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Abstract:  

1) Background/Introduction 

By selectively enhancing the features extracted from convolution networks, the attention mechanism has shown its 

effectiveness for low-level visual tasks, especially for image super-resolution (SR). However, due to the spatiotemporal 

continuity of video sequences, simply applying image attention to a video cannotdoes not seem to obtain good SR results. At 

present, there is still a lack of suitable attention structure to achieve efficient video SR. 

2) Methods 

In this work, building uponbased on the correlation exploration for the dual attention, i.e., - position attention and channel 

attention, we proposed deep dual attention, underpinned by equipped with self-attention alignment (DASAA), for video SR. 

Specifically, Firstly, we start by constructing a dual attention module (DAM) to strengthen the acquired spatiotemporal 

features and adopt a self-attention structure with the morphological mask to achieve attention alignment. Then, on top of 

based on the attention features, we utilize the up-sampling operation to reconstruct the super-resolved video images, and 

introduce the LSTM (long short time memory) network to guarantee the coherent consistency of the generated video frames 

both in temporal and spatial domains temporally and spatially. 

3) Results 

 Experimental results and comparisons on the actual Youku-VESR dataset and the typical benchmark dataset- Vimeo-90k 

demonstrate that our proposed approach not only achieves the best video SR effect while but also takinges the least amount of 

computation. Specifically, in the Youku-VESR dataset, our proposed approach achieves a test PSNR of over PSNR/SSIM 

metrics is 35.290db and a SSIM of 0.939, respectively. In the Vimeo-90k dataset, the PSNR/SSIM indexes of our approach 

are individually 32.878db and 0.774. Moreover, the FLOPS (float-point operations per second) of our approach is as low as 

6.39G.  

4) Conclusions 

The proposed DASAA method surpasses all video SR algorithms in the comparison outperforms all the compared algorithms 

for video SR. It is also revealedproved that there is no linear relationship between positional attention and channel attention. It 
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suggests that our DASAA with LSTM coherent consistency architecture may have great potential for many low-level vision 

video applications. 

 
Keywords:  Video super-resolution, Dual attention, Self-attention alignment, FLOPS 

 

1. Introduction 

With the emergence of massive deep image SR works, Video SR is slowly coming into focus [3,7,9,10], especially in 

the field of high-definition video applications. A vast majority of existing video SR methods advocate the use of 3D 

convolution to extract temporal and spatial information to preserve the sequence characteristics of the video. Despite its 

promising preliminary results, 3D convolution limits the depth of the network, and the performance gains usually come at the 

cost of more parameters and heavy computation. 

Alternatively, some other video SR methods opt tofor processing the video frame by frame [9,18] and thus perform SR 

based on the single image SR method. However, in this case, the consistency between video frames is not guaranteed, and 

even so that the local and the global feature dependencies cannot be well integrated. Recent works [19,22] attempt to utilize 

optical flow-based motion compensation ways to alleviate the issue of inter-frame inconsistency. But this will undoubtedly 

increase a burden on the computation of the entire model. 

On the other hand, current deep image SR models always choose residual connections to convey features. The residual 

connections can reduce the attenuation of the features when they feedforward along the depth direction of the network so that 

the features can be expressed to any position of the network. Despite its convenience on feature transfer, the residual 

connection does not fully mine the feature information of different layers across different layers. Thus, instead of a simple 

residual skip connection, some complex residual variants are proposed, such as DRRN [12], RDN [1], etc. Here, RDN 

(Residual Dense Network) is the representative of such kinds of variant networks. It uses not only local dense residual 

learning but also global residual learning to extract and adaptively fuse local features and global features from all observed 

layers. Since RDN makes full use of multiple hierarchical features in LR images, it does improve the performance of image 

SR. However, these residual networks only ensure the application of features of different layers without, not considering the 

relationship between different feature channel maps of the same layer. To remedy this situationSo, Zhang et al. [2] proposed a 
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very deep residual channel attention network (RCAN) for image SR, which demonstrates a pretty good reconstruction effect. 

For video SR, Wang et al. [3] integrated recommend integrating temporal attention and spatial attention to ensure the 

continuity of the super-resolved video both in time and space. Moreover, Fu et al. [6] proposed to use two kinds of attention-

channel attention and position attention for semantic segmentation, retaining rich contextual information from a global 

perspective. However, none of the above dual-channel works reveals the correlation between these two channels. Thus, how 

to use dual attention mechanisms and align them for better video SR performance remains challenging is still a challenge. 

 

Fig.1. The details in the super-resolved (4×) frame image generated by the proposed DASAA (rightmost column) are clearer than the ones 

produced by VDSR [15] (third column) and VSRnet [23] (fourth column); the LR and ground-truth frame images are shown in the left two 

columns. 

 

In view of these issues, Iin this paper, we firstly investigate the correlation between the dual attentions. Based on the 

investigation, we propose an efficient dual attention mechanism equipped with a self-attention alignment deep model, namely 

DASAA, for video SR. An example of a super-resolved frame image recovered by the proposed DASAA model for 4× down-

sampling is illustrated and compared with VDSR [15] and VSRnet [23] in Fig. 1. Given a video sequence, our model firstly 

uses several residual dense blocks (RDBs) [1] to fully extract the hierarchical features of the sequence. Then, we send these 

extracted feature maps to the dual attentions—position attention and channel attention module for further feature selection 

and weighting enhancement. The position attention branch (PAB) can assign weights to different positions of the channel 

features, and therefore helpful to stick out the feature information on certain important positions. While, channel attention 

branch (CAB) can select and highlight some significant channels according to criteria, thus enhancing the expressive ability 

of the network. Also, in order to align and fuse these two branch attentions, we take a self-attention structure, which can play 

the role of interactive learning. Finally, after an up-sampling operation, we use LSTM [17, 24, 25] to capture the motion 

variation of the inter-frames to guarantee the coherence or consistency of the super-resolved video.  
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The main contributions of our work are summarized as follows: 

• We explore, for the first time, the correlation of the position attention and the channel attention for the first time 

and propose dual the attentions with self-attention alignment deep network (named DASAA) for video SR. The 

network uses RDBs to gets the rich hierarchical feature maps from video sequences by means of RDBs and 

adopts dual attention branches to select and enhance features from position and channel levels to obtain good 

video SR performance.  

• We propose to use the self-attention structure with dual attention morphological mask to effectively align and 

fuse two branch attentions and simplify the motion compensation with the LSTM structure to guarantee the 

consistency for video SR. 

• We verify and evaluate our DASAA model on the widely recognized public dataset not only with objective 

image measures but also with computation load index. It is proved that by dual attention with self-attention 

alignment, our approach can produce competitive results against the state-of-the-art video SR methods on 

benchmark videos and the actual data. More importantly, our method requires the least amount of floating-point 

computing pressure, compared with state-of-the-art competitors. 

The remainder of this work is organized as follows. Section 2 provides an overview of the related work. Section 3 

describes the proposed dual attentions with self-attention (DASAA) deep video SR network in detail. Section 4 presents 

extensive experimental results with comparative analysis and ablation discussions. Finally, Section 5 concludes the work. 

2. Related Works 

2.1 Super-resolution 

Although image SR is a classic low-level vision task, there are still many new methods emerging in recent years, 

especially many deep-learning-based methods. Since the advent of SRCNN [14], many early proposed deep SR models adopt 

thefollow its SR process of feature extraction, nonlinear mapping, and image reconstruction. Due to the strong ability of 

feature passing, many later image SR deep networks integrate the various residual structures [11] to fuse different levels of 

features. Lim et al. [13] enhanced the conventional deep residual network (EDSR) by removing its unnecessary modules for 
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image SR. At the same time, Tai et al.[12] presented recursive deep residual network (DRRN ) to mine the features belonging 

to different layers. Recently, Zhang et al. [1] also proposed a residual dense network (RDN) to make use of local dense 

residual learning with global residual learning for image SR. What’s more, Liu et al. [31] introduced the phase congruency 

edge prior and proposed a multi-scale deep encoder-decoder model for single image SR. 

Video is a continuous image frame sequence that contains spatio-temporal information at the same time. Sajjad et al. [9] 

directly presented a frame-recurrent network, and Haris et al. [10] further utilized a recurrent back-projection network (RBPN) 

for video SR. Yan et al. [30] proposed a network containing local network and feature-context network, which makes full use 

of multi-frame LR information and HR frame context information to improve SR performance. Noting that spatio-temporal 

information is important for video SR, Caballero, et al. [22] proposed a spatio-temporal deep network to mine the spatial and 

temporal features for real-time video SR. Furthermore, Zhang et al. [16] utilized 3D normalized convolution operations to 

extract spatio-temporal features from input video clips. Moreover, Li et al. [8] combined several 3D spatiotemporal residual 

blocks with LR and cross-space residual connection to achieve fast video SR, and Tian et al. [29] used deformable 

convolutions [27] for temporal alignment, thus ensuring the accuracy of video super-resolution. 

2.2 Attention 

In addition to feature transfer by residual connection, the attention mechanism is widely used for feature preservation 

and enhancement in many SR models [2, 3, 6, 7]. Zhang et al. [2] proposed a residual channel attention network (RCAN), 

which utilized channel attention with residual blocks to adjust the task adaptability of channel features and strengthen their 

expression ability. Besides, Wang et al. [3] put forward the way of temporal and spatial attention (TSA) fusion in their EDVR 

model to emphasize the important functions for subsequent video restoration. 

The self-attention mechanism is an important improvement of over general attention. Self-attention can reduce the 

dependence on external information and is better at capturing remote dependencies and internal correlation of data or 

elements. Want et al. [4] formalized self-attention as a non-local operation to model the spatial-temporal dependencies in 

video sequences. Inspired by this, Zhang et al. [5] proposed a self-attention GAN to better learn the dependence of global 

features. Meanwhile, Fu et al. [6] introduced the dual self-attention in the scene segmentation task to adaptively integrate 
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local features and global dependencies. For stereo image SR, Wang et al. [7] introduced a parallax-attention structure with a 

global receptive field along the epi-polar line to deal with large parallax changing. 

3. Methods 

In this sectionHere, we will discuss the relationship between position attention and channel attention from the 

perspective of experimental observations, and then describe the detailed structure of the proposed DASAA model. For easethe 

convenience of expression, we will introduce begin with our network architecture, followed by the study of at first and then 

analyze the relationship between position attention and channel attention. 

3.1 Network Architecture 

Our overall network architecture contains consists of five parts: feature extraction, dual attention module (DAM), 

upscale layer, LSTM layer, and reconstruction part, which is illustrated in Fig. 2. We denote the input low-resolution (LR) 

video sequence as  {It-n
LR,…,It

LR,…, It+n
LR} that is a LR video input sequence, and the size of each frame image is ML×NL ; the 

output of DASAA (It
SR) is the high-resolution (HR) version of  It

LR , and the size of each frame image of  It
SR is MH×NH. 

Note that, these symbols apply to all the following statements.  

 

Fig. 2. The architecture of the proposed dual attention with self-attention alignment network for video SR 

In the feature extraction part, two convolution layers are used to extract features from the LR input sequence, which 

can be described as:  

F=HC(𝐼𝐿𝑅),                                          (1) 
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where 𝐻𝐶(∙) denotes two convolution operations, 𝐹 represents the extracted features. Then, the features 𝐹 are sent to 

residual dense blocks (RDBs) to extract dense feature maps. These dense features extraction can be denoted as: 

FD=HRDB(F),                                                 (2) 

where 𝐻𝑅𝐷𝐵(∙) refers todenotes the operations of residual dense blocks. Then, the dual attention module (DAM) accepts the 

output feature maps from the feature extraction part and produces the two branch attention outputs, which can be described as: 

FDA=HDAM(FD),                                               (3) 

where FDA is the output of DAM. The attention maps FDA are sent to an upscale layer HUP for resolution improvement 

and then follow with LSTM structure HLSTM to capture temporal coherence between sequence maps. Finally, the 

reconstruction result is obtained via a convolutional layer HR. All the above operations for SR can be described as:  

𝐼𝑆𝑅=HR (HLSTM (HUP (HDAM (HRDB(HC(𝐼𝐿𝑅)))))).                               (4) 

From Eq. (4), it is easy to find that our model is concise and compact, which may indicate its computation efficiency. 

Moreover, for the loss function of the proposed DASAA model, instead of MSE (mean square error) loss, we choose  L1 

loss. Given a frame sequence training set {I𝑖
LR, Ii

HR}
i=1

N
, which contains N LR frames and the HR counterparts, the goal of 

training DASAA is to minimize the L1 loss function as: 

ℒ(𝜃) =
1

𝑁
∑ ‖𝐻𝐷𝐴𝑆𝐴𝐴,𝜃(𝐼𝑖

𝐿𝑅) − 𝐼𝑖
𝐻𝑅‖

1
,𝑁

𝑖=1                                    (5) 

where 𝜃 denotes the parameter set of our network. More details of training areis shown in Section 4.2. 

3.2 Position Attention Branch (PAB) 

The detailed structure of this part is shown in Fig. 3(a). First, we perform average pooling and maximum pooling on 

the extracted feature FD along the channel, and then pass through the residual block, respectively. Such pooling operations 

can reduce the error of the estimated value and the estimated mean due to the inappropriate convolution parameters, and while 

retaining more texture and background information. Besides, the residual blocks can convert these features from position-

wise to channel-wise. Note that the convolution weights in the two branches’ residual blocks are mutually shared. Due to the 

semantic similarity, a concatenation operation is used to merge the features of the two pooling branches. After a convolution 
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operation followed by a sigmoid activation, a position attention map is obtained. Then the final position attention output FP 

will be achieved by multiplying the attention map with the features input 𝐹𝐷. Thus, the position attention module can be 

described as:  

𝐹𝑝 = 𝒮[𝒲(𝑋𝑎; 𝑋𝑚)] ∙ 𝐹𝐷,                                        (6) 

where  𝒮 denotes the sigmoid function, 𝒲 is the convolution fusion weight of two attention branches outputs 𝑋𝑎 and 𝑋𝑚.  

     

  (a)                                                    (b) 

Fig. 3. The detailed architecture of PAB and CAB. (a) PAB: the blue boxes represent filters with a convolution kernel , the yellow boxes ReLU, 

the red box average pooling, and the green box max pooling. (b) CAB: the magenta box denotes adaptive average pooling, and the lime box 

adaptive max pooling, respectively. The signal “⊕” represents element-wise summation, “⊗” matrix multiplication, and “  ” softmax/sigmoid 

activation function.  

3.3 Channel Attention Branch (CAB) 

The detailed structure of the CAB is shown in Fig. 3(b). The input features 𝐹𝐷 are firstly sent to the adaptive average 

pooling layer and the adaptive max-pooling layer, respectively, for feature aggregation along with the spatial location. After 

adaptive pooling operations, the size of the output becomes 1 × 1 × 𝐶. Then motivated by RCAN [2], the channel number 𝐶 

of the features is reduced to 
𝐶

𝓇
 (𝓇 is reduction scale) first and then rescaled to 𝐶 by different convolution operations. 

Obviously, the channel features are selected and weighted. Then, the two branch attention features are directly added to 

ensure integrity. Finally, the added features pass through the sigmoid function to obtain the channel attention map, which can 



9 

 

be continually multiplied by FD to get the final channel attention output 𝐹𝑐. Thus, the channel attention module can be 

described as: 

𝐹𝑐 = 𝒮(𝐹𝑎 + 𝐹𝑚) ∙ 𝐹𝐷 ,                                              (7) 

where 𝒮 denotes the sigmoid function as same as Eq. (6), 𝐹𝑎 and 𝐹𝑚 are the two attention branches outputs.  

3.4 Relationship analysis on PAB and CAB  

To explore whether there is some relationship between the position attention features and the channel attention ones, 

we design a compact and symmetrical structure for the relationship visualization observation, as shown in Fig. 4. In this 

structure, PAB and CAB have switched positions because of the different multiplying results of their outputs. We visualize 

the outputs in different key positions and then find out the relationship between PAB and CAB by observing and comparing 

the coherence and the difference in these outputs. According to these visualization observations, it is believed we recognize 

that at least there is no linear correlation between PAB and CAB. For a more detailed discussion, see Section 4.2 (5 position 

observations). 

 

Fig. 4. The structure designed for relationship observation of PAB and CAB 

3.5 Self-attention alignment model (SAAM) 

Recognizing that PAB and CAB obtain different attention maps for the same input features, and motivated by the 

relationship analysis results in section 3.4, we use a more complex self-attention structure to align and fuse the two attention 

maps to acquire multi-faced consistent attention information, which is more conducive to video reconstruction. The detailed 

SAAM structure is illustrated in Fig. 5. 
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Similar to the structure in Fig. 4, the architecture of SAAM also contains the upper part and the lower part. In the upper 

part, the PAB output 𝐹𝑝 and the CAB output 𝐹𝑐 are individually passed through a 1 × 1 convolution layer to get the thin 

feature matrix P and Q. By a softmax activation, the result of P and Q multiplication turns to be the attention map Mpc. Also, 

the CAB output is sent to another 1 × 1 convolution operation to get another feature matrix S. When multiplying it with 

Mpc , we get the reference feature map R. In the lower part, the positions of PAB and CAB are swapped and their outputs 

undergo are performed similar operations. And finally, another attention map Mcp is acquired. 

 

Fig. 5. The detail architecture of SAAM 

However, since the pixels of the position attention maps and the pixels in the channel attention maps are difficult to 

correspond, we take the morphological operation to deal with this problem, which. Which can guide the attention features 

fusion and play the role of calibration. This is the attention alignment process. Finally, Fp , R and the mask are concatenated 

and convolved to get the output of DAM. 

3.6 LSTM inter-frame consistency 

As is well known, the recurrent structure can be used to extract and fuse inter-frame information and play a good role 

in ensuring sequence data coherence and consistency. However, traditional recurrent neural networks (RNN) are always 

confronted with the problems of gradient disappearance when processing long-time sequence data. Thus, to guarantee the 

consistency of the super-resolved video frames, we choose LSTM to undertake this task by up-sampling the dual attention 

fused features. Finally, the output of LSTM will be passed through a convolution layer to get the final reconstructed result. 
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4. Experimental results and analysis 

4.1 Dataset and training details 

The video dataset (https://tianchi.aliyun.com/dataset) used in our experiments is borrowedprovided by Youku 2019 

super-resolution competition, consisting of. The data set includes scenes of people, animals, landscapes, etc. It is subdivided 

into the training set, validation set, and test set. Among them, the training set contains 5.25k0 frames of video images, the 

validation set about 2.5k frames, and the test set 25k frames. The size of each frame image is 480×270.  

Another Vimeo-90k [20] dataset is a public dataset widely used for training and test of SR task. In our experiments, not 

onlyboth the Youku test dataset and but also Vimeo-90k isare fully utilized as evaluation data. Besides, PSNR and SSIM 

measures are treated as the evaluation criteria. During training, five consecutive frames of each video clip are taken as input 

to the model. The learning rate is set to 1×10-4. The batch size is set to 64. And the PyTorch framework is used to implement 

the experiments with an RTX 2080Ti GPU. The source code of the work is available at https://github.com/qynan/DASAA. 

4.2 Visualization experiments 

As mentioned in Section 3.4, we are concerning whether there is some relationship between the position attention 

features and the channel attention ones and whether this relationship would affect the attention fusion maps, and further affect 

the performance of the entire SR. Thus, to find out whether there is a mutual influence between such two attentions, we set 

five observation spots in the route of the relationship analysis structure (see Fig. 4). The visualization results are illustrated in 

Fig. 6. Seen fFrom the results, there is no obvious linear relationship between the two attentions. When used in parallel, the 

contribution of each attention is unique and does not affect each other. 
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Fig. 6. Visualization results of five observation spots. The subfigures of (a), (b), (c), (d), and (e) correspond to those markers located in Fig. 4. In 

each Fig., the red dotted line in the positive diagonal indicates a positive correlation and the yellow dotted line in the negative diagonal reflects a 

negative correlation. It can be seen clearly from these figures that there is no obvious correlation relationship between such two attentions. 

4.3 Comparisons and discussions 

We compared the proposed method with different state-of-the-art SR methods, both qualitatively and quantitatively, 

including some image SR methods, such as SRCNN [14], VDSR [15], RDN [1], DRRN [12], and video SR methods, such as 

VSRnet [23], EDVR [3].  The visual qualitative results from the Youku-VESR dataset and Vimeo-90k dataset are 

showncompared in Fig. 7 and Fig. 8, which display the original frame and the SR results at x4 magnification. Besides, we 

choose the PSNR and SSIM metrics as our evaluation indices. The corresponding quantitative comparisons under the Youku-

VESR dataset and the Vimeo-90K dataset are listed in Table I and Table II, respectively. From Fig. 7, Fig. 8, it is clear that 

our proposed DASAA approach can produce a breezy improvement in restoring the edge and texture details. Meanwhile, 

according to Table I and Table II, the PSNR and SSIM indexes of our proposed approach are the best or the second-best 

compared with other cutting-edge methods, which highlights the remarkable performance of our method.  
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Fig. 7. The qualitative visual comparisons for 4x SR on Youku-VESR dataset 

 

 

Fig. 8. The qualitative visual comparisons for 4x SR on Vimeo-90k dataset   
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Table I: The PSNR and SSIM comparisons for diverse SR methods on the Youku-VESR dataset. The best and the second best are 

indicated with bold red and bold blue, respectively. 

 

Table II: The PSNR and SSIM comparisons for diverse SR methods on six typical selected images from Vimeo-90k dataset. The best and 

the second best are indicated with bold red and bold blue, respectively. 

Model name PSNR SSIM 

SRCNN[14] 33.247 0.924 

VDSR[15] 31.414 0.898 

RDN[1] 35.021 0.938 

DRRN[12] 34.707 0.936 

PASSRnet[7] 35.120 0.939 

VSRnet[23] 30.224 0.891 

TOFlow[20] 33.355 0.930 

DUF[28] 34.318 0.935 

EDVR[3] 35.772 0.939 

Ours 35.290 0.939 

 

It should be noted that in Table I, for the Youku-VESR dataset the PSNR of our method surpasses most of the 

methods but is a little lower than EDVR [3] method. While in Table II, for Vimeo-90K images, the PSNR of our methods are 

almost defeating other methods. EDVR [3] combines the deeper residual pyramid structure with the alignment module which 

takes more complex deformable convolution [27] operations. Although its performance is slightly improved a little, the 

Method Kitchen Violin Pencil Scissors Hair Girl Average 

SRCNN 32.804/0.807 32.956/0.814 35.370/0.927 33.755/0.885 33.048/0.833 32.442/0.792 32.682/0.765 

VDSR 32.644/0.783 32.938/0.808 35.156/0.930 33.591/0.878 33.038/0.833 32.456/0.792 32.615/0.759 

DRRN 33.171/0.833 33.130/0.819 35.813/0.939 33.854/0.887 33.111/0.834 32.457/0.794 32.814/0.771 

RDN 33.207/0.807 33.153/0.820 35.812/0.939 33.850/0.887 33.149/0.832 32.489/0.792 32.852/0.772 

PASSRnet 33.215/0.839 33.150/0.822 35.847/0.940 33.836/0.887 33.153/0.832 32.488/0.792 32.852/0.772 

VSRnet 32.497/0.789 32.610/0.804 34.738/0.928 33.336/0.881 32.934/0.828 32.274/0.792 32.319/0.755 

TOFlow 32.818/0.807 32.962/0.815 35.374/0.928 33.741/0.885 33.056/0.832 32.448/0.792 32.704/0.768 

DUF 33.182/0.834 33.160/0.820 35.772/0.933 33.853/0.888 33.121/0.834 32.471/0.794 32.806/0.770 

EDVR 33.468/0.860 33.240/0.821 35.807/0.941 33.875/0.887 33.153/0.833 32.443/0.785 32.897/0.772 

OURS 33.271/0.843 33.260/0.833 35.848/0.940 33.862/0.888 33.169/0.833 32.495/0.803 32.878/0.774 
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introduction of the residual pyramid and the deformable convolution undoubtedly increases the amount of computation. 

Based on this, we introduce another objective computation load measure: the number of parameters and the floating-point 

operations per second (FLOPS). These comparison results of some related methods (their PSNR is close to ours) are shown in 

Table III. From this table, we can know that both the amount of the parameters and the computation load of our DASAA 

method are much less than that of the EDVR method, which reveals the high efficiency of our method. Thus, from Table I, 

Table II, and Table III, we conclude that our DASAA method can not only generate very good super-resolution results but 

also be beneficial for efficient computation.  

Table III: The comparisons on the parameters and the FLOPS for different models 

Model Name RDN PASSRnet TOFlow DUF EDVR Ours 

Params 1.48M 1.36M 1.4M 5.8M 20.7M 1.8M 

FLOPS 3.09G 2.47G 270.48G 204.8G 177.11G 6.39G 

4.4 Ablation study 

We perform ablation studies to analyze the contribution of each component in the proposed DASAA model. There are 

five main components in our model and each component corresponds to one variant model, which can be named as model 1, 

model 2, etc. Table IV displays the details. Due to the particularity of the dual attention structure, removing one attention 

branch will lead to the failure of subsequent network operations. Thus, we use the cloning strategy to duplicate the remaining 

attention branch to the one that has been removed. Such models are denoted as Model 4 and Model 5, respectively. Besides 

this, we also design an addition model–Model 6, which can change the positions of PAB and CAB mentioned in Section 3.4, 

to comprehensively analyze the attention relationship. The comparison between PSNR and SSIM on the Youku-VESR dataset 

of all variant models is shown in Table IV. Moreover, to show the role of each component more clearly, we also present the 

PSNR changing curve of each variant model when training on Fig. 9.  

Table IV: The PSNR and SSIM comparisons for variant models under Youku-VESR dataset. The best is indicated with bold. 

Component RDB mask LSTM PAB CAB PSNR SSIM 

Model 1 × √ √ √ √ 33.405 0.925 

Model 2 √ × √ √ √ 35.270 0.939 

Model 3 √ √ × √ √ 34.041 0.938 

Model 4 √ √ √ × √ 35.165 0.939 
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Model 5 √ √ √ √ × 35.241 0.939 

Model 6 √ √ √ √(CAB) √(PAB) 35.307 0.939 

 DASAA √ √ √ √ √ 35.290 0.939 

 

 

Fig. 9. PSNR comparisons during training for all variant models 

From Table IV and Fig. 9, it is clear that the most three important components are RDB (light coral curve in Fig. 9), 

LSTM (cornflower blue curve in Fig. 9), and PAB (pink curve in Fig. 9). Also, based on the PSNR value and the curve trend 

of Model 6, exchanging two attention positions has no obvious effect on the performance compared with the original model. 

This also indicates that such two attention branches–position attention and channel attention are independent and unrelated. 

4.5 Temporal consistency 

The temporal profile is usually generated by obtaining several horizontal pixel rows from the video frames and 

stacking them vertically. Considering the scene changes in most videos may lead to deviations to the results and produce 

flicker artifacts, we specifically choose a test video with 21 frames that contains only one moving object without lens 

switching to obtain the temporal profile. The result is shown in Fig. 10. In this Fig., the temporal profile of each method 

represents ×4 results from the position marked by the yellow box in the original temporal profile. 
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Fig. 10. Temporal profile of video super-resolution methods. 

5. Conclusions 

In this work, we have presented propose a concise and efficient dual attention with the self-attention alignment-based 

deep network for video super-resolution. First, we use RDB to make full use of the features from all related layers. After that, 

two kinds of attention–position attention and channel attention are introduced to excavate the channel and spatial information 

simultaneously and improve the expressive ability of the network. Furthermore, the self-attention structure is utilized to make 

reliable alignment and contextual learning of such two attention maps, which can improve the performance of SR. Finally, the 

LSTM structure is used to guarantee the consistency of the super-resolved video frames. Moreover, through experimental 

visualization observations, we find that such two attentions do not affect each other when they are introduced concurrently. 

Experimental results and comparisons show that our proposed network outperforms has better performance than the state-of-

the-art network. Our upcoming work is to apply our proposed method to other video-related tasks, such as video background 

subtraction [32], to observe and analyze the results.  
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