in Adversarial
Constraint Module can be denoted as follows.

LW = −Ebri∼b[D(bri)] + Efi∼Pf [D(fi)]

+ηEx̂∼Px̂ [(‖∇x̂D(x̂)‖2 − 1)2],
(9)

where x̂ ∼ Px̂ is sampled from both inputs with a random
sample weight ε ∼ U [0, 1], and it can be formulated as,

x̂ = εfi + (1− ε)bri . (10)

Notably, there are some negative values in the F since the
Binary Descriptor Generator is trained to push F to [−1, 1].
However, the sampled binary local descriptors Br ∈ [0, 1]. To
unify the two inputs, we replace the 0 in sampled binary local
descriptors Br with -1. Additionally, to eliminate the input
noise, we also apply L2 normalization on F before sending it
to the Discriminator.

D. Loss Function

As our method adopts the scheme of generator-
discriminator, two learning objectives, i.e., LG for the Descrip-
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tor Generator and LD for the Discriminator, are employed,
respectively.

1) Descriptor Generator Objective: Given the 1) the con-
trastive loss LCr in Euclidean space, 2) the contrastive loss
LCb in Hamming space, and 3) quantization loss LQ, the
objective for Descriptor Generator is written as follows:

LG = LCr + LCb + βLQ − λDEfi∼Pf [D(fi)], (11)

where β balances the contribution of LQ, and λD controls the
penalty of the Discriminator, which are both empirically set
as 1. Note that, to avoid plunging the network into the trivial
solution, where all the real-valued feature representations
become an all-zero or infinite matrix, we enforce the L2-norm
of the real-valued feature representations of each query to be 1,
i.e., ‖xim‖2 = 1. To simplify the learning process, we integrate
the constraint in the objective as LN , which is denoted as
follow.

LN =

v∑
i=0

M∑
m=1

αγi
M

(1− ‖xim‖2), (12)

Therefore, the objective LG can be formulated as,

LG = LCr + LCb + βLQ + λLN − λDEfi∼Pf [D(fi)], (13)

where λ is the weight for the regularizer LN , which is set as
1e-5 empirically.

2) Discriminator Objective: The Discriminator objective
LD is defined by,

LD = λDLW , (14)

where λD is the same hyper-parameter as in Eq. (13). In the
paper, Descriptor Generator and Discriminator are trained
with the SGD [40] optimizer with the initial learning rate being
5e-7 and 1e-8, respectively.

E. Optimization

The training procedure of TBLD is summarized in Algo-
rithm 1. Firstly, the parameters of Descriptor Generator, w,
are initialized following the Kaiming initialization [41]. The
non-negative weights for the “Original set” and “Transformed
sets”, α = {αi}vi=0, are all initialized as 1/v. Given the to-
be-learned variables, i.e., the transformation-invariant high-
dimensional features X , the transformation-invariant binary
local descriptors B, and weights for input α, an alternating
optimization method is proposed to solve the objective Eq.
(13) via conducting the following steps iteratively.

(i) Update X . With B,wr, wb, α fixed, the objective func-
tion w.r.t. X can be rewritten as,

ψ1 = min
X

LCr . (15)

By setting the derivation of Eq. (15) w.r.t. X as 0, we
can get the closed-form solution of X:

X =

∑v
i=1 α

γ
iX

i∑v
i=1 α

γ
i

. (16)

(ii) Update B. Similarly, with other parameters fixed, we can
rewrite the objective function w.r.t. B as follows.

ψ2 = min
B

LQ. (17)

Algorithm 1 The training procedure of the proposed TBLD.
Input: Number of training batch in one epoch, Nb; Batch

size, M ;
Output: Binary local descriptors, B;

1: Initialize Descriptor Generator, Discriminator, and αi;
2: Initialize X0 and B0 by Eq. (16) and Eq. (18);
3: repeat
4: for i = 0→ Nb do
5: Sampling ε ∼ U [0, 1];
6: Sampling Br ∼ b(M, 0.5);
7: Deriving Xi, F i, Bi by Descriptor Generator;
8: Optimizing Discriminator according to Eq. (14);
9: Optimizing Descriptor Generator according to Eq.

(13);
10: end for
11: Updating αi by Eq. (20).
12: Updating X and B with the updated Descriptor

Generator.
13: until convergence.

According to Eq. (1), B can be obtained by binarizing
F with the sign function. F can be obtained in a similar
manner with X . To conclude, B can be obtained as,

B = sign
(∑v

i=1 α
γ
i F

i∑v
i=1 α

γ
i

)
. (18)

(iii) Update α. At the end of each epoch, with other param-
eters fixed, we can rewrite the objective function w.r.t. α
as follows.

ψ3 = min
α

v∑
i=0

αγi ( ˜LiCr + ˜LiCb + βL̃iQ + λL̃iN ), (19)

where ˜LiCr , ˜LiCb , L̃
i
Q, L̃iN are obtained from LCr , LCb ,

LQ, LN by factoring out αγi , respectively. Suppose that
Li = ˜LiCr + ˜LiCb + βL̃iQ + λL̃iN , the optimal α can be
derived as,

αi =
(Li)

1
1−γ∑v

j=0(Lj)
1

1−γ
. (20)

After alternately updating the parameters in Descriptor Gen-
erator and Discriminator until the network converges, the
low-coupling binary local descriptors are derived from the
Descriptor Generator.

IV. EXPERIMENT

We evaluate the proposed binary local descriptor learning
method on three widely used public datasets, i.e., Brown
[20], HPatches [43], and Mikolajczyk [44]. Comparisons
with the state-of-the-arts are conducted on visual analysis tasks
like patch matching, patch retrieval, and patch verification.
In this section, we will start by introducing the datasets and
experimental settings, then present and analyze the comparison
results.
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TABLE II
COMPARISONS OF 95% ERROR RATE (%) WITH THE STATE-OF-THE-ART LOCAL DESCRIPTORS ON THE BROWN DATASET. THE CODE LENGTHS ARE

INDICATED BY DIM AND BYTES FOR REAL-VALUED LOCAL DESCRIPTORS AND BINARY ONES, RESPECTIVELY.

Train Yosemite Notre Dame Liberty Average
Test Notre Dame Liberty Yosemite Liberty Notre Dame Yosemite Err

Real-valued SIFT [17] (128 dim) 28.09 36.27 29.15 36.27 28.09 29.15 31.17
Binary

(Supervised)
D-BRIEF [42] (4 bytes) 43.96 53.39 46.22 51.30 43.10 47.29 47.54
BinBoost [8] (8 bytes) 14.54 21.67 18.96 20.49 16.90 22.88 19.24

Binary
(Unsupervised)

BRIEF [6] (32 bytes) 54.57 59.15 54.96 59.15 54.57 54.96 56.23
BRISK [5] (64 bytes) 74.88 79.36 73.21 79.36 74.88 73.21 75.81
ORB [7] (32 bytes) 48.03 56.26 54.13 56.26 48.03 54.13 52.81

DeepBit [10] (32 bytes) 28.49 34.64 54.63 33.83 20.66 56.69 38.15
DBD-MQ [11] (32 bytes) 20.13 25.77 50.99 22.92 18.95 50.36 31.52
BinGAN [16] (32 bytes) 16.88 26.08 40.80 25.76 27.84 47.64 30.76
GraphBit [13] (32 bytes) 17.78 24.72 49.94 21.18 15.25 49.64 29.75

TBLD (32 bytes) 16.53 21.95 35.09 20.45 14.47 36.88 18.25

A. Dataset Descriptions

• Brown dataset [20] contains three subsets: Liberty,
Notre Dame and Yosemite. Each subset contains 400,000
to 600,000 gray-scale image patches for training and
100,000 patch pairs for testing. The size of image patches
in the dataset is 64×64. For the test sets, half of the
pairs are matched and others are non-matched. In the
experiment, we follow the settings in [8], i.e., training
the network with one subset and then evaluating it on the
other two subsets. There are 6 train-test combinations in
total.

• HPatches dataset [43] consists of 116 image sequences,
with 59 containing significant viewpoint changes and the
rest containing illumination deformations. Each sequence
includes a reference image and 5 target images. Image
patches are detected in the reference image with Dif-
ference of Gaussians (DoG) detector and projected on
the target images using the ground truth homographies.
The sizes of patches are normalized to 65×65. Following
the setting in [15], the to-be-evaluated model in this
experiment is trained on the Liberty subset of the Brown
dataset.

• Mikolajczyk dataset [44] is proposed to investigate the
robustness of descriptors to viewpoints (Graffiti), com-
pression artifacts (Ubc), illumination changes (Leuven),
blurriness (Trees), and zoom and rotation (Boat). Each
subset comprises a reference image and 5 target images,
which are sorted by an increasing degree of distortions.
Since TBLD is proposed to deal with the scale and
viewpoint transformation, the evaluation is conducted
on the corresponding scenes, i.e., Boat and Graffiti.
Following the protocol in [44], SIFT keypoint detector
is firstly employed to detect 1000 interest points for
each image in an image pair. Then the keypoints are
matched via an exhaustive search based on the Hamming
distance between the corresponding binary descriptors.
Following the setting in [8], the to-be-evaluated model in
this experiment is trained on the Notre Dame subset of
the Brown dataset.

B. Implementation Details

To preprocess the input data, two types of transformations,
i.e., rotation and scaling, are employed to derive the trans-

formed sets. Rotation angles range in {−10,−5, 5, 10}, and
scaling factors are set as 0.8 and 1.2. To obtain features from
the fc7 layer (4096-d) of the pre-trained VGG16 [35], the input
patches are firstly resized into 256× 256 and then cropped to
224 × 224. We here set the length of real-valued and binary
local descriptors as 1024 and 256, following the setting of [13].
The batch size is 32 and the maximum iteration is 10000.

C. Comparison With State-of-the-Arts

1) Results on Brown Dataset: Experiments on the Brown
dataset aim to evaluate the performance of the proposed
approach on the patch matching task. Following [10], [11],
[13], the adopted evaluation metric is 95% error rate, which
denotes the percent of incorrect matches when 95% of the
ground-truth matched patches are found. Lower 95% error rate
represents better performance. Comparisons are conducted
with the state-of-the-art works, including supervised descrip-
tors (e.g., D-BRIEF [42], and BinBoost [8]) and unsupervised
ones (e.g., BRISK [5], BRIEF [6], and GraphBit [13], etc.).
The comparison results are reported in Table II, where the
results of real-valued descriptor SIFT [17] and supervised
descriptors are also provided as references.

As can be seen, TBLD outperforms the state-of-the-art
unsupervised binary descriptors, including both hand-crafted
and deep learning based ones, on all the subsets. A decline of
11% can be found in terms of 95% error rate in contrast to
the best unsupervised binary local descriptor learning method
so far (GraphBit [13]). It is worth mentioning that when
compared with a widely-used floating-point descriptor, i.e.,
SIFT [17], the proposed TBLD obtains a lower 95% error
rate, along with a much lower computation cost for measuring
similarities.

Moreover, Receiver Operating Characteristic (ROC) curves
of the state-of-the-art unsupervised binary local descriptors
are plotted in Fig. 4. The curves illustrate the true posi-
tive rate (TPR) against false positive rate (FPR) at various
threshold settings. For a fair comparison, we firstly reproduce
the algorithms and then plot the curves. In terms of deep
learning based binary local descriptors, the competitors include
DeepBit [10] and GraphBit [13] because only their source
codes are provided and GraphBit [13] still maintains the best
performance until now. As can be seen, the ROC curves from
TBLD rank at the top on all train-test configurations.
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Fig. 4. ROC curves of the proposed TBLD and the state-of-the-art on the Brown dataset, with all the train-test combinations among three subsets.

2) Results on HPatches Dataset: We use HPatches dataset
to evaluate the performance of binary local descriptors on three
visual tasks: patch matching, patch retrieval, and patch verifi-
cation. Specifically, descriptors are compared in the matching
task to find matched patches between the reference image and
the target ones. For the patch retrieval task, local descriptors
are employed to match a query patch to a pool of patches
extracted from many images. In terms of patch verification,
descriptors are utilized to classify whether two patches are
matched or not.

Following the evaluation metrics suggested by [43], we
compare TBLD with the state-of-the-art descriptors in terms
of mean average precision (mAP). The comparison results are
reported in Table III. Higher mAP means better performance.
Again, the binary local descriptors are categorized as super-
vised and unsupervised ones according to the training manner.
Since DBD-MQ [11] and BinGAN [16] did not report the
results on the HPatches dataset, they are not included in Table
III.

It can be seen that TBLD beats all unsupervised base-
lines, including both hand-crafted ones (BRISK [5], BRIEF
[6], ORB [7]) and deep learning based ones (DeepBit [10],
GraphBit [13]) on all the tasks. Specifically, compared to
GraphBit [13], TBLD improves the mAP score by 8.2%, 6.8%,
4.5%, respectively, in the three tasks. Here we also provide the
result of the real-valued SIFT [17] for a reference. It can be
observed that our method even outperforms SIFT on the patch
verification task with a 4.58 % increase in terms of mAP.

3) Results on Mikolajczyk Dataset: Experiments are con-
ducted on the Mikolajczyk dataset [44] to prove the generaliza-
tion of the binary local descriptors on the patch matching task.
Here, we compare TBLD with both hand-crafted binary local

TABLE III
COMPARISONS OF MAP (%) WITH THE STATE-OF-THE-ART BINARY

LOCAL DESCRIPTORS ON THE HPATCHES DATASET.

Method Match Retrieval Verification
Real-valued SIFT [17] (128 dim) 25.47 31.98 65.12

Binary (Supervised) BinBoost [8] (32 bytes) 16.97 38.68 76.27

Binary
(Unsupervised)

BRIEF [6] (32 bytes) 10.50 16.03 58.07
BRISK [5] (64 bytes) 15.97 18.10 65.65
ORB [7] (32 bytes) 15.32 18.85 60.15

DeepBit [10] (32 bytes) 13.05 20.61 61.27
GraphBit [13] (32 bytes) 14.22 25.19 65.19

TBLD (32 bytes) 15.39 27.03 68.25

descriptors (BRISK [5], ORB [7]), and the best deep learning
based one so far (GraphBit [13]). Considering the fairness,
the binary local descriptors are set as 32 bytes for all the
methods. Specifically, we firstly reproduce the algorithm and
then employ the Recognition rate to evaluate the performance
following [6], [17]. The Recognition rate can be obtained as
follows,

• Extracting n1 interest points from the reference image,
and n2 from the target image. Among them, n matching
pairs are obtained from the ground-truth homograph
transformation matrix.

• For each interest point in the reference point set, finding
the nearest neighbor in the target point set via binary local
descriptors.

• Counting the number of correct matches nc, and calcu-
lating the recognition rate with r = nc/n.

Following the previous works [6], [8], for an image, interest
points are firstly detected by the SURF Hessian-based detector
and patches are then cropped and normalized to the required
size of each descriptor. Specifically, for BRISK [5] and ORB
[7], the sizes of patches keep unchanged. As for GraphBit and
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Fig. 5. Recognition rate on the Mikolajczyk dataset. TBLD outperforms
other state-of-the-art binary local descriptors learning approaches in terms of
recognition rate on all reference-target configurations.

Ref

Easy

Hard

Tough

Fig. 6. Visualization of patches from the Hpatches dataset. Patches from the
reference image (REF) are shown in the first row. Patches from target images
with the increasing level of geometric noises: EASY, HARD and TOUGH,
are shown in row 2 to 4, respectively.

our method, the patches are resized to 224 × 224 for feature
extraction.

Fig. 5 illustrates the recognition rates of the state-of-the-
art binary local descriptors on both Boat and Graffiti scenes
with the challenges of zoom/rotation and viewpoint variations,
respectively. As can be seen, TBLD outperforms other state-
of-the-art binary local descriptors on all the reference-target
configurations. Additionally, it can be found that, compared
to the Boat scene, our method performs better on the Graffiti
scene, where a significant increase in the recognition rate can
be seen for all configurations. We attribute it to that the gap
between training scenes (Notre Dame) and Graffiti is relatively
smaller than Boat. Results on the Mikolajczyk dataset further
verify the generalization ability of the proposed method.

4) Comparison using a unified metrics: Additionally, to
show the superiority of our method clearly, we evaluate the
performance of the learned binary descriptors on the patch
matching task of the three datasets in terms of a unified
metrics: mAP. For fair comparisons, we have to reproduce
some representative baselines, including hand-crafted ones
(BRIEF and ORB) and deep learning based one (GraphBit),
and evaluate their performances by ourselves, because existing
algorithms failed to evaluate their works using the same metric
on different datasets. Due to time constraints, only state-of-the-
art binary descriptor learning methods are chosen.

The mAP scores are illustrated in Table IV. The model used
for evaluation is trained on the Liberty subset of the Brown
dataset. Note that, the mAP scores of the Mikolajczyk dataset
are obtained by the patch matching between the target image
(img1) and the reference image with the mildest distortion
(img2). As can be seen, the proposed TBLD still outperforms
the state-of-the-art approaches on the three datasets when a

TABLE IV
COMPARISON OF MAP (%) WITH THE STATE-OF-THE-ART BINARY

DESCRIPTORS ON THE THREE DATASETS.

Method Brown (Liberty) Hpatches Mikolajczyk
Notre Dame Yosemite Boat Graffiti

BRIEF 62.05 66.40 16.03 43.24 34.34
ORB 64.19 68.63 18.85 51.11 44.83

GraphBit 68.78 72.27 25.19 59.19 57.39
TBLD 69.52 74.39 27.03 62.41 60.07

unified metric is employed.

D. Ablation Study

1) Transformation Invariance: Firstly, we investigate the
transformation invariance of binary local descriptors derived
by TBLD. Since the to-be-evaluated models are trained on the
Brown dataset, which probably tends to adapt better to the
transformations within the dataset, we conduct the analysis
on the other two datasets. For the Mikolajczyk dataset, as
discussed above, both Boat and Graffiti subsets contain a cer-
tain type of transformations, which means the transformation
invariance of the derived binary local descriptors has been
proved by the results in Fig. 5. Therefore, here the ablation
study is conducted on the HPatches dataset [43] to evaluate
the robustness of the derived binary local descriptors against
geometric noises and viewpoints.

Geometric noise. Specifically, image patches in the
HPatches dataset have been divided into different subsets
according to the level of geometric noises, which are indicated
by EASY, HARD and TOUGH. Examples of the reference
and the target image patches in each subset are shown in
Fig. 6. On each subset, we compare our TBLD with other
transformation-invariant binary local descriptors: BRISK [5],
ORB [7] and DeepBit [10] in terms of mAP, following the
settings in [43]. The results are illustrated in Fig. 7. As can be
seen, the proposed TBLD achieves a higher mAP on all the
subsets, which proves the robustness of our method against
multiple levels of geometric noises.

Viewpoints. For the task of patch matching, HPatches fur-
ther groups the data with different levels of geometric noises,
into “ILLUM” and “VIEW” subsets, to facilitate the evaluation
of the robustness of binary local descriptors against illumi-
nation and viewpoints changes. Since the proposed TBLD
focuses on improving the robustness of descriptors against
transformations like rotation and scaling, the comparison is
specifically conducted on the “VIEW” subsets. The mAP
of the state-of-the-art unsupervised transformation-invariant
binary local descriptors on the “VIEW” subsets are illustrated
in Fig. 8.

As can be seen, although our method underperforms BRISK
[5] on the overall mAP of the patch matching task (15.39%
and 15.97%, respectively), it outperforms BRISK on the three
“VIEW” subsets from EASY, HARD, and TOUGH, respec-
tively. The results prove the robustness of the binary local
descriptors derived by TBLD against viewpoints changes.

2) Effectiveness of Adversarial Constraint Module: We
prove the effectiveness of the Adversarial Constraint Mod-
ule (ACM) from two aspects. 1) We compare the proposed
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Fig. 7. Performance of the state-of-the-art transformation-invariant binary local descriptors on the three tasks in the HPatches dataset. For each task, data are
divided into three subsets according to the level of geometrical noises, which are indicated by EASY, HARD, and TOUGH, respectively.

TABLE V
COMPARISON OF 95% ERROR RATE (%) WITH THE MODEL TRAINED WITH THE EVENLY-DISTRIBUTIVE CONSTRAINT ON THE BROWN DATASET.

Train Yosemite Notre Dame Liberty
Test Notre Dame Liberty Yosemite Liberty Notre Dame Yosemite

Evenly-distributive constraint 18.16 24.10 36.57 21.93 15.72 37.67
ACM 16.53 21.95 35.09 20.45 14.47 36.88
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Fig. 8. Comparison with the state-of-the-art transformation-invariant binary
local descriptors on the “VIEW” subsets of the patch matching task in terms
of mAP(%).

bottom-up strategy (ACM) with the evenly-distributive con-
straint employed to reduce the bit correlations in the existing
works, such as DH [22] and DeepBit [10]. 2) We investigate
the contribution of ACM by comparing the bit correlations
of binary descriptors derived by models trained with (w/)
and without (w/o) ACM. Since the HPatches [43] and the
Mikolajczyk [44] are designed only for evaluation, we only
conduct the comparisons on the Brown dataset [20].

Comparison with the evenly-distributive constraint. To
compare with the evenly-distributive constraint, we remove
ACM from the framework and employ the evenly-distributive
constraint, which is denoted as follows,

LM =

K∑
k=1

||µk − 0, 5||2, µk =
1

N

N∑
n=1

bnk, (21)

where K is the length of binary descriptors and µk denotes the
mean value of each bit over N samples within a mini-batch.
Therefore, the overall objective for the to-be-compared models
can be derived as,

L = LCr + LCb + βLQ + λLN + LM . (22)

The performances of the derived binary descriptors are eval-
uated in terms of 95% error rates, which are reported in
Table V. It can be observed that binary descriptors derived by
the proposed method outperform those derived by the model
trained with the evenly-distributive constraint with lower 95%
error rates.

TABLE VI
COMPARISON OF THE MEAN ABSOLUTE CORRELATIONS (%) OF BINARY

LOCAL DESCRIPTORS DERIVED BY MODELS WITH (W/) AND WITHOUT
(W/O) Adversarial Constraint Module. ∆ REFERS TO THE RELATIVE

DECREASE.

w/ w/o ∆
Yosemite 13.73 14.25 -3.65%

Notre Dame 7.43 9.64 -22.92%
Liberty 9.64 10.26 -6.04%

Bit correlation reduction. To investigate the reduction of
bit correlations brought by ACM, we compare the correlations
between bits of binary descriptors derived by the models
trained with (w/) and without (w/o) ACM, respectively. Specif-
ically, we train the proposed network on the three subsets
of the Brown dataset separately, with the same experimental
settings, except that ACM is removed from each model.

With the derived binary descriptors, the average bit corre-
lations are evaluated by mean Absolute Correlations (mAC).
Specifically, given N to-be-evaluated image patches with
corresponding k-bit binary descriptors B = {b1, ...bn}, the
mAC score is calculated as follows,

mAC =
1

k(k − 1)

∑
i,j 6=i

|Pij |, (23)

Pij =

∑N
n=1(bin − b̄i)(bjn − b̄j)√∑N

n=1(bin − b̄i)2
√∑N

n=1(bjn − b̄j)2
, (24)

where Pij presents the Pearson correlation coefficient between
the i-th bit and the j-th bit. Specifically, bin denotes the i-th
bit of the binary descriptor of the n-th image patch. b̄i and b̄i
are the mean values of the i-th bit and the j-th bit over N
image patches. According to the definition of mAC, it can be
inferred that a lower mAC score means lower bit correlations.

The mAC scores of binary local descriptors derived by
models with (w) or without (w/o) ACM are reported in Table
VI. As can be seen, with ACM, the correlation between bits is
reduced by 3.65%, 22.92%, 6.04%, respectively, in terms of
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mAC score, which proves its effectiveness on bits correlation
reduction.

V. CONCLUSION

In this paper, we have proposed a Transformation-invariant
Binary Local Descriptor learning method, termed TBLD,
which is trained in an unsupervised manner. Three major
contributions are made in the paper. First, we proposed a
framework that derives transformation-invariant binary local
descriptors. Based on the argumentation that the same object
should be described by the same local descriptors, the original
image patches and their transformed counterparts are projected
to an identical Euclidean subspace and an identical Hamming
subspace with the help of the contrastive loss. Second, to
solve the problem brought by directly applying the scheme
of image hashing in local descriptor learning, which refers to
the high correlations between bits, we propose an Adversarial
Constraint Module (ACM). A set of low-coupling binary codes
are introduced to guide the learning of binary local descriptors.
By means of Wasserstein loss, the framework is optimized to
transfer the distribution of the learned binary local descriptors
to the low-coupling ones, thereby making the learned ones as
low-coupling as possible. Third, experimental results on three
benchmark datasets well demonstrate the superiority of the
proposed approach over the state-of-the-art methods.

APPENDIX

A. Image entropy

For the experiment mentioned in Section I, we evaluate the
average amount of information conveyed by image patches
and images with Shannon entropy, which serves as a measure-
ment of image information and is extensively used in image
processing applications [45]. The Shannon Entropy is defined
as,

E = −
256∑
i=1

pilog(pi), (25)

where pi denotes the probability of the i-th gray-level value
occurring in an image or an image patch. A higher Shannon
entropy means more information are carried.
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