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ABSTRACT

This work studies graph decompositions and their representation by 0/1 labeling of edges.
We study two problems. The first is multicut (MC) which represents decompositions
of undirected graphs (clustering of nodes into connected components). The second is
disjoint paths (DP) in directed acyclic graphs where the clusters correspond to node-
disjoint paths. Unlike an alternative representation by node labeling, the number of
clusters is not part of the input but is fully determined by the costs of edges.

Our main interest is to study connectivity priors represented by so-called lifted edges
in the two problems. The cost of a lifted edge expresses whether its endpoints should
belong to the same cluster (path) in the optimal decomposition. We call the resulting
problems lifted multicut (LMC) and lifted disjoint paths (LDP). The extension of MC to
LMC was originally motivated by image segmentation where the information about the
connectivity between non-neighboring pixels or superpixels led to a significant quality
improvement. After that, LMC was successfully applied to other problems like multiple
object tracking (MOT) which is also the main application of our proposed LDP model.

Our study of lifted multicut concentrates on partial LMC represented by labeling of
a subset of (lifted) edges. Given partial labeling, we conclude that deciding whether
a complete LMC consistent with the partial labels exists is NP-complete. Similarly, we
conclude that deciding whether an unlabeled edge exists such that its label is determined
by the labels of other edges is NP-hard. After that, we present metrics for comparing
(partial) graph decompositions. Finally, we study the properties of the LMC polytope.

The largest part of this work is dedicated to the proposed LDP problem. We prove
that this problem is NP-hard and propose an optimal integer linear programming (ILP)
solver. In order to enable its global optimization, we formulate several classes of linear
inequalities that produce a high-quality LP relaxation. Additionally, we propose efficient
cutting plane algorithms for separating the proposed linear inequalities.

Despite the advanced constraints and efficient separation routines, the general time
complexity of our optimal ILP solver remains exponential. In order to solve even larger
instances, we introduce an approximate LDP solver based on Lagrange decomposition.

LDP is a convenient model for MOT because the underlying disjoint paths model
naturally leads to trajectories of objects. Moreover, lifted edges encode long-range
temporal interactions and thus help to prevent id switches and re-identify persons. Our
tracker using the optimal LDP solver achieves nearly optimal assignments w.r.t. input
detections. Consequently, it was a leading tracker on three benchmarks of the MOT
challenge MOT15/16/17, improving significantly over state-of-the-art at the time of
its publication. Our approximate LDP solver enables us to process the MOT15/16/17
benchmarks without sacrificing solution quality and allows for solving large and dense
instances of a challenging dataset MOT20. On all these four standard MOT benchmarks
we achieved performance comparable or better than state-of-the-art methods (at the
time of publication) including our tracker based on the optimal LDP solver.
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ZUSAMMENFASSUNG

Diese Arbeit studiert Graphenzerlegungen und ihre Repräsentation durch 0/1-wertige
Kantenbelegungen. Das erste Problem ist das Mehrfachschnittproblem. Es repräsentiert
Zerlegungen von ungerichteten Graphen (Cluster von Knoten sodass jeder Cluster
eine Zusammenhangskomponente repräsentiert). Das zweite Problem ist die Suche
von disjunkten Pfaden in einem gerichteten azyklischen Graph in dem die Cluster
knotendisjunkten Pfaden entsprechen. Im Unterschied zu der alternativen Repräsentation
durch Knotenbelegungen ist die Zahl von Clustern nicht im Voraus gegeben, sondern sie
ist abhängig von den Kosten der Kanten.

Der Fokus dieser Arbeit ist die Erforschung von hochgezogenen Kannten, die eine a-
priori Information über Verbundenheit von Knoten in Clustern respektive durch Pfade in
den zwei Problemen darstellen. Die Kosten einer hochgezogenen Kante drücken aus, ob
ihre Knoten zu dem gleichen Cluster (Pfad) in der optimalen Zerlegung gehören sollten.
Wir bezeichnen diese neuen Probleme als das hochgezogene Mehrfachschnittproblem
und das Problem der hochgezogenen disjunkten Pfade. Die Erweiterung des Mehrfach-
schnittproblems zu dem hochgezogenen Mehrfachschnittproblem wurde ursprünglich
durch die Bildsegmentierung motiviert, für die die Information über Verbundenheit
von nicht benachbarten Pixeln oder Superpixeln zu einer bedeutenden Verbesserung
der Qualität führte. Danach wurde das hochgezogene Mehrfachschnittproblem zu der
Lösung von anderen Problemen wie zum Beispiel der Verfolgung von mehreren Ob-
jekten in einem Video angewendet. Diese Aufgabe ist auch die Hauptanwendung des
vorgeschlagenen Problems der hochgezogenen disjunkte Pfade.

In unserer Untersuchung des hochgezogenen Mehrfachschnittproblems konzentrieren
wir uns auf das teilweise hochgezogene Mehrfachschnittproblem. Das Problem wird
durch eine Belegung einer Teilmenge der (hochgezogenen) Kanten repräsentiert. Wir
beweisen, dass es NP-vollständig ist zu entscheiden, ob ein kompletter hochgezogener
Mehrfachschnitt existiert, der einer gegebenen teilweisen Kantenbezeichnung entspricht.
In analoger Weise beweisen wir, dass es NP-schwer ist zu entscheiden, ob eine nicht belegte
Kante existiert, deren Belegung durch die Belegungen anderer Kanten entschieden ist.
Danach präsentieren wir Metriken zum Vergleich von (teilweisen) Graphenzerlegungen.
Schließlich untersuchen wir Eigenschaften des hochgezogenen Mehrfachschnitt-Polytops.

Der größte Teil dieser Arbeit widmet sich dem von uns vorgeschlagenen Problem der
hochgezogenen disjunkten Pfade. Wir beweisen, dass es NP-schwer ist. Wir formulieren
es als ein ganzzahliges lineares Optimierungsproblem und implementieren ein Programm
für dessen optimale Lösung. Um die globale Optimierung zu ermöglichen, formulieren wir
mehrere Klassen von linearen Ungleichungen, die zu einer linearen Relaxierung mit einer
hohen Qualität führen. Zusätzlich präsentieren wir ein effektives Schnittebenenverfahren
für die Separierung der vorgeschlagenen Ungleichungen.

Trotz der fortgeschrittenen Ungleichungen und der Effizienz der Schnittebenensepa-
rierung in unserem optimalen Löser bleibt die allgemeine Komplexität des Algorithmus
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exponentiell. Um noch kompliziertere Instanzen zu lösen, präsentieren wir einen approx-
imativen Löser, der auf Lagrange-Dualität aufbaut.

Hochgezogene disjunkte Pfade sind ein praktisches Modell für die Verfolgung von
mehreren Objekten, weil die disjunkten Pfade eine natürliche Repräsentation von
Trajektorien der Objekten darstellen. Außerdem repräsentieren die hochgezogenen
Kanten Interaktionen einer langen zeitlichen Reichweite. Deswegen helfen sie dieselbe
Person in zeitlich weiter auseinander liegenden Zeitpunkten wieder zu identifizieren und
Verwechselungen ihrer Identität zu verhindern. Aus diesem Grund war unsere Methode
zur Zeit ihrer Publikation die beste für drei Vergleichsdatensätzen MOT Challenge
MOT15/16/17 für die Verfolgung von mehreren Objekten. Im Vergleich zu den bisherigen
besten Methoden war ihre Leistung sogar bedeutend höher. Unsere approximative
Methode für hochgezogene disjunkte Pfade ermöglicht uns die Vergleichsdatensätzen
MOT15/16/17 zu verarbeiten ohne die Qualität der Lösungen zu vermindern und erlaubt
uns, die großen Instanzen mit hoher Personendichte des anspruchsvolleren Datensatzes
MOT20 zu lösen. Zur Zeit ihrer Publikation erreichte die Methode vergleichbare oder
bessere Ergebnisse als die bisherigen besten Methoden einschließlich unseres optimalen
Löser für hochgezogene disjunkte Pfade.
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1INTRODUCTION

Graphs are useful and powerful structures that enable us to model pairwise relation-
ships between objects. Among others, they play a crucial role in many tasks in machine
learning and computer vision. A special interest of this work is studying decompositions
of graph nodes into connected components (graph clustering) and the applications of
the presented methods in computer vision problems.

A useful tool for studying graph decompositions is multicut. It is a representation
of graph decompositions by sets of edges that straddle distinct components. If each
edge is assigned a real cost, the optimal graph decomposition is the one that minimizes
the sum of costs of multicut edges. One advantage of the multicut problem over other
clustering formulations is that the number of clusters is determined purely by the edge
costs instead of being known in advance.

These properties make multicut a convenient model for example for image segmen-
tation. Here, graph nodes represent pixels resp. superpixels of an image and edges
are placed between those pixels or superpixels that are adjacent. Consequently, the
decomposition of such a graph is a natural representation for image segmentation. In
this case, each cluster corresponds to one object in the image.

The longest part of this work is dedicated to studying a special class of decompositions
where the graphs are directed and the node clusters are constrained to be node-disjoint
paths in the given graph. This special case of the network flow problem is a natural
model for multiple object tracking (MOT) in a video. Here, objects in each video
frame are represented by graph vertices and edges connect objects between video frames.
The aim is to find a set of node-disjoint paths such that one path corresponds to the
trajectory of one object.

In the above-stated examples of graph partitioning algorithms in computer vision, it
is often helpful to employ connectivity preferences of object pairs that are not connected
by an edge. For instance, in the task of image segmentation, there is an ambiguity
about the classification of pixels close to the boundary between objects. On the other
hand, we can classify accurately the majority of the pixels that are far from the object
boundaries. Consequently, connectivity preferences cannot be always fully captured by
the costs of edges between neighboring pixels (or superpixels) and information about
the connectivity of non-neighboring pixels can improve the segmentation accuracy.

Alternatively, consider two non-consecutive video frames in the task of multiple
object tracking. We can typically identify pairs of object detections that represent either
the same object captured in different time frames of the video or two different objects.
In the DP formulation, there are so-called skip edges between objects in non-consecutive
time frames. However, their cost contributes to the objective value only if the respective
object detections directly follow each other in a trajectory. Therefore, it is beneficial to
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2 chapter 1. introduction

extend the model via pairwise connectivity priors that contribute to the objective value
whenever the respective object detections are connected via an arbitrary trajectory.
Including this higher-order information into our decision procedure leads to more stable
trajectories and thus it increases the precision of DP significantly, especially in cases
where objects were occluded or not detected for some time.

Based on this motivation, we concentrate on two special aspects of graph decom-
positions. We study incorporating connectivity priors between non-neighboring graph
nodes on the one hand and working with partial information on the other hand. First,
we study the enhancements of the basic multicut and the disjoint paths problem with
so-called lifted edges that represent connectivity priors of non-neighboring node pairs.
In particular, the cost of a lifted edge indicates whether two objects represented by the
edge’s endpoints should belong to the same cluster (path) or not. The two models are
called lifted multicut and lifted disjoint paths. Second, we inspect the possibility to
work only with partial information about the graph decomposition represented by lifted
multicut. That is, we are interested in the scenarios where only some of the (lifted)
graph edges are marked as must-join or must-cut (multicut) edges while the rest of the
edges is unlabeled.

1.1 outline and contributions

analysis of graph decompositions by lifted multicuts

We study the set of all decompositions (clusterings) of a graph through its characterization
as a set of lifted multicuts. This leads us to practically relevant insights related to the
definition of classes of decompositions by must-join and must-cut constraints and related
to the comparison of clusterings by metrics. We also establish properties of some facets
of lifted multicut polytope.

This chapter contains a substantial part of our work published in Horňáková et al.
(2017) which was a joint work of the author of this thesis, Jan-Hendrik Lange and Bjoern
Andres. In particular, Bjoern Andres supervised the work and suggested the concepts
that led to the author’s results presented in Sections 3.4 and 3.5. He also contributed
the whole content of Section 3.3 (except the previously known facts) and Section 3.6.
His theorem about facet defining cut inequalities was extended by Jan-Hendrik Lange
and the thesis author (a generalization of Point 2).

Section 3.3. This section contains the basic definitions of the multicut problem as
introduced and studied by Chopra and Rao (1993) and Deza et al. (1991). After that,
we present its extension to the lifted multicut problem.

Section 3.4. In this section, we generalize the lifted multicut to the partial lifted
multicut where each graph edge can be labeled either as must-join or must-cut or
unlabeled. Using the concept of unlabeled edges, two natural questions arise. The first
is consistency. That is, is there labeling of the unlabeled edges such that the result is
a valid lifted multicut? The second is specificity. That is, is there an unlabeled edge
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that must be labeled as join or cut based on the labels of other edges? We conclude
that the problems are NP-complete resp. NP-hard in general. We also provide special
cases when the problems can be decided efficiently.

Section 3.5. Inspired by the concept of partial edge labeling, we study the possible
metrics for the comparison of two (partial) graph clusterings. They can be viewed as
a generalization of two commonly used graph metrics. These are the Hamming metric
(Hamming, 1950) and Rand’s metric (Rand, 1971). The main idea is that we allow
comparing labels of a subset of the (lifted) graph edges instead of the labels of all edges.

Section 3.6. In this section, we study the lifted multicut polytope. We first show that
its dimension is equal to the number of edges in the lifted graph. Second, we provide
several necessary conditions for lifted multicut cut inequalities to be facet defining. The
original publication Horňáková et al. (2017) contains more results on this topic.

lifted disjoint paths with application in multiple object tracking

Disjoint paths problem (DP) is a natural model for multiple object tracking (MOT)
where trajectories of objects are represented by node-disjoint paths. This model is
a special case of the network flow problem where the flow through each edge and through
each node is restricted to be zero or one. The problem can be solved efficiently e.g. by
the method from Kovács (2015) but it is prone to identity switches because it evaluates
only connections between detections that directly follow each other in a trajectory.

In this chapter, we enhance the disjoint paths problem by lifted edges that represent
connectivity priors. Consequently, the similarities of arbitrary pairs of objects that
belong to the same path can influence the objective value but do not influence the set
of feasible solutions given by the underlying DP model. Therefore, lifted edges help
to preserve the identities of objects, prevent ID-switches and thus ensure more stable
trajectories. We call the resulting model lifted disjoint paths (LDP).

Even though (LDP) is NP-hard (which we prove), we develop an optimal ILP solver
for it. We would like to mention that the previous state-of-the-art trackers based on
combinatorial models either employ heuristic solvers or are limited in the integration
of long-range information, in contrast to our work. Our tracking framework based
on the optimal LDP solver increased the stability of object trajectories and led to
state-of-the-art results on three standard MOT benchmarks MOT15/16/17 (Leal-Taixé
et al., 2015; Milan et al., 2016) at the time of its publication, significantly outperforming
previous methods.

This chapter contains our work published in Horňáková et al. (2020) which was
a joint work of the author of this thesis, Roberto Henschel and Paul Swoboda with the
help of Bodo Rosenhahn. Roberto Henschel carried out all the experimental work, cost
learning, preprocessing, and post-processing. In general, he implemented all parts of
the tracking framework except the LDP solver which is the work of the author. He also
proposed the two-step procedure which was implemented by the author.
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Section 4.3. This section presents the formulation of the (LDP) model as an enhance-
ment of (DP) by lifted edges.

Section 4.4 In this section, we present an ILP formulation for solving (LDP). We first
provide the classical flow conservation constraints (Dantzig and Fulkerson, 1955). Then,
we propose a class of advanced ILP constraints ensuring that a lifted edge is active if
and only if there is a flow between its endpoints in the flow network. We analyze the
tightness of the constraints and prove among others that the proposed path inequalities
are tighter than analogical inequalities for lifted multicut. Their high quality plays an
important role in our exact ILP solver.

Section 4.5. Our solver uses the state-of-the-art ILP solver Gurobi (Gurobi Optimiza-
tion, 2019). Since there are exponentially many ILP constraints proposed in Section 4.4,
we add them in a cutting plane manner during the branch and cut phase of the ILP
solver. That is, whenever a candidate feasible solution is found, we add to the set of
problem inequalities those that are violated by the solution. Alternatively, we store the
solution as a new upper bound if no inequalities are violated. This section provides
efficient algorithms for separating the violated inequalities.

Section 4.6. In this section, we prove that the lifted disjoint paths problem is NP-hard.

Section 4.7. This section describes the experiments, graph construction, and a two-
step procedure needed for solving large data. It also details the whole tracking pipeline
including preprocessing, post-processing, edge cost learning, and experimental setup in
general. We demonstrate that our method outperforms other trackers on three standard
MOT benchmarks and provide some ablation studies.

an efficient approximate solver for lifted disjoint paths

The solver presented in Chapter 4 achieved state-of-the-art results on three MOT bench-
mark datasets. However, despite high-quality ILP constraints and efficient separation
routines for them that make the solver able to solve real-world problems efficiently, its
general runtime remains exponential. Therefore, we decided to develop an approximate
LDP solver with polynomial runtime that would enable LDP-based tracking for long and
crowded sequences. The resulting tracker achieved on four standard MOT benchmarks
comparable or better results with the state-of-the-art methods (at the time of its publi-
cation) including our tracker from Chapter 4. Our LDP solver is based on Lagrangean
(dual) decomposition and thus delivers not only an approximate solution but also its
gap to the optimum. Therefore, it is a principled approach that is independent of any
commercial solver like Gurobi (Gurobi Optimization, 2019).

This chapter contains our work published in Hornakova et al. (2021) which is a joint
work of Andrea Hornakova, Timo Kaiser, Paul Swoboda, Michal Rolinek, and Roberto
Henschel with the help of Bodo Rosenhahn. The implementation of all the tracking
components (edge cost learning, preprocessing, post-processing etc.) except the LDP
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solver is the work of Timo Kaiser with the help of Roberto Henschel and Michal Rolinek.
The experiments and evaluations were done by Timo Kaiser and the author. The
author implemented the LDP solver within the message passing framework provided
by Swoboda et al. (2017a).

Sections 5.3 and 5.4. The base for our approximate solver is a message passing
algorithm using the Lagrange decomposition framework developed by Swoboda et al.
(2017a). This decomposition of the LDP to small subproblems provides a dual task and
hence a lower bound to the original problem. The lower bound is constantly improved by
the message passing. In combination with a suitable primal heuristic using the dual costs,
the approximate solver is able to provide a high-quality approximate solution together
with the gap to the optimum. These sections provide details about the decomposition
itself specific to LDP. We describe the classes of LDP subproblems including their
minimization procedures and algorithms for message passing. We also describe our
primal heuristic.

Section 5.5. Here, we analyze the theoretical complexity of the used algorithms and
conclude that the proposed LDP solver has polynomial time complexity.

Section 5.6. We incorporated our approximate LDP solver into a new tracking
framework. This section describes all the details about the complete tracking system
and provides experimental evaluation. This tracker has several differences in comparison
to the one presented in Chapter 4 enabling its scalability to large data with crowded sce-
narios of the challenging MOT20 dataset (Dendorfer et al., 2020). For completeness, we
also perform experiments on the other three standard MOT benchmarks MOT15/16/17
(Leal-Taixé et al., 2015; Milan et al., 2016). We demonstrate that the tracker achieves
comparable or better results in comparison to the state-of-the-art methods. Finally, we
provide a runtime comparison with the solver from Chapter 4.





2BACKGROUND AND RELATED WORK

2.1 multicut

We start with basic definitions of the multicut problem and its relation to graph
decomposition. More details can be found in Section 3.3. The decomposition of a graph
G = (V,E) is a partition Π of the node set V such that, for every subset U ∈ Π of
nodes, the subgraph of G induced by U is connected. Each partition can be represented
by multicut which is a set of edges that straddle distinct components. For any graph
G, a one-to-one relation exists between the decompositions and the multicuts of G.
An example of a graph decomposition together with the multicut representing it is in
Figure 2.1.

Multicuts of graph G are defined by means of cycles in G. If M ⊆ E is a multicut of
G, there cannot be a cycle in G that contains exactly one edge fromM . We can represent
each set M ⊆ E by its characteristic function x ∈ {0, 1}E where M = {e ∈ E|xe = 1}.
Then M is a multicut of G iff for its characteristic function x ∈ {0, 1}E holds

∀C ∈ cycles(G) ∀e ∈ C : xe ≤
∑

e′∈C\{e}

xe′ . (2.1)

We use notation XG = {x ∈ {0, 1}E|x satisfies (2.1)}. That is, XG is the set of
characteristic functions of multicuts of G.

Definition 2.1. (MC) For any connected graph G = (V,E), and any c : E → R, the
instance of the minimum cost multicut problem w.r.t. G and c is the optimization
problem

min
x∈XG

∑
e∈E

cexe . (MC)

Polyhedral study. The two initial publications Grötschel and Wakabayashi (1989)
and Grötschel and Wakabayashi (1990) studied multicut polytope of a complete graph.
They referred to this polytope as clique partitioning polytope and mentioned that the
clique partitioning of a complete graph can be viewed as multicut.

The work from Chopra and Rao (1993) explored the multicut polytope of general
graphs. They referred to the studied problem as the partition problem. Among the
most important contributions of this work is proposing the cycle inequalities (2.1), wheel
inequalities, and bicycle wheel inequalities for the multicut problem and providing criteria
under which those inequalities are facet defining. These findings are very important for
instance for cutting-plane algorithms solving the problem (MC). Another important

7
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Figure 2.1: A decomposition of a graph is a partition of the node set into connected components.
Any decomposition is characterized by the set of edges that straddle distinct components (dashed
lines). This set of edges is called multicut.

contribution is proving that the dimension of multicut polytope equals to the number of
graph edges.

The authors Deza et al. (1992) extended the class of inequalities valid for the
multicut polytope by a large class of clique-web inequalities and provided a complex
characterization of those that define facets. They referred to the studied problem as
multicut or multicut with k shores. They also studied the multicut polytope together
with equicut, balance cut, etc. in Deza et al. (1991). Additional results including the
findings of the two publications can be found in the book from Deza and Laurent (1997).

2.1.1 problems equivalent to multicut

Classical multicut. A definition of multicut different from Definition 2.1 was adopted
by Garg et al. (1997), Vazirani (2001) and Schrijver (2003). The problem was introduced
by Hu (1969) as a dual problem to maximum multi-commodity flow. In compliance
with Lange (2020), we refer to this alternative definition as classical multicut.

Although the classical multicut Definition 2.2 is different from Definition 2.1 that we
adopt in this thesis, the two problems are actually equivalent as we discuss later in this
section.

Definition 2.2. (Classical multicut) Given a graph G = (V,E) with a positive weight
on every edge c : E → R+, and a list of node pairs, (s1, t1), . . . , (sk, tk), find a minimum
weight set of edges separating each pair of nodes vertices in the list. We call such a set
of edges a multicut.

Correlation clustering. The multicut problem is related to correlation clustering
introduced by Bansal et al. (2004). Here, all edges of a complete graph are labeled either
with + or - and the goal is to find such partitioning of the graph nodes that minimizes
the number of disagreements on the edges. They concluded that the problem is NP-hard
and a provided constant factor approximation algorithm for it. They also introduced an
extended problem called weighted correlation clustering. Here, each edge is assigned
a positive weight indicating the importance of labeling it correctly.
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Demaine et al. (2006) studied weighted correlation clustering on general graphs which
is equivalent to (MC). A very important contribution of this work is the proof that the
weighted correlation clustering and therefore also multicut problem is equivalent to the
classical multicut problem. This finding thus bridges the gap between the two different
multicut Definitions 2.1 and 2.2.

Several authors study complexity and approximation algorithms for (weighted)
correlation clustering (Bansal et al., 2004; Demaine et al., 2006; Charikar et al., 2005).
However, the optimal values of the multicut problem and weighted correlation clustering
differ by a constant. Therefore, approximation guarantees for the weighted correlation
clustering cannot be transferred to the multicut.

Coalition structure. The optimal coalition structure in a weighted graph game
(Bachrach et al., 2013) coincides with (MC) on the given graph. In contrast to (MC), the
aim is to maximize the sum of edge weights within each partition (coalition). Therefore,
the objective values of the two tasks differ by a constant and the approximation results
are not directly transferable between the two tasks. Some complexity and approximation
results for this problem can be found in Voice et al. (2012) and Bachrach et al. (2013).

2.1.2 algorithms for solving multicut

Branch and cut. Branch and cut is a method for solving ILP optimally. If stopped
earlier, it can usually provide an approximate solution together with its gap to the
optimum. There exist commercial solvers that implement branch and cut efficiently.
Since there is an exponential number of multicut cycle inequalities 2.1, they are typically
added to the problem in a cutting plane method. That is, a cycle inequality is added
whenever the solver outputs a candidate solution that violates it. Andres et al. (2011)
applied this method on solving multicut for image segmentation and Andres et al. (2012)
for decomposing connectomics data. Pishchulin et al. (2016) and Insafutdinov et al.
(2016) used a branch and cut multicut solver for multi-person pose estimation. Despite
reasonable efficiency on some real data, branch and cut can take exponential time in
general. This fact typically prohibits its usage on large data.

Cutting plane for LP relaxation. Many approaches use cutting plane methods for
solving linear programming (LP) relaxation of (MC). Such algorithms iteratively output
the optimal solution with respect to a subset of valid inequalities. After that, separation
procedures are used to identify constraints violated by the solution and add them to
the constraint set. This approach is repeated until a solution that does not violate any
given constraints is found. The resulting solution is often not integral. Therefore, it
is rounded to an integral one using a heuristic. Such solutions are not guaranteed to
be optimal. However, the optimal solution of the relaxation gives a lower bound of
the optimal ILP solution. Grötschel and Wakabayashi (1989) used the cutting plane
for multicuts on complete graphs. Their solution satisfies all triangle inequalities and
they use heuristics to separate some other inequalities. Nowozin and Jegelka (2009)
used a cutting plane method that either uses only cycle inequalities or includes also
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odd-wheel inequalities. They separate odd-wheel inequalities via a polynomial-time
procedure from Deza et al. (1992). One variant of the method suggested by Kappes
et al. (2011) switches to an exact ILP solver by adding integrality constraints instead of
using a rounding heuristic and thus outputs the optimal solution. Kappes et al. (2016)
compares several versions of multicut cutting plane algorithms including algorithms
for higher-order multicut (multicut on hypergraphs). Their methods were also used by
Kappes et al. (2015b). Kim et al. (2011) and Kim et al. (2014) employed cutting plane
algorithms for solving higher order multicut.

Lagrangean decomposition. Another approach to solve multicut is to use La-
grangean (dual) decomposition. We provide details about this method in Section 5.3. In
this case, the combinatorial problem is decomposed into smaller but feasible subproblems
that are optimized independently and so provide a lower bound to the primal problem.
The goal is to maximize this lower bound. Unfortunately, there is typically no clear way
how to obtain a primal feasible solution from the dual one. Therefore, it is necessary to
use heuristics. Various versions of Lagrangian decomposition for multicut were employed
by Yarkony et al. (2012), Yarkony et al. (2014), and Andres et al. (2013). Swoboda et al.
(2017a) designed a message passing framework that monotonically improves the lower
bound given by the Lagrangean decomposition of a combinatorial problem. Swoboda
and Andres (2017) developed multicut-specific methods to be used within this framework.
Abbas and Swoboda (2021) proposed a primal-dual algorithm for multicut computa-
tion. In each iteration, it performs parallel message passing followed by a parallel edge
contraction. The contraction is based on maximum matching of reparametrized edge
costs obtained from the message passing. These two steps are repeated until no edge
contraction candidates can be found anymore. As a result, the algorithm provided
high-quality solutions together with lower bounds significantly faster than previous
methods.

Heuristic solutions. Local search heuristics have proven to be efficient methods for
obtaining multicut solutions. Although they do not provide any guarantees with respect
to the gap to the optimum, they often perform well in practice. They work with feasible
solutions that are iteratively improved by local moves. Beier et al. (2014) developed
a method called Cut, glue & cut and Beier et al. (2015) developed a fusion move method.
Levinkov et al. (2017a) provided a comparison of some multicut heuristics on instances
like 2D and 3D image segmentation and clustering of handwritten digits. They compared
the method from Beier et al. (2014), greedy additive edge contraction (GAEC), greedy
fixations (GF), and several implementations Kernighan Lin (KL) heuristic (Kernighan
and Lin, 1970), namely those from Nowozin and Jegelka (2009), Kappes et al. (2015a)
and a modification called Kernighan Lin with joins (KLj) proposed by Keuper et al.
(2015b) for solving lifted multicut problems. KL heuristic for solving multicut was also
adopted by Keuper et al. (2015a), Levinkov et al. (2016), Tang et al. (2015), and Tang
et al. (2016).
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Hierarchical solutions. When dealing with big problems, it can be time-consuming
to solve the whole instance at once even with heuristics. Therefore, many researchers
developed methods for solving multicut for subproblems and combining the local solutions
into consistent partitioning of the whole instance. Kroeger et al. (2013) proposed a block
scheme for solving multicut instances for connectomics. Pape et al. (2017) designed
a hierarchical block-wise scheme where subproblems can be solved in parallel. Ho et al.
(2021) proposed a method called multi-stage multicuts (MSM) where multiple CPU
threads use a shared memory system. Multicut is solved on subsets of the whole problem
of the same size which is followed by a merge process.

Persistency criteria. A useful tool for reducing the size of a combinatorial problem
is studying persistency, that is partial variable assignments that agree with some optimal
solution. Alush and Goldberger (2012) proposed two partial optimality conditions
for (MC). Lange et al. (2018) studied the persistency criteria for (MC) and max-cut
and proposed routines and fast algorithms to verify them. The methods can be used
as preprocessing techniques that reduce problem sizes if variables are fixed to their
persistent values. The authors also proposed an algorithm called iterative cycle packing
that provides a dual lower bound and values for graph edges that can be used for their
re-weighting. Applying known heuristics (GAEC and KLj) to problems with re-weighted
edge costs yielded better results than applying the heuristics on the graph with the
original edge costs. Lange et al. (2019) proposed more involved persistency criteria and
methods to verify them. Their application substantially reduced the number of variables
in problem instances from various multicut datasets.

2.1.3 applications of multicut in computer vision

Image segmentation. A common computer vision application of multicut is image
segmentation for which (MC) is a convenient model. Here, the image can be represented
by an adjacency graph where the nodes usually represent image superpixels. The
following authors applied multicut to image segmentation: Andres et al. (2011), Beier
et al. (2014), Beier et al. (2015), Kim et al. (2014), Kappes et al. (2011), Kappes et al.
(2015b), Yarkony et al. (2012), Yarkony et al. (2014), Kardoost and Keuper (2021) and
Alush and Goldberger (2012). Formulating an improved model for image segmentation
motivated Kim et al. (2011) and Kappes et al. (2016) to define and study higher order
correlation clustering, i.e. correlation clustering on hypergraphs. Abbas and Swoboda
(2021) provided a fast parallel algorithm enabling to solve (MC) over image pixels of
high-resolution images.

Segmenting electron microscopy data. Multicut turned out to be very useful
for segmenting cells in 2D and 3D data from electron microscopy (Zhang et al., 2014;
Wolny et al., 2020). 3D segmentation of neural circuits (connectomics) was done by
Andres et al. (2012), Kroeger et al. (2013), Beier et al. (2014), Beier et al. (2015), Pape
et al. (2017) and Abbas and Swoboda (2021).
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User-assisted image segmentation. Some software tools enable to perform multicut-
based image segmentation that satisfies constraints provided by the user (Andres et al.,
2013; Levinkov et al., 2016)). Enabling this user input can help to correctly segment
biological data. This fact is used in an interactive machine learning tool for biological
image analysis presented by Berg et al. (2019) where multicut is an integral part of
some of the underlying methods.

Joint labeling and decomposition. By extending the multicut model by variables
for node labeling, it is possible to perform image segmentation and labeling jointly
(Kappes et al., 2011). Kirillov et al. (2017) used such a model for solving the task of
instance aware semantic segmentation.

Multiple object tracking. (MC) turned out to be a suitable model for multiple
object tracking. In Tang et al. (2015) and Tang et al. (2016), person detections are
represented by graph vertices and the task is to group together those detections that
belong to the same person. Alternatively, graph vertices can represent tracklets (Ristani
and Tomasi, 2014).

Video and motion segmentation. Besides the target application in connectomics
data, Andres et al. (2012) also used their multicut solver for video segmentation. Keuper
et al. (2015a) used multicut for obtaining point trajectories in a video for solving the
task of motion segmentation. Keuper et al. (2018) used a combination of two multicuts
on two graphs (on object detections and point trajectories) and applied the resulting
model called correlation co-clustering on solving the task of motion segmentation and
multiple object tracking together. Kardoost and Keuper (2021) included uncertainty in
their multicut-based motion segmentation method.

Multi-Person Pose Estimation and Tracking. Pishchulin et al. (2016) worked
with body parts detections and introduced a multicut model extended by variables for
labeling these detections and connecting them into poses of people. Insafutdinov et al.
(2016) improved the method from Pishchulin et al. (2016). Song et al. (2019) explored
a different approach for multi-person pose estimation. They formulated the multicut
problem on a complete graph as an unconstrained binary cubic problem with a high
positive cost of inconsistent triangle labeling. Their formulation enabled to learn variable
costs end-to-end for the desired applications. Insafutdinov et al. (2017) used a simpler
multicut model where the body parts detections take only binary labels indicating
whether they are true or false detections. This model was originally introduced for MOT
by Tang et al. (2015). Insafutdinov et al. (2017) applied the method to both multiple
people pose estimation in a single image and tracking multiple people poses in videos.

Clustering. The applications of (MC) comprise many clustering problems on both
complete and non-complete graphs. The domains of interests are for instance social
networks, clustering of objects like animal species based on a set of characteristics,
clustering of images, etc. These applications were inspected e.g. by Grötschel and
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Wakabayashi (1989), Ho et al. (2021), Song et al. (2019), Beier et al. (2015).

2.2 lifted multicut problem

We first define the minimum cost lifted multicut problem (LMC). More details can be
found in Section 3.3.

In the case of multicut of graph G = (V,E), the cost of an edge expresses the
preference of whether its endpoints should be connected or not. Lifted multicut enables
to impose connectivity priors on arbitrary pairs of nodes and not only those connected
by an edge in G. Given graph G = (V,E), we are interested in lifted graph G′ = (V,E ′)
where E ⊆ E ′ ⊆

(
V
2

)
. If there is a lifted edge between two nodes, its cost provides

the preference whether the nodes should belong to the same component of graph G or
not. That is, we deal with decompositions of graph G represented by edges in E ′ that
straddle distinct components (Figure 2.2).

Let us have M ⊆ E ′. Then M is a multicut of G′ lifted from G if and only if the
two following conditions hold. First, M ∩ E is a multicut of G. Second, for each edge
vw ∈ E ′ \ E it holds that vw belongs to M if and only if v and w are in distinct
components of G as defined by M ∩ E.

Similarly as for multicut, we introduce characteristic functions of lifted multicut
x ∈ {0, 1}E′ . By the means of the characteristic function, the condition on lifted edges
reads,

∀vw ∈M \ E : (xvw = 1⇔ ∀P ∈ vw-paths(G) : ∃ij ∈ P : xij = 1) . (2.2)

We denote by XGG′ the set of all characteristic functions of multicuts of G′ lifted
from G. That is, XGG′ = {x ∈ {0, 1}E′ |x satisfies (2.1) ∧ (2.2)}.

We provide an exact definition of XGG′ through linear inequalities in Section 3.3.2.

Definition 2.3. (LMC) Given graph G = (V,E) and lifted graph G′ = (V,E ′) where
E ⊆ E ′ ⊆

(
V
2

)
and a cost function c : E ′ → R, the 0/1 linear program written below is

called an instance of the Minimum Cost Lifted Multicut Problem w.r.t. G,G′, and c.

min
x∈XGG′

∑
e∈E′

cexe (LMC)

The formulation of the lifted multicut problem was motivated by solving the task of
image segmentation (Keuper et al., 2015b). On the other hand, our work Horňáková
et al. (2017) presented a comprehensive study of the theoretical properties of this model.

Related problems. For several combinatorial problems, special connectivity-inducing
edges have been introduced to improve the expressiveness of the base problem. In the
Markov Random Field literature, the problem was studied from a polyhedral point of
view by Nowozin and Lampert (2010). The special edges were used in the image analysis
to indicate that two non-adjacent pixels come from the same object and hence they
must belong to a contiguously labeled component of the underlying graph.
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Figure 2.2: An example of multicut of G′ lifted from G. The decomposition of graph G (black
edges) is characterized by the set of edges of G′ that straddle distinct components (dashed
lines). Lifted edges are depicted in blue.

Theoretical study. Our work Horňáková et al. (2017) provided the definition of the
lifted multicut problem and studied it from several perspectives. Among its highlights
is proving that the dimension of the lifted multicut polytope is equal to the number
of lifted graph edges. It also provided some criteria for facet defining inequalities.
Other important contributions were exploring the possibility of partial edge labeling
and defining general metrics for graph decompositions based on partial information.
A substantial part of this work is contained in Chapter 3. Lange and Andres (2020)
studied the case when the base graph is a tree. They discovered that the problem stays
NP-hard in general but it is polynomially solvable for paths. They characterized facets
of the lifted multicut polytope for trees. The facets represent a complete description of
the lifted multicut polytope for paths.

2.2.1 algorithms for solving lifted multicut

Branch and cut. We presented in our paper Horňáková et al. (2017) a branch and
cut procedure for solving (LMC) optimally. The implementation is publicly available at
https://github.com/bjoern-andres/graph.

Heuristics. Although the branch and cut implementation for obtaining the optimal
solution of (LMC) exists, most of the applications used heuristics for its solution. Keuper
et al. (2015b) proposed a modified version of KL heuristic called Karnighan Lin with
joins (KLj) which has been adopted as a solver for both multicut and lifted multicut
problems by many other authors (Keuper et al., 2018; Tang et al., 2016, 2017; Song
et al., 2019). They obtain an initial segmentation from GAEC and use KLj to improve
it. Levinkov et al. (2017b) presented two variants of KLj extended for the task of joint
graph decomposition and node labeling. KL heuristic was also used by Keuper (2017)
who extended the algorithm to work with higher order lifted graphs. Beier et al. (2016)
extended the fusion move algorithm proposed by Beier et al. (2015) to solve (LMC).
Kardoost and Keuper (2019) used two modified versions of GAEC where the order of

https://github.com/bjoern-andres/graph
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edges to be merged is modified.

Hierarchical solutions. Similarly as for multicut, it is often necessary to decompose
big instances into smaller subproblems and define a merging strategy for combining
their solutions. Pape et al. (2019) extended their hierarchical solver Pape et al. (2017)
to solve (LMC).

2.2.2 applications of lifted multicut in computer vision

Image segmentation and 3D decomposition. The possibility to include connec-
tivity preferences about non-neighboring superpixels and thus using non-planar graphs
for image segmentation was inspected by Andres et al. (2013). This extension can be
viewed as the first step towards introducing lifted edges and thus extending multicut to
lifted multicut. For a pair of neighboring pixels or superpixels in a real image, it is often
hard to estimate whether the image should be cut precisely between these pixels. On
the other hand, it is often easy to estimate for pixels at a larger distance whether they
belong to distinct objects. Therefore, Keuper et al. (2015b) proposed the lifted multicut
problem and applied it to the tasks of image segmentation and mesh decomposition.
Further authors that used the lifted multicut problem for image segmentation and
3D decomposition were Kardoost and Keuper (2019) and Beier et al. (2016) who also
inspected averaging of multiple segmentations.

Segmenting electron microscopy data. Beier et al. (2016) and Beier et al. (2017)
used lifted multicut for segmenting 3D electron microscopy images of a brain. Pape
et al. (2019) applied lifted multicut to several types of 3D microscopy data.

Joint labeling and decomposition. The authors of Levinkov et al. (2017b) in-
troduced a joint task of lifted multicut and node labeling and applied their model to
articulated human body pose estimation and instance separating semantic segmentation.

Multiple object tracking. A variant of (MC) was successfully applied to multiple
object tracking. Therefore, after introducing (LMC), a natural question arose whether it
can advance the tracking performance. In particular, can information about connectivity
preferences of detections that are far away in time improve the tracking accuracy? Based
on this fact, Tang et al. (2017) successfully employed (LMC) into their tracking system
and showed that (LMC) based tracking achieves better performance than the one using
only multicut. Other authors employing lifted multicut for MOT were Ho et al. (2020)
and Levinkov et al. (2017b).

Motion segmentation. Applying multicut to obtaining point trajectories for motion
segmentation has proven to be useful by Keuper et al. (2015a). Keuper (2017) solved
this task via extending the previous method to the higher order lifted multicut.
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2.3 disjoint paths problem.

We start with the basic theory of the disjoint paths problem. We consider directed
graphs in this work. Analogical definitions exist for the undirected case too. Disjoint
paths problem in a directed graph is a special case of the network flow problem when
the flow through each edge is restricted to be binary. If the paths are required to be
node-disjoint, the flow through each node that is not a terminal is restricted to be
binary too. Consequently, we can use a restricted definition of the feasible network flow
between source node s and sink node t to define the set of edge-disjoint paths between
the two nodes.

Definition 2.4. Let G = (V,E) be a directed graph with two special nodes source s
and sink t given. We denote by Y EDP (G, s, t) the set of all y ∈ {0, 1}E that satisfy the
following constraints

∀v ∈ V \ {s, t} :
∑
uv∈E

yuv −
∑
vw∈E

yvw = 0 , (2.3)∑
sv∈E

ysv ≥ 0 . (2.4)

Here, (2.3) are flow conservation constraints and (2.4) requires that the flow originates
in s. Moreover, constraints (2.3) ensure that the flow originating in s is the same as the
flow absorbed by t. Due to the requirement that yuv is binary for each edge uv ∈ E,
each vector y ∈ Y EDP (G, s, t) represents a set of edge-disjoint st-paths in G. We will
sometimes write only Y EDP for brevity.

In this work, we concentrate on node-disjoint paths. They are defined similarly.

Definition 2.5. Let G = (V,E) be a directed graph with two special nodes source s and
sink t given. We denote by Y DP (G, s, t) the set of all y ∈ {0, 1}E that satisfy (2.3), (2.4)
and the following constraints

∀v ∈ V \ {s, t} :
∑
uv∈E

yuv ≤ 1 . (2.5)

It can be considered that every y ∈ Y DP (G, s, t) represents a set of node-disjoint
st-paths in G. Clearly, Constraint (2.5) ensures that there is maximally one path going
through each node (except for s and t). We will again often write only Y DP for brevity.

Network flow. Many publications explore flow in networks and various tasks related
to it. One of the first studies is Ford and Fulkerson (1956) that formulated the famous
min-cut max-flow theorem. Other pioneering work is for instance Ford Jr (1956) and
Dantzig and Fulkerson (1955). For a comprehensive overview of results from the network
flow theory, we refer e.g. to the books Ahuja et al. (1988) and Schrijver (2003).
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2.3.1 the maximum number of disjoint paths.

Using the notation from Definition 2.5, we can formally define the problem of finding
the maximum number of node-disjoint and edge-disjoint st-paths in a graph.

Definition 2.6. Given a directed graph G = (V,E) and two nodes s, t ∈ V the task of
finding a maximum number of node-disjoint st-paths is

max
y∈Y DP (G,s,t)

∑
sv∈E

ysv . (DPmax)

Definition 2.7. Given a directed graph G = (V,E) and two nodes s, t ∈ V the task of
finding a maximum number of edge-disjoint st-paths is

max
y∈Y EDP (G,s,t)

∑
sv∈E

ysv . (EDPmax)

The first result about finding a set of disjoint paths between nodes s and t in a graph
is due to Menger (1927). One of the results of this work directly implies the following
theorem which we state in the form provided by Schrijver (2003).

Theorem 2.1. (Menger’s theorem). Let G = (V,E) be a digraph and let S, T ⊆ V .
Then the maximum number of node-disjoint ST -paths is equal to the minimum size of
an ST -disconnecting node set.

This theorem is a special version of min-cut max-flow theorem (Ford and Fulkerson,
1956). Variants of Menger’s theorem exist for undirected graphs (Grünwald, 1938) and
also for edge-disjoint paths in directed (Dantzig and Fulkerson, 1956) and undirected
graphs (Kotzig, 1956). In the edge-disjoint version, the minimum size st-cut replaces
the node set. Obviously, finding the disjoint paths between sets S, T ⊆ V is equivalent
to finding a set of disjoint paths between nodes s, t ∈ V . We can for instance add
nodes s and t to the graph G and add edges from s to all nodes in set S and add
edges from all nodes in T to node t. Conversely, we can set S := {v ∈ V |sv ∈ E} and
T := {v ∈ V |vt ∈ E}.

Algorithms for finding the maximum number of disjoint paths. A substantial
effort has been devoted to the development of an efficient algorithm for finding the
maximum number of st-paths in all variants for directed and undirected graphs and
for node-disjoint as well as edge-disjoint version. For the edge-disjoint version, Ford
and Fulkerson (1957) gave an algorithm having complexity O(|E|2). More efficient
algorithms were given e.g. by Karzanov (1973), Tarjan (1974), Even and Tarjan (1975)
and Nagamochi and Ibaraki (1992). For the node-disjoint version, efficient algorithms
were given by Karzanov (1973), Tarjan (1974), Even and Tarjan (1975), Nagamochi and
Ibaraki (1992) and Feder and Motwani (1991). For planar graphs, algorithms linear in
the number of vertices exist for various variants (Weihe, 1997; Brandes and Wagner,
2000; Ripphausen-Lipa et al., 1997). See Schrijver (2003) for more details.
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2.3.2 disjoint paths between specified pairs of nodes

In the previous section, we considered the problem of finding the maximum number of
the node-disjoint or edge-disjoint paths between one source node s and one sink node t
which is a binary version of the maximum flow of a single commodity. In this section,
we will concentrate on finding k disjoint paths such that for each path a specific pair
of source and sink nodes is given. That is, we are looking for a set of paths P1, . . . , Pk
such that the path Pi starts in si and terminates in ti. This problem is studied for both
directed and undirected graphs. However, we again concentrate only on directed graphs
because they are more relevant to our work.

Notation. We call the graph G = (V,E) where the disjoint paths are searched the
base graph. This is in compliance with our Chapters 4 and 5 and also with e.g. Oellrich
(2008). This graph is also denoted as the supply graph in the literature (e.g. in Vygen
(1994)). The pairs of source-sink nodes are typically represented by a graph H = (T,D)
called the demand graph where T ⊆ V and D = {(s1, t1), . . . , (sk, tk)}. The nodes in H
are called terminals. H may also contain parallel edges (i.e. multiple edges between
one pair of nodes). We denote by H̃ = (T, D̃) the demand graphs where parallel edges
between the same terminals having the same orientation are replaced by one edge
between the two terminals.

Definition 2.8. Given a directed graph G = (V,E) and a directed demand graph
H = (T,D) where |D| = k, the solution of the directed edge-disjoint paths problem
w.r.t. G and H is a collection of edge-disjoint paths (P1, . . . , Pk) such that ∀i = 1, . . . , k :
Pi ∈ siti-paths(G).

Definition 2.9. Given a directed graph G = (V,E) and a directed demand graph
H = (T,D) where |D| = k, the solution of the directed node-disjoint paths problem w.r.t.
G and H is a collection of paths (P1, . . . , Pk) such that ∀i = 1, . . . , k : Pi ∈ siti-paths(G)
and the paths are mutually node disjoint up to the terminals.

Relation to multi-commodity flow. We can view the edge-disjoint paths problem
w.r.t. G and H as the integer multi-commodity flow where the i-th edge (si, ti) ∈ D̃
corresponds to commodity i, the number of edges in D parallel with (si, ti) are equal to
the requirement Ri of commodity i and the capacity of each edge is equal to one.

Relation to lifted disjoint paths. This problem is relevant for our lifted disjoint
paths problem because solving (LDP) is at least as hard as finding a set of node-disjoint
paths in a directed acyclic graph. This is NP-complete in general as we describe later in
this section. We provide details of the respective transformation in Section 4.6.1.

Transformations between node-disjoint and edge-disjoint paths problems.
LaPaugh and Rivest (1980) provided polynomial-time transformations from the node-
disjoint paths problem to the edge-disjoint paths problem and vice versa. Both transfor-
mations keep the number of demand edges |D| as well as the number of edges in the
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simplified demand graph |D̃|. Moreover, the transformation of an acyclic graph results
into an acyclic graph in both cases. These results enable to generalize NP-completeness
results for one task to the other task.

General Complexity. Unlike in the previous problems (DPmax) and (EDPmax) where
a single source-sink pair is given for all paths, the problem with multiple source-sink
pairs is NP-complete in general for both node-disjoint and edge-disjoint paths (Karp,
1975). Below, we provide some special cases where the problems remain NP-complete
and where they are polynomially solvable.

NP-complete special cases. We provide the basic NP-completeness results in the
form as summarized in two theorems by Oellrich (2008). We refer to Oellrich (2008) for
more details. Some of the results follow from the stated publications after applying the
above mentioned transformations between the node-disjoint and edge-disjoint versions.

Theorem 2.2. Given graph G = (V,E) and the demand graph H = (T,D), deciding
whether the directed node-disjoint paths problem w.r.t. G and H has a solution is
NP-complete
1. in general (Karp, 1975),

2. even if |D| = 2 (Fortune et al., 1980),

3. even if G is acyclic and |D| = 2 (Even et al., 1975),

4. even if (V,E ∪D) is planar (Vygen, 1995).

Theorem 2.3. Given graph G = (V,E) and the demand graph H = (T,D), deciding
whether the directed edge-disjoint paths problem w.r.t. G and H has a solution is NP-
complete
1. in general (Karp, 1975),

2. even if |D| = 2 (Fortune et al., 1980),

3. even if G is acyclic and |D| = 2 (Even et al., 1975),

4. even if G is planar, (V,E ∪D) is Eulerian and |D| ≤ 3 Vygen (1995),

5. even if (V,E ∪D) is planar (Vygen, 1995),

6. even if G is planar and acyclic (Vygen, 1995).

Polynomially solvable cases. There are some special cases of the k-disjoint paths
problem that are solvable in polynomial time. For instance, the problems (DPmax) and
(EDPmax) described in the previous section correspond to the case when |D̃| = 1 and we
already know that they are polynomially solvable. Tholey (2012) proposed an efficient
method for directed acyclic graphs when k = 2. He also provided a good overview
of efficient methods for other special variants of the tasks discussed in this section.
Polynomially solvable cases with a fixed number of paths are described in the two
following theorems (provided in the form by Oellrich (2008)). Again, for obtaining some
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of the results, one needs to apply the transformations proposed by LaPaugh and Rivest
(1980).

Theorem 2.4. Let k ∈ N be fixed. Given graph G = (V,E) and the demand graph
H = (T,D). There exists a polynomial-time algorithm for the directed node-disjoint
paths problem w.r.t. G and H if
1. G is acyclic and |D| ≤ k (Fortune et al., 1980),

2. G is planar and |D| ≤ k (Schrijver, 1994).

Theorem 2.5. Let k ∈ N be fixed. Given graph G = (V,E) and the demand graph
H = (T,D). There exists a polynomial-time algorithm for the directed edge-disjoint
paths problem w.r.t. G and H if
1. G is acyclic and |D| ≤ k (Fortune et al., 1980),

2. (V,E ∪D) is Eulerian and |D| = 3 (Ibaraki and Poljak, 1991).

Shortest disjoint paths between specified pairs of nodes. Eilam-Tzoreff (1998)
studied the problem of finding the shortest disjoint paths in the case that k specific
source-sink pairs are given. He concludes that the problem is NP-complete in all four
variants, i.e. for both for directed and undirected graphs and for the node-disjoint and
edge-disjoint variant.

2.3.3 minimum cost disjoint paths

The task of finding the k minimum cost node-disjoint or edge-disjoint paths between
nodes s and t is a special case of minimum cost flow problem (see e.g. Ahuja et al. (1988)).
Similarly as for the previous disjoint paths problems, the edge capacity and eventually
the node capacity is one and the flow through each edge (and node) is restricted to be
binary. The required number of paths k corresponds to the flow requirement.

Minimum cost flow problem. We start with some basic definitions and theory
according to Schrijver (2003).

Definition 2.10. Let G = (V,E) be a digraph and let c : E → R, called the cost
function. For any function y : E → R, the cost of y is∑

e∈E

ceye (2.6)

Definition 2.11. Given a digraph G = (V,E), terminals s, t ∈ V , capacity function
u : E → Q+, cost function c : E → Q and flow requirement R, minimum cost st-flow
problem (MCF) is to find an st-flow y of value R that satisfies the capacity constraint
on each edge, i.e. ∀e ∈ E : ye ≤ ue and minimizes cost (2.6) of y.
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Definition 2.12. Let us have a digraph G = (V,E), terminals s, t, and a feasible st-flow
y : E → R. We define flow through nodes of G w.r.t. y as a mapping z : V \ {s, t} → R

where
∀v ∈ V \ {s, t} : zv =

∑
uv∈E

yuv . (2.7)

Integral solutions. The following theorem states a known property of minimum cost
flow with integral capacities, see e.g. Ahuja et al. (1988).

Theorem 2.6. If all edge capacities and supplies/demands of nodes are integers, the
minimum cost flow problem always has an integer minimum cost flow.

Proof can be found e.g. in Ahuja et al. (1988). It follows from the fact that the
minimum cost flow problem can be stated as a linear program in the form {min cx|Ax ≥
b, x ≤ 0} where A is a totally unimodular matrix. It holds that if b is integral, the
program has an optimal integral solution (Hoffman and Kruskal, 1956).

Minimum cost flow algorithms. Minimum cost flow problem can be solved in
polynomial time e.g. by successive shortest paths algorithm. The algorithm was developed
independently by Jewell (1958), Iri (1960), and Busacker and Gowen (1960) and improved
by Edmonds and Karp (1972) and Tomizawa (1971). Kovács (2015) provided an
extensive computational analysis of several algorithms for solving (MCF) and also his
own implementation of some of the algorithms.

Minimum cost k disjoint paths algorithm. The algorithms for solving the (MCF)
problem can be also used for finding minimum cost disjoint paths thank to Theorem 2.6.
Suurballe (1974) presented an algorithm for finding k shortest node-disjoint paths in
a weighted directed graph. The k paths are found in k iterations of a single shortest
path algorithm. In particular, in the i-th iteration, i shortest paths are found inductively
from the optimal solution for the i− 1 shortest paths.

Minimum cost disjoint paths with arbitrary k. The target application of our
lifted disjoint paths problem is multiple object tracking (MOT). Therefore, we are
interested in applications of disjoint paths in MOT. In contrast to the problem solved by
Suurballe (1974), the number of disjoint paths in MOT is typically not known in advance.
Therefore, it is advantageous to determine it purely from the edge costs, similarly to the
number of clusters in the minimum cost multicut problem. In particular, a negative cost
of an edge indicates that it is preferable to have a flow through that edge and a positive
edge cost indicates the opposite (see Zhang et al. (2008)). For MOT, we can restrict
ourselves to directed acyclic graphs where each edge leads from an object detection
in time T to an object detection in time T ′ where T ′ > T . We also allow node costs
in our model. Note that such a model can be easily transformed to an edge-disjoint
path problem with cost function only on edges if each node is replaced by an additional
edge. For our purposes, the minimum cost node-disjoint paths problem is the task from
Definition 2.13.
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Definition 2.13. (DP) Let us have a directed acyclic graph G = (V,E), source node s,
sink node t, an edge cost function c : E → R and a node cost function d : V → R. Let
all vertices v ∈ V be reachable from s and let t be reachable from all vertices v ∈ V . We
define the minimum cost node-disjoint paths problem as

min
y∈{0,1}E
z∈{0,1}V

∑
e∈E

ceye +
∑
v∈v

dvzv s.t. (DP)

y ∈ Y DP (G, s, t) ∧ z satisfies (2.7)

Recall that set Y DP (G, s, t) requires binary flow through nodes and edges and flow
conservation in nodes (2.3). However, the number of paths (flow requirement) is not
given.

Minimum cost disjoint paths in MOT. Many MOT systems employ (DP) while
using various approaches to determine the optimal number of paths. Zhang et al. (2008)
used the fact that the minimum cost flow is a convex function w.r.t. the required amount
of flow. Therefore, they suggested using the Fibonacci search over the possible number
of paths k. In each step, they performed one execution of the min-cost flow algorithm
by Goldberg (1997). Ma et al. (2009) used the algorithm proposed by Suurballe (1974)
for each k within an interval kl ≤ k ≤ ku.

In fact, the optimal number of paths can be determined much simpler in one call
of the successive shortest paths algorithm resp. the algorithm from Suurballe (1974).
Berclaz et al. (2011) ran the algorithm from Suurballe (1974) only once and simply
returned the solution found in the k-th iteration if the k+ 1 iteration lead to an increase
of the global cost. Similarly, Pirsiavash et al. (2011) suggested finding the globally
optimal solution using one call of the successive shortest paths algorithm. In this case,
unit flow is added in each iteration which practically increases the number of paths by
one. Again, the search terminates if the next iteration increases the global cost. Wang
et al. (2019a) proposed an algorithm called minimum-update successive shortest path
which performs extremely well in practice.

Leal-Taixé et al. (2011) solved (DP) using an efficient implementation of the Simplex
algorithm (Dantzig, 2016). Other MOT methods employing (DP) comprise Leal-Taixé
et al. (2014) and Braso and Leal-Taixe (2020).



3
ANALYS IS OF GRAPH DECOMPOSIT IONS BY LIFTED
MULTICUTS

3.1 introduction

We study the set of all decompositions (clusterings) of a graph represented by the
multicut and the lifted multicut. This chapter is based on our work Horňáková et al.
(2017). We start with a theoretical introduction to the multicut and lifted multicut
problem in Section 3.3 which is more detailed than the theory in Chapter 2.

After that, we study the lifted multicut in three ways. First, we study classes
of decompositions (partial lifted multicuts) represented by must-cut and must-join
constraints on a subset of (lifted) edges and problems arising from this representation
(Section 3.4). Such constraints have applications in domains where defining a complete
decomposition is an ambiguous and tedious task, e.g. in the field of image segmentation.
The first arising problem is to decide whether a set of must-join and must-cut constraints
is consistent, i.e., whether a decomposition of the given graph exists that satisfies the
constraints. We show that this decision problem is NP-complete in general and can be
solved efficiently for a subclass of constraints. The second problem is to decide whether
a consistent set of must-join and must-cut constraints is maximally specific, i.e., whether
no such constraint can be added without changing the set of decompositions that satisfy
the constraints. We show that this decision problem is NP-hard in general and can be
solved efficiently for a subclass of constraints. This finding is relevant for comparing the
classes of decompositions definable by must-join and must-cut constraints by certain
metrics, which is the next topic.

As the second application of lifted multicuts, we study the comparison of decomposi-
tions and classes of decompositions by metrics (Section 3.5). To obtain a metric on the
set of all decompositions of a given graph, we define a metric on a set of lifted multicuts
that characterize these decompositions. By lifting to different graphs, we obtain different
metrics, two of which are well-known and here generalized. To extend this metric
to the classes of decompositions definable by must-join and must-cut constraints, we
define a metric on partial lifted multicuts that characterize these classes, connecting
results of Sections 3.4 and 3.5. We show that computing this metric is NP-hard in
general and efficient for a subclass of must-join and must-cut constraints. These findings
have implications on the applicability of must-join and must-cut constraints as a form
of supervision, more specifically, on the practicality of certain error metrics and loss
functions.

As the third application of lifted multicuts, we study the lifted multicut polytope.
We study its dimension (Section 3.6.1) and the properties of some of its facets (Figure 3.1

23
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and 3.2). However, the respective Section 3.6 does not contain all findings provided in
Horňáková et al. (2017). Therefore, we refer to the full paper for further results.

3.2 related work

We provide an overview of the work related to the multicut and lifted multicut problems,
their applications and algorithms in Chapter 2.

The must-join and must-cut constraints (also called cannot-link and must-link) as
hard constraints for clustering were introduced by Wagstaff and Cardie (2000). They
incorporated a few randomly generated constraints into a known clustering algorithm
COBWEB (Fisher, 1987) and observed an improved performance. Davidson and Ravi
(2005) explored the feasibility of satisfying all clustering constraints when a lower bound
and an upper bound on the number K of clusters is given. Besides the must-join and
must-cut constraints, they also introduced δ-constraints as the thresholds on the minimal
distance between two points in different clusters and ε-constrains as the maximal distance
to the nearest neighbor belonging to the same cluster. They found out that determining
whether clustering into K clusters satisfying a set of must-cut constraints is possible
is equivalent to the graph K-coloring problem. Therefore, this task is NP-hard for
K ≥ 3. On the other hand, deciding whether a K-clustering exists that satisfies a set of
must-join constraints can be solved efficiently in O(m+ n) time where n is the number
of clusters and m is the number of constraints. The complexity of other tasks arising
from K-clustering with must-cut and must-join constraints is studied in their follow-up
work (Davidson and Ravi, 2007).

Widely used metrics for comparison of two clusterings are for instance the Rand
metric (Rand, 1971) and variation of information (Meilă, 2007). If we want to compare
two multicuts of the same graph, we can compare them by applying Hamming metric
(Hamming, 1950) on their characteristic functions. That is, we would count all edges
where the two functions disagree whether the edge should belong to multicut or not.
Our metrics presented in Section 3.5 can be viewed as a generalization of the Hamming
metric and the Rand metric.

3.3 multicuts and lifted multicuts

We start with providing a theoretical background for the multicut and lifted multicut
problem that is more detailed than the brief introduction in Sections 2.1 and 2.2.

Definition 3.1. Let G = (V,E) be any graph. A subgraph G′ = (V ′, E ′) of G is called
a component of G iff G′ is non-empty, node-induced1, and connected2. A partition Π of
V is called a decomposition of G iff for every U ∈ Π, the subgraph (U,E ∩

(
U
2

)
) of G

induced by U is connected (and hence a component of G).

1That is: E′ = E ∩
(
V ′

2

)
2We do not require a component to be maximal w.r.t. the subgraph relation.
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Figure 3.1: For any connected graph G (left), the characteristic functions of all multicuts of G
(middle) span, as their convex hull in RE , the multicut polytope of G (right), a 0/1-polytope
that is |E|-dimensional (Chopra and Rao, 1993).

For any graph G, we denote by DG ⊂ 22V the set of all decompositions of G. Useful
in the study of decompositions are the multicuts of a graph:

Definition 3.2. For any graph G = (V,E), a subset M ⊆ E of edges is called a multicut
of G iff, for every cycle C ⊆ E of G, we have |C ∩M | 6= 1.

Lemma 3.1. (Chopra and Rao, 1993) It is sufficient in Definition 3.2 to consider only
the chordless cycles.

For any graph G, we denote by MG ⊆ 2E the set of all multicuts of G. One reason
why multicuts are useful in the study of decompositions is that, for every graph G,
a one-to-one relation exists between the decompositions and the multicuts of G. An
example is depicted in Figure 2.1.

Lemma 3.2. For any graph G = (V,E), the map φG : DG → 2E defined by (3.1) is
a bijection from DG to MG.

∀Π ∈ DG ∀{v, w} ∈ E : {v, w} ∈ φG(Π) ⇔ ∀U ∈ Π(v /∈ U ∨ w /∈ U) (3.1)

Proof. First, we show that for any Π ∈ DG, the image φG(Π) is a multicut of G.
Assume the contrary, i.e. there exists a cycle C of G such that |C ∩ φG(Π)| = 1. Let
{u, v} = e ∈ C ∩ φG(Π), then for all U ∈ Π it holds that u /∈ U or v /∈ U . However,
C \ {e} is a sequence of edges {w1, w2}, . . . , {wk−1, wk} such that u = w1, v = wk and
{wi, wi+1} /∈ φG(Π) for all 1 ≤ i ≤ k − 1. Consequently, since Π is a partition of V ,
there exists some U ∈ Π such that

w1 ∈ U ∧ w2 ∈ U ∧ . . . ∧ wk−1 ∈ U ∧ wk ∈ U.

This contradicts w1 = u /∈ U or wk = v /∈ U .
To show injectivity of φG, let Π = {U1, . . . , Uk}, Π′ = {U ′1, . . . , U ′`} be two decompo-

sitions of G. Suppose Π 6= Π′. Then (w.l.o.g.) there exist some u, v ∈ V with {u, v} ∈ E
and some Ui ∈ Π such that u, v ∈ Ui and for all U ′j ∈ Π′ it holds that u /∈ U ′j or v /∈ U ′j.
Thus, {u, v} ∈ φG(Π′) but {u, v} /∈ φG(Π), which means φG(Π) 6= φG(Π′).

For surjectivity, take some multicut M ⊆ E of G. Let Π = {U1, . . . , Uk} collect the
node sets of the connected components of the graph (V,E \M). Apparently, Π defines
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a decomposition of G. We have {u, v} ∈ φG(Π) if and only if for all U ∈ Π it holds
that v /∈ U or u /∈ U . The latter holds true if and only if {u, v} is not contained in
any connected component of (V,E \M), which is equivalent to {v, w} ∈ M . Hence,
φG(Π) = M .

Another reason why multicuts are useful in the study of decompositions is that for
any graph G = (V,E) and any decomposition Π of G, the characteristic function of the
multicut induced by Π is a 0/1 encoding of Π of the fixed length |E|. Such encoding
x ∈ {0, 1}E has to satisfy the cycle constraints (2.1). We denote the set of characteristic
functions of multicuts of G as XG = {x ∈ {0, 1}E|x satisfies (2.1)}.

3.3.1 complete graphs

The decompositions of a complete graph KV := (V,
(
V
2

)
) are precisely the partitions

of the node set V (by Definition 3.1). The multicuts of a complete graph KV relate
one-to-one to the equivalence relations on V :

Lemma 3.3. For any set V and the complete graph KV , the map ψ : MKV
→ 2V×V

defined by (3.2) is a bijection between MKV
and the set of all equivalence relations on V .

∀M ∈MKV
∀v, w ∈ V : (v, w) ∈ ψ(M) ⇔ {v, w} /∈M (3.2)

Proof. First, we show that for any M ∈ MKV
the image ψ(M) is an equivalence

relation on V . Since KV is simple, we trivially have {v, v} /∈ M for any v ∈ V .
Therefore, (v, v) ∈ ψ(M), which means ψ(M) is reflexive. Symmetry of ψ(M) follows
from {u, v} = {v, u} for all u, v ∈ V . Now, suppose (u, v), (v, w) ∈ ψ(M). Then
{u, v, }, {v, w} /∈ M and thus {u,w} /∈ M (otherwise C = {u, v, w} would be a cycle
contradicting the definition of a multicut). Hence, (u,w) ∈ ψ(M), which gives transitivity
of ψ(M).

Let M,M ′ be two multicuts of KV with ψ(M) = ψ(M ′). Then

{u, v} ∈M ⇐⇒ (u, v) /∈ ψ(M)

⇐⇒ (u, v) /∈ ψ(M ′)

⇐⇒ {u, v} ∈M ′.

Hence M = M ′, so ψ is injective.
Let R be an equivalence relation on V and define M by

{u, v} ∈M ⇐⇒ (u, v) /∈ R.

Transitivity of R implies that M is a multicut of KV . Moreover, by definition, it holds
that ψ(M) = R. Hence, ψ is also surjective.
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Figure 3.2: For any connected graph G = (V,E) (top left) and any graph G′ = (V,E′) with
E ⊆ E′ (bottom left), those multicuts of G′ (blue) that are lifted from G (middle) span, as
their convex hull in RE , the lifted multicut polytope w.r.t. G and G′ (right), a 0/1-polytope
that is |E′|-dimensional (Theorem. 3.7).

The bijection between the decompositions of a graph and the multicuts of a graph
(Lemma 3.2) specializes, for complete graphs, to the well-known bijection between the
partitions of a set and the equivalence relations on the set (by Lemma 3.3). In this sense,
decompositions and multicuts of graphs generalize partitions of sets and equivalence
relations on sets.

3.3.2 extension to lifted multicuts

Definition 3.3. For any graphs G = (V,E) and G′ = (V,E ′) with E ⊆ E ′, the composed
map λGG′ := φG′ ◦ φ−1

G is called the lifting of multicuts from G to G′.

For any graphs G = (V,E) and G′ = (V,E ′) with E ⊆ E ′, we introduce the notation
FGG′ := E ′ \ E, for brevity.

Lemma 3.4. For any connected graph G = (V,E), any graph G′ = (V,E ′) with E ⊆ E ′

and any x ∈ {0, 1}E′, the set x−1(1) is a multicut of G′ lifted from G iff

∀C ∈ cycles(G)∀e ∈ C : xe ≤
∑

e′∈C\{e}

xe′ (3.3)

∀vw ∈ FGG′ ∀P ∈ vw-paths(G) : xvw ≤
∑
e∈P

xe (3.4)

∀vw ∈ FGG′ ∀C ∈ vw-cuts(G) : 1− xvw ≤
∑
e∈C

(1− xe) (3.5)

Proof. Let x ∈ {0, 1}E′ be such thatM ′ = x−1(1) is a multicut of G′ lifted from G. Every
cycle in G is a cycle in G′. Moreover, for any path vw = f ∈ FGG′ and any vw-path P
in G, it holds that P ∪ {f} is a cycle in G′. Therefore, x satisfies all inequalities (3.3)
and (3.4). Assume x violates some inequality of (3.5). Then there is an edge vw ∈ FGG′
and some vw-cut C in G such that xvw = 0 and for all e ∈ C we have xe = 1. Let Π
be the partition of V corresponding to M ′ according to Lemma 3.2. There exists some
U ∈ Π with v ∈ U and w ∈ U . However, for any uu′ = e ∈ C it holds that u /∈ U
or u′ /∈ U . This means the subgraph (U,E ∩

(
U
2

)
) is not connected, as C is a vw-cut.

Hence, Π is not a decomposition of G, which is a contradiction, because G is connected.
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Now, suppose x ∈ E ′ satisfies all inequalities (3.3)–(3.5). We show first that
M ′ = x−1(1) is a multicut of G′. Assume the contrary, then there is a cycle C ′ in G′
and some edge e′ such that C ′ ∩M ′ = {e′}. For every vw = f ∈ FGG′ ∩ C ′ \ {e′} there
exists a vw-path P in G such that xe = 0 for all e ∈ P . Otherwise there would be
some vw-cut in G violating (3.5), as G is connected. If we replace every such f with its
associated path P in G, then the resulting cycle violates either (3.3) (if e′ ∈ E) or (3.4)
(if e′ ∈ FGG′). Thus, M ′ is a multicut of G′. By connectivity of G, the partition φ−1

G′ (M
′)

is a decomposition of both G′ and G. Therefore, M = λ−1
GG′(M

′) = φG(φ−1
G′ (M

′)) is a
multicut of G and hence M ′ = x−1(1) is indeed lifted from G.

For any graphs G = (V,E) and G′ = (V,E ′) with E ⊆ E ′ we denote by XGG′ the
set of all x ∈ {0, 1}E′ that satisfy (3.3)–(3.5).

3.4 partial lifted multicuts

As the first application of lifted multicuts, we study the classes of decompositions of
a graph definable by must-join and must-cut constraints. For this, we consider partial
functions. For any set E, a partial characteristic function of subsets of E is a function
from any subset F ⊆ E to {0, 1}. With some abuse of notation, we denote the set of all
partial characteristic functions of subsets of E by {0, 1, ∗}E :=

⋃
F⊆E{0, 1}F . For any

x̃ ∈ {0, 1, ∗}E, we denote the domain of x̃ by dom x̃ := x̃−1({0, 1}).
For any connected graph G = (V,E) whose decompositions we care about and any

graph G′ = (V,E ′) with E ⊆ E ′, we consider a partial function x̃ ∈ {0, 1, ∗}E′ . For any
{v, w} ∈ dom x̃, we constrain the nodes v and w to the same component if x̃vw = 0 and
to distinct components if x̃vw = 1.

3.4.1 consistency

A natural question to ask is whether a decomposition of the graph G exists that satisfies
these constraints. We show that this decision problem is NP-complete.

Definition 3.4. For any connected graph G = (V,E), any graph G′ = (V,E ′) with
E ⊆ E ′, and any x̃ ∈ {0, 1, ∗}E′, the elements of

XGG′ [x̃] := {x ∈ XGG′ | ∀e ∈ dom x̃ : xe = x̃e} (3.6)

are called the completions of x̃ in XGG′. In addition, x̃ is called consistent and a partial
characterization of multicuts of G′ lifted from G iff

XGG′ [x̃] 6= ∅ . (3.7)

We denote the set of all partial characterizations of multicuts of G′ lifted from G by

X̃GG′ :=
{
x̃ ∈ {0, 1, ∗}E′

∣∣∣XGG′ [x̃] 6= ∅
}
. (3.8)
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Figure 3.3: An example of a partial characterization of lifted multicut (left) and its possible
completion (right), see Definition 3.4. Lifted edges are depicted in blue. Cut edges are thick
and dashed, join edges are thick and solid. Unlabeled edges are thin and gray.

u w v

Figure 3.4: Examples of inconsistent must-join and must-cut constraints, see Definition 3.4.
Lifted edges are depicted in blue. Cut edges are thick and dashed, join edges are thick and solid.
Unlabeled edges are thin and gray resp. light blue if they are lifted. Red ellipses highlight the
problematic edges.

Figure 3.3 shows an example of partial characterization of lifted multicut and its
possible completion. Figure 3.4 depicts two examples where the must-join and must-cut
constraints are not consistent.

Theorem 3.1. Deciding consistency is NP-complete.

Proof. Firstly, we show that the consistency problem is in NP. For that, we show that
verifying, for any given x ∈ {0, 1}E′ , that x is a completion of x̃ and a characteristic
function of a multicut of G′ lifted from G is a problem of polynomial time complexity.
To verify that x is a completion of x̃, we verify for every e ∈ dom x̃ that xe = x̃e. This
takes time O(|E|). To verify that x−1(1) is a multicut of G′ lifted from G, we employ
a disjoint set data structure initialized with singleton sets V . For any {v, w} ∈ x−1(0),
we call union(v, w). Then, we verify for every {v, w} ∈ x−1(1) that find(v) 6= find(w).
This takes time O(|E|+ |V | log |V |).
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c̄ d̄ e ē

b c c c
a a ā ā

s t

Figure 3.5: To show that the consistency problem is NP-complete (Theorem 3.1), we reduce
3-sat to this problem. Shown above is the instance of the consistency problem constructed for
the instance of 3-sat given by the form (a∨ b∨ c̄)∧ (a∨ c∨ d̄)∧ (ā∨ c∨ e)∧ (ā∨ c∨ ē). Lifted
edges are depicted in blue. Cut edges (x̃e = 1) are thick and dashed, join edges (x̃e = 0) are
thick and solid. Unlabeled edges (e /∈ dom x̃) are thin and gray.

To show that the consistency problem is NP-hard, we reduce 3-sat to this problem.
For that, we consider any instance of 3-sat defined by a propositional logic formula A
in 3-sat form. An example is shown in Figure 3.5. Let m be the number of variables
and n the number of clauses in A.

In order to define an instance of the consistency problem w.r.t. this instance of 3-sat,
we construct in polynomial time a connected graph G = (V,E), a graph G′ = (V,E ′)
with E ⊆ E ′, and a partial characteristic function x̃ ∈ {0, 1, ∗}E′ as described below.
An example of this construction is shown in Figure 3.5.

• There are 3n+ 2 nodes in V . Two nodes are denoted by s and t. Additional nodes
are organized in n layers. For j ∈ {1, . . . , n}, the j-th layer corresponds to the j-th
clause in A, containing one node for each of the three literals3 in the clause. Every
node is labeled with its corresponding literal. Layer 0 contains only the node s. Layer
n+ 1 contains only the node t.

• Any two consecutive layers are connected such that their nodes together induce
a complete bipartite subgraph of G. Additionally, any nodes v and w labeled with
conflicting literals (e.g. a and ā) that are not already connected in G are connected in
G′ by an edge {v, w} ∈ E ′ \ E.

• For any edge {v, w} ∈ E ′ whose nodes v and w are labeled with conflicting literals,
we set x̃vw = 1. In addition, we introduce the edge {s, t} ∈ E ′ \ E and define x̃st = 0.
No other edges are in the domain of x̃.

Observe that x̃ is consistent iff there exists an st-path P in G such that no edge
or chord {v, w} of P is such that x̃vw = 1. Any such path is called feasible. All other
st-paths in G are called infeasible.

Now, we show firstly that the existence of a feasible path implies the existence of
a solution to the given instance of 3-sat. Secondly, we show that the existence of

3A literal is either a variable a or a negated variable ā.
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a solution to the given instance of 3-sat implies the existence of a feasible path. That
suffices.
1. Let P be a feasible path and let VP be its node set. An assignment χ to the variables

of the instance of 3-sat is constructed as follows: For any node v ∈ VP whose label
is a variable a, we define χ(a) := true. For any node v ∈ VP whose label is a negated
variable ā, we define χ(a) := false. All remaining variables are assigned arbitrary
truth values. By the properties of P , χ is well-defined and A[χ] is true.

2. Let χ be a solution to the given instance of 3-sat. As every clause of A contains
one literal that is true, and by the construction of G, we can choose an st-path in G
along which all nodes are labeled with literals that are true for the assignment χ. By
virtue of χ being a solution to the instance of 3-sat, any pair of literals that are both
true are non-conflicting. Thus, P has no edge or chord {v, w} such that x̃vw = 1.

Lemma 3.5. Consistency can be decided efficiently if E ⊆ dom x̃ or

∀vw ∈ dom x̃ \ E : x̃vw = 1 ∨ ∃P ∈ vw-path(G)∀e ∈ P : x̃e = 0 (3.9)

Proof. Firstly, suppose that E ⊆ dom x̃. In this case, it is clear that x̃ is consistent iff x̃
satisfies all cycle inequalities (3.3) w.r.t. the graph (V,E ∩ dom x̃). This can be checked
in time O(|V |+ |E ′|) as follows: Label the maximal components of the subgraph Gx̃ of
G induced by the edge set {e ∈ E : x̃e = 0}. Then, for every {v, w} ∈ E ′ with x̃vw = 1,
check if v and w are in distinct maximal components of Gx̃. If so, x̃ is consistent,
otherwise, x̃ is inconsistent.

Now, suppose x̃ ∈ {0, 1, ∗}E′ satisfies (3.9). We show that, similar to the first case, x̃
is consistent iff all inequalities (3.3) and (3.4) are satisfied w.r.t. the graph (V,E ′∩dom x̃).
This can be checked analogously to the first case.

The necessity of this condition is clear. To show sufficiency, assume this condition
holds true. We construct some x ∈ XGG′ [x̃] as follows. For all e ∈ dom x̃, set xe := x̃e.
For all {v, w} = f ∈ E ′ \ E such that f /∈ dom x̃ and such that there is a vw-path P
in G with x̃e = 0 for all e ∈ P , set xf := 0. For all remaining edges e, set xe := 1. By
construction, x satisfies (3.3), (3.4) and (3.5).

3.4.2 specificity

A less obvious question to ask for any partial characterization x̃ of multicuts of G′ lifted
from G is whether x̃ is maximally specific for its completions in XGG′ . In other words,
is there no edge e ∈ E ′ \ dom x̃ such that, for any completions x, x′ of x̃ in XGG′ , we
have xe = x′e, i.e., an edge that could be included in dom x̃ without changing the set of
completions of x̃ in XGG′? We show that deciding maximal specificity is NP-hard.

Definition 3.5. Let G = (V,E) a connected graph and G′ = (V,E ′) a graph with
E ⊆ E ′. For any x̃ ∈ X̃GG′, the edges

E ′[x̃] := {e ∈ E ′ | ∀x, x′ ∈ XGG′ [x̃] : xe = x′e} (3.10)
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are called decided. The edges E ′ \ E ′[x̃] are called undecided. Moreover, x̃ is called
maximally specific iff4

E ′[x̃] ⊆ dom x̃ . (3.11)

Theorem 3.2. Deciding maximal specificity is NP-hard.

Proof. To show that the maximal specificity problem is NP-hard, we reduce 3-sat
to this problem: For any given instance of 3-sat we construct in polynomial time
a connected graph G = (V,E), a graph G′ = (V,E ′) with E ⊆ E ′, and a partial
characteristic function x̃ ∈ {0, 1, ∗}E′ as in the proof of Theorem 3.1, except that now,
we let st /∈ dom x̃.

We know that x̃ is consistent because the vector of ones 1 ∈ XGG′ [x̃]. We show that
x̃ is maximally specific iff the given instance of 3-sat has a solution:

Firstly, every e ∈ E ′ \ (dom x̃ ∪ {st}) is undecided, by the following argument: (i)
There exists an x ∈ XGG′ [x̃] with xe = 1, namely 1. (ii) There exists an x ∈ XGG′ [x̃]
with xe = 0, namely the x ∈ {0, 1}E′ with xe = 0 and ∀f ∈ E ′ \ {e} : xf = 1. To see
that x ∈ XGG′ [x̃], observe that e ∈ E and x̃−1(0) = ∅. Thus, st is the only edge in
E ′ \ dom x̃ that is possibly decided. That is:

E ′[x̃] ⊆ {st} ∪ dom x̃ (3.12)

Thus, x̃ is maximally specific iff x̃ is undecided. More specifically, x̃ is maximally
specific iff there exists an x ∈ XGG′ [x̃] with xst = 0, as we know of the existence of
1 ∈ XGG′ [x̃]. Thus, x̃ is maximally specific iff the given instance of 3-sat has a solution,
by the arguments made in the proof of Theorem 3.1.

Below, we justify the term maximal specificity and define an operation that maps
any partial characterization of lifted multicuts to one that is maximally specific.

Definition 3.6. For any connected graph G = (V,E) and any graph G′ = (V,E ′) with
E ⊆ E ′, the relation ≤ on X̃GG′ defined by (3.13) is called the specificity of partial
characterizations of multicuts of G′ lifted from G.

∀x̃, x̃′ ∈ X̃GG′ : x̃ ≤ x̃′ ⇔ dom x̃ ⊆ dom x̃′ ∧ ∀e ∈ dom x̃ : x̃e = x̃′e (3.13)

Lemma 3.6. For any connected graph G = (V,E) and any graph G′ = (V,E ′) with
E ⊆ E ′, specificity is a partial order on X̃GG′.

Proof. Reflexivity is obvious. Antisymmetry: (x̃ ≤ x̃′ ∧ x̃′ ≤ x̃)⇒ (dom x̃ = dom x̃′ ∧
∀e ∈ dom x̃ : x̃e = x̃′e). Transitivity: Let x̃ ≤ x̃′ ≤ x̃′′. Then dom x̃ ⊆ dom x̃′ ⊆ dom x̃′′

and ∀e ∈ dom x̃ : x̃e = x̃′e = x̃′′e .

4Note that (3.11) is equivalent to E′[x̃] = dom x̃, as E′[x̃] ⊇ dom x̃ holds by definition of E′[x̃].
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Figure 3.6: Example of a partial characterization of lifted multicut (left) and its closure (right),
see Definition 3.7. Lifted edges are depicted in blue. Cut edges (x̃e = 1) are thick and dashed,
join edges (x̃e = 0) are thick and solid. Unlabeled edges (e /∈ dom x̃) are thin and gray resp.
light blue if they are lifted.

Note that two partial characterizations x̃, x̃′ ∈ X̃GG′ with the same completions
XGG′ [x̃] = XGG′ [x̃

′] need not be comparable w.r.t. ≤. For example, consider the graphs
G,G′ from Figure 3.2, consider x̃ : e1 7→ 0, e2 7→ 0 and x̃′ : f 7→ 0. Nevertheless, we
have the following lemma.

Lemma 3.7. For any connected graph G = (V,E), any graph G′ = (V,E ′) with E ⊆ E ′,
any x̃ ∈ X̃GG′ and

X̃GG′ [x̃] :=
{
x̃′ ∈ X̃GG′

∣∣∣XGG′ [x̃
′] = XGG′ [x̃]

}
(3.14)

a maximum of X̃GG′ [x̃] w.r.t. ≤ exists and is unique. Moreover, x̃ is maximally specific
in the sense of Definition 3.5 iff x̃ is maximal w.r.t. ≤ in X̃GG′ [x̃].

Proof. We show first that x̃′ is maximal w.r.t. ≤ in X̃GG′ [x̃] iff it is maximally specific.
This implies the existence and uniqueness of the maximum of X̃GG′ [x̃] by construction
via dom x̃′ = E ′[x̃].

Let x̃′ ∈ X̃GG′ [x̃] be maximally specific and suppose x̃′ ≤ x̃′′ for some x̃′′ ∈ X̃GG′ [x̃].
Then dom x̃′′ = dom x̃′, since XGG′ [x̃

′] 6= XGG′ [x̃
′′] if dom x̃′′ \ E ′[x̃] 6= ∅. Thus, x̃′ = x̃′′,

which means x̃′ is maximal w.r.t. ≤ in X̃GG′ [x̃].
Conversely, any maximal element x̃′ of X̃GG′ [x̃] w.r.t. ≤ must satisfy E ′[x̃] ⊆ dom x̃′,

which means it is maximally specific.
Hence, the unique maximum x̃′ ∈ X̃GG′ [x̃] is obtained as follows. For an arbitrary

x ∈ XGG′ [x̃] define x̃′ via x̃′e := xe for all decided edges e ∈ E ′[x̃].

Definition 3.7. Let G = (V,E) be a connected graph and let G′ = (V,E ′) be a graph
with E ⊆ E ′. For any x̃ ∈ X̃GG′, we call the unique maximum of X̃GG′ [x̃] w.r.t. ≤ the
closure of x̃ w.r.t. G and G′ and denote it by clGG′ x̃.

We denote by X̂GG′ the set of all maximally specific partial characterizations of
multicuts of G′ lifted from G, i.e.:

X̂GG′ :=
{
x̃ ∈ X̃GG′

∣∣∣ x̃ = clGG′ x̃
}
. (3.15)
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Figure 3.6 shows an example of a partial characterization of lifted multicut together
with its closure.

Theorem 3.3. For any x̃, x̃′ ∈ X̃GG′, we have XGG′ [x̃] = XGG′ [x̃
′] ⇔ X̃GG′ [x̃] =

X̃GG′ [x̃
′]⇔ clGG′ x̃ = clGG′ x̃

′.

Proof. Let us have x̃, x̃′ ∈ X̃GG′ .
• The implicationXGG′ [x̃] = XGG′ [x̃

′]⇒ X̃GG′ [x̃] = X̃GG′ [x̃
′] : follows from the definition

of X̃GG′ [x̃] in Lemma 3.7.

• The implication X̃GG′ [x̃] = X̃GG′ [x̃
′]⇒ clGG′ x̃ = clGG′ x̃

′ follows from the definition
of the closure of x̃ as the maximum of X̃GG′ [x̃].

• The implication clGG′ x̃ = clGG′ x̃
′ ⇒ XGG′ [x̃] = XGG′ [x̃

′] follows from clGG′ x̃ =
clGG′ x̃

′ ∈ X̃GG′ [x̃].

Lemma 3.8. For any connected graph G = (V,E), any graph G′ = (V,E ′) with E ⊆ E ′

and any x ∈ XG, the closure y := clGG′ x of x w.r.t. G and G′ coincides with the lifting
of the multicut x−1(1) of G to the multicut y−1(1) of G′, i.e.

(clGG′ x)−1(1) = λGG′(x
−1(1)) . (3.16)

Proof. Let x ∈ XG and define y = clGG′ x. Since domx = E, it holds that E ′[x] = E ′, i.e.
all edges are decided. Therefore, y−1(1) is a multicut of G′ and for all {v, w} = f ∈ E ′\E
it holds that yf = 0 iff there is a vw-path P in G such that xe = 0 for all e ∈ P . By
Lemma 3.4, this implies y−1(1) = λGG′(x

−1(1)).

Theorem 3.4. Computing closures is NP-hard.

Proof. Computing closures is at least as hard as deciding maximal specificity: To decide
maximal specificity of x̃ ∈ X̃GG′ , compute its closure clGG′ x̃. Then x̃ is maximally
specific iff dom x̃ = dom clGG′ x̃, i.e., if x̃ = clGG′ x̃. By Theorem 3.2, this means
computing closures is NP-hard.

Lemma 3.9. In the special case that E ′ = E or E ⊆ dom x̃, the closure can be computed
efficiently.

Proof. Let x̃ ∈ X̃GG′ and ỹ = clGG′ x̃.
Suppose first that E = E ′. We describe how to compute ỹ efficiently. Obviously,

we must set ỹe = x̃e for all e ∈ dom x̃. Furthermore, we must set ỹvw = 0 for all
{v, w} ∈ E \ dom x̃ such that there is a vw-path P in G with x̃e = 0 for all e ∈ P .
Moreover, we must set ỹvw = 1 for all {v, w} ∈ E \ dom x̃ that satisfy

∃P ∈ vw-paths(G) ∃e ∈ P : x̃e = 1 ∧ ∀e′ ∈ P \ {e} : x̃e′ = 0 . (3.17)
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Therefore, initialize a disjoint-set data structure with singleton sets V . Apply the union
operation on all edges e ∈ dom x̃ where x̃e = 0, i.e. contract all 0-labeled edges. Then,
set ỹe = 0 for all edges that connect nodes of the same component. If there is an
edge e′ between two components such that x̃e′ = 1, then for all edges e between those
components set ỹe = 1. The remaining edges are undecided by x̃. In case we only want
to decide maximal specificity, we can stop upon finding the first edge e ∈ dom ỹ \ dom x̃.

Now suppose that E ⊆ dom x̃. In this case, all edges are decided, because x̃|E ∈ XG.
According to Lemma 3.8, the closure ỹ corresponds to the lifting of x̃|E to G′. Therefore,
to obtain ỹ, compute the decomposition of G associated to x̃|E using, e.g., a disjoint-set
data structure. Set ỹe = 0 if e is an edge within a component. Set ỹe = 1 if e is an edge
between components.

Lemma 3.10. Maximal specificity can be decided efficiently if E ′ = E or E ⊆ dom x̃.

Proof. Observe that x̃ is maximally specific iff clGG′ x̃ = x̃. Thus, Lemma 3.10 follows
from Lemma 3.9.

3.5 metrics

3.5.1 metrics on decompositions

As the second application of lifted multicuts, we compare decompositions of a given
graph by comparing lifted multicuts that characterize these decompositions. We compare
these lifted multicuts by comparing their characteristic functions by Hamming metrics:
For any E ′ 6= ∅ and any e ∈ E ′, we define d1

e, d
1
E′ : {0, 1}E′ ×{0, 1}E′ → N+

0 by the forms

d1
e(x, x

′) =

{
0 ifxe = x′e
1 otherwise

(3.18)

d1
E′(x, x

′) =
∑
e∈E′

d1
e(x, x

′) . (3.19)

Theorem 3.5. For any connected graph G = (V,E), any graph G′ = (V,E ′), any
µ : E ′ → R+, the set E ′′ := E ∪ E ′ and the graph G′′ := (V,E ′′), the function
dµE′ : XGG′′ × XGG′′ → R+

0 of the form (3.20) is a pseudo-metric on XGG′′. dµE′ is
a metric on XGG′′ iff G′ is a supergraph of G (i.e. iff E ⊆ E ′).

dµE′(x, x
′) :=

∑
e∈E′

µe d
1
e(x, x

′) (3.20)

Proof. Symmetry and non-negativity follow directly from the definition, and so does
dµE′(x, x) = 0 for all x ∈ XGG′′ . For any e ∈ E ′, the form d1

e on E ′ × E ′ is a Hamming
metric on words of length 1 from the alphabet {0, 1}. Therefore, it satisfies the triangle
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inequality. Hence, for any x, y, z ∈ XGG′′ :

dµE′(x, z) =
∑
e∈E′

µed
1
e(x, z) ≤

∑
e∈E′

µe(d
1
e(x, y) + d1

e(y, z)) =

=
∑
e∈E′

µed
1
e(x, y) +

∑
e∈E′

µed
1
e(y, z) = dµE′(x, y) + dµE′(y, z) . (3.21)

Thus, dµE′ is a pseudo-metric on XGG′′ .
If E ⊆ E ′, then G′ = G′′ and thus, XGG′′ = XGG′ ⊆ XG′ . For any two x, x′ ∈

XGG′′ ⊆ XG′ , it holds that dµE′(x, x
′) = 0 iff d1

e(x, x
′) = 0 for all e ∈ E ′, i.e. iff x = x′.

Conversely, suppose there exists some e ∈ E \ E ′. Define x, x′ ∈ XGG′′ via xe′ = x′e′ = 1
for all e′ ∈ E ′′ \ {e} and xe = 1, x′e = 0. It holds that x 6= x′ but dµE′(x, x

′) = 0.

By the one-to-one relation between decompositions and multicuts (Lemma 3.2), dµE′
induces a pseudo-metric on the set DG of all decompositions of G. Two special cases
are well-known: For E ′ = E and µ = 1, we have dµE′ = d1

E, which is the Hamming
metric (3.19) on the multicuts that characterize the decompositions, also known as the
boundary metric on decompositions. For E ′ =

(
V
2

)
and µ = 1, d1

E′ specializes to the
metric of Rand (1971). Between these extremes, i.e., for E ⊆ E ′ ⊆

(
V
2

)
, the metric dµE′

can be used to analyze more specifically how two decompositions of the same graph differ.
We propose an analysis w.r.t. the distance δvw of nodes v and w in G, i.e., w.r.t. the
length of the shortest vw-path in G. For this, we denote by δG := max{δvw : vw ∈

(
V
2

)
}

the diameter of G.

Definition 3.8. For any connected graph G = (V,E) and any n ∈ N, let E[n] := {vw ∈(
V
2

)
| δvw = n} the set of pairs of nodes of distance n in G. Moreover, let µn : E[n]→ Q+

the constant function that maps any vw ∈ E[n] to 1/|E[n]|. For any connected graph
G = (V,E), we call the sequence (

dµ
n

E[n]

)
n∈{1,...,δG}

(3.22)

the spectrum of pseudo-metrics on decompositions of G. For E ′ :=
(
V
2

)
and µ : E ′ →

Q+ : vw 7→ 1/(δG|E[δvw]|), we call the metric dµE′ the δ-metric on decompositions of G.

An example of a spectrum of pseudo-metrics is depicted in Figure 3.7. For any
two decompositions Π,Π′ of a connected graph G and suitable lifted multicuts x, x′
characterizing these decompositions, dµ

n

E[n](x, x
′) equals the fraction of pairs of nodes at

distance n in G that are either cut by Π and joined by Π′, or cut by Π′ and joined by Π.
That is, the pseudo-metric dµ

n

E[n] compares decompositions of G specifically w.r.t. the
distance n in G. The δ-metric compares decompositions w.r.t. all distances, and each
distance is weighted equally. This is in contrast to the Rand metric which is also
a comparison w.r.t. all distances but each distance is weighted by the number of pairs
of nodes that have this distance.
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Figure 3.7: Depicted are two decompositions of the pixel grid graph of an image, all from
Arbeláez et al. (2011), along with the spectrum of pseudo-metrics of these decompositions
(Definition 3.8).

3.5.2 metrics on classes of decompositions

We compare classes of decompositions definable by must-join and must-cut constraints by
comparing partial lifted multicuts that characterize these decompositions. To compare
partial lifted multicuts, we compare their partial characteristic functions by an extension
of the Hamming metric: For any E ′ 6= ∅, any e ∈ E ′ and any θ ∈ R+

0 , we define
dθe, d

θ
E′ : {0, 1, ∗}E′ × {0, 1, ∗}E′ → R+

0 such that for all x̃, x̃′ ∈ {0, 1, ∗}E′ :

dθe(x̃, x̃
′) =


1 if e ∈ dom x̃ ∧ e ∈ dom x̃′ ∧ x̃e 6= x̃′e
0 if e ∈ dom x̃ ∧ e ∈ dom x̃′ ∧ x̃e = x̃′e
0 if e /∈ dom x̃ ∧ e /∈ dom x̃′

θ otherwise

(3.23)

dθE′(x̃, x̃
′) =

∑
e∈E′

dθe(x̃, x̃
′) . (3.24)

Theorem 3.6. For any connected graph G = (V,E), any graph G′ = (V,E ′) with
E ⊆ E ′ and any θ ∈ [1

2
, 1], the function d̃θE′ : X̃GG′ × X̃GG′ → R+

0 of the form

d̃θE′(x̃, x̃
′) := dθE′(clGG′ x̃, clGG′ x̃

′) (3.25)

is a pseudo-metric on X̃GG′ and a metric on X̂GG′. Moreover, for any x̃, x̃′ ∈ X̃GG′:

X̃GG′ [x̃] = X̃GG′ [x̃
′] ⇔ d̃θE′(x̃, x̃

′) = 0 . (3.26)

Proof. We first prove that d̃θE′ is a metric on X̂GG′ . For any x̃ ∈ X̂GG′ , we have
clGG′ x̃ = x̃. Thus, for all x̃, x̃′ ∈ X̂GG′ , we have d̃θE′(x̃, x̃′) = dθE′(x̃, x̃

′). Therefore,
positive definiteness and symmetry are obvious from the definition of dθE′(x̃, x̃′). To
establish the triangle inequality for dθE′ , we prove it for θd1

e and any edge e ∈ E ′. Let
x̃, ỹ, z̃ ∈ X̂GG′ and consider the inequality

θd1
e(x̃, z̃) ≤ θd1

e(x̃, ỹ) + θd1
e(ỹ, z̃). (3.27)
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x̃e ỹe z̃e lhs rhs

0 0 0 0 0
1 1 1 0 0
* * * 0 0
0 * 1 1 2θ
0 1/0 1 1 1
0 0/* * θ θ
1 1/* * θ θ

Table 3.1: The left- and right-hand side of the inequality θd1
e(x̃, z̃) ≤ θd1

e(x̃, ỹ)+θd1
e(ỹ, z̃) for all

possible combinations of values x̃e, ỹe, z̃e where x̃, ỹ, z̃ ∈ X̂GG′ . The right-hand side is always
greater or equal to the left-hand side iff 0.5 ≤ θ.

In Table 3.1, the left-hand side and right-hand side of (3.27) are evaluated for all possible
assignments of values to x̃e, ỹe, z̃e. It is obvious from this table that (3.27) holds iff
θ ≥ 0.5.

We now show that d̃θE′ is a pseudo-metric on X̃GG′ . Symmetry and non-negativity
are obvious from the definition. For all x̃ ∈ X̃GG′ , we have d̃θE′(x̃, x̃) = 0. Since
d̃θE′(x̃, x̃

′) = d̃θE′(clGG′ x̃, clGG′ x̃
′) and clGG′ x̃ ∈ X̂GG′ for any x̃ ∈ X̃GG′ , the triangle

inequality follows from the fact that d̃θE′ is a metric on X̂GG′ .
Finally, it holds that d̃θE′(x̃, x̃′) = 0 iff clGG′ x̃ = clGG′ x̃

′, which in turn is equivalent
to X̃GG′ [x̃] = X̃GG′ [x̃

′], by Theorem 3.3. This proves property (3.26).

By the one-to-one relation between decompositions and multicuts (Lemma 3.2), every
partial characterization of a lifted multicut x̃ ∈ X̃GG′ defines a class of decompositions of
the graph G, namely those defined by the lifted multicuts characterized by XGG′ [x̃]. By
Theorem 3.6, d̃θE′ with θ ∈ [1

2
, 1] well-defines a metric on these classes of decompositions

and hence a means of comparing the classes of decompositions definable by must-join
and must-cut constraints. Computing d̃θE′(x, x′) involves computing the closures of x
and x′ and is therefore NP-hard (by Theorem 3.4).

3.6 polyhedral optimization

As the third and final application of lifted multicuts, we turn to the optimization of
graph decompositions by lifted multicuts of minimum cost. We start with repeating the
definitions of minimum cost multicut and lifted multicut problems.

Definition 2.1. (MC) For any connected graph G = (V,E), and any c : E → R,
the instance of the minimum cost multicut problem w.r.t. G and c is the optimization
problem

min
x∈XG

∑
e∈E

cexe . (MC)
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Figure 3.8: Depicted in (a) are two graphs G and G′ with costs c = (−1,−1, 3). Depicted
in (b) is the optimal solution of the minimum cost lifted multicut problem (Definition 2.3)
w.r.t. graphs G, G′. Here, the cost 3 attributed to the additional edge in G′ results in the
edges e1 and e2 not being cut in the optimum (0, 0, 0) which has cost 0. Depicted in (c) is the
optimal solution of minimum cost multicut w.r.t. graph G′ (Definition 2.1). Here, the cost 3
does not prevent the edges e1 and e2 from being cut in the optimum (1, 1, 0) which has cost
−2.

Definition 2.3. (LMC) Given graph G = (V,E) and lifted graph G′ = (V,E ′) where
E ⊆ E ′ ⊆

(
V
2

)
and a cost function c : E ′ → R, the 0/1 linear program written below is

called an instance of the Minimum Cost Lifted Multicut Problem w.r.t. G,G′, and c.

min
x∈XGG′

∑
e∈E′

cexe (LMC)

If E ′ = E, (LMC) specializes to the minimum cost multicut problem (MC) w.r.t. G′
and c. If E ′ ⊃ E, the minimum cost lifted multicut problem w.r.t. G, G′ and c differs
from the minimum cost multicut problem w.r.t. G′ and c. It has a smaller feasible set
XGG′ ⊂ XG′ , as we have shown in Section 3.3 and depicted for the smallest example in
Figures 3.1 and 3.2. Unlike the minimum cost multicut problem w.r.t. G′ and c, the
minimum cost lifted multicut problem w.r.t. G, G′ and c is such that any feasible solution
x ∈ XGG′ indicates by xvw = 0 that the nodes v and w are connected in G by a path of
edges labeled 0. See also Figure 3.8. This property can be used to penalize by cvw > 0
precisely those decompositions of G for which v and w are in distinct components. For
nodes v and w that are not neighbors in G, such costs are sometimes called non-local
attractive.

In order to solve instances of the apx-hard minimum cost lifted multicut problem
by means of a branch and cut algorithm, it is useful to study the geometry of lifted
multicut polytopes.

Definition 3.9. (Deza and Laurent, 1997) For any graph G = (V,E), the convex hull
ΞG := convXG of XG in RE is called the multicut polytope of G.

Definition 3.10. For any connected graph G = (V,E) and any graph G′ = (V,E ′) with
E ⊆ E ′, ΞGG′ := convXGG′ is called the lifted multicut polytope w.r.t. G and G′.

Examples are shown in Figures 3.1 and 3.2, respectively. In general, the lifted
multicut polytope ΞGG′ w.r.t. graphs G and G′ (Figure 3.2) is a subset of the multicut
polytope ΞG′ of the graph G′ (Figure 3.1). By Lemma 3.4, the system of cycle inequalities
(2.1) for G′ and cut inequalities (3.5) for G and G′ is redundant as a description of XGG′

and thus of ΞGG′ . Below, we study the geometry of ΞGG′ .
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3.6.1 dimension

Theorem 3.7. For any connected graph G = (V,E) and any graph G′ = (V,E ′) with
E ⊆ E ′, dΞGG′ = |E ′|.

We prove Theorem3.7 by constructing |E ′|+ 1 multicuts of G′ lifted from G whose
characteristic functions are affine independent points. The strategy is to construct, for
any e ∈ E ′, an x ∈ XGG′ with xe = 0 and “as many ones as possible”. The challenge
is that edges cannot be labeled independently. In particular, for f ∈ FGG′ , xf = 0
can imply, for certain f ′ ∈ FGG′ \ {f}, that xf ′ = 0, as illustrated in Figure 3.9. This
structure is made explicit below, in Definition 3.11 and 3.12 and Lemmata 3.11 and 3.12.

Definition 3.11. For any connected graph G = (V,E) and any graph G′ = (V,E ′) such
that E ⊆ E ′, the sequence (Fn)n∈N of subsets of FGG′ defined below is called the hierarchy
of FGG′ with respect to G:
1. F0 = ∅

2. For any n ∈ N and any {v, w} = f ∈ FGG′: {v, w} ∈ Fn iff there exists a vw-path in
G such that, for any distinct nodes v′ and w′ in the path such that {v′, w′} 6= {v, w},
either {v′, w′} 6∈ FGG′ or there exists a natural number j < n such that {v′, w′} ∈ Fj.

Lemma 3.11. For any connected graph G = (V,E), any graph G′ = (V,E ′) with E ⊆ E ′

and any f ∈ FGG′, there exists an n ∈ N such that f ∈ Fn.

Proof. Let {v, w} = f ∈ FGG′ and let d(v, w) the length of a shortest vw-path in G.
Then, d(v, w) > 1 because FGG′ ∩ E = ∅.

If d(v, w) = 2, there exists a u ∈ V such that {v, u} ∈ E and {u,w} ∈ E. Moreover,
{v, u} /∈ FGG′ and {u,w} /∈ FGG′ , as FGG′ ∩ E = ∅. Thus, f ∈ F1.

If d(v, w) = m with m > 2, consider any shortest vw-path P in G. Moreover, let
F ′ ⊆ FGG′ such that, for any {v′, w′} = f ′ ∈ FGG′ , f ′ ∈ F ′ iff v′ ∈ P and w′ ∈ P and
f ′ 6= f . If F ′ = ∅ then f ∈ F1. Otherwise:

∀{v′, w′} ∈ F ′ : d(v′, w′) < m (3.28)

and thus:

∀f ′ ∈ F ′ ∃nf ′ ∈ N : f ′ ∈ Fnf ′
(3.29)

by induction (over m). Let

n = max
f ′∈F ′

nf ′ . (3.30)

Then, f ∈ Fn+1.

Definition 3.12. For any connected graph G = (V,E) and any graph G′ = (V,E ′) with
E ⊆ E ′, the map ` : FGG′ → N such that ∀f ∈ FGG′∀n ∈ N : `(f) = n⇔ f ∈ Fn ∧ f 6∈
Fn−1 is called the level function of FGG′.
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Figure 3.9: If two nodes {v, w} = f ∈ FGG′ are in the same component, as indicated by xf = 0,
this can imply xf ′ = 0 for one or more f ′ ∈ F \{f}. In (a) xf3 = 0 implies xf1 = 0 and xf2 = 0.
In (b) xf3 = 0 implies xf1 = 0 or xf2 = 0.

Lemma 3.12. For any connected graph G = (V,E), any graph G′ = (V,E ′) with E ⊆ E ′

and for any f ∈ FGG′, there exists an x ∈ XGG′, called f -feasible, such that
1. xf = 0

2. xf ′ = 1 for all f ′ ∈ FGG′ \ {f} with `(f ′) ≥ `(f).

Proof. For any {v, w} = f ∈ FGG′ , let P be a shortest vw-path in G and let

F ′GG′ := {{v′, w′} ∈ FGG′ | v′ ∈ P ∧ w′ ∈ P} (3.31)
F ′′GG′ := FGG′ \ F ′GG′ . (3.32)

Moreover, let x ∈ {0, 1}E′ with xP = 0 and xE\P = 1 and xF ′
GG′

= 0 and xF ′′
GG′

= 1. P
has no chord in E, because it is a shortest path. Thus, x ∈ XGG′ .

Proof of Theorem 3.7. The all-one vector 1 ∈ {0, 1}E′ is such that 1 ∈ XGG′ .
For any e ∈ E, xe ∈ {0, 1}E′ such that xee = 0 and xeE\{e} = 1 and xeFGG′

= 1 holds
xe ∈ XGG′ .

For any f ∈ FGG′ , any f -feasible xf ∈ {0, 1}E
′ is such that xf ∈ XGG′ . Moreover, xf

can be chosen such that one shortest path connecting the two nodes in f is the only
component containing more than one node.

For any e ∈ E, let ye ∈ RE′ such that

ye = 1− xe . (3.33)

For any f ∈ F1, choose an f -feasible xf and let yf ∈ RE′ such that

yf = 1− xf −
∑

{e∈E|xfe=0}

ye . (3.34)

For any n ∈ N such that n > 1 and any f ∈ Fn, choose an f -feasible xf and let
yf ∈ RE′ such that

yf = 1− xf −
∑

{f ′∈FGG′ |f ′ 6=f∧x
f

f ′=0}

yf
′ −

∑
{e∈E|xfe=0}

ye . (3.35)
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Here, `(f ′) < `(f) ≤ n, by definition of f -feasibility. Thus, all yf ′ are well-defined
by induction (over n).

Observe that {ye | e ∈ E ′} is the unit basis in RE′ . Moreover, each of its elements is
a linear combination of {1− xe | e ∈ E ′} which is therefore linearly independent.

Thus, {1} ∪ {xe | e ∈ E ′} is affine independent. It is also a subset of XGG′ and,
therefore, a subset of ΞGG′ . Thus, dΞGG′ = |E ′|.

3.6.2 facets

Next, we study the facets of ΞGG′ . In particular, we consider the facets defined by
cut inequalities (3.5). Facets corresponding to other types of inequalities are studied
in Horňáková et al. (2017). Examples of cuts that are not facet-defining for ΞGG′ are
shown in Figure 3.11. To constrain the class of cuts that are facet-defining, we introduce
additional notation: For any connected graph G = (V,E), any distinct nodes v, w ∈ V
and any C ∈ vw-cuts(G), we denote by

G(v, C) = (V (v, C), E(v, C)), G(w,C) = (V (w,C), E(w,C)) (3.36)

the largest components of the graph (V,E \ C) that contain v and w, respectively. By
definition of a vw-cut5, we have

V (v, C) ∩ V (w,C) = ∅ ∧ V (v, C) ∪ V (w,C) = V . (3.37)

We denote by FGG′(vw,C) the set of those edges in FGG′ , except vw, that cross the
vw-cut C of G, i.e.

FGG′(vw,C) := {f ∈ FGG′ \ {vw} | f 6⊆ V (v, C) ∧ f 6⊆ V (w,C)} . (3.38)

We denote by G′(vw,C) := (V, FGG′(vw,C) ∪ C) the subgraph of G′ that comprises all
edges from FGG′(vw,C) and C. Finally, we define

SGG′(vw,C) :=

{
x ∈ XGG′

∣∣∣∣∣1− xvw =
∑
e∈C

(1− xe)

}
(3.39)

ΣGG′(vw,C) := convSGG′(vw,C) . (3.40)

Definition 3.13. For any connected graph G = (V,E), any distinct v, w ∈ V and any
C ∈ vw-cuts(G), a component (V ∗, E∗) of G is called properly (vw,C)-connected iff

v ∈ V ∗ ∧ w ∈ V ∗ ∧ |E∗ ∩ C| = 1 . (3.41)

It is called improperly (vw,C)-connected iff

V ∗ ⊆ V (v, C) ∨ V ∗ ⊆ V (w,C) . (3.42)

It is called (vw,C)-connected iff it is properly or improperly (vw,C)-connected.
5For any graph G = (V,E) and any distinct nodes v, w ∈ V , a vw-cut of G is a minimal (with

respect to inclusion) set C ⊆ E such that v and w are not connected in (V,E \ C).
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For any (vw,C)-connected component (V ∗, E∗) of G, we denote by FV ∗ := {v′w′ =
f ′ ∈ FGG′(vw,C) | v′ ∈ V ∗ ∧ w′ ∈ V ∗} the set of those edges v′w′ = f ′ ∈ FGG′(vw,C)
such that (V ∗, E∗) is also (v′w′, C)-connected.

Proposition 3.1. For every connected graph G = (V,E), every graph G′ = (V,E ′) with
E ⊆ E ′, every vw ∈ FGG′ and every C ∈ vw-cuts(G), the following holds:
1. Every x ∈ SGG′(vw,C) defines a decomposition of G into (vw,C)-connected com-

ponents. That is, every maximal component of the graph (V, {e ∈ E|xe = 0}) is
(vw,C)-connected. At most one of these is properly (vw,C)-connected. It exists iff
xvw = 0.

2. For every (vw,C)-connected component (V ∗, E∗) of G, the x ∈ {0, 1}E′ such that
∀rs ∈ E ′(xrs = 0⇔ r ∈ V ∗ ∧ s ∈ V ∗) is such that x ∈ SGG′(vw,C).

Proof. 1. Let x ∈ SGG′(vw,C) arbitrary. Let E0 := {e ∈ E|xe = 0} and let G0 :=
(V,E0).

If xvw = 1 then ∀e ∈ C : xe = 1, by (3.39). Thus, every component of G0 is
improperly (vw,C)-connected.

If xvw = 0 then

∃e ∈ C(xe = 0 ∧ ∀e′ ∈ C \ {e}(xe′ = 1)) (3.43)

by (3.39). Let (V ∗, E∗) the maximal component of G0 with

e ∈ E∗ . (3.44)

Clearly:

∀e′ ∈ C \ {e} : e′ /∈ E∗ (3.45)

by (3.43) and definition of G0. There does not exist a C ′ ∈ vw-cuts(G) with xC′ = 1,
because this would imply xvw = 1, by (3.5). Thus, there exists a P ∈ vw-paths(G)
with xP = 0, as G is connected. Any such path P has e ∈ P , as P ∩ C 6= ∅ and
C ∩ E0 = {e} and P ⊆ E0. Thus:

v ∈ V ∗ ∧ w ∈ V ∗ (3.46)

by (3.44). (V ∗, E∗) is properly (vw,C)-connected, by (3.44), (3.45) and (3.46). Any
other component of G0 does not cross the cut, by (3.43), (3.44) and definition of G0,
and is thus improperly (vw,C)-connected.

2. We have

∀st ∈ E : xst = 0⇔ st ∈ E∗ (3.47)

by the following argument:

• If st ∈ E∗, then s ∈ V ∗ ∧ t ∈ V ∗, as (V ∗, E∗) is a graph. Thus, xst = 0, by
definition of x.
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• If st /∈ E∗ then s /∈ V ∗ ∨ t /∈ V ∗, as (V ∗, E∗) is a component of G. Thus, xst = 1,
by definition of x.

Consider the decomposition of G into (V ∗, E∗) and singleton components. E1 := {e ∈
E|xe = 1} is the set of edges that straddle distinct components of this decomposition,
by (3.47). Therefore, E1 is a multicut of G, by Lemma 3.2. Thus, (3.3) holds.

For any st ∈ FGG′ and any P ∈ st-paths(G), distinguish two cases:

• If P ⊆ E∗, then s ∈ V ∗ ∧ t ∈ V ∗, as (V ∗, E∗) is a graph. Thus, xst = 0, by
definition of x. Moreover, xP = 0, by (3.47). Hence, (3.4) evaluates to 0 = 0.

• Otherwise, there exists an e ∈ P such that e /∈ E∗. Therefore, xe = 1, by (3.47).
Thus, (3.4) holds, as the r.h.s. is at least 1.

For any st ∈ FGG′ and any C ′ ∈ st-cuts(G), distinguish two cases:

• If C ′ ∩ E∗ = ∅ then s /∈ V ∗ ∨ t /∈ V ∗. Therefore, xst = 1, by definition of x.
Moreover, xC′ = 1, by (3.47). Thus, (3.5) evaluates to 0 = 0.

• Otherwise, there exists an e ∈ C ′ such that e ∈ E∗. Therefore, xe = 0, by (3.47).
Thus, (3.5) holds, as the r.h.s. is at least 1.

Theorem 3.8. For any connected graph G = (V,E), any graph G′ = (V,E ′) with
E ⊆ E ′, any vw = f ∈ FGG′ and any C ∈ vw-cuts(G), ΣGG′(vw,C) is a facet of ΞGG′

only if the following necessary conditions hold:
1. For any e ∈ C, there exists a (vw,C)-connected component (V ∗, E∗) of G such that

e ∈ E∗.

2. For any ∅ 6= F ⊆ FGG′(vw,C), there exists an edge e ∈ C and (vw,C)-connected
components (V ∗, E∗) and (V ∗∗, E∗∗) of G such that e ∈ E∗ and e ∈ E∗∗ and |F ∩
FV ∗ | 6= |F ∩ FV ∗∗|.

3. For any f ′ ∈ FGG′(vw,C), any ∅ 6= F ⊆ FGG′(vw,C)\{f ′} and any k ∈ N, there exist
(vw,C)-connected components (V ∗, E∗) and (V ∗∗, E∗∗) with f ′ ∈ FV ∗ and f ′ /∈ FV ∗∗
such that

|F ∩ FV ∗ | 6= k or |F ∩ FV ∗∗| 6= 0 . (3.48)

4. For any v′ ∈ V (v, C), any w′ ∈ V (w,C) and any v′w′-path P = (VP , EP ) in
G′(vw,C), there exists a properly (vw,C)-connected component (V ∗, E∗) of G such
that

(v′ /∈ V ∗ ∨ ∃w′′ ∈ VP ∩ V (w,C) : w′′ /∈ V ∗)
∧ (w′ /∈ V ∗ ∨ ∃v′′ ∈ VP ∩ V (v, C) : v′′ /∈ V ∗) . (3.49)

5. For any cycle Y = (VY , EY ) in G′(vw,C), there exists a properly (vw,C)-connected
component (V ∗, E∗) of G such that

(∃v′ ∈ VY ∩ V (v, C) : v′ /∈ V ∗) ∧ (∃w′ ∈ VY ∩ V (w,C) : w′ /∈ V ∗) . (3.50)
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Proof. 1. Assume that that Condition 1 does not hold (as in Figure 3.11a). Then, there
exists an e ∈ C such that no (vw,C)-connected component of G contains e. Thus,
for all x ∈ SGG′(vw,C):

xe = 1 (3.51)

by Proposition 3.1. Now, dΣGG′(vw,C) ≤ |E ′| − 2, by (3.39) and (3.51). Thus,
ΣGG′(vw,C) is not a facet of ΞGG′ , by Theorem 3.7.

2. Assume that Condition 2 does not hold. Then, for any e ∈ C there exists some
number m such that for all (vw,C)-connected components (V ∗, E∗) with e ∈ E∗ it
holds that |F ∩ FV ∗| = m. Thus, we can write

C =

|F |⋃
m=0

C(F,m), (3.52)

where C(F,m) :=
{
e ∈ C | |F ∩ FV ∗| = m ∀ (vw,C)-connected (V ∗, E∗) with

e ∈ E∗
}
. It follows that for all x ∈ SGG′(vw,C) we have the equality

|F |∑
m=0

m
∑

e∈C(F,m)

(1− xe) =
∑
f ′∈F

(1− xf ′) (3.53)

by the following argument:

• If xe = 1 for all e ∈ C, then xf ′ = 1 for all v′w′ = f ′ ∈ F , since C is also a v′w′-cut.
Thus, (3.53) evaluates to 0 = 0.

• Otherwise there exists precisely one edge e ∈ C such that xe = 0. Let m be such
that e ∈ C(F,m). By definition of C(F,m), there are exactly m edges f ′ ∈ F with
xf ′ = 0. Thus, (3.53) evaluates to m = m.

3. Assume that Condition 3 does not hold. Then there exists an f ′ ∈ FGG′(vw,C),
a set ∅ 6= F ⊆ FGG′(vw,C) and some k ∈ N such that for all (vw,C) connected
components (V ∗, E∗) and (V ∗∗, E∗∗) with f ′ ∈ FV ∗ and f ′ /∈ FV ∗∗ it holds that

|F ∩ FV ∗| = k and |F ∩ FV ∗∗ | = 0. (3.54)

In other words, for all x ∈ SGG′(vw,C) it holds that xf ′ = 0 iff there are exactly k
edges f ′′ ∈ F such that xf ′′ = 0. Similarly, it holds that xf ′ = 1 iff for all f ′′ ∈ F we
have xf ′′ = 1. Therefore, all x ∈ SGG′(vw,C) satisfy the additional equality

k(1− xf ′) =
∑
f ′′∈F

1− xf ′′ . (3.55)

4. Assume that Condition 4 does not hold. Then, there exist v′ ∈ V (v, C) and w′ ∈
V (w,C) and a v′w′-path P = (VP , EP ) in G′(vw,C) such that every properly (vw,C)-
connected component (V ∗, E∗) of G holds:

(v′ ∈ V ∗ ∧ V (w,C) ∩ VP ⊆ V ∗) (3.56)
∨ (w′ ∈ V ∗ ∧ V (v, C) ∩ VP ⊆ V ∗) . (3.57)
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Figure 3.10: Illustrations for the proof of Theorem 3.8. Depicted are the nodes (in black) and
edges (in blue) on a path illustrating Condition 4 (a) and on a cycle illustrating Condition 5
(b), respectively. Nodes in the set V ′ are either in V ∗ (filled circle) or not in V ∗ (open circle).
Consequently, pairs of consecutive edges are either cut (dashed lines) or not cut (solid lines).

Let v1 < · · · < v|VP | the linear order of the nodes VP and let e1 < · · · < e|EP | the
linear order of the edges EP in the v′w′-path P . Now, for all x ∈ SGG′(vw,C):

xvw =

|EP |∑
j=1

(−1)j+1xej (3.58)

by the following argument: |EP | is odd, as the path P alternates between the set
V (v, C) where it begins and the set V (w,C) where it ends. Thus,

|EP |∑
j=1

(−1)j+1xej = xe1 −
(|EP |−1)/2∑

j=1

(xe2j − xe2j+1
) . (3.59)

Distinguish two cases:

• If xvw = 1, then xEP
= 1, by (3.39) and (3.5). Thus, (3.58) evaluates to 1 = 1, by

(3.59).
• If xvw = 0, the decomposition of G defined by x contains precisely one properly

(vw,C)-connected component (V ∗, E∗) of G, by Proposition 3.1. Without loss of
generality, (3.56) holds. Otherwise, that is, if (3.57) holds, exchange v and w.
Consider the nodes VP as depicted in Figure 3.10a: v1 = v′ ∈ V ∗, by (3.56). For
every even j, vj ∈ V (w,C), by definition of P . Thus:

∀j ∈ {1, . . . , (|EP |+ 1)/2} : v2j ∈ V ∗ (3.60)

by (3.56).
Consider the edges EP as depicted in Figure 3.10a: e1 = v1v2 ∈ E∗, as v1 ∈ V ∗
and v2 ∈ V ∗ and as (V ∗, E∗) is a component of G. Thus,

xe1 = 0 (3.61)

by Proposition 3.1. For every j ∈ {1, . . . , (|EP | − 1)/2}, distinguish two cases:
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– If v2j+1 ∈ V ∗, then e2j = v2jv2j+1 ∈ E∗ and e2j+1 = v2j+1v2j+2 ∈ E∗, because
v2j ∈ V ∗ and v2j+2 ∈ V ∗, by (3.60), and because (V ∗, E∗) is a component of G.
Thus:

xe2j = 0 ∧ xe2j+1
= 0 . (3.62)

– If v2j+1 /∈ V ∗, then e2j = v2jv2j+1 and e2j+1 = v2j+1v2j+2 straddle distinct
components of the decomposition of G defined by x, because v2j ∈ V ∗ and
v2j+2 ∈ V ∗, by (3.60). Thus:

xe2j = 1 ∧ xe2j+1
= 1 . (3.63)

In any case:

∀j ∈ {1, . . . , (|EP | − 1)/2} : xe2j − xe2j+1
= 0 . (3.64)

Thus, (3.58) evaluates to 0 = 0, by (3.59), (3.61), (3.64).

5. Assume that Condition 5 does not hold. Then, there exists a cycle Y = (VY , EY )
in G′(vw,C) such that every properly (vw,C)-connected component (V ∗, E∗) of G
holds:

VY ∩ V (v, C) ⊆ V ∗ (3.65)
∨ VY ∩ V (w,C) ⊆ V ∗ . (3.66)

Let v0 < · · · < v|VY |−1 an order on VY such that v0 ∈ V (v, C) and, for all j ∈
{0, . . . , |EY | − 1}:

ej := {vj, vj+1 mod |EY |} ∈ EY . (3.67)

Now, for all x ∈ SGG′(vw,C):

0 =

|EY |−1∑
j=0

(−1)jxej (3.68)

by the following argument: |EY | is even, as the cycle Y alternates between the sets
V (v, C) and V (w,C). Thus,

|EY |−1∑
j=0

(−1)jxej =

(|EY |−2)/2∑
j=0

(xe2j − xe2j+1
) . (3.69)

Distinguish two cases:

• If xvw = 1, then xEY
= 1, by (3.39) and (3.5). Thus, (3.68) evaluates to 0 = 0, by

(3.69).
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• If xvw = 0, the decomposition of G defined by x contains precisely one properly
(vw,C)-connected component (V ∗, E∗) of G, by Proposition 3.1. Without loss of
generality, (3.65) holds. Otherwise, that is, if (3.66) holds, exchange v and w.
Consider the nodes VY as depicted in Figure 3.10b: For every even j, vj ∈ V (v, C),
by definition of Y and the order. Thus:

∀j ∈ {0, . . . , (|EY | − 2)/2} : v2j ∈ V ∗ (3.70)

by (3.65).
Consider the edges EY as depicted in Figure 3.10b: For every j ∈ {0, . . . , (|EY | −
2)/2}, distinguish two cases:

– If v2j+1 ∈ V ∗, then e2j = v2jv2j+1 ∈ E∗ and e2j+1 = v2j+1v2j+2 mod |EY | ∈ E∗,
because v2j ∈ V ∗ and v2j+2 mod |EY | ∈ V ∗, by (3.70), and because (V ∗, E∗) is a
component of G. Thus:

xe2j = 0 ∧ xe2j+1
= 0 . (3.71)

– If v2j+1 /∈ V ∗, then e2j = v2jv2j+1 and e2j+1 = v2j+1v2j+2 mod |EY | straddle
distinct components of the decomposition of G defined by x, because v2j ∈ V ∗
and v2j+2 mod |EY | ∈ V ∗, by (3.70). Thus:

xe2j = 1 ∧ xe2j+1
= 1 . (3.72)

In any case:

∀j ∈ {0, . . . , (|EY | − 2)/2} : xe2j − xe2j+1
= 0 . (3.73)

Thus, (3.68) evaluates to 0 = 0, by (3.69) and (3.73).
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Figure 3.11: Depicted above are graphs G = (V,E) (in black) and G′ = (V,E′) with E ⊆ E′
(E′ in blue), distinct nodes v, w ∈ V and a vw-cut C of G (as dashed lines). In any of the above
examples, one condition of Theorem 3.8 is violated and thus, ΣGG′(vw,C) is not a facet of the
lifted multicut polytope ΞGG′ . a) Condition 1 is violated for e. b) Condition 2 is violated as r
and s are connected in any (vw,C)-connected component. c) Condition 2 is violated as r and s
are not connected in any (vw,C)-connected component. d) Condition 2 is violated. Specifically,
C({f ′}, 1) = {e0} and C({f ′}, 0) = {e1} in the proof of Theorem 3.8. e) Condition 2 is violated
for F = {f1, f2}. f) Condition 3 is violated. g) Condition 3 is violated for F = {f1, f2} and
k = 1. h) Condition 4 is violated for the v′w′-path f1f2f3. i) Condition 4 is violated for the
v′w′-path ef1f2. j) Condition 5 is violated for the cycle f1f2f3f4. k) Condition 5 is violated
for the cycle ef1f2f3.





4
L IFTED DISJOINT PATHS WITH APPLICATION IN
MULTIPLE OBJECT TRACKING

4.1 introduction

The predominant approach for MOT is the tracking-by-detection paradigm, which
splits the problem into two subtasks. First, objects are detected in all video frames by
an object detector. Then, the detections are linked across frames to form trajectories.
While the performance of object detectors has improved considerably by recent advances
of CNNs (Ren et al., 2015; Yang et al., 2016; Redmon et al., 2016; Duan et al., 2019),
the latter task called the data association remains challenging. We concentrate on the
latter task in this work.

While for MOT even very large data association instances can be solved using the
disjoint paths formulation (DP), it has been shown that the basic disjoint paths problem
alone is not sufficient to provide trajectories of high accuracy. The main limitation for
MOT is the implicit assumption of a first-order Markov chain. In particular, costs only
indicate whether two detections directly follow each other in a track.

Our contribution is three-fold: First, to overcome the limited expressiveness of
disjoint paths, we propose to augment it with lifted edges that take into account long-
range interactions (see Figure 4.1). We call the resulting problem the lifted disjoint paths
problem (Section 4.3). We prove the problem to be NP-hard in Section 4.6. Second, we
study the optimization problem from a polyhedral perspective, proposing a high-quality
linear programming relaxation in Section 4.4 together with efficient separation routines
for the proposed constraints (Section 4.5). Third, we apply the lifted disjoint paths
problem to MOT. We show in Section 4.7 that our solver LifT significantly outperforms
trackers that were state-of-the-art on the popular MOT challenge datasets at the time
of publishing our paper Horňáková et al. (2020).

We argue that our model has advantages from the modeling and optimization point
of view. From the modeling standpoint, the lifted disjoint paths problem does not
change the set of feasible solutions but adds more expressive power to it. For MOT, this
means that the set of feasible solutions, which naturally represent trajectories of objects,
is preserved. The additional lifted edges represent connectivity priors. A lifted edge is
active if and only if there is an active trajectory between its endpoints in the flow graph.
For MOT, lifted edges take (dis-)similarity of object detection pairs represented by its
endpoints into account. This allows to encourage or penalize an active path between the
detections with possibly larger temporal distance. This helps to re-identify the same
object and to prevent id-switches between distinct objects within long trajectories.

From the optimization point of view, we study several non-trivial classes of linear
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inequalities that result in a high-quality relaxation. The proposed inequalities depend
non-trivially on the constraint structure of the underlying disjoint paths problem
(Section 4.4). We show that the polyhedral relaxation that we consider is tighter than
naively applying known inequalities. The proposed relaxation enables us to solve MOT
problems via a global approach, in contrast to established approaches, which either use
heuristics on complex models or global optimization on simpler models that do not exploit
long-range interaction. We present, to our knowledge, the first global optimization
approach that incorporates long-range interaction for MOT. This has several advantages:
First, our optimization is not trapped in poor local optima or affected by initialization
choices and is hence potentially more robust. Second, improvements in the discriminative
power of features used to compute costs for the lifted disjoint paths problem directly
correlate to better tracking performance, since no errors are introduced by suboptimal
choices during optimization.

Finally, we note that the proposed lifted disjoint paths formulation is not inherently
tied to MOT and can potentially be applied to further problems not related to MOT.

Our code is available at https://github.com/AndreaHor/LifT_Solver.

4.2 related work

Extended disjoint paths for MOT. We discuss the usage of (DP) for MOT in
Section 2.3.3. Extensions of the plain disjoint paths problem that disallow certain
pairs of detections to occur simultaneously have been used to fuse different object
detectors by Chari et al. (2015) and for multi-camera MOT by Hofmann et al. (2013)
and Leal-Taixé et al. (2012). Jiang et al. (2007) extended (DP) by simultaneously
minimizing not only costs between consecutive detections within object trajectories but
also changes in mutual positions of object pairs in consecutive frames. The drawback of
these approaches is that they cannot integrate long-range information, in contrast to
our proposed formulation.

Other combinatorial approaches to MOT. We discussed the usage of multicut
and lifted multicut models for MOT in Sections 2.1.3 and 2.2.2. Some methods employed
bipartite matching (Sadeghian et al., 2017; Zhu et al., 2018; Xu et al., 2019; Wojke et al.,
2017) to optimally assign new detections to already computed trajectories in the past.
Arora and Globerson (2013) used a formulation equivalent to the 3-matching problem
where each triplet of detections in three consecutive frames is assigned a cost that is paid
iff the detections are connected. The minimum cost arborescence problem, an extension
of the minimum spanning tree to directed graphs, has been used for MOT by Henschel
et al. (2014). Zamir et al. (2012) applied multiple times generalized minimum clique
problem (minimum cost clique in a complete K-partite graph) to obtain the trajectory
of one object in each iteration. Dehghan et al. (2015) formulated data association
as a generalized maximum multi clique problem that enabled finding the trajectories
jointly for all objects. The maximum weight independent set has been used for data
association by Brendel et al. (2011). Hu et al. (2019) formulated data association as

https://github.com/AndreaHor/LifT_Solver
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a multi-dimensional assignment problem. The works by Henschel et al. (2018, 2016)
reformulated the tracking of multiple objects with long temporal interactions as a binary
quadratic program. If the problem size is small, the optimization problem can be solved
optimally by reformulating it to an equivalent binary linear program (Henschel et al.,
2019a; von Marcard et al., 2018). For large instances, an approximation is necessary. To
this end, a specialized non-convex Frank-Wolfe method can be used (Henschel et al.,
2018). Common to the above state-of-the-art trackers is that they either employed
heuristic solvers or are limited in the integration of long-range information, in contrast
to our work.

Contribution w.r.t. existing combinatorial approaches. It is widely acknowl-
edged that one crucial ingredient for obtaining high-quality MOT results is to incorporate
long-range temporal information to re-identify detections and prevent id-switches. How-
ever, from a theoretical perspective, we believe that long-range information has not yet
been incorporated satisfactorily in optimization formulations for the data association
step in MOT.

In comparison to lifted multicut for MOT, we argue that from the modelling point
of view, network flow has advantages. In multicut, clusters can be arbitrary, while in
MOT, tracks are clusters that cannot contain multiple object detections at the same
time point. This exclusion constraint must be enforced in multicut explicitly via soft
constraints, while the disjoint paths substructure automatically takes care of it. On the
other hand, the lifted multicut approach (Tang et al., 2017) has used the possibility to
cluster multiple detections in one time frame. This directly incorporates non-maxima
suppression in the optimization, which however increases computational complexity.

From a mathematical perspective, naively using polyhedral results from multicut
is also not satisfactory. Specifically, one could naively obtain a polyhedral relaxation
for the lifted disjoint paths problem by reusing lifted multicut Constraints (3.3)-(3.5)
and additionally adding network flow constraints for the disjoint paths substructure.
However, this would give a suboptimal polyhedral relaxation. We show in Section 4.4
that the underlying structure of the disjoint paths problem can be used to derive new
and tighter constraints for lifted edges. This enables us to use a global optimization
approach for MOT. To our knowledge, our work is the first one to combine global
optimization with long-range interactions for MOT.

In comparison to works that proposed non-convex algorithms or other heuristics for
incorporating long-range temporal edges (Henschel et al., 2018; Hu et al., 2019; Zamir
et al., 2012; Dehghan et al., 2015) our approach yields a more principled approach and
globally optimal optimization solutions via LP-based branch and cut algorithms.

4.3 problem formulation

Below, we extend the disjoint paths problem by defining lifted edges. We discuss how
the lifted disjoint paths problem can naturally model MOT.
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Figure 4.1: Depicted left is an illustration of disjoint paths problem (DP). Depicted right is its
extension to lifted disjoint paths problem (LDP). Lifted edges are depicted in blue. The three
graph layers represent three consecutive time frames. Dashed edges labeled by zero represent
zero flow, resp. inactive lifted edges. Thick edges labeled by one represent unit flow, resp.
active lifted edges.

Flow network and lifted graph. Consider two directed acyclic graphs G = (V,E)
and G′ = (V ′, E ′) where V ′ = V \{s, t}. The graph G = (V,E) represents the flow
network and we denote by G′ the lifted graph. The two special nodes s and t of G
denote source and sink node respectively. We further assume that every node in V is
reachable from s, and t can be reached from it.

We define the set of paths starting at v and ending in w as

vw-paths(G) =

{
(v1v2, . . . , vl−1vl) :

vivi+1 ∈ E,
v1 = v, vl = w

}
. (4.1)

For a vw-path P we denote its edge set as PE and its node set as PV .
The flow variables in G are denoted by y ∈ {0, 1}E for edges and z ∈ {0, 1}V for

nodes. Allowing only 0/1 values of vertex variables reflects the requirement of vertex
disjoint paths. Variables on the lifted edges E ′ are denoted by y′ ∈ {0, 1}E′ . Here,
y′vw = 1 means that nodes v and w are connected via the flow y in G. Formally,

y′vw = 1⇔ ∃P ∈ vw-paths(G) s.t. ∀ij ∈ PE : yij = 1 . (4.2)

Definition 4.1. (LDP) Given edge costs c ∈ RE, node cost d ∈ RV in flow network G
and edge cost c′ ∈ RE′ for the lifted graph G′ we define the lifted disjoint paths problem
as

min
y∈{0,1}E ,y′∈{0,1}E′ ,

z∈{0,1}V

〈c, y〉+ 〈c′, y′〉+ 〈d, z〉

s.t. y ∈ Y DP (G, s, t)
z flow through nodes of G according to (2.7)
y, y′ feasible according to (4.2)

(LDP)

In Section 4.4, we present an ILP formulation of (LDP) by proposing several linear
inequalities that lead to a high-quality linear relaxation.
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Graph construction for multiple object tracking. We argue that the lifted
disjoint paths problem is an appropriate way of modelling the data association problem
for MOT. In MOT, an unknown number of objects needs to be tracked across a video
sequence. This problem can be naturally formalized by a graph G = (V,E) where its
node set V represents either object detections or tracklets of objects. If V represents
object detections, we can express it as follows: V = s ∪ V1 ∪ . . . ∪ VT ∪ t, where T is the
number of frames and Vi represents the object detections in time i. We introduce edges
between adjacent time frames. An active flow on such an edge denotes correspondences
of the same object. We also introduce skip edges between time frames that are farther
apart. An active flow on a skip edge also denotes correspondences between the same
object that, in contrast, may have been occluded or not detected in the intermediate
time frames. This classical network flow formulation has been commonly used for MOT
(Zhang et al., 2008).

On top of the underlying flow formulation for MOT, we want to express that two
detections belong to the same object connected by a possibly longer track with multiple
detections in between. For that purpose, lifted edges with negative costs can be used.
We say in such a case that an active lifted edge re-identifies two detections (Tang et al.,
2017). If two detections with a larger temporal distance should not be part of the same
track, a positive valued lifted edge can be used. In this case, the lifted edge is used to
prevent id-switches.

4.4 constraints

Below, we will first introduce constraints that give an integer linear program (ILP)
of the lifted disjoint paths problem (LDP). The corresponding LP relaxation can be
tightened by additional constraints that we present subsequently.

Many constraints considered below will rely on whether a node w is reachable from
another node v in the flow network G = (V,E). We define to this end the reachability
relation RG ⊂ V 2 via

vw ∈ RG ⇔ vw-paths(G) 6= ∅ . (4.3)

In the special case of v = w, we also allow empty paths, which means ∀v ∈ V : vv ∈ RG.
This makes relation RG reflexive.

Flow conservation constraints. The flow variables y obey, as in classical network
flow problems (Ahuja et al., 1988), the flow conservation constraints

∀v ∈ V \ {s, t} :
∑
uv∈E

yuv =
∑
vw∈E

yvw = zv . (4.4)

Constraining lifted edges. All the following constraints restrict the values of lifted
edge variables y′vw in order to ensure that they satisfy (4.2). Despite their sometimes
complex form, they always obey the two basic principles:
• If there is flow in G going from vertex v to vertex w, then y′vw = 1. The constraints

of this form are (4.7), (4.13).
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Figure 4.2: An illustration of the path inequalities (4.7). Given the active path P =
(vv1, v1v2, v2w), the label of lifted edge vw (labeled with a question mark in the left fig-
ure) is determined by inequality y′vw ≥ yvv1 + yvv2 − yv1v3 − yv2v4 = 1 + 0− 0− 0 = 1 to be one
(right figure). Note that even if the flow skipped vertex v1 or v2, this inequality would still give
the correct bound y′vw ≥ 1.

• If there is a vw-cut in G with all edges labeled by zero (i.e. no flow passes through
this cut), then y′vw = 0. We will mainly look at cuts that are induced by paths, i.e.
edges that separate a path from the rest of the graph. The paths of interest will either
originate at v or end at w. The constraints of this form are (4.5), (4.6), (4.12), (4.17),
(4.18).

Single node cut inequalities. Given a lifted edge vw ∈ E ′, if there is no flow going
from vertex v which can potentially go to vertex w, then y′vw = 0. Formally,

y′vw ≤
∑

u: vu∈E,
uw∈RG

yvu . (4.5)

Similarly, if there is no flow going to w that can originate from vertex v, then y′vw = 0.
Formally,

y′vw ≤
∑

u:uw∈E,
vu∈RG

yuw . (4.6)

The number of constraints of the above type (4.4) is linear in the number of vertices,
while (4.5) and (4.6) are linear in the number of lifted edges. Hence, we add them into
our initial constraint set during optimization.

Path inequalities. For lifted edge y′vw it holds that if there is a flow in G going from
v to w along a path P , then y′vw = 1. This constraint can be expressed by the following
set of inequalities:

∀vw ∈ E ′ ∀P ∈ vw-paths(G) : y′vw ≥
∑

vj:j∈PV

yvj −
∑

i∈PV \{v,w}

∑
k/∈PV

yik (4.7)

Here the first sum expresses the flow going from v to any vertex of path P . The second
sum is the flow leaving path vertices PV before reaching w. In other words, if the flow
does not leave PV , edge y′vw must be active. Note that inequality (4.7) implicitly enforces
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y′vw to be active if any vw-path P̃ with P̃V ⊂ PV is active and if there is no concurrent
flow leaving any vertex in PV \ P̃V . Figure 4.2 illustrates the path inequalities.

For the multicut problem, there exist path inequalities that enforce path properties
in an analogous way. While the lifted multicut path inequalities (3.4) would yield the
same set of feasible integral points, the resulting polyhedral relaxation would be weaker.
Proposition 4.1 states this fact. Note that this chapter uses a convention for zeros
and ones that is opposite to the convention from Chapter 3. While label one in (LDP)
denotes edges within components (paths), label one on an edge in (LMC) means that its
endpoints belong to different components. Inequality (4.8) is the lifted multicut path
inequality (3.4) rewritten in the opposite convention.

Proposition 4.1. Path inequalities (4.7) define a strictly tighter relaxation of the lifted
disjoint paths problem than the lifted multicut path inequalities

∀vw ∈ E ′ ∀P ∈ vw-paths(G) : y′vw ≥
∑
ij∈PE

(yij − 1) + 1 . (4.8)

Proof. Let us define the following sets:

SB = {(y, y′) ∈ [0, 1]E × [0, 1]E
′ |(y, y′) satisfy (4.7)} ,

SM = {(y, y′) ∈ [0, 1]E × [0, 1]E
′ |(y, y′) satisfy (4.8)} .

• Let us prove that SB ⊂ SM

Let us rewrite the right-hand side of (4.7) for a path P ∈ vw-paths(G):

y′vw ≥
∑

vj:j∈PV

yvj −
∑

i∈PV \{v,w}

∑
k/∈PV

yik =
∑

vj:j∈PV

yvj −
∑

i∈PV \{v,w}

(zi −
∑
j∈PV

yij) =

=
∑

i∈PV \w

∑
j∈PV

yij −
∑

i∈PV \{v,w}

zi ≥
∑
ij∈PE

yij −
∑

i∈PV \{v,w}

1 =

=
∑
ij∈PE

(yij − 1) + 1 . (4.9)

• Let us prove that SB ( SM

We prove that there exists (y, y′) ∈ [0, 1]E × [0, 1]E
′ such that (y, y′) satisfies (4.8) and

does not satisfy (4.7). An example is given in Figure 4.3. There are four possible
paths from v to w. If we use Constraints (4.8), the highest lower bound on y′vw is
given by path P = (vv2, v2v4, v4w) and it is as follows:

y′vw ≥ (0.5− 1) + (0.5− 1) + (1− 1) + 1 = 0 . (4.10)

Let us apply Constraint (4.7) using path P = (vv1, v1v2, v2v3, v3v4, v4w). We obtain
the following threshold on y′vw

y′vw ≥ 0.5 + 0.5− 0− 0 = 1 . (4.11)
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Figure 4.3: A failure case for the lifted multicut path inequality (4.8). The path inequality (4.7)
gives the correct lower bound for lifted edge y′vw in this case. Example for Proposition 4.1.
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Figure 4.4: An illustration of the path-induced cut inequalities (4.12). The label of lifted edge
vw (represented by the question mark in the left figure) is determined by the zero-labeled cut
separating active path P = (vv1, v1u) from w. In particular, y′vw ≤ yvv2 + yv1v2 + yuw = 0.
Consequently, y′vw = 0 (right figure).

Path-induced cut inequalities. The path-induced cut inequalities generalize the
single node cut inequalities (4.5) and (4.6) by allowing cuts induced by paths.

Let a lifted edge vw ∈ E ′, a node u from which w is reachable and a vu-path P be
given. Consider the cut given by edges ik with i ∈ PV and k /∈ PV but such that w is
reachable from k. If the flow does not take any edge of this cut, then y′vw = 0. Formally,

∀vw ∈ E ′ ∀P ∈ vu-paths(G) s.t. uw ∈ RG, u 6= w : y′vw ≤
∑
i∈PV

∑
k/∈PV ,
kw∈RG

yik . (4.12)

See Figure 4.4 for an illustration of the path-induced cut inequalities (4.12).

Lifted inequalities. The path inequalities (4.7) and the path-induced cut inequal-
ities (4.12) only consider base edges on their right-hand sides. We can generalize
both (4.7) and (4.12) by including lifted edges in the paths as well. Conceptually, using
lifted edges allows representing all possible paths between their endpoints, which enables
to formulate tighter inequalities, see Propositions 4.2 and 4.3.

To that end consider the multigraph G∪G′ := (V,E ∪E ′). For any edge ij ∈ E ∩E ′
we always distinguish whether ij ∈ E or ij ∈ E ′. For P ∈ vw-paths(G ∪G′), we denote
by PE and PE′ edges of the path P in E and E ′ respectively. We require PE ∩ PE′ = ∅.
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Figure 4.5: An illustration of the lifted path inequalities (4.13). Given the active path
P = (vv1, v1w), where PE = {vv1} and PE′ = {v1w}, the label of lifted edge vw (labeled with
question mark in the left figure) is determined by inequality y′vw ≥ yvv1 − yv1v2 − yv1v3 + y′v1w−
yv1w = 1− 1− 0 + 1− 0 = 1. Therefore, y′vw = 1 (right figure).

Lifted path inequalities. We generalize the path inequalities (4.7). Now the vw-
path P may contain both edges in E and E ′. Whenever a lifted edge y′ij in the third
sum in (4.13) is one, two cases can occur: (i) Flow goes out of P (uses vertices not in
PV ) but reenters it again later. Then a base edge variable yik will be one in the second
sum in (4.13) and the values of y′ij and yik cancel out. (ii) A base edge ij ∈ E ∩ E ′
parallel to the lifted edge is active. Then the variable yij in the fourth sum in (4.13)
cancels out y′ij. The lifted path inequalities become

∀vw ∈ E ′ ∀P ∈vw-paths(G ∪G′) :

y′vw ≥
∑
j∈PV

yvj −
∑

i∈PV \{v,w}

∑
k/∈PV

yik +
∑
ij∈PE′

y′ij −
∑

ij∈PE′∩E

yij . (4.13)

Whenever the path in (4.13) consists only of base edges PE, the resulting inequality
becomes a path inequality (4.7). Figure 4.5 illustrates the lifted path inequalities (4.13).

Proposition 4.2. The lifted path inequalities (4.13) provide a strictly better relaxation
than the path inequalities (4.7).

Proof. Let us define the following sets

SB = {(y, y′) ∈ [0, 1]E × [0, 1]E
′|(y, y′) satisfy (4.7)} ,

SL = {(y, y′) ∈ [0, 1]E × [0, 1]E
′|(y, y′) satisfy (4.13)} .

• Let us prove that SL ⊂ SB:
Note that every path P ∈ vw-paths(G) belongs to the set of vw-paths(G∪G′) too. It
just holds that PE′ = ∅. Let us rewrite the right-hand side of the inequality from (4.13)
for such P ∈ vw-path(G ∪G′) where PE′ = ∅.

y′vw ≥
∑

vj:j∈PV

yvj −
∑

i∈PV \{v,w}

∑
k/∈PV

yik +
∑
ij∈PE′

y′ij −
∑

ij∈PE′∩E

yij =

=
∑

vj:j∈PV

yvj −
∑

i∈PV \{v,w}

∑
k/∈PV

yik . (4.14)

Which is exactly the right-hand side of (4.7). Therefore, any pair of real vectors
(y, y′) ∈ [0, 1]E × [0, 1]E

′ that satisfies (4.13) must satisfy (4.7) as well.
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Figure 4.6: Exemplary case where the path inequalities (4.7) give a trivial lower bound on
lifted edge y′vw. The lifted path inequality (4.13) gives the correct lower bound. Example for
Proposition 4.2.

• Let us prove that SL ( SB:
We prove that there exists (y, y′) ∈ [0, 1]E × [0, 1]E

′ such that (y, y′) satisfies (4.7) and
does not satisfy (4.13). See the graph in Figure 4.6. There are four possible paths
from v to w in G. If we use Constraints (4.7), all the paths give us the same lower
bound on y′vw

y′vw ≥ 1− 0.5− 0.5 = 0 . (4.15)

If we use Constraints (4.13) with path P = (vv1, v1v4, v4w) where PE′ = {v1v4, v4w}, we
obtain

y′vw ≥ 1− 0.5− 0.5− 0.5− 0.5 + 1 + 1 = 1 . (4.16)

Lifted path-induced cut inequalities. We generalize the path-induced cut inequal-
ities (4.12). Let a lifted edge vw ∈ E ′ and a vu-path P in G ∪G′ be given. In contrast
to the basic version (4.12), a lifted edge ij ∈ PE′ can be taken. This can occur in two
cases: Either the flow leaves PV via a base edge ik, k /∈ PV or a base edge ij ∈ E ∩ E ′
parallel to the lifted edge is taken. Both cases are accounted for by terms in the first
and the third sum in (4.17) below.

∀vw ∈ E ′ ∀P ∈ vu-paths(G ∪G′) s.t. uw ∈ RG ∧ u 6= w :

y′vw ≤
∑
i∈PV

∑
k/∈PV ,
kw∈RG

yik −
∑
ij∈PE′

y′ij +
∑

ij∈PE′∩E

yij (4.17)

An illustration of the lifted path-induced cut inequalities (4.17) is in Figure 4.7.
Assume that the last node u of path P is connected via a lifted edge with w. Then
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Figure 4.7: An illustration of lifted path-induced cut inequalities (4.17). Given path P = (vu)
where PE′ = {vu}, the label of lifted edge vw (represented by the question mark in the left figure)
is determined by the following constraint y′vw ≤ yvv1 +yvv2 +yuw−y′vu+yvu = 1+0+0−1+0 = 0.
Therefore, y′vw = 0 (right figure).
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Figure 4.8: An illustration of lifted path-induced cut inequalities (4.18). Given the path
P = (vu) where PE = {vu} and the zero-labeled lifted edge uw, the label of lifted edge
vw (represented by the question mark in the left figure) is determined by constraint y′vw ≤
yvv1 + yvv2 + y′uw = 0. Consequently, y′vw = 0 (right figure).

we can strengthen (4.17) by replacing the sum of base edges outgoing from u by y′uw.

∀vw ∈ E ′ ∀P ∈ vu-paths (G ∪G′) s.t. uw ∈ E ′ :

y′vw ≤
∑

i∈PV \u

∑
k/∈PV ,
kw∈RG

yik −
∑
ij∈PE′

y′ij +
∑

ij∈PE′∩E

yij + y′uw (4.18)

An illustration of the lifted path-induced cut inequalities (4.18) is in Figure 4.8.

Proposition 4.3. The lifted path-induced cut inequalities (4.17) define a strictly tighter
relaxation than the path-induced cut inequalities (4.12).

Furthermore, the lifted path-induced cut inequalities (4.17) and (4.18) define a strictly
better relaxation than (4.17) alone.

Proof. Let us define the following sets

SB = {(y, y′) ∈ [0, 1]E × [0, 1]E
′ |(y, y′) satisfy (4.12)} ,

SL1 = {(y, y′) ∈ [0, 1]E × [0, 1]E
′|(y, y′) satisfy (4.17)} ,

SL2 = {(y, y′) ∈ [0, 1]E × [0, 1]E
′|(y, y′) satisfy (4.18)} .
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Figure 4.9: An Exemplary case where the path-induced cut inequalities (4.12) fail to give
non-trivial upper bounds for lifted edge y′vw. The lifted path-induced cut inequalities (4.17)
give the correct upper bound in this case. Example for Proposition 4.3.
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Figure 4.10: An Exemplary failure case for the lifted path-induced cut inequalities (4.17). The
lifted path-induced cut inequalities (4.18) give the correct upper bound for lifted edge y′vw.
Example for Proposition 4.3.

• First, we prove SL1 ⊂ SB:
We use the same argument as in the proof of Proposition 4.2. Every path P ∈
vw-paths(G) belongs to the set of vw-paths(G∪G′) and it holds that PE′ = ∅. Let us
rewrite the right-hand side of the inequality from (4.17) for such P ∈ vw-path(G∪G′)
where PE′ = ∅.

y′vw ≤
∑
i∈PV

∑
k/∈PV
kw∈RG

yik −
∑
ij∈PE′

y′ij +
∑

ij∈PE′∩E

yij =
∑
i∈PV

∑
k/∈PV
kw∈RG

yik . (4.19)

Which is exactly the right-hand side of (4.12). Therefore, any pair of real vectors
(y, y′) ∈ [0, 1]E × [0, 1]E

′ that satisfies (4.17) must satisfy (4.12).

• Let us prove SL1 ( SB:
We prove that there exists (y, y′) ∈ [0, 1]E × [0, 1]E

′ such that (y, y′) satisfies (4.12)
and does not satisfy (4.17).

See the example in Figure 4.9. There are four possible paths in G from v to either u1

or u2. They are P1 = (vv3, v3u1), P2 = (vv2, v2u1), P3 = (vv3, v3u2), P4 = (vv2, v2u2).
Using (4.17), all of them give us the same threshold on y′vw:

y′vw ≤ 0.5 + 0.5 + 0 = 1 . (4.20)
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If we use Constraint (4.17) with path P = (vu1), we obtain the following threshold:

y′vw ≤ 0.5 + 0.5 + 0− 1 = 0 . (4.21)

• Let us prove that SL1 ∩ SL2 ( SL1

It holds trivially that SL1 ∩ SL2 ⊂ SL1. Let us prove that there exists (y, y′) ∈
[0, 1]E × [0, 1]E

′ such that (y, y′) ∈ SL1 and (y, y′) /∈ SL1 ∩ SL2.

See the example graph in Figure 4.10. Similarly as in Figure 4.9, there are four
possible paths from v to either u1 or u2 in G. There are no active lifted edges that
would enable us to obtain a better upper bound on y′vw using (4.17) than the following:

y′vw ≤ 1 . (4.22)

However, if we use Constraints (4.18) with path P = (vv3) and y′v3w
= 0, we obtain

y′vw ≤ 0 . (4.23)

Symmetric form of cut inequalities. Inequalities (4.6) provide a symmetric coun-
terpart to inequalities (4.5). We can also formulate symmetric counterparts to inequalities
(4.12), (4.17) and (4.18) by swapping the role of v and w. All constraints (4.12), (4.17)
and (4.18) concentrate on paths originating in v. The symmetric inequalities are obtained
by studying all paths ending in w.

Relations analogous to those described in Proposition 4.3 hold for the symmetric
counterparts as well. The symmetric inequalities also strengthen the relaxation strictly.

Inequalities symmetric to (4.12):

∀vw ∈ E ′ ∀P ∈ uw-paths(G) s.t. vu ∈ RG ∧ u 6= v :

y′vw ≤
∑
i∈PV

∑
k/∈PV ,
vk∈RG

yki . (4.24)

Inequalities symmetric to (4.17)

∀vw ∈ E ′ ∀P ∈ uw-paths(G ∪G′) s.t. vu ∈ RG ∧ u 6= v :

y′vw ≤
∑
i∈PV

∑
k/∈PV ,
vk∈RG

yki −
∑
ij∈PE′

y′ij +
∑

ij∈PE′∩E

yij . (4.25)

Inequalities symmetric to (4.18)

∀vw ∈ E ′ ∀P ∈ uw-paths (G ∪G′) s.t. vu ∈ E ′ :

y′vw ≤
∑

i∈PV \u

∑
k/∈PV ,
vk∈RG

yki −
∑
ij∈PE′

y′ij +
∑

ij∈PE′∩E

yij + y′vu . (4.26)
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Figure 4.11: The best upper bound on y′vw is provided by inequalities (4.25). Example for
Proposition 4.4 and Proposition 4.5.

Proposition 4.4. The lifted path-induced cut inequalities (4.25) define a strictly tighter
relaxation than the path-induced cut inequalities (4.24).
The lifted path-induced cut inequalities (4.25) and (4.26) define a strictly better relaxation
than (4.25) alone.

Proof. Analogical to the proof of Proposition 4.3. See Figure 4.11 for example analogical
to the one in Figure 4.9 and Figure 4.12 for example analogical to the one in Figure 4.10.

Proposition 4.5. The following claims about the path-induced cut inequalities hold.
1. The path-induced cut inequalities (4.12) together with their symmetric counterpart

(4.24) define a strictly tighter relaxation than inequalities (4.12) alone.

2. The path-induced cut inequalities (4.17) together with their symmetric counterpart
(4.25) define a strictly tighter relaxation than inequalities (4.17) alone.

3. Using path-induced cut inequalities (4.26) together with (4.17), (4.18), and (4.25)
strictly improves the relaxation.

Proof. 1. See the example in Figure 4.13.
Upper bound on y′vw by (4.12): y′vw ≤ 0.5 + 0.5 = 1.
Upper bound on y′vw by (4.24): y′vw ≤ 0.

2. See the example in Figure 4.11.
Upper bound on y′vw by (4.17): y′vw ≤ 0.5 + 0.5 = 1.
Upper bound on y′vw by (4.25) using path P = (u2w): y′vw ≤ 0 + 0.5 + 0.5− 1 = 0.

3. See the example in Figure 4.12.
Upper bounds on y′vw by (4.17), (4.18), (4.25): y′vw ≤ 1. Upper bound on y′vw by
(4.26) using path P = (uw) and y′vu = 0: y′vw ≤ 0.
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Figure 4.12: The best upper bound on y′vw is provided by inequalities (4.26). Example for
Proposition 4.4 and Proposition 4.5.
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Figure 4.13: The best upper bound on y′vw is provided by inequalities (4.24). Example for
Proposition 4.5.

Other valid inequalities. Basic flow constraints (4.4) together with the advanced
constraints on lifted edges (4.5)-(4.18) are sufficient for defining the set of feasible
solutions of the lifted disjoint paths problem (LDP). Moreover, they define an efficient
LP relaxation (Section 4.4) and enable efficient separation procedures (Section 4.5).
Below, we present lifted flow inequalities specific to the lifted disjoint paths problem
applied to MOT that help to improve the speed of our ILP solver. The inequalities
depend on the fact that every node can be connected to maximally one node in each
time frame. Therefore the number of lifted edges originating (or ending) in a given point
and ending (resp. originating) in a specific time frame is at most one.

∀k, l ∈ {1, . . . , T} : k > l, ∀v ∈ Vl :
∑

vu∈E′:u∈Vk

y′vu ≤ zv , (4.27)

∀k, l ∈ {1, . . . , T} : k < l, ∀w ∈ Vl :
∑

uw∈E′:u∈Vk

y′uw ≤ zw . (4.28)

The number of constraints (4.27) and (4.28) is linear in the number of vertices. Therefore,
we add them to our initial constraint set. This enables to reduce the search space for
the branch and cut method in the early solver stages when only a few constraints of
type (4.7)-(4.18) have been added.
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Algorithm Separate-lifted-path-inequalities (4.13)
Define E1 = {e ∈ E : ye = 1}, G1 = (V,E1)
for all P 1 ∈ st-paths (G1) do

for all y′vw = 0 : v ∈ P 1
V ∧ w ∈ P 1

V do
P := Extract-path(P 1, v, w)
Add constr. (4.13) for y′vw with P .

end for
end for

4.5 separation

We solve the lifted disjoint paths problem (LDP) with the state-of-the-art integer linear
program solver Gurobi (Gurobi Optimization, 2019). Since there are exponentially
many constraints of the form (4.7), (4.12), (4.13), (4.17) and (4.18), we do not add
them initially. Instead, we start with constraints (4.4), (4.5), (4.6) and eventually
(4.27) and (4.28). Subsequently, we find the optimal integer solution. In the separation
procedures described below, we check if any of the advanced constraints are violated
and add those that are to the active constraint set. We resolve the tightened problem
and iterate until we have found a feasible solution to the overall problem (LDP).

Section (4.7) describes a two-step procedure that we use for the processing of the
whole sequences. We add inequalities (4.27) and (4.28) only in the first step of the
procedure.

Algorithms Separate-lifted-path-inequalities and Separate-lifted-path-induced-cut-inequalities
describe the separation procedures for adding lifted path constraints (4.13), and lifted
path-induced cut constraints (4.17) and (4.18). Since path constraints (4.7) and path-
induced cut inequalities (4.12) are special cases of those above, they are also accounted
for.

Separation for path inequalities. Algorithm Separate-lifted-path-inequalities iterates
over all active st-paths. For every path P 1, labels of all lifted edges connecting two
vertices in P 1

V are inspected. If the lifted edge variable is zero, Algorithm Separate-lifted-
path-inequalities will extract a path in G ∪ G′ connecting the endpoints and add the
resulting lifted path inequality (4.13) to the active constraint set.

Separation for path-induced cut inequalities. Algorithm Separate-lifted-path-
induced-cut-inequalities iterates over all active st-paths. For every path P 1, lifted
edges that start in P 1

V but do not end in P 1
V are inspected. If their label is one,

Algorithm Separate-lifted-path-induced-cut-inequalities will extract a subpath of P 1 for
either (4.18) or (4.17) and add the respective inequality to the active constraint set.

The complexity of separation. Both Algorithms Separate-lifted-path-inequalities and
Separate-lifted-path-induced-cut-inequalities can be implemented efficiently such that they
are linear in |E1| (i.e. in the number of active edges of graph G). In our implementation,
we traverse all active st-paths from the end to the beginning and directly store correctly
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Algorithm Separate-lifted-path-induced-cut-inequalities (4.17), (4.18)
Define E1 = {e ∈ E : ye = 1}, G1 = (V,E1)
for all P 1 ∈ st-paths (G1) do

for all y′vw = 1 : v ∈ P 1
V ∧ w /∈ P 1

V do
if ∃u ∈ P 1

V : y′uw = 0 ∧ vu ∈ RG then
P := Extract-path(P 1, v, u)
Add constr. (4.18) for y′vw with P .

else
u := last vertex of P 1 such that uw ∈ RG

P := Extract-path(P1, v, u)
Add constr. (4.17) for y′vw with P .

end if
end for

end for

Algorithm Extract-path (P 1, v, w)
P ′ := vw-subpath of P 1, P := ∅
for j ∈ P ′V from end of path to beginning do

if ∃ edge ij ∈ E ′, i ∈ P ′V , y′ij = 1 then
Add ij to PE′ , skip to node i ∈ P ′V

else
Add ij from P ′ to PE

end if
end for
output P = PE ∪ PE′

labeled lifted edges that originate on the already processed subpaths. These lifted edges
can be used later as edges in PE′ in (4.13)-(4.18) or as y′uw = 0 in (4.18).

4.6 complexity

Below, we show that the lifted disjoint paths problem (LDP) is NP-hard. The following
theorems state that even its restricted versions using only negative or only positive lifted
edges are NP-hard. The proofs use reductions from two known NP-complete problems.
Theorem 4.1 is proven by reduction from the integer multicommodity flow (Even et al.,
1975) and Theorem 4.2 by reduction from 3-SAT (Cook, 1971).

We define YGG′ to be the set of all (y, y′) ∈ {0, 1}E × {0, 1}E′ such that (y, y′) are
feasible solutions of the lifted disjoint paths problem (LDP).
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Figure 4.14: Integer multicommodity flow network transformation (Lemma 4.1): Original
graph.
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Figure 4.15: Integer multicommodity flow network transformation (Lemma 4.1). Transformed
graph from Figure 4.14 for flow requirements R1 = 2, R2 = 2. Edges without labels have cost 0.

4.6.1 integer multicommodity flow.

The integer multicommodity flow problem is defined on a directed graph G = (V , E)
with edge capacities c ∈ NE and source/sink pairs siti and edge flows fi ∈ NE and
requirements Ri, i = 1, . . . , k.

The aim is to send k flows from their sources to their sinks such that the flows obey
the edge capacities. Formally,

k∑
i=1

f ie ≤ce ∀e ∈ E (4.29)∑
u:uv∈E

f iuv =
∑

w:vw∈E

f ivw ∀i ∈ [k] ∀v /∈ {si, ti} (4.30)∑
v:siv∈E

f isiv ≥Ri ∀i ∈ [k] (4.31)

where [k] denotes the set {1, . . . , k}. Even et al. (1975) have shown that the integer
multicommodity flow problem is NP-complete also in the case of unit capacity edges and
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two source-sink pairs. Below we detail a construction that gives us a correspondence
between edge-disjoint paths in G and node-disjoint paths in the transformed graph G.
This construction is similar to transforming a graph into its line graph. The lifted edges
in the transformed graph will count how many units of flow go from sources to sinks.

Lemma 4.1. There exists a polynomial transformation from any graph G with source/sink
pairs si, ti, i = 1, . . . , k with requirements Ri to a pair of graphs G and G′ with edge
costs c and c′ respectively such that there exists a feasible integer multicommodity flow
in G with unit edge capacities if and only if the lifted disjoint paths problem for G,G′
has objective min(y,y′)∈YGG′

〈c, y〉+ 〈c′, y′〉 ≤ −
∑k

i=1Ri.

Proof. Without loss of generality, we consider these feasible flow sets f1, . . . , fk where it
holds ∀i ∈ [k] :

∑
siv∈E f

i
siv

= Ri. Note that if the flow of commodity i is higher than
its requirement Ri, we can reduce it to Ri by removing the flow across one or more
siti-paths in G without violating other constraints.
We first detail the graph transformation (see Figures 4.14 and 4.15).
• For all edges ij ∈ E add a vertex vij to V .

• For each pair of vertices vij, vjk ∈ V add an edge (vij, vjk) to E.

• Add vertices s and t to V .

• Add to V vertices s1
i , s

2
i , . . . , s

Ri
i representing requirements of each commodity i.

• For each vertex sri add an edge (s, sri ) to E.

• For each pair of vertices sri , vsij add edge (sri , vsij) to E.

• For all vkti ∈ V (representing an edge from k to ti in G) add an edge (vkti , t) to E.

• For all pairs of vertices vsij vkti ∈ V add an edge (vsij, vkti) to E ′. That is, the lifted
edges connect all vertices representing edges from si in G with vertices representing
the edges to ti in G.

• Cost function on base edges ∀e ∈ E : ce = 0.

• Cost function on lifted edges ∀e′ ∈ E ′ : c′e′ = −1.
An illustration of this construction can be seen in Figures 4.14 and 4.15. Note that the
construction of G in Even et al. (1975) allows si = sj for i 6= j. In this case, we still
construct separate vertices for their incident edges in G.

Every path P = (sik1, k1k2, . . . , knti) in G can be assigned to an st-path P in G
where

P = (ssri , s
r
ivsik1 , vsik1vk1k2 , . . . , vkntit)

and where r ∈ [Ri] can be chosen arbitrarily and vice versa. Note that such a path P
saturates exactly one lifted edge (vsik1 , vknti). Moreover, every feasible set of flow func-
tions f 1, . . . , fk satisfying for all i ∈ [k] :

∑
siv∈E f

i
siv

= Ri defines a set of edge-disjoint
paths from s1, . . . , sk to t1, . . . , tk in G. This set corresponds to a set of

∑k
i=1Ri st-paths

in G whose edges and vertices are disjoint and where every path saturates exactly one
lifted edge vsijvkti . Every lifted edge contributes with −1 to the total cost. So, this set
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of disjoint st-paths has the total cost −
∑k

i=1Ri.
Reversely, let us have a set of vertex-disjoint st-paths in G of size

∑k
i=1Ri where every

path contains some vsijvkti-path as its subpath and therefore its cost is −
∑k

i=1 Ri. This
set defines uniquely a set of feasible flow functions f1, . . . , fk.
So, there exist feasible functions f1, . . . , fk satisfying fi = Ri for all i ∈ [k] iff

min
(y,y′)∈YGG′

γ(y, y′) ≤ −
∑k

i=1Ri.

Modifications of the proof. As we discuss in Section 2.3.2, there are polynomial
time reductions between the directed node-disjoint paths problem and directed edge-
disjoint paths problem. Therefore, the transformation in the proof of Lemma 4.1 can
be done for the node-disjoint paths problem directly. In that case, it is just necessary
to create Ri duplicates of each source node si resp. sink node ti. Moreover, it is
sufficient to create one lifted edge between each pair of source-sink duplicates (sri , t

r
i )

only. This way, the number of lifted edges is equal to the total flow requirement. That
is, |E ′| =

∑k
i=1 Ri = |D| where H = (T,D) is the demand graph.

Theorem 4.1. Lifted disjoint paths problem (LDP) with negative lifted edges only is
NP-hard.

Proof. The NP-complete integer multicommodity flow problem with unit edge capacities
can be reduced in polynomial time to the lifted disjoint paths problem (LDP) with
negative lifted edges only. The transformation is described in Lemma 4.1.

4.6.2 3-sat problem

The boolean satisfiability problem (SAT) is a classical NP-complete problem (Cook,
1971). A transformation from its NP-complete special version 3-SAT is commonly
used for proving that a problem is NP-hard or NP-complete. Note that the used
transformation is analogical to the one used for proving Theorem 3.1.

Theorem 4.2. Lifted disjoint paths problem (LDP) with positive lifted edges only is
NP-hard.

Proof. Below, we detail a transformation from 3-SAT to the lifted disjoint paths problem
with positive lifted edges only. For the transformation, it holds that a 3-SAT formula
consisting of k clauses has a true assignment iff min

(y,y′)∈YGG′
〈c, y〉+ 〈c′, y′〉 ≤ −(k − 1).

Let a 3-SAT problem containing k ordered clauses C1 . . . Ck be given. Each clause Ci
consists of a conjunction of literals, which is either a variable a or its complement a. We
construct graphs G = (V,E) and G′ = (V ′, E ′) as stated below. See also Figure 4.16.
• The graph G has k layers. Every layer corresponds to one clause. Each layer contains
3 vertices labeled with the literals in the corresponding clause. Specifically, for a
variable a in clause Ci we associate node via, analogically for a complemented variable
b in clause Ci we associate node vib̄.
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Figure 4.16: Reduction to lifted disjoint paths problem for 3-SAT formula (a ∨ b ∨ c̄) ∧ (a ∨ c ∨
d̄) ∧ (ā ∨ c ∨ e) ∧ (ā ∨ c ∨ ē), see the proof Theorem 4.2.

• For every pair of vertices vil1 ∈ V and vi+1l2 ∈ V where l1 6= l̄2 add an edge (vil1 , vi+1l2)
to E and set c(vil1 ,vi+1l2

) = −1.

• For every variable a and every pair of vertices via, vjā ∈ V where j > i + 1 add an
edge (via, vjā) to E ′ and set c′(via,vjā) = k. Do so analogically for every pair of variables
viā and vja.

• Add an edge from s to all vertices corresponding to the first clause. And an edge to t
from all vertices corresponding to the last clause.

Every path P ∈ st-paths(G) that has cost −(k − 1) saturates vertices labeled by
non-contradicting literals. We can obtain a 3-SAT solution from P as follows. If via ∈ PV ,
set variable a := true. If vjb̄ ∈ P , set variable b := false. Variables not contained as
labels of vertices in PV can have arbitrary values.
Similarly, every solution of the 3-SAT problem defines at least one path P ∈ st-paths(G)
that has cost −(k − 1).

4.7 experiments

We conduct several experiments on MOT datasets showing the merit of using lifted
disjoint paths for the tracking problem. Below, we present our complete tracking method
called LifT. We describe our problem construction, cost learning for the base and
lifted edges, preprocessing and post-processing steps, and report resulting performance.
Further details to the experiments are provided in the Appendix of Horňáková et al.
(2020).
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4.7.1 graph construction.

Two-step procedure. Due to the computational complexity of the problem, we
cannot solve entire video sequences straightforwardly. In order to make the problem
tractable, we apply the following two-step procedure. In the first step, the solver is
applied on graphs over person detections but only for small time intervals consisting of
a few dozen video frames. The tracks resulting from the first step are used for extracting
tracklets. In the second step, the solver is applied on newly created graphs G and G′
where vertices correspond to the obtained tracklets. Edges and edge costs between
tracklets are obtained by aggregating original edges resp. edge costs between person
detections. The tracks resulting from the second step may be suboptimal with respect
to the original objective function defined over person detections. Therefore, we identify
points where splitting a track leads to an improvement of the original objective value
and extract new tracklets from the divided tracks. Multiple iterations of the second
step are performed until no improving split points are found in the output tracks. This
two-step procedure improves the objective w.r.t. the original objective (LDP) in every
iteration. Since there are only finitely many trackings, the procedure terminates finitely.
In practice, only a few iterations are necessary.

Graph sparsification. For our experiments, we use edges between detections up to
2sec temporal distance. These long-range edges cause high computational complexity
for the first step. In order to reduce it, we apply sparsification on both base and lifted
graphs. For the base edges, we select for every v ∈ V \ {s, t} its K nearest (lowest-cost)
neighbors from every subsequent time frame within an allowed time gap. Lifted edges
with costs close to zero are not included, since they are not discriminative. Lifted edges
connecting detections with high time gaps are included more sparsely than lifted edges
having lower time gaps. We use dense graphs in the second step.

Costs. Initially, in the first step, we set the cost of all vertices v ∈ V to dv = 0. For
the second step, where V represents tracklets, dv is set to the cost of outputting tracklet
v as the final trajectory. Specifically, dv is the sum of costs of base edges between
consecutive detections in the tracklet and the cost of lifted edges between all pairs of
detections contained in the tracklet. The cost of a base edge between two tracklets is
given by the cost of the original base edge connecting the last detection in the first
tracklet with the first detection in the subsequent tracklet. The cost of a lifted edge
between two tracklets is obtained by summing up the costs of original lifted edges
between detections contained in the tracklets. This ensures that the cost of each tracklet
solution corresponds to the cost of the solution of the original problem. We set the costs
of all edges from the source node s and to the sink node t to zero. Setting of detection
costs and in/out costs to zero reduces the number of hyperparameters that usually need
to be incorporated by other methods. Moreover, our method does not include temporal
decay of edge costs since the formulation directly prefers short-range base edges over
the long-range ones.
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4.7.2 preprocessing and post-processing

As is common for tracking by detection, we perform pre- and post-processing to com-
pensate for detector inaccuracies.

Input filtering. Given a set of input detections derived from a detector, we follow
the approach of Bergmann et al. (2019), a leading tracker for the MOT challenge, to
reject false positive detections and to correct misaligned ones. For this, each input
detection is sent through the regression and classification part of their detector. In more
detail, all tracking parts involved in the tracker Tracktor (Bergmann et al., 2019) are
deactivated, such that it only reshapes and eventually rejects input detections, without
assigning labels to them. Input detections are rejected if Tracktor’s detector outputs
a confidence score σactive ≤ 0.5.

Tracktor also applies a non-maxima-suppression on the reshaped input detections,
where we use the threshold λnew = 0.6.

Interpolation and extrapolation. Even if all input detections have been assigned
to the correct identities by our ILP solver, there might still be missing detections in case
that a person has not been detected in some frames. We recover missing detections within
the time range of a trajectory, which we denote as interpolation. Further, we extend
a trajectory in forward and backward directions, which we denote as extrapolation. To
this end, we follow Bergmann et al. (2019) and apply their object detector to recover
missing positions based on the visual information at the last known position. Finally, for
sequences filmed from a static camera, we perform linear interpolation on the remaining
gaps. These sequences can be automatically detected using DeepMatching on the regions
outside detection boxes.

To demonstrate the performance using traditional post-processing, we also evaluate
our tracker LifT using only linear interpolation as post-processing in all sequences. This
method is called LifTsimInt in the tables.

4.7.3 cost learning

Costs for base edges E and lifted edges E ′ are computed equally since they both indicate
whether two detections are from the same object or not. We denote by wi(v) the width
of the detection bounding box corresponding to node v.

Visual cues. We exploit two different appearance features: Given two detections, the
re-identification descriptor utilizes global appearance statistics, while the deep-matching
descriptor relies on fine-grained pixel-wise correspondences.

We employ the state-of-the-art re-identification network (Zheng et al., 2019) and
train it on MOT17 train set (Milan et al., 2016) together with additional re-identification
datasets (Zheng et al., 2015; Wei et al., 2018; Ristani et al., 2016b). The obtained
feature value fre-id(e) ∈ [−1, 1] is modified in order to better reflect the uncertainty of
a connection. We truncate values smaller 0 (corresponding to improbable connections)
and re-scale the rest. First, we normalize scores between each detection v and all
detections in every time frame Vj through the score of the most probable connecting
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edge vw. Second, all other connections than vw are downscaled.
Our second visual cue utilizes DeepMatching (DM) proposed by Weinzaepfel et al.

(2013) to establish pixel-wise correspondences between two images. It thus serves as
a reliable tracking feature (Tang et al., 2016; Henschel et al., 2018, 2019b).

We apply DM between boxes in two images and compute the DM intersection over
union (Tang et al., 2016; Henschel et al., 2018) w.r.t. the whole detection boxes and
on five subboxes (left/right, upper/middle/lower part). In addition, we measure for
all points in a given subbox whether their matched endpoints are in the corresponding
subbox again or not. This gives two additional error measures for deviation in x and
y-directions. Thus, in total, we obtain a feature vector fDM(e) ∈ [0, 1]8. In order to
assess the reliability of DM features, the density of matching points is computed in each
box and its subboxes. The smaller value is chosen for each box pair. This results in
feature ρ ∈ [0, 1]6.

Motion constraints. We penalize for improbable motions by comparing the maximal
displacement of DM endpoints within the sequence with the displacements of detection
boxes. Assignment hypotheses of pairs of boxes representing improbable motions are
penalized with a large cost.

Spatio-temporal cues. Our spatio-temporal cues utilize a simple motion compen-
sation by computing the median DM displacement between correspondences of the
background.

We assume a linear motion model, similar to Ristani and Tomasi (2018) and penalize
deviations of detections from the estimated motion trajectory. This enforces spatio-
temporally consistency of detections within one trajectory. Furthermore, we penalize
improbable large person movements by relating velocities (in pixels per seconds) in
horizontal direction to box width: ftrans(vw) = log(vx(vw)/min{wi(v),wi(w)}).

Fusion of input features. We construct a neural network consisting of fully connected
layers, batch normalization, and ReLU units taking the above described features and
time differences as input and outputting scores for assignment hypotheses. The final
layer uses a sigmoid activation function for producing a score in [0, 1]. We refer to the
supplemental material of Horňáková et al. (2020) for the exact structure of the neural
network and details about the training procedure.

4.7.4 experiment setup

In order to assess the suitability of the proposed lifted disjoint paths formulation for
MOT, we conduct extensive experiments on three challenging benchmarks: MOT15
(Leal-Taixé et al., 2015), MOT16 and MOT17 (Milan et al., 2016), resulting in 39 test
sequences. The sequences are filmed from static and moving cameras. While MOT16
and MOT17 share the same sequences, MOT17 provides three different detectors in order
to study the dependence of the tracking quality on the input detections. We perform
analysis and parameter tuning for our tracker LifT on the MOT17 train set, even when
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it is applied to the MOT15 sequences to ensure that it is not prone to overfitting. We
follow the MOT challenge protocol and use the detections provided by the respective
benchmarks. All experiments on the training set are evaluated using a leave-one-out
cross-validation. This includes all of our training procedures, in particular also the
training of the re-identification network.

To measure the tracking quality, the multiple object tracking accuracy (MOTA)
(Bernardin and Stiefelhagen, 2008a) and the IDF1 metric (Ristani et al., 2016b) are
regarded as the most meaningful ones. The first incorporates the number of false
negatives (FN), false positives (FP), and identity switches (IDS), thereby focusing on
the coverage of persons. The latter assesses the consistency w.r.t. identities. Further
tracking metrics (MT, ML) are defined in Li et al. (2009).

4.7.5 the benefit of long-range edges

We investigate the importance of using long-range information for MOT. To this
end, we apply our proposed tracker on the MOT17 training sequence with varying
maximal time gap, for which base and lifted edges are created between nodes. In
order to assess the influence of the time gap on the tracking quality, we measure the
assignment quality in terms of the MOTA and IDF1 metrics, without performing any
inter- or extrapolation. To assess how well the assignment part is solved by our tracker,
we compute the maximum achievable metrics given the filtered input detections and
admissible assignment hypotheses within maximal time gaps. For this, ground truth
trajectories are used. A detailed description of how we obtain the optimal assignments
are given in the Appendix of Horňáková et al. (2020). From the result in Table 4.1, we
see essentially constant MOTA scores. This is due to the fact that selecting correct
connections does not change MOTA significantly except after inter- and extrapolation
(which we have excluded in Table 4.1). However, we see a significant improvement in
the IDF1 score, which directly penalizes wrong connections. Here, long-range edges help
greatly. Moreover, both metrics, ID precision and ID recall, clearly increase with the
increasing time gap. This shows that improvements by incorporating more temporal
information come from using longer skip edges (impact on IDR) but most importantly,
precision increases greatly. This means that ID switches are avoided thanks to lifted
edges. Furthermore, the experiment shows that our designed features together with the
lifted disjoint paths formulation (LDP) are well-suited for the MOT problem delivering
nearly optimal assignments.

4.7.6 benchmark evaluations

Finally, we compare our tracking performance on the tests sets of MOT15, MOT16
and MOT17 benchmarks with all trackers listed on the MOTChallenge which have
been peer-reviewed and correspond to published work. The three benchmark datasets
consist of 11/7/7 training and test sequences for MOT15/16/17 respectively. They
are the standard benchmark datasets for MOT. The results in Table 4.2 show the
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0.3s 0.5s 1s 1.5s 2s ∞
MOTA (LifT)↑ 52.6 52.7 52.8 52.8 52.8 -
MOTA (optimal)↑ 53.0 53.1 53.3 53.3 53.4 53.4
IDF1 (LifT) ↑ 55.7 57.8 61.8 63.8 64.3 -
IDF1 (optimal)↑ 56.0 58.6 63.2 65.7 66.8 69.9
IDP (LifT) ↑ 79.8 82.9 88.5 91.4 92.1 -
IDP (optimal)↑ 80.4 84.2 90.8 94.3 95.9 100.0
IDR (LifT) ↑ 42.7 44.5 47.4 49.0 49.4 -
IDR (optimal)↑ 42.9 45.0 48.5 50.4 51.3 53.4

Table 4.1: Assignment quality of LifT without interpolation or extrapolation on the MOT17
train set with different maximal time gaps in seconds. Rows 1,3,5 and 7 show the results by
LifT, rows 2,4,6, and 8 show the maximally achievable bounds with admissible assignment
hypotheses up to the specified time gap. Bold numbers represent the best values per row.

tracking performance of our tracker LifT together with the best 5 performing trackers,
accumulated over all sequences of the respective benchmarks. The evaluations show that
we outperform all tracking systems by a large margin on all considered benchmarks. On
MOT17, we improve the MOTA score from 53.5 to 60.5 and the IDF1 score from 52.3 to
65.6, which corresponds to an improvement of 13% in terms of MOTA and almost 25%
in terms of the IDF1 score, indicating the effectiveness of the lifted edges. We observe
similar improvements across all three benchmarks. These results reflect the near-optimal
assignment performance observed on the MOT17 train set in Section 4.7.5. Finally, using
only simple linear interpolation as post-processing (LifTsimInt), our tracker achieves
58.2 MOTA and 65.2 IDF1. Even then, our system clearly outperforms existing tracking
systems. On average, the ILP solver needs 26.6 min. per sequence. Detailed runtimes
are available in Table 4.4.

4.7.7 ablation study on post-processing methods.

Solving the proposed lifted disjoint paths problem establishes the assignment of input
detections to object identities very close to the best possible assignment (Section 4.7.5).

To localize tracked objects also in the frames in which the object detector failed
to detect them, some trackers apply an additional object detector on these frames
based on the available input detections. This can be seen as performing interpolation
and extrapolation, if viewed from the perspective of data association in a tracking-by-
detection framework, e.g. see Bergmann et al. (2019). As a result, improvements can
be achieved from extending trajectories to image areas without input detections by
applying an accurate object detector.

In order to make our tracking performance comparable with other trackers, we follow
this strategy and employ an inter- and extrapolation based on Bergmann et al. (2019).

During the inter- and extrapolation, output detections (coming from the lifted disjoint
paths solver) are preserved. In particular, the detections are not rejected, reshaped,
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Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Frag↓
M
O
T
17

LifT (ours) 60.5 65.6 27.0 33.6 14966 206619 1189 3476
LifTsimInt (ours) 58.2 65.2 28.6 33.6 16850 217944 1022 2062
Tracktor17 53.5 52.3 19.5 36.6 12201 248047 2072 4611
JBNOT 52.6 50.8 19.7 35.8 31572 232659 3050 3792
FAMNet 52.0 48.7 19.1 33.4 14138 253616 3072 5318
eTC17 51.9 58.1 23.1 35.5 36164 232783 2288 3071
eHAF17 51.8 54.7 23.4 37.9 33212 236772 1834 2739

M
O
T
16

LifT (ours) 61.3 64.7 27.0 34.0 4844 65401 389 1034
LifTsimInt (ours) 57.5 64.1 25.4 34.7 4249 72868 335 604
Tracktor16 54.4 52.5 19.0 36.9 3280 79149 682 1480
NOTA 49.8 55.3 17.9 37.7 7248 83614 614 1372
HCC 49.3 50.7 17.8 39.9 5333 86795 391 535
eTC 49.2 56.1 17.3 40.3 8400 83702 606 882
KCF16 48.8 47.2 15.8 38.1 5875 86567 906 1116

2D
M
O
T
15

LifT (ours) 52.5 60.0 33.8 25.8 6837 21610 730 1047
LifTsimInt (ours) 47.2 57.6 27.0 29.8 7635 24277 554 803
Tracktor15 44.1 46.7 18.0 26.2 6477 26577 1318 1790
KCF 38.9 44.5 16.6 31.5 7321 29501 720 1440
AP_HWDPL_p 38.5 47.1 8.7 37.4 4005 33203 586 1263
STRN 38.1 46.6 11.5 33.4 5451 31571 1033 2665
AMIR15 37.6 46.0 15.8 26.8 7933 29397 1026 2024

Table 4.2: We compare our tracker LifT with the five best performing competing trackers w.r.t.
MOTA from the MOT challenge. References: Tracktor (Bergmann et al., 2019), JBNOT (Hen-
schel et al., 2019b), FAMNet (Chu and Ling, 2019), eTC (Wang et al., 2019b), eHAF (Sheng
et al., 2018), NOTA (Chen et al., 2019), HCC (Ma et al., 2018), KCF (Chu et al., 2019),
AP_HWDPL_p (Chen et al., 2017), STRN (Xu et al., 2019) and AMIR15 (Sadeghian et al.,
2017). In addition, we compare the results to our tracker LifTsimInt that uses only a simple
interpolation method (linear interpolation) as post-processing in all sequences. We outperform
competing solvers on most metrics on all three MOT Challenge benchmarks, using LifT and
LifTsimInt. Arrows indicate whether low or high metric values are better.

neither are their labels changed by Tracktor. Instead, we apply Tracktor to recover
further locations of an object in the frames where detections of the object were missing.
The procedure is based on its trajectory obtained from the lifted disjoint paths solver.

Table 4.3 reports the influence of employing inter- and extrapolation. The first two
rows repeat values from Table 4.1 given the maximal 2s time gap. Since our solver
produces nearly optimal data assignment with respect to the used input detections,
further improvements can only be achieved by applying interpolation and extrapolation
on the tracks obtained by the solver.

We compare the visual interpolation (VI) as well as visual extrapolation (VE), both
using the method of Bergmann et al. (2019) with spatial interpolation (SI). For SI, we
employ linear interpolation based solely on the geometric bounding box information.
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Method MOTA IDF1
Assignment 52.8 64.3
Assignment (optimal) 53.4 66.8
Assignment+SI 57.8 67.6
Assignment+SI∗ 59.5 68.9
Assignment+VI 59.6 68.5
Assignment+VI+VE 65.7 71.5
Assignment+VI+VE+SI 67.0 72.4

Table 4.3: Ablation study on inter- and extrapolation, evaluated on the MOT17 train set. SI =
spatial interpolation only on sequences filmed from a static camera, SI∗ = spatial interpolation
on all sequences, VI = visual interpolation, VE = visual extrapolation. Assignment and
assignment (optimal) denote the results of the lifted disjoint paths problem and the optimal
assignment, as reported in Section 4.7.5 given 2s time gap. Note that Tracktor’s object detector
is fine-tuned on MOT17Det. In our experiments, this resulted in bigger improvements on the
MOT17 training set than on the test set, compare Table 4.2.

The interpolation SI is applied only to sequences with a fixed camera in order to
guarantee robust approximations. Still, the improvement by Assignment+SI over the
baseline is evident. Especially the MOTA metric, which measures mainly the coverage
of objects by detections, improves by about 10%. We also evaluate spatial interpolation
for all sequences (SI∗), which improves the tracker further to 59.5 MOTA and 68.9
IDF1. However, performing spatial interpolation on sequences with moving cameras can
lead to error propagation. Thus, our final tracker LifT relies on the more robust visual
interpolation and employs spatial interpolation only on sequences filmed from a static
camera.

On the contrary, the visual interpolation based on Bergmann et al. (2019) can be
applied robustly to all sequences, but only in situations where the object is visible.
Accordingly, the method Assignment+VI further improves over the baseline, as it is
applied to more frames.

Recovering the position of tracked objects also outside of the time range of its com-
puted trajectory (Assignment+VI+VE) further helps to improve the tracking accuracy,
enhancing MOTA by about 20% and IDF1 by about 10% IDF1, as VE extends computed
trajectory thereby achieving longer identity consistencies.

Finally, we employ spatial interpolation on the remaining cases where detections
are missing and the objects are fully occluded (Assignment+VI+VE+SI) resulting in
a slight improvement over Assignment+VI+VE.

Note that we use the method Assignment+VI+VE+SI to evaluate LifT on the
MOT15, MOT16, and MOT17 test set, as reported in Table 4.2. The impact of the
post-processing on the training set using Tracktor seems to be very high. We conjectured
this might be due to the fact that Tracktor’s object detector is trained on MOT17Det
(which are the detections of MOT17), leading to some degree of overfitting. Note that
Tracktor is not trained on the MOT17 tracking ground truth so that it is still regarded as
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a meaningful validation procedure Bergmann et al. (2019). Therefore, we created another
tracker LifTsimInt that uses a simple interpolation, namely only linear interpolation
between detections of a trajectory, for all sequences. The tracker thus corresponds to
Assignment+SI∗. Comparing Table 4.3 with Table 4.2, we see that indeed, the impact
of applying Tracktor during post-processing on the test set is significantly lower. We
conclude that while the post-processing improves the tracking performance, the main
performance of our tracker is due to our contributions.

Recall that most offline tracking systems obtain trajectories by solving a data
association problem, e.g. Henschel et al. (2018); Tang et al. (2017); Ristani and Tomasi
(2018). Our proposed tracker is able to achieve near-optimal results with respect to the
input detections. Applying interpolation and extrapolation further improves the results,
and makes it conceptually comparable to Tracktor. Still, with post-processing on our
computed data association, we improve over Tracktor by 25%. We argue that solving
the data association accurately is important to obtain a final high-quality result after
post-processing.
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Sequence MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Frag↓ S. time↓
M
O
T
17
-T
ra
in MOT17-02-DPM 40.5 50.3 13 29 19 11017 26 23 127

MOT17-04-DPM 69.9 73.9 41 22 298 13986 38 41 1521
MOT17-05-DPM 58.2 67.0 31 40 40 2824 27 65 36
MOT17-09-DPM 72.9 71.6 14 1 58 1370 15 7 59
MOT17-10-DPM 67.4 70.2 26 8 106 4043 39 82 173
MOT17-11-DPM 67.3 73.9 24 26 55 3017 11 28 115
MOT17-13-DPM 63.6 67.2 45 36 64 4127 43 48 59
MOT17-02-FRCNN 47.4 57.2 15 22 89 9656 26 27 229
MOT17-04-FRCNN 67.5 74.1 38 21 98 15310 29 13 1535
MOT17-05-FRCNN 60.2 68.9 35 36 73 2651 30 62 92
MOT17-09-FRCNN 71.5 72.9 14 1 54 1451 10 7 51
MOT17-10-FRCNN 73.2 76.2 33 2 270 3096 73 145 398
MOT17-11-FRCNN 73.1 78.8 32 18 82 2436 18 27 133
MOT17-13-FRCNN 77.1 75.8 68 10 203 2394 73 89 388
MOT17-02-SDP 55.0 61.3 16 16 65 8236 52 50 586
MOT17-04-SDP 77.7 81.8 46 13 243 10296 49 66 4133
MOT17-05-SDP 64.0 69.5 41 22 105 2351 33 84 80
MOT17-09-SDP 73.0 73.0 14 1 69 1356 12 12 127
MOT17-10-SDP 75.0 78.6 35 2 349 2759 105 160 756
MOT17-11-SDP 74.4 78.4 36 14 115 2277 27 36 198
MOT17-13-SDP 70.8 71.4 62 24 200 3150 55 81 364
MOT17-Train 67.0 72.4 679 364 2655 107803 791 1153 11430

M
O
T
17
-T
es
t MOT17-01-DPM 48.3 58.1 8 11 68 3258 10 19 38

MOT17-03-DPM 73.3 70.1 82 17 3560 24276 160 256 24311
MOT17-06-DPM 58.1 64.7 61 77 178 4728 28 155 113
MOT17-07-DPM 44.4 52.3 7 21 155 9176 60 209 297
MOT17-08-DPM 34.7 47.4 18 37 254 13507 32 44 146
MOT17-12-DPM 48.3 62.3 18 41 35 4437 11 52 68
MOT17-14-DPM 36.1 48.8 12 77 268 11449 91 239 323
MOT17-01-FRCNN 47.7 58.1 8 10 246 3119 7 24 79
MOT17-03-FRCNN 72.2 71.8 71 17 2664 26277 124 250 11678
MOT17-06-FRCNN 60.4 63.7 68 61 279 4358 32 207 203
MOT17-07-FRCNN 44.0 54.9 8 20 279 9110 63 227 281
MOT17-08-FRCNN 31.9 43.3 17 37 383 13973 35 59 130
MOT17-12-FRCNN 47.3 58.0 16 43 37 4521 11 34 84
MOT17-14-FRCNN 36.2 49.0 16 72 629 11061 108 358 359
MOT17-01-SDP 47.8 57.8 9 10 346 3008 10 31 95
MOT17-03-SDP 78.2 77.3 92 13 3778 18879 132 323 16219
MOT17-06-SDP 60.3 65.1 67 64 305 4345 33 217 144
MOT17-07-SDP 45.8 55.0 8 18 285 8793 71 280 483
MOT17-08-SDP 34.8 47.7 18 34 429 13288 48 69 202
MOT17-12-SDP 47.3 60.7 18 42 158 4394 14 53 85
MOT17-14-SDP 38.3 51.4 15 69 630 10662 109 370 376

M
O
T
16

MOT16-01 48.3 58.2 8 10 78 3217 10 19 38
MOT16-03 73.0 69.9 80 17 3732 24329 159 310 24311
MOT16-06 58.2 64.7 62 77 249 4548 29 159 113
MOT16-07 45.6 53.4 7 16 189 8637 57 212 297
MOT16-08 43.4 55.7 18 24 284 9149 32 44 146
MOT16-12 50.2 64.0 18 37 44 4072 11 51 68
MOT16-14 36.1 48.8 12 77 268 11449 91 239 323

2D
M
O
T
15

ADL-Rundle-1 39.6 60.8 13 2 2277 3303 44 175 325
ADL-Rundle-3 59.2 69.9 23 7 902 3217 29 42 153
AVG-TownCentre 61.8 67.3 96 33 417 2217 99 213 20
ETH-Crossing 57.6 69.3 7 9 35 387 3 18 2
ETH-Jelmoli 51.4 67.1 18 14 520 701 12 44 20
ETH-Linthescher 53.7 62.2 42 98 318 3795 21 95 11
KITTI-16 36.2 32.7 5 1 456 521 108 60 57
KITTI-19 43.3 49.4 11 17 467 2315 249 142 135
PETS09-S2L2 56.9 43.6 9 2 476 3531 152 225 180
TUD-Crossing 88.0 90.9 11 0 64 62 6 13 13
Venice-1 45.8 62.1 9 3 905 1561 7 20 30

Table 4.4: We provide the results of our tracker LifT evaluated per sequence. In addition, we
provide the time necessary to solve the corresponding lifted disjoint paths problem instance (S.
time), in seconds. Arrows indicate whether low or high metric values are better. Tracking results
on the test sets were evaluated by the MOTChallenge server https://www.motchallenge.net

https://www.motchallenge.net


5
AN EFFIC IENT APPROXIMATE SOLVER FOR LIFTED
DISJOINT PATHS : MAKING HIGHER ORDER MOT
SCALABLE

5.1 introduction

In Chapter 4, we generalize (DP) to lifted disjoint paths (LDP) by using additional
connectivity priors in terms of lifted edges. This makes the formulation much more
expressive while it maintains the feasibility set of the (DP). The optimization problem
enables to take into account pairwise costs between arbitrary detections belonging to one
trajectory. It thus enables to incorporate long-range temporal interactions effectively
and leads to considerable improvement of recall and precision. While the integration of
the global context by (LDP) is crucial to obtain high-quality tracking results, it makes
the data association problem NP-hard. Still, we presented in Chapter 4 a global optimal
LDP solver usable for semi-crowded sequences with reasonable computational effort.
However, when applied to longer and crowded sequences, this approach is not tractable
anymore, due to too high demands on runtime and memory.

In order to close this gap, we present the first approximate ILP solver for (LDP).
The resulting tracker scales to big problem instances and incorporates global context
with similar accuracy as LifT which uses the globally optimal LDP solver. Moreover,
our approximate solver outputs certificates in terms of primal/dual gaps.

Our solver is based on a Lagrangean (dual) decomposition of the problem. This
dual is iteratively optimized by dual block coordinate ascent (a.k.a. message passing)
using techniques from Swoboda et al. (2017a), see Section 5.3.1. The decomposition
relies on subproblems that are added in a cutting plane fashion. We obtain high-quality
primal solutions by solving minimum cost flow problems with edge costs synthesizing
information from both base and lifted edges from the dual task and improve them via
a local search procedure.

The contribution of this work is in summary as follows:
• We make the (LDP) problem more accessible and applicable by introducing an
approximate solver with better scalability properties than the global optimal LDP
solver, while resulting in similar tracking performance, and being independent of
Gurobi (Gurobi Optimization, 2019).

• We present an MOT system that is scalable to challenging sequences by using
considerably less computationally demanding features than what is used in the tracker
from Chapter 4. The system presented here incorporates higher order consistencies in
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a scalable way, i.e. it uses an approximate solver and provides a gap to the optimum.
We make our LDP solver https://github.com/LPMP/LPMP and our MOT pipeline
https://github.com/TimoK93/ApLift available.

5.2 related work

We employ in our LDP solver the message passing framework from Swoboda et al.
(2017a). It has been used for solving (MC) by Swoboda and Andres (2017), graph
matching by Swoboda et al. (2017b), and multi-graph matching by Swoboda et al.
(2019). It was also used within an end-to-end trainable framework for graph matching
(Rolínek et al., 2020).

Although Swoboda et al. (2017a) offered a general-purpose message passing framework
for ILPs, the subproblem decomposition, reparametrization procedures, and techniques
for obtaining primal solutions still have to be designed specifically for each task. There-
fore, developing these procedures for (LDP) is an important contribution for solving it
in a scalable way while keeping a small gap to an optimum. Lange and Swoboda (2021)
proposed a parallel message passing solver based on binary decision diagrams that is
usable for any 0/1 ILP problem and thus represents a step towards an efficient universal
message passing approach for solving 0/1 ILPs.

Algorithms implementing dual block coordinate ascent for energy optimization are
often used for solving the max-sum problem, also known as finding maximum-a-posteriori
(MAP) configuration of Markov random fields. The task is to maximize a sum of unary
and binary functions of discrete variables. These algorithms optimize the dual problem
to the LP relaxation of the max-sum problem, i.e. minimize its upper bound. Werner
(2007) reviewed the known methods and theoretical findings including the relation of this
problem to constraints satisfaction programming. One of the methods called sequential
tree-reweighted message passing (TRW-S) was presented by Kolmogorov (2006). Werner
(2009) studied a generalized version of the problem with n-ary constraints. Kolmogorov
(2014) proposed a new family of message passing techniques for MAP estimation in
graphical models which can be viewed as a generalization of TRW-S from pairwise to
higher-order graphical models. Kappes et al. (2015a) provided an empirical comparison
of more than 27 state-of-the-art optimization techniques for energy optimization on
discrete graphical models including those based on optimizing the dual bound for the
above-stated problems. An extensive overview of the techniques for MAP inference in
discrete graphical models including dual block coordinate ascent methods is provided by
Savchynskyy et al. (2019).

We proved in our work Horňáková et al. (2020) (Chapter 4) that (LDP) is NP-hard
in general. Ganian et al. (2021) inspected its parameterized complexity and provided
more accurate complexity bounds if some instance parameters are fixed.

We validated the quality of our solver on four standard MOT benchmarks (Sec-
tion 4.7). We achieved comparable or better performance w.r.t. the state-of-the-art track-
ers (at the time of the method publication) including our tracker LifT on MOT15/16/17
(Leal-Taixé et al., 2015; Milan et al., 2016). Furthermore, our proposed tracker ApLift

https://github.com/LPMP/LPMP
https://github.com/TimoK93/ApLift
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performed on par with state-of-the-art on the more challenging MOT20 dataset (Den-
dorfer et al., 2020) which is composed of long and crowded sequences. Lightweight
features and a fast solver were crucial to perform tracking on such massive sequences.
Our work presented in this Chapter thus extends the applicability of the successful
(LDP) formulation to a wider range of instances.

5.3 lagrange decomposition algorithm for ldp

Below we recapitulate Lagrange decomposition and the message passing primitive used in
our algorithm (Section 5.3.1). Then, we propose a decomposition of the (LDP) problem
into smaller but tractable subproblems (Sections 5.3.2-5.3.4). This decomposition is
a dual task to an LP relaxation of (LDP). Therefore, it provides a lower bound that is
iteratively increased by the message passing. We solve the (LDP) problem in a simplified
version of Lagrange decomposition framework developed by Swoboda et al. (2017a).
Our heuristic for obtaining primal solutions uses the dual costs from the subproblems
(Section 5.3.6).

5.3.1 lagrange decomposition

We have an optimization problem minx∈X 〈c, x〉 where X ⊆ {0, 1}n is a feasible set
and c ∈ Rn is the objective vector. Its Lagrange decomposition is given by a set of
subproblems S with associated feasible sets X s ⊆ {0, 1}d(s) for each s ∈ S. We denote
by d(s) the length of the vectors in X s. Each coordinate i of X s corresponds to one
coordinate of X via an injection πs : [d(s)]→ [n] alternatively represented by a matrix
As ∈ {0, 1}d(s),n where (As)ij = 1 ⇔ πs(i) = j. For each pair of subproblems s, s′ ∈ S
that contain a pair of coordinates i, j such that πs(i) = πs′(j), we have a coupling
constraint xsi = xs

′
j for each xs ∈ X s, xs′ ∈ X s′ .

We require that every feasible solution x ∈ X is feasible for the subproblems, i.e.
∀x ∈ X ,∀s ∈ S : Asx ∈ X s.

We require that the objectives of subproblems are equivalent to the original objective,
i.e. 〈c, x〉 =

∑
s∈S〈θs, Asx〉 ∀x ∈ X . Here, θs ∈ Rd(s) defines the objective of subproblem s.

The lower bound of the Lagrange decomposition given the costs θs for each s ∈ S is∑
s∈S

min
xs∈X s
〈θs, xs〉 . (5.1)

Given coupling constraint xsi = xs
′
j and γ ∈ R, a sequence of operations of the form

θsi += γ, θs
′
j −= γ is called a reparametrization. Here, the formula θsi+=γ means that

we update θsi by adding γ to it. We define the operation −= analogically.
Feasible primal solutions are invariant under reparametrizations but the lower

bound (5.1) is not. The optimum of the dual lower bound equals to the optimum
of a convex relaxation of the original problem, see Guignard and Kim (1987).
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Min-marginal message passing. Below, we describe reparametrization updates
monotonically non-decreasing in the lower bound based on min-marginals. Given
a variable xsi of a subproblem s ∈ S, the associated min-marginal is

ms
i = min

xs∈X s:xsi=1
〈θs, xs〉 − min

xs∈X s:xsi=0
〈θs, xs〉 (5.2)

i.e. the difference between the optimal solutions with the chosen variable set to 1 resp. 0.

Proposition 5.1 (Swoboda et al. (2017a)). Given a coupling constraints xsi = xs
′
j and

ω ∈ [0, 1] the following operation is non-decreasing w.r.t. the dual lower bound (5.1)

θsi −= ω ·ms
i, θs

′

j += ω ·ms
i . (5.3)

The goal of reparametrization is two-fold. (i) Improving the objective lower bound
to know how far our solution is from the optimum. (ii) Using reparametrized costs as the
input for our primal heuristic yields high-quality primal solutions. The key components
are efficient computations of (i) optima of subproblems for obtaining lower bound (5.1),
(ii) constrained optima for obtaining min-marginals (5.2), and (iii) a primal heuristic
using the reparametrized costs (Section 5.3.6).

5.3.2 inflow and outflow subproblems

For each node v ∈ V of the flow graph, we introduce two subproblems: An inflow and an
outflow subproblem. The subproblems contain all incoming resp. outgoing edges of node
v together with the corresponding node. Formally, inflow resp. outflow subproblems
contain the edges δ−E(v) ∪ δ−E′(v), resp. δ+

E(v) ∪ δ+
E′(v) . Here, we adopt the standard

notation where δ−E(v), resp. δ+
E(v) denote all base edges incoming to v, resp. outgoing

from v. Similarly, δ−E′(v), δ+
E′(v) denote lifted edges incoming to, resp. outgoing from v.

The feasible set X out(v) of the outflow subproblem for node v is defined as
z
out(v)
v ∈ {0, 1}, yout(v) ∈ {0, 1}δ+

E (v), y′out(v) ∈ {0, 1}δ
+
E′ (v) :

(z
out(v)
v , yout(v), y′out(v)) = 0 ∨ ∃P ∈ vt-paths(G) s.t. z

out(v)
v = 1

y
out(v)
vw = 1⇔ vw ∈ PE
y
′out(v)
vu = 1⇔ u ∈ PV

 .

(5.4)
Consequently, either there is no flow going through vertex v and all base and lifted edges
have label zero. Alternatively, there exists a vt-path P in G labeled by one. In this case,
the base edge adjacent to v corresponding to the first edge in P is one. All lifted edges
connecting v with vertices of P also have value one. All other base and lifted edges are
zero. Each feasible solution of the outflow subproblem can be represented by a path
vt-path P . The feasible set of the inflow subproblem X in(v) is defined analogously.

Notation. We denote by θout resp. θin the cost vector of all base edges, lifted edges, and
nodes of all outflow resp. inflow subproblems. That is θout ∈ R|V |+(|E|−|δ+

E (s)|)+|E′|. We
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Figure 5.1: Illustration of the inflow and the outflow subproblem corresponding to the high-
lighted node. They contain all incoming resp. all outgoing lifted (dark blue) and base edges
(black) incident to the node.

subtract the edges starting in vertex s because they are not part of any outflow subprob-
lem. Analogically, θin ∈ R|V |+(|E|−|δ−E (t)|)+|E′|. We denote by θout(v) ∈ R1+|δ+

E (v)|+|δ+
E′ (v)|

the cost vector of the outflow subproblem corresponding to node v.
Note that each (lifted) edge resp. each node appears in maximally one outflow

subproblem. This subproblem is uniquely identified by the first vertex of the edge resp.
by the vertex itself. Therefore, we can write youtvw for the edge variable and θoutvw for the
edge cost value instead of yout(v)

vw and θout(v)
vw . This leads to better readability. Analogically,

we usually write zoutv and θoutv instead of zout(v)
v and θout(v)

v for the node variables and
costs in the outflow subproblems. The cost vector of the outflow subproblem of vertex v
has the following elements:

θout(v) = (θoutv , θoutvv1
, . . . , θoutvvn , θ

′out
vw1
, . . . , θ′outvwm

) (5.5)

Here n = |δ+
E(v)| is the number of base edges and m = |δ+

E′(v)| is the number of lifted
edges in the subproblem. The dashed variables θ′outvwi

denote the costs of lifted edges. We
use an analogical notation for the inflow subproblems.

Constraints between inflow and outflow subproblems. We require that all
variables obey the coupling constraints in any primal solution. That is, the corresponding
variables from different subproblems must have equal values. For node variables, we
add the constraint zinv = zoutv . For an edge vw ∈ E ∪ E ′ we require the shared edge in
the outflow subproblem of v and in the inflow subproblem for w to agree, i.e. youtvw = yinvw
if vw ∈ E and y′outvw = y′invw if vw ∈ E ′. In the dual solution, however, the coupling
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γ>0−−→

Figure 5.2: An illustration of sending message delta from an outflow subproblem to an inflow
subproblem. The optimal solution of the outflow subproblem activates the lifted edge with cost
−3.3, activating the highlighted lifted edge is suboptimal. Therefore, the message is positive
and activating the highlighted edge in the inflow subproblem becomes less beneficial.

a) b)

c) d)

Figure 5.3: Optimization of an outflow subproblem (Algorithm Opt-Out-Cost). This method is
also employed in the computation of the outflow subproblem min marginals (Algorithms All-
Base-MM-Out and All-Lifted-MM-Out). Given an outflow subproblem with lifted and base edge
costs (a), we first compute values in array lifted_costs for each incident node (violet numbers
in (b)). These numbers must be obtained from right to left, eventually in the DFS manner (see
Algorithm Lifted-Cost-DFS-Out). Given these values, we can compute for each base edge, the
constrained optima where the edge is active. These are the violet labels of the base edges in
(c). They represent vector α from Algorithm Opt-Out-Cost. (d) shows the optimal solution.
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Algorithm Opt-Out-Cost (v, θ̃)
Input start vertex v, vector of costs θ̃
Output optimal value opt, lifted_cost, ∀w : vw ∈ δ+

E(v) optimal solution for vw active
αvw

1: for u ∈ V : vu ∈ RG do
2: lifted_cost[u] =∞, next[u] = ∅
3: end for
4: lifted_cost[t] = 0, next[t] = t
5: Lifted-Cost-DFS-Out(v, v, θ̃, lifted_cost, next)
6: ∀w : vw ∈ δ+

E(v) : αvw = θ̃v + θ̃vw + lifted_cost[w]
7: opt = min(minvw∈δ+

E (v) αvw, 0)

Algorithm Lifted-Cost-DFS-Out (v, u, θ̃, lifted_cost, next)
Input v, u, θ̃, lifted_cost, next
Output lifted_cost, next
1: α = 0
2: for uw ∈ δ+

E(u) do
3: if next[w] = ∅ then Lifted-Cost-DFS-Out(v, w, θ̃)
4: if lifted_cost[w] < α then
5: α = lifted_cost[w], next[u] = w
6: end if
7: end for
8: if next[u] = ∅ then next[u] = t
9: lifted_cost[u] = α + θ̃′vu

constraints are not required. Instead, messages are sent between the coupled variables
to improve the consistency between their assignments and increase the lower bound.
Figure 5.2 illustrates sending a message from the outflow subproblem to an inflow
subproblem that shares an edge with it.

Optimization of in- and outflow subproblems. Given costs θout(v), the optimal
solution of an outflow problem for node v can be computed by depth-first search on the
subgraph defined by the vertices reachable from v. The algorithms rely on the following
data structures:
• lifted_costs[u] contains the cost of the minimal ut-path w.r.t. to costs of all lifted

edges connecting v with the vertices of the path.

• next[u] contains the best neighbor of vertex u w.r.t. values in lifted_cost. That is,
next[u] = argminw:uw∈δ+

E (u) lifted_cost[w].
Algorithms Opt-Out-Cost and Lifted-Cost-DFS-Out give a general depth first search

(DFS) procedure that, given a vertex v, computes optimal paths from all vertices
reachable from v. Algorithm Opt-Out-Cost takes as input vertex v and cost vector
θ̃ = (θ̃v, θ̃vv1 , . . . , θ̃vvn , θ̃

′
vw1
, . . . , θ̃′vwm

), as in (5.5). Its subroutine Algorithm Lifted-Cost-
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DFS-Out computes recursively for each vertex u reachable from v the value lifted_cost[u].
The overall optimal cost min(z,y,y′)∈X out

v
〈θ̃, (z, y, y′)〉 of the subproblem is given by the

minimum of node and base edge and lifted edges costs minvu∈δ+
E (v) θ̃v+θ̃vu+lifted_cost[u].

Figure 5.3 illustrates the method. We achieve linear complexity by exploiting that
subpaths of minimum cost paths are minimal as well. The optimization for the inflow
subproblem is analogous.

Message passing for in- and outflow subproblems. We could compute one min-
marginal (5.2) by adapting Algorithm Opt-Out-Cost and forcing an edge to be taken or
not. However, computing min-marginals one-by-one by performing operation (5.3) would
be inefficient, since it would involve calling Algorithm Opt-Out-Cost O(|δ+

E(v)|+ |δ+
E′(v)|)

times. Therefore, we present efficient algorithms for computing a sequence of min-
marginals in Section 5.4. The procedures save computations by choosing the order
of edges for computing min-marginals suitably and reusing previous calculations. We
provide remarks on how to efficiently implement all used DFS procedures in Section 5.4.1.

5.3.3 path subproblems

Figure 5.4: A path subproblem contains a lifted edge and a path between its endpoints that
can contain lifted edges too.

A path subproblem contains a lifted edge vw and a path P from v to w consisting
of both base and lifted edges (see Figure 5.4). They reflect that (i) lifted edge vw must
be labeled 1 if there exists an active path between v and w, and (ii) there cannot be
exactly one inactive lifted edge within path P if vw is active. The reason is that the
inactive lifted edge divides P into two segments that must be disconnected. This is
contradictory to activating lifted edge vw because it indicates a connection between v
and w. Path subproblems are similar to cycle inequalities for the multicut (2.1).

In order to distinguish between the base and lifted edges of path P , we use notation
PE = P ∩E and PE′ = P ∩E ′. For the purpose of defining the feasible solutions of path
subproblems, we define strong base edges E0 = {vw ∈ E|vw-paths(G) = {vw}}. That
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Algorithm Path-Subproblem-Optimization (θP )
Input Edge costs θP
Output optimal value opt of subproblem.
1: E+ = {kl ∈ PE′ ∪ vw|θ′Pkl > 0} ∪ {kl ∈ PE|θPkl > 0}
2: if E+ = {kl} ∧ kl ∈ PE′ ∪ vw ∪ E0 then
3: α = min{ min

ij∈PE\E+
|θPij |, min

ij∈PE′∪vw\E+
|θ′Pij |}

4: β =

{
θ′Pkl if kl ∈ PE′ ∪ vw
θPkl if kl ∈ PE

5: if α < β then
6: opt =

∑
ij∈PE\E+

θPij +
∑

ij∈PE′∪vw\E+

θ′Pij + α

7: else
8: opt =

∑
ij∈PE

θPij +
∑

ij∈PE′∪vw
θ′Pij

9: end if
10: else
11: opt =

∑
ij∈PE\E+

θPij +
∑

ij∈PE′∪vw\E+

θ′Pij

12: end if
13: return opt

is, base edge vw is strong iff there exists no other vw-path in graph G than vw itself.

The feasible set X P of the path subproblem for vw-path P is defined as

y ∈ {0, 1}PE , y′ ∈ {0, 1}PE′∪{vw} :

∀kl ∈ PE′ ∪ {vw} :
∑
ij∈PE

(1− yij) +
∑

ij∈PE′∪{vw}\{kl}

(1− y′ij) ≥ 1− y′kl , (5.6)

∀kl ∈ PE ∩ E0 :
∑

ij∈PE\kl

(1− yij) +
∑

ij∈PE′∪{vw}

(1− yij) ≥ 1− ykl . (5.7)

Equation (5.6) requires that a lifted edge in PE′ or vw can be zero only if at least
one other edge of the subproblem is zero. Equation (5.7) enforces the same for strong
base edges.

The optimization of path subproblems. We denote by θP the edge costs in the
subproblem of vw-path P . The optimization over the feasible set X P w.r.t. costs θP
is detailed in Algorithm Path-Subproblem-Optimization. The principle is as follows. It
checks whether there exists exactly one positive edge and whether it is either a lifted or
a strong base edge (Line 2). If so, the optimal solution is either (i) all edges except the
two largest ones (Line 6) or (ii) all edges (Line 8), whichever gives a smaller objective
value. If the above condition does not hold, the optimal solution can be chosen to
contain all negative edges (Line 11).
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We use a variation of the path optimization algorithm with an edge fixed to 0 or 1
for computing min-marginals.

Cutting plane. Since there are exponentially many path subproblems, we add during
the optimization only those that improve the relaxation. Details are in Section 5.4.2.

5.3.4 cut subproblems

Figure 5.5: A cut subproblem consists of a lifted edge (dark blue) and a set of base edges
(black) that compose a cut between the nodes of the lifted edge.

The purpose of a cut subproblem is to reflect that a lifted edge uv must be labeled 0
if there exists a cut of base edges that separate u and v (uv-cut) all labeled 0.

The feasible set. A cut subproblem consists of a lifted edge uv and a uv-cut
C = {ij ∈ E|i ∈ A, j ∈ B} where A,B ⊂ V with A ∩ B = ∅. The space of feasible
solutions XC is defined as

y′uv ∈ {0, 1}, y ∈ {0, 1}C : y′uv ≤
∑
ij∈C

yij , uv ∈ C ⇒ y′uv ≥ yuv

∀i ∈ A :
∑
ij∈C

yij ≤ 1 , ∀j ∈ B :
∑
ij∈C

yij ≤ 1 . (5.8)

The constraints stipulate that (i) the lifted edge uv is 0 if all the edges in the cut are
0, (ii) if there is also base edge uv ∈ C then whenever it is active, the lifted edge uv
must be active, and (iii) there exists at most one active outgoing resp. incoming edge
for every vertex in A resp. B.

Optimization of a cut subproblem with respect to feasible set XC is given by
Algorithm Cut-Subproblem-Optimization. Its key is to solve a linear assignment problem
(LAP) (Ahuja et al., 1988) between vertex sets A and B. The assignment cost ψij for
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Algorithm Cut-Subproblem-Optimization (θC)
Input Edge costs θC
Output optimal value opt of subproblem.
1: Define ψ ∈ RA×B:

2: ψij =


θCuv + θ′Cuv, if ij = uv ∧ uv ∈ C ∧ θ′Cuv > 0

∞, if ij /∈ C
θCij , otherwise

3: z∗ ∈ argmin
z∈{0,1}A×B

∑
i∈A

∑
j∈B

ψijzij, s.t. z1 ≤ 1, z>1 ≤ 1

4: opt =
∑

ij∈C ψijz
∗
ij

5: if θ′Cuv ≥ 0 then return opt
6: if ∃kl ∈ C : zkl = 1 then
7: return opt + θ′Cuv
8: else
9: α = minij∈C θ

C
ij

10: if |θ′Cuv| > α then return θ′Cuv + α
11: else return opt
12: end if

(i, j) ∈ A × B is the cut edge cost θCij if edge ij belongs to C and ∞ otherwise. In
the special case of uv-cut C containing base edge uv and the lifted edge cost θ′Cuv being
positive, the assignment cost ψuv is increased by θ′Cuv.

A candidate optimal labeling of cut edges is given by values of LAP variables zij. If
θ′Cuv ≥ 0, the optimal value found by the LAP is the optimal value of the cut subproblem.
If it is negative, we distinguish two cases: (i) If a cut edge kl labeled by one exists, the
lifted edge cost θ′Cuv is added to the optimal value of LAP. (ii) Otherwise, we inspect
whether it is better to activate the smallest-cost cut edge and the lifted edge uv or keep
all edges inactive.

We use a variation of Algorithm Cut-Subproblem-Optimization with an edge variable
restricted to be either 0 or 1 for computing min-marginals.

Cutting plane. There are exponentially many cut subproblems. Therefore, we add
only those that improve the lower bound. See Section 5.4.3 for details.

5.3.5 message passing

The overall algorithm for optimizing the Lagrange decomposition is Algorithm Message-
Passing in Section 5.4. First, inflow and outflow subproblems are initialized for every
node. Then, for a number of iterations or until convergence, costs for each subproblem
are adjusted iteratively by computing min-marginals and adjusting the reparametrization
proportionally to the min-marginal’s value. Additionally, every k-th iteration new path
and cut subproblems are separated and added to the Lagrange decomposition.
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Algorithm Compute-Primal (S, θ)
Input Subproblems S, original costs θ ∈ R|V

′|+|E|+|E′|

Output Primal solution (z, y, y′)

1: Init-MCF
2: Obtain primal solution of MCF ymcf ∈ {0, 1}Emcf

3: Set (z, y) according to ymcf
4: y′ =Adjust-Lifted-Solution(z, y)
5: (z, y, y′) =Local-Search(z, y, y′)

Algorithm Init-MCF (θin, θout)
Input The current variable costs in all inflow and outflow subproblems (θin, θout)
Output Costs of base edges for the MCF problem θmcf

1: ∀u ∈ V \{s, t}:
(o, lc, αinu )=Opt-In-Cost(u, θin(u))
(o, lc, αoutu )=Opt-Out-Cost(u, θout(u))

2: ∀u ∈ V \{s, t} : θmcf
suin

= αinsu, θ
mcf
uoutt = αoutut

3: ∀u ∈ {uv ∈ E|u 6= s, v 6= t} : θmcf
uoutvin

= αoutuv + αinuv

5.3.6 primal rounding

For computing primal solutions we solve the minimum cost flow (MCF) problem on
the base edges and improve this initial solution with a local search heuristic (Algo-
rithm Compute-Primal).

Without lifted edges, the disjoint paths problem is an instance of (MCF) , which can
be efficiently optimized via combinatorial solvers like the successive shortest path solver
that we employ (Ahuja et al., 1988). We enforce node disjoint paths via splitting each
node u ∈ V into two nodes uin, uout ∈ V mcf in the MCF graph Gmcf = (V mcf , Emcf),
adding an additional edge uinuout to Emcf and setting capacity [0, 1] on all edges Emcf .
Each node except s and t has demand 0. Algorithm Init-MCF calculates edge costs for
(MCF) from in/outflow subproblems using Algorithm Opt-Out-Cost. We obtain the cost
of each flow edge uoutvin from the inflow subproblem of v and the outflow subproblem
of u by summing up their minima where edge uv is active. This combines well the
cost from the base and lifted edges because the minimum comprises the best feasible
combination of the lifted edges that are reachable when uv is active.

Algorithm Local-Search in Section 5.4 is the local search heuristic for improving the
(MCF) solution. It works with sets of disjoint paths. First, paths are split if this leads
to a decrease in the objective. Second, merges are explored. If a merge of two paths is
not possible, we iteratively check whether cutting off one node from the first path’s end
or the second path’s beginning makes the connection possible. If yes and the connection
is decreasing the objective, the nodes are cut off and the paths are connected.
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5.4 message passing algorithms

Figure 5.6: The scheme of our algorithms. Arrows from algorithms point to their subroutines.
MP means Message Passing. Some inflow algorithms analogical to outflow are omitted.
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Algorithm All-Base-MM-Out (v, θ̃)

Input start vertex v, costs θ̃
Output base edge min-marginals γvu ∀vu ∈ δ+

E(v)

1: (opt, lifted_cost, α) =Opt-Out-cost(v, θ̃)
2: e∗ = argmin

vw∈γ+
E

{αvw}, e∗∗ = argmin
vw∈γ+

E\{e∗}
{αvw}

3: ∀vu ∈ δ+(v) : γvu = αvu −min(αe∗∗ , 0)

Algorithm All-Lifted-MM-Out (v, θ̃)

Input starting vertex v, cost vector θ̃
Output lifted edge min-marginals γ′vu ∀vu ∈ δ+

E′(v)

1: (opt, lifted_cost, α, next) =Opt-Out-cost(v, θ̃)
2: P ∗V=Get-Opt-Path-Out(θ̃, α, next)
3: ∀vw ∈ δ+

E′(v) : γ′vw = 0

4: (opt, γ′) =MM-Opt-Out(v, P ∗V , opt, γ′, θ̃)
5: γ′ =MM-Not-Opt-Out(v, opt, γ′, θ̃)

LDP solver outline. Figure 5.6 contains the scheme of all algorithms used in our
approximate LDP solver. The algorithms are stated either in Section 5.3 or in this
section. The solver performs an explicitly given number of message passing iterations.
Section 5.4.5 describes the full solver run and an overview of all methods used within
one message passing iteration. Once in five iterations, a new primal solution is computed
(Sections 5.3.6 and 5.4.6). Once in twenty iterations, new subproblems are separated
and added to the problem in order to tighten the LP relaxation. These are path and
cut subproblems (see Sections 5.3.3 and 5.3.4). Methods for their separations are
described in Sections 5.4.2 and 5.4.3. Section 5.4.4 discusses the guaranteed lower bound
improvement achieved by separating the new subproblems

Message passing. Messages are sent between the subproblems. Each subproblem
creates messages to be sent by computing min-marginals of its variables. Section 5.4.1
presents algorithms used for obtaining min-marginals of inflow and outflow subproblems.
The algorithms allow us to efficiently obtain min-marginals of all lifted or all base edges
of a subproblem at once. Messages from cut and path subproblems are obtained by
modifications of the respective algorithms for their optimization.

5.4.1 min-marginals for inflow and outflow subproblems

We detail routines for computing min-marginals for all base edges at once (Algorithm All-
Base-MM-Out) and all lifted edges at once (Algorithm All-Lifted-MM-Out). All the stated
algorithms assume outflow subproblems. Modification to inflow subproblems is done via
proceeding in the opposite edge direction.

We use these algorithms because iteratively computing min-marginals and performing
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Algorithm Get-Opt-Path-Out (next, α)
Input next: best descendants w.r.t. lifted_costs, vector α such that ∀vw ∈ δ+

E(v) : αvw
is the optimal value if vw is active
Output min cost path P ∗V
1: w∗ = argminw:vw∈δ+

E (v) αvw
2: if αvw∗ < 0 then
3: while w∗ 6= t do
4: P ∗V ← w∗

5: w∗ = next[w∗]
6: end while
7: else
8: P ∗V = ∅
9: end if

operation (5.3) would be inefficient, since it would involve calling Algorithm Opt-Out-
Cost O(|δ+

E(v)|+ |δ+
E′(v)|) times. Algorithms All-Base-MM-Out and All-Lifted-MM-Out

speed up iterative min-marginal updates by reusing computations.
Algorithm All-Base-MM-Out for computing base edge min-marginals uses the fact

that lifted edge costs do not change and therefore Algorithm Opt-Out-Cost needs to be
called only once. For lifted edges, Algorithm All-Lifted-MM-Out interleaves min-marginal
computation and reparametrization updates (5.3) such that computations can be reused.

In Algorithm All-Lifted-MM-Out, path P ∗ representing the optimal solution of the
outflow problem is found by calling Algorithm Opt-Out-Cost followed by Algorithm Get-
Opt-Path-Out. We introduce auxiliary variables γ′vw in Line 3 that keep track of future
reparametrization updates. Then, Algorithm MM-Opt-Out computes min-marginals
for the lifted edges that are active in the optimal solution. At the end of Algorithm
All-Lifted-MM-Out, min-marginals are computed for those lifted edges that are not active
in the optimal solution by calling MM-Not-Opt-Out.

For computing min-marginals of edges that are active in the optimal solution (Algo-
rithm MM-Opt-Out), we need as a subroutine Algorithm Skip-One, an extended version
of Algorithm Opt-Out-Cost. Algorithm Skip-One restricts the vertices taken into consid-
eration during the optimization. In particular, a special vertex r is given that is to be
excluded from the optimization. Values lifted_cost[u] are reused for those vertices u
where ur /∈ RG because these values are not affected by excluding vertex r.

Min-marginals for vertices inactive in the optimal solution are computed by Algo-
rithms MM-Not-Opt-Out and Backward-DFS . The algorithms rely on structure back_cost
which is an analogy of lifted_cost. Structure back_costs[u] contains the minimum cost
of all vu-paths w.r.t. to the costs of all lifted edges connecting v with the vertices of the
path plus the cost of the first base edge of the path. Note that lifted_costs[u] is defined
analogically but contains the minimum cost of all ut-paths. Therefore, the minimal
solution where a lifted edge vu ∈ E ′ is active can be obtained as follows:

min
(z,y,y′)∈X out(v):y′vu=1

〈θ̃, (zv, y, y′)〉 = lifted_cost[u] + back_cost[u] − θ̃′vu (5.9)
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Algorithm MM-Opt-Out (v, P ∗, opt, γ′, θ̃)
Input starting vertex v, optimal path P ∗V = (v1, . . . , vk), value of optimal path opt,
reparametrization updates γ′, costs θ̃
Output updated cost of optimal path opt, new γ′

1: for all vi = v1, . . . , vk : vvi ∈ δ+
E′(v) do

2: α =Skip-One(v, vi, θ̃ − (0, γ′), lifted_cost, next)
3: γ′vvi = opt− α
4: opt = α
5: end for

Algorithm Skip-One (v, r, θ̃, lifted_cost, next)
Input v, ignored vertex r, θ̃, lifted_cost, next
Output optimal value opt

1: for u ∈ V : vu ∈ RG ∧ ur ∈ RG do
2: lifted_cost[u] =∞, next[u] = ∅
3: end for
4: lifted_cost[r] = 0, next[r] = t
5: Lifted-Cost-DFS-Out(v, v, θ̃, lifted_cost, next)
6: ∀w : vw ∈ δ+

E(v) : αvw = θ̃v + θ̃vw + lifted_cost[w]
7: opt = min(minw:vw∈δ+

E (v) αvw, 0)

The cost of lifted edge θ̃′vu must be subtracted because it is involved in both values
lifted_cost[u] and back_cost[u].

Algorithm Backward-DFS performs two tasks simultaneously. First, it is a DFS
procedure for computing back_cost. Contrary to Algorithm Lifted-Cost-DFS-Out that
performs DFS for obtaining lifted_cost, Algorithm Backward-DFS proceeds in the
opposite edge direction. It again uses the fact that a subpath of a minimum-cost path
must be minimal. Second, it directly computes min marginal for already processed
vertex u on Line 10 and involves this change in setting back_cost[u] on Line 11.

Speeding up DFS: All the algorithms for obtaining optimal solution or min-marginals
of inflow and outflow subproblems call DFS procedures. It can be considered that the
order of processing the relevant nodes reachable from the central node is always the
same. Therefore, we call DFS for each inflow and outflow subproblem only once during
their initialization and store the obtained list of processed nodes. The full DFS in
Algorithm Lifted-Cost-DFS-Out is replaced by traversing the precomputed node list in
the forward direction. Algorithm Backward-DFS is replaced by traversing this node list
in the backward direction.
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Algorithm MM-Not-Opt-Out (v, opt, γ′, θ̃)
Input v, current optimum opt, reparametrization update γ′, θ̃
Output changed reparametrization update γ′

1: (opt, lifted_cost) =Opt-Out-cost(v, θ̃ − (0, γ′))
2: for all u : vu ∈ RG do
3: if u ∈ P ∗V then
4: visited[u] = true
5: back_cost[u] = opt− lifted_cost[u]
6: if vu ∈ E ′ then back_cost[u] += θ̃′vu − γ′vu
7: else
8: visited[u] = false
9: if vu ∈ δ+

E(v) then
10: back_cost[u] = θ̃vu
11: else
12: back_cost[u] =∞
13: end if
14: end if
15: end for
16: for all vu ∈ δ+

E′(v) do
17: if visited[u] = false then
18: Backward-DFS(v, u, θ̃, γ′, opt, back_cost)
19: end if
20: end for

Algorithm Backward-DFS (v, u, θ̃, γ′, opt, back_cost)
Input v, u, θ̃, γ′, opt, back_cost
Output γ′, back_cost
1: α = back_cost[u]
2: for wu ∈ δ−E(u) : vw ∈ RG do
3: if visited[w] = false then
4: Backward-DFS(v, w, θ̃, γ′, opt, back_cost)
5: end if
6: α = min{back_cost[w], α}
7: end for
8: if vu ∈ E ′ then
9: optu = α + lifted_cost[u]
10: γ′vu = optu − opt
11: back_cost[u] = α + θ̃′vu − γ′vu
12: else
13: back_cost[u] = α
14: end if
15: visited[u] = true
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a) b)

c)

Figure 5.7: The principle of our subroutine used for obtaining lifted min marginals of an outflow
subproblem (Algorithm MM-Not-Opt-Out). First, array lifted_cost must be obtained by running
Algorithm Opt-Out-Cost (Figure a) as illustrated in Figure 5.3. Second, numbers of array
back_cost are computed from left to right, eventually in the DFS manner (Algorithm Backward-
DFS ). They are depicted in green in (b). By adding the values from lifted_cost (violet in
(a)) and back_cost (green in (b)) and subtracting the cost of the incident lifted edge, we
obtain the constrained optimum where the respective lifted edge is active (red numbers in
(c)). In case of computing all lifted min marginals at once (Algorithm All-Lifted-MM-Out),
reparametrization and min marginals computation is performed at once. In that case, red
numbers in (c) additionally incorporate reparametrization changes of their predecessors’ costs.
This is omitted here for clarity.
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Algorithm Separation-Costs (θin, θout)
Input Current cost in inflow and outflow factors θin, θout
Output Cost reparametrization ∀uv ∈ E : θ̃uv, ∀uv ∈ E ′ : θ̃′uv
1: ∀uv ∈ E : θ̃uv = 0, ∀uv ∈ E ′ : θ̃′uv = 0
2: for all u ∈ V \ {s, t} do
3: ∀uv ∈ δ+

E(u) : γ(u)outuv = 0
4: ∀uv ∈ δ−E(u) : γ(u)invu = 0
5: γ′(u)out = 0.5·All-Lifted-MM-Out(u, θout(u))
6: γ′(u)in = 0.5·All-Lifted-MM-In(u, θin(u))
7: γ(u)out =All-Base-MM-Out(u, θout(u) − (0, γ(u)out, γ′(u)out))
8: γ(u)in =All-Base-MM-In(u, θin(u) − (0, γ(u)in, γ′(u)in))
9: ∀uv ∈ δ+

E(u) : θ̃uv += γ(u)outuv

10: ∀vu ∈ δ−E(u) : θ̃vu += γ(u)invu
11: ∀uv ∈ δ+

E′(u) : θ̃′uv += γ′(u)outuv

12: ∀vu ∈ δ−E′(u) : θ̃′vu += γ′(u)invu
13: end for

Algorithm Connect (i, j, pred, desc, E1)
Input i, j, pred, desc, E1

1: E1 ← ij
2: for all p ∈ pred[i] do
3: for all d ∈ desc[j] do
4: if fd − fp ≤ Lmax then
5: desc[p]← d
6: pred[d]← p
7: end if
8: end for
9: end for

5.4.2 separation for path subproblems

Notation. Before we start with the description of the separation procedures, we
define some symbols that are used in the algorithms in this and the following section.
• G1 = (V,E1) : a subgraph of base graph G = (V,E) or multigraph G∪G′ = (V,E∪E ′)
where the edge set E1 is defined in the respective algorithms.

• pred[v] : Predecessors of vertex v (vertices from that v is reachable) in graph G1.

• desc[v] : Descendants of vertex v (vertices that are reachable from v) in graph G1.

• fv : The number of the video frame where vertex v occurs.

• Lmax the maximal distance between two video frames such that edges are created
between their detections. We set Lmax = 60 or Lmax = 50 in our experiments.
Algorithm Separate-Path-Subproblem describes the path subproblem separation pro-
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Algorithm Separate-Path-Subproblem (ε)
Input Cost threshold ε
1: θ̃ =Separation-Costs(θin, θout)
2: G1 = (V,E1 = ∅)
3: E− = {vw ∈ E|θ̃vw < −ε} ∪ {vw ∈ E ′|θ̃′vw < −ε}
4: E ′+ = {vw ∈ E ′|θ̃′vw > ε}
5: ∀v ∈ V : desc[v] = {v}, pred[v] = {v}
6: Priority-Queue Q = ∅
7: for all ij ∈ E− ascending in θ̃ do
8: if ij ∈ E then cij = θ̃ij
9: else cij = θ̃′ij
10: if j /∈desc[i] then Inner-Paths(i, j, cij, pred, desc, E+, E1, Q)
11: if ij ∈ E ′ then Outer-Paths(i, j, cij, pred, desc, E+, E1, Q)
12: Connect(i, j, pred, desc, E1)
13: end for

Algorithm Inner-Paths (i, j, cij, pred, desc, E+, E1, Q)
Input i, j, cij, pred, desc, E+, E1, Q

1: for all p ∈ pred[i] do
2: for all d ∈ desc[j] do
3: if pd ∈ E ′+ ∧ d /∈ desc[p] then
4: P1 =Find-Path(p, i, E1)
5: P2 =Find-Path(j, d, E1)
6: P = (P1, ij, P2)
7: priority = min{|cij|, θ̃′pd}
8: Q← (Path-Problem(P ), priority)
9: end if
10: end for
11: end for

cedure. The algorithm finds paths together with a lifted edge connecting the start and
the end point of the path such that exactly one lifted edge has a positive cost, while all
the remaining base and lifted edges have a negative cost.

First, lifted and base edge costs are obtained in Algorithm Separation-Costs by
computing min-marginals of inflow and outflow factors. Second, a graph with an empty
edge set E1 is created. Then, edges with negative costs are added to E1 in ascending
order. After adding an edge, we check whether separating path subproblems with edge
costs leading to lower bound improvement is possible. Such a factor must contain the
newly added edge, one positive lifted edge, and edges that already are in the edge set E1.

Algorithm Inner-Paths separates those paths subproblems where the only positive
edge is the one connecting the path’s endpoints. Algorithm Outer-Paths separates those
path subproblems where the only positive edge is one of the edges within the path.
Algorithm Connect updates connectivity structures by adding edge ij to the edge set E1.



5.4 message passing algorithms 101

Algorithm Outer-Paths (i, j, cij, pred, desc, E+, E1, Q)
Input i, j, cij, pred, desc, E+, E1, Q

1: for all p ∈ pred[j] do
2: for all d ∈ desc[i] do
3: if dp ∈ E+ then
4: P1 =Find-Path(i, d, E1)
5: P2 =Find-Path(p, j, E1)
6: P = (P1, ij, P2)
7: priority = min{|cij|, θ̃′dp}
8: Q← (Path-Problem(P ), priority)
9: end if
10: end for
11: end for

It is sufficient to store the connectivity information only for those pairs of vertices that
have time distance lower or equal to Lmax which is the maximal frame distance used for
creating edges.

Queue with subproblems. Each path subproblem has a guaranteed lower bound
improvement, see Proposition 5.2. We add the found subproblems to priority queue
Q where we sort w.r.t. the guaranteed lower bound improvement. After searching for
new subproblems, we add the k best path and cut subproblems from queue Q to the
optimization problem (set S). Some variables typically occur in multiple subproblems.
We allow to add maximally 4 path and cut subproblems that share a certain variable
during one separation call.

5.4.3 separation for cut subproblems

Algorithm Separate-Cut-Subproblem finds cuts consisting of base edges with positive costs
and a lifted edge having endpoints on both sides of the cut and negative cost. Similarly as
for the path subproblem separation, lifted and base edge costs are obtained by computing
min-marginals of inflow and outflow subproblems in Algorithm Separation-Costs. Each
edge uv ∈ E ′− is a candidate lifted edge for a uv-cut subproblem.

The edge set E1 initially contains all base edges with a cost lower than ε. The
remaining base edges are added to E1 in ascending order. Whenever a newly added
edge ij causes a connection between u and v where uv ∈ E ′−, a uv-cut C is separated.
We select cut C to contain only those edges that do not belong to E1. This ensures that
ij is the weakest cut edge. In the same time, C is the best uv-cut with respect to the
cost of the weakest cut edge.

Similarly as for the paths, the found cut subproblems are added to a priority
queue where the priority represents the guaranteed lower bound improvement (see
Proposition 5.3) after adding the factor to our problem. We select from the queues
containing the path and cut subproblems those to be added to our subproblems set S.
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Algorithm Separate-Cut-Subproblem (ε)
Input Cost threshold ε
1: θ̃ =Separation-Costs(θin, θout)
2: E− = {vw ∈ E|θ̃′vw < ε}, E+ = E \ E−
3: G1 = (V,E1 = ∅)
4: for all ij ∈ E− do
5: Connect(i, j, pred, desc, E1)
6: end for
7: E ′− = {vw ∈ E ′|θ̃′vw < −ε ∧ w /∈ desc[v]}
8: Priority-Queue Q = ∅
9: for all ij ∈ E+ ascending in θ̃ do
10: for all u ∈ pred[i] do
11: for all v ∈ desc[j] do
12: if uv ∈ E ′− then
13: C= cut between u, v using edges E \ E1

14: priority = min{θ̃ij, |θ̃′uv|}
15: Q← (Cut-Problem(C, u, v), priority)
16: Delete uv from E ′−

17: end if
18: end for
19: end for
20: Connect(i, j, pred, desc, E1)
21: end for

5.4.4 tightening lower bound improvement

In order to show that the separation procedures in Algorithms Separate-Path-Subproblem
and Separate-Cut-Subproblem lead to relaxations that improve the lower bound we
show the following: (i) Certain reparametrization used in the above algorithms are
non-decreasing in the lower bound. (ii) Separation procedures find new subproblems
such that w.r.t. the above reparametrization, a guaranteed lower bound improvement
can be achieved.

Points (i) and (ii) guarantee that the same lower bound achievement w.r.t. the
original reparametrization can be found. The special reparametrization chosen helps
empirically to find good subproblems.

Lemma 5.1. Let s ∈ S be a subproblem, θ its cost and Ls(θ) its lower bound for cost θ.
Given a cost reparametrization γ such that
1. ∀i ∈ [d(s)]

γi

{
≤ 0 if ∃x∗ ∈ argminx∈X s〈θ, x〉 : x∗i = 1

≥ 0 if ∃x∗ ∈ argminx∈X s〈θ, x〉 : x∗i = 0
(5.10)

2. argmin
x∈X s

〈θ, x〉 ⊆ argmin
x∈X s

〈θ − γ, x〉
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and a coordinate-wise scaled reparametrization γ(ω) defined by coefficients ω ∈ [0, 1]d(s)

where ∀i ∈ [d(s)] : γ(ω)i = ωiγi, it holds:
1. The lower bound of s after reparametrization γ(ω) is Ls(θ − γ(ω)) = Ls(θ) −∑

i∈[d(s)]:γi<0 ωiγi.

2. argmin
x∈X s

〈θ, x〉 ⊆ argmin
x∈X s

〈θ − γ(ω), x〉

Proof. Due to Formula (5.10), the following holds:

(∃x∗, x∗∗ ∈ argmin
x∈X s

〈θ, x〉 s.t. x∗i 6= x∗∗i )⇒ γi = 0 . (5.11)

First, we evaluate 〈θ − γ(ω), x∗〉 where x∗ ∈ argminx∈X s〈θ, x〉.

〈θ − γ(ω), x∗〉 =
∑
i∈[ds]

(θi − ωiγi)x∗i =
∑
i∈[ds]

θix
∗
i −

∑
i∈[ds]:γi<0

ωiγix
∗
i = Ls(θ)−

∑
i∈[ds]:γi<0

ωiγi

(5.12)

Second, we inspect 〈θ − γ(ω), x〉 for any x ∈ X s.

∀x ∈ X s,∀x∗ ∈ argmin
x∈Xs

〈θ, x〉 :

〈θ − γ(ω), x〉 =
∑
i∈[d(s)]

(θi − ωiγi)xi =
∑
i∈[d(s)]

(θi − γi)xi +
∑
i∈[d(s)]

(1− ωi)γixi ≥

≥ Ls(θ − γ) +
∑

i∈[d(s)]:γi<0

(1− ωi)γixi ≥

≥ Ls(θ − γ) +
∑

i∈[d(s)]:γi<0

(1− ωi)γi =

=
∑
i∈[d(s)]

(θi − γi)x∗i +
∑
i∈[d(s)]

(1− ωi)γix∗i =
∑
i∈[d(s)]

(θi − ωiγi)x∗i =

= 〈θ − γ(ω), x∗〉 (5.13)

Formula (5.13) proves Point 2 of Lemma 5.1. Formulas (5.12) and (5.13) together prove
Point 1.

Lemma 5.2. Variables (γ(u)out, γ′(u)out), resp. (γ(u)in, γ′(u)in) in Algorithm Separation-
Costs satisfy the requirements of Lemma 5.1 for each outflow resp. inflow subproblem of
vertex u.

Proof. Both Algorithms All-Base-MM-Out and All-Lifted-MM-Out output reparametriza-
tion variables that satisfy the requirements of Lemma 5.1. We have, for an outflow
subproblem of node u:

argmin
(z,y,y′)∈X out(u)

〈θ, (z, y, y′)〉 ⊆ argmin
(z,y,y′)∈X out(u)

〈θ − (0, γ′(u)out), (z, y, y′)〉

⊆ argmin
(z,y,y′)∈X out(u)

〈θ − (0, γ(u)out, γ′(u)out), (z, y, y′)〉 (5.14)

Therefore, also (γ(u)out, γ′(u)out) together satisfy the requirements of Lemma 5.1. Ana-
logically, for the inflow subproblems.
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Costs in the new path and cut subproblems. One edge is typically shared
among multiple newly added path and cut subproblems. Therefore, the available cost
reparametrizations θ̃ and θ̃′ from Algorithm Separation-Costs must be redistributed to
the newly added subproblems. We denote the set of all newly added path subproblems
resp. cut subproblems in tightening iteration i by P i resp. Ci. For each base resp. lifted
edge uv, we sum up the number of newly added path and cut subproblems that contain
uv.

Nuv =|{P ∈ P i|uv ∈ PE}|+ |{C ∈ Ci|uv ∈ CE}|, (5.15)
N ′uv =|{P ∈ P i|uv ∈ PE′}|+ |{P ∈ P i|P is a uv-path}|+ |{C ∈ Ci|C is a uv-cut}| .

Then, we define coefficient ωuv resp. ω′uv for each base edge uv ∈ E resp. lifted edge
uv ∈ E ′ that belongs to a newly added subproblem as

ωuv =
1

Nuv

, ω′uv =
1

N ′uv
. (5.16)

Finally, for each newly added path subproblem P resp. cut subproblem C, we set the
cost of base edge uv ∈ E to θPuv = ωuvθ̃uv, resp. θCuv = ωuvθ̃uv. Analogically, for the lifted
edges. As mentioned in Section 5.4.2, we add maximally 4 path and cut subproblems
sharing one edge in one separation call. Therefore, Nuv resp. N ′uv are lower or equal to 4
for each base resp. lifted edge uv.

Cost update in in/outflow subproblems. If we use an edge uv for creating one
or more path and cut subproblems, it is necessary to update its cost in the inflow
subproblem of vertex v and the outflow subproblem of vertex u accordingly. For
instance, we update the cost of base edge uv in the outflow subproblem of u as follows
θoutuv −= γ(u)outuv . Where we adopt the notation from Algorithm Separation-Costs. Note
that θ̃uv = γ(v)inuv + γ(u)outuv . Therefore, the total cost of edge variable uv is preserved.

Proposition 5.2 (Guaranteed lower bound improvement of path subproblem). If a path
subproblem corresponding to vw-path P separated by Algorithm Separate-Path-Subproblem
is added to the subproblem set S, the guaranteed improvement of the global lower bound
is min{minuv∈PE

|θPuv|,minuv∈PE′∪vw |θ
′P
uv|}, where θP is the reparametrized cost used for

the path factor initialization.

Proof. We simplify the notation from Algorithm Separation-Costs such that we use γoutuv

resp. γinuv instead of γ(u)outuv resp. γ(v)inuv for better readability. Similarly for the dashed
variables representing reparametrizations of lifted edges.

Algorithm Separate-Path-Subproblem separates only those subproblems that contain
exactly one lifted edge with cost θ′Puv > ε and the rest of the edges have cost lower than
−ε. The reparametrized costs of the path factor are fractions of cost reparametrizations
obtained by Algorithm Separation-Costs. We have

∀uv ∈ PE : θPuv = ωuv · (γoutuv + γinuv) ,

θoutuv −= ωuv · γoutuv , θinuv −= ωuv · γinuv,
∀uv ∈ PE′ : θ′Puv = ω′uv · (γ′outuv + γ′inuv ) , (5.17)

θ′outuv −= ω′uv · γ′outuv , θ′inuv −= ω′uv · γ′inuv
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We evaluate the change of the lower bounds of all relevant inflow and outflow factors
after reparametrization given by Formula (5.17). According to Lemma 5.1, we have

∆Lout+∆Lin =

=−
∑

uv∈PE :γoutuv <0

ωuv · γoutuv −
∑

uv∈PE′∪vw:γ′outuv <0

ω′uv · γ′outuv

−
∑

uv∈PE :γinuv<0

ωuv · γinuv −
∑

uv∈PE′∪vw:γ′inuv <0

ω′uv · γ′inuv ≥ (5.18)

≥−
∑

uv∈PE :γoutuv +γinuv<0

ωuv · (γoutuv + γinuv)−
∑

uv∈PE′∪vw:γ′inuv +γ′outuv <0

ω′uv · (γ′outuv + γ′inuv ) =

=−
∑

uv∈PE :θPuv<0

θPuv −
∑

uv∈PE′∪vw:θ′Puv<0

θ′Puv

Let kl ∈ PE′ be the only lifted edge with positive cost in the path subproblem. We set
α = min{min

ij∈PE

|θPij |, min
ij∈PE′∪vw\kl

|θ′Pij |} as in Algorithm Path-Subproblem-Optimization. If

we denote by ∆LP the lower bound of the newly separated path subproblem, the global
lower bound change after adding the path subproblem is:

∆L = ∆Lout + ∆Lin + ∆LP (5.19)

If α < θ′Pkl :

∆Lout + ∆Lin + ∆LP ≥−
∑

uv∈PE :θPuv<0

θPuv −
∑

uv∈PE′ :θ
′P
uv<0

θ′Puv+ (5.20)

+
∑

uv∈PE :θPuv<0

θPuv +
∑

uv∈PE′ :θ
′P
uv<0

θ′Puv + α = α

If α ≥ θ′Pkl :

∆Lout + ∆Lin + ∆LP ≥−
∑

uv∈PE :θPuv<0

θPuv −
∑

uv∈PE′∪vw:θ′Puv<0

θ′Puv+ (5.21)

+
∑

uv∈PE :θPuv<0

θPuv +
∑

uv∈PE′ :θ
′P
uv

θ′Puv = θ′Pkl

Proposition 5.3 (Guaranteed lower bound improvement of cut subproblem). If a sub-
problem corresponding to vw-cut C separated by Algorithm Separate-Cut-Subproblem is
added to the subproblem set S, the guaranteed improvement of the global lower bound
is min{minuv∈C θ

C
uv, |θ′Cvw|}. Where θC is the reparametrized cost used for the cut factor

initialization.

Proof. We obtain the reparametrized cost θC for the cut subproblem analogically as in
Formula (5.17) for the path subproblem. Note that Algorithm Separate-Cut-Subproblem
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ensures that all cut edges in the separated cut subproblem have positive cost and
the lifted edge vw has a negative cost. Using the same arguments as in the proof of
Proposition 5.3, we obtain the lower bound change of inflow and outflow factors after
separating the cut subproblem:

∆Lout + ∆Lin =−
∑

uv∈C:γoutuv <0

ωuv · γoutuv −
∑

uv∈C:γinuv<0

ωuv · γinuv − ω′vwγ′outvw − ω′vwγ′invw ≥

≥−
∑

uv∈C:γoutuv +γinuv<0

ωuv · (γoutuv + γinuv)− ω′vwγ′outvw − ω′vwγ′invw = (5.22)

=− ω′vwγ′outvw − ω′vwγ′invw = −θ′Cvw

Algorithm Cut-Subproblem-Optimization shows how we obtain the lower bound of the
cut subproblem. We set θCij = argminuv∈C θ

C
uv. If θCij < |θ′Cvw|, we get the overall lower

bound improvement

∆Lout + ∆Lin + ∆LC ≥ −θ′Cvw + θ′Cvw + θCij = θCij . (5.23)

If θCij ≥ |θ′Cvw|, the lower bound of the cut subproblem is 0 and the overall lower bound
improvement is

∆Lout + ∆Lin + ∆LC ≥ −θ′Cvw . (5.24)

5.4.5 message passing

One solver run consists of subproblems initialization and a number of message passing iter-
ations. Algorithm Message-Passing details the whole run. Algorithms Inflow-Subproblem-
Message-Passing, Path-Subproblem-Message-Passing, Cut-Subproblem-Message-Passing and
Lower-Bound present methods that are called within one iteration.

The number of iterations is predetermined by an input parameter. We use typically
tens or maximally one hundred iterations in our experiments.

Algorithm Message-Passing sends in each iteration messages between all subproblems
in the subproblem set S. Each subproblem creates messages to be sent by computing
min-marginals of its variables (see Formula (5.2)). These min-marginals are re-scaled and
redistributed between other subproblems that contain the respective variables. These
operations are called reparametrizations. See Section 5.3 for details.

Algorithm Inflow-Subproblem-Message-Passing shows sending messages from the inflow
subproblem of node u. Algorithm Path-Subproblem-Message-Passing shows sending
messages from a path subproblem. Algorithm Cut-Subproblem-Message-Passing presents
sending messages from a cut subproblem.

Algorithm Lower-Bound computes a lower bound of the (LDP) objective by summing
up the lower bounds of all subproblems. The cost reparametrization realized via our
message passing procedures ensures that the lower bound is non-decreasing during the
computation.
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Algorithm Message-Passing (G,G′, θ)
Input Graphs G = (V,E) and G′ = (V,E ′), costs θ ∈ RV ∪E∪E′

Output Best found primal solution (z, y, y′)ub, lower bound LB
1: Initialization:
2: for v ∈ V do
3: Add inflow subproblem for node v.
4:

∀uv ∈ δ−E(v) : θinuv =

{
θuv if v = s
1
2
θuv otherwise

5: ∀uv ∈ δ−E′(v): θ′inuv = 1
2
θ′uv.

6: θinv = 1
2
θv.

7: Add outflow subproblem for node v with analoguous costs.
8: end for
9: C = ∅
10: P = ∅
11: Lagrange decomposition optimization
12: for iter = 1, . . . ,max_iter do
13: Forward Pass:
14: for u = u1, . . . , u|V | do
15: Inflow-Subproblem-Message-Passing(u)
16: Outflow-Subproblem-Message-Passing(u)
17: end for
18: for P ∈ P do
19: Path-Subproblem-Message-Passing(P )
20: end for
21: for C ∈ C do
22: Cut-Subproblem-Message-Passing(C)
23: end for
24: Backward Pass:
25: Revert order of nodes and perform above iteration.
26: if iter ≡ 0 mod k then
27: Separate-Cut-Subproblem(ε)
28: Separate-Path-Subproblem(ε)
29: Add cut and path subproblems to C and P
30: end if
31: if iter ≡ 0 mod l then
32: (z, y, y′) =Compute-Primal(S, θ)
33: if 〈θ, (z, y, y′)〉 < 〈θ, (z, y, y′)ub〉 then
34: (z, y, y′)ub = (z, y, y′)
35: end if
36: end if
37: LB =Lower-Bound
38: end for
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Algorithm Inflow-Subproblem-Message-Passing (u)
Input central vertex u of the subproblem
1: γ′in =All-Lifted-MM-In(u, θin(u)).
2: ω = 1
3: for vu ∈ δ−E(u), P ∈ P : vu ∈ PE do
4: γPvu = Path-Base-Min-Marginal(u, v, θP )
5: ω += 1
6: end for
7: for vu ∈ δ−E′(u), P ∈ P : vu ∈ PE′ do
8: γ′Pvu = Path-Lifted-Min-Marginal(u, v, θP )
9: ω += 1
10: end for
11: for vu ∈ δ−E′(u), P ∈ P : P ∈ vu-paths(G) do
12: γ′Pvu = Path-Lifted-Min-Marginal(u, v, θP )
13: ω += 1
14: end for
15: for vu ∈ δ−E(u), C ∈ C : vu ∈ CE do
16: γCvu =Cut-Base-Min-Marginal(u, v, θC)
17: ω += 1
18: end for
19: for vu ∈ δ−E′(u), C ∈ C : C is a vu-Cut do
20: γ′Cvu = Cut-Lifted-Min-Marginal(u, v, θC)
21: ω += 1
22: end for
23: for vu ∈ δ−E′(u) do
24: θinvu −= 1

ω
· γ′invu , θoutvu += 1

ω
· γ′invu

25: end for
26: for vu ∈ δ−E(u), P ∈ P : vu ∈ PE do
27: θinvu −= 1

ω
· γPvu, θPvu += 1

ω
· γPvu

28: end for
29: for vu ∈ δ−E′(u), P ∈ P : vu ∈ PE′ do
30: θ′invu −= 1

ω
· γ′Pvu, θ′Pvu += 1

ω
· γ′Pvu

31: end for
32: for vu ∈ δ−E′(u), P ∈ P : P ∈ vu-paths(G) do
33: θ′invu −= 1

ω
· γ′Pvu, θ′Pvu += 1

ω
· γ′Pvu

34: end for
35: for vu ∈ δ−E(u), C ∈ C : vu ∈ CE do
36: θinvu −= 1

ω
· γCvu, θCvu += 1

ω
· γCvu

37: end for
38: for vu ∈ δ−E′(u), C ∈ C : C is a vu-Cut do
39: θ′invu −= 1

ω
· γ′Cvu, θ′Cvu += 1

ω
· γ′Cvu

40: end for



5.4 message passing algorithms 109

Algorithm Path-Subproblem-Message-Passing (P )
Input: uv-Path P ∈ P
1: γP = Path-Min-Marginals(P, θP )
2: ωP = 1

2·|PE |+2·|PE′ |
3: for kl ∈ PE do
4: θPkl −= 2ωP · γPkl
5: θinkl −= ωP · γPkl, θoutkl −= ωP · γPkl
6: end for
7: for kl ∈ PE′ do
8: θPkl −= 2ωP · γPkl
9: θinkl −= ωP · γPkl, θoutkl −= ωP · γPkl

10: end for

Algorithm Cut-Subproblem-Message-Passing (C)
Input: uv-Cut C ∈ C
1: γC =Cut-Min-Marginals(C, θC)
2: ωC = 1

2·|CE |+2

3: for kl ∈ CE do
4: θCkl −= 2ωC · γCkl
5: θinkl += ωC · γCkl, θoutkl += ωC · γCkl
6: end for
7: θ′Cuv −= 2ωC · γ′Cuv
8: θinuv += ωC · γ′Cuv , θoutuv += ωC · γ′Cuv

Algorithm Lower-Bound (S)
Input Subproblems S
Output Lower bound value LB
1: LB = 0
2: for u ∈ V \{s, t} do
3: LB +=Opt-In-cost(u, θin)
4: LB +=Opt-Out-cost(u, θout)
5: end for
6: for P ∈ P do
7: LB += Path-Subproblem-Optimization(P, θP )
8: end for
9: for C ∈ C do
10: LB += Cut-Subproblem-Optimization(C, θC)
11: end for
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5.4.6 primal solution and local search

Algorithm Compute-Primal in Section 5.3.6 summarizes the whole procedure for obtaining
a primal solution. As stated in that section, we obtain an initial primal solution by
solving the (MCF) problem.

Given a feasible solution of (LDP), Algorithm Local-Search improves it by splitting
and merging paths. While we obtain the costs for (MCF) from the base and lifted edges
costs in inflow and outflow factors (Algorithm Init-MCF), the local search procedure uses
the original input costs of base and lifted edges.

Algorithm Check-Path-Split finds candidate split point of each path and recursively
splits the path if the split leads to a decrease of the objective function.

For each vertex of each path, function split evaluates the cost of splitting the path
after the vertex:

∀vj ∈ PV = (v1, . . . vn) : split(vj, P ) = −
∑

k≤j,l>j,
vkvl∈E′

θ′vkvl − θvjvj+1
+ θsvj+1

+ θvjt (5.25)

The second step of the primal solution post-processing by Algorithm Local-Search is
merging paths. Before the path merging itself, some candidate pairs of paths need to be
shortened at their ends in order to enable their feasible merging.

Algorithm Shorten-For-Merge identifies pairs of those paths whose merging should
lead to objective improvement but that cannot be connected directly due to missing
base edge between their endpoints. In order to identify the desired paths pairs, several
functions are used.

Function l+(P1, P2) resp l−(P1, P2) is the sum of positive resp. negative lifted edges
from path P1 to path P2. Function l(P1, P2) sums all lifted edges from P1 to P2.

∀P1, P2 ∈ P :

l+(P1, P2) =
∑

uv∈E′:u∈P1,v∈P2,θ′uv≥0

θ′uv

l−(P1, P2) =
∑

uv∈E′:u∈P1,v∈P2,θ′uv<0

θ′uv (5.26)

l(P1, P2) = l+(P1, P2) + l−(P1, P2)

We use the above values in functions merge and mergeτ that evaluate the gain of
merging two paths. Threshold τ ≤ 1 constraints the ratio between the positive and
the negative part of lifted cost function l that is considered acceptable for merging two
paths.

∀P1 = (v1, . . . , vn),P2 = (u1, . . . , um) ∈ P :

merge(P1, P2) =

{
θvnu1 + l(P1, P2) if vnu1 ∈ E
∞ otherwise

(5.27)
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Algorithm Local-Search (z, y, y′)
Input Input primal solution z, y, y′
Output Improved primal solution z, y, y′

1: Obtain set of disjoint paths P = {P1, . . . , Pn} from y
2: for all P ∈ P do
3: P =Check-Path-Split(Pi,P)
4: end for
5: P =Shorten-For-Merge(P)
6: while true do
7: (P1, P2) = argmin

(Pi,Pj)∈P×P
mergeτ (Pi, Pj)− out(Pi)− in(Pj)

8: if mergeτ (P1, P2)− out(P1)− in(P2) < 0 then
9: P =Merge-Paths(P1, P2,P)
10: else
11: break
12: end if
13: end while
14: (z, y, y′)=Set-From-Paths(P)

∀P1 = (v1, . . . , vn), P2 = (u1, . . . , um) ∈ P :

mergeτ (P1, P2) =


∞ if vnu1 /∈ E ∨

l+(P1, P2) > τ |l−(P1, P2)|
θvnu1 + l(P1, P2) otherwise

(5.28)

Algorithm Cut-Ends is applied on all paths pairs found by Algorithm Shorten-For-
Merge. It inspects whether shortening of one or both paths leads to a feasible connection
that ensures a desired objective improvement. It iteratively removes either the last
vertex of the first path or the first vertex of the second path and checks if a connection
is possible and how much it costs.

The last part of Algorithm Local-Search considers merging paths. We use formula
mergeτ (Pi, Pj)− out(Pi)− in(Pj) to evaluate whether merging two paths is beneficial.
Here in(Pj) denotes input cost to the first vertex of Pj and out(Pi) denotes output cost
from the last vertex of Pi. We state the full formula just for completeness. We set the
input and the output costs to zeros in our experiments. Using mergeτ ensures that we
connect the paths only if the ratio between the positive lifted cost l+ and negative lifted
cost l− between the paths is below the acceptable threshold.
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Algorithm Check-Path-Split (P )
Input Input path P , set of all paths P
Output Set of paths P
1: vm = argmaxvj∈PV

split(vj, P )
2: if split(vm, P ) < 0 then
3: (P1, P2) =Split-Path(P, vm)
4: P .remove(P ), P .insert(P1), P .insert(P2)
5: P =Check-Path-Split(P1,P)
6: P =Check-Path-Split(P2,P)
7: end if
8: return P

Algorithm Shorten-For-Merge (P)
Input Set of paths P
Output Updated set of paths P
1: for all P1 = (v1, . . . , vn) ∈ P do
2: P = argmin

P2=(u1,...,um)∈P:vnu1∈E
merge(P1, P2)

3: P ′ = argmin
P2=(u1,...,um)∈P:vnu1 /∈E

l(P1, P2)

4: if l(P1, P
′) < merge(P1, P ) ∧ l(P1, P

′) < 0 then
5: P ∗ = P ′, c = l(P1, P

′)
6: else
7: P ∗ = P , c = merge(P1, P )
8: end if
9: if pred[P ∗] = ∅ ∨ score[P ∗] > c then
10: pred[P ∗] = P1, score[P ∗] = c
11: end if
12: end for
13: for all P2 = (u1, . . . , um) ∈ P do
14: if pred[P2]=P1 = (v1, . . . , vn) ∧ vnu1 /∈ E then
15: P =Cut-Ends(P1, P2,P)
16: end if
17: end for
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Algorithm Cut-Ends (P1, P2,P , imax)
Input P1 = (v1, . . . , vm), P2 = (u1, . . . , um), P, maximum number of vertices to cut
imax
Output New set of paths P
1: c1 =∞, c2 =∞, i1 = 0, i2 = 0
2: while i1 + i2 < imax do
3: P ′1 = (v1, . . . , vn−i1), P ′2 = (u1+i2 , . . . , um)
4: P ′′1 = (v1, . . . , vn−i1−1), P ′′2 = (u2+i2 , . . . , um)
5: if merge(P ′1, P ′′2 ) +merge(P ′′1 , P

′
2) <∞ then

6: α1 = merge(P ′1, P
′′
2 ) + split(P1, vn−i1) + split(P2, u1+i2)

7: α2 = merge(P ′′1 , P
′
2) + split(P1, vn−i1−1) + split(P2, ui2)

8: if α1 < α2 then c1 = i1, c2 = i2 + 1
9: else c1 = i1 + 1, c2 = i2
10: break
11: else if merge(P ′1, P ′′2 ) <∞ then
12: c1 = i1, c2 = i2 + 1
13: break
14: else if merge(P ′′1 , P ′2) <∞ then
15: c1 = i1 + 1, c2 = i2
16: break
17: else
18: α1 = l(P ′1, P

′′
2 ) + split(P1, vn−i1) + split(P2, u1+i2)

19: α2 = l(P ′′1 , P
′
2) + split(P1, vn−i1−1) + split(P2, ui2)

20: if α1 < α2 then i2 ++
21: else i1 ++
22: end if
23: end while
24: if c1 6=∞∧ c2 6=∞ then
25: P ′1 = (v1, . . . , vn−c1), P ′2 = (u1+c2 , . . . , um)
26: if mergeτ (P ′1, P ′2) < 0 then
27: if c1 > 0 then
28: (P11, P12) =Split-Path(P1, vn−c1)
29: P .remove(P1)
30: P .insert(P11), P .insert(P12)
31: end if
32: if c2 > 0 then
33: (P21, P22) =Split-Path(P2, uc2)
34: P .remove(P2)
35: P .insert(P21), P .insert(P22)
36: end if
37: end if
38: end if
39: return P
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5.5 computational complexity

Notation. We start with providing some symbols that are needed for the complexity
analysis. For other symbols that are not stated here please refer to the respective
sections containing the algorithms or to the list of symbols.

• K : The maximal number of base edges connecting a vertex with vertices in a certain
time frame.

• D : The maximal number of vertices in one time frame.

We need O(|Einp|) space where Einp are all edges before graph sparsification.
The solver terminates if one of the following conditions is satisfied. Either the lower

bound is equal to the objective value of the best primal solution, i.e. optimum has been
found. Or the maximum number of message passing iterations has been reached. The
optimum was not found in our experiments, so the latter condition applied.

The runtime of the solver is, therefore, determined by the input parameter denoting
the maximum number of iterations. The dependence on the number of iterations
is not exactly linear because the problem size grows with the number of path and
cut subproblems added to set of subproblems S via cutting plane separation (see
Sections 5.4.2 and 5.4.3).

An overview of the whole solver run and the tasks performed within one its iteration
is given in Section 5.4.5. The runtime of the tasks is given by the runtime of computing
min-marginals of the subproblems and by the separation of the new subproblems.

We discuss the complexity of the used algorithms in the paragraphs below. They all
have polynomial complexity. Therefore, the overall runtime of the solver is polynomial
too.

In order to compute messages between the inflow and the outflow subproblem, we
apply Algorithm All-Lifted-MM-Out. Min-marginals for messages between the path
subproblems and the in/outflow subproblems are obtained for one shared variable at
the time. The same holds for exchanging messages between the cut subproblems and
the in/outflow subproblems. This is done by calling restricted versions of optimization
algorithms of the path and cut subproblems (Algorithms Path-Subproblem-Optimization
and Cut-Subproblem-Optimization). For in/outflow subproblems, we use one call of
Algorithm Opt-Out-Cost followed by either Algorithm Skip-One or Algorithm Backward-
DFS limited to single variable reparametrization.

Messages between inflow and outflow subproblems. Algorithm All-Lifted-MM-
Out contains many subroutines that employ a full or a partial DFS on all nodes reachable
from the central node within the relevant time gap. In these cases, we use a precomputed
node order instead of a complete DFS as described in the last paragraph of Section 5.4.1.
One call of the full DFS (Algorithms Opt-Out-Cost and Backward-DFS ) requires to
process all vertices reachable from v within the maximal time gap for edge length.
This comprises Lmax video frames (we use Lmax = 50 or 60). Let us denote by D the
maximum number of detections in one frame. The complete DFS processes maximally
DLmax vertices. Incomplete DFS used in Algorithm Skip-One processes in each step
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vertices in L layers. In the worst case, this is done for all relevant frames in the distances
1, . . . , Lmax. Processing one vertex requires checking its neighbors in the base graph.
Their number is bounded byKLmax whereK = 3. See the paragraph about sparsification
in Section 5.6. Putting all together, the complexity of Algorithm All-Lifted-MM-Out for
one subproblem is O(DL3

max). We have two subproblems for each (lifted) graph vertex,
yielding complexity O(|V ′|DL3

max) for sending messages between all inflow and outflow
subproblems in one message passing iteration.

Messages from path subproblems. Obtaining min marginal for one edge variable
of a path subproblem requires two calls of Algorithm Path-Subproblem-Optimization
where the variable is restricted to be zero resp. one. Its complexity is linear in the
number of path edges. So, min-marginals for all path edges are obtained in O(|P |2).

Messages from cut subproblems. Min marginal of one variable of a cut subproblems
is obtained by adjusting its optimization Algorithm Cut-Subproblem-Optimization. The
complexity is given by the complexity of the employed linear assignment problem which
can be solved in polynomial time.

Cutting plane procedures. The cutting plane algorithms are called each 20 iter-
ations. We allow to add maximally 0.5 · |S0| new factors during one separation call,
where S0 is the initial set of subproblems containing only inflow and outflow factors. So
it holds, |S0| = 2|V ′|. Once added, the subproblems influence the runtime via taking
part in the message passing (see Section 5.4.5).

Before discussing the complexity ot the cutting plane procedures, we provide bounds
on the sizes of the used edge sets. There is maximallyKLmax base edges and (D(Lmax−1))
lifted edges going from (resp. to) every node. The edge costs for separation are obtained
as min marginals of inflow and outflow subproblems via Algorithm Separation-Costs.
Therefore, there is maximally one negative base edge and maximally Lmax negative lifted
edges going from (resp. to) each node.

Cutting plane itself (Sections 5.4.2 and 5.4.3) contains sorting of subsets of base or
lifted edges which has complexity O(|E−| log |E−|) (resp. O(|E+| log |E+|)).

Cut subproblems separation. Using the arguments from the previous paragraph,
we have the following complexity bounds for the edge sets in Algorithm Separate-Cut-
Subproblem: |E ′−| ∈ O(|V |Lmax) and |E+| ∈ O(|V |Lmax).

The search for candidate cut subproblems iterates over edges ij ∈ E+ and inspects
all combinations of predecessors of i and descendants of j. Each node stores maximally
DLmax descendants resp. predecessors (see Line 4 in Connect). Therefore, the search
has complexity O(|V |D2L3

max).
There is maximally one cut subproblem separated for each negative lifted edge in E ′−.

Our procedure for creating cut (Line 13 in Algorithm Separate-Cut-Subproblem) searches
all base edges that start in maximally DLmax vertices yielding complexity O(DL2

max).
Therefore, separating all cut subproblems has complexity O(|V |DL3

max). This complexity
is dominated by the above described search for cut candidates O(|V |D2L3

max).
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Path subproblem separation. Using the arguments from the previous paragraphs,
we have the following bounds for the edge sets in Algorithm Separate-Path-Subproblem:
|E−| ∈ O(|V |Lmax) and |E ′+| ∈ O(|V |DLmax). We call Algorithms Inner-Paths and
Outer-Paths for edges ij ∈ E ′−. In both algorithms, we inspect all pairs (p, d) of
predecessors of i and descendants of j (resp. the other way round). The number of
predecessors resp. descendants is bounded by DLmax. Therefore, this search itself has
complexity O(|V |D2L3

max).

Our path extraction procedure on Lines 4 and 5 in Inner-Paths has complexity
O(DL2

max). Line 3 ensures that the path extraction is called only if vertices p and d were
not connected before. Therefore, it is called maximally once for each edge in E ′+ where
|E ′+| ∈ O(|V |DLmax). This yields the complexity of all calls of Inner-Paths together
O(|V |D2L3

max).

As opposed to Algorithm Inner-Paths, Outer-Paths does not limit the usage of each
positive lifted edge dp ∈ E ′+ for the path extraction on Lines 4 and 5 to be maximally
one. So, this leads to the worst case complexity of all calls of Outer-Paths O(|V |D3L5

max).

Note that we could achieve O(|V |D2L3
max) for all calls of Outer-Paths by bounding

the usage of each lifted edge dp ∈ E ′+ by a constant. In fact, we allow only a bounded
number of subproblems sharing one variable to be added from the subproblems queues
to subproblems set S. Moreover, if we have multiple subproblems containing certain
edge dp ∈ E ′+, those separated earlier lead to a better lower bound improvement. The
reason is that we traverse negative edges from E− in ascending order on Line 7 in
Separate-Path-Subproblem. However, the calls of Outer-Paths did not turn out to be
a bottleneck in practice, so we do not use this limitation in our implementation.

Primal solution. We compute a new primal solution in every five iterations. We
use Algorithm Init-MCF for obtaining base edge costs. Then, we use successive shortest
paths algorithm for solving minimum cost flow problem and finally local search heuristic
given by Algorithm Local-Search, see Section 5.3.6. The complexity of solving (MCF) is
the complexity of successive shortest path algorithm which is polynomial. Local search
heuristic requires to compute and update cumulative costs between candidate paths.
They can be computed in time linear in the number of lifted edges O(|E ′|). (MCF) costs
are obtained by calling Algorithm Opt-Out-Cost. Its complexity is discussed above.

5.6 experiments

We integrate our approximate LDP solver into an MOT system (Figure 5.8) and show
on challenging datasets that higher order MOT is scalable to big problem instances. In
the next sections, we describe our experimental setup and present results. We clarify
the edge cost calculation and the construction of the base and the lifted graph and their
sparsification.
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Figure 5.8: Overview of the ApLift framework. Input detections are used to obtain pairwise
costs by an MLP with spatial and appearance features. Based on the costs, two sparse graphs
are constructed and passed to our proposed approximate LDP solver. Dashed arrows represent
lifted edges and solid arrows base edges. In figure Solve LDP equally colored nodes and edges
belong to the same trajectory.

5.6.1 pairwise costs

We use multi-layer perceptron (MLP) to predict the likelihood that two detections
belong to the same trajectory. We divide the maximal frame distance into 20 intervals of
equal length and train one separate MLP for each set of frame distances. We transform
the MLP output to the cost of the edge between the detections and use it in our (LDP)
objective. A negative cost indicates that two detections belong to the same trajectory.
A positive cost reflects the opposite.

MLP architecture. Each MLP consists of a fully connected layer with the same
number of neurons as the input size, followed by a LeakyReLU activation (Maas et al.,
2013) and a fully connected single neuron output layer. We add sigmoid activation
in the training. We describe our spatial and visual features used as the input in the
paragraphs below.

The spatial feature uses bounding box information of two detections v and w. We
align the boxes such that their centers overlap. The similarity feature fspa(vw) ∈ [0, 1] is
the intersection-over-union between two aligned boxes.

Appearance feature. We create an appearance feature Fv for each detection v by
training the method from Zheng et al. (2019) on the training set of the respective
benchmark and additional data from Zheng et al. (2015); Wei et al. (2018); Ristani
et al. (2016b). The similarity feature fapp(vw) between detection v and w given by
fapp(vw) := max{0, 〈Fv, Fw〉} is used. A higher value indicates higher similarity.
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Global context normalization. The two features fspa(vw), fapp(vw) depend entirely
on the nodes v and w. To include global context, we append several normalized versions
of the two features to the edge feature vector, inspired by our approach from Chapter 4.
Both features fspa(vw), fapp(vw) of edge vw undergo a five-way normalization. In
each case, the maximum feature value from a relevant set of edges is selected as the
normalization value. The normalization is done by dividing the two features fspa(vw),
fapp(vw) by each of their five normalization values. This yields 10 values. Another set
of 10 values for edge vw is obtained by dividing f2spa(vw), f2app(vw) by each of the five
normalization values. Together with the two not normalized feature values, the edge
feature vector has a length 22. See Appendix of Hornakova et al. (2021) for details.

Training. We iteratively train our MLP on batches B containing sampled edges.
To compensate for the imbalance between true positive and true negative edges, we
use an α-balanced focal loss (Lin et al., 2018) with γ = 1. We define the α-weight
α(g,L) to weight the correct classification of edge vw with the ground truth flow value
gvw ∈ {0, 1}, time distance L between v in frame fv and w in frame fw, and value
g ∈ {0, 1} via α(g,L) := 1/|{vw ∈ E| gvw = g, |fv − fw| = L}| . We optimize the classifier
using Adam with lr = 0.1, β1 = 0.9, β2 = 0.999 and ε = 10−8. To reduce complexity
while maintaining variety during training, we introduce an extended sampling. Given
a frame f , we create batches B(f) by sampling detections from a fixed sequence of
frame shifts starting at frame f ensuring that all temporal distances L are present
in B(f) (details in the Appendix of Hornakova et al. (2021)). We then subsample
the k-nearest detections to a randomly generated image position with k = 160, which
sensitizes training to crowded scenes. We train the MLP for 3 epochs with batches B(f)
for all frames f of the dataset.

5.6.2 graph construction

We create the base and the lifted graph edges between detections with time distances
up to 2 seconds. We also add an edge from source s, and to sink t to each detection.
In order to reduce computational complexity, we apply sparsification on both base and
lifted graph as described later.

Costs. We obtain base and lifted costs c and c′ from the same MLP classifier (Sec-
tion 5.6.1). Due to decreasing classification accuracy with increasing frame distance L,
we multiply the costs by a decay weight ωL = (10 ·L+ 0.1)−1, so that edges representing
long temporal distances have lower weights. Edges from s and to t have costs zero.

Finally, we use simple heuristics to find pairs that are obviously matching or non-
matching. We set the corresponding costs to be high in absolute value, negative for
matching and positive for non-matching, thereby inducing soft constraints. An obvious
match is given by a nearly maximal feature similarity. Detection pairs are obviously
non-matching if the displacement between their bounding boxes is too high. See the
Appendix of Hornakova et al. (2021) for details.
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Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Frag↓ Frames Density
M
O
T
20 ApLift (ours) 58.9 56.5 513 264 17739 192736 2241 2112

1119.8 170.9MPNTrack 57.6 59.1 474 279 16953 201384 1210 1420
Tracktor++v2 52.6 52.7 365 331 6930 236680 1648 4374

M
O
T
17

CTTrackPub 61.5 59.6 621 752 14076 200672 2583 4965

845.6 31.8ApLift (ours) 60.5 65.6 798 728 30609 190670 1709 2672
LifT (ours) 60.5 65.6 637 791 14966 206619 1189 3476
MPNTrack 58.8 61.7 679 788 17416 213594 1185 2265

M
O
T
16

ApLift (ours) 61.7 66.1 260 237 9168 60180 495 802

845.6 30.8LifT (ours) 61.3 64.7 205 258 4844 65401 389 1034
MPNTrack 58.6 61.7 207 258 4949 70252 354 684

GSM 57.0 55.0 167 262 4332 73573 475 859

M
O
T
15

LifT (ours) 52.5 60.0 244 186 6837 21610 730 1047

525.7 10.8MPNTrack 51.5 58.6 225 187 7260 21780 375 872
ApLift (ours) 51.1 59.0 284 163 10070 19288 677 1022
Tracktor15 44.1 46.7 130 189 6477 26577 1318 1790

Table 5.1: Comparison of ApLift with the best performing trackers w.r.t. MOTA metric on
the MOT challenge. ↑ higher is better, ↓ lower is better. The two rightmost columns: average
number of frames per sequence and the average number of detections per frame for the dataset.
References: MPNTrack (Braso and Leal-Taixe, 2020), Tracktor++v2 (Bergmann et al., 2019),
CTTrackPub (Zhou et al., 2020), GSM (Liu et al., 2020), Tracktor15 (Bergmann et al., 2019).

Sparsification. The base edges are an intersection of two edge sets. The first set
contains for every v ∈ V ′ edges to its 3 nearest (lowest-cost) neighbors from every
subsequent time frame. The second set selects for every vertex the best edges to its
preceding frames analogically. Moreover, edges longer than 6 frames must have costs
lower than 3.0. To avoid double counting of edge costs, we subsequently set costs of all
base edges between non-consecutive frames to zero, so that only lifted edges maintain
the costs. If a lifted edge has cost around zero, it is not discriminative and we remove
it, unless it overlaps with a (zero-valued) base edge.

5.6.3 inference

For a fair comparison to state-of-the-art, we filter and refine detections using Tracktor
(Bergmann et al., 2019) as in Chapter 4. Different to Chapter 4, we apply Tracktor to
recover missing detections before running the LDP solver.

While we solve MOT15/16/17 on global graphs representing the complete sequences,
we solve MOT20 in time intervals in order to decrease memory consumption and runtime.

Interval Solution. First, we solve the problem on independent non-overlapping
adjacent intervals and fix the trajectories in the interval centers. Second, we solve the
problem on a new set of intervals where each of them covers unassigned detections in two
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initial neighboring intervals and enables connections to the fixed trajectory fragments.
The cost of a connection between a detection and a trajectory fragment is obtained
as the sum of costs between the unassigned detection and the detections within the
trajectory fragment.

The initial intervals have the following form: [il + 1, (i + 1)l] for i ∈ {0, 1 . . . , n},
where l = 3 · Lmax. We fix trajectories in the centers of the initial intervals [il + Lmax +
1, (i+ 1)l − Lmax] for i ∈ {1, . . . , n− 1}.

We use the maximal edge length Lmax = 50 frames in MOT20. Therefore, l = 150 is
the minimal interval length such that all edges from a detection are used when assigning
the detection to a trajectory. This way, the solver has sufficient context for making
each decision. Intervals longer than 200 frames increase the complexity significantly for
MOT20, therefore we use interval length 150 in our experiments.

Post-processing. We use simple heuristics to check if base edges over long time gaps
correspond to plausible motions, and split trajectories if necessary. Finally, we use linear
interpolation to recover missing detections within a trajectory. Appendix of Hornakova
et al. (2021) contains further details on inference.

5.6.4 tracking evaluation

We evaluate our method ApLift on four standard MOT benchmarks. The MOT15/16/17
benchmarks (Leal-Taixé et al., 2015; Milan et al., 2016) contain semi-crowded video
sequences filmed from a static or moving camera. MOT20 (Dendorfer et al., 2020)
comprises crowded scenes with a considerably higher number of frames and detections
per frame, see Table 5.1. The challenge does not come only with the data size. Detectors
make more errors in crowded scenes due to frequent occlusions and appearance features
are less discriminative as the distance of people to the camera is high. Using higher
order information helps in this context. However, the number of lifted edges grows
quadratically with the number of detections per frame. Therefore, it is crucial to make
the tracker scalable to these massive instances. We use the following ingredients to solve
the problems: (i) fast but accurate method for obtaining edge costs, (ii) approximate
LDP solver delivering high-quality results fast, (iii) preprocessing heuristics, (iv) interval
solution keeping sufficient context for each decision.

We use the training data of the corresponding dataset for training and the public
detections for training and test.

We compare our method ApLift using standard MOT metrics. MOTA (Bernardin
and Stiefelhagen, 2008b) and IDF1 (Ristani et al., 2016a) are considered the most
representative as they incorporate other metrics (in particular recall and precision).
IDF1 is more penalized by inconsistent trajectories. We also report mostly tracked
(MT) and mostly lost trajectories (ML), false negatives (FN) and false positives (FP),
ID switches (IDS) and fragmentation (Frag) as provided by the evaluation protocols
(Bernardin and Stiefelhagen, 2008b) of the benchmarks.

Table 5.1 shows the comparison to the best (w.r.t. MOTA) peer-reviewed methods
on test sets. Our approximate solver achieves almost the same results on MOT15/16/17



5.6 experiments 121

E ′ MP steps Base cost IDF1↑ MOTA↑ FP↓ FN↓ IDS↓

Dense 82 Zero 71.0 66.3 2826 109263 1369
Dense 0 Zero 70.3 66.3 2832 109265 1354
Dense 82 Orig. 69.8 66.3 2824 109266 1355
Sparse 82 Orig. 69.1 66.3 2825 109263 1316

Table 5.2: Influence of lifted graph sparsification, message passing (MP) steps and using zero
base costs on MOT17 train without postprocessing.

as tracker LifT from Chapter 4 which uses the optimal LDP solver and more complex
features.

Overall, ApLift performs on par with state-of-the-art (at the time of the method
publication) on all evaluated benchmarks, especially in MOTA and IDF1. Our com-
plete results and videos are publicly available at the MOT challenge website https:
//motchallenge.net/method/MOT=4031&chl=13. Detailed results of our tracker ApLift
on individual sequences are in Table 5.5. The proposed method achieves overall low FN
values but slightly high FP values. FP/FN are mostly affected by preprocessing the
input detections and interpolation in the post-processing.

Table 5.2 shows the influence of various settings on the performance of MOT17 train.
While we usually set the base edge costs to zero (Section 5.6.2), we need to keep them
when using the sparsified lifted graph. Both, message passing and dense lifted edges
improve IDF1 and IDS. However, MOTA, FN, and FP remain almost unchanged.

5.6.5 comparison with lift

In this section, we compare the runtime of ApLift against LifT. ApLift can compute one
interval of MOT20 (150 frames) or an entire sequence of MOT17 with less than 20GB
RAM, using a single CPU core.

First, we compare solver ApLift with the two-step version of LifT for subsequences of
MOT20 in Tables 5.3 and 5.4. With increasing problem complexity, ApLift outperforms
LifT w.r.t. runtime while achieving similar IDF1. Counter-intuitively, as we progress
towards increasingly better optimization objective values, the tracking metrics can
slightly decrease due to imperfect edge costs. We compare ApLift against optimal (one
step) LifT on MOT17 train in Table 5.6. We discuss the details of the experimental
settings in the following paragraphs.

LifT global solution vs. two-step procedure. LifT is based on ILP solver Gurobi.
It solves (LDP) optimally. However, it is often not able to solve the problem on the
full graphs. Therefore, LifT uses a two-step procedure (Section 4.7.1). First, solutions
are found on small time intervals to create tracklets. Second, the problem is solved on
tracklets. This approach simplifies the problem significantly but the delivered solutions
are not globally optimal anymore. We have observed that using our new input costs,

https://motchallenge.net/method/MOT=4031&chl=13
https://motchallenge.net/method/MOT=4031&chl=13
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n Measure LifT ApLift 6 ApLift 11 ApLift 31 ApLift 51

50 IDF1↑ 80.6 83.3 83.3 81.5 81.5
time [s] 272 2 4 16 35

100 IDF1↑ 80.4 82.5 82.5 81.6 81.6
time [s] 484 14 24 97 218

150 IDF1↑ 78.1 81.0 81.0 79.8 79.8
time [s] 1058 25 46 192 431

200 IDF1↑ 73.2 75.4 75.4 74.6 74.6
time [s] 2807 36 66 277 616

Table 5.3: Runtime and IDF1 comparison of our LDP solvers: ApLift (Chapter 5) with 6, 11,
31, and 51 iterations and the two-step procedure of LifT (Chapter 4) on the first n frames of
sequence MOT20-01 from MOT20.

LifT is able to solve some problem sequences globally without the two-step procedure.
Therefore, we compare ApLift with LifT using both the two-step procedure and the
global solution.

Influence of input costs. Our input data contain many soft constraints for obviously
matching pairs of detections. Those are edges with negative costs significantly higher
in absolute value than other edges costs. LifT finds an initial feasible solution using
only base edges. This solution may be already very good due to the costs of obviously
matching pairs. Moreover, Gurobi contains a lot of efficient precomputing steps, so it
can recognize that the respective variables should be active in the optimum and reduce
the search space.

Parameters. We adjust the parameters of ApLift to work with comparable data
as LifT. For instance, we do not set the cost of base edges to zero (as described in
Section 5.6.2) because LifT does not enable this option. So, the costs of overlapping
base and lifted edges are duplicated as opposed to most of the other experiments. Note
that this setting is less convenient for ApLift (see Table 5.2). Moreover, if there is no
edge between two detections within the maximal time distance in the input data, we
can add a lifted edge with a high positive cost for such pair in ApLift. This is useful for
reducing the input size for MOT20 dataset. LifT does not have this option. Therefore,
we disable this option for ApLift too.

Subsequences of MOT20. We present a comparison between ApLift and LifT
using two-step procedure on subsequences of MOT20-01 in Table 5.3. Here, ApLift
is faster and has even slightly better IDF1 score than LifT. In Table 5.4, we present
a comparison on first n frames of sequence MOT20-02 where LifT finds solutions faster
than ApLift using many iterations. We assume that this is caused by the input costs
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n Measure LifT ApLift 6 ApLift 11 ApLift 31 ApLift 51

50 IDF1↑ 83.4 83.4 83.4 83.4 83.4
time [s] 62 4 7 25 46

100 IDF1↑ 80.6 79.9 79.9 79.9 79.9
time [s] 124 30 54 182 360

150 IDF1↑ 78.7 76.8 76.8 76.8 76.8
time [s] 222 61 110 378 780

200 IDF1↑ 77.6 75.8 75.8 75.8 75.8
time [s] 354 95 177 604 1195

Table 5.4: Runtime and IDF1 comparison of our LDP solvers: ApLift (Chapter 5) with 6,
11, 31, and 51 iterations and the two-step procedure of LifT (Chapter 4) on first n frames of
sequence MOT20-02 from MOT20.

that are convenient for Gurobi, see the discussion above.

Train set of MOT17. We compare ApLift with LifT on global training sequences
of MOT17. That is, we do not use the two-step procedure. Therefore, LifT finds the
globally optimal solution if it finishes successfully. The runtime of LifT is exponential
in general and it can be often killed because of memory consumption if run on global
sequences. Therefore, we perform these experiments on a machine having 2000 GB
RAM and multiple CPUs each having 64 cores.

The results are in Table 5.6. Asterisks in LifT time column indicate that the problem
cannot be finished. Some of the processes were killed by the system because of too
much memory consumption. Some processes did not finish within more than 27 hours.
Moreover, LifT often occupied up to 30 cores for solving one sequence. ApLift uses
only one core. In cases when LifT does not finish, we evaluate the best feasible solution
found by LifT. Those were typically the initial feasible solutions. That is, the solutions
that ignore the lifted edges. Obtaining the initial solutions for these difficult instances
took between 1700 and 4600 seconds. The numbers in brackets relate ApLift results to
LifT results. The time column provides the ratio between ApLift time and LifT time.
The IDF1 column presents the difference between ApLift and LifT.
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Sequence MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Frag. ↓
M
O
T
20

T
ra
in MOT20-01 65.8 62.0 31 10 180 6512 109 87

MOT20-02 62.3 55.1 108 18 1393 56420 548 534
MOT20-03 80.4 76.1 427 66 5427 55552 623 591
MOT20-05 74.6 57.8 643 115 8778 152927 2231 2063
OVERALL 74.4 62.8 1209 209 15778 271411 3511 3275

M
O
T
20

T
es
t MOT20-04 79.3 68.8 412 40 8315 47364 968 840

MOT20-06 36.1 36.8 41 111 4786 79313 740 744
MOT20-07 56.9 54.7 40 15 936 13135 194 195
MOT20-08 26.5 33.8 20 98 3702 52924 339 333
OVERALL 58.9 56.5 513 264 17739 192736 2241 2112

M
O
T
17

T
ra
in

MOT17-02-DPM 42.2 52.5 14 29 125 10588 26 26
MOT17-02-FRCNN 47.3 58.4 15 21 227 9532 27 30
MOT17-02-SDP 55.1 60.5 17 16 289 7994 53 52
MOT17-04-DPM 70.9 78.9 40 21 340 13481 17 29
MOT17-04-FRCNN 68.0 78.4 39 21 179 15044 5 13
MOT17-04-SDP 77.9 80.8 47 13 439 10035 29 68
MOT17-05-DPM 60.0 64.5 48 34 475 2260 31 24
MOT17-05-FRCNN 57.8 64.0 55 32 650 2225 46 41
MOT17-05-SDP 62.6 67.8 59 19 693 1842 53 46
MOT17-09-DPM 73.0 72.8 14 1 46 1380 10 9
MOT17-09-FRCNN 71.5 68.4 14 1 105 1403 10 9
MOT17-09-SDP 74.1 72.9 14 1 66 1302 10 11
MOT17-10-DPM 65.3 67.4 32 6 847 3545 61 74
MOT17-10-FRCNN 62.8 65.8 40 2 2121 2513 139 114
MOT17-10-SDP 66.3 66.5 43 2 1967 2189 173 120
MOT17-11-DPM 69.2 75.7 34 21 248 2624 37 17
MOT17-11-FRCNN 71.5 76.8 38 18 412 2233 47 15
MOT17-11-SDP 72.6 78.5 42 13 547 1981 58 19
MOT17-13-DPM 64.4 64.8 55 33 627 3436 83 56
MOT17-13-FRCNN 67.8 63.4 77 8 1739 1892 120 76
MOT17-13-SDP 67.2 63.7 72 18 1388 2312 117 60
OVERALL 66.0 71.4 809 330 13530 99811 1152 909

M
O
T
17

T
es
t

MOT17-01-DPM 48.8 54.3 8 10 113 3181 8 21
MOT17-01-FRCNN 47.0 57.5 9 10 360 3050 11 21
MOT17-01-SDP 45.2 55.4 9 10 488 3033 13 29
MOT17-03-DPM 73.8 73.4 85 17 4360 22905 118 261
MOT17-03-FRCNN 72.8 74.7 74 17 3471 24883 109 234
MOT17-03-SDP 77.7 75.4 94 13 4676 18482 139 386
MOT17-06-DPM 57.7 61.2 94 76 1142 3765 77 91
MOT17-06-FRCNN 57.3 58.4 102 59 1652 3279 102 140
MOT17-06-SDP 57.2 59.5 107 58 1700 3251 87 125
MOT17-07-DPM 45.7 52.5 11 15 1062 8038 80 126
MOT17-07-FRCNN 45.0 53.1 11 15 1345 7862 75 135
MOT17-07-SDP 46.6 53.8 13 11 1622 7310 87 166
MOT17-08-DPM 33.7 44.3 17 37 421 13533 48 67
MOT17-08-FRCNN 31.5 42.1 17 37 462 13948 53 74
MOT17-08-SDP 34.5 45.2 18 34 445 13339 63 85
MOT17-12-DPM 47.6 61.9 23 36 563 3959 20 32
MOT17-12-FRCNN 47.8 62.3 18 40 296 4219 13 24
MOT17-12-SDP 50.0 66.1 19 42 488 3836 11 31
MOT17-14-DPM 37.8 51.0 19 71 1147 10191 151 150
MOT17-14-FRCNN 33.9 48.4 25 62 2369 9636 206 228
MOT17-14-SDP 37.0 49.9 25 58 2427 8970 238 246
OVERALL 60.5 65.6 798 728 30609 190670 1709 2672

Table 5.5: Evaluation results for training and test sequences for datasets MOT17 (Milan et al.,
2016) and MOT20 (Dendorfer et al., 2020)
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LifT ApLift 6 ApLift 11 ApLift 31 ApLift 51 ApLift 101
Sequence Time↓ IDF1↑ Time↓ IDF1↑ Time↓ IDF1↑ Time↓ IDF1↑ Time↓ IDF1↑ Time↓ IDF1↑

02-DPM 7324 49.4 94 47.4 157 47.4 513 49.1 989 49.1 2415 49.1
(1.0) (0.0) (0.01) (−2.00) (0.02) (−2.00) (0.07) (−0.30) (0.14) (−0.30) (0.33) (−0.30)

02-FRCNN 4073 54.7 97 54.9 161 54.9 526 54.9 1021 54.9 2503 54.9
(1.0) (0.0) (0.02) (0.20) (0.04) (0.20) (0.13) (0.20) (0.25) (0.20) (0.61) (0.20)

02-SDP 7795 56.7 131 55.0 219 55.0 717 55.0 1410 55.0 3685 55.0
(1.0) (0.0) (0.02) (−1.70) (0.03) (−1.70) (0.09) (−1.70) (0.18) (−1.70) (0.47) (−1.70)

04-DPM ∗ 75.4 449 74.7 756 74.7 2220 74.7 3929 75.0 8578 75.0
(∗) (0.0) (∗) (−0.70) (∗) (−0.70) (∗) (−0.70) (∗) (−0.40) (∗) (−0.40)

04-FRCNN 4889 79.2 383 78.1 644 78.1 1811 76.3 3111 78.2 6565 78.2
(1.0) (0.0) (0.08) (−1.10) (0.13) (−1.10) (0.37) (−2.90) (0.64) (−1.00) (1.34) (−1.00)

04-SDP ∗ 82.3 499 78.0 839 78.0 2441 78.0 4294 77.7 9269 79.9
(∗) (0.0) (∗) (−4.30) (∗) (−4.30) (∗) (−4.30) (∗) (−4.60) (∗) (−2.40)

05-DPM 535 65.0 10 62.6 15 62.6 57 63.5 116 63.5 298 63.5
(1.0) (0.0) (0.02) (−2.40) (0.03) (−2.40) (0.11) (−1.50) (0.22) (−1.50) (0.56) (−1.50)

05-FRCNN 514 66.6 10 63.8 15 63.8 57 64.0 118 63.9 315 65.6
(1.0) (0.0) (0.02) (−2.80) (0.03) (−2.80) (0.11) (−2.60) (0.23) (−2.70) (0.61) (−1.00)

05-SDP 604 67.9 11 67.9 18 67.9 67 67.1 137 67.1 364 67.6
(1.0) (0.0) (0.02) (0.00) (0.03) (0.00) (0.11) (−0.80) (0.23) (−0.80) (0.60) (−0.30)

09-DPM 6692 67.5 42 66.4 70 66.4 232 67.5 480 67.5 1281 67.5
(1.0) (0.0) (0.01) (−1.10) (0.01) (−1.10) (0.03) (0.00) (0.07) (0.00) (0.19) (0.00)

09-FRCNN 11888 68.2 37 68.2 61 68.2 201 68.2 407 68.2 1095 68.2
(1.0) (0.0) (0.00) (0.00) (0.01) (0.00) (0.02) (0.00) (0.03) (0.00) (0.09) (0.00)

09-SDP 1462 68.6 44 67.1 74 67.1 247 68.5 512 68.5 1443 68.5
(1.0) (0.0) (0.03) (−1.50) (0.05) (−1.50) (0.17) (−0.10) (0.35) (−0.10) (0.99) (−0.10)

10-DPM ∗ 66.0 279 68.0 466 68.0 1524 66.8 3087 67.0 9478 67.9
(∗) (0.0) (∗) (2.00) (∗) (2.00) (∗) (0.80) (∗) (1.00) (∗) (1.90)

10-FRCNN ∗ 65.2 310 68.8 511 68.5 1689 69.4 3428 69.4 10743 69.4
(∗) (0.0) (∗) (3.60) (∗) (3.30) (∗) (4.20) (∗) (4.20) (∗) (4.20)

10-SDP ∗ 65.4 379 67.0 630 67.0 2090 67.4 4294 67.1 13379 69.8
(∗) (0.0) (∗) (1.60) (∗) (1.60) (∗) (2.00) (∗) (1.70) (∗) (4.40)

11-DPM 1991 76.3 60 76.3 99 76.3 335 76.3 672 76.3 1672 76.3
(1.0) (0.0) (0.03) (0.00) (0.05) (0.00) (0.17) (0.00) (0.34) (0.00) (0.84) (0.00)

11-FRCNN 2382 78.3 68 78.3 113 78.3 366 78.3 729 78.3 1799 78.3
(1.0) (0.0) (0.03) (0.00) (0.05) (0.00) (0.15) (0.00) (0.31) (0.00) (0.76) (0.00)

11-SDP 3195 80.0 68 79.8 113 79.8 370 80.1 748 80.0 2057 80.0
(1.0) (0.0) (0.02) (−0.20) (0.04) (−0.20) (0.12) (0.10) (0.23) (0.00) (0.64) (0.00)

13-DPM ∗ 62.8 152 66.8 252 66.8 944 66.8 2008 66.8 6340 65.7
(∗) (0.0) (∗) (4.00) (∗) (4.00) (∗) (4.00) (∗) (4.00) (∗) (2.90)

13-FRCNN ∗ 62.5 217 69.8 351 69.8 1331 69.8 2942 67.7 9813 66.2
(∗) (0.0) (∗) (7.30) (∗) (7.30) (∗) (7.30) (∗) (5.20) (∗) (3.70)

13-SDP ∗ 64.5 196 66.8 326 66.8 1237 66.8 2698 66.2 8954 65.6
(∗) (0.0) (∗) (2.30) (∗) (2.30) (∗) (2.30) (∗) (1.70) (∗) (1.10)

OVERALL ∗ 70.7 168 70.3 280 70.3 904 70.2 1768 70.3 4859 70.7
(∗) (0.0) (∗) (−0.40) (∗) (−0.40) (∗) (−0.50) (∗) (−0.40) (∗) (0.00)

Table 5.6: Runtime and IDF1 comparison of our LDP solvers: ApLift with 6, 11, 31, 51 and
101 iterations and globally optimal (one step) LifT on MOT17 train. Numbers in parenthesis
in the time column show the difference between the solvers, in the IDF1 column the ratio
between Lift and ApLift.





6CONCLUS IONS

This thesis studies the enhancement of two graph partitioning optimization problems
via lifted edges that represent pairwise connectivity priors between graph nodes. The
first is an extension of the multicut problem (MC) called lifted multicut (LMC) which
represents a decomposition of an undirected graph into connected components. The
second model is the lifted disjoint paths (LDP) problem, an extension of the disjoint
paths problem (DP), which represents a decomposition of a directed graph into a set
of node-disjoint paths. While (LMC) motivated especially by solving the task of image
segmentation has been known before, the concept of (LDP) is our contribution.

The advantage of the enhancements is the possibility to include more information
into the problems without changing their sets of feasible solutions. Moreover, these
long-range connectivity priors are often more reliable than the short-range information
encoded by the original models. This thesis shows that the extension of (DP) via
lifted edges is beneficial because it leads to better results in the studied applications in
comparison to the methods applying the original model. In particular, our first proposed
method LifT for multiple object tracking (MOT) based on our optimal LDP solver
significantly outperformed state-of-the-art trackers on three standard MOT datasets at
the time of its publication. Our second method ApLift based on our approximate LDP
solver achieved comparable or better results to the state-of-the-art methods including
LifT at four standard MOT benchmarks at the time of its publication. Moreover, ApLift
is applicable to larger sequences than LifT.

This is in compliance with the observations made within numerous applications of
lifted multicut problem to computer vision tasks where this model using lifted edges
typically leads to better results in comparison to methods using standard multicut.

We conclude that the big downside of these enhanced models is their increased
complexity. We provide several proofs that certain tasks that are polynomially solvable
for the original models become NP-complete or even NP-hard in the enhanced models.
Importantly for the main part of this work, we show the extension of the polynomially
solvable (DP) via lifted edges leads to an NP-hard problem (LDP). As opposed to (DP),
the optimization problem (MC) is known to be NP-hard even without the extension via
lifted edges. On the other hand, we show that while checking the consistency of a partial
characterization of multicut can be done efficiently, the same task for lifted multicut is
NP-complete. Similarly, we prove that deciding whether a partial characterization is
maximally specific can be done in polynomial time for multicut while it is NP-hard to
do so for the lifted multicut.

Despite the theoretical NP-hardness of the studied problems, they can be applied to
some computer vision tasks. The reason is that the real data typically have a convenient
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structure that enables to obtain high-quality results w.r.t. the required task metrics even
if only approximate methods are used for the solution. In case of (lifted) multicut, most
of the methods rely on heuristics or approximate solvers. However, globally optimal
solvers exist. We provide an overview of the solution methods and applications of (lifted)
multicut in Chapter 2.

The main application of our proposed model (LDP), is multiple object tracking
(MOT). We demonstrate that it is possible to apply (LDP) to MOT instances originating
from real-world video sequences if we use high-quality edge costs. We demonstrate that
our optimal LDP solver can be applied not only to graphs originating from small time
intervals of MOT videos but sometimes also to global graphs representing the whole
video sequences. This observation highlights the importance of three ingredients that
are necessary for solving such problem instances optimally. First, we use state-of-the-art
ILP solver Gurobi (Gurobi Optimization, 2019). Second, we compute high-quality edge
costs. Third, we separate non-trivial ILP constraints that ensure a tighter LP relaxation
than their simple variants and thus lead to a significant speed-up of the branch and
bound procedure in Gurobi.

Whenever the size or complexity of the data prohibits the usage of our globally
optimal solver, we can use one of the approximate methods that we propose. These
are our approximate message passing solver and the two-step procedure of the optimal
solver. They are able to produce results reasonably fast without compromising the
solution quality w.r.t. the MOT metrics. We demonstrate that the NP-hard (LDP)
model is applicable even for processing massive and crowded video sequences of the
MOT20 dataset (Dendorfer et al., 2020). Processing crowded videos is challenging for
(LDP) considering that the number of lifted edges grows quadratically with the number
of detections within one time frame. The combination of our approximate LDP solver,
efficiently computable edge costs, and a subdivision of data keeping sufficient context
for each decision make the solution possible.
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