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Since its beginnings, group theory has been an eminently
applied field: the monodromy group of a differential equa-
tion (namely, the transformations of the space of solutions
as one encircles an algebraic singularity; see [6] for a cap-
tivating account), or the discrete plane symmetry groups
(with the 17 cases richly illustrated in the Alhambra and
in Escher’s work).

More recently, groups have proven to be of immea-
surable value as containers of mathematical problems, as
well as providing tools for their solution. Let me begin
with three instances, chosen to be sufficiently far apart as
to show the diversity of the involved group theory.

1 Applications of Group Theory

1.1 Knots

The knot problem asks, given a knot (an imbedded circle K ⊂ R
3) by its diagram,

namely a generic projection of the knot to a plane, with the specification at each
crossing of which one goes above and which one goes below, whether or not the knot
is actually knotted (that is, whether a smooth motion of R3 can bring the knot to a
round circle).

An approach to the knot problem is via fundamental groups: choose a basepoint
∗ ∈ R

3 \ K , and consider the homotopy classes of loops based at ∗ in R
3 \ K ; these

form a group GK = π1(R
3 \ K,∗) under concatenation of paths. By Dehn’s lemma,
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GK is a complete invariant: K is unknotted if and only if GK
∼= Z, a generator being

any loop that encircles K exactly once; see [13, §4B] for details.
Now it is easy to read off a presentation of GK from any diagram of K ; it has

one generator per visible strand of the diagram, and one relation per crossing. In this
manner we “reduce” the knot problem to the following question: given a finitely pre-
sented group, is it isomorphic to Z?; or, more generally, given two finitely presented
groups, are they isomorphic?

Alas, this last question is undecidable, as are most questions about finitely pre-
sented groups: by a cornerstone result of Adyan [2], simplified by Rabin [11] and
building on Markov Jr’s [9], if P is an abstract property of finitely presentable groups
which holds for some group G+ and fails for all groups containing some group G−,
then P is undecidable.

Nevertheless, the problem of deciding whether GK
∼= Z is decidable: GK belongs

to a subclass of finitely presented groups (for example, it is residually finite — every
inequality in GK can be witnessed in some finite quotient of GK ) for which the
problem is decidable.

An outstanding open question is whether the knot problem is in the class P of
problems decidable in polynomial time; that is, whether there is an algorithm A and
a polynomial P such that, given a diagram with n strands, A determines whether it
represents the unknot in time at most P(n). At present, the complexity of the knot
problem is known to be in the class NP ∩ co-NP, that is, for every diagram there
exists either a polynomial-length proof that it is the unknot, or a polynomial-length
proof that it is not the unknot.

1.2 Rubik’s Cube and Similar Puzzles

There is a large number of puzzles with the following structure: there are objects
o1, . . . , on at distinct positions out of {p1, . . . , pn}, and a specification of some “ele-
mentary” moves which permute the objects at certain positions. The puzzle is solved
when each object oi is brought to the correct position pi . A typical example is the
“Rubik’s cube”, with objects the n = 54 facets of the cube; there are nine elementary
moves, consisting of rotations of a slice of the cube. We refer to [8] for an entertaining
list of such puzzles, along with the associated group theory.

Expressed mathematically, the following is what it means to solve the cube, or
any such puzzle. The current position of the objects is expressed as a permutation σ

on n letters, with σ(i) = j if the object at position pi is oj . The elementary moves
are expressed as a set S of permutations, and the goal is to express σ as a product of
elements of S — or prove that there are no such expressions, as in the case of Sam
Loyd’s “15 puzzle”.

There is a standard strategy to solve this problem algorithmically, which is at the
heart of essentially all computations with permutation groups: the stabilizer chain.
Let G ≤ Sn be the group generated by S, and let Gi be the subgroup of G that fixes
1,2, . . . , i; so G = G0 ≥ G1 ≥ · · · ≥ Gn = 1. For all i let Ti be a set of left coset
representatives of Gi−1 in Gi , expressed both as permutations and as words over S.
These may be found by exhaustive search, as part of a pre-processing step. The total
size of the Ti is at most n2, while the size of G could be n!.
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Given then a permutation σ , we first find an element of t1 ∈ T1 with t−1
1 σ ∈ G1;

then t2 ∈ T2 with t−1
2 t−1

1 σ ∈ G2; etc., and in the end t−1
n · · · t−1

1 σ ∈ Gn = 1, so σ =
t1 · · · tn. If at any moment we could not find a ti ∈ Ti such that t−1

i · · · t−1
1 σ fixes i,

then σ does not belong to G. It is not hard to see that the word obtained in this manner
has length at most quadratic in n. (This gives an upper bound of a few thousands to
the minimal number of moves needed to unscramble the Rubik’s cube, admittedly far
from the exact answer 20 [12].)

1.3 An Infinite Puzzle

The classical “Towers of Hanoi” puzzle is presented as follows: there are three rods,
and n = 64 disks, sorted in decreasing size, on the first rod. The goal is to move the
disks one at a time, never putting a disk on a smaller one, so that they are eventually
all on the second rod.

Here, the puzzle’s state is expressed as an element s of {0,1,2}n, with sk indicating
the rod on which disk #k is. There are three elementary moves a0, a1, a2, uniquely
specified as follows: for {i, j, k} = {0,1,2}, the operation ai moves the top disk from
rod j to rod k or from rod k to rod j , whichever is smaller. The action of ai on a state
is ai(i . . . ij . . . ) = i . . . i(3 − i − j) . . . if j 	= i and ai(i . . . i) = i . . . i. The goal is to
find a word in the ai ’s mapping 0n to 1n, and it is a classical exercise to show that the
minimum length of such a word is 2n − 1.

Now there is no need to restrict to finite n, and a very interesting group H , gen-
erated by {a0, a1, a2} and acting on � := {0,1,2}∞, arises [7]. Note that this is a
group of a quite different nature than the groups considered in Section 1.1: both are
finitely generated, but the group H is given by generators acting in an explicit man-
ner while the groups GK are given as abstract groups (that is, without any concrete
representation by permutations). A variety of questions may be asked of H : given an
almost-everywhere-0 sequence s ∈ �, how many generators are needed to bring it to
the everywhere-0 sequence (bringing back all disks to rod 0)? which word would do
this?; given a word over {a0, a1, a2}, does it preserve the everywhere-0 configuration?
if not, what is the largest / smallest disk moved? etc. In all cases, if these problems
are solvable then one would like to know the complexity of their solution.

2 Words, Words, Words

A number of group-theory problems can be expressed using free groups and words.
For this purpose, recall that, for a set S, the free group on S has elements all reduced
words (that is, without consecutive xx−1) over the alphabet S � S−1, with as group
operation concatenation followed by maximal cancellation. The free group FS admits
the universal property that every map S → G extends uniquely to a group homomor-
phism FS → G. In particular, saying that S ⊆ G is a generating set is equivalent to
giving oneself a surjective homomorphism FS � G; and giving oneself a group pre-
sentation is akin to positing a homomorphism FS � G and a set of normal generators
for its kernel (the relators).
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In this terminology, the word problem of a group G = 〈S〉 is really a subset of FS :
the kernel of the map FS � G. One may then ask whether there is an algorithm, or
even a polynomial-time algorithm, that receives as input a word in FS and determines
whether it maps to 1 in G. Similarly, the conjugacy problem receives as input a pair
of words x, y, and is asked to determine whether there exists z such that xz and zy

map to the same element in G.
We note that there is a continuum of finitely generated groups [10, §14], but

only countably many algorithms; so “most” finitely generated groups have unsolv-
able word problem. Fortunately, “most” groups are not interesting! Much effort has
focused on finitely presented groups, for which (as we mentioned above) the word
problem is undecidable. In important subclasses, such as “automatic groups” and
in particular “word-hyperbolic groups” (see [5]), they are quite efficiently solvable;
this covers for example all fundamental groups of 3-manifolds. Even more, the word
problem is solvable in a uniform manner: there is an algorithm that takes as input a
group presentation and a word in the generators, and returns, in case the presenta-
tion does define an automatic group G, whether the word evaluates to 1 in G. (The
algorithm is allowed to do anything, including crash the computer, in case G is not
automatic.) For hyperbolic groups, it is even possible to modify the presentation so
that the following very simple algorithm (“Dehn’s algorithm”) succeeds: “scan the
word to see if more than half a relator appears as a subword; if so, replace that sub-
word by the inverse of the other half of the relator; freely reduce and repeat. The end
result is trivial if and only if the original word evaluates to 1.” Carefully coded, this
algorithm can be made to run in real time (that is, on a multitape Turing machine that
reads one input letter at each clock tick).

Just as most groups are not interesting, most words are not. For example, in a group
generated by {x, y}, the word (xyx−1y−1)1000x(yxy−1x−1)1000x−1 has length 8002
but is highly structured, and has much more chances of appearing as an input than
any random sequence of x’s and y’s. When measuring complexity, should it count
as an input of length 8002, or of length 53 (the length of its LATEX code)? This topic
is nicely formalized in straight line programs: by definition, in a group G = 〈S〉, a
straight line program is a sequence of words (w1, . . . ,wn) such that each wi is an
element of FS�{w1,...,wi−1}. (There are other formalisms, all equivalent.) The wi may
be evaluated in sequence to elements of G, and the value of a straight line program
is the evaluation of its last term wn. The length of a straight line program is the sum
of the length of its words. Simple examples show that the length of a straight line
program may be logarithmic in the length of its value.

It is quite remarkable that the word problem in free groups may be solved in poly-
nomial time, with straight line programs as input (one then refers to the “compressed
word problem”). This was independently proven by numerous authors, and we sim-
ply refer to Section 4.6 of the book under review, where this result is extended to a
large classes of groups; in particular, “graph groups” (generators are vertices, which
commute when they are connected by an edge) and the word-hyperbolic groups men-
tioned above. Furthermore, for these groups the compressed conjugacy problem is
also solvable in polynomial time.
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3 Worst-Case or Generic-Case?

The undecidability of the word problem ultimately relies on the ability of encoding
a Turing machine into a word; so the instances of the word problem that trip up a
purported algorithm are necessarily quite contrived. In a quite recent approach, de-
veloped in Chapter 1 of the book under review, one asks for generic-case complexity
or solvability; in that the algorithm is required to succeed on an overwhelming pro-
portion of the inputs — in a density approaching 1 as the input length tends to infinity.

For example, if G is a finitely generated group and G is an infinite quotient of
G with solvable word problem, then the word problem is generically solvable in G.
Indeed with overwhelming probability the (non)triviality of an element of G can be
detected in the quotient G. The same holds for a variety of other decision problems.

Group theory has been suggested as a convenient tool for cryptography, and in
particular key exchange protocols. Recall the problem: Alice and Bob wish to share
a secret while only using an unprotected communication channel on which Eve
eavesdrops. For this, Alice and Bob each select a key, one part of which is secret
and one part of which is public. What is desired is a function f (x, y) such that
f (Alicepublic,Bobprivate) = f (Bobpublic,Aliceprivate), which will then be the shared
secret; and such that f (x, y) cannot be computed, or even guessed, from Alicepublic
and Bobpublic. (It is acceptable for f to be complicated, slow and with small range
(say 64 bits); it will typically be used only to produce an encryption/decryption pass-
word for a faster and more efficient cipher.)

There are numerous methods of achieving this; perhaps the most famous is the
“Diffie-Hellman key exchange protocol” [4]. It specifies some global data: a large
finite field and a generator g of its group of units. Alice and Bob each respectively
choose an integer a, b as their private key, and respectively publish ga, gb as their
public key. The shared secret is (ga)b = (gb)a . The difficulty in recovering a private
key from a public one comes from the (supposed) hardness of the discrete logarithm
problem.

If quantum computing keeps progressing at the same pace, the discrete logarithm
problem will soon become tractable [14]. On the other hand, more combinatorial
problems, such as combinatorics of words, seem immune to quantum computing
speedups [1]. A family of key exchange protocols have been suggested by Anshel,
Anshel and Goldfeld [3], based on a group G and two finite subsets A,B ⊂ G that
are public data. For w ∈ FA�B , let us write w for its evaluation in G. Alice and Bob
respectively choose a word x ∈ FA,y ∈ FB as their private key, and respectively pub-
lish {x−1bx : b ∈ B} and {y−1ay : a ∈ A} as their public key. Using Bob’s public
key, Alice may substitute y−1ay for each letter a in her key, obtaining y−1xy; and
similarly for Bob. The shared secret is x−1(y−1xy) = (x−1y−1x)y.

For this to be a useful protocol, one should also specify how the group G and
its generators are to be produced; represented (for the common secret to be of any
use); and explain why Eve cannot easily guess x from the knowledge of B and their
conjugates under x. It would make us comfortable if the conjugacy problem were
unsolvable in G, though this is not exactly the problem that Eve must solve: she
already knows that b and x−1bx are conjugate, but she must find an element x ∈ 〈A〉
that realizes this conjugation; and she must even find one that works for all b ∈ B .
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It was at one moment thought that braid groups could serve for G; though they now
seem irremediably compromised. I am not aware of candidate replacements for G

that would offer security guarantees based on undecidability of a decision problem;
see [15] for a discussion of this.

Another issue is the selection of the finite subsets A,B and the words x, y. Choos-
ing words uniformly at random is probably a very bad idea, because of what we noted
in the beginning of this section: it could well be that in G the “conjugacy search prob-
lem” is undecidable, but that generically it is easily solvable. The instances used for
cryptographical purposes must then be as carefully selected as the words encoding a
Turing machine.

4 The Book

These notes were but an overview of the book under review. Part of its attraction
is that it has 10 authors and 6 chapters, so there is no (obvious) bijection between
authors and chapters. Chapter 1 develops generic-case complexity in detail; I have
summarized parts of it in the last section, combining my discussion with Chapter 6,
which describes group-theoretical problems motivated by their applications to cryp-
tography. Chapter 4 discusses compression techniques, and in particular the algorith-
mic complexity of straight line programs; I have compressed it to the second question.
I have completely left out very interesting topics related to randomness: Chapter 2 an-
swers the questions: what is a random finitely presented group, and what does it look
like? what does a random subgroup look like? It could have been titled “generic pre-
sentations/subgroups”, to emphasize the connection to Chapter 1. Chapter 3 is also
concerned with generic properties, but more specifically in infinite linear groups; it
explains what are “random elements”, and how to produce them. Chapter 5 considers
decision problems in groups beyond the word and conjugacy problems; for example,
the group-theoretic analogue of the “knapsack problem”: given g1, . . . , gk, g ∈ G,
decide if there are non-negative integers i1, . . . , ik with g = g

i1
1 · · ·gik

k , or in words
can you fill a knapsack of size g using only objects g1, . . . , gk in that order?

The authors are well-known experts in the field, and they have collected an im-
pressive amount of material in this volume. It is not intended as an introduction, nor
as a definitive treatise; but rather a snapshot, taken in 2021, of a very active and
lively domain of mathematics, with numerous connections within itself, to classical
century-old problems, to applications, and to the future.
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7. Grigorchuk, R.I., Šuniḱ, Z.: Asymptotic aspects of Schreier graphs and Hanoi Towers groups. C.
R. Math. Acad. Sci. Paris 342(8), 545–550 (2006) (English, with English and French summaries).
MR2217913 (2006k:20048)

8. Joyner, D.: Adventures in Group Theory: Rubik’s Cube, Merlin’s Machine, and Other Mathematical
Toys, 2nd edn. Johns Hopkins University Press, Baltimore (2008). MR2599606

9. Markov, A.A.: The impossibility of certain algorithms in the theory of associative systems. Dokl.
Akad. Nauk SSSR (N.S.) 77, 19–20 (1951) (Russian). MR0040231

10. Neumann, B.H.: Some remarks on infinite groups. J. Lond. Math. Soc. 12, 120–127 (1937). https://
doi.org/10.1112/jlms/s1-12.46.120 (English)

11. Rabin, M.O.: Recursive unsolvability of group theoretic problems. Ann. Math. (2) 67, 172–194
(1958). MR0110743 (22 #1611)

12. Rokicki, T., Kociemba, H., Davidson, M., Dethridge, J.: The diameter of the Rubik’s cube group
is twenty. SIAM J. Discrete Math. 27(2), 1082–1105 (2013). https://doi.org/10.1137/120867366.
MR3068558

13. Rolfsen, D.: Knots and Links. Mathematics Lecture Series, vol. 7. Publish or Perish, Inc., Houston
(1990). Corrected reprint of the 1976 original. MR1277811

14. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM J. Comput. 26(5), 1484–1509 (1997). https://doi.org/10.1137/S0097539795293172.
MR1471990

15. Shpilrain, V., Zapata, G.: Combinatorial group theory and public key cryptography. Appl. Alge-
bra Eng. Commun. Comput. 17(3–4), 291–302 (2006). https://doi.org/10.1007/s00200-006-0006-9.
MR2233788

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.4086/toc.2014.v010a006
https://doi.org/10.1109/tit.1976.1055638
https://doi.org/10.1112/jlms/s1-12.46.120
https://doi.org/10.1112/jlms/s1-12.46.120
https://doi.org/10.1137/120867366
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1007/s00200-006-0006-9

	F. Bassino et al.: ‘‘Complexity and Randomness in Group Theory’’
	Applications of Group Theory
	Knots
	Rubik’s Cube and Similar Puzzles
	An Infinite Puzzle

	Words, Words, Words
	Worst-Case or Generic-Case?
	The Book
	Funding Note
	References


