
Aus dem Bereich Klinische Bioinformatik
Klinische Medizin
der Medizinischen Fakultät
der Universität des Saarlandes, Homburg/Saar

Evaluation of blood-based microRNAs toward clinical use

as biomarkers in common and rare diseases

Dissertation zur Erlangung des Grades eines Doktors

der Naturwissenschaften der Medizinischen Fakultät

der U N I V E R S I TÄT D E S S A A R L A N D E S

2022

vorgelegt von Mustafa Kahraman

geb. am 24.12.1986 in Olpe, Deutschland



Student:
"Dr. Einstein, aren't these the same questions as last year's 
[physics] final exam?"

Dr. Einstein:
"Yes, but this year the answers are different."



Abstract

According to the GLOBOCAN project of the International Agency for
Research on Cancer, the top three common cancer diseases worldwide
in the year 2020 were breast, lung and colorectal cancer. These are
usually diagnosed via imaging methods (e.g. computer tomography)
or invasive methods (e.g. biopsy). However, these techniques are
potentially risky and expensive and thus not accessible to all patients,
resulting in most cancers being detected in an advanced stage. Since
the discovery of small non-coding RNAs and specifically microRNAs
and their role as gene regulators, many researchers investigate their
association with disease development. In particular, researchers ex-
amine body fluid based microRNAs which could present potential
cost-effective and minimally- or non-invasive alternatives to the previ-
ously described established diagnosis methods.

This dissertation focuses on microRNAs and investigates their suit-
ability as minimally-invasive blood-borne biomarkers for potential
diagnostic purposes. More specifically, the goals of this work are (1)
to implement a new method to predict novel microRNAs, (2) to un-
derstand stability and characteristics of these small non-coding RNAs,
possibly relevant for the last goal, (3) to discover potential diagnostic
biomarkers in common and rare diseases. The first goal was addressed
by developing miRMaster, a web service to predict new microRNAs.
The tool uses machine learning and high-throughput sequencing data
to find microRNA candidates that follow the known biogenesis path-
ways. The second goal was pursued in four publications. First, we
performed a large scale evaluation of miRMaster by generating a high-
resolution map of the human small non-coding RNA transcriptome
for which we analyzed and validated potential microRNA candidates.
Next, we examined the influence of seasonal effects on microRNA ex-
pression profiles and observed the largest difference between spring
and the other seasons. Additionally, we evaluated the evolutionary
conservation of small non-coding RNAs in zoo animals and showed
that the distribution of sncRNA classes varies across species, while
common microRNA families are present in more diverse organisms
than assumed so far. Furthermore, we analyzed if microRNAs are
technically stable, and whether biological variation is preserved when
using capillary dried blood spots as an alternative sample collection de-
vice to venous blood specimens. Finally, we investigated the suitability
of microRNAs as biomarkers for two diseases: lung cancer and Marfan
disease. We identified blood-borne biomarker candidates for lung can-
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cer detection in a large-scale multi-center study via machine learning.
For the rare Marfan disease we analyzed the paired messenger RNA
and microRNA expression levels in whole-blood samples. This high-
lighted several significantly deregulated microRNAs and messenger
RNAs, which we subsequently validated in an independent cohort.

In summary, this thesis provides valuable results toward potential
clinical use of microRNAs, and the herein described projects represent
comprehensive analyses of them from different perspectives: starting
with microRNA discovery, addressing various technical and biological
questions and ending with the potential use as biomarkers.



Zusammenfassung

Nach Angaben des GLOBOCAN-Projekts der International Agency
for Research on Cancer sind die drei häufigsten Krebserkrankungen
weltweit im Jahr 2020 Brust-, Lungen- undDarmkrebs. Diesewerden in
der Regel durch bildgebende Verfahren (z.B. Computertomographie)
oder invasive Methoden (z.B. Biopsie) diagnostiziert. Diese Verfahren
sind jedoch potenziell risikoreich und teuer und daher nicht für alle
Patienten zugänglich. Dies führt dazu, dass die meisten Krebsarten
erst in einem fortgeschrittenen Stadium entdeckt werden. Seit der
Entdeckung der kurzen nichtkodierenden RNAs und insbesondere
der microRNAs und ihrer Rolle als Genregulatoren untersuchen viele
Forscher ihren Zusammenhang mit der Krankheitsentwicklung. Ins-
besondere untersuchen die Forscher die in Körperflüssigkeiten vorkom-
mendenmicroRNAs, die potenziell kosteneffiziente undminimal- oder
nicht-invasive Alternativen zu den bisher beschriebenen etablierten
Diagnosemethoden darstellen könnten.

Diese Dissertation konzentriert sich auf microRNAs und unter-
sucht deren Eignung als minimal-invasive blutbasierte Biomarker
für potenzielle diagnostische Zwecke. Genauer gesagt sind die Ziele
dieser Arbeit (1) die Implementierung einer neuen Methode zur
Vorhersage neuartiger microRNAs, (2) das Verständnis über die Sta-
bilität und Charakteristika dieser kurzen nicht-kodierenden RNAs, die
möglicherweise für das nächste Ziel relevant sind, (3) die Entdeckung
potenzieller diagnostischer Biomarker für verschiedene Anwendungen.
Das erste Ziel wurde durch die Entwicklung von miRMaster verfolgt,
einem Webdienst zur Vorhersage neuer microRNAs. Das Tool nutzt
maschinelles Lernen und Hochdurchsatz-Sequenzierungsdaten, um
microRNA-Kandidaten zu finden, die den bekannten Wege der
Biogenese folgen. Das zweite Ziel wurde in vier Veröffentlichungen
verfolgt. Zunächst führten wir eine groß angelegte Evaluierung
von miRMaster durch, indem wir eine High-Resolution Map des
menschlichen Transkriptoms kurzer nichtkodierender RNAs erstellten,
für die wir potenzielle microRNA-Kandidaten analysierten und
validierten. Anschließend untersuchten wir den Einfluss saisonaler
Effekte auf die microRNA-Expressionsprofile und beobachteten
den größten Unterschied zwischen dem Frühling und den anderen
Jahreszeiten. Darüber hinaus untersuchten wir die evolutionäre
Erhaltung kurzer nichtkodierender RNAs in Zoo-Tieren und zeigten,
dass die Verteilung der kurzer nichtkodierenden RNA-Klassen zwis-
chen den Arten variiert, während gemeinsame microRNA-Familien
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in verschiedeneren Organismen vorkommen als bisher angenom-
men. Darüber hinaus analysierten wir, ob microRNAs technisch
stabil sind und ob die biologische Variation erhalten bleibt, wenn
kapillares Trockenblut als alternatives Probenentnahmeverfahren zu
venösen Blutproben verwendet werden. Schließlich untersuchten wir
die Eignung von microRNAs als Biomarker für zwei Krankheiten:
Lungenkrebs und Marfan-Krankheit. In einer groß angelegten mul-
tizentrischen Studie identifizierten wir mit Hilfe von maschinellem
Lernen Biomarker-Kandidaten aus dem Blut für die Erkennung von
Lungenkrebs. Für die seltene Marfan-Krankheit analysierten wir die
gepaarten Expressionsniveaus von messengerRNA und microRNA
in Vollblutproben. Dabei wurden mehrere signifikant deregulierte
microRNAs und messengerRNAs festgestellt, die wir anschließend in
einer unabhängigen Kohorte validierten.

Zusammenfassend lässt sich sagen, dass diese Arbeit wertvolle
Ergebnisse im Hinblick auf die potenzielle klinische Verwendung von
microRNAs liefert. Die hier beschriebenen Projekte stellen umfassende
Analysen aus verschiedenen Blickwinkeln dar: angefangen bei der
Entdeckung von microRNAs, über verschiedene technische und biolo-
gische Fragen bis hin zur potenziellen Verwendung als Biomarker.
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1
Introduction

This chapter introduces the motivation and fundamentals for using
microRNAs (miRNAs) as blood-based markers. Research over the
last 10 years has shown that this particular small non-coding RNA
(sncRNA) class has been implicated in the development of cancer [8],
with lung cancer often being of research interest as one of the most
common and deadly cancer diseases [9]. In this regard, I present
here that miRNAs may be an interesting minimally-invasive diagnostic
alternative to conventional diagnostic methods such as invasive biopsy
methods or non-invasive possibly radiation-invasive imaging methods
for early detection of this disease [10]. In addition, we raised the
question of whether the use of miRNAs is also transferable to analysis
of genetic-based Marfan syndrome, a fundamentally different disease
to lung cancer. Furthermore, this chapter will highlight the structural,
biogenesis and occurrence properties that are valuable for the discovery
of new miRNAs by prediction methods and for the understanding of
blood-based markers. Lastly, I will present sampling methods and the
profiling platforms. I will describe the classical whole-blood PAXgene
tube as well as dried sampling methods that seems to be suitable for
home-sampling. Profiling of miRNAs on multiple platforms with
different applications will also be addressed in this chapter.

1.1 Diseases

In this section, two different diseases will be presented. First, there is
lung cancer, a common disease, which is often diagnosed too late for
most patients [11]. Second, there is Marfan syndrome, a rare genetic
disease, the diagnosis of which is currently done in a multiple-step
approach by a group of medical doctors of different fields [12]. These
challenges led to the research of biomarker-based diagnostic tools to
provide quick and simplified diagnoses.

1.1.1 Lung cancer

Brief history and causes of lung cancer

While in the beginning of the 20th century documented cases of lung
cancer suggested it was a rare disease, today, more than 100 years later,
it is themost common cancer disease alongside breast cancer and one of
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the leading causes of death worldwide with around 1.8 million deaths
in 2020 [13, 14]. This vast number can be explained with better iden-
tification through improvement of the medical infrastructure, wider
interest in lung cancer research and broader access to medical facilities.
Although in the first half of the 20th century physicians in Germany
and the US were able to associate smoking with lung cancer develop-
ment, the general public and the majority of medical doctors ignored
this link until the Surgeon General’s report in 1964. This report, based
on more than a thousand of articles relating to smoking and disease,
recognized the use of tobacco as a main cause of lung cancer [15, 16].
While for a long time the squamous cell carcinoma with central local-
ization was the predominant lung cancer form among smokers, today
the focus is on peripherally located adenocarcinoma, likely connected
to the changes made in the cigarette productions [17]. However, there
are several non-smoking risk factors which can cause lung cancer as
well. Genetic predispositions alongside personal exposure to passive
smoking, radon, or occupational exposures (asbestos, metals, silica,
etc.) and even air pollution all lead to a risk of developing the dis-
ease [18]. It is worth mentioning that chronic obstructive pulmonary
disease (COPD), a common lung disease, often precedes by tumor
development [19].

Figure 1.1: Identified proportion
of lung cancer patients and life ex-
pectancy. (a) SEED stages. Localized:
Cancer is circumscribed to its primary
location. Regional: Cancer expands to
regional lymph nodes. Distant: Metas-
tases have developed. Unknown: Cancer
is unstaged. (b) The 5-year-survival rate
decreases with increasing stage. Created
with BioRender.com

Life expectancy and current methods in diagnosis and treatment

According to the annual report of the National Cancer Institute in the
United States, the 5-year-survival-rate by SEER stages (accessible at
http://www.seer.cancer.gov/) was 6.3% among patients diagnosed in
the distant stage when metastasis has already begun. The highest sur-
vival chance with 59.8% is when the patient’s diagnosis happens in the
localized stage. More than half of the identified lung cancer patients
were recognized in distant stage with low survival perspectives, while
a minority of 18% with potential longer life is identified in the localized
stage [20] (see Figure 1.1). The main current method for disease detec-
tion is the non-invasive x-ray-based low-dose computed tomography
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(CT) scan. It was applied on for the first time in 1979 and was further
developed over time. The method captures images of cross-sections
of parts of the body and thus enables the observation of abnormali-
ties in different layers or levels of the examined body or tissue region
[21]. The exposure to radiation from low-dose CT seems to be less
dangerous for a patient in a high-risk population than the annual chest
radiography or conventional CT scan [22, 23]. Due to its high rate of
false positive results, the elevated radiation exposure in subsequent
diagnostic CT scans and an increased amount of overdiagnosis, the
worldwide and general implementation of low-dose CT screening is
still subject to debate [23, 24]. A helpful tool to prioritize patients for
screening or to help the prevention of unnecessary invasive diagnostic
examinations in finally benign findings may be the additional use of
molecular biomarkers. The blood-based analysis of tumor-associated
proteins as well as circulating tumor cells (CTC) or circulating tumor
DNA (ctDNA) is known as liquid biopsy. Alternative non-invasive
sampling methods are saliva or sputum collection or even exhaled
breath condensate sampling [25–28]. However, the predominant mark-
ers are CTCs and ctDNA. CTCs are essentially metastases in transit.
However, their ultra-low concentration in blood (~1-10 cell/ml blood
[29]) leaves them very difficult to detect in early-stage disease settings
[30]. ctDNA is part of cell-free DNA (cfDNA) that typically gets shed
from dying tumor cells into peripheral blood (see Figure 1.2) [31].

Figure 1.2: Circulating tumor DNA in
the blood. Tumor DNA in the blood
is released from necrotic tumor cells lo-
cated either in a tumor (primary tumor
ormetastasis) or in the bloodstream. Cre-
ated with BioRender.com

Due to its short half-life of about 35 min [32], ctDNA is a dynamic
marker and has been used successfully in late-stage tumor monitoring
and to detect minimal residual disease after surgery. One challenge
of ctDNA is that its abundance in peripheral blood is relatively low
– only a small fraction of cfDNA is actually ctDNA – requiring very
deep sequencing or sensitive polymerase chain reaction (PCR) assays.
Interestingly, different tumor types exhibit different ctDNA shedding
rates, making it challenging to develop a ctDNA based assays for early
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detection for multiple cancer types. For example, the CancerSEEK
assay (61 ctDNA amplicons + 8 proteins) applied on early-stage can-
cers (stage I) shows the lowest detection rate for esophageal cancer
(20%) and the highest for liver cancer (100%) [33], whilst the GRAIL’s
Galleri methylation based cfDNA assay detects only 23% of stage I
lung cancers [34]. For this reason, it is necessary to also assess alterna-
tive, or complementary biomarkers, such as small RNAs. A promising
group of biomarkers besides proteins or ctDNA are miRNAs, small
non-coding RNAs which take part in the post-transcriptional orchestra-
tion of metabolic and regulatory pathways. Their alteration in several
pathophysiological conditions such as manifold cancers, neurodegen-
erative or cardiovascular diseases has already been demonstrated in
our research as well as others’ [28, 35–38]. For cancer therapy, there
are a number of treatments depending on the type and how advanced
the tumor is. To cure the cancer, the usage of surgery, radiotherapy or
chemotherapy are recommended, while to improve the situation for
advanced cancer patients supportive and palliative care is used [39].

1.1.2 Marfan Syndrome

Brief history and causes of Marfan syndrome

The Marfan syndrome (MFS), which was first reported by the pediatri-
cian Antoine Marfan in 1896, is a rare and multi-system disorder with
a prevalence of 1 in 5,000 individuals in the general population [40,
41]. In 1931 Henriculus Weve first discovered that the cause is located
at chromosome 15, more precisely 15q-21.1, and that it is inherited in
an autosomal-dominant manner [42]. Later in 1991 Harry C. Dietz
identified mutations on the fibrillin-1 (FBN1) gene [43]. Since that
first mutation discovery, over 600 different mutations connected to this
protein have been reported for MFS and related disorders [44, 45].
The disease comes along with skin, cardiovascular, skeletal and ocular
symptoms [46].

Current methods in diagnostics and treatment

To currently diagnoseMFS, a pediatricianmust identify anamnesis, and
more crucially a ”classic triad,” consisting of ocular, cardiovascular
and musculoskeletal abnormalities. Other doctors such as human
geneticist, oculist, cardiologist and orthopedist can aid in the final
diagnosis [12, 47, 48]. The current therapeutic strategies aim to avoid
complications for the patient. This is implemented during regular
medical check-ups by the above-mentioned medical specialists. One of
themost important treatments is the annualmonitoring of the heart and
the administration of beta-blockers to prevent a sudden cardiac arrest
through aortic dissection, [49]. In addition, surgeries treating scoliosis
or ocular abnormalities can help to alleviatemedical conditions [40, 50].
With the improvement of therapy, themean life expectancy in 1990s has
been significantly increased to 41 compared to the age of 32 in 1972 [51].
Due to the fact that the disorder is genetic-based, potential solutions of
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the gene therapy using catalytic nucleic acid molecules for correction
of the mutation as the cause itself was already discussed in the review
paper of Phylactou and Kilpatrick in 1999 [52]. With the development
of the precise gene editing technology based on clustered regularly
interspaced short palindromic repeats (CRISPR), a new promising
approach to cure MFS has emerged [53]. In this process, the Cas9
protein transferred into the cell finds the target region with a guided
single stranded sequence and cleaves the target DNA sequence. At this
point this region can be edited by modifying, deleting or inserting new
sequences [54, 55]. The CRISPR/Cas9 technology used as a copy-and-
paste tool opens the door for healing genetic-based diseases such as
MFS.

1.2 MicroRNA

Image-based instruments such as computer tomography are currently
the gold standard for diagnostics to see intra-body pathologic-
morphological tissue modifications caused by cancer [56]. However,
the situation with the expensive procurement of these technologies
and the late diagnosis for many diseases calls for low-cost and early
diagnostic alternatives. Worldwide research efforts have started
to work on different type of blood-based biomarkers [57, 58]. In
particular, miRNAs, which will be introduced in this section, have
come to the forefront of research as their potential was revealed.

1.2.1 MicroRNA basics

MicroRNAs were introduced to the science world in 1993 [59]. The
discovery of cel-lin-4 by Lee, Feinbaum and Ambros in 1993 [59] and
cel-let-7 by Reinhart et al. and 2000 [60] started a new field in biologi-
cal and medical research. Gene regions that were considered junkDNA
were later associated with regulatory RNAs that control mRNA transla-
tion [61, 62]. The miRNA genes belong to the small non-coding RNAs
(sncRNAs) which are also composed of other classes such as transfer
RNA (tRNA), small nucleolar RNA (snoRNA), small nuclear RNA
(snRNA), small interfering (siRNA) and piwi-interacting (piRNA)
[63]. So far, over 85,000 human transcripts of these sncRNAs have
been found and annotated [64]. These small molecules – with a length
of 17-28 nucleotides (nts) – are present in human, plants and other
organisms. miRNA sequences that are similar across species share
conserved seed regions, which are the main binding region for target
identification. To find similar miRs in other species, one can apply two
approaches using assumed conservation: homology- and sequence-
based approaches that ignoring expression profiles and expression pro-
file based approaches, e.g. between human and rat can be conserved
[65, 66]. When miRNAs were found to play a central role in several
species, especially in humans, they quickly gained attention, leading
to the development of hundreds of bioinformatics-tools which allow
the evaluation of the plethora of generated miRNA-based datasets
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today [67]. By determining correlations to pathologies, miRNAs be-
came highly interesting molecules as potential predictive biomarkers
for diagnostics and prognostics on one side and potential players for
therapeutic approaches on the other side [68].

1.2.2 Biogenesis in human

Human mature miRNAs are transcribed RNA molecules from miRNA
genes. The initial longer transcript, which is called primary miRNA
(pri-miRNA), undergoes several processing steps, starting in the nu-
cleus (see Figure 1.3), and then becomes the final mature miRNA in
the cytoplasm. miRNAs are transcribed mainly by RNA Polymerase
(Pol II), but Pol III can transcribe miRNAs as well [69, 70]. The pri-
mary transcribed molecule can usually be over 100 basepairs (bps)
long and contains a stem sequence of around 35 bps where the mature
miRNA is located [71]. Some primary miRNAs can produce multiple
mature miRNAs. These long transcripts are called clusters [72]. In the
nucleus, Drosha, a ribonuclease III enzyme, and its co-factor DGCR8
process the pri-miRNA to a shorter hairpin structure called precur-
sor miRNA (pre-miRNA) with 2 nt 3’ overhang [73]. Afterwards,
the new molecule is transferred to the cytoplasm, where its loop is
removed by the RNA III endonuclease Dicer [74]. The resulting ma-
ture miRNA duplex is loaded into the Argonaute (AGO) which forms
the miRNA-induced-silencing-complex (miRISC) [75]. To prepare
the final version of this complex for RNA targeting, one of the two
strands, the passenger strand (*) is ejected and degraded, while the
guide strand is maintained for targeting. The seed region of a mature
miRNA, starting from base position 2 with a length between 6 and 8
nts, is the main region for target recognition [70]. In the following,
the sequential and structural features of the general precursor miRNA
are described. These are important for biogenesis and ultimately de
novo miRNA prediction. Usually, a precursor is ~60 bps long and has
a 2 nt overhang on the 3’ end so when the stem structure is formed
the 5p- and 3p-arm are shifted [73]. It includes bulges and a terminal
loop, which can influence preprocessing by Drosha and Dicer [76].
Flexible terminal loop regions allow a facilitated processing for both
enzymes, while mutations inside that region conduce base pairing and
shorter loops, leading to possible inhibition of miRNAs biogenesis [76].
Finally, the minimum free energy (MFE) is worth to be mentioned as
a significant feature indicating the stability of a structure. It describes
how much energy is needed to keep the specific form of secondary
structure. The lower the MFE for a secondary structure is, the more
stable the form [77]. The base composition has an effect on the MFE
and, in the end, on stability [78]. The MFE is a good indicator if a
precursor would fold into a stable hairpin structure or an alternative
form which is less likely to match the miRNA biogenesis and to be
processed by Dicer [79]. Hence, this feature can be used for miRNA
prediction.

For a long time, there was the general acceptance that nearly each
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Figure 1.3: Biogenesis of miRNAs in
human. Pol II transcribes a miRNA
gene to a pri-miRNA which is processed
to a pre-miRNA by Drosha and its co-
factor DGCR8. This precursor is cleaved
by Dicer to a miRNA-duplex which is
loaded into AGO. The resulting miRISC
binds to the corresponding target to
destabilize the RNA or inhibit its transla-
tion. Created with BioRender.com

precursor generates one mature miRNA for each arm. However, recent
sequencing studies have shown that there can be transcribed alternative
forms (isomiRs) besides the canonical sequence documented in miR-
Base [80]. Based on the type of modifications, isomiRs can be grouped
into three major groups: polymorphic, 5’- or 3’-isomiRs. While the
polymorphic variants have internal substitutions, additions or dele-
tions, the 5’- and 3’-isomiRs have modifications in the respective tail
regions. These can be divided into template and non-template-based
variations [81]. While the template-based modification represents
bases from the precursor, the non-template variation can be a result
of polyadenylation [82]. Wu et al. showed that the two-thirds of the
found miRNAs in their dataset of their 81 colorectal tissue samples
are non-canonical miRNAs. While the majority of these are 3’ isomiRs
with additions [81], isomiR expression usually correlates highly with
canonical miRNA expression [83]. Nevertheless, modifications in the
seed region can lead to different targets and functions [83]. Several
studies have shown that the variations can be dependent on popula-
tion, gender and age [84–86], but the isomiR generation can also be
cell-type specific and disease-dependent [86, 87].

1.2.3 Biological functionality and mechanism of action

Although miRNAs are short sequences, they play a major part in post-
transcriptional gene regulation. They are involved in physiological
processes of the cell cycle such as proliferation, differentiation and
apoptosis [88]. Taking the first discovered miRNAs as an example,
cel-lin-4 and cel-let-7 play a part in the developmental transitions in
larval stages of C. elegans [88, 89]. In 2007, Shcherbata et al. found out
that dme-miR-8 and dme-bantam are required for adult germline stem
cell maintenance in Drosophila [90]. In addition to that, hsa-miR-449
could play a cross-functional role in cell fate determination regarding
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cell death, cell differentiation or cell cycle arrest in humans [91]. The
gene regulation occurs at the post-transcriptional RNA level targeting
mRNAs byWatson-Crick basepairing. Here, one miRNA can have mul-
tiple different targets on the one hand, and one target can be targeted
by many different miRNAs on the other hand [92]. There are three
mechanisms of miRNA targeting. While in plants the commonly seen
perfect binding to the target leads to mRNA cleavage, the partial bind-
ing which is predominant in animals results in translational repression
[65, 93]. The last mechanism is the destabilization of the target RNA by
removing the protecting ends (m7G on the 5’-end and poly-A-tail on
the 3’-end) causing degradation. Thereby, the GW182 protein bound to
the miRISC complex recruits CCR4-NOT deadenylase for digesting the
poly-A tail and DCP2 with associated proteins for decapping the RNA.
Finally, the decapped mRNA can be degraded by the exoribonuclease
XRN1 [72]. The miRNA-mediated mRNA regulation in animals occurs
by one of the mechanisms (repression or destabilization) or some-
times by the combination of both shown inDrosophila melanogaster [94].
Overall, all scenarios typically yield anti-correlated miRNA-mRNA-
expression and protein translation of the target gene [95]. However,
in contrast to their traditional role in gene regulation, recently it was
observed that an overexpressed miRNA can also up-regulate its target.
Gu et al. showed that miR-191 increased the mRNA expression of the
antiangiogenic factors p21 and tissue inhibitor of metalloproteinase-1
[96]. Tan et al. found that the positively-correlatingmiRNA-gene-pairs
are consistent across various human cancer types of the The Cancer
Genome Atlas [97, 98].

1.2.4 MicroRNA databases

Since miRBase was created in 2002, it is the most well-known pub-
lic online database for miRNA sequences and their annotation. In
the beginning, the database contained 218 hairpin precursors and 218
mature miRNAs of five different species (miRBase v1.0 in Decem-
ber 2002). Two decades later, 38,589 precursors and 48,860 mature
miRNAs from 271 organisms exist in the current release 22.1 (October
2018). The immense increase can be explained by the shift of tradi-
tional expression and experimental validation methods – northern blot
and reverse-transcription quantitative polymerase chain reaction (RT-
qPCR) towards novel high-throughput methods by next generation
sequencing (NGS) combined with computational ab-initio miRNA pre-
diction approaches [99, 100]. The NGS approaches have created novel
sequence data where several computational miRNA prediction meth-
ods were implemented. These generated a high number of miRNA
candidates alongside the challenge to validate them experimentally.
With the increasing usage of NGS, the number of predicted miRNAs
grew rapidly. When considering the miRBase v1 - v10, 82 miRNAs
were introduced in total in the repository by NGS validation. However,
for v11 to v20 there were already 1505 NGS-validated new miRNAs
[101]. Without experimental validation of these large number of new
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entries, there is a risk of overestimation of total numbers of miRNAs in
the miRBase content because of potential false positives. [100]. The
latter observation describes one limitation of miRBase. Another im-
portant observation is the absence of candidate molecules that other
research groups have already found but not updated or updated much
later in miRBase [101]. Focusing on the human organism, we can find
1,917 precursors and 2,656 mature miRNAs in the current miRBase
version of 2018 (see Figure 1.4), while Londin et al. have already pub-
lished 3494 novel precursors and their 3707 potential mature miRNAs
derived from a comprehensive analysis of 13 cell types in 2015 [102].

86

13
5

16
9

18
8

20
7

21
1 31

9

45
4

47
1

73
2 84

7

86
6

88
5

90
4

11
00 12

23

17
33

19
21 20

42

25
78

25
88 26

56

0

1000

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
miRBase version

N
um

be
r 

of
 m

iR
N

A
s

Figure 1.4: Number of miRNAs re-
leased in different miRBase versions.
The number of new miRNA entries is in-
creasing constantly with each miRBase
release. Large increases are observed
with the releases from version 17 to 20.

In addition, there is a chance that the same not yet reported novel
miRNA can be found by several researchers without them noticing,
since the biggest central repository is not always up-to-date. To avoid
this issue, miRCarta was developed with the focus on human, and its
contentwas derived frommore than 18,000 small RNA sequencing data
sets (Sequence Read Archive), The Cancer Genome Atlas (TCGA) and
in-house datasets using miRMaster as a prediction tool. The current
release contains over 15,000 human precursors and around 25,000
human miRNAs [101].

To understand the biological relevance of annotated miRNAs,
databases documenting their functional relevance have been devel-
oped. miRecords (last update: April 2013) has 2,705 experimentally
validated records of miRNA-target interactions based on over 600
miRNAs and 1,901 target genes of 9 species [103]. Other currently
maintained databases are miRTarBase 8.0 (September 2019) and
DIANA-TarBase v8 (2017) which both have manually curated entries
and around half a million reported target interactions [103, 104].
Another well-known repository, which is the largest one, is miRwalk
(launched in December 2014; current version is 3.0) with a collection
of around 949 million predicted and experimentally verified miRNA-
target interactions [105]. Focused on the human species and mice,
miRPathDB 2.0 (released in 2019) provides target-interactions as well,
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but also associations with particular biological processes or pathways
combined with enrichment analysis functionality [106]. Furthermore,
it incorporates over 15,000 novel miRNAs listed in miRCarta [101].

1.2.5 Tissue of origin

Although miRNAs are universally present in the human body, they
show different expression pattern depending on their tissue specificity
and temporal local biological conditions [107]. They can reflect physio-
logical and disordered physiological processes such as carcinogenesis,
metastasis and drug receptivity in their cells of origin [108, 109]. The
tissue specific expression of miRNAs can be useful to determine the
primary origin of metastatic cancer with unknown primary tumor
[110] or can be supportive to understand blood- or serum-based po-
tential biomarkers for a disease in the respective tissue. To look up
calculated abundances of miRNAs in different organs, scientist can use
online repositories such as smiRNAdb (Landgraf et al., 2007) [111]
or Human miRNA Tissue Atlas (Ludwig et al., 2016) [107]. However,
since the tissue specific miRNAs are only obtained via biopsy, medical
researchers are highly interested in biomarkers of body fluids (whole
blood, serum, plasma, urine, etc.) which are easily collected in a non-
invasive to minimally-invasive manner and can be collected at larger
scale. The source of these circulating miRNAs are erythrocytes (red
blood cells, RBCs), immune cells (white blood cells, WBCs), other
circulating cells, exosomes, and general secretion from cells [112]. As
such circulating miRNAs can reflect a variety of solid tissue specific
observations, some of these can reflect a disease-related signal. There
are miRNAs responsible for cell-to-cell communication. For example,
tumor-secreted hsa-miR-21-5p and hsa-miR-29a-3p work as ligands to
receptors of the Toll-like receptor family with the result of an inflam-
matory response and potential inducing tumor growth and metastasis
[113]. Furthermore, there are miRNAs related to the immune response
as part of the innate and adaptive immune system [114]. For example,
while miRNAs including hsa-miR-155-5p and hsa-miR-223-3p regulate
granulocytes and macrophages of the innate immune system, hsa-miR-
17-5p, hsa-miR-31-5p and others are involved in the development of
lymphoid immune cells (B- and T-cells) [115]. Despite these miRNAs
being part of peripheral blood mononuclear cells (PBMCs), red blood
cells form the largest proportion with 99% of the whole blood compo-
nents. This imbalance results in two problems. First, the high-level
blood-borne miRNAs can make it difficult to catch a disease-specific
miRNA expression pattern [112, 116]. The miRNA detection band-
width can turn out smaller using e.g. NGS technologies. Here, the
top three dominant miRNAs can comprise over 90% of the total signal
and can consequently lead to inaccurate quantification of potential
important low abundant miRNAs [117]. The second problem is that
a fold change is barely noticeable if the disease-related deregulation
of a miRNA is not taking place in RBCs, the dominant cell type in the
whole blood.
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1.3 Computational methods

In this section, I present different kinds of analyses that can be per-
formed with miRNA-related data. These cover approaches for sample
similarity and biomarker discovery, prediction of miRNAs and the
identification of miRNA-gene interactions which are the components
of miRNA regulatory networks. The last topic introduces web services
as a solution for broader usage in the scientific community.

1.3.1 MicroRNA analyses

1.3.1.1 Overview of microRNA analyses

Cluster analysis An important aspect to understand complex and high-
dimensional data (each miRNA is a feature/dimension) is data visual-
ization via unsupervised dimensional reduction while preserving the
relevant information. Usually, the dimensionality is reduced to two
or three dimension where samples with similar patterns (expression
profiles) group together as clusters. A common method for dimen-
sionality reduction is principal component analysis (PCA) [118]. It
generates orthogonal linear combinations (principal components) of
the original variables. In doing so, the first components conserve most
of the largest pairwise distances by maximizing the variance explained
by each component. Since PCA is based only on linear transforma-
tions, the non-linear relationships can be captured by other approaches
such as t-distributed stochastic neighbor embedding (t-SNE) [119]
or uniform manifold approximation and projection (UMAP) [120].
The idea of t-SNE is to preserve local similarities in non-linear man-
ifold structures. The algorithm computes similarities between pairs
of samples in the high-dimensional space (original data) and in the
low-dimensional space (starting with a random distributed represen-
tation). Then it tries to minimize the two similarity derived probability
distributions using a loss function with the result that the clustering in
the high-dimensional space is preserved in the low-dimensional one.
An alternative dimension reduction method is UMAP which preserves
both local and most of the global structure and has better runtime
performance according to the authors [121]. Finally a popular method,
there is agglomerative hierarchical clustering. Its algorithm builds a
binary tree representation of the data by starting with each sample as
clusters and merging iteratively similar groups together until ending
up with one final cluster (the whole dataset) [122].

Single and multi biomarker discovery Differential expression analysis
is applied to quantify changes in expression levels of single miRNAs
between experimental groups. By doing comparisons with statistical
tests, significant deregulated markers can be identified. If the data
follows a normal distribution, which can be checked with the Shapiro-
Wilk test [123], then Student’s t-test can be performed; otherwise,
the choice is a non-parametric test, e.g. Wilcoxon-Mann-Whitney test
[124]. In case of multi-group comparisons, techniques like analysis
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of variance (ANOVA) for normal distributed data and Friedman test
for non-normal distributed data can be applied [125]. When using
multiple hypothesis testing (multiple miRNAs), the false discovery
rate (FDR) must be controlled by adjusting the calculated raw p-values
with correctionmethods such as the Benjamini-Hochbergmethod [126].
Importantly, the effect sizes of single markers alone are often not strong
enough to sufficiently differentiate between experimental conditions.
Therefore, multi-marker panels are calculated as best combinations of
miRNAs to predict the true health state of a patient. This is done by
classification procedures of machine learning, such as support vector
machines (SVM), random forest (RF) and others [127].

MicroRNA target prediction and interactions in regulatory network The
identification of miRNA targets is essential to understand the resulting
biological functions of miRNAs and the regulation of their targets in
physiological and pathophysiological processes. Since miRNAs can
have multiple target sites because of imperfect binding in mammals
[128], the field of miRNA target prediction is growing steadily and of-
fers alternatives to expensive and time-consuming experimental target
validations [129]. The following properties form the general concept
for most prediction tools: i) complementary target site to the seed
region, ii) conservation of seed and target site region across species, iii)
stable secondary structure and iv) accessibility of the target sites [130].
Around 100 tools were implemented for this category in the last 20
years [131]. Popular ones are, for example, miRanda, TargetScan and
RNAhybrid [132–134]. When piecing the puzzle together, the recogni-
tion and verification of interactions between miRNAs and their target
genes are the foundation for defining complex regulatory miRNA net-
works. Concepts of graph theory and gene set enrichment analyses
can be helpful for network profiling [135].

MicroRNA prediction Since miRNAs play crucial roles in gene regula-
tion and are involved in disease development, the identification of these
sequences are important for downstream analysis. Referring to the
next paragraph (1.3.1.2) of this subsection, I will present five selected
miRNA prediction tools in detail categorized as homology-based or
NGS-based approaches.

1.3.1.2 MicroRNA prediction

MicroRNA identification is an important and challenging step which
combines biological and computer-based ideas. The resulting bioin-
formatic tools for miRNA prediction, which some of them are listed
in the following, can be categorized in homology- and NGS-based
approaches. While early tools such as MiRScan and MiRSeeker work
with sequence similarity, next generation sequencing have enabled
the discovery of novel miRNAs and opened the door for the develop-
ment of NGS-based prediction methods using sequence and structure
features [67]. From this category, the following three tools MIReNA,
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miRanalyzer and miRDeep are presented in addition to the compara-
tive methods MiRScan and MiRSeeker (see Table 1.1).

MiRScan MiRScan, released in 2003, is a web server that identifies
miRNAs that are conserved in two nematode genomes, Caenorhabditis
elegans and Caenorhabditis briggsae, and shows feature characteristics of
known nematode miRNAs [136]. The candidate sequence is evaluated
by similarity and conservation checks on the training set. In detail, the
criteria are based on the base pairing of the miRNA portion and rest
of the stem-loop, stringent sequence conservation in the seed region,
preference to form symmetric internal loops and bulges in the miRNA
region, and having a consensus base pairing segment lying between the
terminal loop and miRNA regions. For the development of MiRScan, a
training set was built on 50 of 53 conservedmiRNAs that were reported
previously [137, 138]. These were identified by scanning all hairpin
structures with conserved sequences in the above-mentioned genomes.
Using MFE, MiRScan predicted about 36,000 hairpins that fulfilled the
minimal requirements for hairpin structure and sequence conserva-
tion. 35 of them were top candidates, whereby 16 sequences could be
successfully validated, and the remaining 19 candidates seemed to be
false positives.

MiRSeeker Another early published web service is MiRSeeker (re-
leased in 2003) which follows a similar concept as MiRScan but to
predict DrosophilamiRNAs [139]. In the first step, conserved miRNA
regions are identified via alignments between the genomes Drosophila
melanogaster and Drosophila pseudoobscura. Thereby, alignments related
to exons and sncRNAs that are not miRNAs/pre-miRNAas are ex-
cluded. The applied conservation criteria are derived from a reference
set of 24 Drosophila precursor sequences. There should be not more
than 13% gaps or 15% mismatches in a respective 100 nt alignment
segment. By window-shifting, the respective genomic neighborhoods
are considered, too. In the second step, stem-loops are identified and
ranked. When the secondary structure is predicted by mfold [140],
the longest helical arm (minimum of 23bp) is used for evaluation. The
isolated arm should have a maximumMFE of -23 kcal/mol. In addi-
tion, the predicted stem-loop structure is scored by comparing it to
the canonical hairpin. While continuous helical pairing is rewarded,
deviations as increased size of internal loops, asymmetric loops und
bulged nucleotides are penalized. In the third and last step, a candi-
date is evaluated for its pattern of divergence. It is considered perfectly
conserved, when the query sequence lays perfectly inside the helical
arm, with a size at least of 23 nts and maximal 10 nt distance to the
end of the terminal loop. In this study, the authors validated 24 novel
miRNAs of 38 candidates with northern blotting [139].

MIReNA A further non-machine-learning based command line tool
is the 2010 released MIReNA, [141]. It searches for genomic locations
of the query sequences and checks their surrounding potential pre-
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miRNA structure. For the evaluation, MIReNA takes five implemented
parameters (physical-chemical and combinatorial) into account. The
two physicochemical features are ”adjusted MFE” (AMFE) and ”MFE
index” (MFEI) which are based on MFE, sequence length and GC
content. While AMFE is the MFE depending on sequence length, MFEI
is described by AMFE and the percentage of the GC composition. The
remaining three combinatorial structure features are the following:
i) a potential miRNA sequence cannot form with itself base pairings
within the secondary structure of a precursor; ii) similar length be-
tween the 5p and 3p arm of the candidate pre-miRNA; iii) a maximum
of 26% of a candidate’s miRNA length can be unmatched within the re-
spective precursor secondary structure. The MIReNA algorithm starts
with searching for similar input sequences to annotated miRNAs by
reducing the number of base variations (insertions, deletions and sub-
stitutions of nucleotides). The resulting known miRNA gene location
is extended on each by 200 nts. For every resulting sequence extension,
secondary structures are computed via RNAfold [142]. Finally, these
secondary structures are evaluated by applying the above-mentioned
five-parameter-filter to get potential pre-miRNAs. The performance in
the confirmation of pre-miRNAs were compared against other predic-
tive tools (miR-ablea, miPred and microPred [143–145]) using three
datasets. MiReNA yielded similar good or better results regarding
sensitivity, specificity, accuracy or Mathew’s correlation coefficient
(MCC). The testing dataset consisted of 263 human miRNAs as posi-
tive sequences and 265 coding sequences as negative set.

miRanalyzer The miRanalyzer tool published in 2009 is a web server
based on a machine learning approach for next generation sequencing
data and is the predecessor of the comprehensive analysis srnRNA
toolbox [146, 147]. The workflow is implemented in three steps. First,
knownmiRNAs annotated inmiRBase are detected bymapping against
mature miRs. In the second step, the remaining sequences without
any mapping hit are mapped against other small non-coding RNA
libraries. The queries with mapping hits will be excluded to reduce
potential false positives for miRNA prediction. The last step is the pre-
diction of new miRNAs based on the remaining input sequences. The
following features for the classification with random forest were used:
read count and structural features such as stem length, loop length,
loop GC content, MFE and others. Applied on the datasets of human
(hsa), rat (rno) and C. elegans (cel), the resulting cross-validated sen-
sitivities in single-species datasets are in the range of 0.74-0.77. By
training on one species and using another species as unseen test data,
the performances are poor (0.48-0.66). Interestingly, the performance
to predict a single-species test set increases with the remaining merged
cross-species training set (0.71-0.75). Potential reasons for the perfor-
mance boost could be the increased size of positive test set members
and the presence of conserved miRs among all three species. In con-
clusion, miRanalyzer and also the previous described tool MIReNA
(both NGS-based) focuses on sequence-based features without the



31

consideration of the miRNA biogenesis which is the central idea of the
next tool miRDeep2.

miRDeep2 One of the most frequently used prediction tools is the
command-line tool miRDeep2 (published in 2011 and its predeces-
sor miRDeep in 2008) [148]. Its basic principle is to reconstruct the
biogenesis of candidate miRs from NGS data and assess the resulting
putative pre-miRNAs. In the beginning, potential precursors of the
input sequences are excised. Thereby, sequences with a maximum of
five perfect mappings to the genome are considered. In a 70 nt window
search, the candidate miRNA with the highest read stack is chosen
and flanked by 70 nts upstream and 20 nts downstream and vice versa.
By doing so, two potential pre-miRs are derived, where the candidate
miRNA lays either on the 5p or the 3p arm. Afterwards, the secondary
structure for each excised pre-miRNA is predicted via RNAfold, and
the mapping signature – how reads are mapping to a potential pre-
cursor – is derived to evaluate if the simulated biogenesis is matching
with products of the Dicer processing. This information is important
for the miRDeep2 core algorithm, which is the probabilistic scoring of
the structure and signature features of a candidate precursor. This step
evaluates the structure for its energetic stability, the presence of suffi-
cient base pairing in the mature part and the divisibility of the mapped
read stacks to the typical hairpin structure in form of 5p-, terminal loop
and 3p-region. In addition, hundred permutation runs are executed
with different signatures on the same hairpin. The idea is that random
signatures would decrease the final score because the actual sequence
and structure features fit best to each other. The evaluation was done
by using sequence data from seven animal clades. While the specificity
was around 0.99 for all datasets, the range for sensitivity (predicting
known miRBase miRNAs in the respective species) was in the range
from 0.71 (sea squirt) to 0.90 (anemone). The true positive rates for
human liver and cell lines were 0.79 and 0.81. An explanation could be
that the potential underestimated sensitivity could be caused by falsely
annotated miRNAs in miRBase which would not follow the miRNA
biogenesis.

Category Tool Published year Usage type Machine learning Advantages Disadvantages
Homology
based

MiRScan 2003 Web server - Find conserved
intragenic miRs

Less novel miRs
possible

Homology
based

MiRSeeker 2003 Web server - Find conserved
intragenic miRs

Less novel miRs
possible

NGS-based MIReNA 2010 Command-line tool - Novel miRs Increased number of
false positives

NGS-based miRanalyzer 2009 Web server Random forrest Novel miRs Increased number of
false positives

NGS-based miRDeep2 2011 Command-line tool - Novel miRs Increased number of
false positives

Table 1.1: Overview of the listed
miRNAprediction tools. Detailed infor-
mation about category, published year,
usage type, machine learning method (if
existing), advantages and disadvantages.
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1.3.2 Web services - broad usage of user-friendly applications

The immense quantity of data generated in the lab, especially as se-
quencing is becoming improved and affordable, is challenging with
regards to the question how this complex data shall be analyzed. Since
software such as BLAST [149] or packages like limma [150] can only be
used for common tasks, new tools, packages or self-written workflows
are required for complex and large data analysis with new upcoming
specific biological questions. However, the implementation or even the
use is limited only to scientists with programming knowledge and it
also requires systems with sufficient computational power and stor-
age. The lack of both can lead to the issue that a lot of data cannot
be analyzed on time, especially data of scientists without program-
ming knowledge. To solve this issue and to reach the largest possible
number of users, web services can provide user-friendly environments
for data analysis and databases. While a user on the client side can
focus on the analysis by selecting parameters and uploading data, the
developers on the server side are responsible for the administration
and maintenance of hardware and software. Ultimately, whether an
application is used depends not only on the underlying bioinformatics
analysis program and administration (backend), but above all on a
good graphical user interface (frontend) with which a user directly
interacts. A good usability of a web application can be achieved via
interaction design [151]. This design focuses on the dialogue between
the user and the digital product which includes flow and orientation
(the user knows what to do next), immediate feedback (the user re-
ceives a response or progress indicator for each interaction) and ways
of interaction (how a user should interact, e.g. using input fields or
sliders for numeric parameters). In addition, frontend styling frame-
works, such as Bootstrap [152], are used to generate visually appealing
interfaces which can increase the usability regarding navigation, feed-
back and interaction. In conclusion, the trend regarding bioinformatics
web services shows that the development and usage of online tools has
become increasingly popular in the last 10 years [153]. The progress of
this topic is also supported by journals such as Nucleic Acids Research,
which publishes an annual issue on the subject.

1.4 Technical basics

1.4.1 Platforms for miRNA profiling

In this section, threemajor laboratory platforms for expression profiling
and discovery of DNA or RNAmolecules are presented. While next
generation sequencing has the advantage to discover novel biomarkers
[154, 155], Nanostring, microarray- and PCR-based approaches are
used for expression profiling of known miRNAs [156, 157] (see Figure
1.5). In addition, the PCR technology is the tool of choice for validation
of candidate biomarkers [158].
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Figure 1.5: MicroRNAs determined by
different platforms. In relation to cost-
efficiency, RT-qPCR can be a suitable tool
tomeasure a small set of knownmiRNAs.
Microarrays and Nanostring can cover
more known miRNAs than RT-qPCR. In
case of discovering novel miRNAs, NGS
platforms are the choice of method. Cre-
ated with BioRender.com

1.4.1.1 Next Generation Sequencing (NGS)

Different sequencing methods

Although, Sanger sequencing was important to complete the Human
Genome Project in 2003, the need for new sequencing technologies
with reduced costs and increased throughput emerged to replace the
known first generation method. The new methods called ”next gen-
eration sequencing” (NGS) provided massively parallel sequencing
and high throughput lower costs. Therefore, they have been gradually
established from the mid 2000s until today [159]. While the short-read
sequencing belongs to the second generation, the third generation is
characterized by long-read sequencing [160]. Of these methods, the
second generation, which are widely used, can be categorized in two
major groups: sequencing by synthesis (SBS) and sequencing by liga-
tion (SBL). The SBL approaches which were used in the past are based
on short labeled sequences with one or two known bases. These two
bases were important for encoding the specific unknown positions of a
query sequence by hybridization and ligation. This is done in so many
cycles until the whole sequence is encoded. While for one sequence
only every 5th position is sequenced, the procedure is repeated in total
with 5 shifted primers to cover all positions [159]. The SBS approaches
are based on DNA-polymerase which synthesize the original sequence
regarding the complementary sequence (see Figure 1.6). Each position
is identified by incorporating special labeled nucleotides [161].

Basic concept

Coming to the general concept of sequencing, the following are mostly
required for all methods. In the beginning before NGS analysis (step
1), the extracted DNA or RNA material is fragmented or sized to a
desired sequence length [162]. In case of small RNA sequencing, the
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extracted sequences are already short enough, and this step can be
skipped. During library preparation (step 2), complementary DNAs
(cDNAs) are synthesized from the size-filtered target sequences, and
adapters which have different functions are added to the flanks of the
biological inserts. These different adapters are required for amplifica-
tion, definition of the sequencing start and end position, and sample
indexing to enable mixing multiple samples in one pool (multiplexing)
[163]. Next, the clonal amplification of the library is applied so that
the signal from the sequencer is strong enough to be detected [164].
Finally, the actual sequencing step based on ligation or on synthesis is
executed [163].

Figure 1.6: Sequencing by synthesis. In
each cycle one special labeled comple-
mentary nucleotide is incorporated to the
respective template to synthesize and re-
veals the sequence of the target.

Application and limitations

The high-throughput analysis by NGS allows quantification of known
miRs and opens opportunities to discover novel biomarkers for diag-
nostics and prognostics [165]. In addition, it enables big steps towards
personalized medicine, where detection of variants in genes became
a topic of considerable interest in the last decade [166]. It not only
allows the quantification of entirely new miRs in gene expression but
also the discovery of new ones [167]. Regarding de novo sequencing
of unknown genomes, NGS is fast and a cheaper alternative than the
first generation of sequencing (Sanger method) [168]. However, one
has to be aware that it has higher error rates towards the end of longer
reads [169] and is still more expensive than other platforms such as
microarray scanners or RT-qPCR techniques [159].

1.4.1.2 Nanostring

Basic Principle

The Nanostring nCounter is a hybridization-based system which can
measures 800 miRNAs from 12 samples in one assay [170]. Referring
to the manufacturer’s description [171], the technology enables highly
multiplexed single molecule counting in three steps. In the first step, a
capture and a reporter probe containing a fluorescent barcode hybridize
to the target molecule [170]. Next, the purification of samples is carried
out by removing non-hybridized targets. The remaining purified target-
probe complexes are bound and immobilized on the nCounter cartridge
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[172]. In the last step, the barcodes of each reporter probe with a target
sequence is counted digitally [173].

Application and limitations

According to the manufacturers, the Nanostring platform can be used
for translational clinical studies, diagnostic fingerprinting and valida-
tion of high-throughput gene expression experiments [174]. Due to
the fact that only 800 knownmiRNAs in 12 samples can be analysed on
one cartridge [170], the technology is not ideal for biomarker discovery
and can be very expensive for projects with large sample size.

1.4.1.3 Microarray

Different microarray methods

Since the millennium, DNA microarray devices has become a com-
monly used technology among of many researches with the result
of over 150,000 related articles in PubMed search (keyword search
in abstracts). In this time, three major type of arrays evolved for
hybridization-based measurement: in situ synthesized arrays, spotted
arrays on glass and self assembled arrays [175]. While the oligonu-
cleotide probes of the spotted arrays are printed on glass, the probes of
the in situ synthesized version are synthesized directly on the surface
of the microarray chip [176, 177]. Microarrays produced by Affymetrix
and Agilent were widely used, whereby the latter one is the main
platform for analysis in this thesis [175]. However, the basic concept
of this technology is the same. The probes immobilized in form of
multiple copies represent known sequences, have defined positions
on the array and hybridize as complementary parts to their respective
target sequences which are fluorescently labeled (see Figure 1.7). With
a hybridization, the fluorescent signal is increased according to the
amount of the same targets [177, 178].

Figure 1.7: Hybridization-based mea-
surement. Each position on amicroarray
chip defines different cluster of template
copies (blue). A target sequence (green)
hybridizes to its respective complemen-
tary template. The higher the amount of
the target sequence is, the higher is the
fluorescent signal.
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Application and limitations

The main application of microarrays are general gene expression analy-
sis [176] but they are also used for transcription factor binding analysis
and single nucleotided polymorphism (SNP) genotyping [179]. In
contrary to NGS, this technology can only detect known designed se-
quences. Microarray specific limitations are spatial effects and regional
bias with artificially higher or lower intensities [180].

1.4.1.4 Real-Time qPCR

Basic principle of the commonly used PCR technology

In 1984 Kary Mullis and his co-workers invented the method known
as polymerase chain reaction (PCR) which became a routinely used
method in many laboratories to detect genes of interest. Until the year
2000, 617 articles were related to the keywords ”real-time PCR”, since
then we can observe a substantial increase in the new century. We can
find in the PubMed search until the year 2010 a total number of around
50,000 publications and until now a number of over 200,000. While the
old PCR methods based on the question of whether a certain sequence
is amplified in a prior defined number of cycles (endpoint PCR) [181],
real-time quantitative PCR (qPCR) estimates the expression level of the
target in real time against an arbitrary threshold (Ct) [182]. It describes
how many PCR cycles are needed so that the fluorescent signal passes
the threshold [182]. Thereby, it stands in an anti-proportional relation
to the amount ofDNApresent in a sample. Thatmeans, the lower theCt
value, the higher is the amount of the target that leads to an earlier cycle
threshold breakthrough [183]. On a closer view, an amplification cycle
consists of three steps (see Figure 1.8). First, the DNA template with
the target sequence is denatured. After that, it follows the annealing
of primers to the single-stranded templates. With this, a polymerase
creates a new complementary DNA strand to the template one. This
extension is the last step of a cycle so that a new cycle can be started
[184]. Before miRNAs can be measured by qPCR, they must first be
converted into cDNA which is the first step of RT-qPCR.

Application and limitations

During the COVID-19 pandemic, the PCR technology achieved a great
popularity among the world population for the Corona PCR test as
the gold standard for diagnosing a coronavirus SARS-CoV-2 infection.
Besides this and other pathogen diagnostics, it allows the research
and identification of an accumulation of carcinogenic inherited single-
nucleotide polymorphisms (SNPs) [183]. Because of the simple and
solid detection of single genes, researchers use RT-qPCR to validate top
candidate biomarkers derived from other platforms with large feature
sets [158]. However, the gene expression analysis of cohort studies can
be challenging independently of the choice of the target feature set. Due
to variations caused frombiological donor individuality, sample quality
or experimental preparation, RT-qPCR results are normalized with a
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Figure 1.8: Principle of qPCR.With each
cycle, the amount of the PCR product is
growing exponentially. The integrated
fluorescent molecules are monitored af-
ter each cycle to determine the amount
of amplicons. When the signal intensity
reaches a defined threshold, then the cy-
cle number is noted. In each cycle, the
same three steps are applied: 1. Denatu-
ration of the double-stranded template,
2. Annealing of primers and nucleotides
and 3. Extension of the respective com-
plementary strands by polymerase, re-
sulting in a fluorescent signal. Created
with BioRender.com

selected control gene to correct for sample-to-sample variation. Ideally,
this so-called housekeeping gene has a stable expression despite where
the deviation is coming from and needs to be verified for its expression
stability before each experiment [182, 185]. In addition to that, some
researches observed that Ct levels can be determined inaccurately with
known evaluation methods for exponential or sigmoidal curve fitting
[186]. Nevertheless, the PCR technology remains as method of choice
in the clinical use for the measurement of a few markers in single
samples because of its cost-efficiency and widespread usage. Due to
this logistic advantages, the PCR technology is suitable as a component
of potential multi-marker diagnostic tests for complex diseases such as
cancers.

1.4.2 Blood collection devices

Biopsy is an invasive and expensive method for sample collection and
biomarker source. The costs vary highly regarding type of biopsy and
setup. Average costs for a percutaneous biopsy can be around $1000
and surgical biopsies cost up to $30,000 [187]. While this complex
method with high costs can limit the number of samples for a design of
a research study, body fluids can be low-cost and minimally-invasive
alternatives with simplified collection to achieve high numbers of sam-
ples more readily. In addition, higher sample sizes can increase the
statistical reliability of analyses [188]. An important advantage of
whole-blood specimens is that its composition includes PBMCs, cen-
tral players of the immune responses that we want to measure. In
the following, whole-blood-based collection devices such as PAXgene,
dried blot spots and Mitra devices are presented.
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1.4.2.1 PAXgene - Sampling in clinical routine

The PAXgene tube is one of themost widely used available whole blood
RNA collection devices in clinical studies [189]. The blood draw is
conducted through a needle pricked in a vein of an arm. After a small
amount being discarded blood is collected, the stabilized stream of
blood is collected by a vacuum pressure through a tubing connection
into the PAXgene device. The PAXgene tube is then inverted 10 times
to ensure optimal mixing of the lysis reagent with the blood. In detail,
the cationic surfactant Catrimox-14 inside the tube is creating pores
in cellular membranes and at the same time denaturating proteins.
This cause lysis of blood cells and stabilization of RNA (RNases are
unfolded) 1.9. This, together with the acidic environment of the tube
(tartaric acid) prevents the degradation and ensures the prolonged
stability of nucleic acids. The active component of the PAXgene tube
is tetradecyltrimethylammoniumoxalate (a.k.a. Catrimox-14) which
has lipid-like properties and interferes with the cell membrane [190].
The negatively charged nucleic acids are released and embedded by
reverse micelles based on positively charged Catrimox-14 molecules.
The longer the nucleic acid is, the more effective the formation of the
micelles, thus the nuclei and ribosomal RNAs pellet most efficiently.
After the storage, which can be up to a decade at -80C, the tube is
centrifuged. The resulting pellets are used for RNA extraction (see
PAXgene Blood RNA Kit Handbook version 2).

Figure 1.9: Lysis and RNA stabilization.
(a) Catrimox-14 which is a component
of PAXgene will lyse the cells. (b) The
Catrimox-14 molecules are incorporated
to the cell membrane to make it perme-
able. (c) Intracellular RNAs can pass the
permeable membrane and will be mixed
with RNAs of other cells. (d) In addition,
Catrimox-14 molecules stabilize the re-
lease RNAs by building reverse micelles
due to complementary electric charge.
Created with BioRender.com
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1.4.2.2 Dried blot spots (DBS) & Mitra - Options for self- and home-
sampling

The idea of sampling blood with filter paper reaches back to the be-
ginning of the 20th century. In 1913, Ivar Christian Bang, considered
as founder of the modern clinical microanalysis, could successfully
identify glucose from blood collected on dried blot spots (DBS) [191].
The advantages of DBS were already pointed out by Chapman in the
1920s. It requires less blood volume and the collection is simple, min-
imally invasive and cheap [192]. In the 1960s, using these benefits,
Guthrie developed a screening test, which is still used today, for various
diseases of newborns such as phenylketonuria (impairment of brain
development) and galacatosemia (impairment of galactose metabo-
lization) [193, 194]. The collection of DBS samples is carried out with
a finger prick by a lancet, as for example in glucose measurement. The
resulting blood drops fall on the specially manufactured cellulose filter
paper. After the complete drying, the DBS sample is ready to be stored
or shipped [195].

One further collection devicewhich needs less blood volume isMitra,
a recent technology based on volumetric absorptive microsampling
(VAMS) [196]. It seems to be a more feasible and reliable alternative
novel dried sampling approach than DBS, especially with the result
of a constant blood volume. Here, we prick again to obtain a blood
drop, which is absorbed by a white cellulose tip attached to a plastic
stick. It is fabricated in that way that it always ensures a fixed blood
volume [197]. The complete drying occurs in a cartridge or clamshells
specially made for this [196].

In conclusion, due to their simplified blood collection compared to
tube-bases solutions, low blood volume and direct drying and thus sta-
bilisation of the RNA, these two blood dried microsampling methods
are becoming the focus of research for home sampling [198], espe-
cially in corona times with limited mobility [199]. In case of pandemic
situations with social distancing and lockdowns, simple microsam-
pling approaches could ensure the continuation of non-acute medical
services such as health screening of older adults.





2
Goals of the PhD thesis

As described in the previous chapter, miRNAs, especially derived from
body fluids, are the central focus of this thesis. The research goals
were built on these blood-borne molecules and defined as follows: (1)
the prediction of miRNA candidates, (2) validation of them and their
understanding regarding technical, seasonal and cross-species-related
aspects, and (3) detection of significant biomarker candidates in
diseases (Figure 2.1).

Figure 2.1: Overview of goals and stud-
ies of this thesis. (1) Web-based NGS
data analysis using miRMaster: a large-
scale meta-analysis of human miRNAs
[3], (2) A high-resolution map of the
human small non-coding transcriptome
[4], (3) Technical Stability and Biologi-
cal Variability in MicroRNAs from Dried
Blood Spots [1], (4) The sncRNA Zoo: a
repository for circulating small noncod-
ing RNAs in animals [5], (5) Spring is in
the air: seasonal profiles indicate vernal
change of miRNA activity [6], (6) Evalu-
ating the Use of Circulating MicroRNA
Profiles for Lung Cancer Detection in
Symptomatic Patients [2], (7) Deregu-
lated microRNA and mRNA expression
profiles in the peripheral blood of pa-
tients with Marfan syndrome [7].

With increased usage of small non-coding RNA-sequencing, the
development of bioinformatics tools has gained traction and has pro-
duced several tools for miRNA identification and prediction with dif-
ferent approaches. We also developed a software, called miRMaster
[3], addressing the following design criteria: user-friendliness, high
computational performance, machine learning and solid derivation of
miRNA candidates. Thereby, we implemented a web service with dif-
ferent parameter options on a central server with high computational
power. To obtain reliable results, we focused on carefully selected
training sets, a wide range of machine learning configurations and
well-chosen biological characteristics of miRNAs. We used high confi-
dence miRNAs based on early miRBase versions as our positive test
set, and a broad combination of artificial psuedo precursors, protein
coding sequences, false positive miRNAs, and ncRNA-overlapping
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pseudo precursors as our negative test set. Based on these datasets,
we obtained the best classifier for miRMaster usage, testing 180 vari-
ous combinations of classification, feature scaling and subset selection
methods. On the other hand, to improve the prediction with biolog-
ical characteristics, miRMaster uses sequence and structure features
of miRNAs and evaluates the reconstructed miRNA biogenesis of can-
didates. While Fehlmann was responsible for the implementation of
the backend of miRMaster, I focused on the frontend with the goal to
develop a user-friendly graphical user interface. Whereas the integra-
tion of tooltips, tutorials and default parameters can be helpful and
provide orientation for first-time users, advanced users can configure
the expert settings. An upload wizard with drag-and-drop property
can simplify the data upload. The last aspect for a user-friendly tool
was the implementation of giving immediate feedbacks to the users.
This is important to know in which state the requested analysis is.

The next goals were the validation of miRNA candidates and the
development of fundamental understandings for miRNA stability and
characteristics from different perspectives. In our work regarding a
high-resolution map of human sncRNAs with miRNAs as the main
class [4], we applied miRMaster on 24,554 samples from different data
sources to obtain novel miRs, and performed a staged validation for
a final set of over 11,000 sequences. In the first validation step, these
sequences were used for a custom microarray analysis. In the final
step, selected candidates of significantly deregulated markers in lung
carcinoma were confirmed by northern blots. A further important
sub-goal was to understand the stability of miRNAs by analysing the
following three different aspects. First, we addressed the question
of whether different blood-based collection devices can affect the
diagnostic outcomes. For that, we tested dried blood spots from lung
cancer patients for technical stability and biological variability [1].
Second, we investigated the seasonality of physiological state effects
[6]. In the same project, we tested Mitra as an additional blood-based
collection device. Third, we applied miRMaster on sequenced Mitra
samples from animals to understand cross-species relations on small
non-coding RNA level and found miRNA candidates due to their
evolutionary conservation [5].

The results of our DBS study indicated promising results for blood-
borne miRNA biomarkers regarding technical stability and biological
significance between lung cancer and control patients. For this reason,
our third goal was to identify significant biomarker candidates for
diseases. The main work was here a multi-center and multi-cohort
study for detection of lung cancer with over 3,000 samples [2]. This
large-scale project included different analysis scenarios comparing lung
cancer patients against non-tumor lung disease and other control pa-
tients. We also performed analyses where the groups were matched by
age, gender and smoking behavior to control potential confounding ef-
fect. In addition, we performed analysis for early detection by choosing
only lung cancer stage I and II for the case group. In a different study,
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we researched the potential of miRNAs as diagnostic and prognostic
markers for Marfan syndrome [7]. We carried out integrated miRNA
and mRNA expression analyses of samples collected from Marfan pa-
tients and healthy volunteer controls. Aside from the publications that
are listed here for my thesis, I worked on a breast cancer study [200]
identifying potential diagnostic biomarkers and analyzing the prog-
nostic potential of miRNAs for predicting the pathological complete
response of neoadjuvant chemotherapy.





3
Results

This cumulative thesis is based on seven peer-reviewed publications
whose published versions are included in this chapter.
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ABSTRACT

The analysis of small RNA NGS data together with
the discovery of new small RNAs is among the fore-
most challenges in life science. For the analysis
of raw high-throughput sequencing data we imple-
mented the fast, accurate and comprehensive web-
based tool miRMaster. Our toolbox provides a wide
range of modules for quantification of miRNAs and
other non-coding RNAs, discovering new miRNAs,
isomiRs, mutations, exogenous RNAs and motifs.
Use-cases comprising hundreds of samples are pro-
cessed in less than 5 h with an accuracy of 99.4%.
An integrative analysis of small RNAs from 1836 data
sets (20 billion reads) indicated that context-specific
miRNAs (e.g. miRNAs present only in one or few dif-
ferent tissues / cell types) still remain to be discov-
ered while broadly expressed miRNAs appear to be
largely known. In total, our analysis of known and
novel miRNAs indicated nearly 22 000 candidates of
precursors with one or two mature forms. Based on
these, we designed a custom microarray comprising
11 872 potential mature miRNAs to assess the qual-
ity of our prediction. MiRMaster is a convenient-to-
use tool for the comprehensive and fast analysis of
miRNA NGS data. In addition, our predicted miRNA
candidates provided as custom array will allow re-
searchers to perform in depth validation of candi-
dates interesting to them.

INTRODUCTION

MicroRNAs (miRNAs) play a central role in orchestrating
human gene regulation and are consequently prime targets
in biomedical research. Many miRNAs from Homo sapi-
ens and other species are collected in the miRBase (1). Cur-
rently, the fraction of actually true positive miRNAs in this
database is controversially discussed (2–10), especially later
versions seem to contain many false positives (11). On the
one hand, this calls for curated databases, on the other hand
not all miRNAs, especially context specific ones, seem to be
discovered yet.

Various experimental approaches are applied for mea-
suring miRNA expression levels including approaches for
small sets of selected miRNAs like RT-qPCR, CMOS based
assays (12) or immunoassays (13). The most frequently
employed genome-wide assays include microarray screen-
ing and high-throughput sequencing (HT-seq). A compari-
son of 12 different experimental approaches is provided by
Mestdagh et al. (14).

HT-seq enables––beyond quantitative analysis of known
miRNAs––single-base resolution of known and novel miR-
NAs (15) and thus is currently applied to discover the afore
mentioned context-specific miRNAs. For the analysis of
HT-seq data, a wide range of stand-alone and web-based
bioinformatics tools have been implemented allowing the
prediction of novel miRNA candidates and quantification
of miRNAs (16,17), detection of miRNA isoforms (18,19),
miRNA set enrichment analyses (20,21), and prediction of
miRNA targets (22,23) among others. Akthar et al. pub-
lished a comprehensive review on 129 available miRNA
bioinformatics tools (24). The different data formats used
in these tools and the challenges to combine web-based and
stand-alone solutions, however, complicate the design of in-
tegrated pipelines.
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3.1 Web-based NGS data analysis using miRMaster: a large-scale meta-analysis of human miRNAs
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Our ambition was to develop a web-based application
that combines the most frequently requested analyses. An
important aspect of our tool termed miRMaster (www.ccb.
uni-saarland.de/mirmaster) was to facilitate HT-seq data
analysis of human samples from raw sequencing files pro-
vided in the FASTQ format. Building up on the basic prin-
ciple of miRDeep2 (16) as the most frequently used predic-
tion tool for miRNAs, we implemented an own predictor
with an extended feature set including our previously devel-
oped prediction score (11). Furthermore, we implemented
functionality to report the presence of miRNA motifs to the
user (25–27). MiRMaster allows to search for novel miRNA
candidates, to quantify miRNA expression, to identify iso-
forms and variants of miRNAs. Another feature of miR-
Master is the mapping of non-human small RNA reads
against the NCBI RefSeq collection of bacterial and viral
genomes (28), thereby allowing the detection of contamina-
tions, infections or exogenous miRNAs. To allow the anal-
ysis of targets regulated by miRNAs, we implemented Ap-
plication Programming Interfaces (APIs) to available web-
based tools for considering the targetome (miRTargetLink
(29)) and to carry out miRNA set enrichment (miEAA
(20)).

Since different research groups measured various speci-
mens using different experimental protocols and bioinfor-
matics pipelines and not all data stored in a central repos-
itory, a redundancy between the studies exist. Besides the
miRNAs in the miRBase, and specific studies mentioned
before, several comprehensive analyses (e.g. Londin et al.
(30), Backes et al. (11), Friedländer et al. (31), Jha et al. (32))
propose hundreds to thousands of new miRNAs. To de-
tect as many as possible miRNA candidates we performed
a comprehensive analysis of 1836 data sets containing 20
billion reads.

MATERIALS AND METHODS

Sample collection

As case study we analyzed an in-house NGS miRNA sam-
ple collection of 1097 samples from blood and blood cell
components (33–39). Further we downloaded 739 samples
from four series of the GEO database (40): GSE64142,
GSE53080, GSE49279 and GSE45159. All samples have
been sequenced using Illumina Next-Generation sequenc-
ing. Table 2 presents an overview of these samples including
a description, number of samples, number of reads and file
size.

Positive miRNA dataset for training miRMaster

A straightforward positive dataset would consist of the
complete miRBase (1). However, others and we have ob-
served that miRBase may contain false positives, especially
in the last versions (41). Therefore, we selected all miRNA
precursors from miRBase 1 to 7 and all precursors of miR-
NAs containing strong experimental evidence in the miR-
TarBase (42), leading to 487 high-confidence positive miR-
NAs. We defined precursors by their 5′ and 3′ mature miR-
NAs, i.e. they start with the first base of the 5′ miRNA and
end with the last base of the 3′ miRNA. For miRBase pre-
cursors that had only one form annotated we derived the

other from its hairpin, as described for our prediction al-
gorithm. Therefore, our predictions are independent of the
size of the stem loops provided in miRBase.

Negative miRNA dataset for training miRMaster

Choosing an appropriate negative dataset is a challenging
task, since miRNAs can be located anywhere in the genome
(43). A correct negative dataset plays an important role for
the creation of a well-trained classifier. Overall, since only
a small fraction of the genome and of sequences that form
hairpins are actually precursors, we built five different sets
to cover as many potential wrong predictions as possible.
The different negative datasets were derived from separate
assumptions and combined for our training procedure. The
first dataset was built to cover predictions, where one ac-
tual miRNA is contained in the predicted precursor but
the other miRNA is wrongly annotated. We assume that
real precursors do not overlap. It was created by splitting
in half all known stem–loops from miRBase that contained
two annotated mature miRNAs. We adjusted the length to
the original stem-loop by including the flanking regions.
To determine the positions of the miRNAs in the two new
pseudo precursors, we kept the original miRNAs and de-
rived the other based on it, as in our prediction algorithm.
This dataset was composed of 298 precursors. The second
dataset was created to cover predictions that could stem
from protein coding sequences of genes without known al-
ternative splicing events. It was derived from the widely used
pseudo precursor set built by Xue et al. (44). We first kept
only sequences that aligned perfectly to the latest assem-
bly of the human genome (hg38). Then we segmented these
sequences to enable the computation of segment specific
features. Therefore, we determined the position of one of
the pseudo miRNAs by assigning it to the segment with
most base pairs, having a length of 20 nucleotides and non-
overlapping with the loop region. The other was derived
from it, as in our predicting algorithm. The resulting set
contained 3916 pseudo precursors. The third dataset was
created to cover predictions that could arise from stem-
loops of other ncRNAs. It was shown by others (45) that
for a very small portion of all known miRNAs this could
actually be the case. However, due to their low number and
the false positives largely outweighing the true positives we
considered this set to be useful to reduce the false posi-
tive prediction rate. The dataset was derived from Rfam
(46) (release 11) and composed of 3342 negative precursors.
We considered all human ncRNAs that were not miRNAs
and derived pseudo precursors by retaining only those that
could be partitioned into 5′, 3′ and loop parts. The fourth
dataset was created to account specifically for predictions
that would pass the filtering steps in our algorithm, but
which would overlap with other ncRNAs. It is in fact an ex-
tension of the third dataset. We derived 4031 pseudo precur-
sors by running our prediction on 705 in-house samples and
keeping only those that passed all filtering steps but over-
lapped with other ncRNAs of Rfam. The fifth dataset was
created to account for predictions that were not covered by
the other negative datasets. It was derived from early pre-
dictions performed by our algorithm (trained on the other
four datasets) on our in-house samples. This set addresses
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specifically predictions where the miRNAs contained many
repeated bases and further, miRNA duplexes with high nor-
malized free energy and precursors with high normalized
free energy. We kept all predictions that displayed evidence
for being false positives, i.e. precursors with miRNAs con-
taining at least seven consecutive A or U or 8 C or G. Fur-
ther we kept all with a normalized ensemble free energy of
over –0.15 kcal/mol*nt or with a normalized duplex min-
imum free energy of over –0.15 kcal/mol*nt. The cutoffs
were determined empirically by analyzing the distribution
of the properties of known precursors. This led to 797 addi-
tional negative miRNAs. For the first four datasets we fur-
ther retained only those pseudo precursors without bifurca-
tions, with at least 50% paired bases between the 5′ and 3′
pseudo miRNAs and with a 5′-3′ miRNA length difference
of at most 10. The combination of all negative datasets re-
sulted in 12 384 pseudo precursors, which are listed in Sup-
plementary Table S2.

Independent test sets for evaluating miRMaster

To validate the performance of our model we created two
additional independent test sets. The first set was composed
of human precursors of MirGeneDB (10) that were not used
in our training process, resulting in 129 precursors. For the
pseudo precursors we selected all sequences that were an-
notated as human precursors in earlier miRBase versions
(1–20) and that were not duplicates or merged with known
precursors. This resulted in 28 sequences, of which 6 were
discarded by our algorithm when trying to determine a valid
corresponding second miRNA arm. In addition, we cre-
ated a second set composed of mouse precursors of Mir-
GeneDB that had different sequences than our training pre-
cursors, resulting in 350 precursors. We selected the neg-
ative set analogously to the first negative set from early
annotated mouse precursors, leading to 65 sequences. We
mapped those sequences against the mouse genome (mm10)
and removed all sequences which were not found or found at
multiple positions. Of the remaining 56 sequences, 11 were
discarded by our algorithm when trying to determine a valid
second miRNA.

Features of miRMaster for predicting novel miRNAs

We created a feature set composed of 216 properties, based
on 186 existing features described in (44,47–51) and 30
novel features. Novel features included our previously de-
veloped novoMiRank score (11), open/close parentheses
and unpaired nucleotides in all thirds of a precursor, 5′-3′
miRNA duplex minimum free energy, the number of base
pairs in the 5′ and 3′ miRNAs and in-between, and the nu-
cleotide ratio of the 5′ and 3′ miRNAs. Supplementary Ta-
ble S1 lists all features including a brief description, their
runtime impact and the P-value resulting from a two sided
Wilcoxon rank-sum test after Benjamini–Hochberg adjust-
ment for multiple testing (52) (alpha = 0.05) on our positive
and negative datasets.

Classifier selection for predicting miRNAs

To obtain the best classifier for our positive and nega-
tive dataset in terms of specificity and sensitivity we eval-

uated 180 different combinations of feature scaling, subset
selection and classification methods using the scikit-learn
Python toolkit (53), as shown in Supplementary Table S9.
Since a large fraction of features can be computed in min-
imal time while very few features take very much comput-
ing time we built two models: one is based on all features
and one based on the features with low runtime. For each
combination we tuned the classifier’s hyper-parameter via
particle swarm optimization towards maximum ROC AUC,
resulting in a total of 130,105 models. From those we then
selected all models that performed at least as good as the
best 25% according to ROC AUC, Precision-Recall AUC,
sensitivity, specificity and Matthews correlation coefficient
(MCC). The final model was chosen according to the high-
est F0.5 measure. Supplementary Figure S15 sketches this
process.

Input data of users to miRMaster

Since our ambition was to facilitate comprehensive miRNA
analysis for all researchers, we implemented upload func-
tionality for FASTQ files that are processed and compressed
in the browser before being sent to the server. Thus, no addi-
tional software installation that compresses the files on the
user’s computer is needed. This feature is supported by only
few tools, such as MAGI (54). Further we provide support
for gzip compressed FASTQ files, since they are the typi-
cal storage format of sequencing files, thereby obviating the
need to decompress files before inputting them to miRMas-
ter.

Preprocessing

Before sending the input files to our server we perform three
preprocessing steps consisting of adapter trimming, qual-
ity filtering and read collapsing. Adapter trimming is per-
formed via fuzzy string matching and can be customized by
the user. We allow one mismatch and require an overlap of
at least 10 nucleotides with the read per default. Further the
user has the possibility to trim leading and trailing N, dis-
card reads containing any remaining N and remove reads
shorter than a specific size. For the quality filtering step, we
re-implemented the sliding window filtering approach used
by Trimmomatic (55). This allows reducing the amount of
data sent by up to 99.9% (depending on the sample speci-
mens). To take advantage of multi-core processor capabili-
ties we use JavaScript web workers to allow the preprocess-
ing of multiple files at the same time.

Mapping to various ncRNA databases

We map the collapsed reads using Bowtie (56) and allow
per default no mismatches against human rRNAs, snRNAs,
snoRNAs, scaRNAs and lincRNAs of the Ensembl non-
coding RNA database (release 85) (57), against piRNAs of
piRBase (1.0) (58) and tRNAs of GtRNAdb (59). This al-
lows the user to easily verify if the distribution of reads is as
expected or to investigate specific RNAs. To allow the user
to investigate specific ncRNAs we provide detailed expres-
sion counts for all ncRNAs we are mapping against, as well.
The expression is determined by the number of reads map-
ping to a specific sequence using Bowtie. Further we report
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the mapping of reads against the human miRBase (version
21), which can be used to estimate the potential of finding
novel miRNAs in the samples.

Mapping to reference

Mapping the collapsed reads to the reference genome is per-
formed using Bowtie. Analogous to miRDeep2 (16), we re-
quire no mismatches in the first 18 nucleotides and discard
reads that map to over five different locations.

Precursor excision, segment determination and filtering

The precursor excision, segment determination and fil-
tering according to their structure and signature is per-
formed analogous to miRDeep2. Briefly, local maximum
read stacks in downstream windows of 70 nucleotides are
searched and two precursors excised from each stack. The
secondary structure is computed for each precursor using
RNAfold (60). The maximum read stack represents one
miRNA of the precursor. The other miRNA is determined
by the paired sequence on the other arm with a 2-nucleotide
overhang. Filtering steps are composed of a structure and
signature filter. The secondary structure is required to have
no bifurcations, a minimum percentage of base pairs in the
highest expressed miRNA of 60% and a length difference
of both miRNAs of at most five nucleotides. The signature
is checked by mapping all reads with at most one mismatch
against all excised precursors. At least 90% of all reads need
to map to either a miRNA or in between, thereby discard-
ing reads that do not map according to Dicer processing.
All these thresholds can be customized in the web interface.

Feature computation and prediction

After the potential precursors have been excised and filtered
we compute their feature values and perform the prediction
using our classifier as described in previous parts of the Ma-
terials and Methods section.

Prediction merging and global signature filtering

Once the predictions for all samples have been performed
we merge the resulting potential precursors in order to avoid
multiple predictions shifted by only a few bases. Therefore,
we group all precursors that differ by at most 10 positions
and keep the one that was found in most samples. To make
use of additional information provided by multiple samples
we first normalize the expression of each read of each sam-
ple to reads per million (RPM) and sum up identical reads.
Then we map the normalized reads of all samples against
the merged predictions and score their signature. We weight
each read using the following formula

score (read)

= total RPM(read) · length (read) ·
√

occuring samples (read)
#total samples

Thereby, we penalize reads that occur in only few sam-
ples while giving more weight to longer reads. Reads map-
ping with mismatches are penalized per default by a divid-
ing factor if they occur in at most 10% of all samples (but

at most 10 samples). The dividing factor is the limit of oc-
curring samples minus 1, but at least 2. We then remove all
predictions that have a signature with an inconsistent dicer
processing read portion representing at most 20% of the to-
tal score.

Categories of new miRNAs

We assign to each predicted precursor one of six categories.
(1) Known: when the prediction is overlapping with a miR-
Base entry and both miRNAs are overlapping with known
miRNAs by at least 75%. (2) Shifted known: when the pre-
diction is only partially overlapping with miRBase and only
one miRNA is overlapping by at least 75% with a known
miRNA. (3) One annotated: when the prediction is overlap-
ping with a miRBase entry, but only one miRNA is anno-
tated for that entry and this one is overlapping by at least
75%. (4) Dissimilar overlapping: when the prediction is over-
lapping with a miRBase entry, but the miRNAs are not
overlapping with the annotated ones. (5) Half novel: when
the prediction is not overlapping with any miRBase entry,
but contains at least 75% of one known miRNA. (6) Novel:
when the prediction is not overlapping with any miRBase
entry and does not contain any known miRNA.

Prediction flagging of other ncRNAs

In order to reduce the number of potential false posi-
tives, we map the predicted precursors to the Ensembl hu-
man non-coding RNA database (release 85) and to NON-
CODE 2016 (61) using BLAST+ (62) and flag them accord-
ingly when matches are found. Further we map against the
whole miRBase (v21) to highlight similar miRNAs in other
species. Mappings are valid when over 90% of the aligned
sequences overlap and at most one mismatch is present.

Quantification of known and novel miRNAs, isomiRs and mu-
tations

The quantification of known and novel miRNAs is per-
formed analogously to miRDeep2. Reads are mapped
against the precursors using Bowtie while allowing one mis-
match. The counts are reported for all reads overlapping the
annotated miRNAs in a window of up to two nucleotides
upstream and five nucleotides downstream. IsomiRs are
detected by mapping against the precursors using Bowtie
while tolerating two mismatches. We allow up to two non-
template additions to the 5′ and 3′ ends and up to one mis-
match in between. We also allow a variability of two nu-
cleotides at the 5′ end and of five nucleotides at the 3′ end
per default. When detecting mutations, we focus on single
nucleotide substitutions. The mapping and counting is per-
formed the same way as the quantification, however miR-
NAs with mutations are explicitly counted.

Exogenous read mapping

We map non-human reads (all reads that did not align to
the human genome with at most one mismatch) to all 7556
bacteria and 7026 virus sequences of NCBI RefSeq (28) re-
lease 74 and report the number of perfectly mapping reads.
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Reads mapping to bacteria or viruses can indicate exoge-
nous miRNAs, but also reagent contamination or diseases
such as sepsis.

Motif detection

Recently five miRNA motifs have been reported, namely the
UG, UGU/GUG, CNNC (25), GHG (26) and GGAC (27)
motif. We report for each prediction the present motifs, al-
lowing matching up to two nucleotides upstream or down-
stream of the expected motif position.

Usability

To analyze NGS miRNA samples with miRMaster, the user
needs to provide sequencing files in FASTQ format (uncom-
pressed or gzip compressed) without barcode sequence and
the 3′ adapter used in the library preparation. After click-
ing on the ‘Launch experiment’ button on the homepage or
in the navigation bar, the user will be guided through three
steps. During the first one, one should name the experiment
and also optionally provide an e-mail address to receive a
notification as soon as the analysis of the uploaded samples
is done. During the second step the user needs to specify
the used 3′ adapter and has the opportunity to fine-tune the
parameters of the analysis. The third step consists of the up-
load of the sequencing files. If the samples stem from multi-
ple cohorts, groups can be specified by either clicking on the
‘Add second group’ button or by uploading a tab separated
sample-to-group file. Once the files are chosen and the user
has clicked the ‘Launch’ button, the data will be prepro-
cessed and sent to the server. The preprocessing progress is
shown directly on the web page whereas the server progress
can be followed in real time by clicking the ‘Follow’ but-
ton. This will open the experiment status page in a new tab,
where the user will be able to track the progress of the anal-
ysis of all uploaded samples. Real-time web reports are pro-
vided for each sample that has been uploaded, allowing to
directly inspect the data. These reports provide information
on the preprocessing, mapping, quantification and predic-
tion steps. As soon as all samples have been analyzed, the
results can be downloaded and an overall web-report is cre-
ated with a link to it on the top of the status page.

Validation using custom microarray

To perform a first pass iteration and to minimize the risk
of false positives due to either NGS artifacts or low sam-
ple quality containing many degraded RNAs we designed
a custom microarray containing all human miRNAs from
the miRBase, the miRNAs from the study by Londin et al.
(30) as well as over 5000 miRNAs from the present study.
Among our predicted miRNAs we selected only those ex-
pressed in at least 50 samples which were not flagged as
similar to other ncRNAs. The final microarray contained
11 866 miRNA candidates that have been measured each in
20 replicates (237 320 features per sample).

In order to measure the expression of the novel miR-
NAs in different human cells and tissues, we compiled a set
of eight different human RNA samples: we purchased hu-
man total RNA samples from lung, brain, kidney, testis and

heart tissues from Life Technologies (Cat. No. AM7968,
AM7962, AM7976, AM7972 and AM7966, respectively)
and the human miRNA reference kit from Agilent Tech-
nologies (Cat. No. 750700), that represents a pool of several
human tissues and cell lines. Furthermore, we used a PAX
blood RNA pool and a plasma RNA pool. The PAX blood
RNA pool comprised of 11 blood samples collected in
PAX gene tubes and purified with PAXgene Blood miRNA
Kit from Qiagen according to manufacturer’s instructions.
Blood samples derived from four lung cancer patients, two
Alzheimer’s Disease patients, two patients with Wilms Tu-
mor, and three healthy donors. The plasma RNA pool com-
prised of 10 plasma samples from healthy donors and was
isolated using miRNeasy Serum/Plasma Kit after manu-
facturers recommendation with minor adaptations. To en-
sure sufficient RNA precipitation, we added 1 �l 20 mg/ml
glycogen (Invitrogen) in the precipitation step. RNA con-
centration was measured using Nanodrop (ThermoFisher).
RNA quality was assessed using Agilent Bioanalyzer Nano
kit (for all tissue derived RNAs) or Small RNA kit (for the
plasma sample).

The expression of 11 866 miRNAs and miRNA candi-
dates was determined using the customized Agilent human
miRNA microarrays. As input we used 100 ng total RNA
as measured in Nanodrop for all tissue derived RNAs, and
1 ng miRNA as measured using Bioanalyzer Small RNA
chip for the plasma sample. Using Agilent miRNA Com-
plete Labeling and Hyb Kit after manufacturer’s instruc-
tions, RNAs were dephosphorylated and labeled with Cy3-
pCp. Labeled RNAs were hybridized to the custom mi-
croarrays for exactly 20 hours at 55◦C. After hybridization,
arrays were washed for 5 min in each Gene Expression Wash
Buffer 1 (room temperature) and 2 (37◦C). Subsequently, ar-
rays were dried and scanned in an Agilent microarray scan-
ner (G2505C). Expression data was extracted using Agilent
feature extraction software. Downstream processing of sig-
nals has been carried out with R (version 3.2.4). Specifically,
for clustering the expression intensities hierarchical cluster-
ing using the Euclidean distance has been performed as im-
plemented in the Heatplus package.

To enable other researchers to repeat the experiments
and to perform measurements on own samples, the mi-
croarrays that can be used analogously to standard Ag-
ilent microarrays using the Agilent protocols and SureS-
can platform, will be distributed by Hummingbird Diag-
nostics (Heidelberg, Germany) in three versions: human-
mirna-candidate(full) containing all miRNA candidates
from this study; mirna-candidate(detected) containing all
miRNAs positive in any experiment of this study; mirna-
candidate(blood) containing all miRNAs that have been de-
tected in blood or serum.

RESULTS AND DISCUSSION

The aim in developing miRMaster (www.ccb.uni-saarland.
de/mirmaster) was to implement a comprehensive tool for
the analysis of miRNA NGS data sets. Starting from raw
or compressed FASTQ files with billions of reads and giga-
bytes of data, miRMaster allows a wide variety of miRNA
analyses. The complete workflow is described in detail in
the Methods section and sketched in Figure 1. A brief de-
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Figure 1. Schematic workflow of miRMaster. The bar at the left shows the runtime impact of each step. Steps performed by the user are shown in orange
and steps performed by the server in blue.

scription on the usability of miRMaster is available in the
Methods section.

In the following, we first focus on the performance of the
novel algorithm for the prediction of new miRNAs. In total,
we investigated 1097 miRNA NGS data sets containing 15
billion reads within a 486 GB file size and compare the miR-
Master results – in terms of performance and runtime––to
those of miRDeep2 using the same data sets. We next pro-
vide a detailed description of the different components of
our miRNA NGS analysis framework and their application
to the above-mentioned data set. Then we report a coarse
description of the human miRNome by predicting small
RNAs from 1836 data sets with 20 billion reads. Finally,

we analyze the expression of potential miRNA candidates
using custom microarrays.

Evaluation of miRNA features

In contrast to most other comparable tools, our miRNA
prediction relies on a broad set of features that are de-
rived both from precursor sequences and from their ma-
ture forms. These features are considered as weak learners
as each feature has a limited impact on the overall deci-
sion to classify or declassify a new miRNA as true miRNA.
The feature set consists of 216 single features including nu-
cleotide composition, secondary structure and others (the
full list is available in Supplementary Table S1). To gain first
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insight into the discrimination power of single features we
derived a positive miRNA precursor set from early miR-
Base (63) versions and from targets with strong experimen-
tal evidence in miRTarBase (42) (487 precursors), as well as
a negative miRNA precursor set from various sources (12
384 negative precursors). A detailed explanation on the cre-
ation of these sets can be found in the Methods section (the
sequences and locations of both sets are shown in Supple-
mentary Table S2). We calculated the significance of all fea-
tures by comparing both sets via Wilcoxon rank-sum tests.
The performance of the 216 features is listed in Supplemen-
tary Table S1. The smallest significance value (10−219) was
calculated for the minimum free energy index 1. Following
adjustment for multiple testing, 158 of the 216 features re-
mained significant (P < 0.05). Since our analysis pipeline
is designed to support the evaluation of large data collec-
tions of up to several thousand samples, performance in
runtime of feature calculation is of importance. We grouped
all features in three different runtime categories with the
fastest category containing features with 10,000-fold de-
creased runtime as compared to the slowest features. Sup-
plementary Figure S1 shows the negative decadic logarithm
of the P-values for features in the three categories. Since the
two fast categories already contained 54 and 86 significant
features, respectively, we evaluated their combined informa-
tion content for predicting miRNAs. We derived classifiers
not only from the complete feature set, but also from the
fast features set only. Prior to classifying miRNAs based on
the features we evaluated the redundancy of the features se-
lected. As shown in the correlation heat map in Supplemen-
tary Figure S2 many of the features were redundant.

Classification of precursors

For combining the predictive power of the weak learners
we applied different feature selection and classification ap-
proaches. We selected a large variety of classifier and feature
selection approaches, since there is no ‘one size fits all’ ap-
proach and our goal was to build a model that performs best
on our datasets. Each of the tested classifiers and feature se-
lection approaches have their strengths and weaknesses (e.g.
SVMs with different kernels are suitable for different kinds
of separation spaces). Since several single features show low
discriminatory power (Supplementary Figure S1) and many
features are correlated to each other (Supplementary Fig-
ure S2) it is important to define feature subsets that allow
to classify or declassify a new miRNA precursor as true
precursor. Different scaling and feature selection methods
can have substantial effects on the used classifier. There-
fore, we performed an exhaustive analysis of all combina-
tions. We evaluated 130 105 different combinations of fea-
ture selection and classifiers using repeated stratified 5-fold
cross validation. Even with the cross-validation, the evalu-
ation of so many different classification attempts may lead
to overoptimistic results. To address this problem, we per-
formed permutation tests. The evaluation of the key per-
formance criteria in Table 1 shows that almost all classifi-
cations were highly accurate. The area under the receiver
operating characteristic curve (ROC AUC) highlights me-
dian performance of 99%, with the 90% quantile of all ap-
proaches being at 99.5% and more impressively the 10%

quantile being at 95.8%. In consequence, 90% of all 130 105
tested classifiers had an AUC exceeding 95.8%.

For both, the complete and the fast feature set AdaBoost
outperformed the other models with an AUC of 99.6%,
a specificity of 99.9% and a sensitivity of 86.9% for the
complete feature set, and an AUC of 99.4%, a specificity
of 99.9% and a sensitivity of 83.4% for the fast feature
set. The selected AdaBoost classifier by itself selects only
features known to improve the prediction and is therefore
well suited for our broad set of features. This comparison
demonstrates that the performance of the fast feature set is
only marginally weaker than the performance of the full fea-
ture set. Nonetheless, we evaluated the performance of these
two models and carried out stratified 5-fold cross-validation
with 1000 repetitions each. The same approach was done
with 1000 permutation tests each. As shown in Supplemen-
tary Figure S3, random test performance did not compare
to the true performance in any of the cases and cross valida-
tion performance was stable and good in all cases. This fur-
ther suggests that the composition of the cross-validation
splits plays no major role for the model performance. In ad-
dition to the cross-validation performance we evaluated our
model with the fast feature set on two independent test sets.
A description of the independent test sets can be found in
the Materials and Methods section. The first test set was
composed of 129 human precursors and 28 human pseudo
precursors. On this set our model reached a sensitivity of
82.9% and a specificity of 100%. The second test set con-
tained 350 mouse precursors and 56 mouse pseudo precur-
sors and resulted in a sensitivity of 81.4% and a specificity
of 98.2%.

Evaluation of prediction from 1097 miRNA NGS samples

Having evaluated the performance of our classifier on the
positive and negative training set we applied the models to
1097 in-house data sets (33–39). These contain 15 billion
reads in a total file size of 486GB (see Table 2). Again, we
first compared the fast feature set versus the complete fea-
ture set. The prediction was carried out for each sample in-
dividually. They were then merged and filtered according
to their global read signature. The differences between the
models regarding known miRNAs were minimal with both
models discovering 900 precursors, while 55 additional were
uniquely found in the fast model opposed to 34 in the full
model, as shown in Supplementary Figure S4. As for the
novel miRNAs both models discovered 10 651 precursors.
We then compared the unique predictions of both models
in regard to their mean probability, novoMiRank score and
the number of samples they were predicted in. We found
that their mean scores and the mean number of samples
they were predicted in were very similar (score of 1.18 for
the complete model, 1.19 for the fast one; predicted in 7.5
samples for the complete and 7.6 for the fast model). How-
ever, we noticed also that for both sets the majority of the
differing predictions were near the decision boundary with
a mean probability below 60% (in contrast to an average of
70% for the common set), meaning that these predictions
were among the less likely precursor miRNA candidates.
Therefore, since both models performed very similarly, ex-
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Table 1. Cross validation performance

Specificity Sensitivity Accuracy NPV Precision ROC AUC F0.5

Median 99.78% 70.62% 98.61% 98.90% 91.37% 98.98% 85.10%
90% quantile 99.91% 82.35% 99.18% 99.34% 95.61% 99.50% 91.81%
10% quantile 99.44% 45.17% 97.41% 97.97% 73.60% 95.85% 64.80%
AdaBoost (all features) 99.98% 86.85% 99.51% 99.51% 99.54% 99.58% 96.71%
AdaBoost (fast features) 99.98% 83.37% 99.38% 99.38% 99.26% 99.39% 95.60%
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Figure 2. Distribution of recovered known miRBase precursors using
miRMaster and miRDeep2. Predicted precursors are regarded as similar
if they overlap by at least 90%. The black boxes show the number of pre-
cursors contained in the training set of miRMaster.

cept for the less likely candidates, we further focused on the
fast model, due to its runtime advantage.

Comparison between miRMaster and miRDeep2

To further evaluate the performance of miRMaster we com-
pared its predictions with the predictions of miRDeep2, one
of the central programs for miRNA discovery. In detail, we
ran miRDeep2 with default parameters on our 1097 NGS
samples and merged the overlapping precursors predicted
by miRDeep2 by retaining the precursors predicted in most
samples. The same procedure was applied for miRMaster.
A more detailed description of the different analysis steps
can be found in the Methods section.

As shown in Figure 2, miRDeep2 recovered 59.5% of the
known miRBase (version 21) precursors detected by quan-
tification while miRMaster found 62.3% of them. Further,
miRMaster consistently recovered more precursors from
our training set than miRDeep2 (in total 414 versus 396).
Specifically, 181 precursors were exclusively found by miR-
Master and 138 by miRDeep2 as shown in Supplementary
Table S3. Figure 2 shows that both tools perform especially
well in earlier miRBase versions with both tools report-
ing nearly all precursors up to miRBase version 7. Precur-
sor miRNAs exclusively detected by miRDeep2 are mainly
found in later miRBase versions and contained only 7 pre-
cursors of miRNAs with strong experimental evidence for
targets in miRTarBase. By contrast miRMaster detected 21
precursors in later miRBase versions with strong experi-
mental evidence for targets in miRTarBase. These results
might be biased since our models contain many more fea-
tures and are trained using human high-confidence miR-
NAs on the one hand, and many miRNAs in later miRBase
versions have already been reported by miRDeep2 on the
other. Overall, the data suggest that our classifier identifies

more known miRNAs and especially more of the strongly
confident miRNAs.

To present a realistic comparison in runtime of miR-
Master and miRDeep2, we measured execution time on the
same infrastructure starting from pre-processed data. The
computations were performed on a node with four AMD
Opteron 6378 (4 × 16 cores totaling 64 cores) at 2.4 GHz
and 512GB DDR3-RAM. MiRDeep2 required 102.5 h (4.4
days) without PDF generation (usually increases the run-
time by 40% and produces reports for each known and pre-
dicted precursor). The respective steps of miRMaster re-
quired only 5.5 h which is a 19-fold decrease in runtime
compared to miRDeep2. The difference is especially notable
since miRMaster performed many additional analyses such
as prediction of isoforms, variants in miRNAs and others.
This difference in runtime is explained by the computed fea-
tures and by different implementations. While miRDeep2
is implemented in Perl, miRMaster relies on a more effi-
cient implementation in C++ for substantial parts of the
program. One example is the precursor excision step, a reim-
plementation of the miRDeep2 Perl code in C++. This part
of the program is roughly 40-fold faster in miRMaster as
compared to miRDeep2.

A detailed break-down of the runtime in the different
steps is presented in Supplementary Figure S5. The reads
are mapped against miRBase and multiple other ncRNA
databases (1.52% of the runtime) and to the human genome
using Bowtie (56) (0.72% of the runtime). The afore men-
tioned precursor excision step requires 0.2% of the run-
time. The following steps that are central for miRMaster
include precursor segmentation, filtering, feature compu-
tation and prediction, altogether requiring 30.92% of the
runtime. The predicted miRNA precursors from different
samples are subsequently merged and filtered according to
the read profiles of all samples (12.60% of the runtime).
The following assignment to one of six categories ‘known’,
‘shifted known’, ‘one annotated’, ‘dissimilar overlapping’,
‘half novel’ or ‘novel’ requires 0.75% of the runtime. For
the prediction flagging step, ncRNAs from Ensembl (57),
lncRNAs from NONCODE (61) and known miRNAs from
miRBase are mapped against the precursors (4.34% of the
runtime). Finally, different secondary analyses are carried
out on known and novel miRNAs, including quantification,
which is again a reimplementation of miRDeep2, detection
of isoforms and single base mutations. These steps, includ-
ing the mapping of non-human reads to a collection of 7556
bacteria and 7026 viruses of NCBI RefSeq, permitting the
detection of potential exogenous miRNAs, require in total
48.96% of the server runtime.
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Table 2. Composition of all 1836 NGS samples

Source / Description #Samples #Reads Compressed File Size

CNS lymphoma patients and controls (in-house) 44 884 Mn 25GB
Alzheimer patients and controls (in-house) 203 3.4 Bn 114GB
Cardiovascular disease patients and controls (in-house) 485 6.9 Bn 205GB
Multiple sclerosis patients and controls (in-house) 217 1.2 Bn 44GB
Blood cell fractions from healthy donors (in-house) 148 3.3 Mn 98GB
GSE64142 (monocyte-derived dendritic cells upon bacterial infection) 116 1.4 Bn 43GB
GSE53080 (myocardium, plasma and serum in heart failure patients) 185 925 Mn 36GB
GSE49279 (adrenocortical tumors) 78 1.2 Bn 34GB
GSE45159 (adipose tissue) 360 786 Mn 24GB
Sum 1836 20 Bn 623GB

Web-based analysis using miRMaster

With the development of miRMaster we aimed to provide a
comprehensive web-based toolbox for an all-in-one miRNA
analysis. In detail, the web-based tool has to (a) enable the
analysis of HT-sequencing raw data without installing any
software, even for data sets in the range of dozens of giga-
bytes; (b) perform the most common and further special-
ized analyses in an integrative manner; (c) return the results
in a manner to be used for identifying interesting hits and
for publication purposes by wet-lab scientists. These anal-
yses are carried out in a fully integrated manner. From the
raw data input (1097 compressed FASTQ files, 486GB) to
final results for all calculations, miRMaster required 23.5
h. Data upload at client side was performed on an Intel
Core i5–5200U Notebook with 12GB DDR3-RAM using
Mozilla Firefox 48 and required most of the time (18 of
the 23.5 h), while the analysis of pre-processed data took
only 5.5 h. At client side, FASTQ files are first pre-processed
(adapter trimming, quality filtering, read collapsing) and
subsequently uploaded. The functionality is implemented
in JavaScript such that no software has to be installed by
the user. The runtime of this step may vary based on the
equipment at user site and the bandwidth for data upload.
Real world tests have demonstrated that studies including
e.g. 50–100 samples can be evaluated in well below 5 h.

Evaluation of variations in miRNAs by miRMaster

First, we investigated the mutation frequency. For each
known miRNA of each of the 1097 samples we searched
the number of single base mutations. To reduce a bias de-
pending on the coverage we considered only miRNAs and
their variants covered by at least 30 reads in 100 samples.
Out of 2147 detected miRNAs 333 fulfilled the criteria. Sup-
plementary Table S4 lists the mutations found in all miR-
NAs. Overall the largest number of variants was discovered
for hsa-miR-486-5p, which is abundantly expressed across
all samples with two precursors. However, for the majority
of miRNAs the number of variants is low with most miR-
NAs having two or less variants (67.3%). For some miR-
NAs, such as hsa-miR-6131 the unmutated form was al-
most never detected and only variants with mutations at
position 8 and 14 were found. Another example is hsa-miR-
1260b with the most abundant form showing an A→G mu-
tation at position 8 (Supplementary Figure S6). However,
for most miRNAs (91.6%) the wildtype was most expressed.
Our results suggest that only a small set of miRNAs is fre-
quently affected by mutations e.g. due to RNA editing. The

low number of mutations is to be expected, since mutations,
especially in the seed region, are likely to highly affect the
miRNA regulation network.

Next, we calculated for each known miRNA the num-
ber of isoforms, analogously to the steps performed for
the detection of single base mutations. After applying the
abovementioned filter criteria, we found 277 miRNAs iso-
forms that are listed in Supplementary Table S5. As for the
mutated miRNAs we found the by far largest number of
isoforms for hsa-miR-486-5p, which is highly expressed in
blood. In consistence with the single base mutation results,
the number of variants is low for the majority of miRNAs
with most miRNAs (53.8%) showing four or less variants.
For most miRNAs (71.5%) we detected the canonical form
as annotated in miRBase. The miRNA with most variants
and without canonical form was hsa-miR-107. As shown
in Supplementary Figure S7, the most expressed form of
hsa-miR-107 with a median of over 60% was trimmed by
four nucleotides from the 3′ end, resulting in a miRNA with
19 nucleotides. Further, we frequently observed a lack of a
dominating isoform over all samples, as for example for hsa-
miR-29a-3p (Figure 3). This is consistent with the idea that
isoform expression varies depending on the context, such as
the cell type, time or population. Since the canonical form
was most expressed in only 33.6% cases, isomiRs apparently
play an essential role in miRNA function.

Comprehensive version of the human miRNome

Currently, the total number of human miRNAs is contro-
versially discussed. While miRBase currently contains 2588
human mature miRNAs (version 21), several studies pro-
pose even larger sets (e.g. Londin et al. (30), Backes et al.
(11), Friedländer et al. (31), Jha et al. (32)). There exist two
major challenges. First, the different miRNA sets are par-
tially overlapping or contain miRNAs shifted only by few
bases, adding a substantial redundancy. Second, the miR-
Base contains many false positive miRNAs, especially in
later versions.

Using miRMaster we attempted to generate a coarse de-
scription of the human miRNome, i.e. we wanted to de-
scribe as many putative miRNA candidates as possible, be-
ing well aware that false positives are included (e.g. tRNA
fragments, piRNAs or artifacts). This collection of poten-
tial candidates can be used to minimize further redundancy
in upcoming high throughput studies.

Thus, in addition to our in-house NGS samples, we col-
lected 739 samples from GEO (40), resulting in 1836 NGS
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Figure 3. Isoform distribution of hsa-miR-29a-3p. Only variants appearing with an evidence of at least 30 reads in 100 samples are shown on the x-axis.
Only reads occurring at least 30 times in a sample are shown for the relative expression to avoid large outlier due to low raw expression. Isoform notation:
the number before F stands for the distance to the canonical 5′ end, in 5′-3′ direction (i.e. positive for trimmed, negative for extended); the number before
the T stands for the distance to the canonical 3′ end (i.e. negative for trimmed, positive for extended). The canonical form is the third most frequent one
and is highlighted in blue. Variants without base exchange are frequently shorter or shifted in the 5′ direction (orange), those with base exchanges match
either the star/stop of the canonical miRNA (green) or are shifted slightly to the 5′ (light green) or 3′ (dark green) direction.

Figure 4. Distribution of the number of expressed precursors according
to an evidence in a minimum number of samples and a total minimum
number of reads. (A) The distribution of the number of expressed novel
precursors. (B) The distribution of the number of known precursors.

samples (Table 2), and predicted novel miRNAs on those
samples. The run resulted in 21 996 novel predicted miRNA
precursors that are listed Supplementary Table S6. Those
predictions can be inspected on the miRMaster webpage
and downloaded as FASTA format. As shown in Figure 4A,
most of the novel precursors were weakly expressed and in
few samples. Considering only miRNAs with an expression
in at least 30 samples reduced the number of predictions to
5845. As displayed in Figure 4B, the known precursors of
miRBase (version 21) seem to be less affected by the aug-
menting number of samples or reads. Supplementary Fig-
ure S8 shows the number of expressed known and novel
precursors according to their expression in multiple sam-
ples. The number of novel precursors decreases exponen-
tially and faster than the known precursors with increasing
number of required samples. This suggests that the major-
ity of the commonly expressed miRNome is already known

and that mainly tissue specific, time specific or other context
specific miRNAs remain to be discovered.

Precursors of known and new miRNAs are evenly dis-
tributed on the positive and negative strands as shown in
Supplementary Figure S9. The chromosomal distribution
of known precursors largely matches with the distribution
of the novel precursors as displayed in Supplementary Fig-
ure S10. In both cases, the least number of precursors can
be found on chromosome Y. Chromosome 13, 18 and 21
harbor few known and novel precursors.

As for the number of motifs found in known and novel
precursors with two annotated mature miRNAs, we found
a slight enrichment of motifs in miRBase miRNAs (Sup-
plementary Figure S11). A more fine-grained motif distri-
bution is shown in Supplementary Figure S12.

Since miRNAs often occur in genomic clusters, we also
searched genomic regions that are enriched by novel miR-
NAs. Supplementary Table S7 lists the positions of clusters
when allowing a distance of at most 10 kb between the mid-
dle position of known or novel precursors. The largest clus-
ter was composed of 46 known precursors and spanned 96
kb on chromosome 19. The largest cluster that contained
both known and novel precursors was found on chromo-
some 14 and contained 42 known and 2 novel precursors
and spanned 45 kb. In total 3969 clusters contained either
known or novel precursors. Of these, 3423 clusters con-
tained exclusively novel precursors. Further, 455 clusters
contained both known and novel precursors and 91 exclu-
sively known precursors. Supplementary Figure S13A and
B shows the number of clusters with at least two or five pre-
cursors on each chromosome. Most clusters (394) with a
minimum size of 2 could be found in chromosome 1. When
focusing on clusters with at least five members, the num-
bers decreased to 154 clusters, 93 of which contained ex-
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Figure 5. Distribution of the known and novel precursor clusters and their size on the human genome. Green clusters contain both novel and known
precursors. Blue clusters contain only novel precursors and orange clusters contain only known precursors. The two known clusters on chromosome 14
and 19 (size 42 and 46) were trimmed for a better visualization. The sum of the number of novel or known precursors in all clusters of a chromosome with
at least five members are shown on the top and bottom of the plot.

clusively novel precursors. Most clusters were observed on
chromosome 11. Figure 5 shows the distribution of all clus-
ters with five or more precursors over the human genome
and demonstrates that many clusters contain both, known
as well as novel precursors. The largest novel cluster with 12
precursors was found on chromosome 12.

To estimate how close our reported predictions might be
to the coverage of the human miRNome, we performed pre-
dictions for different numbers of samples, each 10x ran-
domly selected from our sample set. Supplementary Figure
S14 shows the number of predictions according to the num-
ber of samples. We observe that the increase in number of
predictions clearly exponentially diminishes with the num-
ber of samples. Since these predictions contain many false
positives we expect the real part to be much smaller and the
increase in predictions smaller as well. Therefore, we sug-
gest that, at least for the tissues covered by our samples, we
are close to the complete coverage of the human miRNome.
We are aware and expect that the addition of samples of
further tissue types or different conditions might add new
candidates to our predicted set.

Expression analysis of miRNA candidates using custom mi-
croarrays

To provide further evidence that a relevant fraction of the
aforementioned mature miRNAs is not only due to NGS
bias or other artifacts such as RNA degradation, we built
a custom human microarray. This array contains all miR-
Base v21 miRNAs, the miRNAs from the study by Londin
et al. (30) and the top ranking miRNAs from the present
study. The final microarray contained 11 866 miRNA can-
didates that have been measured each in 20 replicates (237

320 features per sample). For the microarray hybridization,
we selected tissues from our Tissue Atlas (64) that contained
the most miRNAs and added body fluids harboring like-
wise many miRNAs (65). The set of samples included a
pool of PAXGene blood samples, a pool of plasma sam-
ples, lung tissue, brain tissue, kidney tissue, testis tissue,
heart tissue and a reference pool from Agilent. Since de-
graded RNA is known to affect the miRNA patterns, we
ensured high-quality of the used RNA samples. The RIN
values of the different specimens ranged between 7.5 and
9. For the three sets of miRNAs the percentage of positive
miRNAs in the hybridization experiments is presented in
Figure 6A. For 56% of miRBase miRNAs, 55% of miR-
NAs by Londin et al. and 73% of miRNAs from the present
study no positive signal in any sample was observed. On the
other extreme, 11%, 17% and 8% were respectively positive
in all experiments. The larger fraction of miRNAs not de-
tected in any sample in the third set can be explained by
the fact that many of the high abundant markers were pre-
viously already detected while we selected the candidates
from the not yet discovered and likely much less abundant
fraction. Still the results presented above can contain false
positives (e.g. reagent contamination or positive signals in-
duced by fragmented other RNAs) and false negatives (e.g.
since other tissues or samples may harbor the miRNAs neg-
ative in the presently used samples or that are negative be-
cause of the limit of detection of microarrays). The same
pattern as described can be recovered from the cluster anal-
ysis of all miRNAs from the three sets in Figure 6B. The
lower part of this heat map shows that especially context
sensitive miRNAs are observed among the set of miRNAs
candidates only reported by miRMaster. In sum, the data
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Figure 6. Expression of miRNA candidates on custom microarrays. (A) Distribution of the percentage of detected miRNAs in different samples. The colors
correspond to the miRNAs of three studies: miRBase, dark gray; Londin et al., medium grey; this study, light gray. (B) Heatmap of the logarithmized
expression intensities of all miRNAs according to different tissues. For better visualization all expression values superior to 1000 were trimmed. The
hierarchical clustering was performed with Euclidean distance.

strongly suggest that miRNAs exist which are currently not
annotated in the miRBase. These miRNAs deserve further
validation. All miRNAs from this analysis are contained in
Supplementary Table S8.

CONCLUSIONS

The use of multiple web-based and standalone tools com-
bined with different data formats makes the analysis of
HT-seq miRNA data difficult, especially for wet-lab sci-
entists. Therefore, we propose a web service that performs
the most frequently requested applications directly from the
raw FASTQ files. At the same time, experimental methods
are advanced such that large-scale studies are feasible. Stud-
ies with many hundred or thousand samples are hard to
be evaluated by current tools. Besides accuracy and speci-
ficity, runtime is among the most important criteria. Al-
though miRMaster carries out a far greater number of anal-
yses than other tools like miRDeep2, the running time of
the miRMaster analysis was up to 20-fold faster. Of course,
the precursor candidates predicted by miRMaster should in
subsequent steps undergo a manual inspection and the se-
lected ones be experimentally validated before calling them
real miRNAs. A first validation step could be performed
with our custom microarray followed by a more in depth
validation of the detected interesting candidates using e.g.
northern blotting. Applications such as target prediction,
functional analysis and differential expression of known
and novel miRNAs will in the future complete the portfolio
of miRMaster.
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ABSTRACT

The repertoire of small noncoding RNAs (sncRNAs),
particularly miRNAs, in animals is considered to be
evolutionarily conserved. Studies on sncRNAs are
often largely based on homology-based information,
relying on genomic sequence similarity and exclud-
ing actual expression data. To obtain information on
sncRNA expression (including miRNAs, snoRNAs,
YRNAs and tRNAs), we performed low-input-volume
next-generation sequencing of 500 pg of RNA from 21
animals at two German zoological gardens. Notably,
none of the species under investigation were previ-
ously annotated in any miRNA reference database.
Sequencing was performed on blood cells as they
are amongst the most accessible, stable and abun-
dant sources of the different sncRNA classes. We
evaluated and compared the composition and nature
of sncRNAs across the different species by computa-
tional approaches. While the distribution of sncRNAs
in the different RNA classes varied significantly, gen-
eral evolutionary patterns were maintained. In partic-
ular, miRNA sequences and expression were found
to be even more conserved than previously assumed.
To make the results available for other researchers,
all data, including expression profiles at the species
and family levels, and different tools for viewing, fil-
tering and searching the data are freely available in

the online resource ASRA (Animal sncRNA Atlas) at
https://www.ccb.uni-saarland.de/asra/.

INTRODUCTION

Since the establishment of the central dogma of molecular
biology by Crick (1), for decades the main role of RNAs was
believed to be either in the transfer of information between
DNA and proteins (mRNAs) or in housekeeping functions
(tRNAs, rRNAs). With the discovery of microRNAs in the
early 1990s (2), research on small noncoding RNAs (sncR-
NAs) and later on long noncoding transcripts (3) gained
traction. Moreover, advances in high-throughput sequenc-
ing technology that allowed the sequencing of millions to
billions of small RNA fragments with reasonable effort and
cost (4) led to a further growth in the field. Via sequencing-
based approaches, the number of identified sncRNAs, es-
pecially of miRNAs, increased markedly in just a few years.
While the reference repository miRBase (5) was established
in the year 2000 with only 222 miRNAs in five species, the
most recent version stores 48 885 miRNAs in 271 species.
miRCarta (6), a database that collects mature miRNAs in-
dependently of the organism, suggests up to 44 347 miRNA
candidates; however, only a fraction of these can be as-
sumed to actually be true miRNAs. Because miRNAs have
been described in a variety of organisms, their assumed con-
servation is frequently used to identify additional miRNAs
in related species by homology- and sequence-based ap-
proaches (7–11), which often exclude expression profiling.
Interestingly, the expression patterns of homologous miR-
NAs also appear to be comparable between organs in dif-
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ferent species, as we successfully showed for human and rat
(12).

One of the most commonly performed types of study
on sncRNAs is biomarker discovery analysis (13–15). Here,
human serum, plasma or blood cells are sequenced, or ex-
pression profiling using microarrays or real-time quantita-
tive reverse transcription PCR (RT-qPCR) is performed.
Blood cells are especially suitable for this as they contain
many hundred to over 1000 human miRNAs (12,16). It
has already been demonstrated that the use of standardized
protocols for collecting and analysing blood-borne miRNA
profiles has huge potential for comparing biomarker pro-
files across different human pathologies (17,18). Because
blood can be obtained in a standardized manner and
miRNA expression patterns are technically very stable, it
is easy to accurately compare expression between different
animal species. In particular, dried blood spots (19) (DBS)
or microsampling devices (20) appear to be well suited as
containers for miRNAs. While such decentralized collec-
tion kits are perfectly suited to collecting samples from dif-
ferent sites, the small amount of RNA that can be puri-
fied presents a challenge for further investigations. Previ-
ously, analyses based on DBS were mostly limited to mi-
croarrays and RT-qPCR, but excluded next-generation se-
quencing (NGS). However, the application of NGS was
mandatory for our study to be able to compare the total
sncRNA repertoires amongst different species. Thus, we de-
veloped a novel low-input-volume NGS protocol to facili-
tate sequencing from capillary microsampling devices start-
ing with only 50 pg of RNA (20).

In the present study, we sequenced blood samples of
21 animals collected at two regional German zoos: in
Saarbrücken and Neunkirchen. A phylogenetic tree of the
animals is presented in Figure 1. The primary data analy-
sis was performed with our tool miRMaster (21). We anal-
ysed and compared the read profiles as well as the distri-
bution and composition of small RNAs across species. In
addition, an online resource for the collected data was im-
plemented and is freely available at: https://www.ccb.uni-
saarland.de/asra/. This resource provides access to all de-
tected sncRNAs, their families and their expression pat-
terns across all species in this study. In summary, the com-
piled dataset and associated online web server constitute a
valuable resource for sncRNA research, either for finding
and validating miRNA candidates because of their conser-
vation, or for general research on evolutionary aspects of
sncRNAs.

MATERIALS AND METHODS

Sample collection

We collected 21 animal samples from regional zoos in
Saarbrücken and Neunkirchen (Germany) comprising 19
different species. In addition, we collected four human sam-
ples as a reference. All blood samples were collected with
the Mitra™ microsampler device (Neoteryx, CA). The sam-
ples were collected from remaining blood samples in the
context of veterinary examinations. No additional examina-
tions were performed with the animals. The study was per-

Figure 1. Circular taxonomy tree based on the species that were sequenced
in our study.

mitted by the regional authority, the State Office for Con-
sumer Protection (Landesamt für Verbraucherschutz). Hu-
man blood samples were collected from volunteers with in-
formed consent. An overview of the samples in this study
with their corresponding taxonomic classification is given
in Table 1. Metadata containing the age, gender, as well as
the health condition for each specimen are available in Sup-
plementary Table S1.

RNA extraction and sequencing

Animal blood was collected onto Mitra™ collection devices
(Neoteryx, CA) and dried at least for 2 h. Small RNAs
were extracted by a modified version of the manufacturer’s
procedure using the miRNeasy Serum/Plasma Kit (Qia-
gen, Hilden, Germany). Size distribution and concentration
were analysed using Agilent Bioanalyzer small RNA chips
(Agilent Technologies, Santa Clara, CA). A total of 500 pg
of sRNA with a size range of ∼15–150 nt was subjected to li-
brary preparation using a ligation-free procedure involving
3’-polyadenylation and template switch-based cDNA syn-
thesis using the CATS sRNA-seq Kit (Diagenode, Liege,
Belgium), omitting any dephosphorylation to enrich 3’-
OH. Library size enrichment was carried out using 1.8 vol
AMPure XP beads (Beckman Coulter, Krefeld, Germany)
to achieve the enrichment of libraries containing RNAs
larger than 15–20 nt (library size >160 bp). Libraries were
multiplex-sequenced in an Illumina HiSeq 2500 platform in
high-output mode with 50 cycles, except for common seal
(1), human (3), pygmy marmoset, radiated tortoise and red-
bellied lemur that were (re)sequenced with 40 cycles. Lynx
(2) was sequenced with 47 cycles.
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Table 1. Overview of the sequenced species ordered by phylogeny, their taxonomic classification, their total generated reads and remaining valid reads
after filtering and trimming, as well as the availability of a genome assembly

Taxid Species Superorder Order Total reads (Mio) Valid reads (Mio) Genome

9568 Mandrillus leucophaeus Euarchontoglires Primates 72.65 52.19 �
9606 Homo sapiens Euarchontoglires Primates 25.45 12.14 �
9606 Homo sapiens Euarchontoglires Primates 15.46 10.02 �
9606 Homo sapiens Euarchontoglires Primates 16.98 9.87 �
9606 Homo sapiens Euarchontoglires Primates 24.50 19.26 �
9493 Callithrix pygmaea Euarchontoglires Primates 38.80 27.76 ✗
34829 Eulemur rubriventer Euarchontoglires Primates 35.50 21.09 ✗
297387 Cavia magna Euarchontoglires Rodentia 36.54 25.38 ✗
273791 Potamochoerus porcus Laurasiatheria Artiodactyla 32.85 24.68 ✗
1088130 Rusa timorensis Laurasiatheria Artiodactyla 37.23 25.41 ✗
9720 Phoca vitulina Laurasiatheria Carnivora 24.57 16.15 ✗
9720 Phoca vitulina Laurasiatheria Carnivora 23.73 14.95 ✗
9651 Nasua nasua Laurasiatheria Carnivora 46.87 34.31 ✗
9627 Vulpes vulpes Laurasiatheria Carnivora 29.23 20.26 �
13124 Lynx Laurasiatheria Carnivora 47.84 22.31 ✗
13124 Lynx Laurasiatheria Carnivora 28.72 17.23 ✗
32536 Acinonyx jubatus Laurasiatheria Carnivora 30.62 20.65 �
9407 Rousettus aegyptiacus Laurasiatheria Chiroptera 33.75 24.99 �
9783 Elephas maximus Afrotheria Proboscidea 97.67 63.16 ✗
9818 Orycteropus afer Afrotheria Tubulidentata 36.68 26.45 �
371907 Bubo scandiacus Neognathae Strigiformes 58.79 38.58 ✗
126836 Strix nebulosa Neognathae Strigiformes 37.81 27.92 ✗
176015 Aratinga solstitialis Neognathae Psittaciformes 43.77 28.29 ✗
9240 Spheniscus humboldti Neognathae Sphenisciformes 72.75 53.41 ✗
66190 Astrochelys radiata Chelonia Testudines 25.24 17.76 ✗

Bioinformatics

Sample preprocessing. All samples were trimmed and
cleaned using miRMaster (21). In detail, we first removed
the template switch motif, i.e. the first three bases of the
reads. Then, we removed the bases resulting from the
polyadenylation process. Therefore, we first checked the
reads for adenine homopolymers with at least 13 bases and
at most one mismatch and, if no match was found, we re-
laxed the requirement for an adenine homopolymer with at
least five bases and no mismatch starting at position 15 of
the read. Finally, we removed sequencing adapter contam-
ination. The quality filtering was performed using default
parameters together with a sliding window of four bases
and a quality threshold of 20. The resulting reads that were
shorter than 17 nt were discarded.

Statistics and visualizations. All statistical tests were com-
puted using the free statistical programming language R
(22) (version 3.4.4). If not specified otherwise, reported
P-values were adjusted for multiple testing using the
Benjamini-Hochberg procedure (23). Cramer’s V was com-
puted using the R package rcompanion (24). Wilcoxon-
rank sum test was applied when the data did not follow
normal distribution according to Shapiro–Wilk test. Plots
were generated using the R packages ggplot2 3.1.0 (25) and
pheatmap 1.0.12.

Sample distance estimation and similarity to NCBI phylo-
genetic tree. We computed Mash sketches for all samples
(using Mash 2.0 (26)) with a k-mer size of 17 and a signature
size of 1000 and used them to estimate the pairwise sample
distances. Reads were subsampled using Seqtk 1.2. We con-
structed a phylogenetic tree using the neighbour-joining ap-
proach (27) implemented in the R-package phangorn (28)

and visualized it using the Interactive Tree of Life (29). The
similarity to the phylogenetic tree provided by NCBI was
computed using the normalized Robinson-Founds distance.
To be able to compare both trees, we collapsed the nodes of
the same species. We determined the significance of the simi-
larity of both trees by creating 100 000 random trees with 20
leaves, labeled by the analysed species and comparing them
with the NCBI tree. We then tested if the resulting distances
were smaller than the computed distance and derived from
this the P-value.

Rfam. We downloaded all Rfam family sequences from
the Rfam FTP server (ftp://ftp.ebi.ac.uk/pub/databases/
Rfam, version 13, accessed on 27/3/2018). Then, we deter-
mined that sequences were related to Metazoa by perform-
ing an SQL query against the Rfam database, and selected
them accordingly. To this end, we used the following SQL
query:
SELECT fr.rfam acc, fr.rfamseq acc,

fr.seq start, fr.seq end, f.type
FROM full region fr, rfamseq rf,

taxonomy tx, family f
WHERE rf.ncbi id = tx.ncbi id
AND f.rfam acc = fr.rfam acc
AND fr.rfamseq acc = rf.rfamseq acc
AND tx.tax string LIKE ’
AND is significant = 1
Next, we mapped all samples against the Metazoa Rfam

sequences using RazerS 3 (30), while requiring at least
95% identity and allowing only forward mappings. We de-
termined the RNA composition based on the RNA class
annotations of each family. If a read mapped to multiple
classes, it was counted in full for each.
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miRNA homology determination. We collected the
miRNA sequences of miRBase v22, miRCarta v1.0 and
MirGeneDB 2.0 via their respective websites (accessed
on 18 July 2018). To determine the expression of each
miRNA, we mapped the samples against the databases
with Bowtie (31) (version 1.1.2), while allowing no
mismatches and disabling mapping against the reverse
complement, using the following command:
bowtie -f -v 0 -a --fullref --norc
-S <reference mirnas idx> <sample.fa>

To ensure that each read corresponds to a real miRNA,
we discarded all reads with lengths different from those of
their mapped miRNA. A miRNA was considered to be ex-
pressed in a species if it was present in at least one of its
samples.

miRNA expression and potential precursor determination.
MiRNAs found in any of the three considered databases
were first clustered according to 90% sequence similarity
using vsearch 2.7.1 (32), thereby merging potential isoforms
into one cluster. The RPM normalized counts for each clus-
ter were determined by summing up the expression of each
miRNA contained in it. MiRNA arms were determined ac-
cording to their annotation in the databases. Potential pre-
cursors were determined for the miRNAs by considering
all combinations of 5′ and 3′ miRNAs of precursors of the
same precursor family for MirGeneDB, with the same base
name for miRBase and according to the exact annotations
in miRCarta. MiRNAs that could not be assigned unam-
biguously to one arm were discarded. Using the thereby ob-
tained potential precursors, we could then compute arm ra-
tio differences to investigate arm switches.

MiRNA candidate prediction. MiRNA candidates were
predicted using mirnovo (33) (downloaded on 20 July 2018)
with the default parameters, except for the brown-nosed
coati, for which we had to increase the required minimum
number of isoform variants from 1 to 3 because the pro-
gram was not terminating with lower numbers. Predicted
miRNAs were filtered in a first step by only keeping those
that did not map with at least 90% identity to any known
miRNA. The mapping was performed with RazerS 3 (ver-
sion 3.5.8). Subsequently, we built a scoring scheme similar
to our tool novoMiRank (34). In a first step, we determined
the values of the features used by mirnovo for known miR-
NAs in our dataset. To this end, we restricted the known
miRNAs to those contained in the high-confidence set of
miRBase v22, as we recently showed that this subset con-
tains by far the largest fraction of true miRNAs (35). The
features of mirnovo do depend not only on the miRNAs
but also on the samples. It is thus possible that some miR-
NAs that are more expressed than others bias the feature
distribution. To avoid this bias, we took the mean feature
values for every miRNA. We then normalized all features
to a mean of zero and a variance of once, since they were
all on different scales and computed z-scores for all known
miRNAs. To avoid too large influences of single features, we
restricted the absolute values to 3. We then computed for
every predicted miRNA its distance to the distribution of
known miRNAs, for every feature, and reported the mean
z-score. As filtering threshold we chose the 80th percentile

of the z-scores of known miRNAs, corresponding to 0.8
standard deviations above or below the mean of the known
miRNAs.

ASRA. In the web resource, we provide a species speci-
ficity index (SSI) for miRNAs and for Rfam families that
describe the variability of their expression patterns. It is
computed analogously to the tissue specificity index used
in our miRNA tissue atlas (12). It allows measurement of
the specificity of expression of an miRNA/Rfam family
over different species. The SSI ranges from 0 to 1, where
values closer to 1 represent molecules expressed in a few
or only one species (species-specific molecules) and values
closer to 0 represent molecules similarly expressed in many
species (well-conserved molecules). To this end, the SSI for
an miRNA/Rfam family j is calculated as follows:

ssi j =
∑N

i=1(1 − xj,i )
N − 1

where N corresponds to the total number of species and
xj, i is the RPM expression of the miRNA/Rfam family j
in species i normalized by the maximal expression in any
species of miRNA/Rfam family j.

RESULTS

Using the Mitra™ system, we collected a total of 21 speci-
mens from two regional zoos, including 19 animal species,
as well as four human samples. The species in this study be-
long to five different superorders and 11 different orders.
The samples were sequenced on an Illumina HiSeq 2500,
yielding a total of 973 994 362 reads. After quality filter-
ing and adapter trimming 654 217 441 reads remained
and were used for downstream analysis. An overview of the
collected samples, their taxonomy and read counts is pre-
sented in Table 1. Due to the fact that for only five of the
sequenced animal species a genome assembly is available to
date, of which all are on scaffold level, no genome mappings
were computed. Also, no miRNAs were annotated in any of
the considered reference databases. All downstream analy-
ses were performed only with the valid reads.

Read profiles resemble phylogenetic descriptors

One of the core hypotheses in this study is that the differ-
ences in read profiles between the species also mirror their
known taxonomic classification. To test this hypothesis, we
conducted a minHash analysis using Mash (26). The top
panel of Figure 2 shows the resulting 2D embedding based
on the computed sample Mash distances for superorders (2
A) and orders (2 B). For the superorders, we observe a clus-
ter pattern matching what one would expect from their tax-
onomy, with the exception of Afrotheria. In the more de-
tailed 2D embedding for orders, we see that samples be-
longing to Primates, Carnivora and Strigiformes cluster to-
gether well. Since the amount of reads for our samples var-
ied greatly we wanted to estimate this influence. Therefore,
we generated embeddings based on 15 times subsampling
of the depth of the smallest sample, for each sample. This
way, we ensure that all samples have the same size, while
still keeping a realistic sequencing depth. The resulting plots
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A B

C

D

Figure 2. 2D embedding including a Voronoi diagram of the pairwise sample Mash distances for superorders (A) and orders (B). Each point in the plot
represents a sample. Taxonomic tree built using the computed Mash distances of the read profiles at the species level (C) in comparison to the taxonomic
tree derived from NCBI (D). The branches are colored according to the superorder of the corresponding species.

(Supplementary Figure S1) show that the sample depth has
only a minor influence on the clustering. To increase the
resolution to the species level, we visualized the computed
Mash distances as a phylogenetic tree, as shown in the lower
panel of Figure 2, in comparison to the phylogenetic tree
from NCBI. The biological replicates for human, common
seal and lynx cluster together, confirming the reproducibil-
ity of the sample collection and sequencing process. For
some species, the clustering in the Mash tree matches very
well with the partitioning in the NCBI taxonomy tree; for
example, the two owls cluster with the Humboldt penguin
and the sun conure, which form a larger cluster with the ra-
diated tortoise. Drill and pygmy marmoset also cluster to-
gether in both trees; however, the human samples do not
cluster with these species as we would expect from the NCBI
phylogenetic tree, which is partly related to the heuristic na-

ture of the neighbour-joining algorithm used to create the
tree. To quantify the resemblance of both trees, we com-
puted the normalized Robinson-Foulds distance between
both trees (D = 0.8) and found that it was significantly lower
than expected by chance (P = 4 × 10−5). While some of
the remaining sample clusters do not fit the known taxon-
omy perfectly, we still see that, based on the distance of read
profiles alone, we can derive evolutionary relationships to a
certain extent.

Distribution of sncRNAs varies across species

To obtain an overview of the distribution and composition
of sncRNAs across species, we mapped their reads to the
sequences from the Rfam database (36) with a threshold of
95% identity. We then evaluated the quality of the mappings
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Figure 3. Overview of reads mapped to the different Rfam classes for all
species in this study. The colors are ordered according to the median map-
ping ratio of each class. Classes with mapped reads <0.05% are summa-
rized in the category ‘Other’.

by inspecting the distribution of their read lengths after
trimming (Supplementary Figure S2) and comparing them
with the distribution of the mappings against every RNA
class of Rfam (Supplementary Figures S3–10). We observe
in all sample peaks at the length of the sequenced reads (mi-
nus 3 nt of the template switch motif), i.e. at 47 nt and for
some that ran with less cycles at 37 nt. In general, we would
expect that for RNA classes that are longer than the read
lengths, and which have no known functional fragments,
mostly untrimmed reads map. This is the case for rRNAs
where we observe mainly untrimmed reads. It holds also for
snRNAs, where only in few species over 15% of the reads
shorter than 30 nt map. Reads mapping to SRP RNAs are
mainly untrimmed reads as well; however, in some species
the length of the mapped reads is nearly evenly distributed.
YRNAs, as well as tRNAs, are either mostly covered by
untrimmed reads or reads in the length of YRNA and
tRNA fragments (around 26 nt and around 32 nt). For reads
mapping to miRNAs, we observe clear mapping patterns
that show peaks at 21–22 nt, with mostly no mapping read
exceed a length of 24 nt. Considering snoRNAs, we ob-
serve mostly mappings of untrimmed reads, except for some
species with peaks around 26 nt. Finally, all other mapping
reads are composed mostly of untrimmed reads or short
reads around 20 nt. The overall results of the mapping dis-
tribution are presented per sample in Supplementary Fig-
ure S11 and summarized per species by taking the average
mapping fraction in Figure 3. As expected, in almost all
species, the most dominant read fraction is represented by
rRNAs. However, the percentages vary substantially across
species: from 7% in lynx to 49.3% in snowy owl, with a me-
dian of 35.2%. In particular, the composition of the RNA
classes in both lynx samples diverge the most from those
in the other species. Here, not only is the rRNA fraction

very small, but also the tRNA fraction (which is in me-
dian the third most abundant class) represents 38.1% of the
sncRNA reads. In most other species, the fraction of tRNAs
is under 10% (median 5.5%). The distribution of miRNAs,
which are the second most abundant RNA class, also varies
amongst the different species, ranging from 0.2% in radiated
tortoise to 16.4% in red river hog. Similar patterns could be
observed for all other RNA classes. Interestingly, the frac-
tion of miRNAs, but also of YRNAs, was highly underrep-
resented in all species of the Neognathae and Chelonia su-
perorder (miRNA mean: 1.1% versus 8.7%, Wilcoxon rank-
sum test P = 5 × 10−6; YRNA mean: 0.27% versus 2.9%,
Wilcoxon rank-sum test P = 4 × 10−4). The differences in
the compositions of RNA classes might also be influenced
by the number of unmapped reads. Human reads are much
better recovered in Rfam than reads of rusa and radiated
tortoise, for example (unmapped: ∼23% versus ∼62%, re-
spectively). We investigated if the mapping rates were as-
sociated with the presence of a genome assembly; however,
no significant association was found (Wilcoxon rank-sum
test (two-sided) P = 0.968). A chi-square test of homogene-
ity showed that all pairwise sample comparisons differ sig-
nificantly (P = 0). Since the P-values are strongly affected
by large read counts, we also computed the effect sizes us-
ing Cramer’s V, see Supplementary Table S2. Thereby, we
found that the values for samples of the same species (me-
dian: 0.16) were significantly smaller (i.e. the class distri-
butions were more similar to each other) than for samples
between different species (median: 0.31, Wilcoxon rank-
sum test (one-sided) P = 9 × 10−6), highlighting that even
though all RNA class distributions were significantly differ-
ent, the heterogeneity between samples of different species
was higher than between samples of the same. To assess
if the observed class distributions of some RNA classes
are related to each other, we computed all pairwise Spear-
man correlation coefficients (Supplementary Figure S12) on
the number of reads mapped to each class. This showed
that miRNA and YRNA levels, as well as snoRNAs and
snRNAs, are significantly and positively correlated to each
other (ρ = 0.72, P = 6 × 10−4 for miRNAs and YRNAs,
and ρ = 0.89, P = 3 × 10−5 for snoRNAs and snRNAs).

Zoo animals express common miRNA families that are more
conserved than previously assumed

We also evaluated the coverage of known miRNA sequences
and miRNA families in the different species. To obtain a
comprehensive overview, we made use of three different
miRNA databases with different scope: miRBase v22 (5),
miRCarta v1.0 (6) and MirGeneDB 2.0 (37). miRBase is the
gold standard resource for miRNAs; miRCarta also collects
many miRNA candidates, of which only a fraction might
be true miRNAs; and MirGeneDB collects miRNA genes
that are manually curated and validated. We mapped the
reads of the different species against the mature miRNA se-
quences of the three different databases, allowing only ex-
act matches, which means that we count only reads that
have exactly the same sequence and length as the sequence
deposited in the corresponding database. Figure 4 sum-
marizes the findings for the three databases separately, as
well as the results overlapping amongst them. As a me-
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Figure 4. Comparison of mapping the reads of the different species against
the three miRNA databases: miRBase, miRCarta and MirGeneDB. The
mapping was performed with perfect matches, allowing no mismatches or
differences in lengths between read and database sequence. The stacked
barplot shows the number of miRNAs found uniquely in the correspond-
ing databases, as well as the different overlaps amongst the databases.

dian, we recovered 847 miRNAs per sample. Because hu-
man is the organism with the most annotated miRNAs,
we recovered the most miRNA sequences in human (n =
1846), followed by Asian elephant (n = 1210) and brown-
nosed coati (n = 1187). At the lower end, the reads of the
radiated tortoise sample recovered only 358 miRNAs. We
could expect the number of recovered miRNAs to be sig-
nificantly higher in species with known genome; however,
this was not the case (Wilcoxon rank-sum test (one-sided)
P = 0.1037). Although a large proportion of the miRNA
sequences overlap with references in the three databases or
in any combination thereof, we still found many unique
hits of the reads, especially for miRNAs from miRBase.
While this is surprising at first glance, it can be explained by
the difference in set-up between miRCarta and miRBase.
In these databases, similar miRNAs are merged into one
representative, but miRBase might contain variants of the
same miRNA sequence with different lengths. Nonetheless,
for assessing which miRNAs actually exist, these sequences
uniquely recovered in the different databases might provide
new insights, because they appear to be expressed in dif-
ferent species in our study. To this end, we analysed the
uniquely recovered sequences in miRBase in more detail.
In total, we discovered 862 unique miRBase sequences, of
which 44 were found in all 20 species in our deep sequencing
approach. Interestingly, most of these have been described
in only three different organisms in miRBase, on average.
Amongst those 44 recovered sequences, there are many rep-
resentatives of well-known families, such as let-7, mir-17,
mir-103, mir-24, mir-181 and mir-92. Our findings indi-
cate that these miRNAs are expressed in substantially more
species than previously assumed and provide new insights
into their conservation. If we look at the unique miRBase

sequences recovered that have the most miRBase organ-
isms’ annotations, but are found in only a few of the species
in our analysis, we might conclude that these are either not
as evolutionarily conserved or predominantly expressed as
isoforms with different sequence lengths, or might even rep-
resent artefacts that have been derived by sequence-based
homology but not by expression analysis. One such example
is the sequence 5′-CUGCCCUGGCCCGAGGGACCGA-
3′, which is only found in one species amongst our sam-
ples, but is annotated in 10 miRBase organisms. However,
if we remove one base at the 3′ end from this, we also find
this sequence in seven further organisms in our study and
in two from miRBase. Essentially, this shows that this se-
quence might be a conserved miRNA, but occurs in at least
two isoforms of different lengths. The uniquely recovered
miRBase sequences, the number of species they cover in our
study and in how many miRBase organisms the sequences
are annotated are shown in Supplementary Table S3.

Some sncRNAs are processed depending on the superorder of
their species

Small noncoding RNAs and especially miRNAs are known
to be expressed differently in organisms depending on vari-
ous factors such as diseases, developmental stages or tissues.
Therefore, we asked if we could find such relationships be-
tween our species as well, and in particular if this would be
related to phylogeny. In a first step, to avoid biases related to
isoforms, we clustered all detected miRNAs with an iden-
tity of at least 90% together and summed their expression
values. Next, we clustered the miRNAs that represented
at least 0.1% of the total miRNA expression in the corre-
sponding species and that were present in at least 5 species
(see Supplementary Figure S13). There, we observed that
the strongest split between the species happened between
those of the superorders of Neognathae and Chelonia in
comparison to the other three. This is in concordance with
our observations made in the previous analyses, as well as
with the phylogenetic tree provided by NCBI. One example
of miRNA expressed nearly exclusively in Neognathae and
Chelonia is miR-2188-5p. This miRNA is expressed with
a median of over 30 000 reads in those species, whereas in
others we found it in at most 328 reads. In opposition, for
example miR-423-3p is mostly expressed in Afrotheria, Eu-
archontoglires and Laurasiatheria (median of over 25 000
reads) but nearly not in Chelonia and Neognathae (at most
467 reads). We also evaluated if either 5′or 3′ miRNAs were
over-represented amongst the evaluated miRNAs; however,
their numbers were very similar (66 5′ miRNAs, 63 3′ miR-
NAs and 48 either undetermined or miRNAs that have been
annotated on 5′ and 3′ positions). The observed differences
led us to the question if there were potential miRNA precur-
sors that indicated arm switches between species of different
superorders. Supplementary Figure S14 shows the fraction
of 5′ minus 3′ miRNA reads (1 being thus precursors exclu-
sively expressing their 5′ miRNA and -1 their 3′ miRNA)
of potential precursors, derived from the known annota-
tions. We see that most precursors express mainly one form
across all species. However, there are some for which there
is no clear form. We decided to investigate those further,
in particular regarding differences at the superorder level
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and found nine potential precursors with large differences
between the Neognathae and Chelonia superorders in con-
trast to the Afrotheria, Euarchontoglires and Laurasiathe-
ria superorders (see Supplementary Figure S15). However,
differential processing seems to be not only limited to miR-
NAs, since we found for example different processing pro-
files for fragments of SNORD14 enriched in most species
at the 5′ end, but showing clear preferences for fragments
at the 3′ end in great gray owl, red fox and sun conure, as
shown in Supplementary Figure S16.

Gender and health condition have limited impact in cross-
species RNA expression

Others and we have shown that expression levels of certain
sncRNAs, in particular miRNAs, are driven by gender or
disease conditions (38–40). Therefore, we evaluated if we
could observe different expression levels of Rfam families
or miRNAs according to the gender or health conditions
(unaffected versus affected) of our sequenced species. We
did not perform a more fine grained comparison by dis-
ease, since the group sizes would have been too small and
some miRNAs, such as miR-144-5p, have been shown to
be deregulated independent of the disease in human (39).
While significantly differing miRNA and Rfam family lev-
els were found according to a two-sided Wilcoxon rank-sum
test (gender specific: RF01412 (P = 0.013), miR-224 (P =
0.026); health condition specific: RF00009 (P = 0.0025),
miR-238|miR-548c|miR-1842 (P = 0.009)), none remained
significant after adjustment for multiple testing. Therefore,
we conclude that the impact of these variables in a cross-
species setup is too small and that differences between the
species dominate the expression levels.

Many miRNA candidates are not covered by known
databases

In addition to known miRNAs from the databases above,
it is likely that there are other small noncoding RNAs that
have not yet been annotated. A mapping-based analysis us-
ing a reference genome usually supports the discovery of
these candidates. Because, for the majority of the animals
included in this study, no reference genome is available, we
applied mirnovo for genome-free miRNA prediction (33).
First, we assessed how many known miRNAs can be re-
covered by a run of this tool. Figure 5A shows a stacked
barplot for the number of recovered miRNAs deposited in
the databases miRBase, miRCarta and MirGeneDB. In this
case, we defined a positive hit if the reads mapped with at
least 90% identity to the miRNA sequence in a database
taking into account mismatches and differences in length.
The prediction algorithm recovers most known miRNAs
for human, followed by lynx, Egyptian fruit bat and com-
mon seal. In contrast to the comparison of the perfect
matches above, we see that the largest fraction of recovered
miRNAs is shared by all three databases for each organism
and that miRCarta entries contribute the largest propor-
tion. Still, the number of recovered miRNAs is moderate
overall; even for human, we recover only 360 miRNAs. As
a median, we recover only 40.5 miRNAs across all samples.
Second, we analysed the results of the mirnovo algorithm

A

B

Figure 5. Prediction of novel miRNAs with the tool mirnovo. (A) Com-
parison of recovered known miRNAs deposited in the three databases:
miRBase, miRCarta and MirGeneDB. For the mapping, we required
at least 90% identity between read and database sequence. The stacked
barplot shows the number of miRNAs found uniquely in the correspond-
ing databases, as well as the different overlaps amongst the databases. (B)
Number of novel miRNAs predicted by mirnovo and filtered by us for the
samples in this study.

by excluding known miRNAs and illustrate the numbers
of novel predictions in Supplementary Figure S17. Here, as
a median, approximately 575 miRNAs per species remain.
The organism yielding the most candidates is sun conure,
with more than 2000 predicted miRNAs, followed by Asian
elephant with 1298. Because the gap between known recov-
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ered miRNAs and novel miRNAs is quite large, it is ques-
tionable how many of the predicted candidates represent
true positive findings. To increase the likelihood of predict-
ing true miRNAs, we applied a score filtering similar to
novoMiRank (34), based on the features of mirnovo. The
obtained scores (see Supplementary Figure S18) highlight
that many predicted miRNAs are very different from the
miRNAs of the high confidence set of miRBase. By filter-
ing the predictions according to their scores, we reduced the
number of predictions by 4-fold in median, as show in Fig-
ure 5B, while the number of recovered miRNAs dropped in
median only by 2-fold (see Supplementary Figure S19). The
results of the filtered mirnovo analysis are available in our
online repository.

ASRA: the online resource

In the previous sections, we provide only a snapshot of the
potential analyses that are possible using the NGS dataset,
excluding many further considerations, such as animal-
specific miRNA arm expression preferences, isoforms and
others. To make our findings and data easily accessible to
others and to promote secondary analyses, we implemented
the online resource ASRA (Animal sncRNA Atlas), avail-
able at https://www.ccb.uni-saarland.de/asra/. ASRA con-
sists of five major modules. First, we provide an overview
of all studied samples and display their read profile simi-
larity in comparison to their phylogenetic annotations, rep-
resented as a 2D embedding plot and a phylogenetic tree.
Second, users can search specific miRNAs or Rfam fami-
lies in the databases considered here (miRBase, miRCarta,
MirGeneDB and Rfam) and display their expression in all
species (for an example, see Supplementary Figure S20).
Thereby, the total read counts or expression normalized as
the reads per million (RPM) can be shown, as well as the ex-
pression of known similar miRNAs (known miRNAs with
90% similarity to the selected one). In addition, a species
specificity index is shown for each entry, which indicates
whether the displayed RNA is preferentially expressed in
few species (values closer to 1) or ubiquitously in all species
(values closer to 0). Third, each organism and considered
database can be browsed separately; for example, for each
organism we provide an overview of the number of reads
and their mapped fraction, as well as their class distribu-
tion. In addition, detailed mapping information, such as
total reads and average RPM, are displayed for the three
analysed miRNA databases, the predicted miRNA candi-
dates, the Rfam RNA families as well as their Gene Ontol-
ogy terms. In particular, for Rfam RNA families, we pro-
vide coverage plots with the average RPM at each position
of the 500 most expressed family members. All tables can
be filtered according to their miRNA/RFAM IDs, their ex-
pression or the number of samples in which the sequence
was found. Because Rfam families are composed of many
sequences, we provide a detailed view for each family and
species, which comprises the fourth usability feature. Users
can then see if the detected parts of the family are common
to many family members or if they are specific to few mem-
bers. Furthermore, we enable the family coverage profiles to
be directly compared amongst different species, which can
highlight differences such as miRNA arm expression pref-

erences (arm switches). Finally, users can search nucleotide
sequences, either exactly or as part of a read, in all samples
of the database and inspect their distribution amongst all
species.

DISCUSSION

High-throughput sequencing in combination with mi-
crosampling devices allows the generation of data from
species for which normal sample collection would be chal-
lenging. In our study, we collected blood from a variety of
different species at German zoos and compared their small
noncoding RNA profiles.

In the first steps of data analysis, quality filtering removed
a considerable number of reads. This is probably due to two
factors: as we used a minimally invasive method for sam-
pling peripheral blood, the amount of RNA was indeed
limited. We consequently chose a library preparation pro-
tocol suitable for low input amounts based on ligation-free
template-switching cDNA generation. To this end, we used
total small RNA fractions from precipitation-free isolation
from dried blood without further size exclusion. As such, a
high number of very small reads (shorter than 17 nt) were
obtained and thus discarded. Next, we used 3′ polyadeny-
lation of small RNAs before reverse transcription, which
then requires the trimming of poly(A) stretches. Here, any
small RNA with a poly(A) region is trimmed, as we cannot
differentiate this from in vitro poly(A). For the unmapped
fraction of reads and also for species for which, to date,
no genome is available, it is unlikely that we sequenced
many RNA degradation products, as we omitted any de-
phosphorylation and therefore enriched the library for 3′-
OH RNAs.

Analysing the similarity of the read profiles by computing
the Mash distances revealed that most of the samples of the
same superorders and orders clustered together. Even at the
species level, we still found two groups (birds and primates)
that clustered in a way that was comparable to the phylo-
genetic taxonomy in NCBI. To the best of our knowledge,
this is the first study showing that k-mer profiles derived
from small RNA reads across many species still maintain
the known evolutionary relationships.

Upon considering the distribution of RNA classes across
species, we could not observe a clear pattern. As expected,
rRNA constituted the dominant fraction in most species,
with some exceptions. The number of reads that could be
mapped to the Rfam classes varied enormously amongst the
species. Human had the best coverage, but is also amongst
the best annotated and most researched organisms. Relat-
ing these distributions to the differing amount of anno-
tations known for many species, it seems reasonable that
RNA classes are distributed heterogeneously. However, this
is certainly also related to the fact that some organisms are
more in the research focus than others. As the other ani-
mals in our study are not model organisms, it is possible that
their unmapped reads belong to RNA families that have not
yet been annotated in Rfam or otherwise present sequenc-
ing artefacts. Astonishingly, we found that the tRNA frac-
tion was incredibly high in both lynx samples. As we found
similar extreme distributions for both samples, this reduces
the likelihood of sequencing or library preparation errors.
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Therefore, we hypothesize that this could be related to the
physiological or even pathophysiological condition of the
Lynx that has not been diagnosed so far, especially since
tRNA overexpression has often been associated with vari-
ous cancer types in human (41–43). Interestingly, we found
that miRNAs and YRNA levels were positively correlated,
suggesting that even though their biogenesis pathways are
different (44) they might share, potentially complementary,
functions. We also found that the levels of snoRNAs and
snRNAs correlated positively, which is not surprising, as
they both belong to the upper class of small nuclear RNAs
that guide RNA processing proteins.

The evaluation of the expression of sncRNAs in the con-
text of their phylogeny highlighted that large differences
that can be observed between some superorders, and in par-
ticular between Neognathae and Chelonia in comparison
to the others of this study. We even found examples of po-
tential precursors that showed preferential arm expressions
depending on their superorders. Nevertheless, these findings
are of course limited by the size of groups, and more samples
would be needed for higher confidence. In particular, arm
expression comparisons can be difficult, due to the fact that
precursors containing the same or similar miRNAs do not
necessarily exist in all species. Further evidence, in particu-
lar via genome assemblies, would help to reduce this limita-
tion.

The recovery of deposited miRNA sequences from three
miRNA databases highlighted that miRBase contains the
highest number of unique sequences, but also include nu-
merous redundant variations of sequences belonging to the
same family. We showed that known miRNAs are available
in more species than previously assumed and other ones
might be expressed predominantly as different isoforms.

For the prediction of novel miRNAs from NGS data,
we chose mirnovo (33) because this tool does not require a
reference genome. To obtain an estimate of how well this
prediction works, we counted how many known miRNA
sequences can be recovered with the prediction. Although
we used a very lenient mapping strategy, a median of only
about 40.5 miRNAs were found per organism. In contrast,
the tool predicted more than 10 times as many novel can-
didates per organism. By applying a filtering approach and
thus reducing the predictions by 4-fold, we expect to have
increased the ratio of true positives considerably. Because
we cannot verify these results experimentally, it remains un-
clear how many true positive findings the predictions actu-
ally contain.

While our study describes expression patterns of sncR-
NAs in blood cells for a large collection of animals and
provides fascinating new insights into the distribution and
conservation of sncRNAs, certain limitations of the present
study need to be considered and discussed. First, the sam-
ples were collected during veterinary examinations, includ-
ing routine examinations but also blood collection of ani-
mals with pathologies. These factors might be reflected in
the patterns of sncRNAs, but according to our experience
from human samples, such effects are rather moderate com-
pared with the variations that we observe here. A more im-
portant factor may be variations between representatives of
the same species; we thus aim to obtain more specimens, in
terms of collecting more samples from the same species but

also adding more species. Another limitation stems from the
focus of our study. We focus exclusively on circulating sncR-
NAs in blood cells and thus miss sncRNAs which might
be specific to other cell types. In order to reach a compre-
hensive description of the sncRNAs present in the analysed
species, more tissues and specimens will be needed.

CONCLUSION

The detection, annotation and validation of sncRNAs, es-
pecially miRNAs, is still a growing field. To understand
their function and their potential as biomarkers for dis-
eases, we must first understand how to distinguish actu-
ally expressed and valid miRNAs from false positive find-
ings. Conservation is a widely applied feature for identify-
ing miRNAs in related species. Such analyses are often only
performed via homology- and sequence-based in silico ap-
proaches. With our study, we provide a large collection of
small RNA NGS expression data for species that have not
been analysed before in great detail. We created a compre-
hensive publicly available online resource for researchers in
the field to facilitate the assessment of evolutionarily con-
served small RNA sequences.
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and selecting likely novel miRNAs from NGS data. Nucleic Acids
Res., 44, e53.

35. Alles,J., Fehlmann,T., Fischer,U., Backes,C., Galata,V., Minet,M.,
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Abstract 

Background: MicroRNAs (miRNAs) are small RNAs regulating gene expression post‑transcriptionally. While acquired 
changes of miRNA and mRNA profiles in cancer have been extensively studied, little is known about expression 
changes of circulating miRNAs and messenger RNAs (mRNA) in monogenic constitutional anomalies affecting several 
organ systems, like Marfan syndrome (MFS). We performed integrated miRNA and mRNA expression profiling in blood 
samples of Marfan patients in order to investigate deregulated miRNA and mRNA networks in these patients which 
could serve as potential diagnostic and prognostic tools for MFS therapy.

Methods: MiRNA and mRNA expression profiles were determined in blood samples from MFS patients (n = 7) and 
from healthy volunteer controls (n = 7) by microarray analysis. Enrichment analyses of altered mRNA expression were 
identified using bioinformatic tools.

Results: A total of 28 miRNAs and 32 mRNAs were found to be significantly altered in MFS patients compared to 
controls (> 2.0‑fold change, adjusted P < 0.05). The expression of 11 miRNA and 6 mRNA candidates was validated by 
RT‑qPCR in an independent cohort of 26 MFS patients and 26 matched HV controls. Significant inverse correlations 
were evident between 8 miRNAs and 5 mRNAs involved in vascular pathology, inflammation and telomerase regula‑
tion. Significant positive correlations were present for 7 miRNAs with age, for 2 miRNAs with the MFS aortic root status 
(Z‑score) and for 7 miRNAs with left ventricular end‑diastolic diameter in MFS patients. In addition, miR‑331‑3p was 
significantly up‑regulated in MFS patients without mitral valve prolapse (MVP) as compared with patients with MVP.

Conclusions: Our data show deregulated gene and miRNA expression profiles in the peripheral blood of MFS 
patients, demonstrating several candidates for prognostic biomarkers for cardiovascular manifestations in MFS as well 
as targets for novel therapeutic approaches. A deregulation of miRNA expression seems to play an important role in 
MFS, highlighting the plethora of effects on post‑transcriptional regulation of miRNAs and mRNAs initiated by consti‑
tutional mutations in single genes.
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Background
Marfan syndrome (MFS, OMIM #154700) is a con-
nective tissue disorder with an estimated incidence of 
1:5000 individuals, across all ethnic backgrounds [1, 2]. 
Although an autosomal dominant inheritance of MFS 
typically appears in affected multi-generation families, 
approximately 25% of cases have the disorder as the 
result of a de novo mutation [3]. The phenotypic vari-
ability of this disorder ranges from minor stigmata to 
life-threatening manifestations, typically involving the 
cardiovascular (thoracic aortic aneurysms (TAA) and 
dissections), ocular (ectopia lentis), and musculoskel-
etal system (tall stature with arachnodactyly) [4–6]. 
Cardiovascular manifestations are responsible for the 
high morbidity in individuals with MFS and can include 
dilation of the ascending aorta, pulmonary artery dila-
tion, and mitral valve prolapse [6]. Mutations in Fibril-
lin-1 (FBN1) were identified as the cause of MFS [5]. As 
FBN1 is a constituent of the connective tissue in a wide 
range of organs, decreased mechanical stability caused by 
mutations in FBN1 has pleiotropic effects. Pleiotropy was 
introduced by Plate in 1910 to describe multiple pheno-
typic effects of a single genetic trait [7]. Although there 
are 3077 known mutations in the FBN1 gene (UMD-
FBN1 listed in the database: http://www.umd.be/FBN1/, 
updated on August 28, 2014) and more than 1500 differ-
ent disease-causing FBN1 mutations, there is no single 
FBN1 genotype feature that qualifies as a reliable pre-
dictor of the clinical severity and long-term course of 
MFS. Even within a given family with an identical FBN1 
mutation, there is considerable variation as to the sever-
ity of manifestation, pointing towards complex interac-
tions of FBN1 with other genes and their products [4, 
6, 8]. Currently, methods for predicting the prognosis of 
Marfan-related cardiovascular manifestations are lim-
ited. However, in several pathologies, microRNAs (miR-
NAs) have emerged in recent years as a promising new 
type of biomarker for the prognosis of disease, including 
initial data on MFS and aortic disease [9, 10]. MiRNAs 
are a class of non-coding RNAs of 18–22 nucleotides in 
length that regulate gene expression post-transcription-
ally via sequence-specific interaction with the 3′ untrans-
lated region (UTR) of a target gene’s mRNA, resulting in 
inhibition of translation and/or mRNA degradation [7]. 
Altered expression of miRNA has been associated with 
many human diseases, including MFS [9, 11]. Recently, 
it was reported that miR-29b is associated with vascu-
lar remodeling and subsequent aneurysm development 
characteristic of MFS and that this miRNA plays an 
important role in regulating aortic wall apoptosis and 
extracellular matrix abnormalities in MFS [11]. In addi-
tion to miRNA expression analysis, genome-wide mRNA 
expression analyses of skin fibroblast cultures from 

individuals with known FBN1 mutations and controls has 
been performed [12]. In tissue of MFS patients, however, 
investigations of miRNAs as well as mRNAs are still lack-
ing. Thus, it is conceivable that in addition to an entire 
miRNome expression profiling, the search for miRNAs 
whose expression inversely correlates with the expression 
of mRNA targets may demonstrate another layer of the 
molecular diversity of this pleiotropic syndrome and may 
potentially be a useful diagnostic and prognostic tool for 
MFS therapy and treatment. A crucial clinical challenge 
are still insufficient indication criteria for preventive aor-
tic replacement that call for biological parameters beyond 
the current restriction to ultrasonographic and magnetic 
resonance imaging (MRI) measurements. Therefore, we 
investigated differences in miRNA and mRNA expression 
patterns between MFS patients and healthy volunteer 
[13] controls. We furthermore performed an integrated 
analysis across all samples to identify mRNA targets 
of deregulated miRNAs. To our knowledge, this is the 
first large-scale investigation of the association between 
miRNA-related mRNAs in patients with MFS.

Methods
Patient samples
The study was conducted in accordance with the Decla-
ration of Helsinki and approved by the locally appointed 
Ethics committee [Institutional Review Board (Num-
ber: EA2/131/10)]. Informed consent was obtained from 
all patients and HV controls. A cohort of 34 patients 
in whom the clinical diagnosis of classical MFS was 
made according to the current Ghent nosology [6] was 
assessed for the ocular, musculoskeletal, and cardiovas-
cular features by an ophthalmologist, a pediatrician, a 
cardiologist, and a clinical geneticist. Two-dimensional 
echocardiography was used to measure the diameter 
of the ascending aorta which was used to determine 
the patients’ Z-score. Moreover the left ventricular 
end-diastolic diameter (LVEDD) and the presence of a 
mitral valve prolapse (MVP) were assessed by echocar-
diography. The patient cohort included 15 males and 19 
females with a mean age of 27.62 years (standard devia-
tion ± 15.66 years) and confirmed FBN1 mutation which 
were compared with age- and sex matched HV controls 
(n = 34). All Marfan patients were on Angiotensin recep-
tor blockers. Beta blockers or ACE inhibitors had been 
added to the medication depending on the level of arte-
rial hypertension or the presence of other cardiovascular 
morbidities. In all HV controls, a physical examination 
including measurement of blood pressure and transcu-
taneous oxygen saturation as well as two-dimensional 
echocardiography was performed to rule out any con-
founding cardiac and extracardiac abnormalities. At 
the time of enrolment, none of the controls took any 
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medication or had elevated blood pressure. Additionally, 
none of them had any heart abnormality on the echocar-
diogram. In all patients and HV controls 2.5  mL of 
venous blood from the cubital vein was collected in PAX-
gene blood tubes (BD Biosciences, San Jose, California, 
United States). All PAXgene blood tubes were stored at 
room temperature for 2 h to ensure complete lysis of the 
blood cells before they were stored at − 20 °C until RNA 
isolation. MiRNA raw data were acquired from samples 
which had previously been used for a related study pub-
lished by our group [9].

RNA isolation
Total RNA including miRNAs of all MFS patients and 
HV controls was isolated with the PAXgene miRNA 
blood kit using the QIAcube™ automated isolation 
instrument according to the manufacturer’s instructions 
(Qiagen, Hilden, Germany). The RNA concentration and 
purity were confirmed by the spectrophotometric ratio 
using absorbance measurements at wavelengths of 260 
and 280  nm on a NanoDrop-2000 (Thermo Scientific, 
Waltham, Massachusetts, United States). The integrity 
of the isolated RNA was analyzed on a RNA Nano 6000 
chip using an Agilent Bioanalyzer (Agilent Technologies, 
Santa Clara, California, United States). Genomic DNA 
contamination was removed, and conventional poly-
merase chain reaction (PCR) was carried out to exclude 
any residual DNA in the samples as previously described 
[14]. Moreover, the RNA-based RT-qPCRs were carried 
out using predesigned exon spanning primers (Qiagen).

Gene expression microarray assay analysis
MRNA expression profiles of MFS (n = 8) and HV con-
trols (n = 8) samples were performed with SurePrint G3 
Human Gene Expression v2 8x60K microarrays con-
taining 50,599 biological features (Agilent Technologies, 
Santa Clara, CA, United States). All procedures were car-
ried out according to the manufacturer’s protocol. Briefly, 
100 ng total RNA from each sample was reversely tran-
scribed, amplified and labeled using the LowInput Quick-
Amp Labeling Kit (Agilent). Quantification and specific 
activity of labeled complementary RNA (cRNA) was 
evaluated using the NanoDrop-2000 spectrophotometer 
(Thermo Scientific) to ensure that labeled cRNA was of 
sufficient quality for hybridization. A total of 600  ng of 
cRNA was then applied to the microarray slide per the 
manufacturer’s instructions and hybridized in a rotating 
oven for 17 h at 65 °C and 10 rpm. Arrays were washed 
and then scanned using a DNA Microarray Scanner (Agi-
lent). Feature extraction software was utilized to extract 
gene expression data (Agilent).

MiRNA microarray assay analysis
We used the Sureprint G3 Human miRNA 8x60K 
microarrays raw data of 8 MFS and 8 HV controls [9]. 
MiRNA expression profiles were performed with Sure-
print G3 Human miRNA 8x60K microarrays containing 
40 replicates of 1205 miRNAs of miRBase v16 (Agi-
lent). All procedures were carried out according to the 
manufacturer’s protocol. Briefly, 100 ng total RNA from 
each sample was processed using the miRNA Com-
plete Labeling and Hyb Kit (Agilent) to generate fluo-
rescently labeled miRNA. The labeled RNA was then 
applied to the microarray slide per the manufacturer’s 
instructions and hybridized in a rotating oven for 20 h 
at 55  °C and 20  rpm. Arrays were washed and then 
scanned using a DNA Microarray Scanner (Agilent). 
Feature extraction software was utilized to extract gene 
expression data (Agilent).

Reverse transcription and quantitative real‑time PCR
Expression of selected mRNAs and miRNAs in MFS and 
HV controls was determined by real-time quantitative 
PCR (RT-qPCR) using the StepOnePlus™ Real-Time PCR 
System (Applied Biosystems, Foster City, CA, United 
States) and the miScript PCR System that contain miS-
cript RT II Kit with 5× miScript HiFlex Buffer and SYBR 
Green PCR along with the QuantiTect and miScript 
Primer Assays (Qiagen). All procedures were carried 
out according to the manufacturer’s recommendations. 
Using a cohort of independent MFS patients (n = 26) and 
HV controls (n = 26), 13 differentially expressed mRNAs 
(CLU, CRYAA, CTNNA1, DYSF, GBP2, ITGB3, LIMK2, 
MFN2, MMP9, MX1, SIRPB1, POT1 and SOCS3) and 
18 differentially expressed miRNAs (miR-1228, miR-
1234-3p, miR-1275, miR-139-3p, miR-151-5p, miR-200c, 
miR-24, miR-30e, miR-324-5p, miR-940, miR-3616-3p, 
miR-362-5p, miR-500b, miR-502-3p, miR-564, miR-627, 
miR-874 and miR-331-3p) were selected to validate the 
array results. In brief, 400  ng of total RNA were con-
verted into complementary DNA (cDNA). The result-
ing cDNA was then diluted to have 1.5 and 0.5  ng/
µL for mRNA and miRNA, respectively. All RT-qPCR 
experiments were performed using the Liquid Handling 
Robot QIAgility™ (Qiagen) before performing RT-qPCR. 
β-Actin and RNU6B small nuclear RNA (snRNA) primer 
assays (Qiagen) were chosen as endogenous references 
for mRNA and miRNA normalization. Moreover, a no 
template control (NTC) and no reverse transcriptase 
control (RT negative) were included in each mRNA and 
miRNA in each run, and a miRNA reverse transcription 
control (miRTC) was performed to assess the perfor-
mance of the reverse transcription reaction by detecting 
template synthesized from the kit’s built-in control RNA 
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(Qiagen). Melting curve analysis was used to control for 
the specificity of RT-qPCR products.

Overrepresentation analysis
To evaluate the significance of the identified differentially 
expressed genes, the Protein ANalysis THrough Evolu-
tionary Relationships (PANTHER) Classification System 
was used to categorize the differentially expressed genes 
according to PANTHER protein class, Gene Ontology 
(GO) Molecular Function, GO Biological Process and 
GO cellular components annotations [15]. For each bio-
logical pathway and/or process, the difference between 
the observed fraction of genes in that pathway and/or 
process and the number expected by chance was tested 
using Fisher’s exact test. P values were adjusted using a 
Bonferroni correction.

Statistical analysis
The statistical analysis was performed using R (version 
3.4.0) to analyze the differences in mRNA and miRNA 
expression patterns in the MFS patients and HV controls. 
Raw data generated by the Agilent Feature Extraction 
image analysis software was normalized by variance sta-
bilizing normalization (vsn) [16] and quantile normali-
zation methods for mRNAs and miRNAs, respectively 
and uploaded to the NCBI GEO database (Accession 
ID: GSE110966). The significance level of mRNAs and 
miRNAs was determined by applying an unpaired two-
tailed t test. Then the median values of each miRNA and 
mRNA were log2 transformed and the resulting miRNA 
P values were adjusted for multiple testing using Benja-
mini–Hochberg adjustment. In addition, the area under 
the receiver operating characteristic curve values for each 
miRNA were computed. For the significantly deregulated 
miRNAs and protein coding genes with P < 0.05 and fold 
change > 2 or < 1/2 in MFS patients compared to HV 
controls, we computed a Pearson correlation coefficient 
of expression for each mRNA–miRNA pair. Spearman’s 
correlations coefficient was used to correlate the clini-
cal parameters of MFS and the expression level of both 
validated miRNAs and mRNAs. Using the DataAssist™ 
Software v3.0 (Applied Biosystems), the fold-change and 
P value (unpaired t test with Welch’s correction) of each 
mRNA and miRNA was calculated.

Results
Patient characteristics
Among 19 females and 15 males included in the study, 
there were 22 patients with MVP, 6 patients with ectopia 
lentis and 14 patients who underwent aortic root replace-
ment because of aortic dissection or an aortic aneurysm 
(aortic root > 53  mm). Additional file  3: Table  S1 shows 
the clinical features of the MFS patients. The presented 

data refer to the largest diameters of the aortic root 
before surgery.

Correlation analysis of miRNA and mRNA between MFS 
patients and HV controls
As an initial analysis, we calculated the degree of corre-
lation based on Pearson’s correlation coefficient across 
samples from each group, i.e., MFS patients and HV con-
trols. The correlation plots are presented in Additional 
file 1: Figure S1 for miRNA and Additional file 2: Figure 
S2 for mRNA. In general, the correlation heatmaps illus-
trated that the correlation was strong (Pearson correla-
tion coefficient r of mostly > 0.80 and > 0.92 for miRNA 
and mRNA, respectively) in both MFS patients and HV 
controls, except for two samples which we identified as 
outliers in the mRNA data by applying Hampel’s rule for 
outlier detection [17]. These two samples and the corre-
sponding miRNA samples of the same MFS patients and 
HV controls were excluded from further analyses.

Differentially expressed miRNAs between MFS patients 
and HV controls
Using the high-throughput SurePrint G3 Human v16 
miRNA microarray platform, we screened the expression 
level of 1205 human mature miRNAs of miRBase v16. 
Following background correction and normalization, 
the miRNA expression levels from MFS patients and HV 
controls were identified. After excluding outliers, 7 MFS 
patients and 7 HV controls were considered for further 
analysis. Using quantile normalization, a total of 277 
miRNAs were detected in at least 25% of the samples in at 
least one group (filtering). By applying an un-paired two-
tailed t test for miRNAs that showed a significant change 
in the considered groups, 63 miRNAs showed statistical 
significance in MFS patients versus HV controls (Table 1) 
(P < 0.05. FDR adjusted). By considering only the differen-
tially expressed miRNAs with twofold or greater change 
in MFS patients versus HV controls, a total of 28 miR-
NAs were identified including 15 down-regulated and 13 
up-regulated miRNAs (P value < 0.05, fold change ≥ 2.0) 
(Table 1). To compare the relative expression level of the 
differentially expressed miRNAs, we used the hierarchi-
cal clustering of miRNAs and hierarchical clustering of 
samples based on average linkage and Euclidian distance 
of the significantly deregulated 63 miRNAs out of 1205 
miRNAs in MFS patients versus HV controls (Fig.  1). 
In general, hierarchical clustering revealed that MFS 
patients and HV controls were grouped into two distinct 
clusters, except for only one MFS (fell into the wrong 
cluster). Moreover, the heatmap showed that some miR-
NAs were expressed only in the MFS patients group and/
or expressed at a low level in HV controls and vice versa 
(Fig. 1).
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Table 1 Significantly expressed miRNAs in  the  blood of  patients with  MFS (n = 7) compared HVs controls (n = 7) 
as determined by microarray (unpaired two-tailed t test. P < 0.05, FDR adjusted)

miRNA Median log2 MFS Median log2 HVS Fold change Log2 fold change Regulation P value Adjusted P value AUC 

hsa‑miR‑4271 − 3.32 4.40 0.0047 − 7.72 Down 0.0037 0.0689 0.95

hsa‑miR‑3616‑3p − 3.32 4.15 0.0056 − 7.47 Down 0.0003 0.0149 0.96

hsa‑miR‑1228 − 3.32 3.80 0.0072 − 7.12 Down 0.0004 0.0149 0.98

hsa‑miR‑1238 − 3.32 3.17 0.0111 − 6.49 Down 0.0169 0.1552 0.84

hsa‑miR‑191 − 3.32 3.03 0.0123 − 6.35 Down 0.0450 0.2177 0.80

hsa‑miR‑1234 0.94 4.02 0.12 − 3.09 Down 0.0004 0.0149 0.98

hsa‑miR‑4313 0.69 3.39 0.15 − 2.70 Down 0.0468 0.2177 0.78

hsa‑miR‑139‑3p 0.65 3.15 0.18 − 2.50 Down 0.0001 0.0149 1.00

hsa‑miR‑874 2.83 4.76 0.26 − 1.92 Down 0.0042 0.0731 0.92

hsa‑miR‑564 4.70 5.90 0.43 − 1.20 Down 0.0003 0.0149 1.00

hsa‑miR‑940 3.06 4.21 0.45 − 1.15 Down 0.0004 0.0149 1.00

hsa‑miR‑1207‑5p 5.80 6.93 0.46 − 1.13 Down 0.0319 0.1878 0.83

hsa‑miR‑1280 1.64 2.73 0.47 − 1.10 Down 0.0048 0.0790 0.98

hsa‑miR‑181d 3.93 4.99 0.48 − 1.06 Down 0.0277 0.1845 0.80

hsa‑miR‑1275 3.77 4.80 0.49 − 1.03 Down 0.0014 0.0323 0.94

hsa‑miR‑3653 7.04 8.01 0.51 − 0.97 Down 0.0484 0.2177 0.85

hsa‑miR‑1268 5.18 6.07 0.54 − 0.88 Down 0.0239 0.1739 0.89

hsa‑miR‑320b 10.66 11.48 0.57 − 0.82 Down 0.0085 0.1242 0.92

hsa‑miR‑532‑3p 8.69 9.46 0.59 − 0.77 Down 0.0130 0.1444 0.84

hsa‑miR‑642b 3.17 3.93 0.59 − 0.76 Down 0.0179 0.1552 0.87

hsa‑miR‑4323 2.73 3.44 0.61 − 0.70 Down 0.0218 0.1675 0.87

hsa‑miR‑93 5.67 6.31 0.64 − 0.64 Down 0.0297 0.1871 0.80

hsa‑miR‑3162 6.83 7.46 0.65 − 0.63 Down 0.0068 0.1050 0.89

hsa‑miR‑3679‑5p 4.53 5.13 0.66 − 0.59 Down 0.0278 0.1845 0.87

hsa‑miR‑423‑5p 9.11 9.62 0.70 − 0.51 Down 0.0124 0.1433 0.86

hsa‑miR‑1225‑5p 6.16 6.67 0.70 − 0.51 Down 0.0287 0.1852 0.84

hsa‑miR‑3651 4.99 5.44 0.73 − 0.45 Down 0.0478 0.2177 0.81

hsa‑miR‑638 5.98 6.41 0.74 − 0.43 Down 0.0193 0.1575 0.86

hsa‑miR‑766 4.84 5.25 0.76 − 0.40 Down 0.0238 0.1739 0.91

hsa‑miR‑191 5.10 5.49 0.76 − 0.39 Down 0.0350 0.1978 0.83

hsa‑miR‑762 4.55 4.73 0.88 − 0.18 Down 0.0403 0.2106 0.78

hsa‑miR‑221 2.77 − 3.32 68.19 6.09 Up 0.0499 0.2177 0.18

hsa‑miR‑1288 2.53 − 3.32 57.95 5.86 Up 0.0344 0.1978 0.21

hsa‑miR‑3125 2.35 − 3.32 50.81 5.67 Up 0.0481 0.2177 0.21

hsa‑miR‑500b 2.27 − 3.32 48.35 5.60 Up 0.0142 0.1462 0.14

hsa‑miR‑200c 2.13 − 3.32 43.66 5.45 Up 0.0142 0.1462 0.14

hsa‑miR‑3200‑3p 2.07 − 3.32 41.98 5.39 Up 0.0280 0.1845 0.17

hsa‑miR‑3667‑5p 1.81 − 3.32 35.05 5.13 Up 0.0380 0.2067 0.14

hsa‑miR‑627 1.74 − 3.32 33.47 5.06 Up 0.0311 0.1878 0.14

hsa‑miR‑664 1.33 − 3.32 25.09 4.65 Up 0.0395 0.2106 0.20

hsa‑miR‑223 13.58 11.98 3.04 1.60 Up 0.0496 0.2177 0.15

hsa‑miR‑660 4.28 2.92 2.57 1.36 Up 0.0192 0.1575 0.08

hsa‑miR‑29c 4.59 3.33 2.41 1.27 Up 0.0177 0.1552 0.00

hsa‑miR‑7 4.62 3.56 2.09 1.06 Up 0.0357 0.1978 0.12

hsa‑miR‑29a 6.93 5.98 1.93 0.95 Up 0.0117 0.1407 0.04

hsa‑miR‑500a 5.70 4.80 1.87 0.90 Up 0.0008 0.0202 0.04

hsa‑miR‑23a 9.46 8.57 1.85 0.89 Up 0.0103 0.1364 0.06

hsa‑miR‑151‑5p 9.11 8.33 1.73 0.79 Up 0.0175 0.1552 0.09

hsa‑miR‑324‑5p 6.20 5.41 1.72 0.79 Up 0.0005 0.0149 0.05
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Differentially expressed genes between MFS patients 
and HV controls
Using the high-throughput SurePrint G3 Human Gene 
Expression v2 microarray platform, we screened the 
expression level of human 50,599 biological features of 
ENSEMBL release 52. Following background correc-
tion and normalization, the gene expression levels from 
MFS patients and HV controls were identified. Using 
variance stabilizing normalization (vsn) to the generated 
gene expression data, 58,717 transcripts were detected 
(no filtering). By applying an un-paired two-tailed t test 
for the transcripts that showed a significant change in 
the considered groups, we found 1662 transcripts with 
significant differences of MFS patients versus HV con-
trols (P < 0.05) (Additional file  3: Table  S2). By consid-
ering only the differentially expressed transcripts with 
1.5-fold or greater change in MFS patients versus HV 
controls, a total of 505 transcripts were identified includ-
ing 15 down-regulated and 490 up-regulated transcripts 
(P value < 0.05, fold change ≥ 1.5). Considering only the 
protein coding genes and removing different transcript 
variants, 296 genes out of 505 transcripts were identi-
fied, including 5 down-regulated and 291 up-regulated 
protein coding genes (Additional file  3: Table  S3). The 
number of significant protein coding genes with twofold 

or greater change in MFS patients versus HV controls 
was decreased including one down-regulated and 31 up-
regulated genes (P value < 0.05) (Table  2). Using hierar-
chical clustering with the Euclidian distance measure, we 
analyzed how the MFS patients and HV controls relate to 
each other. For this task, we used the 65 transcripts with 
the highest expression variances out of the 50,599 bio-
logical features. Figure 2 shows the resulting heatmap of 
the hierarchical clustering. In general, we observed two 
distinct clusters without overlap, with the first cluster 
containing only HV controls and the second cluster con-
taining only MFS patients.

Validation of candidate miRNAs and mRNAs by RT‑qPCR
In order to validate the results obtained from the micro-
array analysis, RT-qPCR was performed using a larger 
separate cohort of MFS patients and HV controls (MFS 
patients, n = 26 and HV controls, n = 26). Eighteen miR-
NAs were selected based on their differential expression 
level in MFS patients versus HV controls, and some of 
them were selected based on their known associations 
with cardiovascular diseases and MFS (listed in Table 1). 
In addition, 13 mRNAs were selected based on their 
known associations with cardiovascular diseases like 
mitral valve stenosis, myocardial infarction, ischemia and 

Table 1 (continued)

miRNA Median log2 MFS Median log2 HVS Fold change Log2 fold change Regulation P value Adjusted P value AUC 

hsa‑miR‑4306 12.57 11.84 1.66 0.73 Up 0.0161 0.1552 0.08

hsa‑miR‑186 6.78 6.10 1.60 0.68 Up 0.0261 0.1845 0.12

hsa‑miR‑502‑3p 5.53 4.87 1.58 0.66 Up 0.0005 0.0149 0.00

hsa‑miR‑23b 6.34 5.70 1.56 0.64 Up 0.0468 0.2177 0.18

hsa‑miR‑629 4.76 4.12 1.56 0.64 Up 0.0466 0.2177 0.20

hsa‑miR‑362‑5p 6.34 5.74 1.52 0.60 Up 0.0005 0.0149 0.02

hsa‑miR‑652 9.07 8.47 1.51 0.60 Up 0.0116 0.1407 0.16

hsa‑miR‑24 7.95 7.38 1.48 0.57 Up 0.0018 0.0392 0.01

hsa‑miR‑501‑3p 4.31 3.74 1.48 0.56 Up 0.0099 0.1364 0.04

hsa‑miR‑30e 5.97 5.49 1.39 0.48 Up 0.0027 0.0542 0.08

hsa‑miR‑331‑3p 10.09 9.62 1.38 0.46 Up 0.0205 0.1621 0.16

hsa‑miR‑451 16.51 16.05 1.38 0.46 Up 0.0004 0.0149 0.06

hsa‑miR‑532‑5p 5.94 5.53 1.33 0.41 Up 0.0318 0.1878 0.13

hsa‑miR‑103 10.66 10.25 1.33 0.41 Up 0.0478 0.2177 0.18

Each value represents the median of 7 MFS patients and 7 HV controls and ± standard deviation (STDV). Statistical analysis was performed with unpaired‑two‑tailed t 
test (P < 0.05). MFS Marfan syndrome, HVs healthy volunteers; AUC area under the receiver operating characteristic curve

(See figure on next page.)
Fig. 1 Unsupervised hierarchical clustering (Euclidian distance, complete linkage) of the 14 samples based on expression of the 63 with significant 
highest variance out of the 1205 miRNAs. The heatmap shows miRNAs with high expression in red, miRNAs with low expression in green. The red 
lines indicate three main clusters of samples
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Table 2 Significantly expressed protein coding genes in  the  blood of  patients with  MFS (n = 7) compared HVs controls 
(n = 7) as determined by microarray (unpaired two-tailed t test. > 2.0-fold difference. P < 0.05)

Each value represents the median of 7 MFS patients and 7 HV controls and ± standard deviation (STDV). Statistical analysis was performed with unpaired‑two‑tailed t 
test (P < 0.05). MFS Marfan syndrome, HVs healthy volunteers; AUC area under the receiver operating characteristic curve

Gene Name NCBI accession code Median 
log2 
MFS

Median 
log2 
HVS

Fold change log2 Fold 
change

Regulation P value AUC 

POT1 (protection of telomeres 1) NM_015450 7.96 9.05 0.47 −1.09 Down 0.0002 1.00

SIRPB1 (signal regulatory protein 
beta 1)

NM_001135844 11.30 8.96 5.08 2.34 Up 0.0474 0.16

HBZ (hemoglobin subunit zeta) NM_005332 8.71 6.47 4.73 2.24 Up 0.0132 0.16

MYOM2 (myomesin 2) NM_003970 8.38 6.50 3.67 1.87 Up 0.0372 0.14

ITGB3 (integrin subunit beta 3) NM_000212 9.23 7.38 3.62 1.86 Up 0.0392 0.08

MX1 (MX dynamin like GTPase 1) NM_002462 12.89 11.36 2.89 1.53 Up 0.0383 0.16

DYSF (dysferlin) NM_003494 10.49 9.04 2.74 1.45 Up 0.0149 0.08

CCR1 (C‑C motif chemokine receptor 
1)

NM_001295 12.91 11.50 2.66 1.41 Up 0.0217 0.12

IFIT2 (interferon induced protein with 
tetratricopeptide repeats 2)

NM_001547 11.56 11.33 1.17 0.23 Up 0.0317 0.14

LRG1 (leucine rich alpha‑2‑glycopro‑
tein 1)

NM_052972 11.14 9.85 2.45 1.29 Up 0.0181 0.16

TRANK1 (tetratricopeptide repeat and 
ankyrin repeat containing 1)

NM_014831 10.86 9.62 2.37 1.25 Up 0.0013 0.02

ZAN (zonadhesin (gene/pseudo‑
gene))

NM_173059 9.30 8.08 2.34 1.23 Up 0.0423 0.18

CRYAA (crystallin alpha A) NM_000394 9.30 8.08 2.34 1.23 Up 0.0329 0.18

NRGN (neurogranin) NM_006176 12.69 11.52 2.25 1.17 Up 0.0356 0.12

RNF213 (ring finger protein 213) NM_020914 8.24 7.70 1.46 0.55 Up 0.0377 0.18

LIMK2 (LIM domain kinase 2) NM_001031801 9.31 8.16 2.22 1.15 Up 0.0181 0.14

MFN2 (mitofusin 2) NM_014874 5.49 5.18 1.24 0.31 Up 0.0288 0.20

CTTN (cortactin) NM_005231 9.51 8.36 2.21 1.14 Up 0.0268 0.16

MX2 (MX dynamin like GTPase 2) NM_002463 12.60 11.52 2.11 1.07 Up 0.0157 0.12

CD14 (CD14 molecule) NM_001174104 15.04 13.97 2.10 1.07 Up 0.0332 0.16

GRN (granulin precursor) NM_002087 15.83 14.76 2.10 1.07 Up 0.0258 0.16

RNF222 (ring finger protein 222) NM_001146684 5.29 5.01 1.22 0.28 Up 0.0336 0.14

MVP (major vault protein) NM_017458 14.55 13.49 2.08 1.06 Up 0.0046 0.08

CXCL5 (C‑X‑C motif chemokine ligand 
5)

NM_002994 8.88 7.83 2.07 1.05 Up 0.0455 0.18

CTNNA1 (catenin alpha 1) NM_001903 9.08 8.05 2.05 1.04 Up 0.0309 0.16

MMP9 (matrix metallopeptidase 9) NM_004994 13.20 12.14 2.07 1.05 Up 0.0456 0.20

SOCS3 (suppressor of cytokine signal‑
ing 3)

NM_003955 9.47 8.43 2.05 1.03 Up 0.0472 0.20

GBP2 (guanylate binding protein 2) NM_004120 11.49 10.46 2.04 1.03 Up 0.0097 0.08

GNL3L (G protein nucleolar 3 like) NM_019067 8.33 7.93 1.32 0.41 Up 0.0325 0.20

CLU (clusterin) NM_001831 9.71 8.69 2.02 1.02 Up 0.0423 0.22

SELL (selectin L) NM_000655 14.93 13.93 2.00 1.00 Up 0.0011 0.04

OSM (oncostatin M) NM_020530 9.18 8.19 2.00 1.00 Up 0.0414 0.14

Fig. 2 Unsupervised hierarchical clustering (Euclidian distance, complete linkage) of the 14 samples based on expression of the 65 transcripts with 
the highest expression variances out of the 50,599 biological features. The heatmap shows transcripts with high expression in red, transcript with 
low expression in green. The red lines indicate three main clusters of samples

(See figure on next page.)
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acute coronary syndrome, and some had been observed 
to be differentially expressed with twofold or greater 
change in MFS patients versus HV controls in the micro-
array data (listed in Table  2). Considering the direction 
of expression changes, there was a general accordance 
between microarray and RT-qPCR data for the miRNAs 
and mRNAs tested. In detail, RT-qPCR validated the 
results of the microarray analysis for 11 out of 18 miR-
NAs with regards both to the direction of expression 
changes and to the significance of different expressions 
between MFS patients and HV controls, including one 
significantly down-regulated miRNA (miR-1234-3p) and 
10 significantly up-regulated miRNAs (miR-151-5p, miR-
200c, miR-24, miR-30e, miR-324-5p, miR-362-5p, miR-
500b, miR-502-3p, miR-627, and miR-331-3p) (Fig.  3). 
Likewise for the mRNA analysis, 11 out of 13 mRNAs 
showed the same direction of expression changes in 
the RT-qPCR and in the microarray analysis. Of these 
11 miRNAs, 6 mRNAs were validated with regard to 
both the direction of expression changes and to the sig-
nificance of different expressions between MFS patients 
and HV controls including 5 significantly up-regulated 
mRNAs (DYSF, GBP2, LIMK2, MMP9, and MX1) and 
one significantly down-regulated mRNA (POT1) (Fig. 4).

Inverse correlation between miRNA and target mRNA
To further understand the relationship between 
miRNA and mRNA changes, and to specifically identify 

potentially relevant miRNA–mRNA target interac-
tions, we calculated the Pearson correlation coefficient 
for every stably expressed miRNA and every protein 
coding gene that was significantly deregulated with a 
fold change of < 0.5/> 1.5. This computation yielded 11 
significant negative combinations (P < 0.05) with a cor-
relation range between −  0.62 and −  0.89 (Table  3). 
MiR-1234-3p showed the highest number of significant 
correlations followed by an intermediate group consist-
ing of miR-324-5p, miR-151-5p, miR-200c-3p, miR-
200c-3p, miR-362-5p, miR-502-3p and miR-627-5p. A 
number of genes involved in mitral valve stenosis, myo-
cardial infection, ischemia and acute coronary syndrome 
exhibited a statistically significantly correlation between 
miRNA and mRNA expression. In addition, based on 
microarray data and RT-qPCR, miR-1234-3p was down-
regulated and LIMK2, DYSF, GBP2, and MMP9 were 
up-regulated whereas one mRNA (POT1) was down-reg-
ulated and miR-324-5p, miR-151-5p, miR-200c-3p, miR-
200c-3p, miR-362-5p, miR-502-3p and miR-627-5p were 
up-regulated.

Correlation between the clinical parameters 
and expression levels of miRNA and mRNA
We further analyzed the correlations between the vali-
dated 11 miRNAs and 6 mRNAs by RT-qPCR and vari-
ous clinical parameters of MFS. We found that the 
expression levels of 7 miRNAs including miR-151-5p, 
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Fig. 3 Validation of differentially expressed miRNAs in the blood of MFS patients (n = 26) compared to HV controls (n = 26) as determined by 
RT‑qPCR (P < 0.05). Mean ΔCt MFS and HV controls (Lower ΔCt, higher expression level). RNAU6B as an endogenous control for normalization, 
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miR-24, miR-30e, miR-324-5p, miR-362-5p, miR-500b, 
and miR-502-3p significantly correlated with the age of 
patients with MFS (Table  4) (P < 0.05). In contrast, no 
significant correlation was observed between the expres-
sion levels of these 7 miRNAs and the aortic root status 
of patients with MFS. However, there was a significant 
correlation between the expression level of miR-200c (P 

value = 0.015) and a borderline significant correlation 
with miR-151-5p, miR-324-5p and miR-500b and aor-
tic root status (Z-score) of patients with MFS. Statisti-
cally significant correlations were observed between 7 
miRNAs including miR-151-5p, miR-24, miR-30e, miR-
324-5p, miR-500b, miR-502-3p, and miR-627) and the 
LVEDD. There was no significant correlation between 

MFS Patients Healthy Controls
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Fig. 4 Validation of differentially expressed mRNAs in the blood of MFS patients (n = 26) compared to HV controls (n = 26) as determined by 
RT‑qPCR (P < 0.05). Mean ΔCt MFS and HV controls (Lower ΔCt, higher expression level). β‑Actin as an endogenous housekeeping gene for 
normalization, Unpaired‑two‑tailed t tests and ± standard deviation (STDV) were used to evaluate differences in expression. *P ≤ 0.05; **P ≤ 0.01; 
***P ≤ 0.001

Table 3 Significant negative correlation between the identified miRNA and mRNA by microarray (un-paired two-tailed t 
test < 0.5/> 1.5-fold difference, P < 0.05)

miRNA mRNA P value correlation Correlation Fold change 
miRNA

P value miRNA Fold change 
mRNA

P value mRNA

hsa‑miR‑1234 LIMK2 0.00001 − 0.89 0.12 0.00038 2.22 0.01813

hsa‑miR‑1234 DYSF 0.00018 − 0.85 0.12 0.00038 2.74 0.01491

hsa‑miR‑1234 GBP2 0.00143 − 0.78 0.12 0.00038 2.04 0.00973

hsa‑miR‑1234 MMP9 0.00382 − 0.74 0.12 0.00038 2.15 0.03885

hsa‑miR‑324‑5p POT1 0.00670 − 0.69 1.72 0.00050 0.47 0.00017

hsa‑miR‑151‑5p POT1 0.00728 − 0.68 1.73 0.01754 0.47 0.00017

hsa‑miR‑200c POT1 0.01132 − 0.65 43.66 0.01425 0.47 0.00017

hsa‑miR‑362‑5p POT1 0.01281 − 0.64 1.52 0.00045 0.47 0.00017

hsa‑miR‑502‑3p POT1 0.01590 − 0.63 1.58 0.00054 0.47 0.00017

hsa‑miR‑500b POT1 0.01868 − 0.62 48.35 0.01419 0.47 0.00017

hsa‑miR‑627 POT1 0.01868 − 0.62 33.47 0.03109 0.47 0.00017

122



Page 12 of 18Abu‑Halima et al. J Transl Med  (2018) 16:60 

the validated target mRNAs and the clinical parameters 
of MFS. Furthermore, we also assessed the significance 
of the differences of the validated 11 miRNAs in MFS 
patients without MVP compared with patients with MVP 
using the Wilcoxon test. Out of these 11 miRNAs, miR-
331-3p showed a significant down-regulation in patients 
with MVP compared to patients without MVP (P < 0.05). 
MiR-200c showed a borderline significant decrease in 
MFS patients with MVP compared with patients without 
MVP (P = 0.060).

Classification and overrepresentation analysis
Considering only the protein coding genes and remov-
ing of different transcript variants, 292 genes out of 296 
were grouped according to PANTHER protein class, 
GO Molecular Function, GO Biological Process and GO 
cellular components annotations. The complete classi-
fications can be found in the Additional file 3: Table S4. 

In detail, after applying Bonferroni correction for mul-
tiple testing, there were statistically significant path-
ways within the 292 genes differentially expressed in 
the MFS patients, displaying apoptosis signaling path-
way (P value = 1.54E−03), JAK/STAT signaling path-
way (P value = 1.78E−02), integrin signaling pathway (P 
value = 1.92E−02) and angiogenesis (P value = 3.50E−02) 
(Table 5).

Discussion
In this study, we found 13 miRNAs and 31 mRNAs with 
significantly increased expression levels and 15 miRNAs 
and one single mRNA (POT1) with significantly 
decreased expression level in patients with MFS com-
pared with HV controls. In a cohort of independent MFS 
patients and HV controls, 11 miRNAs and 6 mRNAs 
were validated. These data show that miRNA and mRNA 
expression levels in the blood of patients with MFS differ 

Table 4 Correlation between  clinical parameters and  validated miRNA and  mRNA expression levels by  RT-qPCR 
in patients with MFS P < 0.05)

LVEDD left ventricular end diastolic diameter, MVP mitral valve prolapse. P values were calculated using unpaired‑two‑tailed t test (P < 0.05). *P values were calculated 
using Wilcoxon test (P < 0.05)

Italic—significant with adjusted P‑value

Bold Italic—borderline significant with adjusted P‑value

Parameters Marfan syndrome patients Healthy volunteers

Age (MFS patients) Aortic root status
(Z score)

LVEDD MVP Age

miRNA Correlation P value Correlation P value Correlation P value P value* Correlation P value

hsa‑miR‑1234 0.003 0.988 0.063 0.761 − 0.075 0.716 0.732 − 0.122 0.554

hsa‑miR‑151‑5p 0.519 0.007 0.375 0.059 0.496 0.010 0.979 0.055 0.789

hsa‑miR‑200c 0.370 0.063 0.473 0.015 0.213 0.295 0.060 − 0.220 0.279

hsa‑miR‑24 0.496 0.010 0.281 0.164 0.420 0.033 0.654 − 0.194 0.342

hsa‑miR‑30e 0.565 0.003 0.230 0.258 0.472 0.015 0.517 − 0.030 0.883

hsa‑miR‑324‑5p 0.510 0.008 0.350 0.079 0.457 0.019 0.391 − 0.019 0.927

hsa‑miR‑362‑5p 0.413 0.036 0.216 0.289 0.383 0.053 0.673 0.024 0.906

hsa‑miR‑500b 0.440 0.024 0.384 0.053 0.456 0.019 0.812 − 0.003 0.987

hsa‑miR‑502‑3p 0.505 0.008 0.260 0.200 0.425 0.030 0.816 0.036 0.860

hsa‑miR‑627 0.310 0.123 0.291 0.149 0.423 0.032 0.816 0.010 0.961

hsa‑miR‑331‑3p 0.307 0.127 0.333 0.097 0.015 0.942 0.041 − 0.243 0.231

Parameters Marfan syndrome patients Healthy volunteers

Age Aortic root status
(Z score)

LVEDD MVP Age

mRNA Correlation P value Correlation P value Correlation P value P value Correlation P value

DYSF 0.123 0.550 0.087 0.672 − 0.010 0.963 0.958 0.186 0.385

GBP2 0.200 0.326 0.071 0.729 − 0.198 0.332 0.816 0.080 0.710

LIMK2 0.003 0.989 − 0.142 0.489 − 0.241 0.235 0.916 0.135 0.530

MMP9 0.276 0.173 0.272 0.178 − 0.042 0.840 0.460 0.295 0.162

MX1 0.071 0.732 − 0.142 0.489 0.019 0.926 0.897 0.073 0.736

POT1 − 0.028 0.891 − 0.041 0.842 − 0.306 0.129 0.510 − 0.075 0.727
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from HV controls and that distinct differences in specific 
miRNA expression patterns can be further explored as 
potential biomarkers for differentiating between patients 
with MFS and HV controls. A distinctive non-invasive 
surrogate biomarker for MFS would be of high clinical 
value, as mutation analysis of the huge (65 exons) FBN1 
gene is still relatively expensive and time-consuming and 
therefore restricted to phenotypically recognized Ghent-
positive patients. An affordable screening test for MFS 
would likely detect a considerable number of atypical 
MFS who currently remain undiagnosed. Moreover, our 
investigation provides a comprehensive analysis of the 
gene expression pattern in patients with MFS as com-
pared to HV controls, suggesting that non-pathogenic 
variants of other genes than FBN1 may significantly influ-
ence the phenotype, and explain the often striking clini-
cal variation among members of a given MFS family. The 
identification of these genes may lead to a possible novel 
signature related to MFS, provide new prognostic param-
eters and ultimately even generate targets for novel 
approaches to chemoprevention of complications beyond 
currently unsatisfying medical treatment options [18]. 
Intriguingly, many of the biological pathways identified, 
such as apoptosis signaling [19], JAK/STAT signaling 
[20], integrin signaling [21] and angiogenesis pathways 
[22], have been associated with development of cardio-
vascular complications in MFS and its related diseases 
including aortic and pulmonary artery dilation as well as 
mitral valve prolapse. Among the identified deregulated 
mRNAs, some genes play a role in cardiomyocyte differ-
entiation and remodeling during acute myocardial infarc-
tion and in dilated cardiomyopathy (DCM). For example, 
patients suffering from DCM show a strong and lasting 
increase of oncostatin M (OSM) gene expression level 
and signaling [23]. Moreover, significant changes in clus-
terin [24] gene level have been detected in patients with 
acute myocardial infarction (AMI) [25] and increased 

levels of selectin L (SELL) are associated with ischemic 
stroke [26]. The JAK/STAT pathway is negatively regu-
lated by the suppressor of cytokine signaling (SOCS) pro-
tein, and the myocardium-specific suppressor of cytokine 
signaling 3 (SOCS3) gene plays a key role in the develop-
ment of left ventricular (LV) remodeling after AMI [27]. 
In agreement with the higher expression level of C-X-C 
motif chemokine ligand 5 (CXCL5) in the blood of 
patients with MFS, CXCL5 showed an increased expres-
sion level in the plasma of patients with coronary artery 
disease. Recent studies have showed that CXCL5 and its 
receptors are implicated in congestive heart failure and 
ischemic stroke, making CXCL5 a candidate gene for 
potential future therapy strategies in cardiovascular dis-
eases [28–30]. CXCL5 has also been reported to be up-
regulated in abdominal aortic aneurysm (AAA) [31]. 
Matrix metalloproteinase 9 (MMP) was shown to be up-
regulated in the blood of MFS patients by microarray and 
RT-qPCR in our analysis. MMP9 showed a significant 
inverse correlation with hsa-miR-1234, which also was 
identified in the MFS patients [9]. A proteolytic degrada-
tion of the extracellular matrix of the aortic wall by an 
upregulation MMPs has been shown to be involved in the 
pathogenesis of TAA and AAA and also contributes to 
the histologic changes found in the aortic wall of patients 
with MFS [32, 33]. The expression of MMP9 has been 
shown to be up-regulated in the vascular wall of human 
AAA [34, 35] and also in aneurysm tissue in a mouse 
model of MFS [32]. Interestingly, Balistreri et  al., found 
potential associations of SNPs in the MMP9 gene 
[rs3918242 (−1562C/T MMP-9)] degenerative forms of 
mitral valve diseases (MVDs), concluding that genetic 
variants in MMP9 play a role in MVD in MFS patients 
[36]. Together with our data, showing an up-regulation of 
MMP9 in the blood of MFS patients compared to con-
trols, indicate that MMP9 may represent a potential bio-
marker and therapeutic target to reduce the growth rate 

Table 5 Pathways significantly enriched for  the  identified protein coding genes in  the  blood of  patients with  MFS 
compared to HV controls (adjusted P value < 0.05)

Pathways resulted significantly over‑represented by the identified protein coding genes. P values were tested using Fisher exact test and adjusted using a Bonferroni 
correction test. MFS Marfan syndrome, HVs healthy volunteers
a  Number of genes in the reference list that map to this PANTHER classification category
b  Number of genes in the target genes list that map to this PANTHER classification category
c  Expected value is the number of genes that could be expected in target genes list for this PANTHER category based on the reference list

PANTHER classification pathways Number of genes Over‑/under‑
represented (±)

Fold enrichment P value

Reference  lista Target  listb Expectedc

Apoptosis signaling pathway (P00006) 119 10 1.68 + 5.96 0.00154

JAK/STAT signaling pathway (P00038) 17 4 0.24 + 16.69 0.00210

Integrin signalling pathway (P00034) 194 11 2.73 + 4.02 0.01920

Angiogenesis (P00005) 174 10 2.45 + 4.08 0.03500
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of TAAs in MFS patients. Doxycyclin and statins have 
proven to be effective inhibitors of MMPs [37, 38] and 
have shown therapeutic benefits in both TAA and AAA 
patients [39, 40]. However, data on MFS patients as well 
as large randomized trials are still lacking, making these 
drugs promising candidates for future investigations in 
MFS. Our data, showing a significant inverse correlation 
of miR-1234 and MMP9 indicate that a down-regulation 
of this miRNA may be involved in the up-regulation 
MMP9 in MFS. We demonstrate a significantly up-regu-
lated expression of the LIM kinase 2 (LIMK2) which also 
inversely correlated with miR-1234. LIMK2 regulates 
dynamic changes of the actin cytoskeleton by phospho-
rylating cofilin and thereby inactivating its F-actin depo-
lymerizing activity [41]. It was shown in mouse models 
that an activation of LIMK2 is associated with a disturbed 
flow in the aortic arch and disturbs endothelial cell (EC) 
barrier function, which was reversed by inhibition of 
LIMK2 with m-calpain [42]. An up-regulation of LIMK2 
likely linked to a down-regulation of miR-1234 in the 
blood of MFS patients, which was demonstrated in our 
study, therefore may be related to elevated levels of vas-
cular wall shear stress in the thoracic aorta of MFS 
patients [43] and be associated with endothelial dysfunc-
tion in MFS. Since effective LIMK2 inhibition has already 
been shown to improve endothelial function in animal 
models [42]. LIMK2 may represent a promising target for 
future investigations in MFS patients. Our data shown a 
significant up-regulation of guanylate binding protein-2 
(GBP-2) and a significant inverse correlation with miR-
1234 in the blood of MFS patients compared to controls. 
Human guanylate binding proteins (GBPs) are a class of 
large GTPases which are induced by cytokines like Inter-
feron alpha/gamma, Interleukin-1 and TNF-alpha [44]. 
GBP-2 has not yet been investigated as comprehensively 
as GBP-1, but shares 75% sequence identity with this iso-
form [45] which has been shown to be actively secreted 
by ECs [46]. Patients with rheumatic diseases like rheu-
matoid arthritis, systemic lupus erythematosus [22], and 
systemic sclerosis, which are characterized by a chronic 
inflammatory vessel activation, show reduced levels of 
GBP-1 in their peripheral blood [44]. In a rat arterio-
venous (AV) loop model, it has been shown that GBP-1 
inhibits endothelial cell progenitor migration and leads to 
endothelial cell dysfunction [44]. An up-regulation of 
GBP-2 in the blood of MFS patients is likely reflects the 
vascular pathology and disturbed endothelial cell func-
tion in these patients. A significant up-regulation and 
inverse correlation to miR-1234 in the blood of MFS 
patients compared to controls was also shown for dysfer-
lin (DYSF). Mutations in DYSF lead to limb-girdle mus-
cular dystrophy type 2B and Miyoshi myopathy. DYSF, 
which is expressed in human ECs, has been shown to 

form a complex with platelet endothelial cellular adhe-
sion molecule-1 (PECAM-1), thereby preventing its pro-
teosomal degradation [47]. Since PECAM-1 is a ligand of 
αVβ3-integrin and a promotor of angiogenesis, these data 
are in line with our observation of an enrichment of gene 
sets for angiogenesis and integrin signaling in the blood 
of MFS patients. DYSF is induced in vitro by TNF-alpha 
and has also been shown to be up-regulated in the blood 
vessels of patients with multiple sclerosis representing 
increased vascularinflammation and a disturbed blood–
brain barrier [48]. It seems likely that an overexpression 
of DYSF in the blood of MFS patients, as with GBP-2, 
represents vascular inflammation in these patients and 
may be a potential biomarker for the severity of vascular 
pathologies in MFS warranting further investigations. 
The gene encoding for protection of telomeres 1 (POT1) 
was the only significantly down-regulated gene in the 
blood of MFS patients (fold-change ≤ 2) compared to 
controls and exhibited inverse correlations with 7 miR-
NAs. POT1 binds single-stranded DNA as a heterodimer 
with tripeptidyl peptidase 1 (TPP1) and promotes telom-
erase-mediated telomere extension. Reduced telomere 
length is recognized as a hallmark of cardiovascular aging 
and as a biomarker for and TAA and dissections [49, 50]. 
It has to date not been investigated whether telomere 
length plays a role in the pathogenesis of MFS. The 
reduced expression of POT1 in the blood of MFS patients 
demonstrated in our study, however, indicates, that accel-
erated cardiac ageing may be present in MFS, which may 
be reflected in reduced telomere length and POT1 
expression. Among the miRNAs inversely correlating 
with POT1, miR-362 has been linked to the degree of 
inflammation in samples from abdominal aortic aneu-
rysms [51]. Moreover, miR-500 was shown to be deregu-
lated in degenerative mitral valve disease [52] and 
miR-502 was also up-regulated in the sera of patients 
with congestive heart failure [53]. Some genes which we 
found to be up-regulated in the blood of MFS patients 
compared to controls play a role in cardiomyocyte differ-
entiation and remodeling during AMI as well as in DCM. 
Patients with DCM show a strong and lasting increase of 
oncostatin M (OSM) gene expression [23]. Moreover, sig-
nificant changes in clusterin [24] have been detected in 
patients with AMI [25] and increased levels of selectin L 
(SELL) are associated with ischemic stroke [26]. The JAK/
STAT pathway is negatively regulated by the suppressor 
of cytokine signaling (SOCS) protein, and the myocar-
dium-specific suppressor of cytokine signaling 3 (SOCS3) 
gene plays a key role in the development of left ventricu-
lar (LV) remodeling after AMI [27]. In agreement with 
the higher expression level of C-X-C motif chemokine 
ligand 5 (CXCL5) in the blood of patients with MFS, 
CXCL5 showed an increased expression level in the 
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plasma of patients with coronary artery disease. Recent 
studies have shown that CXCL5 is up-regulated in 
abdominal aortic aneurysms (AAA) [31], making it a can-
didate for potential future anti-inflammatory therapy 
strategies in MFS. We identified three miRNAs, namely 
miR-151-5p, miR-324-5p, and miR-500b, which corre-
lated significantly with the Z-score and the LVEDD of 
MFS patients. MiR-24 and miR-30e correlated only with 
the LVEDD of MFS patients in our study. MiR-24 has 
been reported to be up-regulated in tissue from thoracic 
aortic aneurysms [54] and the miR-30-family was shown 
to be up-regulated in tissue from thoracic aortic dissec-
tions and abdominal aortic aneurysms [55, 56]. Interest-
ingly miR-331-3p, which has been linked to cardiac 
hypertrophy [57] and miR-200, which also has been 
linked to cardiovascular disease [58], were down-regu-
lated in MFS patients with MVP compared with patients 
without MVP. MiR-200c-3p also showed an inverse cor-
relation to POT1 in our study. These deregulated miR-
NAs may serve as potential future biomarkers in MFS 
after conformational analysis in studies with larger sam-
ple sizes. MiRNA and mRNA profiles measured in PAX-
gene blood samples comes to a greater extent from the 
cellular components of the blood, i.e. leukocytes and 
erythrocytes, and only to a lesser extent from cell-free 
RNA. Therefore, the expression changes we identified in 
our study presumably reflect rather changes in the blood 
cells of the patients rather than expression changes in 
solid tissue, i.e. bone. One of the MFS clinical manifesta-
tions is the musculoskeletal system (typically tall stature 
with arachnodactyly) and patients with MFS also have 
significant musculoskeletal phenotypes which may affect 
the marrow cavity and subsequently influence the hemat-
opoiesis process. Therefore, it is conceivable that changes 
in miRNA and mRNA expression profile in the blood of 
MFS patients might be the results of differences in the 
hematopoiesis process in MFS patients compared to 
healthy controls. Another line of thinking is, that differ-
ences in the mRNA and miRNA profiles might originate 
from differences in blood flow kinetics between MFS 
patients and controls. It is known that altered blood pres-
sure has an impact on miRNA expression profile, as 
shown by Neth et al. [59]. Aortic dilatation and structural 
cardiac anomalies like MVP in MFS patients exposes the 
vascular endothelium to altered hemodynamic forces, 
which may indirectly influence miRNA and mRNA pro-
files in the blood cells of MFS patients due to different 
blood flow velocities compared to healthy individuals.

Limitations of our study are related to a relatively small 
sample size. Moreover, our analysis focused only on the 
main diagnostic criteria such as FBN1 positivity, aortic 
root dilatation and lens dislocation and revealed correla-
tions of miRNA expression to cardiovascular features such 
as aortic root dilatation and mitral valve prolapse. Skeletal 
features which are characterized by a highly variable age 
of onset are heterogeneous and have been considered as 
secondary diagnostic criteria according to the modified 
Ghent criteria. Certainly, the skeletal features are impor-
tant leading diagnostic criteria for further evaluation of the 
patients suspected to have Marfan disease. Correlation of 
miRNA expression to skeletal abnormalities has to be per-
formed in future studies with larger cohorts of patients 
with definitive and highly characterized main skeletal fea-
tures. Future studies also have to investigate whether the 
observed miRNA expression profiles are specific to MFS or 
also relate to other syndromes with familial thoracic aortic 
aneurysm like Loeys–Dietz syndrome, Shprintzen–Gold-
berg syndrome or mutations in ACTA2.

Conclusions
We present the first study investigating miRNA and mRNA 
expression patterns in the peripheral blood of MFS patients 
in comparison with HV controls. A strong deregulation of 
both miRNA and mRNA expression profiles was present 
in MFS patients including multiple genes with high rel-
evance to cardiovascular pathogenesis and diseases. Four 
genes associated with vascular pathology and inflammation 
namely MMP9, LIMK2, GBP-2, and DYSF were up-regu-
lated in MFS patients and showed inverse correlations with 
miR-1234. POT-1 was down-regulated and inversely corre-
lated with 7 miRNAs indicating a potential role of telomere 
length in the pathogenesis of MFS. These genes represent 
promising candidates for future investigations aiming at 
prognostic biomarkers for cardiovascular manifestations 
in MFS as well as targets for novel therapeutic approaches. 
Apart from the particular considerations as to the value 
of the observed distinctive miRNA/mRNA patterns for 
diagnosis and prognosis of MFS patients, our study fun-
damentally highlights the extreme breadth of molecu-
lar downstream effects initiated by a constitutional single 
point mutation in a monogenic heritable condition. Pleiot-
ropy also has an as yet underestimated molecular dimen-
sion that may provide insights into how complex seemingly 
“simple” monogenic traits actually are.
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4
Discussion, outlook and conclusion

4.1 Discussion

In this thesis, we approached the miRNA field from different per-
spectives. We implemented miRMaster to discover new potential
high confidence miRNAs candidates, we worked on four different
projects to gain insights into the miRNA characteristics which can be
supportive for the clinical usability of these molecules, and we con-
ducted two different studies with lung cancer and Marfan syndrome
as main diseases to investigate the biomarker potential of miRNAs.
However, the herein presented works have limitations, and respective
improvements are suggested in the following.

The implemented tool miRMaster is based on one classifier which
is selected out of 180 various constellations of classification, feature
scaling and subset selection methods. It is state of the art to test plenty
of combinations for finding the right model. Nevertheless, the specific
training and test set that we used succeeded in the chosen model.
Perhaps a different dataset would favour and yield a different model.
Alternatively to this single-model procedure, an ensemble learning
model could be used [201]. This one consists of multiple weak learners,
and the final classification decision is based on majority voting of
uncorrelated learners to reduce variance in prediction [202]. In our
classical machine learning approach, we manually derived the features
from sequence and structure for the classification. In deep learning
approaches, the feature derivation from sequences and structures
is done automatically, which can reveal hidden features that cannot
be observed manually and could thus lead to further performance
improvements [203].

While many studies evaluate the potential biomarker capabilities of
miRNAs [204], researchers could also show the impact of confounding
factors such as gender, age and smoking behavior on miRNA activities
[205, 206]. In our project about change of miRNA activity in seasonal
profiles, we could show an up-regulation for hsa-miR-106b-5p and hsa-
let-7c-5p in spring by analyzing two independent groups. All samples
were collected only from healthy volunteers. Retrospectively, it would
be interesting from a pathological point of view to include two patient
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groups differing in the disease (e.g. common diseases like lung cancer
and cardiovascular disease). With these additional disease cohorts, we
could investigate whether we can confirm the seasonal observations
made in the healthy groups. However, one should be aware that it is
also possible that biological expression changes related to the health
state can overlay seasonal effects in the body, which would make it
more difficult to understand seasonal effects among diseased patients.

With regard to our work with sequencing data derived from 21
animals, further time points of blood collectionwould allow to seewhat
kind of common seasonal effects inmiRNA expression exist. This could
be interesting because many animals share similar seasonal behavior
(e.g. hibernation or flight to more southern regions). Additionally,
more replicates of the same species would be helpful to make more
reliable conclusions.

Alternatives to the venous blood-based PAXgene like DBS can
have promising results regarding technical stability and biological
variation. However, the handling of this collection device can be quite
challenging which results in different sized dried blood spots and RNA
amounts. Microsampling devices (Mitra) as further option can ensure
constant blood volumes, which could have an impact for measurement
of robust miRNA expression. Inside the category of venous blood
sampling, another common method for RNA stabilization is Tempus
tube which showed higher RNA outputs compared to PAXgene [207].

With respect to the detection of biomarker candidates for diagnosis
of diseases, we have published two articles. The lung cancer project
included a substantially higher number of samples than the Marfan
publication. Larger sample sizes better reflect the true population,
but meta data can become more important too, especially in multi-
center projects. To reduce confounding effects based on population,
forming similar comparison groups (e.g. perfect matching regarding
age, gender and smoking behavior), as shown in the publication, can
be important for obtaining statistical correct conclusions [208]. Since
the centers might differ in their main focus (e.g. therapy options) or
patients may receive different forms of therapy depending on their
health condition, it makes sense to include medication and possibly
other factors in the analyses and grouping [209]. This could be helpful
to optimize diagnosis signatures or to pursue additional biological
questions in order to gain knowledge for therapy and clinical routine.
Regarding profiling a further challenge for clinical studies can be the
exclusive usage of the whole blood samples. The substantial higher
amount of RBCs and their miRNAs can overlay the expression based
on a potential disease-related immune response. Perhaps additional
profiling of the blood cell composition would be helpful to deconvolute
the complex whole blood signal into WBC-type-specific signals [210].
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4.2 Outlook

In this thesis we focusedmainly onmiRNAswhose diagnostic potential
was investigated in studies performed onmicroarrayswhich detect only
known entries of miRBase. The usage of NGS enables the discovery
of new miRNAs and other sncRNAs as well [155] whose potential for
diagnostics and therapy is introduced in the following.

sncRNA biomarkers In the recent years, the clinical interest has grown
for studies about circulating sncRNA biomarker candidates such as
tRNAs and Y RNAs [211]. Both classes have a gene regulatory function
like miRNAs [212, 213], and they were also analyzed for discrimination
between case and control in several human cancer types. Thereby, Y
RNAs are associated with deregulation in cancer (e.g. brain, blad-
der, blood, lung and postate cancer) [214]. Regarding tRNAs, the
tRNA-derived small RNA fragments (tsRNAs, tsRF) identified in 2008
[215] came into the focus of clinical research, e.g. to be investigated
as potential discriminator in breast cancer [216]. In comparison to the
well studied miRNAs, other small non-coding RNAs (tRNA, Y RNA,
snoRNAs, etc.) become increasingly well understood. The combined
usage ofmarkers derived fromdifferent RNA classes and families could
advance research in cancer diagnostics and pathways by addressing
multiple layers instead of limiting an analysis to a single sncRNA-class
[217].

Alternative miRNA-based biomarkers Another advantage of sequenc-
ing is that base-modifications can be determined. These are typical
for isomiRs [81], which were explained in the introduction of this
theses (see Section 1.2.2). For RNAs in general, epitranscriptional
modifications (e.g. 8-oxoguanine, oxidation of Guanin, o8G) were ob-
served [218]. In miRNAs, oxidation occurs mainly in the seed region
(positions 2-9). For example, miR-1 has modifications on position 7
(oxidation to o8G or substitution with Uracil) which happen during
pathogenesis of cardiac hypertrophy in rat and mice models [219].
These position-specific modifications can be potential indicators for
diseases and expand the options for diagnosis with miRNAs.

siRNA therapeutics - A fast growing RNA therapy In the previous para-
graphswe list endogenously encoded sncRNAmolecules. In the follow-
ing, we outline the potential of exogenous sequences for therapeutics.
In general, RNA therapies can be divided into three groups [220]:
RNAs targeting RNA or DNA, RNAs targeting proteins and RNAs
encoding proteins. We focus here only on the first category whose
components (miRNAs and siRNAs) are part of the RNA interference
(RNAi) system. Like miRNAs, siRNAs regulate gene activity and pre-
vent mRNA translation by degradation [221]. While miRNA therapeu-
tics are elaborated separately in the next paragraph, we consider here
only siRNA therapeutics with which researchers knockdown genes
that are causing the corresponding disease. In 2018, 2019 and 2020,
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the United States Food and Drug Adminstration (FDA) approved the
siRNA drugs Patisiran, Givosiran and Lumasiran as the first RNAi-
based pharmaceuticals. Patisiran is used for therapy of hereditary
amyloidogenic transthyretin, Givosiran for treatment of adults with
acute hepatic porphyria and Lumasiran for treatment of primary hy-
peroxaluria type 1 [222, 223]. Currently, siRNA drug development
has over 30 therapeutical candidates (at different stages of clinical tri-
als) and three approved therapeutic agents – which are much more
successful compared to the miRNA therapeutics with several termi-
nated candidates and no approvals [223, 224]. One important reason
could be that each siRNA targets exactly one molecule which makes
it favourable for single gene disorders, while miRNAs usually have
multiple targets and form complex networks which are associated
with multi-gene diseases such as human cancers or neurodegenerative
diseases [225].

miRNA therapeutics Regarding miRNA therapeutics, researchers work
on influencing the expression level of a miRNA. If the observed level
of a miRNA does not meet the expected or desired measure, an up-
or down-regulation the corresponding miRNA could be a solution.
For down-regulation, anti-miRs are used to block the overexpressed
miRNA so that it cannot bind to its target (gain of target function). In
contrast, miRNA mimics bind to the same target of a down-regulated
miRNA to increase its regulatory effect which (loss of target function)
[226, 227]. Successfully developed exogenous regulation can become
an important achievement in precision medicine, especially in cancer
treatment to replace chemotherapy and its range of adverse effects.
Nevertheless, the development of miRNA therapeutics remain difficult.
To pass the different phases of the clinical trials, the revealed obstacles
such as RNA instability, strong side effects or failed drug delivery to the
target cells need to be overcome [228, 229]. The pharmaceutical agent
which ismost advanced inmiRNA therapeutics isMiravirsen, currently
under phase II clinical trials. This anti-miR down-regulates miR-122 for
the treatment of hepatitis C virus infection [230, 231]. Although there
is nomiRNA-based drug approved yet, the growingmarket for miRNA
therapeutics is relevant for human complex multi-target disorders such
as different types of cancers and neurodegenerative diseases [224, 231].
In addition, it is also promising that three siRNA drugs for RNAi are
already approved (see the previous paragraph about RNA therapy).

Synthesized biomarkers The discovery of natural-born biomarkers can
be difficult due to technical, biological and stability reasons. Depend-
ing on which sample collection device is used, the expression of one
miRNA can show different patterns, e.g. the found miRNA is up-
regulated in serum and down-regulated in plasma of the same patients
[232]. In addition, expression profiles can be influenced by population-
related characteristics such as gender or age [233]. Another challenge
of naturally occurring biomarkers is the RNA instability as result of the
rapid degradation [234]. Kwong et al. showed that synthetic biomark-
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ers can be an alternative to endogenous ones in mouse models. The
disease-deregulated proteases cleave the substrates of the nanoparticles.
These substrates can then be detected in urine by mass spectrometry
[235]. The advantage of this bioengineering approach is the direct
detection of the interaction between disease related components and
the nanoscale agents. Thereby, a highly sensitive measurement could
also reflect the disease state, which could be important for clinical
therapy decisions. In summary, this approach can be a promising al-
ternative option to overcome technical or population-driven effects on
endogenous biomarker expressions.

Home-sampling In the clinical routine for screening studies, low-dose
computed tomography (CT) and typical sampling devices (e.g. PAX-
gene or EDTA tubes) are part of the extended medical equipment to
gauge a patient’s health. Both CT and sampling tube methods are
fairly inaccessible: both require trained medical professionals and CT
devices are not available in every medical location. Ignoring the tech-
nological and personnel challenges, participation rates for screening
(approaches) are lower due to the anxiety and reluctance of going to
a doctor’s office. Home-sampling already plays an increasing role in
rural areas or in patients with periodic reading of blood or medica-
tion levels [236, 237]. It may also become an important way to raise
the participation rates in different screening programs and ease the
screening process itself. In the gynecological field of cervical screening,
there have already been promising results [238]. That opens the way
to expand the home-sampling process to other diseases. Using dif-
ferent blood tubes and measuring methods, such as high-throughput
analysis or array measurement, can lead to different and even discor-
dant profiling [239, 240]. As home-sampling becomes more and more
useful and as miRNAs become more important players as molecular
biomarkers, obtaining reproducible results is still a challenge for the
future. We could already show promising results with dried blood
spots (DBS) for diagnosis of disease in newborns. The sample collec-
tion itself can be quite challenging by squeezing blood drops from the
fingers, which can lead to different volumes of the blood fluid. As their
handling is rather complicated for a home-sampling process, the usage
of microsampling devices (Mitra) can be an alternative. Aside from
the easy handling, the main advantage of the Mitra is the constant
blood volume per sample obtained with correct application. A further
study to evaluate their potential as home-sampling tools seems to be
reasonable and can be carried out like our project with DBS. In the
suggested experiment, each patient would donate two samples in the
form of one PAXgene tube as reference and of one Mitra as test device.
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4.3 Conclusion

Because miRNAs regulate essential processes in cell development, are
involved in immune system activities and are linked to tumorigenesis,
the circulating cellular and cell-free fraction of these regulators has
attracted considerable interest in research on blood-based biomarkers.
Here, in this thesis, I have presented meaningful results toward the
potential clinical use of miRNAs. Our study for lung cancer detection
in a large cohort can improve strategies for early-stage detection. If
further validated, it is conceivable that such signatures could either be
used to “rule-in” participants for better adherence to present screening
programs (e.g. LD-CT screening in US). Alternatively, the test could be
used to inform on the malignancy of pulmonary nodules, especially in
cases where it is difficult or dangerous to perform a biopsy or surgical
procedure (“rule-out”). However, the current retrospective design of
our work warrants additional validation in prospective cohorts col-
lected in the asymptomatic screening setting before the optimal use of
the test could be firmly established.

Regarding alternative sampling devices such as DBS and Mitra, our
findings support to embark on new ways to simplify patient man-
agement for research on blood-based diagnostics of non-acute health
questions. It is here that small RNAs offer a distinct stability advantage
over long mRNAs. During emergency situations such as the current
Covid-19 pandemic, the latter may enable home sampling in times of
social distancing and or mandatory quarantine, as well as of offering
inclusion in healthcare programs for those with restricted mobility.
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