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Abstract

Zero-shot learning (ZSL) aims to assign the category corresponding to the relevant se-

mantic as the label of the unseen sample based on the relationship between the learned

visual and semantic features. However, most typical ZSL models faced with the do-

main bias problem, which leads to unseen or test samples being easily misclassified into

seen or training categories. To handle this problem, we propose a relation-based dis-

criminative cooperation network (RDCN) model for ZSL in this work. The proposed

model effectively utilize the robust metric space spanned by the cooperated semantics

with the help of a set of relations. On the other hand, we devise the relation network to

measure the relationship between the visual features and embedded semantics, and the

validation information will guide the embedding module to learn more discriminative

information. At last, the proposed RDCN model is validated on six benchmarks, and

extensive experiments demonstrate the superiority of proposed method over most exist-

ing ZSL models on the traditional zero-shot setting and the more realistic generalized

zero-shot setting.

Keywords: Zero-shot learning, Bias, Discriminative,

Relation

∗Corresponding author
Email address: yangl@xidian.edu.cn (Yang Liu)

Preprint submitted to Elsevier April 27, 2021

Highlights (for review)



1. Introduction

Humans can recognize many categories, including about 30,000 basic categories

and even more subcategories. On the other hand, humans are also very good at rec-

ognizing objects even if they have never seen any of their examples. For example, if

a child has seen cattle before, he/she can easily recognize a cow and learn that a cow5

looks like cattle with black-and-white color. Inspired by the ability of humans to iden-

tify unseen categories, that the research area of Zero-Shot Learning (ZSL) [1, 2, 3, 4]

aims to recognize classes whose samples haven’t been available during training time

has received increasing interests.

Different from traditional supervised learning, ZSL considers an extreme case where10

testing classes is unavailable during training, i.e., the training (seen) classes and test-

ing (unseen) classes are disjoint [5]. ZSL links the seen classes and unseen classes

through the semantic information to complete the recognition task. The semantic is de-

fined as a high dimensional vector space where unseen and seen classes are connected

together, which can be a semantic attribute space [6, 7, 8] or a semantic word vector15

space [9, 10]. In adddition, test images may come from both unseen and seen classes,

which is named Generalized Zero-Shot Learning (GZSL). In real-world applications,

since we cannot predict whether a new sample comes from an unseen class or a seen

class, GZSL is more practical and challenging than ZSL.

Regarding the bridge between visual space and semantic space, most traditional20

ZSL methods tend to learn a mapping that project samples from the visual space to

the semantic space with the labelled training set including seen classes only. When

classifying unseen images, the learned embedding is used to project the visual repre-

sentation of unseen samples into the semantic space including unseen and seen classes.

Then the Nearest Neighbor (NN) search method is used to recognize the sample of25

unseen class, which is the testing process. However, the NN search method is easy to

cause hubness problem [11]. To solve this problem, Sung et al. [12] recently proposed

a model named Relation Network (RN) to compare the test samples with the embedded

semantics in a self-adaptive way. Different from NN search, RN tries to measure the

relation score between unseen samples and semantics by learning a distance metric.30
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Unfortunately, there is a strong domain bias problem [13] when applying almost all

standard ZSL models to deal with a GZSL task, which leads to unseen images being

misclassified into seen classes. To alleviate this problem, Zhang and Shi [14] proposed

a Co-Representative network (CRnet) based on RN. CRnet tries to learn a uniform em-

bedding space by a single-layer module with parallel structure and high local linearity.35

However, CRnet still relies heavily on obtaining human-defined semantics for knowl-

edge transfer. Similar to other embedding models, CRnet focuses on the original visual

features and semantics, but completely ignores the discriminative information among

them. Although a few works [15, 16, 17] have been proposed to maintain the rela-

tionship between semantics by using complementary features or extracting deep local40

features, they are rarely used in ZSL task. To address this point, we formulate a novel

framework named Relation-based Discriminative Cooperation Network (RDCN) for

ZSL task in this paper.

The RDCN model aims to preserve the discriminative information of the visual

features and semantics. At first, RDCN adopts the encoder-decoder paradigm to obtain45

discriminative visual features. Specifically, the encoder aims to learn a mapping from

the visual space to the embedding space where the distance between classes is adjusted

by the triplet loss [18], while decoder reconstructs the original input features. On the

other hand, RDCN uses a decomposition structure to alleviate the bias problem in the

semantic space, and adopts a novel semantic pivot regularization to obtain discrimi-50

native semantic features. At last, RDCN adopts a relation network as the similarity

function to measure the relationship between the discriminative visual features and se-

mantics. In summary, our contributions are concluded into the following three-fold:

• The discriminative visual embedding preserves the discriminative information of

the input image features by separating inter-classes and clustering intra-classes55

with a margin.

• The discriminative semantic embedding acts as a pivot regularization to ensure

the cooperated structures representative by utilizing semantic relations between

classes.

• The experimental evaluation on several popular datasets, including the ImageNet60
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demonstrates that the proposed RDCN performs favorably against state-of-the-

art ZSL models.

The remainder of this paper is organized as follows: Section 2 reviews the relat-

ed ZSL work followed by Section 3 which describes the proposed model in detail.

Experimental results with some detailed analysis are given in Section 4. At last, the65

conclusion of the work is given in Section 5.

2. Related Work

In this section, we introduce the related works of zero-shot learning from two as-

pects: relation-based models and synthesis-based models.

2.1. Relation-based Models70

Relation-based models aims to learn the relationship between images and the se-

mantics. In early works of ZSL, most algorithms focus on building this relationship by

Visual-Semantic Embedding (VSE) framework. According to different directions of

mappings, the VSE framework is divided into three types as follows.

(1) Visual→Semantic Embedding tries to learn a mapping from the visual space75

to the semantic space either using linear function [19, 20, 21, 22] or by deep neural

network regression [23]. For example, Deep Visual-Semantic Embedding (DeViSE)

model [24] is one of the earlier attempts. It inputs Convolutional Neural Networks (C-

NN) [25] and Word2Vec [26] features to learn an end-to-end deep classification model.

Socher et al. [27] mapped the improved visual features to the semantic space by the80

two-layer or three-layer neural network, and used the least squares loss to train the

network.

(2) Semantic→Visual Embedding tries to learn a mapping from the semantic space

to the visual space, such as [28, 29, 30]. The training and test process are similar with

the first mapping manner. For example, Deep Transductive Network (DTN) [31] ex-85

ploits the high confidence assignments with the assistance of an auxiliary target distri-

bution to reduce the impact of the hubness problem [11]. Shojaee et al. [32] proposed a

4
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semi-supervised ZSL method based on the visual features of similar samples clustered

together in the visual space.

(3) Visual→Common Space←Semantic learns a common space where both the vi-90

sual features and the semantics are embedded to, such as [33, 34, 35, 36]. For the test

phase, the visual features and attributes are embedded into the common space for fi-

nal classification task. Semantic Similarity Embedding (SSE) [37] is a typical method

which learns an embedding for visual features and semantics to find mixture features

that used to measure the similarity.95

Different from traditional VSE framework, Sung et al. [12] recently proposed a

Relation Network (RN) that aims to compare the query visual features with the target

embedded semantics through a self-adaptive way. Inspired by RN, Zhang and Shi [14]

proposed a Co-Representative network (CRnet) with the help of high local linearity. In

this paper, the proposed model extract discriminative visual and semantic features by100

VSE framework and measure their relationship with RN framework.

2.2. Synthesis-based Models

Synthesis-based models tries to learn a generator that generates samples from the

semantics, and to then train a classifier to predict classes with the generated synthesis

samples. For example, f-CLSWGAN [38] generates sufficiently discriminative CN-105

N features to train softmax classifiers with the help of a Wasserstein Generative Ad-

versarial Networks (WGAN) [39]. CVAE-ZSL [40] implements the generation by a

Conditional Variational AutoEncoder (CVAE) [41]. SE-GZSL [42] also designs a gen-

erator based on a Variational AutoEncoder (VAE) [43] but generates synthesis samples

in a feedback-driven way. Recently, Zero-VAE-GAN [5] is proposed to convert ZSL110

problems into supervised tasks by a combination of VAE and GAN.

The advantage of synthesis-based models is that both seen and unseen samples may

be obtained by generator, which contributes to significantly alleviate the domain bias

problem. However, synthesis-based methods require the generator to generate a large

number of high-quality and diverse samples (including unseen ones) for each class,115

which is costly and requires additional classifier learning. In this work, we aim to

5
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Figure 1: The framework of RDCN.

achieve high performance in both ZSL and GZSL tasks by the end-to-end relation-

based model.

3. Proposed Approach

In this section, firstly, we provide the problem definition of ZSL by mathematical120

notation. Secondly, we give the model structure and detailed description of different

modules. At last, we conclude the overall objective function.

3.1. Problem Definition

Suppose there are n labeled samples with c seen classes {X,S,Y} and nu unla-

beled samples with cu unseen classes {Xu,Su,Yu}, where X = [x1,x2, · · · ,xn] ∈125

Rd×n and Xu = [xu1 ,x
u
2 , · · · ,xunu

] ∈ Rd×nu are d-dimensional visual features, while

the corresponding labels are Y and Yu, respectively. It is noteworthy that the labels of

seen and unseen samples are disjoint, i.e., Y ∩Yu = ∅. S = [s1, s2, · · · , sc] ∈ Rk×c

and Su = [su1 , s
u
2 , · · · , sucu ] ∈ Rk×cu are k-dimensional semantic features of seen and

unseen samples. The ZSL task aims to learn a classifier f : Xu → Yu, where classes130

of testing data Xu are unavailable in training phrase.
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3.2. Model Architecture

Figure 1 shows the framework of proposed model RDCN. Specifically, the RDCN

consists of four parts: (1) The visual features X extracted by ResNet101 are encoded

with the help of the discriminative visual embeddings X̃. (2) The discriminative visual135

embeddings are decoded to reconstruct the input visual features X. (3) The cooper-

ated semantic features obtained by cooperation network are send into a discriminative

semantic embedding space, where S̃ is generated. (4) A relation network is adopted

as the similarity function to measure the relationship between the discriminative visual

features X̃ and discriminative semantics S̃.140

3.3. Encoder

The deep image features X are trained by following function to obtain the discrim-

inative visual embeddings:

X̃ = fe (X; θe) , (1)

where fe indicates the operation of the encoder whose parameters are denoted by θe.

In detail, the deep visual features X extracted by RessNet101 pass through multilayer

perceptron (MLP) with two hidden layers (h1 = 1024-D and h2 = 512-D), followed by

a dense layer with the LeakyReLU [44] activation. The output discriminative visual145

embeddings X̃ have the same dimension with the semantic embeddings.

3.4. Discriminative Visual Embedding

Most embedding models that solve the ZSL problem focus on calculating a typical

description of images in all classes, which makes the encoder non-discriminatory. Mo-

tivated by [45], adding discriminative embedding operations in the encoding process150

can make the learned low-dimensional features more discriminative, which is helpful

for classification.

In order to ensure that an embedding visual feature x̃i (x̃i ∈ X) is closer to each

image feature x̃j from the same class than any image feature x̃k from different classes.

We use the triplet loss [18] to learn a discriminative embedding by adjusting the intra-

class and inter-class distance between the learned features:

`tri =
1

n

n∑
i=1

max (0,m+ dintra − dinter), (2)

7



Where m > 0 is a margin that is enforced between positive (same class) and negative

(different classes) pairs. dintra denotes the squared Euclidean distance between x̃i and

visual features from the same class, meanwhile, dinter denotes the squared Euclidean

distance between x̃i and visual features from the different class, i.e.,

dintra =
∑
x̃j∈ci

‖x̃i − x̃j‖22, (3)

dinter =
∑
x̃k /∈ci

‖x̃i − x̃k‖22. (4)

3.5. Decoder

The encoder and the decoder are connected by the discriminative visual embed-

dings. The discriminative visual feature X̃ is the input of the decoder, then the recon-

structed visual feature is denoted by following equation:

X̂ = fd

(
X̃; θd

)
, (5)

where fd indicates the operation of the decoder whose parameters are denoted by θd.

Similar with the encoder, the decoder is a multilayer perceptron (MLP) includes two155

hidden layers (h1 = 512-D and h2 = 1024-D) and a dense layer with the LeakyReLU

activation.

Since the proposed framework involves a decoder which reconstructs the original

visual features, there is an accompanying reconstruction loss:

`rec =
1

n

n∑
i=1

‖xi − x̂i‖22, x̂i ∈ X̂. (6)

3.6. Cooperation Module

Motivated by the CRnet [14], we use a decomposition structure to alleviate the

bias problem in cooperation module. Specifically, We first adopt the unsupervised K-

means clustering method to divide the semantic features S intoK(K < c) subsets. The

clustering center of k-th subset is denoted by s̄k(k = 1, 2, · · · ,K). Then, the semantic

feature si(i = 1, 2, · · · , c) with a combination of K clustering center are trained by

following cooperation module to obtain the discriminative semantic embedding:

s̃i =

K∑
k=0

fc ([si − s̄k] ; θc), (7)

8



where fc indicates the operation of the cooperation module whose parameters are de-

noted by θc. In detail, the vector calculated by si − s̄k is fed into a single FC layer160

with a ReLU activation. Moreover, different from the CRnet, we also add the original

semantic features as the input to retain its own sparsity feature, i.e., s̄0 = 0.

3.7. Discriminative Semantic Embedding

Intuitively, maximizing the distance of the semantic embeddings by following func-

tion can maintain the discriminative information between different semantic features,

max
c∑
i=1

c∑
j=1

‖s̃i − s̃j‖22, (8)

where s̃i and s̃j are different semantic embeddings. In order to reduce the computa-

tional complexity of the above calculation methods, a semantic pivot is used to simplify

the calculation. The semantic pivot of semantics is defined as the center of semantic

embedding. It can be solved by the average embedded feature, or it can be calculated

by the mean shift technique. In fact, there is almost no difference in performance be-

tween these two calculations [17]. For simplicity, in this paper, the semantic pivot s̄ is

calculated by the center of the semantic embeddings, i.e., s̄ = 1
c

c∑
i=1

s̃i. Then, we get

the following loss function:

`piv = −
c∑
i=1

‖s̃i − s̄‖22. (9)

3.8. Relation Module

After obtaining discriminative visual feature x̃i and discriminative semantic feature165

s̃j , we adopt the RN [12] to measure their relationship. Specifically, the relation module

is a two-layer neural network and the input is the concatenation of x̃i and s̃j ; the hidden

layer increase nonlinearity and the output of the network is a scalar in range of 0 to 1

representing the similarity between discriminative visual and semantic features, which

is called relation score.170

In this module, we adopt RN as the similarity function g(·) and follow the origi-

nal settings. Thus the output relation score of training pairs x̃i and s̃j be denoted as

9



g(x̃i, s̃j). In the training process, we randomly sample the entire training set to gener-

ate training pairs of x̃i and s̃j , and control the ratio of matched pairs(discriminative vi-

sual and semantic features belong to the same class) to mismatched pairs(discriminative

visual and semantic features come form different classes) at about 1 : 30. The similari-

ties of matched pairs and mismatched pairs are set to 1 and 0, respectively. The relation

module is trained by mean square error loss:

`rel =

c∑
j=1

n∑
i=1

[g(x̃i, s̃j)− l(x̃i, s̃j)]2 (10)

where l(·) is the similarity ground-truth, l(x̃i, s̃j) = 1 when x̃i and s̃j belong to the

same class, and l(x̃i, s̃j) = 0 when x̃i and s̃j belong to different classes.

3.9. Overall Objective

With the objective functions introduced above, the overall objective of the proposed

model is given by:

` = `rel + α`tri + β`rec + γ`piv, (11)

where α, β and γ are trade-off parameters chosen based on the validation dataset.

Given a testing image xuk , its label can be inferred by:

j∗ = arg max
j

g(x̃uk , s̃j). (12)

For ZSL task, s̃j refers to the semantic embeddings of only the unseen classes, i.e.,175

jε{1, 2, · · · , cu}, and for GZSL task, s̃j refers to the semantic embeddings of both seen

as well as unseen classes, i.e., jε{1, 2, · · · , c + cu}. c and cu are the numbers of seen

and unseen classes, respectively.

4. Experiments

In this section, firstly, we introduce five popular ZSL datasets SUN, CUB, AWA1,180

AWA2, aPY and a large-scale ImageNet dataset. Secondly, we provide the implementa-

tion details of the architecture. Thirdly, some experimental results with related analysis

on the traditioal zero-shot setting and the more realistic generalized zero-shot setting

are given. Finally, we show some visualized results for the proposed model.

10



4.1. Datasets Descriptions185

Five Small-scale Attribute datasets: SUN Attribute (SUN) [46] is a fine-grained

dataset and it consists of 14,340 images belonging to 717 classes annotated with 102

attributes. Following the ZSL setting in [6], 72 out of 717 classes are as unseen cate-

gories and the rest of 645 categories as seen categories.

CUB-200-2011 Birds (CUB) [47] is a fine-grained and medium scale dataset which190

has in total 11,788 images distributed in 200 bird categories. Each class is annotated

with a 312-dim attribute vector. We follow the standard ZSL split with 150 categories

for seen classes and 50 for unseen classes as in [6].

Animals with Attributes 1 (AWA1) [6] is a kind of coarse-grained dataset, which

includes a total of 30,475 images belonging to 50 classes. Each class is annotated with195

a 85-dim attribute vector, where 40 categories (seen) are used for training and rest 10

categories (unseen) for testing. Animals with Attributes 2 (AWA2) [13] has the same 50

categories as AWA1 dataset. However, AWA2 dataset contains 37,322 images. Similar

to AWA1, 40 categories are used for seen classes and 10 categories are used for unseen

classes.200

A Pascal and Yahoo (aPY) [48] is a kind of small-scale coarse-grained dataset.

Each category is annotated with a 64-dim attribute vector. Among the total number of

32 classes, 20 Pascal classes are used for training and 12 Yahoo classes are used for

testing.

One large-scale dataset: ImageNet [49] has a total of 218,000 images. 21,841205

classes with more than 10 million images, where 1k classes containing 1.2 million

images are used for training the mapping. There are different splits in the test. Specifi-

cally, 2-hops/3-hops refers to test classes belonging to 2/3 tree hops away from 1k train

classes in the WordNet hierarchy, which contains 1,509/7,678 unseen classes. Such

classes that contain the top 500/1k/5k maximum images and top 500/1k/5k minimum210

images are given for test splits respectively. At last, all 20K classes are given for test-

ing, which is a challenging task.

11



4.2. Implementation Details

We use ReLU activation for all layers except for the output of the encoder and

the decoder, which adopt LeakyReLU activations with the negative slope of 0.3. A215

single-layer FC network compared with K parallel single-layer FC network are given

for embedding the original and cooperated semantic vectors, respectively. Parameters

α and β in our objective function are fine-tuned in the range
[
5× 10−6, 10−2

]
and

γ from
[
10−7, 5× 10−4

]
. Moreover, the K value is given in the range [3, 12]. For

relation module, the discriminative visual and semantic features are concatenated with220

a hidden layer before passing relation network, We adopt Adam optimizer [50] with a

initialized learning rate of 10−3 and a weight decay of 5× 10−5. For fair comparison,

we follow the settings in [13] to split each dataset for training and testing. Moreover,

each image is represented by 2048-dim vector extracted by 101-layered ResNet, i.e.,

ResNet101 [51].225

4.3. Zero-Shot Learning (ZSL) Experiments

In this work, the average per-class top-1 accuracy is adopted as the evaluation cri-

teria for zero-shot classification, i.e., we average the correct predictions independently

for each class by follows:

accΥ =
1

‖Υ‖

‖Υ‖∑
c=1

#correct predictions in c

#samples in c
(13)

where Υ and ‖Υ‖ indicate the set of classes and number of classes with corresponding

dataset, respectively. So Υ includes all the test classes i.e., the unseen classes for ZSL

task.

The results of the different ZSL models on five popular small-scale datasets is given230

in Table 1. We can see that the proposed RDCN consistently performs better than

compared methods, and RDCN gets the state-of-the-art on four datasets: SUN, AWA1,

AWA2 and CUB. Specifically, the accuracies increase of 2.7% and 4.2% compared

to the strongest competitor on SUN dataset and AWA2 dataset, respectively. We also

observe a significant increase when we include all of the `tri, `rec and `piv in our235

model. This indicates that the reconstruction term makes a contribution to vary levels
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Table 1: Zero-shot learning (ZSL) results on five small-scale attribute datasets. The results report average

per-class Top-1 accuracy in %.

Method SUN CUB AWA1 AWA2 aPY

DeViSE [24] 56.5 52.0 54.2 59.7 39.8

CONSE [52] 38.8 34.3 45.6 44.5 26.9

CMT [9] 39.9 34.6 39.5 37.9 28.0

SP-AEN [53] 59.2 55.4 - 58.5 24.1

PSR [23] 61.4 56.0 - 63.8 38.4

DCN [54] 61.8 56.2 65.2 - 43.6

CCSS [55] 56.8 44.1 56.3 63.7 35.5

DAP [6] 39.9 40.0 44.1 46.1 33.8

IAP [6] 19.4 24.0 35.9 35.9 36.6

SSE [37] 51.5 43.9 60.1 61.0 34.0

LATEM [56] 55.3 49.3 55.1 55.8 35.2

ALE [57] 58.1 54.9 59.9 62.5 39.7

SJE [58] 53.7 53.9 65.6 61.9 32.9

ESZSL [20] 54.5 53.9 58.2 58.6 38.3

SYNC [59] 56.3 55.6 54.0 46.6 23.9

SAE [19] 53.4 42.0 58.1 50.3 32.9

f-CLSWGAN [38] 58.5 57.7 64.1 - -

TVN [60] 59.3 54.9 64.7 - 40.9

DVN [61] 62.4 57.8 67.7 - 41.2

Zhang’s [62] 60.4 53.2 67.4 - 42.8

RDCN (α = 0) 58.9 55.3 66.0 65.3 36.1

RDCN (β = 0) 60.6 56.5 67.9 66.1 37.9

RDCN (γ = 0) 59.3 56.1 69.3 65.2 39.5

RDCN 65.1 60.5 71.6 68.0 42.1

of gain fatures and the discriminative information among visual and semantic features

is also essential.

4.4. Generalized Zero-Shot Learning (GZSL) Experiments

GZSL means that the search space includes both test classes (Υts) and training

classes (Υtr). At first, the average per-class top-1 accuracy on Υtr and Υts can be

obtained by Eq. (13), then the harmonic mean is computed by follows:

H =
2× accΥtr × accΥts

accΥtr + accΥts
(14)

where accΥtr and accΥts are accuracies of samples from Υtr and Υts, respectively.240

The GZSL results on five popular attribute datasets is given in Table 2. We have

following observations according to the results:
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Table 2: Generalized Zero-Shot Learning (GZSL) results on five small-scale attribute datasets. ts =

acc
(
Υts

)
, tr = acc

(
Υtr

)
, H = harmonic mean. We measure Top-1 accuracy in %.

SUN CUB AWA1 AWA2 aPY

Method ts tr H ts tr H ts tr H ts tr H ts tr H

DeViSE [24] 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8 4.9 76.9 9.2

CMT [9] 8.1 21.8 11.8 7.2 49.8 12.6 0.9 87.6 1.8 0.5 90.0 1.0 1.4 85.2 2.8

CONSE [52] 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.5 90.6 1.0 0.0 91.2 0.0

DAP [6] 4.2 25.1 7.2 1.7 67.9 3.3 0.0 88.7 0.0 0.0 84.7 0.0 4.8 78.3 9.0

IAP [6] 1.0 37.8 1.8 0.2 72.8 0.4 2.1 78.2 4.1 0.9 87.6 1.8 5.7 65.6 10.4

GFZSL [34] 0.0 39.6 0.0 0.0 45.7 0.0 1.8 80.3 3.5 2.5 80.1 4.8 0.0 83.3 0.0

SSE [37] 2.1 36.4 4.0 8.5 46.9 14.4 7.0 80.5 12.9 8.1 82.5 14.8 0.2 78.9 0.4

LATEM [56] 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0 0.1 73.0 0.2

ALE [57] 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9 4.6 73.7 8.7

SJE [58] 14.7 30.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 8.0 73.9 14.4 3.7 55.7 6.9

ESZSL [20] 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 5.9 77.8 11.0 2.4 70.1 4.6

SYNC [59] 7.9 43.3 13.4 11.5 70.9 19.8 8.9 87.3 16.2 10.0 90.5 18.0 7.4 66.3 13.3

SAE [19] 17.8 32.0 22.8 18.8 58.5 28.5 14.2 81.2 24.1 16.7 82.5 27.8 9.9 74.7 17.5

ZSKL [29] 19.8 29.1 23.6 19.9 52.5 28.9 18.3 79.3 29.8 17.6 80.9 29.0 11.9 76.3 20.5

f-CLSWGAN [38] 42.6 36.6 39.4 43.7 57.7 49.7 57.9 61.4 59.6 - - - - - -

CVAE-ZSL [40] - - 26.7 - - 34.5 - - 47.2 - - 51.2 - - -

SE-GZSL [42] 40.9 30.5 34.9 41.5 53.3 46.7 56.3 67.8 61.5 58.3 68.1 62.8 - - -

TVN [60] 18.2 28.9 22.3 21.6 47.5 29.7 18.2 87.5 30.2 - - - 8.8 59.1 15.4

DVN [61] 25.3 34.6 29.2 26.2 55.1 35.5 34.9 73.4 48.5 - - - 13.7 72.2 23.1

RN [12] - - - 38.1 61.1 47 31.4 91.3 46.7 30 93.4 45.3 - - -

CRnet [14] 34.1 36.5 35.3 45.5 56.8 50.5 58.1 74.7 65.4 52.6 78.8 63.1 32.4 68.4 44

Zhang’s [62] 39.7 38.9 39.3 37.8 58.2 45.9 37.0 84.7 51.4 - - - 25.9 79.5 39.1

RDCN 37.3 37.7 37.5 45.5 58.1 51.0 60.2 79.0 68.3 56.6 72.3 63.5 34.0 75.6 46.9

(1) Compared with Table 1, ZSL results are higher than GZSL results (“ts” value).

The main reason is that all seen classes are included in the search space and these seen

classes confuse the test images. That is to say, an image from unseen class is more245

likely to be mistaken for a seen class when it is projected into the semantic space in

GZSL task.

(2) The “tr” value in Table 2 just represents the classification performance in the

seen dataset. Moreover, high accuracy on “tr” is often accompanied by low accuracy

on “ts” and “H” such as IAP and SYNC, which indicates that these models perform250

well most seen classes but fails to generalize for unseen classes, i.e., overfitting.

(3) With respect to the state-of-the-art, RDCN gets best “H” value almost on all
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Table 3: GZSL comparisons (ts) in ImageNet dataset. The results report Top-10 accuracy in %.

Hierarchy All Most populated Least populated All

Method 2-hops 3-hops 500 1k 5k 500 1k 5k 20k

CONSE [52] 0.86 7.14 23.47 18.38 9.92 0.00 0.00 0.66 3.43

CMT [9] 7.80 2.77 9.65 7.73 3.83 3.37 2.71 1.45 1.25

LATEM [56] 16.99 6.28 23.61 18.65 8.73 8.73 7.60 3.50 2.71

ALE [57] 17.79 6.34 24.93 19.37 9.12 10.38 8.46 3.63 2.77

DeViSE [24] 17.59 6.28 24.66 19.11 8.99 10.11 8.26 3.63 2.71

SJE [58] 17.46 6.21 23.61 18.45 8.79 9.85 8.00 3.50 2.71

ESZSL [20] 19.24 6.81 26.52 20.56 9.72 9.12 7.73 3.76 3.10

SYNC [59] 14.55 5.62 16.33 13.82 7.87 2.77 2.44 1.78 2.64

SAE [19] 13.55 4.82 20.76 16.60 7.60 3.43 2.57 1.58 2.24

PQZSL [63] 21.80 7.41 29.30 23.75 11.3 9.42 7.87 3.72 3.45

RDCN 25.69 10.15 33.71 26.91 15.65 11.33 10.37 7.83 7.31

datasets. In detail, RDCN obtains 68.3% on AWA1 dataset and 46.9% on aPY dataset,

which is better than the next best model CRnet by 2.9%. On AWA2 dataset, RDCN

gets a best accuracy of 56.6% on the first setting (“ts” value) and 63.5% overall. In255

addition, RDCN achieves better results compared to some synthesis-based models like

f-CLSWGAN, CVAE-ZSL, SE-GZSL and so on.

Moreover, Table 3 reports the result of GZSL (“ts” value) on ImageNet. Compared

with some baselines, RDCN obtains the best performance in most splits, which proves

the superiority of the proposed method on large datasets. The whole GZSL experimen-260

tal results supports our hypothesis that discriminative visual and semantic information

are beneficial for generalized zero-shot recognition.

4.5. Ablation Studies

In this subsection, we compare the RDCN with its different variants to study the

role of each item in the objective function 11. The experimental results are shown in265

Table 1. We analyze the following three cases: 1). “RDCN (α = 0)” means there is

no triplet loss `tri in the objective function 11; 2). “RDCN (β = 0)” means there is no

reconstruction loss `rec in the objective function 11; 3). “RDCN (γ = 0)” means there

is no semantic pivot regularization `piv in the objective function 11.

We observe in Table 1 that each kind of strategy of RDCN can improve the ZSL270

classification performances effectively. In addition, The role of the triplet loss `tri is
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Figure 2: The influence of α on six datasets. α is the parameter of the triplet loss `tri in the objective

function.

more important than that of reconstruction loss `rec and semantic pivot regularization

`piv , which is based on the fact that the result of “RDCN (α = 0)” is worse than that

of “RDCN (β = 0)” and “RDCN (γ = 0)”. According to the results of the last four

rows in Table 1, we can be see that each item in the objective function plays a positive275

role in the ZSL classification task.

For the RDCN, there are three parameters, i.e., α, β and γ in the objective function.

By varying one of the parameters while fixing the other parameters, we run the model

for 100 epochs and produce the GZSL results (“ts” value). Specifically, we conduct

experiments varying α and β from
[
5× 10−6, 10−2

]
and γ from

[
10−7, 5× 10−4

]
.280

The influence of α, β and γ on each dataset are illustrated in Figure 2, Figure 3 and

Figure 4, respectively. For the ImageNet, due to the large number of testing samples

(20K classes) in the complete dataset, we selected top 500 maximum images (M500)

as test splits for analysis. According to the “ts” results under different values of three

parameters α, β and γ, we conclude that the RDCN can obtain promising performance285

within a small range of parameters.
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Figure 3: The influence of β on six datasets. β is the parameter of the reconstruction loss `rec in the objective

function.
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Figure 4: The influence of γ on six datasets. γ is the parameter of the semantic pivot regularization `piv in

the objective function.

4.6. Visualized results

We further provide some visualized results for the proposed method. Figure 5

shows the confusion matrices of unseen classes on aPY dataset.

According to the results on Figure 5, we can see the proposed model RDCN can290
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Figure 5: Confusion matrices for unseen classes of the proposed model on the AWA2 dataset.

identify most of unseen classes, except “bat” (46.39%), “dolphin” (25.67%) and “seal”

(43.41%) on AWA2 dataset. We also observe that RDCN achieves appealing results on

some classes, such as “blue+whale” (91.19%), “rat” (87.90%) and “horse” (85.10%).

Considering the unseen samples are unavailable in training process, it strongly supports

the superiority of the proposed method for ZSL task.295

The t-SNE model [64] is used to project samples and prototypes from the semantic

space to the 2D plane. Its main function is to visualize the distance between the sample

and the corresponding class prototype. We selected seven seen classes and five unseen

classes from the AWA2 dataset to check whether the prototype was learned correctly.

Figure 6 and Figure 7 give the visualization results. It can be seen intuitively that most300

of the samples are located near the prototype of the corresponding class, which indi-

cates that the RDCN can learn proper mapping from the feature space to the semantic

space.

5. Conclusion

In this work, we have proposed a relation-based discriminative cooperation network305

to address the zero-shot classification problem. It keeps the discriminative information

by separating the inter-classes and cluster the intra-classes with a margin. In addition, a
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Figure 6: The tSNE visualisation of the visual features of training seen class samples from the AwA2 dataset

together with the projected class prototypes for the proposed model. Prototypes is denoted by ”*” and black

circles are used to mark them visible.

Figure 7: The tSNE visualisation of the visual features of test unseen class samples from the AwA2 dataset

together with the projected class prototypes for the proposed model. Prototypes is denoted by ”*” and black

circles are used to mark them visible.

pivot regularization is utilized to ensure the cooperated semantic structures discrimina-

tive. Finally, relation module is introduced to measure the relationship between visual

and semantic features. Experimental results on six benchmarks with multiple settings310
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including both ZSL and GZSL demonstrated the superiority of the proposed model for

zero-shot classification.

In the future, since the acquisition of attributes requires prior knowledge, we plan

to exploit some other semantic information to construct the common space, e.g., click-

through data. Moreover, we will exploit GAN based generative methods to establish a315

more robust representation in RDCN for zero-shot and few-shot classification.
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mantic as the label of the unseen sample based on the relationship between the learned

visual and semantic features. However, most typical ZSL models faced with the do-

main bias problem, which leads to unseen or test samples being easily misclassified into

seen or training categories. To handle this problem, we propose a relation-based dis-

criminative cooperation network (RDCN) model for ZSL in this work. The proposed

model effectively utilize the robust metric space spanned by the cooperated semantics

with the help of a set of relations. On the other hand, we devise the relation network to

measure the relationship between the visual features and embedded semantics, and the

validation information will guide the embedding module to learn more discriminative

information. At last, the proposed RDCN model is validated on six benchmarks, and

extensive experiments demonstrate the superiority of proposed method over most exist-
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1. Introduction

Humans can recognize many categories, including about 30,000 basic categories

and even more subcategories. On the other hand, humans are also very good at rec-

ognizing objects even if they have never seen any of their examples. For example, if

a child has seen cattle before, he/she can easily recognize a cow and learn that a cow5

looks like cattle with black-and-white color. Inspired by the ability of humans to iden-

tify unseen categories, that the research area of Zero-Shot Learning (ZSL) [1, 2, 3, 4]

aims to recognize classes whose samples haven’t been available during training time

has received increasing interests.

Different from traditional supervised learning, ZSL considers an extreme case where10

testing classes is unavailable during training, i.e., the training (seen) classes and test-

ing (unseen) classes are disjoint [5]. ZSL links the seen classes and unseen classes

through the semantic information to complete the recognition task. The semantic is de-

fined as a high dimensional vector space where unseen and seen classes are connected

together, which can be a semantic attribute space [6, 7, 8] or a semantic word vector15

space [9, 10]. In adddition, test images may come from both unseen and seen classes,

which is named Generalized Zero-Shot Learning (GZSL). In real-world applications,

since we cannot predict whether a new sample comes from an unseen class or a seen

class, GZSL is more practical and challenging than ZSL.

Regarding the bridge between visual space and semantic space, most traditional20

ZSL methods tend to learn a mapping that project samples from the visual space to

the semantic space with the labelled training set including seen classes only. When

classifying unseen images, the learned embedding is used to project the visual repre-

sentation of unseen samples into the semantic space including unseen and seen classes.

Then the Nearest Neighbor (NN) search method is used to recognize the sample of25

unseen class, which is the testing process. However, the NN search method is easy to

cause hubness problem [11]. To solve this problem, Sung et al. [12] recently proposed

a model named Relation Network (RN) to compare the test samples with the embedded

semantics in a self-adaptive way. Different from NN search, RN tries to measure the

relation score between unseen samples and semantics by learning a distance metric.30
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Unfortunately, there is a strong domain bias problem [13] when applying almost all

standard ZSL models to deal with a GZSL task, which leads to unseen images being

misclassified into seen classes. To alleviate this problem, Zhang and Shi [14] proposed

a Co-Representative network (CRnet) based on RN. CRnet tries to learn a uniform em-

bedding space by a single-layer module with parallel structure and high local linearity.35

However, CRnet still relies heavily on obtaining human-defined semantics for knowl-

edge transfer. Similar to other embedding models, CRnet focuses on the original visual

features and semantics, but completely ignores the discriminative information among

them. Although a few works [15, 16, 17] have been proposed to maintain the rela-

tionship between semantics by using complementary features or extracting deep local40

features, they are rarely used in ZSL task. To address this point, we formulate a novel

framework named Relation-based Discriminative Cooperation Network (RDCN) for

ZSL task in this paper.

The RDCN model aims to preserve the discriminative information of the visual

features and semantics. At first, RDCN adopts the encoder-decoder paradigm to obtain45

discriminative visual features. Specifically, the encoder aims to learn a mapping from

the visual space to the embedding space where the distance between classes is adjusted

by the triplet loss [18], while decoder reconstructs the original input features. On the

other hand, RDCN uses a decomposition structure to alleviate the bias problem in the

semantic space, and adopts a novel semantic pivot regularization to obtain discrimi-50

native semantic features. At last, RDCN adopts a relation network as the similarity

function to measure the relationship between the discriminative visual features and se-

mantics. In summary, our contributions are concluded into the following three-fold:

• The discriminative visual embedding preserves the discriminative information of

the input image features by separating inter-classes and clustering intra-classes55

with a margin.

• The discriminative semantic embedding acts as a pivot regularization to ensure

the cooperated structures representative by utilizing semantic relations between

classes.

• The experimental evaluation on several popular datasets, including the ImageNet60
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demonstrates that the proposed RDCN performs favorably against state-of-the-

art ZSL models.

The remainder of this paper is organized as follows: Section 2 reviews the relat-

ed ZSL work followed by Section 3 which describes the proposed model in detail.

Experimental results with some detailed analysis are given in Section 4. At last, the65

conclusion of the work is given in Section 5.

2. Related Work

In this section, we introduce the related works of zero-shot learning from two as-

pects: relation-based models and synthesis-based models.

2.1. Relation-based Models70

Relation-based models aims to learn the relationship between images and the se-

mantics. In early works of ZSL, most algorithms focus on building this relationship by

Visual-Semantic Embedding (VSE) framework. According to different directions of

mappings, the VSE framework is divided into three types as follows.

(1) Visual→Semantic Embedding tries to learn a mapping from the visual space75

to the semantic space either using linear function [19, 20, 21, 22] or by deep neural

network regression [23]. For example, Deep Visual-Semantic Embedding (DeViSE)

model [24] is one of the earlier attempts. It inputs Convolutional Neural Networks (C-

NN) [25] and Word2Vec [26] features to learn an end-to-end deep classification model.

Socher et al. [27] mapped the improved visual features to the semantic space by the80

two-layer or three-layer neural network, and used the least squares loss to train the

network.

(2) Semantic→Visual Embedding tries to learn a mapping from the semantic space

to the visual space, such as [28, 29, 30]. The training and test process are similar with

the first mapping manner. For example, Deep Transductive Network (DTN) [31] ex-85

ploits the high confidence assignments with the assistance of an auxiliary target distri-

bution to reduce the impact of the hubness problem [11]. Shojaee et al. [32] proposed a
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semi-supervised ZSL method based on the visual features of similar samples clustered

together in the visual space.

(3) Visual→Common Space←Semantic learns a common space where both the vi-90

sual features and the semantics are embedded to, such as [33, 34, 35, 36]. For the test

phase, the visual features and attributes are embedded into the common space for fi-

nal classification task. Semantic Similarity Embedding (SSE) [37] is a typical method

which learns an embedding for visual features and semantics to find mixture features

that used to measure the similarity.95

Different from traditional VSE framework, Sung et al. [12] recently proposed a

Relation Network (RN) that aims to compare the query visual features with the target

embedded semantics through a self-adaptive way. Inspired by RN, Zhang and Shi [14]

proposed a Co-Representative network (CRnet) with the help of high local linearity. In

this paper, the proposed model extract discriminative visual and semantic features by100

VSE framework and measure their relationship with RN framework.

2.2. Synthesis-based Models

Synthesis-based models tries to learn a generator that generates samples from the

semantics, and to then train a classifier to predict classes with the generated synthesis

samples. For example, f-CLSWGAN [38] generates sufficiently discriminative CN-105

N features to train softmax classifiers with the help of a Wasserstein Generative Ad-

versarial Networks (WGAN) [39]. CVAE-ZSL [40] implements the generation by a

Conditional Variational AutoEncoder (CVAE) [41]. SE-GZSL [42] also designs a gen-

erator based on a Variational AutoEncoder (VAE) [43] but generates synthesis samples

in a feedback-driven way. Recently, Zero-VAE-GAN [5] is proposed to convert ZSL110

problems into supervised tasks by a combination of VAE and GAN.

The advantage of synthesis-based models is that both seen and unseen samples may

be obtained by generator, which contributes to significantly alleviate the domain bias

problem. However, synthesis-based methods require the generator to generate a large

number of high-quality and diverse samples (including unseen ones) for each class,115

which is costly and requires additional classifier learning. In this work, we aim to
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Figure 1: The framework of RDCN.

achieve high performance in both ZSL and GZSL tasks by the end-to-end relation-

based model.

3. Proposed Approach

In this section, firstly, we provide the problem definition of ZSL by mathematical120

notation. Secondly, we give the model structure and detailed description of different

modules. At last, we conclude the overall objective function.

3.1. Problem Definition

Suppose there are n labeled samples with c seen classes {X,S,Y} and nu unla-

beled samples with cu unseen classes {Xu,Su,Yu}, where X = [x1,x2, · · · ,xn] ∈125

Rd×n and Xu = [xu1 ,x
u
2 , · · · ,xunu

] ∈ Rd×nu are d-dimensional visual features, while

the corresponding labels are Y and Yu, respectively. It is noteworthy that the labels of

seen and unseen samples are disjoint, i.e., Y ∩Yu = ∅. S = [s1, s2, · · · , sc] ∈ Rk×c

and Su = [su1 , s
u
2 , · · · , sucu ] ∈ Rk×cu are k-dimensional semantic features of seen and

unseen samples. The ZSL task aims to learn a classifier f : Xu → Yu, where classes130

of testing data Xu are unavailable in training phrase.
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3.2. Model Architecture

Figure 1 shows the framework of proposed model RDCN. Specifically, the RDCN

consists of four parts: (1) The visual features X extracted by ResNet101 are encoded

with the help of the discriminative visual embeddings X̃. (2) The discriminative visual135

embeddings are decoded to reconstruct the input visual features X. (3) The cooper-

ated semantic features obtained by cooperation network are send into a discriminative

semantic embedding space, where S̃ is generated. (4) A relation network is adopted

as the similarity function to measure the relationship between the discriminative visual

features X̃ and discriminative semantics S̃.140

3.3. Encoder

The deep image features X are trained by following function to obtain the discrim-

inative visual embeddings:

X̃ = fe (X; θe) , (1)

where fe indicates the operation of the encoder whose parameters are denoted by θe.

In detail, the deep visual features X extracted by RessNet101 pass through multilayer

perceptron (MLP) with two hidden layers (h1 = 1024-D and h2 = 512-D), followed by

a dense layer with the LeakyReLU [44] activation. The output discriminative visual145

embeddings X̃ have the same dimension with the semantic embeddings.

3.4. Discriminative Visual Embedding

Most embedding models that solve the ZSL problem focus on calculating a typical

description of images in all classes, which makes the encoder non-discriminatory. Mo-

tivated by [45], adding discriminative embedding operations in the encoding process150

can make the learned low-dimensional features more discriminative, which is helpful

for classification.

In order to ensure that an embedding visual feature x̃i (x̃i ∈ X) is closer to each

image feature x̃j from the same class than any image feature x̃k from different classes.

We use the triplet loss [18] to learn a discriminative embedding by adjusting the intra-

class and inter-class distance between the learned features:

`tri =
1

n

n∑
i=1

max (0,m+ dintra − dinter), (2)
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Where m > 0 is a margin that is enforced between positive (same class) and negative

(different classes) pairs. dintra denotes the squared Euclidean distance between x̃i and

visual features from the same class, meanwhile, dinter denotes the squared Euclidean

distance between x̃i and visual features from the different class, i.e.,

dintra =
∑
x̃j∈ci

‖x̃i − x̃j‖22, (3)

dinter =
∑
x̃k /∈ci

‖x̃i − x̃k‖22. (4)

3.5. Decoder

The encoder and the decoder are connected by the discriminative visual embed-

dings. The discriminative visual feature X̃ is the input of the decoder, then the recon-

structed visual feature is denoted by following equation:

X̂ = fd

(
X̃; θd

)
, (5)

where fd indicates the operation of the decoder whose parameters are denoted by θd.

Similar with the encoder, the decoder is a multilayer perceptron (MLP) includes two155

hidden layers (h1 = 512-D and h2 = 1024-D) and a dense layer with the LeakyReLU

activation.

Since the proposed framework involves a decoder which reconstructs the original

visual features, there is an accompanying reconstruction loss:

`rec =
1

n

n∑
i=1

‖xi − x̂i‖22, x̂i ∈ X̂. (6)

3.6. Cooperation Module

Motivated by the CRnet [14], we use a decomposition structure to alleviate the

bias problem in cooperation module. Specifically, We first adopt the unsupervised K-

means clustering method to divide the semantic features S intoK(K < c) subsets. The

clustering center of k-th subset is denoted by s̄k(k = 1, 2, · · · ,K). Then, the semantic

feature si(i = 1, 2, · · · , c) with a combination of K clustering center are trained by

following cooperation module to obtain the discriminative semantic embedding:

s̃i =

K∑
k=0

fc ([si − s̄k] ; θc), (7)
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where fc indicates the operation of the cooperation module whose parameters are de-

noted by θc. In detail, the vector calculated by si − s̄k is fed into a single FC layer160

with a ReLU activation. Moreover, different from the CRnet, we also add the original

semantic features as the input to retain its own sparsity feature, i.e., s̄0 = 0.

3.7. Discriminative Semantic Embedding

Intuitively, maximizing the distance of the semantic embeddings by following func-

tion can maintain the discriminative information between different semantic features,

max
c∑
i=1

c∑
j=1

‖s̃i − s̃j‖22, (8)

where s̃i and s̃j are different semantic embeddings. In order to reduce the computa-

tional complexity of the above calculation methods, a semantic pivot is used to simplify

the calculation. The semantic pivot of semantics is defined as the center of semantic

embedding. It can be solved by the average embedded feature, or it can be calculated

by the mean shift technique. In fact, there is almost no difference in performance be-

tween these two calculations [17]. For simplicity, in this paper, the semantic pivot s̄ is

calculated by the center of the semantic embeddings, i.e., s̄ = 1
c

c∑
i=1

s̃i. Then, we get

the following loss function:

`piv = −
c∑
i=1

‖s̃i − s̄‖22. (9)

3.8. Relation Module

After obtaining discriminative visual feature x̃i and discriminative semantic feature165

s̃j , we adopt the RN [12] to measure their relationship. Specifically, the relation module

is a two-layer neural network and the input is the concatenation of x̃i and s̃j ; the hidden

layer increase nonlinearity and the output of the network is a scalar in range of 0 to 1

representing the similarity between discriminative visual and semantic features, which

is called relation score.170

In this module, we adopt RN as the similarity function g(·) and follow the origi-

nal settings. Thus the output relation score of training pairs x̃i and s̃j be denoted as

9



g(x̃i, s̃j). In the training process, we randomly sample the entire training set to gener-

ate training pairs of x̃i and s̃j , and control the ratio of matched pairs(discriminative vi-

sual and semantic features belong to the same class) to mismatched pairs(discriminative

visual and semantic features come form different classes) at about 1 : 30. The similari-

ties of matched pairs and mismatched pairs are set to 1 and 0, respectively. The relation

module is trained by mean square error loss:

`rel =

c∑
j=1

n∑
i=1

[g(x̃i, s̃j)− l(x̃i, s̃j)]2 (10)

where l(·) is the similarity ground-truth, l(x̃i, s̃j) = 1 when x̃i and s̃j belong to the

same class, and l(x̃i, s̃j) = 0 when x̃i and s̃j belong to different classes.

3.9. Overall Objective

With the objective functions introduced above, the overall objective of the proposed

model is given by:

` = `rel + α`tri + β`rec + γ`piv, (11)

where α, β and γ are trade-off parameters chosen based on the validation dataset.

Given a testing image xuk , its label can be inferred by:

j∗ = arg max
j

g(x̃uk , s̃j). (12)

For ZSL task, s̃j refers to the semantic embeddings of only the unseen classes, i.e.,175

jε{1, 2, · · · , cu}, and for GZSL task, s̃j refers to the semantic embeddings of both seen

as well as unseen classes, i.e., jε{1, 2, · · · , c + cu}. c and cu are the numbers of seen

and unseen classes, respectively.

4. Experiments

In this section, firstly, we introduce five popular ZSL datasets SUN, CUB, AWA1,180

AWA2, aPY and a large-scale ImageNet dataset. Secondly, we provide the implementa-

tion details of the architecture. Thirdly, some experimental results with related analysis

on the traditioal zero-shot setting and the more realistic generalized zero-shot setting

are given. Finally, we show some visualized results for the proposed model.

10



4.1. Datasets Descriptions185

Five Small-scale Attribute datasets: SUN Attribute (SUN) [46] is a fine-grained

dataset and it consists of 14,340 images belonging to 717 classes annotated with 102

attributes. Following the ZSL setting in [6], 72 out of 717 classes are as unseen cate-

gories and the rest of 645 categories as seen categories.

CUB-200-2011 Birds (CUB) [47] is a fine-grained and medium scale dataset which190

has in total 11,788 images distributed in 200 bird categories. Each class is annotated

with a 312-dim attribute vector. We follow the standard ZSL split with 150 categories

for seen classes and 50 for unseen classes as in [6].

Animals with Attributes 1 (AWA1) [6] is a kind of coarse-grained dataset, which

includes a total of 30,475 images belonging to 50 classes. Each class is annotated with195

a 85-dim attribute vector, where 40 categories (seen) are used for training and rest 10

categories (unseen) for testing. Animals with Attributes 2 (AWA2) [13] has the same 50

categories as AWA1 dataset. However, AWA2 dataset contains 37,322 images. Similar

to AWA1, 40 categories are used for seen classes and 10 categories are used for unseen

classes.200

A Pascal and Yahoo (aPY) [48] is a kind of small-scale coarse-grained dataset.

Each category is annotated with a 64-dim attribute vector. Among the total number of

32 classes, 20 Pascal classes are used for training and 12 Yahoo classes are used for

testing.

One large-scale dataset: ImageNet [49] has a total of 218,000 images. 21,841205

classes with more than 10 million images, where 1k classes containing 1.2 million

images are used for training the mapping. There are different splits in the test. Specifi-

cally, 2-hops/3-hops refers to test classes belonging to 2/3 tree hops away from 1k train

classes in the WordNet hierarchy, which contains 1,509/7,678 unseen classes. Such

classes that contain the top 500/1k/5k maximum images and top 500/1k/5k minimum210

images are given for test splits respectively. At last, all 20K classes are given for test-

ing, which is a challenging task.
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4.2. Implementation Details

We use ReLU activation for all layers except for the output of the encoder and

the decoder, which adopt LeakyReLU activations with the negative slope of 0.3. A215

single-layer FC network compared with K parallel single-layer FC network are given

for embedding the original and cooperated semantic vectors, respectively. Parameters

α and β in our objective function are fine-tuned in the range
[
5× 10−6, 10−2

]
and

γ from
[
10−7, 5× 10−4

]
. Moreover, the K value is given in the range [3, 12]. For

relation module, the discriminative visual and semantic features are concatenated with220

a hidden layer before passing relation network, We adopt Adam optimizer [50] with a

initialized learning rate of 10−3 and a weight decay of 5× 10−5. For fair comparison,

we follow the settings in [13] to split each dataset for training and testing. Moreover,

each image is represented by 2048-dim vector extracted by 101-layered ResNet, i.e.,

ResNet101 [51].225

4.3. Zero-Shot Learning (ZSL) Experiments

In this work, the average per-class top-1 accuracy is adopted as the evaluation cri-

teria for zero-shot classification, i.e., we average the correct predictions independently

for each class by follows:

accΥ =
1

‖Υ‖

‖Υ‖∑
c=1

#correct predictions in c

#samples in c
(13)

where Υ and ‖Υ‖ indicate the set of classes and number of classes with corresponding

dataset, respectively. So Υ includes all the test classes i.e., the unseen classes for ZSL

task.

The results of the different ZSL models on five popular small-scale datasets is given230

in Table 1. We can see that the proposed RDCN consistently performs better than

compared methods, and RDCN gets the state-of-the-art on four datasets: SUN, AWA1,

AWA2 and CUB. Specifically, the accuracies increase of 2.7% and 4.2% compared

to the strongest competitor on SUN dataset and AWA2 dataset, respectively. We also

observe a significant increase when we include all of the `tri, `rec and `piv in our235

model. This indicates that the reconstruction term makes a contribution to vary levels
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Table 1: Zero-shot learning (ZSL) results on five small-scale attribute datasets. The results report average

per-class Top-1 accuracy in %.

Method SUN CUB AWA1 AWA2 aPY

DeViSE [24] 56.5 52.0 54.2 59.7 39.8

CONSE [52] 38.8 34.3 45.6 44.5 26.9

CMT [9] 39.9 34.6 39.5 37.9 28.0

SP-AEN [53] 59.2 55.4 - 58.5 24.1

PSR [23] 61.4 56.0 - 63.8 38.4

DCN [54] 61.8 56.2 65.2 - 43.6

CCSS [55] 56.8 44.1 56.3 63.7 35.5

DAP [6] 39.9 40.0 44.1 46.1 33.8

IAP [6] 19.4 24.0 35.9 35.9 36.6

SSE [37] 51.5 43.9 60.1 61.0 34.0

LATEM [56] 55.3 49.3 55.1 55.8 35.2

ALE [57] 58.1 54.9 59.9 62.5 39.7

SJE [58] 53.7 53.9 65.6 61.9 32.9

ESZSL [20] 54.5 53.9 58.2 58.6 38.3

SYNC [59] 56.3 55.6 54.0 46.6 23.9

SAE [19] 53.4 42.0 58.1 50.3 32.9

f-CLSWGAN [38] 58.5 57.7 64.1 - -

TVN [60] 59.3 54.9 64.7 - 40.9

DVN [61] 62.4 57.8 67.7 - 41.2

Zhang’s [62] 60.4 53.2 67.4 - 42.8

RDCN (α = 0) 58.9 55.3 66.0 65.3 36.1

RDCN (β = 0) 60.6 56.5 67.9 66.1 37.9

RDCN (γ = 0) 59.3 56.1 69.3 65.2 39.5

RDCN 65.1 60.5 71.6 68.0 42.1

of gain fatures and the discriminative information among visual and semantic features

is also essential.

4.4. Generalized Zero-Shot Learning (GZSL) Experiments

GZSL means that the search space includes both test classes (Υts) and training

classes (Υtr). At first, the average per-class top-1 accuracy on Υtr and Υts can be

obtained by Eq. (13), then the harmonic mean is computed by follows:

H =
2× accΥtr × accΥts

accΥtr + accΥts
(14)

where accΥtr and accΥts are accuracies of samples from Υtr and Υts, respectively.240

The GZSL results on five popular attribute datasets is given in Table 2. We have

following observations according to the results:
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Table 2: Generalized Zero-Shot Learning (GZSL) results on five small-scale attribute datasets. ts =

acc
(
Υts

)
, tr = acc

(
Υtr

)
, H = harmonic mean. We measure Top-1 accuracy in %.

SUN CUB AWA1 AWA2 aPY

Method ts tr H ts tr H ts tr H ts tr H ts tr H

DeViSE [24] 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8 4.9 76.9 9.2

CMT [9] 8.1 21.8 11.8 7.2 49.8 12.6 0.9 87.6 1.8 0.5 90.0 1.0 1.4 85.2 2.8

CONSE [52] 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.5 90.6 1.0 0.0 91.2 0.0

DAP [6] 4.2 25.1 7.2 1.7 67.9 3.3 0.0 88.7 0.0 0.0 84.7 0.0 4.8 78.3 9.0

IAP [6] 1.0 37.8 1.8 0.2 72.8 0.4 2.1 78.2 4.1 0.9 87.6 1.8 5.7 65.6 10.4

GFZSL [34] 0.0 39.6 0.0 0.0 45.7 0.0 1.8 80.3 3.5 2.5 80.1 4.8 0.0 83.3 0.0

SSE [37] 2.1 36.4 4.0 8.5 46.9 14.4 7.0 80.5 12.9 8.1 82.5 14.8 0.2 78.9 0.4

LATEM [56] 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0 0.1 73.0 0.2

ALE [57] 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9 4.6 73.7 8.7

SJE [58] 14.7 30.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 8.0 73.9 14.4 3.7 55.7 6.9

ESZSL [20] 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 5.9 77.8 11.0 2.4 70.1 4.6

SYNC [59] 7.9 43.3 13.4 11.5 70.9 19.8 8.9 87.3 16.2 10.0 90.5 18.0 7.4 66.3 13.3

SAE [19] 17.8 32.0 22.8 18.8 58.5 28.5 14.2 81.2 24.1 16.7 82.5 27.8 9.9 74.7 17.5

ZSKL [29] 19.8 29.1 23.6 19.9 52.5 28.9 18.3 79.3 29.8 17.6 80.9 29.0 11.9 76.3 20.5

f-CLSWGAN [38] 42.6 36.6 39.4 43.7 57.7 49.7 57.9 61.4 59.6 - - - - - -

CVAE-ZSL [40] - - 26.7 - - 34.5 - - 47.2 - - 51.2 - - -

SE-GZSL [42] 40.9 30.5 34.9 41.5 53.3 46.7 56.3 67.8 61.5 58.3 68.1 62.8 - - -

TVN [60] 18.2 28.9 22.3 21.6 47.5 29.7 18.2 87.5 30.2 - - - 8.8 59.1 15.4

DVN [61] 25.3 34.6 29.2 26.2 55.1 35.5 34.9 73.4 48.5 - - - 13.7 72.2 23.1

RN [12] - - - 38.1 61.1 47 31.4 91.3 46.7 30 93.4 45.3 - - -

CRnet [14] 34.1 36.5 35.3 45.5 56.8 50.5 58.1 74.7 65.4 52.6 78.8 63.1 32.4 68.4 44

Zhang’s [62] 39.7 38.9 39.3 37.8 58.2 45.9 37.0 84.7 51.4 - - - 25.9 79.5 39.1

RDCN 37.3 37.7 37.5 45.5 58.1 51.0 60.2 79.0 68.3 56.6 72.3 63.5 34.0 75.6 46.9

(1) Compared with Table 1, ZSL results are higher than GZSL results (“ts” value).

The main reason is that all seen classes are included in the search space and these seen

classes confuse the test images. That is to say, an image from unseen class is more245

likely to be mistaken for a seen class when it is projected into the semantic space in

GZSL task.

(2) The “tr” value in Table 2 just represents the classification performance in the

seen dataset. Moreover, high accuracy on “tr” is often accompanied by low accuracy

on “ts” and “H” such as IAP and SYNC, which indicates that these models perform250

well most seen classes but fails to generalize for unseen classes, i.e., overfitting.

(3) With respect to the state-of-the-art, RDCN gets best “H” value almost on all
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Table 3: GZSL comparisons (ts) in ImageNet dataset. The results report Top-10 accuracy in %.

Hierarchy All Most populated Least populated All

Method 2-hops 3-hops 500 1k 5k 500 1k 5k 20k

CONSE [52] 0.86 7.14 23.47 18.38 9.92 0.00 0.00 0.66 3.43

CMT [9] 7.80 2.77 9.65 7.73 3.83 3.37 2.71 1.45 1.25

LATEM [56] 16.99 6.28 23.61 18.65 8.73 8.73 7.60 3.50 2.71

ALE [57] 17.79 6.34 24.93 19.37 9.12 10.38 8.46 3.63 2.77

DeViSE [24] 17.59 6.28 24.66 19.11 8.99 10.11 8.26 3.63 2.71

SJE [58] 17.46 6.21 23.61 18.45 8.79 9.85 8.00 3.50 2.71

ESZSL [20] 19.24 6.81 26.52 20.56 9.72 9.12 7.73 3.76 3.10

SYNC [59] 14.55 5.62 16.33 13.82 7.87 2.77 2.44 1.78 2.64

SAE [19] 13.55 4.82 20.76 16.60 7.60 3.43 2.57 1.58 2.24

PQZSL [63] 21.80 7.41 29.30 23.75 11.3 9.42 7.87 3.72 3.45

RDCN 25.69 10.15 33.71 26.91 15.65 11.33 10.37 7.83 7.31

datasets. In detail, RDCN obtains 68.3% on AWA1 dataset and 46.9% on aPY dataset,

which is better than the next best model CRnet by 2.9%. On AWA2 dataset, RDCN

gets a best accuracy of 56.6% on the first setting (“ts” value) and 63.5% overall. In255

addition, RDCN achieves better results compared to some synthesis-based models like

f-CLSWGAN, CVAE-ZSL, SE-GZSL and so on.

Moreover, Table 3 reports the result of GZSL (“ts” value) on ImageNet. Compared

with some baselines, RDCN obtains the best performance in most splits, which proves

the superiority of the proposed method on large datasets. The whole GZSL experimen-260

tal results supports our hypothesis that discriminative visual and semantic information

are beneficial for generalized zero-shot recognition.

4.5. Ablation Studies

In this subsection, we compare the RDCN with its different variants to study the

role of each item in the objective function 11. The experimental results are shown in265

Table 1. We analyze the following three cases: 1). “RDCN (α = 0)” means there is

no triplet loss `tri in the objective function 11; 2). “RDCN (β = 0)” means there is no

reconstruction loss `rec in the objective function 11; 3). “RDCN (γ = 0)” means there

is no semantic pivot regularization `piv in the objective function 11.

We observe in Table 1 that each kind of strategy of RDCN can improve the ZSL270

classification performances effectively. In addition, The role of the triplet loss `tri is
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Figure 2: The influence of α on six datasets. α is the parameter of the triplet loss `tri in the objective

function.

more important than that of reconstruction loss `rec and semantic pivot regularization

`piv , which is based on the fact that the result of “RDCN (α = 0)” is worse than that

of “RDCN (β = 0)” and “RDCN (γ = 0)”. According to the results of the last four

rows in Table 1, we can be see that each item in the objective function plays a positive275

role in the ZSL classification task.

For the RDCN, there are three parameters, i.e., α, β and γ in the objective function.

By varying one of the parameters while fixing the other parameters, we run the model

for 100 epochs and produce the GZSL results (“ts” value). Specifically, we conduct

experiments varying α and β from
[
5× 10−6, 10−2

]
and γ from

[
10−7, 5× 10−4

]
.280

The influence of α, β and γ on each dataset are illustrated in Figure 2, Figure 3 and

Figure 4, respectively. For the ImageNet, due to the large number of testing samples

(20K classes) in the complete dataset, we selected top 500 maximum images (M500)

as test splits for analysis. According to the “ts” results under different values of three

parameters α, β and γ, we conclude that the RDCN can obtain promising performance285

within a small range of parameters.
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Figure 3: The influence of β on six datasets. β is the parameter of the reconstruction loss `rec in the objective

function.
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Figure 4: The influence of γ on six datasets. γ is the parameter of the semantic pivot regularization `piv in

the objective function.

4.6. Visualized results

We further provide some visualized results for the proposed method. Figure 5

shows the confusion matrices of unseen classes on aPY dataset.

According to the results on Figure 5, we can see the proposed model RDCN can290
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Figure 5: Confusion matrices for unseen classes of the proposed model on the AWA2 dataset.

identify most of unseen classes, except “bat” (46.39%), “dolphin” (25.67%) and “seal”

(43.41%) on AWA2 dataset. We also observe that RDCN achieves appealing results on

some classes, such as “blue+whale” (91.19%), “rat” (87.90%) and “horse” (85.10%).

Considering the unseen samples are unavailable in training process, it strongly supports

the superiority of the proposed method for ZSL task.295

The t-SNE model [64] is used to project samples and prototypes from the semantic

space to the 2D plane. Its main function is to visualize the distance between the sample

and the corresponding class prototype. We selected seven seen classes and five unseen

classes from the AWA2 dataset to check whether the prototype was learned correctly.

Figure 6 and Figure 7 give the visualization results. It can be seen intuitively that most300

of the samples are located near the prototype of the corresponding class, which indi-

cates that the RDCN can learn proper mapping from the feature space to the semantic

space.

5. Conclusion

In this work, we have proposed a relation-based discriminative cooperation network305

to address the zero-shot classification problem. It keeps the discriminative information

by separating the inter-classes and cluster the intra-classes with a margin. In addition, a
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Figure 6: The tSNE visualisation of the visual features of training seen class samples from the AwA2 dataset

together with the projected class prototypes for the proposed model. Prototypes is denoted by ”*” and black

circles are used to mark them visible.

Figure 7: The tSNE visualisation of the visual features of test unseen class samples from the AwA2 dataset

together with the projected class prototypes for the proposed model. Prototypes is denoted by ”*” and black

circles are used to mark them visible.

pivot regularization is utilized to ensure the cooperated semantic structures discrimina-

tive. Finally, relation module is introduced to measure the relationship between visual

and semantic features. Experimental results on six benchmarks with multiple settings310
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including both ZSL and GZSL demonstrated the superiority of the proposed model for

zero-shot classification.

In the future, since the acquisition of attributes requires prior knowledge, we plan

to exploit some other semantic information to construct the common space, e.g., click-

through data. Moreover, we will exploit GAN based generative methods to establish a315

more robust representation in RDCN for zero-shot and few-shot classification.
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