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Abstract: We present a new two-step approach for automatized a posteriori decision making in
multi-objective optimization problems, i.e., selecting a solution from the Pareto front. In the first step,
a knee region is determined based on the normalized Euclidean distance from a hyperplane defined
by the furthest Pareto solution and the negative unit vector. The size of the knee region depends on
the Pareto front’s shape and a design parameter. In the second step, preferences for all objectives
formulated by the decision maker, e.g., 50–20–30 for a 3D problem, are translated into a hyperplane
which is then used to choose a final solution from the knee region. This way, the decision maker’s
preference can be incorporated, while its influence depends on the Pareto front’s shape and a design
parameter, at the same time favorizing knee points if they exist. The proposed approach is applied in
simulation for the multi-objective model predictive control (MPC) of the two-dimensional rocket car
example and the energy management system of a building.

Keywords: energy management system (EMS); MPC; normal boundary intersection (NBI); Pareto
optimization; knee region; PARODIS

1. Introduction

Throughout the last few decades, multi-objective optimization (MOO) has attracted a
lot of attention, especially from the evolutionary optimization community. With increasing
computational capacities, new methods to determine (an approximation of) the Pareto front
arise regularly. The selection of a solution from the Pareto front is usually left to a human
decision maker (DM), which is suitable in the context of one-time optimization, e.g., in
product design.

However, multi-objective optimization can be used for more than one-time optimiza-
tions. In previous works, we proposed to combine it with Model Predictive Control
(MPC) [1,2], i.e., to utilize multi-objective optimization in the permanent (optimal) control
of a dynamic system. The main principle is to repetitively formulate a multi-objective
optimal control problem at every time step, derive an approximation of its Pareto front,
and then select a single Pareto solution. This Pareto solution corresponds to a sequence of
inputs (i.e., the decision variables), from which the first element is applied to the system.
Then, in the next time step, the entire process is repeated.

For the real-time control of e.g., an energy management system, this means that a
decision had to be made approximately every 15 min, which is too tedious for a human.
For other systems with higher dynamics, this would be even worse. Thus, this process has
to be automated. So far, different methods to this end exist. Unfortunately, most of them do
not incorporate the preferences of a human decision maker. If they do, they usually have
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other drawbacks, e.g., being limited to two objectives or lacking a clear interpretation of
how the preferences affect the final choice. Moreover, these methods rely significantly on
the Pareto front’s extreme points. However, since also the process of determining the Pareto
front is automated and the optimization problem’s objectives as well as constraints may
vary over time, it is not guaranteed that the actual extreme points are found. This setting of
varying objective functions and objectives over time is also called dynamic multi-objective
optimization [3].

In this work, we aim to overcome these problems in dynamic multi-objective optimiza-
tion. Our main contributions are that we

• Formulate a new adaptation of a well-known deterministic method to sample an
approximation of the Pareto front, which is more apt for the dynamic multi-objective
optimization case where objectives may correlate sometimes,

• Present a new two-step approach for the automated decision making process, which
is again designed for the use in dynamic multi-objective optimization and

◦ In its first step uses a definition of a knee region which depends less on accurate
extreme points;

◦ In its second step uses a geometric interpretation of a hyperplane representing
the preferences of a decision maker formulated a priori; and

• Show in a simulation study of an energy management system that the approach leads
to a proper representation of the preferences not only in the limited time horizon of
the multi-objective optimization problem but also in the long-term costs.

Figure 1 illustrates the incorporation of our approach in an MPC application with
multiple objectives. The rest of the paper is structured as follows. We define the MOO
problem, show how it can be solved with the normal boundary intersection (NBI) method,
and review the available methods for the decision making process in Section 2. The
methodology of the proposed two-step decision making approach is described in Section 3.
We formulate the focus point boundary intersection (FPBI) method as an alternative to the
normal boundary intersection in Section 4. We discuss the consequences of incorporating
multi-objective optimization in Model Predictive Control and apply the proposed methods
to two examples of different complexity in Section 5 before we finish with a conclusion in
Section 6.

Multi-Objective Optimal Control Problem
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J2

J1

J2

J1

J2Examples
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Figure 1. Illustration of the presented approach in the automatized decision making process for
multi-objective MPC. As usual in MPC, at every time step, an optimization problem (i.e., an optimal
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control problem) over some time horizon is formulated. Here, the multiple objectives lead to a
multi-objective optimal control problem. The result is a new Pareto front (at every time step) from
which a solution has to be chosen. In our approach, we first identify reasonable areas of the Pareto
front, i.e., we exclude too extreme solutions. Then, we incorporate the decision maker’s preferences to
finally choose a compromise. The solution represents a control (input) plan which is then applied to
the system (at least the first step in case of MPC). Afterwards, the resulting system state is measured,
and the process is repeated for the next time step.

Notation

Rn
+ denotes the n-dimensional R ≥ 0. For vectors, a subscript i as in Ji denotes its i-th

value. A superscript j marks the vector as a specific point from a set of points, e.g., J j ∈ J.

2. Related Work
2.1. Problem Formulation

A MOO problem can be formulated as

min J(z) =
(

J1(z), . . . , Jn(z)
)

(1a)

s. t. gj(z) ≤ 0, j = 1, 2, . . . , mineq (1b)

hl(z) = 0, l = 1, 2, . . . , meq, (1c)

where z ∈ Z is the decision variable vector, n is the number of objectives and mineq and meq
are the numbers of inequality and equality constraints, respectively. Since there typically is
no single solution which minimizes all objectives Ji at the same time, the concept of Pareto
optimality is used. A solution z∗ is Pareto optimal if it is not dominated by any other solution,
i.e., there is no solution z for which Ji(z) ≤ Ji(z∗) ∀ i ∈ [1, n] and Jk(z) < Jk(z∗) for at
least one k ∈ [1, n]. All Pareto optimal solutions together form the Pareto front. However,
usually only a set of solutions J = {J1, . . . , JN} which approximates the Pareto front can be
determined. Important points apart from the Pareto front are the Utopia and the Nadir point.
The Utopia point can be constructed from the Pareto front’s extreme points. An extreme
point is the Pareto solution with the minimum value for its corresponding objective; i.e.,
the extreme point for objective i is

Jextreme,i = arg min
J∈J

Ji. (2)

The Utopia point then consists of the single minima of all objectives

Jutopia =
(

Jextreme,1
1 , . . . , Jextreme,n

n

)
(3)

and is thus generally not attainable. Similar, the Nadir point is the combination of all
objectives’ worst values on the front, i.e.,

Jnadir =
(

supJ∈J J1, . . . , supJ∈J Jn

)
. (4)

In general, three categories of how a solution (or decision) to the MOO problem (1) can
be derived exist. A priori (or explicit) methods respect the preferences or interests of the
decision maker by calculating Pareto solutions on specific areas of the Pareto front. Inter-
active (or progressive) methods ask the decision maker for input during the optimization
process itself, also to focus on specific areas. A posteriori (or implicit) methods respect the
decision maker’s preferences only after the Pareto front has been approximated to select a
compromise from it. Our approach presented in this paper belongs to the last group, i.e.,
the a posteriori methods.

In the following, we will first shortly explain how an approximation of the Pareto
front can be obtained. Afterwards, we focus on the different available decision making
strategies to illustrate the necessity and novelty of our proposed approach.



Inventions 2022, 7, 46 4 of 25

2.2. Determining the Pareto Front

Two different main options exist to obtain an approximation of the Pareto front for the
multi-objective optimization problem (1): meta-heuristic (evolutionary strategies, genetic
algorithms, etc.) or deterministic (mathematical programming) methods. Meta-heuristic
methods can be considered the standard choice. Their biggest advantage is that they can
be used for any optimization problem, even with black box models, as long as one can
evaluate the objective function, e.g., by simulation. However, this comes at the cost of high
and possibly unpredictable computation times and the uncertainty regarding whether a
global (or even local) optimum has been found. This makes them less apt for the setup
considered here, i.e., the repeated solving of multi-objective optimization problems for, e.g.,
real-time control. Therefore, we omit any further descriptions of meta-heuristic methods
here and refer the interested reader to [4,5].

Approximating the Pareto front with deterministic methods means to repeatedly
solve a single-objective optimization problem with different parameters. Thereby, these
parameters are varied iteratively such that a different point of the Pareto front is determined
each time. Such a combination of the objectives into a single scalar objective function
(instead of the objective vector as in (1a)) is called scalarization. Two groups of scalarization
methods are commonly used for the above purpose. The first utilizes weighted sums,
possibly with exponential expressions of the objectives. The second we call—due to the
lack of a better term—intersection methods, since they aim at finding the intersection of the
Pareto front with some geometric entity, usually a vector.

The idea to scalarize the multi-objective optimization problem (1) by, for example,
maximizing the length of a vector, dates back to the 1970s [6] and has been varied since
then [7]. In general, a geometrization of the objective space is used to reformulate the
optimization problem such that the actual objective function appears in the constraints only.
The normal boundary intersection (NBI) was then introduced as a method of systematically
varying the scalarizations to obtain a reasonable approximation of the Pareto front [8]. The
procedure is as follows. First, the extreme points have to be determined. Second, a simplex
connecting the extreme points is constructed, which is called the convex hull of individual
minima (CHIM). Then, this simplex is sampled evenly. This can be expressed with the
n× n matrix Φ, whose i-th column is

Φ(: ,i) = Jextreme,i − Jutopia. (5)

The CHIM is sampled by Φβ with a varying (n× 1)-vector β, s. t.

q

∑
i=1

βi = 1, βi > 0. (6)

A Pareto solution is then obtained by maximizing the length κ of the CHIM’s normal
vector n̂ pointing toward the Pareto front, with the constraint that the vector’s tip ends at
the Pareto solution itself. For a combination β, the MOO problem (1) is then replaced by

min −κ (7a)

s. t. Φβ + κn̂ = J(z)− Jutopia (7b)

gj(z) ≤ 0, j = 1, 2, . . . , mineq (7c)

hl(z) = 0, l = 1, 2, . . . , meq. (7d)

Note that (7) is the same if (7a) is replaced by max κ. Furthermore, the optimization
problem’s solvability might be changed, since all possible nonlinearities are shifted to
the constraints instead of the objective function, which is one of its disadvantages, next
to its susceptibility to weakly Pareto optimal solutions. The original normal boundary
intersection as described here has been modified in different ways since its introduction in
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1998 [9–12]. However, since this is not the focus of this work, we omit a further description
of the detailed differences.

2.3. Decision Making (Choosing a Solution)

Once an approximation of the Pareto front has been obtained, a single solution has to
be chosen. To this end, various types of a posteriori methods exist. They can be categorized
by whether they

• Select a final solution by themselves or only identify a subset of solutions which are
then presented to the decision maker (DM);

• Aim at selecting a good compromise in general (i.e., a compromise solution) or rank the
solutions in dependence of the Pareto front’s shape (i.e., try to identify a knee point);

• Do or do not incorporate preferences of a decision maker.

In the following, we give an overview of the most prevalent methods in the literature.
Note that, however, different combinations of the above categories exist, such that the
following order is partially arbitrary.

The most common approach is to select a final (compromise) solution using Euclidean
distance-based metrics. For example, LINMAP minimizes the weighted distance to the Utopia
point [13]. One could argue that the weights represent the decision maker’s preferences.
However, since weighting can be problematic in general, frequently, the unweighted but
normalized distance is minimized instead [1,14]. TOPSIS is an algorithm which considers
both distances to the Utopia and the Nadir point [15].

Fuzzy logic is utilized in many methods for different goals but usually to select a single
compromise solution, too. For example, it can be used to address uncertain objectives,
constraints or decision variables [16] but also to incorporate preferences from linguistic
values [17]. In [18], it is used on top of the concept of k-optimality to loosen the crisp
definition of Pareto optimality. Overall, the literature on different fuzzy approaches is rich.

An alternative to fuzzy logic for decision making under uncertainties is Evidential
Reasoning [19]. Multiple attributes are weighted according to their importance. For each
attribute, possible grades are defined, and the likelihood of a solution’s attribute to match
them are assessed, e.g., a likelihood of 0.3 to be ’good’ and 0.6 to be ’very good’. Then,
a single overall score of the solution can be derived, and all Pareto solutions ranked
accordingly.

Another concept is the use of Shannon Entropy [20]. For each objective, the solutions’
entropy is calculated, which depends on their diversity. From these, weights for every
objective are derived. Then, the (normalized) solution which fits the weights best is selected.

In contrast to the compromise solutions described above, the possibly more popular
aim is the selection of a knee point, which in general is a solution on the Pareto front
from which a small improvement in one direction (objective) would lead to a large(r)
deterioration in all others. Thus, the shape of the Pareto front is essential.

Different possibilities to define (or find) a knee point exist. Multiple approaches do
so based on the point’s angle to other parts of the front, e.g., the reflex angle [21], the
bend angle [22], the extended angle dominance [23] or the angle utility [23]. Utility-based
methods generally define a knee by the best trade-off, i.e., the best ratio of improvements
vs. deteriorations compared to all other solutions [22,24,25]. This approach is extended to
multiple regions of the Pareto front in [26], i.e., the best trade-off for each region is deter-
mined. In [27], knee points are identified by mapping the Pareto front onto a hyperplane.
Then, a solution is considered to be a knee point if the other solutions are densely located
around it. According to [21], a point is a knee point if it is the result of the optimization of
a weighted sum for multiple (different) weight combinations. In an early work, Das [28]
characterizes the point with the largest distance to the convex hull of individual minima as
the knee.

As an alternative to selecting a single solution (either compromise solutions or knee
point), a subset or multiple subsets of the Pareto front which show knee-like behavior or
other properties of interest are often determined and presented to the decision maker. Then,



Inventions 2022, 7, 46 6 of 25

the decision maker has to select a final solution from this compromise manually. Note that
as mentioned before, this is not applicable for the use case proposed in this paper. However,
since the possibilities to do so are relevant for our proposed approach, we cover the most
important methods.

If the assignment of a Pareto solution to the subset of interest is based on a metric as
explained above, the subset is usually called the knee region. Examples are the trade-off-
based knee region [22] or the bulge of points with the largest distance to the convex hull of
individual minima [29].

If the assignment is based on the decision maker’s preference, the subset might be
called region of interest. In [30], the decision maker defines a cost reference point, i.e., an
arbitrary chosen Jref =

(
Jref
1 , ... , Jref

n
)
, either infeasible or feasible. Then, imagining a

coordinate plane with Jref at its origin, the part of the Pareto front that dominates Jref (if
feasible) or that is dominated by Jref (if infeasible) is considered as the region of interest.
Note that a drawback of this method is that it is unclear how large the region of interest
will be. In [31], the decision maker defines a starting point and a preference direction. Then,
the part of the Pareto front which lies within a pre-defined preference radius around the
preference direction is defined as the region of interest. Again, no final solution is provided,
and possible knee points are ignored.

In summary, there are many methods to choose a solution to the MOO problem (1)
once an approximation of the Pareto front has been determined. However, there is no
method which (1) selects a single solution (instead of a subset of solutions), (2) thereby
prefers knee points (if they exist) and (3) at the same time includes preferences of a decision
maker in a comprehensible way. We try to fill this gap with the approach explained next.

3. Proposed Automatized Decision Making Approach

We assume to have an approximation J of the Pareto front. Then, the approach consists
of two parts. First, the knee region is determined. Second, a solution is finally chosen in
dependence of the decision maker’s preferences.

All further calculations are done in the normalized space J̃. Namely, all objective
values Ji ∈ J are normalized as

J̃i
` =

Ji
` − JUtopia

`

JNadir
` − JUtopia

`

. (8)

3.1. Knee Region Determination

For the definition of our knee region, we use a metric similar to [28]; i.e., for each
Pareto solution, we calculate its Euclidean distance to a geometric object at the edge of the
Pareto front. However, the individual minima (also called extreme points) are often hard to
find [24,32]. Thus, instead of maximizing the distance from the convex hull of the extreme
points, we use a hyperplane

D : {x | −eᵀ(x− J̃q) = 0, q = arg max
i
|| J̃i||2} (9)

which we refer to as the distance plane in the following. Note that J̃q ∈ J̃ is the point of the
(normalized) Pareto front with the largest Euclidean distance to the normalized Utopia
point J̃utopia =

(
0 . . . 0

)
and that we use the negative unit vector −e = −1n×1 as the

distance plane’s normal vector to avoid sensitivity to possibly unreliable extreme points.
Then, the distance of every solution J̃i ∈ J̃ to D is calculated as

Dδ(i) =
1√
n
(−eᵀ)( J̃i − J̃q). (10)
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Finally, similar to [29,33], we define the knee region J̄ ⊆ J̃ as

J̄ = { J̃i | Dδ(i) ≥ rlim ·Dδ(z), z = arg max
i

Dδ(i)}, (11)

where rlim ∈ [0, 1] is a design parameter with which the influence of the decision maker’s
preferences can be adjusted. Furthermore, (11) can be understood as a bulge of the Pareto
front in the direction of the Utopia point, whose size depends on the Pareto front’s shape,
as illustrated in Figure 2. Note that in contrast to the commentary in [29], while the bulge is
hard to comprehend in more than three dimensions, this is not necessary for our approach,
since the final decision making is automatized, too. Figure 3 summarizes the procedure.

Effect of rlim on Knee Region Size

(a) Front without Knee (b) Front with Knee

Figure 2. Exemplary knee regions in 2D for different rlim. For fronts without a knee point (a), the
knee region is larger than for fronts with a knee point (b) for any rlim. Note that for convex 2D fronts,
the distance plane is equivalent to the convex hull of the minima from [28] (if normalized).

3.2. Choosing a Solution

After the knee region J̄ has been determined, one of its solutions has to be chosen.
First, the preferences of the decision maker are formulated as the preference vector p ∈ Rn

+

for all n objectives. Since we work in the normalized space, the objectives’ possibly different
magnitudes can be ignored. Then, p can be interpreted as the normal vector of a hyperplane

q( J̃b) : {x | pᵀ(x− J̃b) = 0} (12)

where J̃b ∈ J̄ is the hyperplane’s base point. In the following, we will refer to P as the
preference plane.

As base point J̃b, we choose the knee region’s solution to which the preference plane
is ’tangential’, i.e., the J̃b = J̃i ∈ J̄ that builds a halfspace with the preference plane which
lies below all other solutions, such that

pᵀ( J̃ j − J̃b) ≥ 0 ∀ J̃ j ∈ J̄. (13)

In 2D, this halfspace is the area below a line, and the line passes through J̃b and is
orthogonal to p. In the unlikely event that multiple solutions on the knee region fulfill (13),
any of them can be selected. Figure 4 illustrates different preference planes and the resulting
selections for a 2D front; Figure 5 summarizes the selection procedure.
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Figure 3. Flowchart diagram for the first step of the proposed decision making approach, i.e., the
determination of the knee region.

Effect of p on selected Solution

(a) Front without Knee (b) Front with Knee

Figure 4. Exemplary preference planes (12) for the Pareto fronts from Figure 2 and rlim = 0.8. Note
that for the front without a knee in (a), the different preferences lead to solutions far apart from each
other. For the front with a knee in (b), two of the three preferences choose the knee itself. Even for
pᵀ = [0.75, 0.25], the selected solution is close to the knee point, despite the large knee region (with
solutions a human decision maker would not consider interesting).
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Figure 5. Flowchart diagram for the second step of the proposed decision making approach, i.e., the
final selection of a solution from the knee region.

3.3. Influence of Imperfect Extreme Points

As stated at the beginning of this section, we assume to have an approximation
J of the Pareto front, which includes the extreme points for all objectives. These may
influence the final decision significantly due to the normalization scheme (8). However, the
determination of the (real) extreme points is often challenging. Thus, in the following, we
analyze the effect of imperfect (i.e., underestimated) extreme points for an artificial Pareto
front with significantly different magnitudes of two objectives, i.e.,

J2 =
1

log(J1 + 1)
. (14)

Since limJ1→0 J2 = ∞, we restrict J1 to J1 ∈ [0.001, 1], which leads to J2 ∈ [1.44, 1000.50].
The critical extreme point is the one for J2. Thus, we compare the calculated knee regions
and selected solutions for various underestimated Jextreme,2. Figure 6 shows the results for
different settings, which illustrate the dependence of the selected solution on the assumed
extreme points. However, this is not a specific weakness of the proposed approach here but
a problem that all decision making approaches presented in Section 2.3 share, since they
either use a normalization scheme similar to (8), and/or use the extreme points in their
utility calculations, e.g., for the angle of a single solution to the extreme points (bend angle).

If for a specific problem, the accurate determination of the extreme points is problem-
atic and the objectives’ magnitudes differ significantly, it might be beneficial to normalize
the Pareto front with fixed values instead of the dynamic normalization in dependence of
the extreme points. Values for such a fixed normalization scheme can be obtained from
long-term simulations, as is explained in [2].
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Effect of Underestimated Extreme Points

(a) Complete Pareto Front (b) Jextreme,2 ≈ 750 (c) Jextreme,2 ≈ 500

(d) Jextreme,2 ≈ 250 (e) Jextreme,2 ≈ 100 (f) Jextreme,2 ≈ 50

Figure 6. Comparison of the knee regions and selections for the artifical Pareto front from (14) for
various underestimated Jextreme,2 and three different preference settings. rlim = 0.85. As expected,
both the knee region and the final decision shift to the right, i.e., to higher values of J1, for lower
Jextreme,2. The shift is more severe for higher preferences on J2 (see magenta square). (a) Complete
Pareto front with Jextreme,2 = 1000.50, (b–f) incomplete Pareto fronts with underestimated Jextreme,2

from 750 to 50.

3.4. Discussion of the Preference for Knee Points

As stated in Section 2.3, Ref. [21] defines the knee point of a 2D MOO problem as the
point which is the solution for the most λi in the weighted sum

min
x

λi · J1(x) + (1− λi) · J2(x) (15)

where λi is chosen from a large but finite set ⊆ [0, 1]. However, as illustrated in [22]
(Figure 1) and explained in [34], the minimization of (15) can be interpreted as shifting a
plane with angle α(λi) to the origin until it is tangential to the Pareto front. Furthermore,
this interpretation is also applicable with n-dimensional hyperplanes, see e.g., [35]. Thus,
our approach of constructing a hyperplane a posteriori and choosing the solution at which it
is tangential to the Pareto front inherently prefers knee points, since multiple preferences p
(and thus preference planes) will satisfy (13) for the same Ji if it is a knee point (as the small
illustration in Figure 4b suggests). However, note that this does not allow the conclusion
that our approach could be replaced by solving a weighted sum with the according weights
instead. First, the reduction of possible decisions to a knee region prevents too extreme
(and thus uninteresting) points to be selected, independently of the formulated preferences.
Second, our approach allows us to use an approximation of the Pareto front which can be
derived from any method, not just from the minimization of a weighted sum.
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4. Focus Point Boundary Intersection Method

In the following, we present an adaption of the normal boundary intersection method.
It is more apt for the proposed setup of multi-objective optimization in combination with
Model Predictive Control. Namely, due to varying conditions over time, objectives may
correlate sometimes. This would lead to a degenerate Pareto front [36]. Even if they do not
correlate perfectly, some extreme points may end up very close to each other. If this is the
case for two out of three objectives, the resulting simplex (i.e., the convex hull of individual
minima (CHIM)) is a very narrow triangle. Then, in combination with the search direction
being strictly orthogonal to the simplex, this might lead to almost no real Pareto solutions
being found.

Thus, we propose the focus point boundary intersection (FPBI) method. In contrast to
the normal boundary intersection, it (1) constructs a hyperplane which depends less on the
extreme points and (2) enables the decision maker to define a search direction to increase
the probability of finding solutions in the area of interest. If no specific goal is available, we
use the Utopia point. Figure 7 gives an overview of the procedure.

Figure 7. High-level flowchart diagram of the focus point boundary intersection method. Note that
the unnormalized Pareto solutions J can be derived from J̃ by rearranging (8).
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The procedure of the proposed focus point boundary intersection method is as follows.
We assume that the Pareto front’s extreme points {Jextreme,1, . . . , Jextreme,n} are known.
Moreover, all further calculations are again done after the normalization J → J̃ of the
solutions as in (8), such that each objective lies within [0, 1] in the normalized space J̃.

First, we determine the extreme points
(
a, b

)
between which the distance is the longest,(

a, b
)
= arg max

(i, j)∈ [1, ..., n]

∥∥∥ J̃extreme,i − J̃extreme,j
∥∥∥

2
. (16)

With
(
a, b

)
known, we determine the center point between them,

J̃center =
1
2
( J̃extreme,a + J̃extreme,b). (17)

The search direction is then defined from J̃center to the focus point,

ns = J̃focus − J̃center. (18)

If no specific focus point is given, J̃focus = J̃utopia =
(
0, . . . , 0

)
is used, which usually

gives good results.
The main idea is to use a hyperplane between the farthest extreme points (a, b), sample

it equidistantly in every direction, and to then solve an optimization problem similar as in
the normal boundary intersection method, i.e., maximizing the length of a vector with the
direction ns from the hyperplane to the Pareto front. J̃center is used as the base vector of the
hyperplane. Thus, we further need n− 1 (orthonormal) direction vectors to describe it. For
n = 2 objectives, the connection between the two extreme points already constitutes the
hyperplane and

d1 =
J̃extreme,b − J̃extreme,a∥∥ J̃extreme,b − J̃extreme,a

∥∥
2

(19)

is its only direction vector. For n = 3 objectives, the necessary second direction vec-
tor can directly be determined as the cross product of the search direction and the first
direction vector,

d2 =
ns × d1

‖ns × d1‖2
(for n = 3 only!). (20)

For n ≥ 4 objectives, we have additional degrees of freedom. For ease of representation,
assume that a = 1, b = 2. This is no limitation, but it can be achieved by simple (temporary)
re-ordering. Then, we first construct n− 2 auxiliary direction vectors

d̂` = J̃extreme,`+1 − J̃center ∀ ` ∈ [2, . . . , n− 1]. (21)

Note that we use the extreme points, since we can assume that the resulting vectors
are linearly independent.

The direction vectors are then determined in increasing order by subsequently calculat-
ing the cross product of the search direction vector ns, the already known direction vectors
di and the auxiliary direction vectors d̂j for all other directions. To increase readability, we
borrow the

∧
symbol for the cross product of multiple vectors in the following, with which

the `-th direction vector is determined by

d` =
ns ×∧`−1

i=1 di ×∧n−1
j=`+1 d̂j∥∥∥ns ×∧`−1

i=1 di ×∧n−1
j=`+1 d̂j

∥∥∥
2

∀ j ∈ [2, . . . , n− 1]. (22)
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The generalized cross product of n− 1 vectors can be calculated as the determinant of
an extended matrix, i.e.,

n−1∧
i=1

vi = det


~e 1 v1

1 v2
1 . . . vn−1

1
~e 2 v1

2 v2
1 . . . vn−1

2
...

...
...

. . .
...

~e n v1
n v2

n . . . vn−1
n

. (23)

Note that we exceptionally use the vector symbol~e i here to emphasize that these are
the unit vectors, e.g., ~e 1 =

(
1, 0, · · · , 0

)ᵀ, and not scalar values. Equation (23) can be
solved by using the Laplace expansion along the first column. In doing so, the purpose of
the unit vectors becomes clear, too: they transform the minors into a vector again.

With the hyperplane defined by J̃center, ns and the direction vectors, we need to sample
it to determine starting points for the optimization problem. Hereby, the user can control
the resolution by defining a number rF of steps along each direction. Thus, the total number
of optimization problems is rn−1

F . We define a 1× rF step size vector γ by

∆s =

∥∥∥ J̃extreme,b − J̃extreme,a
∥∥∥

2
rF

, (24)

γ =
(
1 · ∆s, · · · , rF · ∆s

)
− rF

2
∆s. (25)

Let si ∈ [1, . . . , rF] for i = 1, . . . n− 1 be the sample indices along the n− 1 direction
vectors. For a combination (s1, s2, . . . , sn−1), the (n× 1)-dimensional starting vector in the
optimization problem is then given by

Θ(s1, s2, . . . , sn−1) = J̃center +
n−1

∑
i=1

γ(si) · di. (26)

The corresponding optimization problem is described by

min −κ (27a)

s. t. Θ(s1, s2, . . . , sn−1) + κns ≥ J̃(z) (27b)

gj(z) ≤ 0, j = 1, 2, . . . , mineq (27c)

hl(z) = 0, l = 1, 2, . . . , meq, (27d)

Note that we use ≥instead of = in (27b) since this led to faster convergence in practice.

5. Exemplary Case Studies

In this section, we apply the proposed decision making approach to two exemplary
systems in simulation, i.e., the rocket car example and the energy management system of
a building, and compare it to a simpler baseline approach. Both systems are controlled
using Model Predictive Control. Before that, we comment on the combination with Model
Predictive Control in general.

5.1. Remarks on the Consequences of the Application within MPC

The proposed decision making algorithm is well suited to combine multi-objective
optimization with MPC. However, as with at least most multi-objective MPC schemes,
theoretical properties such as stability or feasibility become hard to prove. Some works do
so for a specific MOO setting.

For example, in [37], a general MOO MPC scheme for nonlinear systems is proposed.
They consider a finite number of objectives and show that, given some mild assumptions
in addition to the usual, the max() of all objectives as the cost function can be used as a
Lyapunov function to guarantee stability. In [38], a weighted sum is used. However, the
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weights are updated in every time step, thus choosing different Pareto solutions. It is shown
that under some conditions on the objectives, e.g., joint convexity, closed-loop stability can
be guaranteed. However, for the updating of the weights, a linear programming problem
which is not jointly convex in general has to be solved in every time step. An economic MPC
scheme with a compromise solution is formulated in [39]. Namely, the authors directly
minimize the (unweighted) distance to the Utopia point. However, they only consider
steady-state control and show that if the objectives satisfy a Lipschitz continuity property
and strong duality, stability can be guaranteed.

To employ more sophisticated (and possibly interactive) MOO schemes such as the
one proposed here in combination with MPC, we suggest to indirectly ensure stability for
systems such as the one presented in Section 5.4 differently. First, the proposed algorithm
should be used only for systems with an inherently stable system dynamic. For example,
for a discrete linear system

x(k + 1) = Ax(k) + Bu(k) (28)

with the system matrix A, states x(k), input matrix B and inputs u(k), the autonomous sub-
system x(k + 1) = Ax(k) should be Lyapunov stable. Second, the constraints x ∈ X, u ∈ U
should be chosen such that every feasible state is acceptable and that for every x(k) ∈ X, a
feasible solution exists such that x(k + 1), . . . , x(Np) ∈ X and u(k), . . . , u(Npred − 1) ∈ U.
If so, the optimal control problem is always feasible independently from the chosen
solution before.

5.2. Comparison Approaches

To compare the effectiveness of our proposed approach in the following examples, we
present a simpler strategy as a baseline. Assume n = 3 objectives and pᵀ = [20 %, 70 %, 10 %].
The preferences determine the order in which the objectives are considered in the following.
For the above example, all Pareto solutions would be ranked by J2 first. Then, the worst
70 % (in terms of J2) are removed from the set of possible solutions. Next, the remaining
solutions are ranked by J1, from which the worst 20 % (in terms of J1) are then removed.
Finally, the remaining solutions are ranked by J3 and the solution which is better than the
worst 10 % (in terms of J3) is selected.

In the simulation results presented in Sections 5.3.3, 5.4.3 and 5.4.4, we also optionally
combine this simple approach with the limitation to a knee region as proposed in Section 3.1.
If so, the knee region J̄ is determined first as usual, and then, we select a solution from J̄ by
the rules described above (instead of using the preference plane).

Note that the preferences have to be normalized first, such that ∑
q
i=1 pi = 100 %. If

only n = 2 objectives are considered, the solution which splits the set in terms of the
preferences can be selected directly.

5.3. Example 1: Rocket Car

As a toy example, we first apply the proposed approach to the so-called rocket car,
which is controlled using multi-objective Model Predictive Control. In the following, we
describe the system dynamics and the resulting optimization problem and compare the
simulation results of our proposed decision making approach to the simpler baseline
approaches presented above.

5.3.1. System Description

We consider the rocket car in two dimensions. Thus, it consists of two separated double
integrators. Its coordinates are

(
z1, z2

)
, and the corresponding velocities are

(
vz1 , vz2

)
.

Together, they form the state vector x =
(
z1, z2, vz1 , vz2

)ᵀ. It has two inputs, which are
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the acceleration in both directions, u =
(
az1 , az2

)ᵀ. The dynamics are described by the
time-continuous linear state space system

ẋ(t) =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

x(t) +


0 0
1 0
0 0
0 1

u(t). (29)

The discretization with the sampling time Ts leads to the discrete linear state space
system

x(k + 1) =


1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1

x(k) +


0.5T2

s 0
Ts 0
0 0.5T2

s
0 Ts

u(k). (30)

The discrete system (30) shall be driven into a set point
(
z1,goal, z2,goal

)
=
(
10, 5

)
using Model Predictive Control. As the prediction horizon, we choose Npred = 20 steps
and Ts = 0.5 s. In the following, we denote the global time step by k and time steps within
the prediction horizon by i. We optimize two competing objectives, i.e., first the deviation
of the current position from the set point

Jpos(k) =
k+Np

∑
i=k

(z1(i)− z1,goal)
2 + (z2(i)− z2,goal)

2, (31)

and the energetic expense

Jenergy(k) =
k+Np−1

∑
i=k

az1(k)
2 + az2(k)

2. (32)

We force the system to be in a box of side-length 0.2 around
(
z1,goal, z2,goal

)
at the end

of the prediction horizon by the constraints

−0.1 ≤ z1(i = k + Npred)− z1,goal ≤ 0.1, (33)

−0.1 ≤ z2(i = k + Npred)− z2,goal ≤ 0.1, . (34)

Additionally, both the velocities and the accelerations are limited, i.e.,

−4 ≤ vz1(k) ≤ 4, (35)

−4 ≤ vz2(k) ≤ 4, (36)

−1 ≤ az1(k) ≤ 1, (37)

−1 ≤ az2(k) ≤ 1. (38)

The multi-objective optimal control problem is then described by

min
(

Jpos, Jenergy
)

(39)

s. t. (30),

(33)–(38).

5.3.2. Implementation

Both system dynamics and Pareto optimization, i.e., the determination of the Pareto
fronts and the automatized selection as described in Section 3, have been implemented
with the MATLAB MPC framework PARODIS [40]. The approximation of a single Pareto
front with the focus point boundary intersection method from Section 4, resulting in 19
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Pareto optimal solutions at each time step, takes ≈0.8 s on a single core of an Intel i7-8550U
CPU with 1.80 GHz. An entire simulation with 40 time steps takes ≈32 s.

Note that for all results presented in the following, the minimum possible costs
for each objective have been subtracted. Namely, we run the simulations with each
objective separately to obtain the lowest values which cannot be avoided, which are(

Jmin
pos , Jmin

energy

)
=
(
632.29, 0.0364

)
. This way, the effect of the preferences can be inter-

preted appropriately.

5.3.3. Simulation Results

We vary the preference ppos on Jpos from 0 to 100 and the preference on Jenergy reversed
accordingly, such that ppos + penergy = 100. The simulation results are shown in Figure 8.

Figure 8a,b show the resulting costs for the simple baseline approach described in
Section 5.2. The position costs are extremely high for ppos ≤ 10 with 1247, but they decrease
with increasing ppos. However, the energy costs show an unexpected increase for ppos = 60,
i.e., they are higher than for ppos = 60, penergy = 40 than for ppos = 70, penergy = 30, which
is unwanted.

If the simple baseline approach is combined with the prior limitation to the knee
region as in Figure 8c,d, the extreme solutions for the position costs are limited to 230.
The unwanted bump in the energy costs for ppos = 60 disappears, too, i.e., the long-term
results show a better representation of the preferences. However, the transitions between
the preference settings are still unsmooth. For example, the results for ppos = 0, 10, 20 are
all the same, and the differences in Jpos when increasing ppos from 20→ 30→ 40 are high,
low and again high.

The proposed decision making approach in Figure 8e,f has a more predictable and
smooth behavior. The effect of the limitation to the knee region is still observable, since
the results for the extreme preference settings ppos = 0, 10, 20 are close. However, when
ppos is further increased, the quadratic nature of Jpos is observable. The energy costs Jenergy
are also increased smoothly with every increase in ppos. Concluding, with our proposed
approach, the preferences are represented in the long-term costs as the most predictable.

5.4. Example 2: Building Energy Management System

As a more sophisticated example, the energy management system of an office building
is controlled using multi-objective MPC. Note that the energy management problem for
buildings or microgrids has been a popular application for multi-objective optimization
both in the design [41] and for the operation [42]. This is due to both the necessity of
respecting multiple criteria as well as the relatively high step sizes, which make the use of
computational expensive optimization methods possible.

5.4.1. System Description

For the considered office building, the system states are the building temperature
ϑb and the stored energy E of a stationary battery. The controllable inputs are an air
conditioning unit Q̇cool, a gas radiator Q̇heat, a combined heat and power plant Pchp and
the connection to the public electricity grid Pgrid. The building’s electricity demand Pdem, a
photovoltaic plant Pren and the outside air temperature ϑair are modeled as uncontrollable
disturbances. For details, the reader is referred to [1,2]. It is controlled using MPC with a
time horizon of 24 h (split into Np = 48 steps of Ts = 0.5 h) and up to three objectives, i.e.,
monetary, comfort and degradation costs,

J =
(

Jmon, Jcomf, Jbat
)
. (40)
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Rocket Car Example: Position vs. Energy Costs

Simple Baseline Approach

(a) Position Costs (b) Energy Costs

Simple Baseline Approach with Limitation to the Knee Region

(c) Position Costs (d) Energy Costs

Proposed Approach (Knee Region Limitation + Hyperplane Selection)

(e) Position Costs (f) Energy Costs

Figure 8. Position and energy costs for the rocket car example with different preferences ppos and
penergy for (a,b) the simple baseline approach, (c,d) the simple baseline approach but with limitation to
the knee region, and (e,f) the proposed preference-based decision making approach, with rlim = 0.85
for the latter two cases. Results from using the closest to Utopia point (CUP) metric are plotted for
comparison.

Every cost term is calculated over the entire prediction horizon. The monetary costs
consist of gas costs for the CHP and the heating and electricity costs (or profits) from buying
(or selling) power Pren to the public grid [2],

Jmon(k) =
k+Np−1

∑
i=k

`mon(i), (41a)

`mon(i) =
(

0.12
e

kWh
·Pchp(i) + 0.0464

e

kWh
·Q̇rad(i)

. . . + cgrid(i) · Pgrid(i)
)
· Ts. (41b)

For cgrid(i), real-world data of the German intraday market from July 2018 is used. In
this period, the costs for 1 kWh varied from 0.003 to 0.098ewith an average of 0.0494e.



Inventions 2022, 7, 46 18 of 25

The comfort costs describe the quadratic deviation from a desired temperature set
point,

Jcomf(k) =
k+Np

∑
i=k

(ϑb(i)− 21◦C)2. (42)

The third objective consists of the main factors of battery degradation, i.e., the energy
throughput, the charging rate and the average state of charge [43,44],

Jbat(k) =
k+Np−1

∑
i=k

(
wbat,E · `bat,E(i) + wbat,CR ·`bat,CR(i)

)
. . . +

1
Np + 1

k+Np

∑
i=k

wbat,SoC · `bat,SoC(i), (43a)

where wbat,E = 10, wbat,CR = 0.1, wbat,SoC = 1 and

`bat,E(i) =
|Pcharge(i)|

Cbat
· Ts, (43b)

`bat,CR(i) =
|Pcharge(i)|
Pcharge,max

, (43c)

`bat,SoC(i) =
|E(i)|
Cbat

, (43d)

with Cbat being the battery capacity and Pcharge,max being the maximum charging rate. The
charging power is not a decision variable by itself, as it is implicitly determined by

Pcharge(i) = Pgrid(i) + Pchp(i) +
Q̇cool(i)

εc
. . . + Pren(i) + Pdem(i), (44)

where εc is the energy efficiency ratio of the cooling machine.

5.4.2. Implementation

Again, both system dynamics and Pareto optimization have been implemented with
the MATLAB MPC framework PARODIS [40]. All results presented in the following are
derived from simulations of a time frame of 30 days with real-world data from July 2018,
i.e., for the intraday electricity price cgrid, the building’s power demand Pdem and the
outside air temperature ϑair. For the determination of the Pareto front approximations,
the focus point boundary intersection method from Section 4 is used. In the 3D case, it
formulates 378 single optimization problems in every time step, and one simulation with
its 30 · 48 = 1440 time steps in total takes about 2.5 h on a single core of an Intel Xeon CPU
E5-1607 v4 with 3.10 GHz. For the 2D case, the simulation time is reduced to approx. 9 min.

Note that for all results presented in the following, the minimum possible costs for
each objective have been subtracted. Namely, we run the simulations with each objective
separately (e.g., wmon = 1, wcomf = 0, wbat = 0 if only monetary costs are to be mini-
mized) to obtain the lowest values, which cannot be avoided. In this way, the effect of the
preferences can be interpreted appropriately.

5.4.3. Simulation Results for 2 Objectives

For the 2D simulations, we vary pmon from 0 to 100 while pmon + pcomf = 100. The
results are shown in Figure 9.
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Building Energy Management System: Monetary vs. Comfort Costs

Simple Baseline Approach

(a) Monetary Costs (b) Comfort Costs

Simple Baseline Approach with Limitation to the Knee Region

(c) Monetary Costs (d) Comfort Costs

Proposed Approach (Knee Region Limitation + Hyperplane Selection)

(e) Monetary Costs (f) Comfort Costs

Figure 9. Monetary and comfort costs for the 30-day 2D simulations with different preferences
pmon and pcomf for (a,b) the simple baseline approach, (c,d) the simple baseline approach but with
limitation to the knee region, and (e,f) the proposed preference-based decision making approach,
with rlim = 0.85 for the latter two cases. Results from using the closest to Utopia point (CUP) metric
are plotted for comparison.

Figure 9a,b show the monetary and comfort costs for the simple baseline approach.
The preferences are respected, i.e., every increase in pmon leads to a decrease in monetary
costs and consequently to an increase in comfort costs. However, the trade-offs for higher
preference values are extreme, especially the resulting comfort costs for pmon ≥ 80.

This can be overcome by limiting all possible selections to the knee region as we pro-
pose. If so, even the simple selection shows good results in the 2D case; see Figure 9c,d. The
highest comfort costs are limited to≈100, instead of >4000. Note that for pmon = {0, 10, 20}
and pmon = {80, 90, 100}, respectively, the results are (nearly) the same, because the knee
region sizes have been so small that the extremes are (nearly) almost chosen by rounding.
This would be different for denser samplings.

The proposed approach (Figure 9e,f) incorporates the preferences in the long-term
costs as expected, too. Furthermore, the knee region limitation leads to the same results
for pmon = {0, 10} and pmon = {80, 90, 100} only. However, here, this is not due to
the sampling density and rounding but rather intended behavior. Namely, the resulting
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preference planes are so steep that they choose the extreme points of the knee region every
time. Note that this would change for increasing knee region sizes, i.e., for rlim < 0.85.

Concluding, in the 2D case, the simple baseline approach is inappropriate for the
dynamic decision making due to choices and trade-offs which are too extreme if the
preferences are not set cautiously. The limitation of possible selections to a knee region, i.e.,
the first step of our two-step approach, can overcome this problem even in combination
with a simpler selection technique than the proposed preference hyperplane (the second
step of our proposed approach). However, most likely, this only holds because the occurring
Pareto fronts are all convex. Furthermore, in the following, we will see that the selection
based on the preference hyperplane is superior if three objectives are considered.

5.4.4. Simulation Results for 3 Objectives

The battery degradation costs are now considered as an additional third objective. Since
only the relationship between the elements of the preference vector pᵀ = (pmon, pcomf, pbat)
is relevant, we vary both pmon and pcomf as {25, 50, 75, 100}, while we keep pbat = 50
constant.

Figure 10a–c show the simulation results for the simple baseline approach. As in the 2D
case, the costs for higher differences in the preferences become extreme, especially the com-
fort costs in Figure 10b. Furthermore, in contrast to the 2D case, the resulting long-term costs
do not follow the preferences as expected. For example, in Figure 10a, the monetary costs are
reduced by half first if preferences are changed from

(
pmon, pcomf, pbat

)
=
(
25, 100, 50

)
to
(
50, 100, 50

)
, but then, they increase for

(
75, 100, 50

)
. Note that these considerable

jumps and changes in direction can partly be explained by the necessary ordering in the
algorithm. Namely, the order in which the objectives are considered in removing parts of
the Pareto front is relevant. For equal preferences of two objectives, Jmon is respected before
Jcomf, which is respected before Jbat. However, this does not explain all of the unwanted
behavior. Consider the row for pcomf = 50 in Figure 10a. The monetary costs increase
instead of decreasing if pmon is increased from 50 to both 75 or 100, although the order in
which the objectives are considered is the same, i.e., first Jmon, then Jcomf and then Jbat. The
battery costs in Figure 10c are even more turbulent. They decrease instead of increasing for
increasing pmon and pcomf = 25 and have drastic jumps in general.

Figure 10d–f show the simulation results for the simple baseline approach if the
selection is limited to the knee region. As expected, the extreme solutions are avoided,
i.e., the maximum comfort costs are reduced from 4040.14 to 271.12, and the battery costs
are reduced from 387.56 to 86.49. However, the unwanted behavior is mostly the same
otherwise. In contrast to the 2D case, the limitation to the knee region is not sufficient in
combination with the simple baseline approach for an appropriate representation of the
preferences in the long-term simulation costs.

Figure 10g–i show the simulation results for our proposed approach. In contrast to
the baseline approach, the long-term costs for the monetary and comfort objective differ
when varying pmon and pcomf, just as expected. The jumps between the different preference
settings are smaller and more evenly distributed. Every increase in a preference leads to a
decrease in the long-term costs and vice versa.

For the battery costs, some simulations still show unexpected results, e.g., the total Jbat
is slightly lower for pᵀ =

(
100, 50, 50

)
than for pᵀ =

(
100, 75, 50

)
. However, this can be

explained by the weak influence of Jbat. Battery and comfort costs are nearly independent
and only implicitly linked via the monetary costs or possibly if Pgrid would be at its limit.
The monetary costs are in direct conflict with the battery costs because they can be reduced
by buying energy at lower prices, storing it temporarily and selling it at higher prices.
However, the assumed battery capacity and charging power are so low that the vast
majority of possible monetary costs are due to the possible (but not necessary) cooling
and heating of the building. Thus, the Pareto fronts become extremely steep, as Figure 11
exemplary shows. The Pareto fronts are almost degenerate [36].
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Building Energy Management System: Monetary vs. Comfort vs. Battery Costs

Simple Baseline Approach

(a) Monetary Costs (b) Comfort Costs (c) Battery Costs

Simple Baseline Approach with Limitation to the Knee Region

(d) Monetary Costs (e) Comfort Costs (f) Battery Costs

Proposed Approach (Knee Region Limitation + Hyperplane Selection)

(g) Monetary Costs (h) Comfort Costs (i) Battery Costs

Figure 10. Monetary, comfort and battery degradation costs for the 30 days of 3D simulations with
different preferences pmon and pcomf and pbat = 50 for (a–c) the simple baseline approach and
(d–f) the simple baseline approach but with limitation to the knee region and (g–i) the proposed
preference-based decision making approach, with rlim = 0.85 for the latter two cases. Note the
different camera angles for better readability and especially the inverted axis for pcomf in (c,f,i).
Subtracted minimum costs for each objective have been determined by single-objective optimizations.

However, our approach still handles this problem sufficiently well, as Figure 10i
shows a clear trend of increasing costs Jbat from pmon = pcomf = 25 to pmon = pcomf = 100.
Furthermore, in contrast to the baseline approach (even with the limitation to the knee
region), the battery costs are significantly lower with a maximum of 13.18 instead of 86.49
overall. The long-term results can actually be considered better overall, as our approach
outperforms both the simple approach e.g.,

(
25, 25, 50

)
vs.

(
75, 100, 50

)
and the simple

approach with prior limitation to the knee region e.g.,
(
75, 25, 50

)
vs.

(
55, 25, 50

)
) for

some preference combinations.
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Exemplary Preference Planes on a 3D Pareto Front

(a) pᵀ = (100, 25, 50) (b) pᵀ = (25, 100, 50)

(c) pᵀ = (25, 25, 50)

Figure 11. Single Pareto front from simulation with its knee region (rlim = 0.85) and different
preference planes with focus on (a) monetary, (b) comfort and (c) battery costs. Note that the different
preferences are according to the extreme cases from Figure 10.

5.4.5. Influence of Knee Region Size

Figure 12 shows how rlim affects the possible influence of the decision maker. For
every rlim, we simulated the three possible extremes p1 = (1, 0, 0)ᵀ, p2 = (0, 1, 0)ᵀ and
p3 = (0, 0, 1)ᵀ and calculated the maximum difference for each objective, e.g.,

∆Jmon(rlim) = max
p∈{p2,p3}

(Jmon(rlim, p))− Jmon(rlim, p1). (45)

The difference in monetary costs shown in Figure 12a is nearly (anti)proportional to
rlim. The possible differences ∆Jcomf seem to decrease quadratically with an increasing
rlim in Figure 12b, which is probably due to its quadratic form (42). The battery costs
in Figure 12c again have an outlier for rlim = 0.75, which can be explained by its bad
conditioning in comparison to Jcomf as discussed before. However, the trend of the decrease
in ∆Jbat with an increasing rlim is clear, too. The average number of Pareto points which are
determined as part of the knee region correlates nearly linear to rlim, as Figure 12d shows.
However, this depends on the shapes of the Pareto fronts and cannot be generalized.
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Influence of Different Knee Region Sizes

(a) Monetary Costs (b) Comfort Costs

(c) Battery Costs
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Figure 12. Maximum difference in total monetary (a), comfort (b) and battery (c) costs and the
average number of points considered to be part of the knee region (d) for different rlim, which were
calculated according to (45).

6. Conclusions

We presented a two-step approach for automated decision making from an available
Pareto front. It allows a decision maker to formulate the preferences of each objective
independently of their scales. At the same time, it (1) ensures that only good compromises
can be selected by limiting possible choices to a knee region, which (2) depends on the
Pareto front’s shape, (3) gives the decision maker a design parameter with which he can
comprehensibly choose a priori how strong his influence should be, and (4) has a built-in
proclivity for knee points, if they exist. Thus, it enables the use of MOO in continuous
processes where decisions have to be made repeatedly, such as in multi-objective (economic)
MPC, where varying circumstances may lead to very different possible decisions regularly.
The simulation results of a toy example as well as a more sophisticated case study of a
building energy management system showed superior results in comparison to simpler
selection techniques especially for n = 3 objectives.
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