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Abstract: Towards exploring the topological structure of data, numerous graph embedding
clustering methods have been developed in recent years, none of them takes into
account the cluster-specificity distribution of the nodes representations, resulting in
suboptimal clustering performance. Moreover, most existing graph embedding
clustering methods execute the nodes representations learning and clustering in two
separated steps, which increases the instability of its original performance. Additionally,
rare of them simultaneously takes node attributes reconstruction and graph structure
reconstruction into account, resulting in degrading the capability of graph learning. In
this work, we integrate the nodes representations learning and clustering into a unified
framework, and propose a new deep graph attention auto-encoder for nodes clustering
that attempts to learn more favorable nodes representations by leveraging self-
attention mechanism and node attributes reconstruction. Meanwhile, a cluster-
specificity distribution constraint, which is measured by \ell_{1,2}-norm, is employed to
make the nodes representations within the same cluster end up with a common
distribution in the dimension space while representations with different clusters have
different distributions in the intrinsic dimensions. Extensive experiment results reveal
that our proposed method is superior to several state-of-the-arts in terms of
performance.orm, is employed to make the nodes representations within the same
cluster end up with a common distribution in the dimension space while
representations with different clusters have different distributions in the intrinsic
dimensions. Extensive experiment results reveal that our proposed method is superior
to several state-of-the-arts in terms of performance.
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Abstract

Towards exploring the topological structure of data, numerous graph embedding clus-

tering methods have been developed in recent years, none of them takes into account

the cluster-specificity distribution of the nodes representations, resulting in suboptimal

clustering performance. Moreover, most existing graph embedding clustering methods

execute the nodes representations learning and clustering in two separated steps, which

increases the instability of its original performance. Additionally, rare of them simul-

taneously takes node attributes reconstruction and graph structure reconstruction into

account, resulting in degrading the capability of graph learning. In this work, we inte-

grate the nodes representations learning and clustering into a unified framework, and

propose a new deep graph attention auto-encoder for nodes clustering that attempts to

learn more favorable nodes representations by leveraging self-attention mechanism and

node attributes reconstruction. Meanwhile, a cluster-specificity distribution constraint,

which is measured by `1,2-norm, is employed to make the nodes representations within

the same cluster end up with a common distribution in the dimension space while

representations with different clusters have different distributions in the intrinsic di-

mensions. Extensive experiment results reveal that our proposed method is superior to

several state-of-the-arts in terms of performance.
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1. Introduction

As we enter the era of Internet data, the graph-structured data is ubiquitous, e.g.,

the data comes from social media and citation networks. Most of the data that people

usually obtain is unlabeled. However, numerous intelligent methods require labeled

data to train deep neural networks, such as classification and prediction tasks. To fill5

this gap, clustering has emerged. The goal of clustering is to divide data into some

disjoint groups such that the data in the common group are similar to each other, while

data in different groups have low similarity. Compared with the conventional learning

methods [1, 2, 3, 4, 5, 6, 7] which mainly investigate Euclidean structure data, such

as face data, handwritten digit and object, graph convolutional networks (GCNs) [8,10

9, 10, 11, 12, 13, 14] can better handle such graph-structured data, i.e., non-Euclidean

structure data, this is because that GCNs can provide powerful node representations via

preserving the topological structure [15, 16, 17, 18]. In this paper, we aim to present a

new graph convolutional solution to the nodes clustering task, which help label graph

structure data, thereby facilitating the development of deep neural network.15

To date, several graph convolutional auto-encoder based clustering models have

been proposed [10, 19, 20], at the core of which is to learn the low-dimensional, com-

pact and continuous representations, then they implement classical clustering methods,

e.g., K-Means [21], on the learned representations to obtain clustering labels. Despite

the impressive clustering performance, they still have the following limitations.20

1. They all neglect the cluster-specificity distribution (CSD) of nodes representa-

tions. In fact, different clusters are distributed in different dimensions of the

feature dimension, i.e., the values of features with the same cluster are large in

the corresponding dimensions of the cluster, and the values in other dimensions,

which correspond to other clusters, are small or zero. As shown in Fig. 1, this25

significant property, which is called CSD, is very important to learn more robust

nodes representations. To the best of our knowledge, similar investigations for

nodes clustering have been found lacking so far, which is one of the motiva-

2
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Figure 1: Illustration of cluster-specificity distribution on Cora dataset. (a) When without CSD constraint,

the nodes’features are distributed in almost 10 dimensions and they are very messy. Even in most dimensions,

the features of the nodes are remarkably similar, which may make the algorithm to cluster them all into

the same class. By contrast, in (b), the nodes’features are more discriminative under CSD constraint. For

example, the samples, which belong to the 1-st cluster, are mainly distributed in the 6-th and 7-th dimensions.

Thus, CSD constraint helps the algorithm to divide the samples.

tions behind this work. Thus, to well exploit the cluster structure, we should

take CSD constraint into account, while existing methods do not.30

2. Most of them fail to simultaneously reconstruct node attributes and graph struc-

ture, resulting in suboptimal nodes representations.

3. Most of them execute the nodes representations learning and clustering in two

separated steps, thus the networks cannot be trained for nodes clustering via an

end to end manner, which limits its performance.35

To well exploit cluster structure, inspired by these insight analysis, we propose

a nodes clustering method, namely, Graph Embedding Clustering: Graph Attention

Auto-encoder With Cluster-Specificity Distribution (GEC-CSD). Specifically, to make

the decoder part learnable, node attributes reconstruction term is introduced. More-

over, to eliminate the uncertainty of the post-processing clustering operation, we in-40

troduce the cluster activation function which help to integrate the nodes representa-

tions learning and node clustering in a unified framework. Meanwhile, we employ

`1,2-norm penalty to exploit the CSD of nodes representations. We integrate the afore-

3



mentioned concerns into a unified optimization framework. Extensive experiments on

three datasets are conducted to demonstrate the superiority of our proposed GEC-CSD45

over state-of-the-art methods. The main contributions of this paper are summarized as

follows:

1. We propose a novel deep graph convolutional embedding clustering model based

on graph attention auto-encoder which joints nodes representations learning and

clustering into a unified framework. Thus, the learned node representations not50

only well encode data information but also well characterize cluster structure.

2. We find that `1,2-norm has an important role of characterizing the CSD of graph

structured data in dimension space, and then apply it to learn nodes representa-

tions, which well characterizes cluster structure and consequently boosts cluster-

ing results.55

3. Both node attributes reconstruction and node neighbours importance are con-

sidered in clustering, which can help to well embed graph structure, thereby

learning more favorable nodes representations.

2. Related Work

Nodes clustering is one of the fundamental and active topics in unsupervised learn-60

ing. Over the years, studies have proposed a large number of nodes clustering method,

which can be roughly divided into three classes: probabilistic models, matrix factorization-

based methods, and deep learning-based methods. To be specific, probabilistic models

target at learning graph embedding via extracting different patterns or walks from the

graph. For example, Perozzi et al. [22] proposed the DeepWalk model, in which the65

captured walks include global structural equivalence and local neighborhood connec-

tivity. Matrix factorization-based methods aims to obtain low dimension embedding

by decomposing the adjacency matrix, e.g., Wang et al. [23] modularized nonnegative

matrix factorization (M-NMF), Yang et al. [24] text-associated DeepWalk (TADW).

To well exploit deep nonlinear representation, deep learning-based methods are70

proposed [25, 26, 19, 20]. One of the most representative methods is graph auto-

4



encoder (GAE) [20]. It encodes graph structure and node attribute to a node represen-

tation, on which a decoder is trained to reconstruct the graph structure. To improve the

robustness of node representation, Pan et al. proposed adversarial regularized graph

auto-encoder (ARGAE). However, in above methods, the neighbors of each node carry75

the same weight without considering the existence of noise in the graph structure. To

better mine the relevance of nodes and their neighbors, Velickovic et al. [27] proposed

graph attention networks (GATs), however, their method is designed to reconstruct

graph structure instead of node attributes, in which the graph structure can not be used

at all in the decoder part, resulting in degrading the capability of graph learning. To80

remedy this situation, Salehi et al. [28] proposed an improved graph-based encoder

with the self-attention mechanism (GATE) integrated, which reconstructs graph struc-

tured inputs, including both node attributes and the graph structure.

Although aforementioned methods work well in most cases, they require post-

processing operation to obtain clustering labels. To this end, Wang et al. [9] proposed85

deep attentional graph embedding clustering approach (DAEGC). Tao et al. [29] pro-

posed another graph embedding clustering methods. Despite achieving remarkable

progress, the decoder part is not learnable. To solve this problem, Park et al. [11]

proposed a symmetric graph convolutional auto-encoder to node clustering (GALA).

Pan et al. [12] proposed the improved ARVGAE with simultaneous reconstructing the90

graph structure and node attribute (ARVGA-AX). Kou et al. [30] proposed the self-

supervised node clustering model via preserving latent distribution.

However, all of them fail to take CSD constraint into account. To well exploit

cluster structure, motivated by the great success of the `1,2-norm [31] on feature se-

lection [32, 33, 34], classification [35] and unsupervised learning [36], we study the95

graph auto-encoder and propose a novel graph attention auto-encoder with the cluster-

specificity (GEC-CSD) constraint. Our proposed GEC-CSD integrates nodes represen-

tations learning and clustering into an end-to-end framework. Meanwhile, we make the

decoder part learnable via introducing node attribute reconstruction. Thus, the learned

nodes representations well capture the cluster structure and are more suitable for down-100

stream clustering task.

Notations. For convenience, the adjacency matrix of a graph is represented by

5
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Figure 2: The overall framework of our proposed GEC-CSD. For the given node attribute X and the cor-

responding graph structure A, GEC-CSD jointly learns node representations and performs nodes clustering

in two successive steps, one is a graph attention auto-encoder with cluster-specificity distribution constraint

which simultaneously maps X and A into a latent space to get node representations Z, and the other is a

self-training clustering layer with discriminator D which minimizes the mismatch between different distribu-

tions of Z w.r.t. cluster centers. In GEC-CSD, we use the graph attention auto-encoder and the self-training

clustering layer together as a generator G to produce different distributions of Z w.r.t. cluster centers.

A ∈ RN×N , in which ASj = 1 indicates there is an edge between the S-th node

and j-th node (S = j is present). Suppose that we aim to cluster N input nodes

{x1×d1
S ∈ X}NS=1 into C clusters. Then the graph attention encoder of generator G105

maps raw nodes attributes and graph structure to their corresponding latent representa-

tions {z1×d3S ∈ Z}NS=1, where di denotes the dimension of i-th layer. The reconstructed

node content is represented by X̂. The m-th row of a matrix B ∈ Rd×k is represented

by bm. The Frobenius norm of B is ‖B‖F =
√∑d

m=1

∑k
j=1 b

2
mj . The `1,2-norm of

B is ‖B‖21,2 =
∑d
m=1 ‖bm‖21 =

∑d
m=1

(∑k
j=1 |bmj |

)2
. µt(t = 1, · · · , C) represents110

the centroid of t-th cluster.

3. The Proposed Method

Now, we detail our proposed GEC-CSD. Firstly, we explain the network formula-

tion, then present each component, and finally we describe the implementation process.

115

6



3.1. Formulation

As aforementioned, graph embedding clustering methods [10, 29] use learnable

graph embedding process to divide input nodes. Although they seamlessly integrate

graph structure and node attributes, they fail to take the importance of neighbor nodes

into account, thus giving rise to poor performance in the existence of noise. To remedy120

this situation, GATs [27] adopts a learnable attention mechanism to enable specifying

different weights to different nodes in a neighborhood. However, above methods are

designed to reconstruct the graph structure A instead of node attributes X. In this case,

the decoder part cannot be learnable, resulting in degrading the capability of graph

learning. Recently, GATE [28] model was proposed, which is able to reconstruct both125

node attributes and graph structure. Unfortunately, GATE executes the nodes represen-

tations and nodes clustering in two separated steps, which limits its performance.

To tackle the above vital issues simultaneously within a unified framework, we

propose a novel graph embedding clustering model via unsupervised discriminant fea-

ture extraction, which learns more discriminative representations for node clustering by130

graph attention auto-encoder with the `1,2-norm penalty, and we introduce adversarial

regularizer to complement node representations distribution for better node clustering.

Fig. 2 illustrates the overall architecture of our proposed GEC-CSD, which consists of

a node latent representations (and self-training clustering) generator G and a discrimi-

nator D.135

Specifically, our proposed GEC-CSD utilizes a two-layer non-linear graph attention

encoder of generator G to map the raw node attribute matrix X and graph structure A to

get the latent node representations Z. To ensure the learned representations Z maintain

the local structure of both node attributes and graph structure, we leverage an inner

product decoder and a learnable graph attention decoder to reconstruct both the graph140

structure A and node attribute X, respectively.

In order to make the learned node latent representations Z more meaningful so that

it can help the downstream node clustering task, we introduce the combination of t-SNE

algorithm [37] and adversarial learning as a novel and complementary unsupervised

graph embedding clustering solution. Concretely, let distribution P be the target (ideal)145

distribution of the node representations Z. When the obtained cluster µt is not accurate

7



due to the complex data structure, we will learn an actual data distribution Q (obtained

via Eq. (6), a special cluster activation function) of Z. According to the thought of

t-SNE, if the data in the two spaces are similar, then the corresponding distribution

should be the same. In other words, if the current cluster µt is inappropriate, there will150

be a gap between Q and P.

The target of our proposed GEC-CSD is to eliminate such difference between the

actual data distribution Q (generated from noisy µt and node representations Z) and

ideal target distribution P. Consequently, we use the squared F -norm based constraint

as clustering loss to minimize this difference. Although the error between the two dis-155

tributions is small, the magnitude of the elements values of the two distributions may

differ significantly in terms of important features. This is scale issue [38]. However,

due to the scale issue of Q, the single clustering loss term may result in inferior clus-

tering results. To make sure the diversity of two distributions, a discriminator D is

adopted to complement the clustering loss (It will be explained in more details in Sec.160

3.3).

The discriminator D in our proposed GEC-CSD is alternately trained with gener-

ator G. The D tries its best to distinguish the “real” samples from target distribution

P and “fake” samples from actual data distribution Q. If the clustering performance is

satisfactory, the actual data distribution Q and ideal target distribution P should be the165

same. By feeding back such supervision information to G, the G will update its param-

eters to produce more powerful node representations Z and cluster µt to help cluster.

By iterative learning, the G will produce outstanding and effective representations Z

for clustering, the actual data distribution and the target distribution will be basically

the same under this condition.170

To make the node representations Z well characterize cluster structure, in other

words, making the latent representations Z more discriminative, the `1,2-norm penalty

on Z is adopted. We can enforce the graph attention encoder to capture the difference

of latent space in different cluster by this constraint.

The network structure of G and D, objective function and the implementation de-175

tails of our proposed GEC-CSD are elaborated in detail in the following subsections.
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3.2. Generator

By characterizing the geometric difference embedding in different cluster spaces,

the generator G of our proposed GEC-CSD learns discriminative node representations

that are favorable for node clustering. In particular, it learns to map the raw node180

attributes and graph structure to a latent representation space, where nodes can be bet-

ter represented, then produces “real” and “fake” samples via latent representation and

centroid of each cluster. Finally, the clustering results can be obtained via actual distri-

bution Q.

As shown in Fig. 2, the generator G utilizes a graph convolutional auto-encoder

with self-attention mechanism [28, 27] to non-linearly map the node attribute matrix

X and the corresponding graph structure to latent representations Z. Following [28],

in G, the output representations of i-th encoder layer of node S are defined as

z
(i)
S =

∑
j∈NS

α
(i)
ij σ

(
W(i)z

(i−1)
j

)
, (1)

where NS represents the neighbourhood of node S (including itself). z
(0)
S is the raw

node attribute xS of node S. α(i)
Sj is set to make the relevance coefficients r(i)Sj of the

node neighbours comparable of the S-th, which is defined as

α
(i)
Sj =

exp
(
r
(i)
Sj

)
∑
l∈NS

exp
(
r
(i)
Sl

) , (2)

where r(i)Sj indicates the relevance coefficient between neighbor j-th node and S-th

node, it can be calculated by

r
(i)
Sj = φ

((
v(i)
s

)T
σ
(
h
(i)
S

)
+
(
v(i)
r

)T
σ
(
h
(i)
j

))
, (3)

where h(i)
Θ = W(i)z

(i−1)
Θ . W(i) ∈ Rdi×di−1 , v(i)

s ,v
(i)
r ∈ Rdi are the trainable param-185

eters of the i-th encoder layer. φ(·) denotes the sigmoid activation function, and σ(·)

denotes the activation function of i-th encoder layer.

Following [28], the decoder part is constructed with the same number of layers

as the encoder. Each decoder layer tries to reverse the process of its corresponding
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encoder layer. By utilizing the output of the encoder as the input of the decoder, i.e.,

the ith decoder layer reconstructs the representation of node S in layer i-1, we have

ẑ
(i−1)
S =

∑
j∈NS

α̂
(i)
Sjσ

(
Ŵ(i)ẑ

(i)
j

)
, (4)

where ẑ(0)S represents the output of the last layer in decoder, which is the reconstructed

feature content x̂S of node S.

According to Eqs. (1, 4), to make sure the learned node representations Z can

preserve the sufficient information of both node attributes and graph structure, the re-

construction loss is defined as

LR =
1

N

N∑
S=1

‖xS − x̂S‖22 − ξr
∑
j∈NS

φ
(
−zTSzj

), (5)

where the first term is node attribute reconstruction, and the second term is the cor-190

responding graph structure reconstruction, which is implemented by an inner product

decoder [28]. Now, the node representations Z are obtained.

The proposed method aims to cluster with the node representations Z. In order to

characterize the relationship between representation zS of node S and cluster centroid

µt, we herein define a distinctive activation function A (·, ·), which is related to the

cluster centroid. Hence, we have

A(zS , µt) =
(1 + ||zS − µt||2)

−1∑
t′ (1 + ||zS − µt′ ||2)

−1 . (6)

We define the result obtained by Eq. (6) as the actual data distribution Q ∈ RN×C .

So, we have qSt = A(zS , µt), where qSt ∈ Q represents the probability that clusters

node S into t-th cluster. The clustering result of node S can be calculated from the last195

optimized Q by lS = max Index(qS), where max Index(·) is set to find the index

of max probability value in S-th row of Q. The centroid µt of each cluster is defined

as the trainable variable. The centroids calculated by K-Means is utilized to initialize

µt.

As shown in Fig. 3, suppose we map node representations Z to a low-dimensional

Ψ. According to t-SNE, we need to find a reasonable distribution P of Ψ, if repre-

sentations Z are similar to low-dimensional Ψ, the actual distribution Q should be the

10
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Figure 3: The illustration shows the idea to calculate target distribution P.

same as distribution P. Hence, a clustering loss term min
∑
f (Q,P) is introduced to

describe the difference between the two distributions, which is defined by

LC =
∑

f (Q,P) = ξC ‖Q−P‖2F , (7)

where ξC is a coefficient to control the balance between LC and LR. Due to the scale200

issue of Q, only adopting the clustering loss term may degrade the diversity of distribu-

tion Q. Considering that the adversarial learning can well characterize the differences

between two different distributions [39], we set data distribution Q to the “fake” sam-

ples, and naturally distribution P is the “real” and samples (See Sec.3.3). Thus, as a

complement to the clustering loss term, the distribution Q and P can match each other205

via adversarial learning.

It’s crucial to calculate a reasonable distribution P. Because actual distribution

qSj ∈ Q refers to the probability of clustering node S to cluster j. We hope target

distribution P has the following properties: 1) it can further emphasize more on the

nodes assigned with high confidence, 2) it can strengthen predictions, 3) it can prevent

large clusters from distorting the latent representations of the nodes. In our proposed

GEC-CSD, we consider the data distribution Q as low-dimensional map Ψ. Hence,

motivated by [40], P is defined as:

pSt =
q2St/

∑
S qSt∑

t′ q
2
St′/

∑
S qSt′

, (8)

where
∑
S qSt is the soft cluster frequency. In fact, the target distribution intends to

further enhance the actual distribution, and it concentrates more on the assigned data

with high confidence, so the distribution P is called ideal target distribution.
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In terms of node representations discriminability, the existing methods do not con-

sider the CSD in latent node space, resulting in inferior clustering performance. To ob-

tain the intrinsic feature distribution of different clusters, we herein employ `1,2-norm

to measure the CSD. Here, the `1,2-norm penalty on Z is adopted as CSD constraint,

so that the CSD is fully considered in the latent space. Hence, it can be defined as

LCSD = β‖Z‖21,2 = β

N∑
S=1

‖zS‖21, (9)

where β is a tradeoff parameter. By minimizing Eq. (9), different elements in squared210

`1-norm of S-th row zS are competing with each other to survive, and at least one

element in row zS survives (remaining nonzero). By doing so, some discriminative

features are survived for each cluster to provide certain flexibility in the learned nodes

representations, i.e., making Z well exploit the CSD property.

3.3. Discriminator215

We build the discriminator to distinguish whether the ideal target distribution P

(“real” data) and actual data distribution Q (“fake” data) are consistent. For the dis-

criminator D, it only needs to learn an effective discriminant model to make sure the

actual data distribution Q can get close to the ideal target distribution P. Inspired by

t-SNE, the distribution P and Q should be the same if the data in two different spaces

are similar. Hence, the discriminator D evaluates current clustering performance by

feeding back the differences of target distribution P and data distribution Q to gen-

erator G. In our proposed GEC-CSD, the D is trained by minimizing the following

discriminative loss LD:

LD = min
D
γ1

N∑
S=1

[log (pS) + log (1− qS)], (10)

where γ1 is a trade-off parameter. For all datasets, we employ a three-layer fully con-

nected neural network d (p;ϑ) as discriminator D.

In training step, D is trained to distinguish whether the input distribution is from

ideal target distribution P or actual data distribution Q, while G is trained to fool the

discriminatorD to think that the data distribution Q is ideal distribution P. By iterating220
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alternately, finally, these two distributions Q, P will be the same, which also means

the generator G generating more excellent Z.

3.4. Training and Clustering

Now we can define the total loss of the generator G. Following the idea of adver-

sarial learning, generator G is trained to fool the discriminator D to think that the data

distribution Q is ideal distribution P. Therefore, we constrain generator G to mini-

mize La = γ2
∑N
S=1 [− log (qS)], i.e., to encourage the generated data distribution Q

(“fake” data) to be close to the ideal target distribution P (“real” data) indicating more

satisfactory clustering results through tuning the representation learning and cluster-

ing performance from G. Combining this adversarial loss La of generator G with the

reconstruction loss LR, the clustering loss LC and CSD constraint, we have the final

training objective of function G:

LG = min
G
γ2La + LR + LC + LCSD, (11)

where γ2 is a trade-off parameter.

We train the whole network structure as follows. We initialize the network pa-225

rameters of generator G and discriminator D (See Sec. 4 for the specific initialization

methods). We can gain the node representations Z via inputting the node attribute X

and their corresponding graph structure A into the generator G. We apply K-Means on

the representations Z to obtain the initial cluster centroid µt of each cluster. Then we

utilize representations Z and cluster centroids µ to compute actual data distribution Q,230

and we further calculate the target distribution P. Next we jointly train the D and G.

Since the network structure of discriminatorD is shallower than the generator’s. In

order to train the model more stable, we alternately update D and G for 3 times and

1 time within each epoch respectively. Both discriminator D and generator G adopt

the Adam algorithm [41] to optimize, and the proposed method does not require pre-235

training step. The learning rate of D and G are 3× 10−3 and 3× 10−5 respectively.

At the end of the adversarial training, we can predict the clustering label of each

node from actual data distribution Q. For node xS , its clustering label can be calculated

by qS , in which the index with the highest probability value is xS’s cluster.
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Table 1: Descriptions of datasets, where # means the number of.

Dataset The size of attributes # Classes # Nodes # Links

Cora 1, 433 7 2, 708 5, 429

Citeseer 3, 703 6 3, 327 4, 732

Pubmed 500 3 19, 717 44, 438

4. Experiments240

We evaluate the node clustering performance of our proposed method in three ci-

tation network datasets (Cora, Citeseer and Pubmed) [42] with three frequently-used

evaluation metrics: accuracy (ACC), normalized mutual information [43] (NMI) and

average rand index (ARI) as in [11], and the higher values imply more correct results.

Brief statistics of three datasets are shown in Table 1.245

4.1. Comparing methods

We compare the proposed method with several traditional clustering methods and

state-of-the-art graph clustering methods. According to the input of different algo-

rithms, the compared methods can be roughly categorized into three groups as de-

scribed below:250

• Using node attribute only: K-Means [21], as the baseline clustering method, is

compared in our experiments.

• Using node graph structure only: Spectral clustering (SC) [44], graph en-

coder [26], DeepWalk [22], denoising auto-encoder for graph embedding (DNGR) [25]

and M-NMF [23].255

• Using both node graph structure and node attribute: Robust multi-view SC

(RMSC) [45], TADW [24], GAE and variational GAE (VGAE) [20], marginalized

graph auto-encoder (MGAE) [8], ARGAE and variational ARGAE (ARVGAE) [10],

DAEGA [9], GATE [28], GALA [11] and ARVGA-AX [12].
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Table 2: The dimensions of the different network layers on Cora, Citeseer and Pubmed datasets.

Dataset encoder-1/decoder-2 encoder-2/decoder-1

Cora 512 512

Citeseer 2, 000 500

Pubmed 2, 000 348

4.2. Experimental Parameters Setting260

In our experiments, for all datasets, we fix the parameters of the proposed method

as γ1 = γ2 = 0.5, ξr = 0.5, ξC = 10. As for the parameter β = 1 × 10−5 is adopted

on Cora and Citeseer dataset, β = 1 × 10−3 is set on Pubmed dataset. The reason for

setting the % very small is to maintain balance in Eq. (11), we find the loss value of

the CSD term in Eq. (11) is much larger than the other three items. The graph encoder265

of generator G in our proposed GEC-CSD has two layers, their node representation di-

mensions are given in Table 2, the decoder has a symmetrical structure to the encoder.

The activation functions σ(·) of all layers in G are set to the identity function, empiri-

cally resulting in better performance compared to other activation functions [28]. The

network dimensions of D is set as 2000-2000-1. We use ReLU [46] as the non-linear270

activations of first two layers in D, and the Sigmoid activation is set to the output layer

inD. Unlike other methods [29, 9], the proposed method does not require pre-training.

For fair comparison, we employ the same dataset provided by [28, 9], and the process-

ing method is also set the same. Our hyper-parameters in numbers are almost the same

as the competitor GATE [28] and DAEGC [9]. We utilize TensorFlow 1.13.1 platform275

to implement our proposed GEC-CSD.

4.3. Node Clustering Results

We evaluate our proposed GEC-CSD on the Cora, Citeseer, and Pubmed datasets

for node clustering task. Table 3 summarizes the clustering performance on three

datasets. One can observe that the proposed method consistently shows superior per-280

formance to the other baselines for all three metrics. On the Cora and Pubmed datasets,
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Table 3: Clustering results of various methods on three datasets. Best results are highlighted in bold. Info.

means the input information of different methods: A denotes the node graph structure, X represents the

node feature content.

Dataset Info. Cora Citeseer Pubmed

Metric ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-means [21] X 0.500 0.547 0.501 0.544 0.312 0.285 0.580 0.278 0.246

SC [44] A 0.398 0.297 0.174 0.308 0.090 0.082 0.496 0.147 0.098

Graph Encoder [26] A 0.301 0.059 0.046 0.293 0.057 0.043 0.531 0.210 0.184

Deep Walk [22] A 0.529 0.384 0.291 0.390 0.131 0.137 0.647 0.238 0.255

DNGR [25] A 0.419 0.318 0.142 0.326 0.180 0.043 0.468 0.153 0.059

M-NMF [23] A 0.423 0.256 0.161 0.336 0.099 0.070 0.470 0.084 0.058

RMSC [45] A&X 0.466 0.320 0.203 0.516 0.308 0.266 0.629 0.273 0.247

TADW [24] A&X 0.536 0.366 0.240 0.529 0.320 0.286 0.565 0.224 0.177

GAE [20] A&X 0.530 0.397 0.293 0.380 0.174 0.141 0.632 0.249 0.246

VGAE [20] A&X 0.592 0.408 0.347 0.392 0.163 0.101 0.619 0.216 0.201

MGAE [8] A&X 0.684 0.511 0.448 0.661 0.412 0.414 0.593 0.282 0.248

ARGE [10] A&X 0.640 0.449 0.352 0.573 0350 0.341 0.681 0.276 0.291

ARVGE [10] A&X 0.638 0.450 0.374 0.544 0.261 0.245 0.513 0.117 0.078

DAEGC [9] A&X 0.704 0.528 0.496 0.672 0.397 0.410 0.671 0.266 0.278

GATE [28] A&X 0.658 0.527 0.451 0.616 0.401 0.381 0.673 0.322 0.299

GALA [11] A&X 0.746 0.578 0.532 0.693 0.441 0.446 0.684 0.327 0.321

ARVGA-AX [12] A&X 0.711 0.526 0.495 0.581 0.338 0.301 0.640 0.239 0.226

GEC-CSD A&X 0.755 0.607 0.540 0.718 0.445 0.473 0.699 0.340 0.330

our proposed GEC-CSD respectively improves by 2.9% and 1.3% over the second best

GALA on NMI. For both ACC and ARI metrics on Citeseer dataset, the proposed

method also brings 2.5% improvement and improves by 2.7% over the state-of-the-

arts. Moreover, our proposed GEC-CSD achieves much better clustering performance285

rather than several shallow graph clustering or feature content clustering methods, e.g.,

RMSC, K-Means and spectral clustering. This is because the proposed method utilizes

a multi-layer graph convolutional attention auto-encoder to learn node representations.

So our proposed GEC-CSD can learn deeper, more powerful latent features. Further-

more, the algorithms with self-attention mechanism, e.g., GATE and DAEGC, out-290
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Table 4: Comparison of the execution times (in seconds) of different GCNs based methods on three datasets.

Dataset Cora Citeseer Pubmed

ARGE [10] 27.727 47.077 1933.370

ARVGE [10] 173.730 145.216 16942.421

DAEGC [9] 29.340 69.533 207.526

ARVGA-AX [12] 188.526 159.033 16531.420

GEC-CSD 27.433 74.689 199.041

perform the methods without attention mechanism, e.g., ARGE and GAE, since self-

attention mechanism determines the significance between nodes and their neighbours.

Especially, our proposed GEC-CSD outperforms GATE [28] and ARVGA-AX [12],

which adopts the same graph auto-encoder architecture as our generator G. The better

performance of our proposed GEC-CSD owes to the more discriminate node represen-295

tations, which indicates the adversarial learning and `1,2-norm penalty in the proposed

method are effective at benefiting the node representation learning and clustering.

Comparison of the execution times. We also compare our proposed GEC-CSD

with several representative GCNs based methods. Table 4 shows the comparison results

of the execution times (in seconds). As can be seen, the time consumed by our pro-300

posed GEC-CSD is significantly less than that of other algorithms when dealing large

scale dataset. The same amount of time is consumed when dealing with small scale

datasets. These results well demonstrate the effectiveness of our proposed GEC-CSD

from another aspect.

Table 5: Ablation studies on three datasets.

`1,2-norm Adversarial
Cora Citeseer Pubmed

ACC NMI ARI ACC NMI ARI ACC NMI ARI

7 7 0.721 0.565 0.500 0.678 0.415 0.428 0.677 0.313 0.306

7 3 0.742 0.589 0.523 0.697 0.442 0.451 0.691 0.333 0.320

3 7 0.730 0.574 0.511 0.704 0.425 0.450 0.688 0.325 0.321

3 3 0.755 0.607 0.540 0.718 0.445 0.473 0.699 0.340 0.330
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4.4. Ablation studies305

To better illustrate the performance of our proposed GEC-CSD, we validate the

effectiveness of the `1,2-norm penalty and adversarial learning by clustering task on

the above three datasets. We verify the results of discarding or reserving two terms,

corresponding four configurations as shown in Table 5. For fairness, we utilize the

same hyper-parameters corresponding to the three datasets reported in Sec. 4.2.310

• Case1: We discard both the `1,2-norm penalty and adversarial learning. It

means the objective function of the network only contains reconstruction loss LR in

Eq. (5) and clustering loss LC in Eq. (7). Compared with the baseline GATE [28] in

Table 3, it can be clearly noticed that the clustering loss in Eq. (5) are helpful to find

the latent representations which can improve clustering performance.315

• Case2: We discard either the `1,2-norm penalty or adversarial learning. It

indicates the objective function in Eqs. (10, 11) ofD and G will remove adversarial loss

or cluster-specific constraint term. Compared with Case1 mentioned above, it can be

clearly noticed that both `1,2-norm penalty and adversarial learning are helpful to learn

better latent node discriminative representations for node clustering task. In addition,320

one can observe that the method, on some evaluation metrics, outperforms state-of-

the-arts in Table 3. This is because compared with some state-of-the-arts, e.g., MGAE,

ARGE, DAEGC and GALA, we directly impose CSD constraint on latent features,

which can characterize the geometric distribution characteristics of data in different

cluster spaces. Meanwhile, when we reserve adversarial learning between generator325

and discriminator, this can guild generator to correct current clustering error so that the

generator can generate more powerful representations.

• Case3: We reserve both the `1,2-norm penalty and adversarial learning. This

can clearly demonstrate the clustering effectiveness of the proposed method. This is

because both the `1,2 penalty and adversarial learning between generator and discrimi-330

nator in our proposed GEC-CSD are effective at benefiting the representation learning

and clustering.
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Figure 4: Visualizations of the representations Z on three datasets. In order to easily observe the discrim-

inability of Z, we arrange the nodes according to the correct cluster, each row is the latent representation of

a node.

4.5. Effect of CSD constraint

One of the key ideas of the proposed GEC-CSD is the cluster-specificity distribu-

tion, which is measured by `1,2-norm penalty. To verify its effectiveness on a visual335

level, we visualize the learned latent representations on three datasets in Fig. 4. For

better explanation, the dimension of a node’s latent representation is set to 10, (a-c)

mean the learned representations without `1,2-norm penalty, (d-f) are just the oppo-

site. Each row is a node’s latent feature, we put together samples of the same cluster.

From the visualizations (d-f), it is clearly observed that the nodes of different clusters340

are distributed in different dimensions of the feature dimension, and the nodes of same

clusters have a common distribution in the intrinsic feature dimension, especially on the

Cora and Pubmed datasets. This well demonstrates that the `1,2-norm help character-

ize the cluster-specificity distribution of data in different cluster spaces in unsupervised

learning. Although the representations in Fig. 4 (b) also look very discriminative with-345

out the `1,2-norm penalty, they also confirm the effectiveness of adversarial learning

from the other side.

19



Table 6: The effectiveness of discriminator.

Method
Cora Citeseer Pubmed

ACC NMI ARI ACC NMI ARI ACC NMI ARI

GEC-CSD with KLD 0.738 0.586 0.520 0.695 0.421 0.438 0.683 0.306 0.300

GEC-CSD 0.755 0.607 0.540 0.718 0.445 0.473 0.699 0.340 0.330

Epoch1 Epoch20

Q

P

Epoch200...

...

(a) Distribution Q in Epoch 1

Epoch1 Epoch20

Q

P

Epoch200...

...

(b) Distribution P in Epoch 1
Epoch1 Epoch20

Q

P

Epoch200...

...

(c) Distribution Q in Epoch 20

Epoch1 Epoch20

Q

P

Epoch200...

...

(d) Distribution P in Epoch 20
Epoch1 Epoch20

Q

P

Epoch200...

...

(e) Distribution Q in Epoch 200

Epoch1 Epoch20

Q

P

Epoch200...

...

(f) Distribution P in Epoch 200

Figure 5: Visualizations of distributions Q and P on Cora dataset. We randomly selected 10 nodes to show

the distribution relationship vs. training epoch, where (a, c, e) are the visualizations of distribution Q, (b, d,

f) are the visualizations of distribution P.

4.6. Effect of adversarial learning

To demonstrate the effectiveness of adversarial learning in distribution measure-

ment, we verify the node clustering performance of GEC-CSD under Kullback-Leibler

divergence (KLD) measure. Specifically, we first get rid of the discriminator, then the

original clustering objective function LC is replaced by Kullback-Leibler divergence
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(KLD), thus we have

LC = KLD(P ‖Q ) =

N∑
S=1

C∑
j=1

pSj log

(
pSj
qSj

)
, (12)

where N and C are the number of nodes and clusters, respectively. Table 6 shows the

clustering results of considering KLD measure. As can be seen, our proposed GEC-350

CSD is still have advantages. The reason maybe that the introduced discriminator

help tackle scale issue, thereby further eliminating gaps between two distributions.

Meanwhile, the distributions visualizations also demonstrate the effectiveness of this

strategy.

Distributions Visualization. As reported in Fig. 5, we visualize the target distri-355

bution and data distribution of a random 10 nodes of Cora dataset vs. training epoch,

where the left color 3-D bar shows the 10 nodes data distribution Q and target distri-

bution P. The right 2-D bar clearly shows the 1-st node’s distribution Q and P. With

training the G and D alternately, one can be observed is that the distribution difference

of Q and P becomes smaller and smaller. As aforementioned, we hope the data dis-360

tribution can get close to target distribution, which means the clustering performance

is excellent. Comparing with each training epoch, we find our proposed GEC-CSD

performs well. Hence, the P,Q adversarial learning in Eqs. (10, 11) is advantageous

in the process of learning latent node representations.

4.7. Convergence Behaviors365

To verify the convergence of the proposed GEC-CSD, as shown in Fig. 6, we record

the objective values and clustering performances of GEC-CSD vs. iterations. As ob-

served, although the objective values do monotonically decrease at each iteration, the

overall convergence can be reached within approximately 50 steps of iterations. More-

over, we observe that clustering results gradually increase to a maximum and generally370

maintains it up to slight variation. These results demonstrate that our proposed GEC-

CSD can quickly converge.
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(a) LG and LR (b) LC

(c) LCSD (d) Clustering performances

Figure 6: The objective values and clustering performances of GEC-CSD vs. iterations on Cora dataset.

5. Conclusion

We proposed a novel graph embedding clustering model based on graph attention

auto-encoder, which joints node representations learning and clustering into a unified375

framework. Different from previous works, we simultaneously take node attributes re-

construction and graph structure reconstruction into account to boost the capability of

representations learning. Meanwhile, the `1,2-norm penalty on node representations

is introduced to enforce the learned representations more cluster-specific and conse-

quently improve clustering performance. Moreover, a reasonable adversarial learn-380

ing is adopted to complement the diversity of node representations distributions. Ex-

perimental results on the citation datasets demonstrate the validity of our proposed

GEC-CSD, and our proposed GEC-CSD performs superior advantages over state-of-
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the-arts. Our proposed method can also work with other types of datasets, such as

image datasets e.g., MNIST, COIL20 and YALE, etc. However, when dealing with385

such image datasets, it needs to construct corresponding graph structure. Choosing a

proper graph construction approach is a challenging task, we will continue to study this

in the future.
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