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Abstract: The global continued decline in coral reefs is intensifying the need to understand the
response of corals to local environmental stressors. Coral-associated bacterial communities have been
suggested to have a swift response to environmental pollutants. This study aims to determine the
variation in the bacterial communities associated with the mucus of two coral species, Pocillopora
damicornis (Linnaeus, 1758) and Stylophora pistillata (Esper, 1792), and the coral-surrounding seawater
from three areas exposed to contamination at the Jordanian coast of the Gulf of Aqaba (Red Sea),
and also explores the antibacterial activity of these bacteria. Corals were collected from three
contaminated zones along the coast, and the bacteria were quantified and identified by conventional
morphological and biochemical tests, as well as 16S rRNA gene sequencing. The average number of
bacteria significantly varied among the coral mucus from the sampling zones and between the coral
mucus and the surrounding seawater. The P. damicornis mucus-associated bacterial community was
dominated by members of the classes Gammaproteobacteria, Cytophagia, and Actinomycetia, while
the mucus of S. pistillata represented higher bacterial diversity, with the dominance of the bacterial
classes Gammaproteobacteria, Actinomycetia, Alphaproteobacteria, and Bacilli. The effects of local
anthropogenic impacts on coral mucus bacterial communities were represented in the increased
abundance of bacterial species related to coral diseases. Furthermore, the results demonstrated the
existence of bacterial isolates with antibacterial activity that possibly acted as a first line of defense
to protect and maintain the coral host against pathogens. Indeed, the dynamics of coral-associated
microbial communities highlight the importance of holistic studies that focus on microbial interactions
across the coral reef ecosystem.

Keywords: bacterial communities; coral mucus; Gulf of Aqaba; seawater; Pocillopora damicornis and
Stylophora pistillata

1. Introduction

Marine ecosystems are among the largest and most diverse ecosystems, and are
characterized by their biological productivity [1]. Coral reefs host about 25% of marine
species, even though they represent less than 0.1% of the marine environments [2]. However,
this fundamental ecosystem is degenerating over time, since 27% of coral reefs were
destroyed in the last few decades worldwide, and the rest are under threat of being
lost [2,3].
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Coral hosts dense, dynamic, and highly diverse consortia of microorganisms, such
as dinoflagellates, Bacteria, Archaea, viruses, and fungi, forming a complex mutualistic
relationship with corals (coral holobiont) [4]. These microorganisms inhabit the range
of ecological niches provided by corals, such as the surface mucus layer, tissue layers,
and the skeleton [5]. The interactions of corals and their associated microbial community
contribute to various aspects of coral biology, including nutrition, protection, growth,
survival, and their general health status [6,7]. However, the mechanisms for acquiring
bacterial associations with host corals are poorly understood.

Different processes of the coral holobiont are promoted by microbial communities
associated with corals, including the carbon cycle [8], the sulfur cycle [9], phosphorus
fixation, metal homeostasis, organic matter treatment [10], antibiotic production [11], and
secondary metabolism [10]. Many coral-associated bacteria protect corals, for example
(coral Acropora palmata (Lamarck, 1816) [11]), by secreting antimicrobial compounds to
prevent the entry of pathogens or other exogenous bacteria. Additionally, some coral-
resident bacteria actively predate upon some pathogens within coral mucus [12]. Indeed,
the disruption or destabilization of the coral holobiont can affect the host’s fitness and
ecosystem dynamics [12].

The diversity of coral-associated bacterial communities is affected by local environ-
mental factors. For example, a change in the bacterial communities associated with the
coral Acropora hemprichii (Ehrenberg, 1834) was induced by enrichment with inorganic
nutrients in a coral reef habitat [13] and caused outbreaks of coral disease [14,15]. Further-
more, increased nutrients coupled with overfishing have indirectly affected coral bacterial
communities by promoting algal growth that induces coral mortality by microbes [16].
Discharged sewage enters coastal ecosystems, carrying high loads of inorganic nutri-
ents, sediments, and organic compounds, which can have deleterious effects on coral
reefs [17,18]. Moreover, sewage is also expected to introduce many new microbial taxa
belonging to sewage-associated human pathogens and may consequently induce the de-
velopment of coral disease [19,20]. The acidification of marine water is a consequence
of anthropogenic CO2 emissions that is negatively impacting coral reefs. The study con-
ducted by Shore et al. [21] on three coral species sampled from three sites with different
seawater pH levels revealed that acidification has multiple consequences on coral bacterial
communities, and suggests that the abundance of bacterial species Endozoicomonas may
be an indicator of the coral’s response to the acidification of marine environments. Gen-
erally, coral-associated bacterial communities’ responses to environmental stressors are
consistent across multiple stressors, with increased relative abundances for members of the
Vibrionales, Flavobacteriales, Rhodobacteriales, and Alteromonadales [22].

The mechanisms of coral interaction with the epi-biotic marine bacteria are known
to play a significant role in the marine ecosystem. One of the potential mechanisms
involves the maintenance of antimicrobial chemicals against pathogens [23]. It has been
hypothesized that the coral holobiont may protect corals from pathogens by occupying
niches and/or producing antibiotics [4]. The mucus of several coral species is characterized
by their secretion of allochemicals with antimicrobial properties [24–26]. A previous
study reported that a high percentage (30%) of bacteria isolated from coral species have
antimicrobial capabilities [27]. Nithyanand and Pandian [28], for example, reported the
presence of actinomycetes in the coral mucus of Acropora digitifera (Dana, 1846), which had
high activity against pathogens.

The Gulf of Aqaba is one of the unique aquatic ecosystems that has one of the world’s
richest coral communities [29]. However, the Gulf of Aqaba is highly affected by anthro-
pogenic stressors in the Middle East [30]. Coral reefs on the Jordanian coast of the Gulf
of Aqaba have been subjected to various sources of environmental stressors in the last
few years [29]. The main stressors include coral reef damage caused by tourism, oil spills,
air pollution associated with land transportation, disposal of solid waste, phosphate dust
deposition from ship loading activities, chemical and thermal pollution from coastal mega
industries, and sewage discharges into the marine environment [31,32].
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The aim of the current study was to assess the bacterial communities associated with
the mucus of two species of coral and the coral-surrounding seawater from sites affected
by various types of anthropogenic stressors in the Gulf of Aqaba (Jordan), to explore their
antimicrobial activities, and to explore whether the diversity of and spatial variations
in bacterial communities are affected by the sources of anthropogenic stressors in the
study areas.

2. Materials and Methods
2.1. Sample Collection

Samples from two hard coral species (S. pistillata and P. damicornis) were collected by
SCUBA divers (at a depth of 4–11 m) from three sites on the Jordanian coast of the Gulf
of Aqaba: the Industrial Zone (I.Z), the Public Beach (P. Beach), and the Phosphate Berth
(P. Berth) (Figure 1). The selected sites vary in terms of the source and level of anthropogenic
stressors (Table S1). Coral samples were collected during the spring season (March 2016).
Three replicates of both coral species were collected from each site. The samples were
immediately placed in plastic tubes underwater and transported to the laboratory in an
icebox within one hour of collection, as described by Koren and Rosenberg [33]. The
seawater surrounding the coral species was also sampled using pre-sterilized 50 mL falcon
tubes. The samples were stored at 4 ◦C and transported immediately to the laboratory.

Figure 1. Sample sites in the Gulf of Aqaba (Jordan) (I.Z: Industrial Zone, P. Beach: Public Beach, and
P. Berth: Phosphate Berth).

2.2. Mucus Extraction

The extraction of coral mucus was carried out as described by Omry and Eugene [34].
Briefly, the coral samples were broken into small pieces and placed in sterile centrifuge
tubes. The coral samples were then centrifuged for 10 min at 10,000 rpm at 4 ◦C to remove
the mucus. After centrifugation, the mucus was collected in a 2 mL Eppendorf tube and
stored at 4 ◦C until processing. Extraction was conducted in triplicate.
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2.3. Isolation and Enumeration of Bacteria

Tenfold serial dilution of coral mucus and seawater samples was prepared and culti-
vated on marine agar (MA) media (Marine Agar 2216, PanReac, Castellar del Vallès, Spain).
MA plates were incubated at 30 ◦C for 48 h. The viable plate count method was used to
enumerate the viable bacteria of the samples and expressed in colony-forming units per ml
(CFU/mL) as described by Lampert et al. [35]. The grown colonies were sub-cultured on
new fresh MA plates several times to obtain a pure culture of bacterial isolates.

2.4. Morphological and Biochemical Characterization

The bacterial isolates were identified by performing a series of morphological and biochem-
ical tests according to Bergey’s manual of determinative bacteriology [36] (Tables S2 and S3).
The characterization of the bacterial isolates was conducted by the Gram reaction; after that,
the colonial morphology was determined. A series of selective media (MacConkey agar,
Pseudomonas agar, Simmons Citrate agar, Eosin Methylene Blue agar, and Salmonella agar)
was used to characterize these isolates, as described by Garrity et al. [37]. All biochemical
tests were performed according to the standard protocols using filtered seawater for media
preparation to fulfill the halophilic requirement of marine bacteria.

2.5. Molecular Identification

Bacterial isolates that were not identified using conventional biochemical tests were
subjected to identification based on molecular techniques (16S rRNA gene sequencing).
Genomic DNA from the coral mucus-associated bacterial isolates was extracted using
Bacteria DNA Extraction Kits (Thermo Fisher Scientific Inc., Waltham, MA, USA) follow-
ing the manufacturer’s instructions. The extracted DNA was quantified using an UV-
spectrophotometer (DNA concentration > 50 ng/µL).

The 16S rRNA gene of the bacteria was amplified from the extracted genomic DNA
using the following eubacterial universal primers: forward primer (5’ AGAGTTTGATC-
CTGGCTCAG 3’) and reverse primer (5’ GGTTACCTTGTTACGACTT 3’) [35]. PCR was
performed in a 25 mL reaction mixture with initial denaturation for 3 min at 95 ◦C, 40 cycles
consisting of denaturation at 95 ◦C for 1 min, annealing at 55 ◦C for 1 min, and extension at
72 ◦C for 2 min, and a final extension step of 5 min at 72 ◦C. The amplification of the 16S
rRNA gene was confirmed by running the amplification product in 1% agarose gel.

Sequencing of the amplified PCR products was performed at Macrogen Inc., Seoul, Ko-
rea. The obtained sequences were matched with previously published sequences available
in NCBI using BLAST (http://blast.ncbi.nlm.nih.gov/Blast (accessed on 8 April 2018)) [38]
and the BLASTn tool. Molecular phylogenetic analysis was conducted using the neighbor-
joining statistical method [39]. The trees were drawn to scale, with the branch lengths
measured in the number of substitutions per site. Phylogenetic analyses were conducted in
MEGA11 (version 11.0.11) [Institute of Molecular Evolutionary Genetics, State College, PA,
USA]. To validate the reproducibility of the branching pattern, a bootstrap analysis was
performed with 500 replications [40].

2.6. Antimicrobial Activity Assay

Screening of the isolates’ antibacterial activity was conducted following the agar well
diffusion method [41]. The reference bacterial strains were freshly prepared in nutrient
broth and incubated at 37 ◦C for 18 h. The turbidity of each culture was adjusted to
0.5 McFarland standard, and each culture was spread onto nutrient agar media plates.
Equidistant wells (8 mm diameter) were created in the inoculated nutrient agar plates
using a sterile cork borer. The pure cultures’ bacterial isolates containing the antimicrobial
were inoculated in marine broth for 48 or 72 h (according to the growth rate of the isolate).
An amount of 100 µL of the pure culture broth was added to each well and the plates
were incubated at 37 ◦C for 24 h. The antibacterial activity was measured in terms of the
diameter of the inhibition zone in triplicate. The positive control for these experiments
was ampicillin (10 mg mL−1), whereas the negative control was marine broth media. The

http://blast.ncbi.nlm.nih.gov/Blast
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antibacterial activity of the extract was evaluated against four test bacteria: Pseudomonas
aeruginosa ATCC13048 and Serratia marcescens ATCC27117 (as representatives of Gram-
negative bacteria), as well as Micrococcus luteus ATCC9341 and Bacillus cereus ATCC11778
(as representatives of Gram-positive bacteria).

2.7. Statistical Analyses

Statistically significant differences in the CFU/mL values with different factors (coral
species, sampling sites, and sample matrix (coral mucus vs. seawater)) were determined by
a one-way ANOVA test using PAST software [42]. Differences were considered significant
at p < 0.05. The data met the assumptions for independence and normality. Dunn’s post hoc
test was applied to the obtained significant calculated statistical differences [42]. To identify
the shared and unique bacterial isolates from the coral mucus and surrounding seawater
bacterial communities, a Venn diagram was constructed using Venny 2.0 [43]. Similarity
percentage analysis (SIMPER) was used to represent the species of bacterial communities
contributing to the differences between sampling sites and between the bacterial matrices
(mucus vs. seawater), and analyses were performed in PRIMER v. 6 [44]. The visualization
of the spatial variation in coral mucus and the surrounding seawater bacterial communities
was conducted using unconstrained ordination plots with principal coordinate analysis
(PCoA) based on the Euclidean similarity index created by PAST software (version 4.10) [42].

3. Results
3.1. Coral Mucus and Seawater Viable Bacterial Count

The viable bacterial count was determined for the coral mucus of both S. pistillata
and P. damicornis (Figure 2). The highest viable bacterial number was detected in the
mucus samples of P. damicornis obtained from the Phosphate Berth, whereas the lowest
viable bacterial count was detected in the mucus samples of both corals obtained from
the Industrial Zone. Significant statistical differences (one-way ANOVA, p < 0.05) were
detected between the bacterial counts (in CFU/mL) from the three sampling sites, where
F (2,6) = 5779 and p = 1.4 × 10−10 in case of P. damicornis. Dunn’s multiple comparison
test found that the mean value of the bacterial counts was significantly different between
the Industrial Zone and Phosphate Berth sites (p = 0.00729). However, in the case of
S. pistillata, F (2,6) = 2640 and p = 1.46 × 10−9, and the one-way ANOVA and Dunn’s
multiple comparison test found that the mean value of the bacterial counts was significantly
different between the Industrial Zone and Phosphate Berth sites (p = 0.00704). However, no
significant differences were obtained for the bacterial count values between the two coral
species (one-way ANOVA, F (1,16) = 0.617, p = 0.443)).

Figure 2. Viable bacterial count associated with the mucus of P. damicornis and S. pistillata expressed
in colony-forming units per mL (CFU/mL). (I.Z: Industrial Zone, P. Beach: Public Beach, P. Berth:
Phosphate Berth).
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The viable bacterial count of the seawater surrounding both corals, S. pistillata and
P. damicornis, was lower in comparison to that of the mucus (Figure 3). The maximum
value was detected at the Phosphate Berth site for P. damicornis coral species (1.22 × 106),
while the lowest values were obtained from the seawater around both coral species from
the Public Beach site. The variations in the bacterial viable count values between the coral
mucus and surrounding seawater were significantly different ((F (1,10) = 6.536, p = 0.028,
one-way ANOVA), post hoc comparison (Dunn’s-test, p = 0.0039)). Furthermore, significant
differences were obtained for a viable bacterial count between the mucus of S. pistillata
and the surrounding seawater ((F (1,8) = 131.4, p = 3.3 × 10−6, one-way ANOVA), post hoc
comparisons (Dunn’s-test, p = 0.0088)). However, no significant differences were obtained
between the mucus of P. damicornis and the surrounding seawater (one-way ANOVA,
F (1,10) = 4.74, p = 0.054).

Figure 3. Viable bacterial counts of seawater surrounding P. damicornis and S. pistillata expressed
in colony-forming units per mL (CFU/mL). (I.Z: Industrial Zones, P. Beach: Public Beach, P. Berth:
Phosphate Berth).

3.2. Biochemical Identification of Bacteria

A total of 58 different bacterial colonies were isolated from the coral mucus samples
from the sampling sites for both coral species based on the unique colonial characteristics
of the MA medium. Of them, 22 of the bacteria isolated were obtained from the mucus
of P. damicornis, whereas the remaining 36 isolated were obtained from S. pistillata mucus.
The distinct morphological and colony characteristics of the isolated bacteria are shown in
Table S2.

Following the morphological and biochemical pathway for the taxonomical identifi-
cation of the bacterial isolate from P. damicornis mucus, 15 isolates were identified at the
family level (Figure 4). The bacterial isolates belonged to the classes Gammaproteobacteria
(73%), Cytophagia (20%), and Actinomycetia (7%). High variability in Public Beach isolates
was detected as compared with those from the other sampling sites (Tables S2 and S4).

Bacterial species belonging to the families Yersiniaceae and Cytophagaceae were found
to be dominant in P. damicornis mucus. Bacterial species of the families Micrococcaceae and
Pseudomonadaceae showed the lowest abundance among the sampling sites.
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Figure 4. Proportion of coral (P. damicornis) mucus bacterial isolates based on the biochemical
approach (A: Actinomycetia; C: Cytophagia; and G: Gammaproteobacteria).

Higher diversity of bacterial species was identified from coral S. pistillata mucus
samples among the sampling sites. The taxonomical identification using morphological and
biochemical tests resulted in 26 bacterial isolates (at the family level) (Figure 5). The bacterial
isolates were distributed among the classes Gammaproteobacteria (58%), Actinomycetia
(23%), Alphaproteobacteria (11%), and Bacilli (8%). The Public Beach site was characterized
by higher diversity in comparison with the other sites. The S. pistillata mucus bacterial
communities were characterized by the dominance of species belonging to the families
Pseudomonadaceae, Vibrionaceae, Corynebacteriaceae, and Yersiniaceae. The bacterial families
from the class Bacilli (Caryophanaceae and Streptococcaceae) showed the lowest abundance in
the S. pistillata mucus bacterial community.

Figure 5. Proportion of bacterial isolates in coral (S. pistillata) mucus based on a biochemical approach
(A: Actinomycetia; B: Bacilli; AP: Alphaproteobacteria; C: Cytophagia; G: Gammaproteobacteria).

Regarding seawater isolates, a total of 62 bacterial isolates with unique colonial charac-
teristics were obtained from both seawater samples (Tables S3 and S5). Thirty isolates were
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obtained from the seawater collected around P. damicornis, and 32 isolates from the seawater
around S. pistillata. From the total isolates, 48 bacterial isolates were identified using a
conventional biochemical test (Figure 6). The seawater bacterial community surrounding
P. damicornis was mainly composed of Gammaproteobacteria (78%), Fusobacteriota (13%),
and Bacilli (9%), whereas the S. pistillata-surrounding seawater bacterial community was
composed of Gammaproteobacteria (84%), Actinomycetia (8%), Fusobacteriota (4%), and
Bacilli (4%). More than three quarters of the bacterial isolates from both seawater samples
belonged to the families Pseudoalteromonadaceae, Pseudomonadaceae, and Yersiniaceae. The
lowest abundances were noticed for the bacterial families Enterobacteriaceae, Nocardiacaea,
and Actinomycetaceae.

Figure 6. Number of bacterial isolates in seawater surrounding coral based on a biochemical approach.

3.3. Molecular Identification of Bacteria and Phylogenetic Analysis

Among the bacterial isolates that could not be identified by conventional biochemical
tests, a total of 17 mucus-associated bacterial isolates were identified at the species level
based on 16 S rRNA gene sequencing; among them, 7 and 10 isolates were isolated from
the P. damicornis and S. pistillata mucus, respectively (Table 1).

The Public Beach site was characterized by the highest bacterial diversity. The most
common bacterial species isolated from the mucus of P. damicornis belonged to the genera
Pseudoalteromonas and Psychrobacter. Interestingly, the species Pseudoalteromonas sp. was iso-
lated from the mucus of P. damicornis at all sampling sites, whereas the species Cellulophaga
lytica (family: Flavobacteriaceae) was exclusively isolated from samples from the Phosphate
Berth site.

Fourteen bacterial isolates from seawater samples around the two coral species were
identified using a molecular approach (Table 2). They were divided equally between both
coral species. The bacterial species belong to Gammaproteobacteria and Bacilli classes.
Bacteria from the genus Bacillus were isolated from seawater samples from both Industrial
Zone and Phosphate Berth sites. The bacterial strains from the Public Beach site belonged
to the Gammaproteobacteria class.
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Table 1. Identification of coral mucus-associated bacterial isolates based on 16S rRNA gene identity.

Sample Site Closest Match in GenBank % Identity Accession Number

P.dam
icornis

APm25
I.Z

Pseudoalteromonas sp. strain 70410 97.8 KX833144.1
APm32 Pseudoalteromonas sp. strain 70367 97.7 KX889955.1

BPm9
P. Beach

Psychrobacter celer strain Mcap_H2 98.6 KP640590.1
BPm21 Pseudoalteromonas sp. strain 70607 96.9 KY272021.1

CPm6
P. Berth

Psychrobacter celer strain 32 97.2 FJ613610.1
CPm13 Pseudoalteromonas sp. strain 70004 98.0 MF061257.1
CPm48 Cellulophaga lytica strain IMCC34136 96.7 MG456766.1

S.pistillata

ASm14
I.Z

Pseudoalteromonas sp. strain NBTE-X3 97.7 MW709811.1
ASm17 Vibrio sp. strain 201705CJKOP-47 96.8 MG309360.1

BSm20
P. Beach

Vibrio sp. Mj76 96.0 GQ455012.1
BSm24 Vibrio halioticoli strain Msp2-1 97.9 MK334316.1
BSm36 Bacillus sp. MML3 99.0 JX847617.1

CSm16

P. Berth

Agarivorans sp. VibC-Oc-065 98.0 KF577091.1
CSm18 Psychrobacter celer strain 32 97.1 FJ613610.1
CSm34 Psychrobacter sp. strain 201705CJKOP-104 96.0 MG309417.1
CSm37 Shewanella fidelis strain 3313 98.0 KY696838.1
CSm38 Shewanella sp. strain MH6 97.6 MN049712.1

I.Z: Industrial Zone, P. Beach: Public Beach, P. Berth: Phosphate Berth.

Table 2. Identification of bacterial isolates from seawater surrounding coral based on 16S rRNA
gene identity.

Sample Site Closest Match in GenBank % Identity Accession Number

P.dam
icornis

APw2
I.Z

Marinomonas aquiplantarum strain IVIA-Po-183 96.0 EU188446.1
APw5 Bacillus thuringiensis isolate PG05 98.0 EU161995.1

BPw9 P. Beach Acinetobacter schindleri strain LUH5832 95.7 MG581287.1

CPw2

P. Berth

Psychrobacter marincola strain MTa2-2-1 98.4 MW675164.1
CPw5 Bacillus cereus isolate PGO6 97.9 EU161996.1
CPw8 Bacillus firmus strain C21 96.1 MT457439.1
CPw4 Halomonas venusta strain 0099 98.3 KP236234.1

S.pistillata

ASw1
I.Z

Bacillus cereus strain CC2H2P 97.9 KX424371.1
ASw8 Bacillus oceanisediminis strain SH-63 97.5 KX959969.1

BSw5

P. Beach

Halomonas venusta strain 0099 98.3 KP236234.1
BSw2 Marinovum algicola strain ROA150 98.4 MW965560.1
BSw9 Vibrio chagasii strain 3-7 97.8 MN938232.1

BSw11 Shewanella fidelis strain S841 97.0 MK452729.1

CSw8 P.Berth Bacillus horikoshii strain M2-1 97.7 KF358263.1

I.Z: Industrial Zone, P. Beach: Public Beach, P. Berth: Phosphate Berth.

Phylogenetic analysis of the isolated bacteria from the coral (P. damicornis) mucus and
the surrounding seawater revealed the presence of two major groups of bacterial taxa, the
Gram-positive Bacillota (also called Firmicutes) and the Gram-negative Gammaproteobac-
teria (Figure 7). Phylogenetic analysis of the coral mucus and seawater strains showed
that there were 10 strains clustered within the Gammaproteobacteria group belonging to
several Pseudomonadales, Alteromonadales, and Oceanospirillales bacterial orders with
96–99% similarity to sequences in the NCBI databases. Gram-positive Bacillus strains were
clustered in a distinct cluster. BLAST analysis showed that the bacterial strain BPw9 was a
member of the Gammaproteobacteria, with the lowest similarity percentage (95.7%) with
Acinetobacter schindleri (accession number MG581287.1). A single cluster was noticed for
Psychrobacter species with similarity of >97% with the BLAST database.
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Figure 7. Phylogenetic tree for bacterial species associated with P. damicornis mucus and the surround-
ing seawater. Phylogenetic analyses were conducted in MEGA11. There were a total of 2303 positions
in the final dataset. A: Industrial Zones, B: Public Beach, C: Phosphate Berth, P: P. damicornis, m:
mucus, w: seawater.
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Similarly, two major groups of bacterial domains, Gram-positive Bacillota and the
Gram-negative Gammaproteobacteria, were obtained from the phylogenetic analyses of
bacterial isolate sequences from the coral (S. pistillata) mucus and the surrounding seawater
(Figure 8). From the four bacilli isolates cluster, one isolate was isolated from S. Pistillata
mucus (BSm36), which had 99% similarity with Bacillus sp. MML3 (accession number
JX847617.1). A total of 13 strains were clustered within the Gammaproteobacteria group be-
longing to several Pseudomonadales, Alteromonadales, Oceanospirillales, and Vibrionales
bacterial orders with 96–98.4% similarity with NCBI database sequences. Each bacterial
member of the Gammaproteobacteria showed a unique cluster with the same phylogenetic
distance, except for the species Marinovum algicola (family: Oceanospirillaceae) (BSw2), which
was isolated from the Public Beach site seawater; this strain had a distinct cluster.

Figure 8. Phylogenetic tree for bacterial species associated with S. pistillata mucus and the surround-
ing seawater. Phylogenetic analyses were conducted in MEGA11. There were a total of 1739 positions
in the final dataset. A: Industrial Zone, B: Public Beach, C: Phosphate Berth, S: S. pistillata, m: mucus,
w: seawater.
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3.4. Distribution of Shared and Non-Ubiquitous Bacterial Isolates

The intersection among the coral species and sampling sites through Venn diagrams
(Figure 9a) showed that S. pistillata exhibited the highest number of non-ubiquitous bac-
terial genera (10 genera). The diagram showed that bacterial isolates belonging to seven
genera were commonly distributed in the mucus of both coral species, while bacterial
species belonging to three genera—Cellulophaga, Cytophaga, and Klebsiella—were exclusively
distributed in the mucus of P. damicornis.

Figure 9. Distribution of shared and non-ubiquitous bacterial isolates (a) between coral species,
(b) between sampling sites, and (c) between seawater and coral mucus.

Bacterial species belonging to the three genera Brevundimonas, Pseudomonas, and Vibrio
were shared between all sampling sites (Figure 9b). Interestingly, no unique bacterial
species were present at the Industrial Zone site. However, bacterial species belonging to six
genera—Bacillus, Klebsiella, Mesophilobacter, Mycobacterium, Photobacterium, and Planococ-
cus—were exclusively distributed at the Public Beach site. SIMPER analysis indicated that
the lowest similarity between the bacterial communities was obtained for the Industrial
Zone and Phosphate berth site (26.2%), where the species of the bacteria genera Pseudoal-
teromonas, Serratia, Pseudomonas, Cytophaga, Bacillus, Cellulophaga, Streptobacillus, Vibrio, and
Yersinia contributed to ca. 60% of the dissimilarity between the two sites. By comparing
the distribution of the bacterial communities between coral mucus and the surrounding
seawater, the Venn diagram (Figure 9c) showed that bacterial species from 10 genera were
shared between the two matrices. SIMPER analysis revealed that high dissimilarity was
obtained between the coral mucus and seawater bacterial community (76.7%). The species
of bacterial genera belonging to Serratia, Pseudomonas, Pseudoalteromonas, Vibrio, Bacillus,
Yersinia, Cytophaga, and Streptobacillus contributed to ca. 51% of the dissimilarity between
the coral mucus and seawater bacterial communities.

3.5. Distribution of Coral Mucus and Seawater Bacterial Communities

The distribution of the coral mucus and surrounding seawater bacterial communi-
ties among the sampling sites were elucidated by principal coordinates analysis (PCoA)
(Figure 10). The first two coordinates of PCoA expressed 55% of the total variations be-
tween the bacterial communities. The coral mucus bacterial communities’ samples were
clustered together, whereas the seawater bacterial community samples were clustered in a
distinct cluster. Interestingly, samples from the Industrial Zone site were clustered together
away from the other sampling sites.
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Figure 10. Principal coordinates analysis plot (PCoA) based on a Euclidean distance matrix calculated
of the mucus bacterial community and the surrounding seawater. (Brown marks represent coral
mucus samples and blue marks represent seawater samples) [X: Industrial zone samples, �: Public
Beach samples, ∆: Phosphate Berth samples].

3.6. Antimicrobial Activity of Coral Mucus and Seawater Bacterial Isolates

Out of the 120 bacterial isolates that were examined for antibacterial activity, 10 isolates
exhibited antimicrobial activities against at least one indicator strain (8.6% of mucus and
8.0% of seawater) (Table 3). Strain BPw9 was found to be active against P. aeruginosa,
S. marcescens, and S. aureus (inhibition zones: 16, 13, and 13 mm, respectively). Six strains
exhibited activity against S. marcescens ATCC27117. The strain CPw4 only showed activity
against M. luteus ATCC9341 (inhibition zone, 12 mm). The highest antimicrobial activity
was noticed for the strains against P. aeruginosa ATCC13048, with the highest diameter in
the zone of inhibition.

Table 3. Antibacterial activity of isolated strains from the coral mucus and the surrounding seawater.

Mucus Seawater

ASm14 BPm21 BSm24 BSm36 CSm16 APw2 ASw8 BPw9 CPw3 CPw4

S. marcescens 7.4
(1.3) *

8.0
(1.1) - 6.2

(1.4)
16.2

(2.2) *
9.1

(1.5) - 19.4
(1.6) - -

P. aurgenosa - - 24.1
(3.2) - 23.4

(2.1) * - - 25.0
(3.6) - -

S. aureus 9.3
(1.2) * - - - - - 15.0

(2.2)
20.2
(2.3)

20.6
(2.1) -

M. luteus - - - - - - - - - 17.4
(2.5)

* Isolate grown in media for 72 h; all other isolates grown in marine broth for 48 h.; - Zone of inhibition (mm (SD)).

4. Discussion

The study of microbial communities under a range of anthropogenic pollutants along
the Jordanian coast of the Gulf of Aqaba revealed an influence of prevailing anthropogenic
pressures on the microbial communities associated with the mucus and surrounding
seawater of the corals P. damicornis and S. pistillata. The effect of anthropogenic pollutants
was clearly evidenced by the prevalence of bacterial species that are known to be related to
coral diseases, such as white plague-like, pink–blue spot syndrome, and dark spots [45].
These bacterial communities may originate from the pollutants discharged into seawater
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from the adjacent environment and the industrial activities on the coastline of the Gulf of
Aqaba [46]. Intriguingly, the experiment by Ziegler et al. [47] found that the coral Acropora
hemprichii harbored a highly flexible microbiome that differed in response to the level of
anthropogenic impact for the transplanted corals. However, Pocillopora verrucosa (Ellis and
Solander, 1786) remained remarkably stable.

The average viable bacterial count from coral mucus for both studied corals ranged be-
tween 107 and 109 CFU/mL. These concentrations of bacteria in mucus agreed with Omry
and Eugene [34], who investigated the number of bacteria in the mucus of the Mediter-
ranean coral Oculina patagonica de Angelis D’Ossat, 1908; they found that the average viable
bacterial count was 3 × 108. Furthermore, the viable bacterial count values from mucus
from the studied sites is consistent with the results obtained by Jaber [48] who studied
the bacterial communities associated with the corals S. pistillata and Galaxea fascicularis
(Linnaeus, 1767) at the Marine Science Station (MSS) in the Gulf of Aqaba (Jordan). This
high number of bacteria in coral mucus could be related to the sufficient nitrogen and phos-
phorus (eutrophication) in the mucus that support the growth of bacteria [49]. However,
a lower bacterial count was recorded for seawater surrounding the studied coral species.
The oligotrophic condition of Gulf of Aqaba seawater may be attributed to the inhibition of
bacterial growth in the water column [50].

The heterotrophic cultivable bacterial communities associated with the mucus of
these corals consisted of the bacterial phyla Proteobacteria (82%), Actinomycetia (7%),
Cytophagia (6%), and Bacilli (6%). The bacteria diversity was similar to that of those
isolated from the mucus of four coral species present along the Brazilian coast [51], where a
higher abundance of Proteobacteria was also detected. Indeed, this phylum has already
been detected in association with the mucus of the coral Fungia scutaira Lamarck, 1801,
which was studied by Lampert et al. [35] in the Red Sea area. In the coral holobiont, the
phylum Proteobacteria has shown antimicrobial properties and the ability to induce larval
settlement [52], suggesting an important role for this phylum in protecting coral health.
Gammaproteobacteria (76%) and Alphaproteobacteria (6%) were the most dominant classes.
Gammaproteobacteria was the most abundant group of cultivable bacteria in Mussismilia
hispida (Verrill, 1901) and Madracis decactis (Lyman, 1859) coral mucus samples [51]. The
high proportions of these bacteria in the coral mucus could be indicative of the importance
of these bacteria in the coral holobiont.

The use of coral-surrounding seawater bacterial community data, together with coral
mucus data, may enhance our ability to evaluate the effect of anthropogenic stressors and
environmental changes more holistically. For example, the seawater bacterial commu-
nities could change in response to temperature fluctuations [50], which is consequently
correlated with coral bleaching [53]. The seawater bacterial communities were predomi-
nated by Gammaproteobacteria (76%), Bacilli (15%), Fusobacteriia (6%), and Actinomycetia
(3%) classes. These findings disagreed with the previous results obtained by Kooperman
et al. [54], where they studied the bacterial association between two coral species and the
surrounding seawater in the Red Sea. They found that the most abundant group in seawater
samples was cyanobacteria (30%), whereas the Gammaproteobacteria group accounted for
only 5%. Consistent with our results, Jorge et al. [55] found that Gammaproteobacteria was
the most abundant group in the seawater around the coral Montastrea cavernosa (Linnaeus,
1767) in the Caribbean.

Spatial variations among the coral mucus-associated bacterial communities were
verified between the sampling sites from the Gulf of Aqaba (Figure 10). The distinct
cluster of Industrial Zone samples located in the southern part of the Gulf of Aqaba
might be correlated with the higher pollutant levels (e.g., metals [30]). Mesophilobacter
sp. (which was isolated exclusively from the Public beach) showed antagonistic activity
against 17 multi-drug-resistant pathogens, including bacteria and fungi [56]. The sewage
discharge and swimming activities may have been attributed to the presence of this species
in the seawater column [57]. The emission of hydrocarbons from touristic boats may be
related to the enrichment of Planococcus bacteria. The genus Planococcus has been reported
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to have the ability of aromatic hydrocarbon degradation with biosurfactants/bioemulsifiers
secretion [58]. Remarkably, some species of the genus Photobacterium (Photobacterium
rosenbergii) that were cultivated at the Public Beach site are known to be associated with
coral bleaching [59]. Similarly, the level of putative pathogenic bacteria Klebsiella was higher
in diseased stony corals (Acropora Cytherea (Dana, 1846)) from India [60]. These bacterial
species may be originated from swimming activities and sewage discharge at the Public
Beach. Some of the common bacterial isolates in the Industrial Zone and Phosphate Berth
sites belonged to the species Pseudoalteromonas, which were found to have the ability to
convert different forms of aromatic compounds into the corresponding catechol, which,
consequently, may be introduced into the bioremediation of chemically contaminated
marine environments [61]. The dominance of this bacterial species at these sites might be
correlated with oil and aromatic compound contamination. Furthermore, Cytophaga sp. was
previously isolated from coral surfaces infected with black band disease [55]. The presence
of this species can be related to the effect of coastal industrial activities that discharge at
these sites on coral health.

Species from three ubiquitous bacterial genera were presented among the sampling
sites (Brevundimonas, Pseudomonas, and Vibrio). The bacterial communities associated with
three species of Acropora from Orpheus Island that comprised the greatest portion of the
clone libraries belonged to Brevundimonas sp. (4–22%), which are possible candidates for
investigation in coral nutrient cycling or the production of antimicrobial properties [62].
Bacteria from the genus Pseudomonas are among the mucus’ core microbiome and con-
stituted the most abundant taxa in the corals from the Red Sea and Persian/Arabian
Gulf [63]. Furthermore, Lalucat et al. [64] reported that Pseudomonas is one of the highest
taxonomic clusters of known denitrifying bacteria. Pseudomonas sp. are considered to be
the most active denitrifying heterotrophic bacteria in the environment, which include metal
cycling and the degradation of biogenic and xenobiotic compounds [64]. Interestingly,
some coral pathogens belonging to Vibrio, (ex., Vibrio coralliilyticus, a Red Sea pathogen
of P. damicornis [65]) increase their efficiency and motility behaviors with rising seawater
temperatures [66], and the higher abundance of these microbes among sampling sites may
explain the increased prevalence of coral disease post-bleaching [45,67].

Bacterial species-specific associations were noticed between the mucus coral species,
such as Cytophaga sp., which was exclusively present in association with P. damicornis mucus.
Arboleda and Reichardt [68] demonstrated that diseased P. damicornis was dominated by
Cytophaga (Bacteroidota) in the Lingayen Gulf, Philippines. Moreover, bacteria from the
genus Pseudomonas were found to be highly associated with the Red Sea coral S. pistillata [69].
Corynebacterium sp. was one of the eight genera with relatively high abundance and
was detected in ≥80% samples of S. pistillata during a long-term survey conducted by
Yang et al. [70] in Taiwan. Intriguingly, during a study on the influence of species specificity
on bacteria associated with the coral S. pistillata in Taiwan, Mei-Jhu et al. [71] found that
the largest operational taxonomic unit (OUT) belonged to Bacillus sp. (ex. Bacillus cereus or
Bacillus thuringiensis), appearing mainly in winter samples, which was the same sampling
period of our study. Overall, the variations in the mucus associated-bacterial communities
between the coral species P. damicornis and S. pistillata suggest the different degrees of coral
holobiont flexibility. These potentially represent differences in the underlying strategy
employed by the two species to cope with environmental stressors [47].

Remarkably, the seawater samples surrounding the corals had a distinct bacterial
clustering (Figure 10) characterized by the presence of non-ubiquitous bacteria, including
representatives of the Gammaproteobacteria, Actinomycetia, Bacilli, and Fusobacteriia
classes. Unlike the results obtained by Osman et al. [72] regarding the stability of microbes
in reef-associated seawater affected by anthropogenic development in the Red Sea, we
found variations in the bacterial communities among the seawater samples surrounding
the corals at the different sites. Intriguingly, the bacterium Marinobacter, which was present
exclusively in seawater, was found to be the predominant oil-degrading bacteria in pol-
luted seawater of the Yellow Sea, China [73]. Rajeev et al. [74] noticed that the thermal
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discharge-impacted coastal areas were overrepresented by several potential pathogenic
bacteria (e.g., Acinetobacter) and other native marine bacterial genera (e.g., Marinobacter and
Halomonas). Streptobacillus sp., for instance, which was exclusively isolated from seawater
samples, was related to seawater disease in farmed Atlantic salmon [75].

Several bacteria from the coral holobiont are known to produce antimicrobial agents
for survival and defense purposes. Both coral mucus-associated bacterial samples and coral-
surrounding seawater bacterial samples were screened for the presence of antimicrobial
activity. Among these, ten isolates (8.3%) showed antimicrobial activity toward at least
one ATCC-tested bacteria. This percentage is slightly higher than the previous study that
showed that 5.77% of cultivable bacteria isolated from the mucus of Oculina patagonica
produced antimicrobial activity [76]. However, isolates from the coral A. palmata showed
a higher percentage (20%) of antibiotic producers [11]. This can be related to the assay
method, as well as the species and the number of indictor bacterial strains used in screening.

The antimicrobial screening test revealed that high bacterial diversity was able to
inhibit the growth of a S. marcescens strain. Many strains of S. marcescens are known as
opportunistic pathogens responsible for white pox disease, causing coral tissue necrosis [77].
These pathogenic bacteria colonize the coral mucus layer, utilizing the complex polymers
of the mucus as a carbon source [78,79]. Nissimov et al. [76] suggested that the commensal
bacteria present in the coral mucus can prevent the complete establishment of S. marcescens
by niche occupation or antimicrobial production. These support the hypothesis that the
members of the mucus microbiome may support the defense mechanism of corals. The
bacteria Vibrio halioticoli and Acinetobacter schindleri showed the highest inhibitive effects
against the pathogenic indicator bacteria P. aurgenosa, indicating the production of bioactive
materials to inhibit the growth of specific marine microbial competitors [76]. All of the
above results suggest that the interactions of the coral holobiont could be diverse and
complicated, where different coral bacteria may contribute differently to the protection of
the coral from marine pathogens.

5. Conclusions

The findings of this study obviously highlight the variations in bacterial communities
among the studied mucus coral samples and among contaminated sampling sites. Habitat
specificity was observed among the coral mucus-associated bacterial communities and
the surrounding seawater microbes, confirming the compositional variability of microbial
communities. The diversity and spatial variations of bacterial communities represented
by clustering may reflect the response of bacterial communities to local environmental
stressors. Habitat specificity contributes to the overall diversity of microbial communities,
highlighting the importance of holistic studies that focus on microbial interactions across
the coral reef ecosystem.
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