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Abstract
We investigate numerous structural connections between numerical algorithms for partial differential equations (PDEs) and
neural architectures. Our goal is to transfer the rich set ofmathematical foundations from theworld of PDEs to neural networks.
Besides structural insights, we provide concrete examples and experimental evaluations of the resulting architectures. Using
the example of generalised nonlinear diffusion in 1D, we consider explicit schemes, acceleration strategies thereof, implicit
schemes, and multigrid approaches. We connect these concepts to residual networks, recurrent neural networks, and U-net
architectures. Our findings inspire a symmetric residual network design with provable stability guarantees and justify the
effectiveness of skip connections in neural networks from a numerical perspective. Moreover, we present U-net architectures
that implement multigrid techniques for learning efficient solutions of partial differential equation models, and motivate
uncommon design choices such as trainable nonmonotone activation functions. Experimental evaluations show that the
proposed architectures save half of the trainable parameters and can thus outperform standard ones with the same model
complexity. Our considerations serve as a basis for explaining the success of popular neural architectures and provide a
blueprint for developing new mathematically well-founded neural building blocks.

Keywords Numerical algorithms · Partial differential equations · Neural networks · Nonlinear diffusion · Stability

1 Introduction

Partial differential equations (PDEs) have been a central
component of many successful models for signal and image
processing in the last three decades; for instance, the mono-
graphs [6,16,105] provide a good overview.

PDE-based models are compact, transparent, and benefit
from a rich set of mathematical foundations. As a conse-
quence, they offer valuable theoretical guarantees such as
stability and well-posedness. This makes PDE models and
their numerical solution strategies easy to control, imple-
ment, and apply to a plethora of tasks.

Convolutional neural networks (CNNs) and deep learn-
ing [39,64,65,99], on the other hand, have revolutionised the
field of image processing in recent years. Still, this success
was mostly of empirical nature. Many modern CNN archi-
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tectures do not provide solidmathematical foundations. They
often suffer from undesirable side effects such as a sensitivity
against adversarial attacks [40].

More recently, researchers have started to analyse the
behaviour and mathematical foundations of CNNs. One
strategy is to interpret trained CNNs as approximations of
continuous partial or ordinary differential equations (ODEs)
[19,20,29]. In this interpretation, the trainable parameters
specify the nonlinear dynamics of an evolution equation.

This strategy can be challenging for several reasons.
Firstly, finding a compact differential equation is hard, given
that typical CNNs learn millions of parameters. Secondly,
the reduction of a discrete CNN to a continuous differential
equation involves ambiguous limit assumptions, as the same
discretemodel can approximatemultiple evolution equations
with different orders of consistency. Last but not least, this
strategy is only analytic: It analyses existing networks rather
than inspiring novel, well-founded building blocks.

We address these problems by pursuing the opposite
direction: We translate successful concepts from the world
of PDEs into neural components. This translation justifies
neural architectures from a mathematical perspective and
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provides novel design criteria for well-founded networks.
In addition, these networks are naturally more compact with
less trainable parameters.

Our concepts of choice are numerical algorithms instead
of continuous differential equations. Similar to untrained
neural networks, numerical algorithms can be applied to a
multitude of problems in a general purpose fashion. The
model at hand is then specified by the differential equation,
which is approximated by training the neural network. Thus,
we believe that the design principles of modern neural net-
works realise a small but powerful set of numerical strategies
at their core.

1.1 Our Contributions

We investigate what can be learned from translating numer-
ical methods for PDEs into their neural counterparts. This
inspires novel building blocks for designing mathematically
well-founded neural networks.

The present paper advances our conference publication
[1], in which we translated explicit schemes, accelera-
tion strategies [51], implicit schemes, and linear multigrid
approaches [11,12] into their neural counterparts. In this
extended version, we additionally investigate networks that
realise Du Fort–Frankel schemes [28] as a representative for
absolutely stable schemes which are still explicit. Moreover,
we extend the translation ofmultigrid approaches intoU-nets
to the nonlinear setting by considering full approximation
schemes (FAS). Last but not least, we supplement our find-
ingswith an experimental evaluation of the proposed network
architectures for denoising and inpainting tasks. Therein, we
demonstrate the effectiveness of the architectures together
with nonmonotone activation functions in practice.

As a starting point of our considerations, we consider
a generalised nonlinear diffusion equation. We restrict our-
selves to the 1D setting for didactic purposes only, since all
important concepts can already be translated in this simple
setting. We show that an explicit discretisation of this diffu-
sion model can be connected to residual networks (ResNets)
[54], which are among the most popular network architec-
tures to date. Their skip connection can be interpreted as the
result of a temporal discretisation, which allows to connect
them to explicit diffusion schemes.

This connection inspires a novel ResNet architecture. It
follows a symmetric structure which saves half the amount of
network parameters and additionally allows to derive a theory
for guaranteeing stability in the Euclidean norm. Moreover,
by identifying the diffusion flux with the activation function
our translation motivates the use of nonmonotone activation
functions, which are atypical in the CNNworld. In a series of
denoising experiments, we validate the effectiveness of such
activation functions. We choose the denoising problem since

it is the prototypical representative of a well-posed problem,
where the result depends continuously on the input data.

Byconsidering acceleration strategies for explicit schemes
and solution strategies for implicit schemes, we justify the
effectiveness of skip connections in neural networks. We
show that Du Fort–Frankel schemes [28], fast semi-iterative
(FSI) schemes [51], and fixed point iterations for implicit
schemes motivate different architectural designs which all
rely on skip connections as a foundation of their efficiency.

Finally, we consider the rich class of multigrid approaches
[11,12].We show that a nonlinear full approximation scheme
(FAS) can be cast in the form of the popular U-net [87] archi-
tecture. We think that at their core, U-nets realise a multigrid
strategy, and we support this claim by proposing a U-net
which realises a full multigrid strategy for an inpainting task.

Our findings do not only inspire new design criteria for
stable neural architectures and show that uncommon design
choices can performwell in practice. They also provide struc-
tural insights into the success of popular CNN architectures
from the perspective of numerical algorithms.

1.2 RelatedWork

In recent years, the connection between neural networks and
the world of PDEs and variational methods has become an
active area of research.

CNNs are used to learn PDEs from data [68,82,90,96],
or to solve them efficiently [21,30,83]. Moreover, various
model-based approaches have been augmented with train-
able parameters to improve their performance [2,5,20,60,61].
Another line of research is concerned with the expressive
power of networks [24,44,63,79,86,101] and their robustness
properties [23,34,66].

The concept of neural ordinary equations [19] as a contin-
uous time extension of ResNets [54] has gained considerable
attention. However, recent works [46,77] suggest that these
architectures suffer from a strong dependency between the
model and the numerical solver. This supports our motiva-
tion to regard the numerical solver as an inherent basis of a
neural architecture.

In contrast, our philosophy of translating numerical con-
cepts into neural architectures is shared only by few works
[10,67,69,78,111]. Theymotivate additional ormodified skip
connections based on numerical schemes for ODEs, such as
Runge–Kutta methods or implicit Euler schemes. Our work
provides additional motivations for such skip connections
based on several numerical strategies for PDEs.

The stability of ResNets has been analysed in sev-
eral works [17,47,48,88,93,110]. A common result is that
ResNets with a symmetric filter structure can be shown to be
stable in the Euclidean norm. We motivate this result from
a novel viewpoint based on diffusion processes. In contrast
to previous results, this unique starting point allows us to
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present our stability result independently of themonotonicity
of the activation function, inspiring the use of nonmonotone
and trainable activation functions.

Nonmonotone activation functions are rarely found in
standard CNNs, with some notable exceptions [20,38,76].
Recently, the so-called Swish activation [84] and modifica-
tions thereof [72,112] have been found to empirically boost
the classification performance of CNNs. While these acti-
vations are modifications of the ReLU activation which are
nonmonotone around the zero position, the activations that
arise from our diffusion interpretation are odd and nonmono-
tone. Such functions have been analysed before the advent of
deep learning [25,71], but have not found their way into cur-
rent CNN architectures. Our experiments, however, suggest
that these activations can be advantageous in practice.

Multigrid ideas have been combined with CNNs already
in the early years of neural network research [7,8]. Cur-
rent works use inspiration from multigrid concepts to learn
restriction and prolongation operators of multigrid solvers
[43,58], to couple channels for parameter reduction [31] or
to boost training performance [45,49].

However, to the best of our knowledge, the only archi-
tectures that consequently implement a trainable multigrid
approach are presented by He and Xu [53] and Hartmann et
al. [52]. However, both works do not draw any connections
to the popular U-net architecture [87], whereas we directly
link both concepts.

1.3 Organisation of the Paper

In Sect. 2, we review nonlinear diffusion and residual net-
works. We connect both models in Sect. 3 and analyse
the implications in terms of stability and novel activation
functions. Afterwards, we motivate skip connections from
different numerical algorithms in Sect. 4. We review multi-
grid approaches and U-nets in Sect. 5 before connecting both
worlds in Sect. 6. Finally,we experimentally evaluate the pro-
posed architectures in Sect. 7 and present a discussion and
our conclusions in Sect. 8.

2 Review: Diffusion and Residual Networks

In this section, we review generalised diffusion filters in 1D
and residual networks as the basicmodels for our first transla-
tion. We restrict ourselves to the 1D setting only for didactic
reasons, as already this simple setting allows to translate all
necessary concepts.

2.1 Generalised Nonlinear Diffusion

We start by considering a generalised one-dimensional dif-
fusion PDE of arbitrary high order. It produces signals

u(x, t) : (a, b) × [0,∞) → R evolving over time from
an initial signal f (x) on a domain (a, b) ⊂ R according to

∂t u = −D∗(g
(
|Du|2

)
Du

)
, (1)

with reflecting (homogeneous Neumann) boundary condi-
tions. We use a general differential operator

D =
M∑

m=0

αm∂mx (2)

and its adjoint

D∗ =
M∑

m=0

(−1)mαm∂mx . (3)

The operators consist of weighted derivatives up to order M
with weights αm of arbitrary sign, yielding a PDE of order
2M .

Choosing e.g. M = 1 yields the second order PDE of Per-
ona andMalik [80], while M = 2 leads to a one-dimensional
version of the fourth order model of You and Kaveh [109].

The evolution simplifies the input signal f over time. This
process is mainly controlled by the scalar diffusivity function
g(s2). For example, the Perona–Malik diffusivity [80]

g(s2) = 1

1 + s2

λ2

(4)

preserves discontinuities which are larger than a contrast
parameter λ.

The diffusion PDE (1) is the gradient flow which min-
imises the energy functional

E(u) =
∫ b

a
�(|Du|2) dx, (5)

where the penaliser � can be linked to the diffusivity with
g = � ′ [97]. The penaliser must be increasing, but not nec-
essarily convex. In Sect. 3.4, we show that this inspires novel
activation functions. Their discretisations are stable, despite
arising from a nonconvex energy.

2.2 Residual Networks

Residual networks (ResNets) [54] belong to themost popular
CNN architectures to date. Their main contribution is the
introduction of so-called skip connections which facilitate
training of very deep networks.

A residual network consists of residual blocks. A single
block computes an output signal u from an input f as

u = σ2( f + W2 σ1(W1 f + b1) + b2) . (6)
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One first applies an inner convolution W1 with a bias vector
b1 to the input signal and passes the result into an inner
activation function σ1.

Typically, CNNs prescribe simple, monotone activation
functions such as the rectified linear unit (ReLU) [73] func-
tion

ReLU(s) = max(0, s) (7)

which is a linear function truncated at 0.
Afterwards, an outer convolution W2 with a bias vector

b2 is applied to the output of the activation.
The result of this convolution is added back to the orig-

inal signal f . This skip connection is the crucial novelty
of ResNets over feed-forward networks. It is the key to
efficiently train deep networks with large amounts of lay-
ers, without suffering from the vanishing gradient problem.
This phenomenon appears when backpropagation gradients
approach zero for very deep networks, bringing the training
process to a halt [9].

Lastly, one applies an outer activation functionσ2 to obtain
the output signal u.

3 FromDiffusion to Symmetric Residual
Networks

We are now in the position to show that explicit diffusion
schemes realise a ResNet architecture with a symmetric filter
structure. To this end, we rewrite the generalised nonlinear
diffusion equation (1) with the help of the flux function

Φ(s) = g(s2) s (8)

as

∂t u = −D∗Φ(Du) . (9)

Now we discretise this equation by means of a standard
finite difference scheme. To obtain discrete signals u, f , we
sample the continuous signals u, f with distance h. We dis-
cretise the temporal derivative by a forward difference with
time step size τ . The spatial derivative operator D is imple-
mented by a convolutionmatrix K . Consequently, the adjoint
operator D∗ is realised by a transposed convolution matrix
K�. The matrix transposition corresponds mirroring the cor-
responding discrete convolution kernel.

This yields the discrete evolution equation

uk+1 − uk

τ
= −K�Φ

(
Kuk

)
, (10)

where we indicate old and new time levels by superscripts k
and k + 1, respectively. Solving this expression for the new

Fig. 1 Diffusion block for an explicit diffusion step (11) with flux
function Φ, time step size τ , and a discrete derivative operator K

signal uk+1 yields the explicit scheme

uk+1 = uk − τ K�Φ
(
Kuk

)
. (11)

The explicit diffusion scheme (11) is closely connected to
a specific residual block. To this end, we consider a residual
block with input uk , output uk+1, and without bias terms,
which reads

uk+1 = σ2

(
uk + W2 σ1

(
W1uk

))
. (12)

Now, we can directly identify the explicit scheme with a
residual block as follows.

Theorem 1 (Diffusion-inspired ResNets) An explicit step
(11) of the generalised higher order diffusion scheme (1)
can be expressed as a residual block (6) by

σ1 = τ Φ, σ2 = Id, W1 = K , W2 = −K�, (13)

with the bias vectors b1, b2 set to 0.

We call a ResNet block of this form a diffusion block. Fig-
ure 1 visualises such a block in the form of a graph. Nodes
contain the current state of the signal, while edges describe
the operations to proceed from one node to the next.

The connection between explicit diffusion schemes and
ResNets yields three key structural insights:

1. The rescaled flux function τ Φ serves as the sole activa-
tion function σ1. This motivates us to investigate popular
diffusion flux functions in Sect. 3.4. They have not been
considered as CNN activations so far.
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2. The skip connection naturally arises from the discreti-
sation of the temporal derivative. This is one numerical
justification for skip connections in neural networks. We
investigate several other motivations of skip connections
in Sect. 4.

3. Lastly, the filters exhibit a negated symmetric filter struc-
ture W2 = −W�

1 . This is a natural consequence of the
gradient flow structure of the diffusion process, and leads
to provable stability guarantees for ResNets with such a
filter structure, as we show in the following.

3.1 Stability for Symmetric ResNets

The structural connection between explicit schemes and
ResNets allows us to transfer classical results for stability
[26] and well-posedness [105] of diffusion evolutions to a
specific residual network architecture.

To this end, we consider ResNets which chain diffusion
blocks. Since we show that a key to stability of these net-
works is the symmetric filter structure, we refer to these
architectures as symmetric residual networks (SymResNets),
following [93,110].

For these networks, we prove Euclidean stability andwell-
posedness. Euclidean stability guarantees that the Euclidean
norm of the signal is nonincreasing in each iteration, i.e.
||uk+1||2 ≤ ||uk ||2.Well-posedness ensures that the network
output is a continuous function of the input data.

Theorem 2 (Euclidean Stability of Symmetric
Residual Networks) Consider a symmetric residual network
chaining any number of diffusion blocks (11) with convolu-
tions represented by a convolution matrix K and activation
function τΦ. Moreover, assume that the activation function
can be expressed as a diffusion flux function Φ(s) = g(s2) s
and has a finite Lipschitz constant L. Then the symmetric
residual network is well-posed and stable in the Euclidean
norm if

τ ≤ 2

L||K ||22
. (14)

Here, || · ||2 denotes the spectral norm which is induced by
the Euclidean norm.

Proof The activation function σ(s) can be expressed in terms
of a diffusivity function by

σ(s) = τΦ(s) = τg(s2) s. (15)

Thus, its application is equivalent to a rescaling with a diag-
onal matrix G(uk)with g((Kuk)2i ) as i-th diagonal element.
Therefore, we can write (11) as

uk+1 =
(
I − τ K�G(uk)K

)
uk . (16)

At this point, well-posedness follows directly from the con-
tinuity of the operator I − τ K�G(uk)K , as the diffusivity
g is assumed to be smooth [105].

We now show that the time step size restriction (14) guar-
antees that the eigenvalues of the operator always lie in the
interval [−1, 1]. Then, the explicit step (11) constitutes a
contraction mapping which in turn guarantees Euclidean sta-
bility.

As the spectral norm is sub-multiplicative,we can estimate
the eigenvalues of K�G(uk)K for each matrix separately.
Since g is nonnegative, the diagonal matrix G is positive
semidefinite. The maximal eigenvalue of G is then given by
the supremum of g, which can be bounded by the Lipschitz
constant L of Φ:

L = sup
s

∣∣Φ ′(s)
∣∣ = sup

s

∣∣∣g(s2) + 2s2g′(s2)
∣∣∣

≥ sup
s

∣∣∣g(s2)
∣∣∣ . (17)

Consequently, the eigenvalues of K�G(uk)K lie in the inter-
val

[
0, τ L||K ||22

]
.

Then, the operator I − τ K�G(uk)K has eigenvalues in[
1 − τ L||K ||22, 1

]
, and the condition

1 − τ L||K ||22 ≥ −1 (18)

leads to the bound (14). 
�
Similar results have been obtained recently in [88,93,110],

albeit with alternative justifications. In Sect. 3.4, we show
that our unique diffusion interpretation additionally suggests
novel design concepts for CNNs such as nonmonotone acti-
vation functions.

3.2 How General is Our Stability Result?

While our focus on explicit diffusion schemes appears
restrictive at first glance, our stability result is more general.

The fact that we use discrete differential operators as con-
volutions is no restriction, since any convolution matrix can
be expressed as a weighted combination of discrete differen-
tial operators. Moreover, our proof does not even require a
convolutional matrix structure.

A key requirement for stability is the
symmetric structure W2 = −WT

1 .

The symmetric convolution structure is an important struc-
tural difference to the original ResNet formulation [54]. It
does not only yield a stable network, but also allows to reduce
the amount of trainable parameters by 50%, since inner con-
volution and outer convolution share their weights.
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Moreover, the requirement of using a flux function as an
activation function can be relaxed. As we have shown, one
only requires the diagonal matrix G to be positive semidef-
inite. While this is naturally fulfilled for a diffusion flux
function, other activations also adhere to this constraint. For
example, the ReLU function multiplies positive arguments
with 1 and negative ones with 0, yielding a binary positive
semidefinite matrix G. Thus, using the ReLU instead of a
diffusion flux does not affect stability. This shows that diffu-
sion algorithms inspire general, sufficient design criteria for
stable networks.

In particular, we do not require any assumptions on the
monotonicity of the activation function, in contrast to the
results ofRuthotto andHaber [93]. Thismotivates us to inves-
tigate typical diffusivities and their flux functions in Sect. 3.4.

3.3 Enforcing Stability in Practice

While the stability criterion (14) can be computed on the fly
already during the training process of the network, evaluating
the spectral radius of the operator K is costly. To this end,
we suggest a simple rescaling to turn the stability bound (14)
into an a priori criterion.

For a symmetric residual network with a single chan-
nel, one can directly use Gershgorin’s circle theorem [35]
to bound the maximum absolute eigenvalue of K . More pre-
cisely, the eigenvalues of K lie in the union of circles around
the diagonal entries kii with radii ri = ∑

j �=i |ki j | corre-
sponding to the absolute sums of the off-diagonal values.
Thus, the maximal absolute eigenvalue of K is bounded by
the largest absolute row sum of K . If we simply rescale both
inner and outer convolutions by this sum, we can guaran-
tee ||K ||22 ≤ 1. Then the stability condition (14) transforms
into τ ≤ 2

L . Since the Lipschitz constant L of the activation
is known a priori, this simple rescaling allows to constrain
the time step size to a fixed value, while not affecting the
expressive power of the network.

However, most networks in practice are not concerned
with only a single channel. To this end,we extendour stability
result to symmetric ResNets with multiple channels.

For a diffusion block operating on a signal with C chan-
nels, the matrix K is a C × C block convolution matrix. As
long as the transposed structure is realised, this is not prob-
lematic for the stability proof.

An extension of Gershgorin’s circle theorem to block
matrices [102] states that the eigenvalues of K lie in the
union of circles which are centred around the eigenvalues of
the diagonal blocks. The radii of the circles are given by the
sum of the spectral norms of the off-diagonal blocks. If we
rescale each block matrix as in the single channel case, we
simply need to additionally divide the operator K by

√
C to

ensure that ||K ||22 ≤ 1. With this, we obtain the same a priori
criterion as in the single channel case.

This strategy constitutes an instance of the popular weight
normalisation technique [95], and related spectral normal-
isations have shown to be successful for improving the
performance and convergence speed of the training process
[15,22,42,113].

3.4 Nonmonotone Activation Functions

Our connection between diffusivity g(s2) and activa-
tion function σ(s) = τ Φ(s) with the diffusion flux Φ(s)
refreshes an old idea of neural network design [25,71].

In Fig. 2, we present three activation functions: The ReLU
activation [73], along with two activations resulting from
popular diffusivities. These activations are odd functions,
which is natural in the diffusion case, where the argument
of the flux function consists of signal derivatives. It reflects
the invariance axiom that signal negation and filtering are
commutative.

The Charbonnier diffusivity [18], which stems from a
convex energy and can be seen as a rescaled regularised
total variation diffusivity [4,89], yields a monotone activa-
tion function. Similarly shaped activation functions such as
the hyperbolic tangent have been used in early neural net-
works, before being superseded by ReLU activations.

The rational Perona–Malik diffusivity (4) [80], however,
results in a nonmonotone activation function. The associated
energy functional is nonconvex.Nevertheless, discretisations
of diffusion processes using nonmonotone flux functions can
be shown to bewell-posed, despite acting contrast-enhancing
[106]. For more activation functions inspired by diffusivities,
we refer to [3].

The concept of nonmonotone activation functions is
unusual in the CNN world. Although there have been a few
early proposals in the neural network literature arguing in
favour of nonmonotone activations [25,71], they are rarely
used in modern CNNs. In practice, they often fix the acti-
vation to simple, monotone functions such as the rectified
linear unit (ReLU). From a PDE perspective, this appears
restrictive. The diffusion interpretation suggests that acti-
vation functions should be learned in the same manner as
convolution weights and biases.

In practice, this hardly happens apart from a few notable
exceptions such as [20,38,76]. Recently, activation functions
which are slightly nonmonotone variants of the ReLUproved
successful for image classification tasks [72,84,112].As non-
monotone flux functions outperform monotone ones, e.g. for
diffusion-based denoising [80], it appears promising to incor-
porate them into CNNs.

Our translation of explicit schemes is an example of a
simple, direct correspondence which in turn allows for mul-
tiple novel insights. In the following, we explore variants of
explicit schemes as well as implicit schemes which inspire
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Fig. 2 Visualisation of three activation functions. The ReLU (left) is a
standard activation function. The Charbonnier and Perona–Malik acti-
vations represent two representatives of diffusion-inspired activation
functions. Both are dependent on a contrast parameter λ. The Charbon-

nier activation is monotone, as it arises from a convex energy. On the
contrary, the Perona–Malik activation is nonmonotone, and its associ-
ated energy is nonconvex. In this visualisation, we set τ = 1 for the
sake of simplicity

changes to the skip connections of the symmetric ResNets,
leading to more efficient architectures.

4 The Value of Skip Connections

So far, we have seen that the temporal discretisation of an
explicit scheme naturally leads to skip connections. This,
however, is just one of the many justifications for their use.
Since their proposal, skip connections [54] have been adapted
into numerically inspired networks in many different forms,
see e.g. [56,67,69,78,111].

This motivates us to explore several other numerical algo-
rithms which justify several types of skip connections from
a numerical perspective. We explore unconditionally stable
schemes, acceleration strategies for explicit schemes, and
fixed point iterations for implicit schemes.

4.1 Du Fort–Frankel Schemes

While the classical explicit scheme (11) is only conditionally
stable, there exist absolutely stable schemes which are still
explicit. These schemes are not that popular in practice since
they trade unconditional stability for conditional consistency.
However, we will see that this is not problematic from the
perspective of learning.

Du Fort and Frankel [28] propose to change the temporal
discretisation of the explicit scheme (11) to a central dif-
ference and introduce a stabilisation term on the right hand
side, corresponding to an approximation of ∂t t u. A Du Fort–
Frankel scheme for the generalised diffusion (1) evolution

can be written as

uk+1 − uk−1

2τ
= − K�Φ

(
Kuk

)

− α
(
uk+1 − 2uk + uk−1

)
, (19)

where a positive constant α controls the influence of the sta-
bilisation term.

Solving this scheme for uk+1 yields

uk+1 = 4τα

1 + 2τα

(
uk − 1

2α
K�Φ

(
Kuk

))

+ 1 − 2τα

1 + 2τα
uk−1. (20)

For τα = 1
2 , one obtains the explicit scheme (11).

The scheme involves the signals uk and uk−1 at the current
and the previous time level. The first term is nothing else
than a rescaled diffusion block, where 1

2α takes the role of
the original time step size. Since the scalar factors 4τα

1+2τα
and

1−2τα
1+2τα

add up to 1, this is simply an extrapolation of the result
of an explicit step based on the signal at time level k − 1.

If α is large enough, this scheme is unconditionally stable.
Thus, one does not need to obey any stability condition, in
contrast to the explicit case.Whereas classical proofs such as
[41] consider only the linear case and typically work in the
Fourier space, we are not aware of any proofs for the stability
of nonlinear Du Fort–Frankel schemes. To this end, we prove
stability of the nonlinear case in Appendix 1.

However, this scheme is not unconditionally consistent.
If the time step size τ is too large, the scheme (20) approx-
imates a different PDE [28], namely a nonlinear variant of
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the telegrapher’s equation. Such PDEs have also been used
in image processing, see e.g. [85].

In the trainable setting, the conditional consistency is not
an issue, but can even present a chance. It allows the network
to learn a more suitable PDE for the problem at hand. In our
experiments, we show that indeed, the unconditional stability
of the Du Fort–Frankel scheme can help to achieve better
results when only few residual blocks are available.

This scheme can be realised with a small change in the
original diffusion block from Fig. 1 by adding an additional
skip connection. The two skip connections are weighted by
4τα

1+2τα
and 1−2τα

1+2τα
, respectively.

4.2 Fast Semi-Iterative Schemes

Another numerical schemewhich also leads to the same con-
cept from a different motivation is based on acceleration
strategies for explicit schemes. Hafner et al. [51] intro-
duced fast semi-iterative (FSI) schemes to accelerate explicit
schemes for diffusion processes.

In a similar manner as the Du Fort–Frankel schemes, FSI
extrapolates the diffusion result at a fractional time step k+ 	

L
with the previous fractional time step k+ 	−1

L and aweightα	.
For the explicit diffusion scheme (11), an FSI acceleration
with cycle length L reads

uk+
	+1
L = α	

(
uk+

	
L − τ K�Φ

(
Kuk+

	
L

))

+ (1 − α	) uk+
	−1
L (21)

with fractional time steps 	 = 0, . . . , L−1 and extrapolation
weights α	:=(4	+2)/(2	+3). One formally initialises with

uk− 1
L :=uk .

The crucial difference to Du Fort–Frankel schemes is
that FSI schemes use time-varying extrapolation coefficients
instead of fixed ones. These coefficients are motivated by a
box filter factorisation and allow a cycle to realise a super
time step of size L(L+1)

3 τ . Thus, with one cycle involving
L steps, one reaches a super step size of O(L2) rather than
O(L). This explains its remarkable efficiency [51].

Even though Du Fort–Frankel and FSI schemes have
fundamentally different motivations, they lead to the same
architectural changes, where additional weighted skip con-
nections realise acceleration strategies. This is in line with
observations in the CNN literature, see e.g. [69,78].We visu-
alise this concept at the example of an FSI architecture in
Fig. 3.

FSI and Du Fort–Frankel schemes are just two represen-
tatives of a large class of extrapolation strategies, see e.g.
[74,81,103]. The ongoing success of usingmomentummeth-
ods for training [91,100] and constructing [69,78,111] neural
networks warrants an extensive investigation of these strate-
gies in both worlds.

Fig. 3 FSI block realising the acceleration of an explicit diffusion
step (21) with time-varying extrapolation parameters α	. A similar
architecture with differently weighted skip connections arises for a Du
Fort–Frankel scheme (20)

4.3 Implicit Schemes

So far, we have investigated variants of explicit schemes and
their neural counterparts. However, implicit discretisations
constitute another important solver class. We now show that
such a discretisation of the generalised diffusion equation can
be connected to a recurrent neural network (RNN). RNNs
are classical neural network architectures, see e.g. [55]. At
the same time, this translation inspires yet another way of
leveraging skip connections.

A fully implicit discretisation of the diffusion equation (1)
is given by

uk+1 = uk − τ K�Φ
(
Kuk+1

)
. (22)

The crucial difference as opposed to the explicit scheme lies
in using the new signal uk+1 within the flux functionΦ. This
yields a nonlinear system of equations, which we solve by
means of a fixed point iteration with a cycle of length L:

uk+
	+1
L = uk − τ K�Φ

(
Kuk+

	
L

)
, (23)

where 	 = 0, . . . , L − 1, and where we assume that τ is
sufficiently small to yield a contraction mapping.

For L = 1, we obtain the explicit scheme (11) with its
ResNet interpretation. For larger L , however, different skip
connections arise. They connect the layer at time step k with
all subsequent layers at steps k + 	

L with 	 = 0, . . . , L−1.
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There are two possible ways of interpreting this type of
connection. One option is to regard this as a consequent
extension of the extrapolation idea of FSI and Du Fort–
Frankel schemes. Instead of only connecting a node to its
two successors, the fixed point iteration above connects a
node to L of its successors. Similar ideas have been used in
the popular DenseNet architecture [56], where each layer is
connected to all subsequent ones.

Another option is to interpret the repeated connection to
uk as a feedback loop, which in turn is closely connected to
a recurrent neural network (RNN) architecture [55].

In their trainable nonlinear diffusion model, Chen and
Pock [20] proposed a similar architecture. However, they
explicitly supplement the diffusionprocesswith an additional
reaction term which results from the data term of the energy.
Our feedback term is a pure numerical phenomenon of the
fixed point solver.

We see that skip connections can implement a number of
successful numerical concepts: forward difference approx-
imations of the temporal derivative in explicit schemes,
extrapolation steps to accelerate them, e.g. via FSI or Du
Fort–Frankel schemes, and recurrent connections within
fixed point solvers for implicit schemes.

5 Review: Multigrid Solvers and U-nets

Although the previously investigated numerical strategies
and their neural counterparts can be efficient, they work on a
single scale: The signal is considered at its original resolution
at all points in time. However, using different signal resolu-
tions in a clever combination can yield even higher efficiency.

This is the core idea of the large class of multigrid
approaches [11,12,50]. They belong to the most efficient
numerical methods for PDE-related problems and have been
successfully applied to various tasks such as image denois-
ing [13], inpainting [70], video compression [62], and image
sequence analysis [14].

On the CNN side, architectures that work on multiple
resolutions of the signal have become very successful. In
particular, the shape of the popular U-net architecture [87]
suggests that there is a structural connection between multi-
grid and CNN concepts.

By translating multigrid solvers into a U-Net architecture,
we show that this is indeed the case, which serves as a basis
for explaining the remarkable success of U-nets. Since both
underlying concepts are not self-explanatory,we review them
in the following before connecting them in the next section.

5.1 Multigrid Solvers for Nonlinear Systems

Multigrid methods [11,12,50] are designed to accelerate the
convergence speed of standard numerical solvers such as the

Jacobi or the Gauß–Seidel method [94]. These solvers atten-
uate high-frequent components of the residual error very
quickly, while low-frequent error components are damped
slowly. This causes a considerable drop in convergence speed
after a few iterations.

Multigrid methods remedy this effect by transferring the
low-frequent error to a coarser grid, transforming them into
high-frequent components. This allows a coarse grid solver to
attenuate them more efficiently. By correcting the fine grid
approximation with coarse grid results, convergence speed
can be significantly improved.

In the following, we review the so-called full approxima-
tion scheme (FAS) [11] for a nonlinear system of equations.
We consider a two-grid cycle as the basic building block of
more complex multigrid solvers.

We are interested in solving a nonlinear system of equa-
tions of the form

A(x) = b, (24)

with a nonlinear operator A and a right hand side vector b
for an unknown coefficient vector x.

The two-grid FAS involves two grids with different step
sizes: a fine grid of size h, and a coarse grid of size H > h.
We denote the respective grid by superscripts. The following
six steps describe the two-grid FAS:

1. Presmoothing Relaxation A standard solver is applied to
the fine grid system Ah(xh) = bh . Given an initialisation
xh0, it produces an approximation x̃h to the solution with
a reduced high frequency error.

2. Restriction In order to approximate low-frequent com-
ponents of the error more efficiently, one transfers the
problem to the coarse grid with the help of a restriction
operator Rh→H . One restricts both the residual rh =
Ah(xh) − bh as well as the current approximation x̃h

to the coarse grid. One obtains two parts of the right hand
side for the coarse grid problem:One part bH = Rh→H rh

which is used directly, and a second one which we denote
by yH = Rh→H x̃h serving as the argument for the non-
linear operator AH . The coarse grid problem then reads

AH
(
xH

)
= AH

(
yH

)
+ bH . (25)

If we express the desired solution xH in terms of the error
eH by xH = yH + eH , then we see that this equation
is solved for the full approximation rather than the error
alone, in contrast to a linear multigrid scheme. Hence,
this scheme is called the full approximation scheme. If
the operator A is linear, FAS reduces to a linear multigrid
scheme.
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A standard choice for Rh→H is a simple averaging. How-
ever, finding suitable restriction operators is a difficult
task, whichmotivates researchers to even learn such oper-
ators, see e.g. [43,58].

3. Coarse Grid Computation Solving the coarse grid prob-
lem with a standard solver produces an error approxima-
tion x̃H .

4. Prolongation The approximation on the coarse grid needs
to be transferred to the fine grid again. To this end, one
applies a prolongation operator PH→h .
Since a coarse grid solution x̃H is a full approximation,
we need to compute the approximation to the error by
x̃H − yH . This error approximation is then transferred to
the fine grid via PH→h .
A standard choice for PH→h is a nearest neighbour inter-
polation, but as for the restriction operator, finding a good
prolongation operator is not easy.

5. Correction The fine grid approximation x̃h is corrected
with the upsampled coarse grid error approximation

PH→h
(
x̃H − yH

)
to produce a new approximation

x̃hnew = x̃h + PH→h
(
x̃H − yH

)
. (26)

6. Postsmoothing Relaxation Finally, one applies another
solver on the fine grid to smooth high frequent errors
which have been introduced by the correction step.

The two-grid FASwill serve as the starting point for trans-
lating multigrid concepts into the a U-net formulation, in an
extension to the linear connections from our conference pub-
lication [1].

5.2 Review: U-nets

U-nets [87] are another popular neural architecture. They
process information on multiple scales by repeatedly down-
and upsampling the input data, interleaved with a series of
convolutional network layers. Thismultiscale analysismakes
them well-suited for medical image analysis tasks such as
segmentation [27,87], but also for pose estimation [75] and
shape generation [32].

A two-level U-net with fine grid size h and coarse grid
size H has the following structure:

1. An input signal f h is fed into a series of general convo-
lutional layers which we denote by Ch

1(·). The resulting
output signal is denoted by f̃ h = Ch

1

(
f h

)
.

Originally, these layers are assumed to be feed-forward
convolutional layers, but they can also be replaced by any
other suitable layer type such as residual layers.

2. The fine grid signal f̃ h is transferred to a coarser grid
with a restriction operator Rh→H , yielding a coarse grid
signal f H = Rh→H f .

3. On the coarse grid, another series of convolutional layers
CH (·) is applied to the signal, yielding a modified coarse

grid signal f̃
H = CH (

f H
)
.

4. The modified coarse grid signal is upsampled with a pro-
longation operator PH→h .

5. With the help of a skip connection, the modified fine grid

signal f̃
h
and the upsampled coarse grid signal PH→h f̃

H

are added together. This produces a new fine grid signal

f̃
h
new.

While the originalU-net formulation [87] suggests to con-
catenate both signals, other works such as [75] simply add
the signals. For our following discussion of connections
between U-nets and multigrid schemes, we focus on the
latter variant.

6. Lastly, another series of convolutional layers Ch
2(·) is

applied to the new fine grid signal, producing the final

output signal f̂
h
.

We visualise this architecture in Fig. 4a.

6 FromMultigrid to U-nets

Now we show how one can express FAS in terms of a U-net
architecture. For our U-net, we use multiple network chan-
nels which carry the variables required by FAS. Even though
not all variables are used at each point in the network,we keep
the channel number consistent for the sake of simplicity.

We track the FAS variables in dedicated channels only for
didactic reasons, as a direct translation shows that a U-net
architecture is sufficient for representing FAS. When practi-
cally implementing FAS, this overhead can be spared.

Firstly, let us assume that we are given suitable solvers
ShA(·), SH

A (·) for the nonlinear operators on the fine and
coarse grid, respectively. To be able to use the two-grid cycle
as a recursive building block, we assume that all solvers
approximate solutions for nonlinear systems of the form
A(x) = A( y) + b, regardless of the grid.

To this end, we always keep track of the iteration variable
x, the nonlinear right hand side y, and the linear right hand
side b. In addition, we track the residual r . By appropriately
modifying these variables, we can ensure that the solvers
always act on the desired system, despite having a common
specification.

1. PresmoothingRelaxationThefirst instance of thefine grid
solver obtains an initial iteration variable xh0, which can
be 0 or a more sophisticated guess. Since the first solver
is supposed to solve Ah(xh) = bh , we simply set yh = 0.
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(a)

(b)

Fig. 4 Architectures for a general U-net (a) and an FAS two-grid cycle (b)

In addition, we provide the linear right hand side bh . A
residual is not needed as an input.
The solver produces a preliminary approximation x̃h , and
passes the right hand side components yh and bh through
without changes. It also computes the residual rh = bh −
Ah

(
x̃h

)
as an additional output.

2. Restriction As the downsampling is now explicitly con-
cerned with four channels, the corresponding operator in
our U-net is a 4× 4 block matrix. We apply the multigrid
restriction operator only to certain channels.
The coarse grid initialisation xH

0 can be set to 0, taking no
information from the fine grid. The coarse, nonlinear right
hand side yH = Rh→H x̃h is given by the downsampled
fine grid approximation. The corresponding linear right
hand side bH = Rh→H rh is the downsampled residual.
In contrast to our linear correspondences in [1], the restric-
tion step in FAS fits a U-net interpretation even better,
since the approximation x̃h itself is restricted, as is the
case in the U-net.

3. Coarse Grid Computation The coarse solver follows the
same specification as the fine grid one. However, since
yH is not set to 0 at this point, the coarse solver actually
solves the desired system AH (

xH
) = AH (

yH
) + bH . It

produces a coarse approximation x̃H and a residual rH ,
while leaving the right hand side components unchanged.

4. Prolongation The upsampling step allows to prepare the
coarse grid variables in such away that the skip connection
automatically performs the correct additions.
Thefirst rowof thematrix operator ensures thatweupsam-
ple the correction PH→h x̃H − PH→h yH . Note that this

is equivalent to the FAS formulation PH→h
(
x̃H − yH

)

if the prolongation operator is linear. This is no limitation,

however, since for the nonlinear case we can require the
solvers to directly output the difference x̃H − yH .
The right hand side components yH and bH are not used in
the upsampling, as the fine grid right hand side is supposed
to be passed on. The same holds for the residual, as it is
not relevant to the second fine grid solver. It is only needed
in case one adds another coarser level to the cycle.

5. Correction In the correction step, the fine approximation
x̃h is appropriately corrected, and the fine grid right hand
side components yh and bh are forwarded.

6. Postsmoothing Relaxation Another instance of the fine
grid solver solves the problem Ah(xh) = bh . The nonlin-
ear part yh of the right hand side is still set to 0, ensuring
that the correct system is solved.

The resulting architecture is visualised in Fig. 4b. This
shows that U-nets share essential structural properties with
multigrid methods. In particular, employing multiple image
resolutions connected through pooling and upsampling oper-
ations, as well as horizontal skip connections which realise
correction steps are the keys for the success of both methods.
This leads us to believe that at their core, U-nets realise a
sophisticated multigrid strategy.

6.1 V-Cycles,W-Cycles and Full Multigrid

Our connections between two-grid FAS and U-nets are the
basic building block for more advanced multigrid strategies.

So-called V-cycles arise from recursively stacking the
two-grid FAS. Moreover, W-cycles can be built by concate-
nating several V-cycles. Optimising the depth and length of
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these cycles can lead to vast efficiency gains over direct solu-
tion strategies.

On the CNN side, the corresponding concept of U-nets
withmore levels as well as concatenations thereof is success-
ful in practice: Typical U-nets work on multiple resolutions
[87], and so-called stacked hourglass models [75] arise by
concatenating multiple V-cycle architectures.

A full multigrid (FMG) strategy solves a problem on mul-
tiple grids by successively concatenating V- and W-cycles,
usually starting at the coarsest grid and progressing towards
the finest one. In our experiments in Sect. 7.2, we will con-
struct a trainable FMG model based on the two-grid FAS
network to approximate the solution of an inpainting prob-
lem. This shows that our model reduction of the full U-net is
successful in practice and inspires new design strategies for
U-nets.

7 Experimental Evaluations

Let us now show that our findings are also of practical rele-
vance. Our experiments are divided into two parts. First, we
evaluate the proposed symmetric ResNet architectures, along
with their variations and nonmonotone activation functions
for a denoising problem.

In a second experiment, we make use of our connections
between multigrid and U-nets to learn an efficient solver for
diffusion-based sparse inpainting, based on a trainable FAS
architecture.

7.1 Symmetric ResNets and Nonmonotone
Activations

Since we motivate our network designs through numerical
algorithms for a diffusion problem, we start with an elemen-
tary comparison on a denoising problem. We deliberately
choose a denoising problem, since it is a prime example of
a well-posed problem, for which the presented numerical
schemes can be easily applied.

In a second step, we refine the simple network structures
to more and more complex ones, approaching the standard
neural network design. This shows the extent to which our
networks can compete with off-the-shelf ResNets.

7.1.1 Experimental Setup

We compare symmetric ResNets and their Du Fort–Frankel
and FSI extensions with the original ResNet architecture
[54]. As activation functions we allow the ReLU [73], Char-
bonnier [18], and Perona–Malik [80] activation functions.

The original ResNets train two filter kernels per ResNet
block, along with two bias terms. The symmetric ResNets on
the other hand only train one filter kernel per block, without

any bias terms. We only consider kernels of width three. For
maximal transparency, we do not use any additional optimi-
sation layers such as batch normalisation.

When using Charbonnier and Perona–Malik activations,
we always train the corresponding contrast parameter λ.
The Du Fort–Frankel networks also learn the extrapolation
parameter α, and the FSI networks train individual extrapo-
lation parameters of each block.

In addition, all models train their numerical parameters
such as time step size and extrapolation parameters. We
restrict the time step size τ to our stability condition (14)
to obtain a stable symmetric ResNet model. In the case of
the Du Fort–Frankel extension we restrict the extrapolation
parameter α to the bound in Appendix 1, thus also yield-
ing a stable scheme. For FSI, we restrict the extrapolation
parameters α	 to the range [0, 2]. This preserves the extrapo-
lation character of the scheme. However, no stability theory
is available in the case of learned extrapolation parameters.

We evaluate the networks on a synthetic dataset of 1D
signals which are piecewise affine, with jumps between the
segments. This design highlights the ability of the different
approaches to preserve signal discontinuities. The signals are
of length 256 and are composed of linear segments that span
between 1

10 and
1
2 of the signal length. Their values lie within

the interval [0, 255].
Finally, we add Gaussian noise of standard deviation

σ = 10 to the signals, without clipping out of bounds val-
ues. This yields pairs of corrupted and ground truth signals.
The training dataset contains 10000 such pairs, and the test
and validation datasets contain 1000 pairs each. As a mea-
sure of denoising quality, we choose the peak-signal-to-noise
ratio (PSNR), where higher values indicate better denoising
performance.

For a fair comparison, we train all network configurations
in the same fashion. We use the Adam optimiser [59] with
a learning rate of 0.001 for at most 2000 training epochs,
and choose the average mean square error (MSE) over the
training dataset as an optimisation objective.

The filter weights are initialised according to a uniform
random distribution with a range of [−0.1, 0.1]. The contrast
parameters λ, the time step sizes τ , and the extrapolation
weights α are initialised with fixed values of 15, 1.0, and
1.0, respectively. Out of several random initialisations, we
choose the best performing one.

7.1.2 Evaluation of Model Components

Wefirst evaluate the potential of the proposed network blocks
on an individual level. To this end, we train the architectures
for varying amounts of residual blocks. However, all blocks
share their weights, and we also use only a single network
channel.
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Fig. 5 Denoising quality of network architectures with varying depth.
We use a single channel, and weights between all blocks are shared.
Eachplot is concernedwith a different activation function.Architectures

with Perona–Malik activation perform best, while the ReLU activation
is not suitable in this setting. Due to the tight network constraints, the
architectures reproduce the performance of classical diffusion filters

This configuration is closest to the interpretation of
explicit schemes, and it allows us to investigate the approxi-
mation qualities of the different architectures within a tightly
controlled frame.

Figure 5 presents the denoising quality of the architectures
in dependence of the number of residual blocks. Each plot is
concerned with a different activation function.

Firstly, we compare the different network architectures.
As the symmetric ResNet is guaranteeing stability and uses
less than half of the parameters of the standard ResNet, it
performs slightly worse. This is not surprising, since there
is a natural tradeoff between performance (high approxima-
tion quality) and stability, as is well known in the field of
numerical analysis. Nevertheless, when enough blocks are
provided, the symmetric ResNet catches up to the standard
one.

The acceleration methods of Du Fort–Frankel and FSI
outperform the symmetric ResNet and yield comparable per-
formance to the standard ResNet. The trainable extrapolation
parameters help both methods to achieve better quality espe-
cially when not enough residual blocks are provided to reach
a sufficient denoising result. This is in full accordance with
our expectations. When enough steps are provided and no
extrapolation is required, both methods are on par with the
standard and symmetric ResNets.

A side-by-side comparison yields insights into the perfor-
mance of different activation functions. We observe that the
performance of ReLU networks is only slightly better than
classical linear diffusion [57]. This shows that the ReLU is
not suited for our denoising problem, regardless of the net-
work architecture. After as few as three network blocks, the
improvement of deeper networks is only marginal.

In contrast, both the Charbonnier and the Perona–Malik
activations are much more suitable. The nonmonotone
Perona–Malik activation function yields the best denoising
performance, as our diffusion interpretation suggests. When
using the original ResNet with a diffusion-inspired activa-

tion function, tremendous performance gains in comparison
with the ReLU activation can be achieved. This shows that in
this experimental setting, the activation is the key to a good
performance.

7.1.3 Optimality of Diffusion Processes

Interestingly, the standard ResNet with a diffusion activation
naturally learns a symmetric filter structure with biases close
to 0.

For example, the ResNet with Perona–Malik activation, a
grid size of h = 1, and 20 shared residual blocks learns an
inner kernel k1 = (0.922,−0.917, 0.006)�, an outer kernel
k2 = (0.051, 0.437,−0.489)� and biases b1 = 1.6 · 10−1

and b2 = 1.2 · 10−5. If we factor out the time step size
limit of τ = 0.5 for this setting from the outer kernel k2, we
see that it transforms into k̃2 = (0.102, 0.874,−0.978)�. It
becomes apparent that the kernels approximately fulfil the
negated symmetric filter structure.

Moreover, the kernels closely resemble rescaled standard
forward and backward difference discretisations. This is sur-
prising, as a kernel of width three allows to learn derivative
operators of second order, but a first order operator appears
to yield already optimal quality.

This shows that in this constrained setting, second order
diffusion processes are an optimal model which is naturally
learned by a residual network.

7.1.4 Time Dynamic Case

In a practical setting, the residual blocks typically do not
share their weights, but train them independently. If the
parameters evolve smoothly over the blocks, we can inter-
pret this as an approximation of a time dynamic PDE model.

To investigate the performance of the proposed architec-
tures in this setting, we train the parameters of each block
individually, but enforce a certain smoothness between them.
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Fig. 6 Denoising quality of network architectures with varying depth
and a single channel. The parameters are smoothly changing between
the residual blocks. Each plot is concerned with a different activa-

tion function. The proposed architectures can outperform the standard
ResNet by saving a large amount of parameters

If the parameter vector of a block at time level k is given by
θk , we add a regulariser

β

K∑
k=1

τ

(
θk − θk−1

τ

)2

(27)

to the loss function. Here, a smoothness parameter β controls
the amount of smoothness between the blocks, with higher
values of β leading to smoother evolutions. This expression
approximates the continuous temporal regulariser

β

∫ T

0
(∂tθ(t))2 dt, (28)

which enforces smoothness of the continuous parameter evo-
lution θ(t). The regularisation ensures that the learned filters
change smoothly throughout the layers. This is essential for
the numerical scheme to be consistent with the continuous
limit case where the step size τ tends towards 0, see also [93].

For the residual network, where no time step size τ is
learned explicitly, we set the time step size to the inverse of
the number of blocks. This requires to use a different smooth-
ness parameter β. We tune the smoothness parameters for
all architectures such that their parameters exhibit similarly
smooth evolutions over time. Numerical parameters such as
time step size and extrapolation parameters are not affected
by the regulariser.

Figure 6 presents the performance of time dynamic archi-
tectures with a single channel. We use β = 5 for the standard
ResNets, and β = 10 for all other architectures. In contrast
to the previous comparisons, we now compare the denois-
ing quality against the number of network parameters. This
allows us tomeasure performance against model complexity.

For the symmetricResNet,we observe the same behaviour
as in the setting without a temporal dynamic. The overall
best performance is still on par with the respective classi-

cal diffusion process for the Charbonnier and Perona–Malik
activation functions.

However, the time dynamic allows this model to achieve
better denoising quality for a fewer number of blocks. For
example, the symmetric ResNet with Perona–Malik activa-
tion and seven residual blocks can achieve a denoising quality
of 36.51dB if weights are shared, but already 37.08dB with
a regularised temporal dynamic. Similar observations for
classical diffusion processes with a time dynamic diffusivity
function can be found in [36]. Yet, this effectiveness comes
at the price of additional parameters.

The Du Fort–Frankel and FSI networks allow for higher
efficiency at the cost of more network parameters. Especially
in the case of FSI, the trainable extrapolation parameters
help to achieve significantly better performance when more
residual blocks are provided. This is in accordance with
observations in the literature [69].

Theproposed architectures outperform the standardResNet
for the same amount of parameters when using Charbon-
nier and Perona–Malik activations. This shows that the
model reduction to a symmetric convolution structure is
indeed fruitful. Moreover, the ranking of activation functions
remains the same in most cases.

None of the architectures significantly outperform the
classical Perona–Malik diffusion process. This supports our
claim that these tightly constrained networks realise a numer-
ical algorithm at their core. Different architectures can solve
the problem with varying efficiency, but they converge
towards the same result. Thiswill only changewhenwe allow
for more flexibility within the network architecture, e.g. by
utilising multiple network channels.

7.1.5 Towards Larger Networks

So far, we have only considered architectures with a sin-
gle network channel. However, typical CNNs show their full
potential when using multiple channels. In this case, the sim-
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Fig. 7 Denoising quality of network architectures with varying depth
and C = 16 network channels. Each plot is concerned with a different
activation function. The proposed architectures outperform the standard

ResNet for the same amount of parameters. In this setting, the acceler-
ation strategies are on par with the symmetric ResNet, and the margin
between activation functions becomes smaller

plicity of the ReLU activation is compensated by a rich set
of convolutions between channels.

We now extend our evaluations to architectures with mul-
tiple network channels. For simplicity, we leave the number
of channels constant throughout the network. To this end, we
copy the input signal into C channels. The output signal is
computed as the average over the individual channel results.
In between, we employ the proposed symmetric residual
blockswhich nowuseC×C block convolutionmatriceswith
the appropriate stability constraints. These convolutions can
be interpreted as ensembles of differential operators which
are applied to the signal. The channels are then activated indi-
vidually and convolved again with the adjoint counterparts
of the differential operators.

To allow for maximum flexibility and performance, we
remove the temporal parameter regularisation in this experi-
ment.

The denoising performance of the networks is visualised
in Fig. 7 for the case of C = 16 channels.

This experiment is the first instance where all archi-
tectures significantly outperform their respective classical
diffusion counterparts. The multichannel architecture allows
to approximate a more sophisticated denoising model, as
information in the various channels is exchanged by means
of multichannel convolution operators.

All proposed architectures can still outperform the stan-
dard ResNet for the same amount of parameters. In this
case, the extrapolation methods are on par with the symmet-
ric ResNet. Interestingly, the ranking of activation functions
remains the same, albeit with a much smaller margin. The
symmetric ResNet with 20 residual blocks yields PSNR
values of 40.04dB, 40.44dB and 40.88dB for the ReLU,
Charbonnier and Perona–Malik activations, respectively. We
conclude that themore complex the network, the less the acti-
vation function matters for performance. On the contrary,
this means that networks might be drastically reduced in size

when trading network size for sophisticated activation func-
tion design.

7.2 Learning aMultigrid Solver for Inpainting

So far, it is not clear if our interpretation of the two-grid FAS
is a reasonable model reduction of a full U-net. To prove
that this interpretation is indeed of practical relevance, we
show how it can be used to learn a multigrid solver for edge-
enhancing diffusion inpainting of images [33,104,107].

Diffusion-based inpainting aims to restore an image froma
sparse set of known data points [33,107]. Diffusion processes
allow for a high reconstruction quality even for extremely
sparse known data, making them an interesting tool for
image compression applications, see e.g. [33,98]. Of partic-
ular interest is the edge-enhancing diffusion (EED) operator
[104] as it allows to reconstruct discontinuous image data
such as edges.

As a proof of concept, we construct a network imple-
menting a full multigrid structure. We replace the prescribed
nonlinear solvers by trainable feed-forward layers that learn
to approximate the PDE at hand.

7.2.1 Edge-Enhancing Diffusion Inpainting

The EED inpainting problem can be formulated as follows.
Given a set of known image data f : K → R on a subset
K of the image domain � ⊂ R

2, the goal is to compute a
reconstruction u as the solution of the PDE

(1 − c(x))∇�(D∇u) − c(x)(u − f ) = 0. (29)

Here, c(x) is a binary confidence function indicatingwhether
the data at position x is known or not. The case c(x) = 1
indicates known data, yielding u = f . The case c(x) =
0 indicates that the data need to be reconstructed by EED
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inpainting. Consequently, c(x) is the characteristic function
of the inpainting mask K .

The EED operator ∇�(D∇u) uses a diffusion tensor
D = g(∇uσ ∇u�

σ ) based on a Gaussian smoothed gradi-
ent ∇σ and a nonlinear diffusivity function g. It is a 2 × 2
positive semidefinite matrix, which is designed to propagate
information along locally dominant structures [104]. As a
diffusivity function, we use the Charbonnier diffusivity [18],
which relies on a contrast parameter λ.

7.2.2 Experimental Setup

Our trainable FMG architecture is designed as follows:
Instead of prescribing nonlinear solvers on each grid, we
employ a series of convolutional layers with trainable
weights. The remainder of the architecture is fixed: We set
the restriction operators to a simple averaging over a 2 × 2
pixel neighbourhood, and the prolongation operators to near-
est neighbour interpolation.

Since FMG employs the same solver on each grid, we
realise this idea also in our network by sharing the weights
between all solvers for a specific grid. This drastically
reduces the amount of parameters and incites that an iterated
application of the solvers performs the correct computations.

Instead of training our network byminimising a Euclidean
loss between ground truth data and inpainting reconstruc-
tions, we use the absolute residual of a discretisation of
the inpainting equation (29) as a loss function. This is
closely related to the idea of deep energies [37], where one
chooses a variational energy as a loss function. Since we do
not have such an energy available for EED inpainting, we
resort to minimising the absolute residual of the associated
Euler–Lagrange equation, which is given by (29). This guar-
antees that the trained architecture realises EED inpainting
as efficiently as possible. To discretise the Euler–Lagrange
equation, we employ the standard discretisation from [108].

Whereas classical solution methods for the inpainting
problem specify the known data u = f on �\K by means
of Dirichlet boundary conditions, we leave it to the network

coarse

4h

2h

h

fine

Fig. 8 Visualisation of the full multigrid strategy which we employ
in our experiments. Dashed horizontal lines denote the three grids, and
grids becomecoarser from top tobottom.Each circle denotes an instance
of a solver

to reproduce also the known data. We have found that this
leads to a better approximation quality.

The inpainting masks consist of randomly sampled pix-
els with a density d as a percentage of the number of image
pixels. Since the masks are also required on coarser grids to
compute the residual within the FMG architecture, we down-
sample them by putting defining a coarse pixel as known, if
at least one pixel in the 2 × 2 cell on the fine grid is known.

We train the architecture on a subset of 1000 images of
the ImageNet dataset [92] with the Adam optimiser [59] with
standard settings.

7.2.3 Evaluation of the Full Multigrid Network

We construct a full multigrid network using three grids
of size h, 2h and, 4h. The order in which the problem is
solved on different grids is given by [4h, 2h, 4h, 2h, h, 2h,

4h, 2h, 4h, 2h, h]. This is the simplest FMG strategy that
can be employed in a setting involving three grids and serves
as a proof-of-concept architecture. We visualise this strategy
in Fig. 8. Thus, we employ 11 solvers, each using 12 feed-
forward convolutional layers with 20 channels and ReLU
activations. Weights are shared for solvers on the same grid.

We train this network on an EED inpainting problem with
random masks of 20% density. The EED parameters λ =
0.93, σ = 0.97 have been optimised for inpainting quality
with a simple grid search.

To showhow the FMGnetwork can benefit from themulti-
grid structure, we compare it against two networks with the
same amount of parameters. One network solves the prob-
lem only on a single grid by using 25 layers and 24 channels.
Moreover, we compare our FMGnetwork to a standardU-net
with addition with three scales, 17 channels and 2 layers per
scale. All three models contain 1.2 × 105 trainable parame-
ters.

Figure 9 shows the inpainting results for the networks at
the example of the image trui. Moreover, we present the true
inpainting result obtained from a conjugate gradient (CG)
solver for EED inpainting.

In contrast to the single grid network, the FMG network
and the U-net are able to approximate the EED inpainting
result. The FMG and U-net results are visually comparable,
while the residual of the U-net is slightly better. This does not
only show that the multigrid structure is an adequate network
design, but also that a standard U-net is not able to obtain a
much better solution in this case. From the perspective of
numerical algorithms, this is expected, since we know that
multigrid methods are highly efficient for these problems.

The advantage of the FMG network is that adding fur-
ther solvers on the three scales will not inflate the number
of parameters as these solvers are shared. This is in con-
trast to the U-net, where any addition increases the trainable
parameter set. The architectural design of the FMG network
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Fig. 9 Reconstruction quality of
a single grid network, a full
multigrid network, a standard
U-net, and a classical CG solver
for the EED inpainting problem.
All results use
λ = 0.93, σ = 0.97 and the
same random mask with 20%
density. Both the full multigrid
network and the standard U-net
approximate an EED inpainting
result, while a single grid
network fails to do so

original mask single grid network
residual 0.41

full multigrid network
residual 1.7 10−2

standard U-net
residual 7.4 10−3

CG solver
residual 1.0 10−8

suggests that U-nets should also be constructed in a similar
way. In practice, already concatenating multiple U-nets [75]
is a successful idea. Instead of a single down- and upsampling
pass, multiple alternating computations on different resolu-
tions should be beneficial.

8 Discussion and Conclusions

We have shown that numerical algorithms for diffusion evo-
lutions share structural connections toCNNarchitectures and
inspire novel design concepts.

Explicit diffusion schemes yield a specific form of resid-
ual networks with a symmetric filter structure, for which
one can prove Euclidean stability. Moreover, this architec-
ture saves half of the network parameters, and its stability
constraint is easy to implement without affecting its per-
formance. In addition, our connection suggests the use of
a diffusion flux function as an activation, revitalising the
idea of nonmonotone activation functions. We have shown
that these activations perform well for a denoising task, even
when using themwithin standard architectures in a plug-and-
play fashion.

By investigating accelerated explicit schemes and implicit
schemes, we have justified the effectiveness of skip connec-
tions in neural networks. They realise time discretisations in
explicit schemes, extrapolation terms to increase their effi-
ciency, and recurrent connections in implicit schemes with
fixed point structure. In practice, the resulting architectures
are particularly useful when training networks with small
amounts of layers.

Lastly, our connection betweenmultigrid concepts and U-
net architectures serves as a basis for explaining their success.
We have shown that a U-net architecture is able to implement
a full multigrid strategy, which allows to learn efficient solu-
tions for PDEs which are typically hard to solve. By directly
using the residual norm as a loss function, we can guarantee
that the network approximates thePDEat hand. This suggests
to extend the standard U-net architecture in a full multigrid
fashion.

Our philosophy of identifying numerical concepts as core
building blocks of neural architectures has proven to be fruit-
ful. Our direct translation has yielded structural insights into
popular neural networks and inspired well-founded neural
building blocks with practical relevance. An overview of the
detailed connections that we have encountered is presented
in Table 1.

Our numerical perspective onneural networks differs from
most viewpoints in the literature. However, it provides a
blueprint for directly translating a plethora of numerical
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Table 1 Overview of the connections between numerical and neural concepts which we have encountered

Numerical Concept Neural Concept
numerical algorithm neural network architecture

⎫
⎬

⎭
interpretationevolution equation trained neural network

specification of nonlinear dynamics training

explicit scheme residual network
⎫
⎬

⎭
coarse connectionsimplicit scheme recurrent network

multigrid techniques U-net architectures

time level residual block
⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

detailed connections
flux function activation function
spatial derivative convolution kernel
temporal derivative skip connection
acceleration strategies weighted skip connections

strategies into well-founded and practically relevant neural
building components.We hope that this line of research leads
to a closer connection of both worlds and to hybrid methods
that unite the stability and efficiency of modern numerical
algorithms with the performance of neural networks.
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A Stability Proof for Generalised Du Fort–
Frankel Schemes

In this section, we extend the stability proof for linear Du
Fort–Frankel Schemes of [41] to the nonlinear setting.

First we rewrite the scheme (20) as a multistep method,
obtaining

(
uk+1

uk

)
=

( 4τα
1+2τα

I − 2τ
1+2τα

A
(
uk

) 1−2τα
1+2τα

I
I 0

)(
uk

uk−1

)
.

(30)

Here, we have abbreviated A(uk) = K�G(uk)K .

To analyse the stability of the Du Fort–Frankel scheme,
we have to show that all eigenvalues of the matrix of the
multistep method (30) have an absolute value less than or
equal to one. Note that this matrix is not symmetric such that
it might have complex eigenvalues.

Let us first define as short-hand notations

Q:= 4τα

1 + 2τα
I − 2τ

1 + 2τα
A
(
uk

)
,

B:=
(
Q 1−2τα

1+2τα
I

I 0

)
.

(31)

We start with the naive approach to compute eigenvalues
of B: μ ∈ C is an eigenvalue of B if

det(B − μI) = det

((
Q − μI 1−2τα

1+2τα
I

I −μI

))
= 0. (32)

As B−μI is a block matrix containing square blocks of the
same shape where the lower two blocks commute, we have

det(B − μI) = det

(
(Q − μI) (−μI) − 1 − 2τα

1 + 2τα
I
)

= det

(
μ2 I − μQ − 1 − 2τα

1 + 2τα
I
)

.

(33)

To proceed from here, it is reasonable to involve the eigen-
values of the matrix Q. As Q is real-valued and symmetric,
there exist an orthogonal matrix V of eigenvectors of Q and
a diagonal matrix Γ with the eigenvalues γ of Q on its diag-
onal such that

Q = VΓ V T . (34)

As V is an orthogonal matrix, it holds that

I = VV T . (35)
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Plugging both of these relations into (32) yields

det(B − μI)

= det

(
μ2VV T − μVΓ V T − 1 − 2τα

1 + 2τα
VV T

)

= det

(
V

(
μ2 I − μΓ − 1 − 2τα

1 + 2τα
I
)
V T

)

= det(V ) det

(
μ2 I − μΓ − 1 − 2τα

1 + 2τα
I
)
det

(
V T

)

= det

(
μ2 I − μΓ − 1 − 2τα

1 + 2τα
I
)

, (36)

since the determinants of the orthogonal matrices V and V T

are both 1. The remaining determinant is concerned with
a diagonal matrix. Thus, it is equal to the product of the
diagonal elements, i.e.

det(B − μI) =
N∏
j=1

(
μ2 − μγ j − 1 − 2τα

1 + 2τα

)
. (37)

For μ to be an eigenvalue of B, we need that this product
vanishes. This is exactly the case if one or more factors in
the product vanish. Hence, we get that for a fixed eigenvalue
γ of Q, an eigenvalue μ of B satisfies

μ = γ

2
±

√
γ 2

4
+ 1 − 2τα

1 + 2τα
. (38)

For stability of (30), we need that |μ| ≤ 1 for all solutions μ

for all eigenvalues γ of Q. To proceed further, we consider

the discriminant γ 2

4 + 1−2τα
1+2τα

. Since we know that Q is real-
valued and symmetric, it follows that γ is a real number.
Thus, γ 2 is positive. We also know that τ and α are positive,
such that

− 1 <
1 − 2τα

1 + 2τα
< 1. (39)

Therefore, it is possible for the discriminant to have neg-
ative values, which results in complex eigenvalues μ. Let
us therefore distinguish the three cases of negative discrim-
inant, vanishing discriminant, and positive discriminant. We
will see that the last one is the only case which introduces a
lower bound on α for unconditional stability.

VanishingDiscriminant First,we consider a vanishing dis-
criminant, which can only happen if 2τα ≥ 1. This yields

γ = ± 2

√
2τα − 1

2τα + 1
. (40)

Thus, the eigenvalues of B are given by

μ = γ

2
= ±

√
2τα − 1

2τα + 1
. (41)

Since the fraction takes values between 0 and 1, the same is
true for the square root. Therefore, we have |μ| < 1.

Negative Discriminant If the discriminant is negative, the
corresponding values of μ are complex and we can write

μ = γ

2
± i

√
−γ 2

4
− 1 − 2τα

1 + 2τα
. (42)

Then we get for the squared absolute value of μ

|μ|2 = γ 2

4
+

(
−γ 2

4
− 1 − 2τα

1 + 2τα

)
= 2τα − 1

2τα + 1
. (43)

Surprisingly, this does not depend on γ and we recover once
more the condition

− 1 <
2τα − 1

2τα + 1
< 1. (44)

Thus, we again have |μ| < 1.
Positive Discriminant In this case, the eigenvalues μ are

real-valued. Thus, we get the condition

− 1 <
γ

2
±

√
γ 2

4
+ 1 − 2τα

1 + 2τα
< 1. (45)

If τ > 0 and α > 0, this system has the following solutions
for γ :

|γ | <
4τα

1 + 2τα
, if 0 ≤ 1 − 2τα

1 + 2τα
< 1,

√
8τα − 4

2τα + 1
≤ |γ | <

4τα

1 + 2τα
, if − 1 <

1 − 2τα

1 + 2τα
< 0.

(46)

If we treat γ as a complex number for the moment, the first
conditionmeans that γ has to be inside a disc of radius 4τα

1+2τα

around the origin and the second condition means that γ has
to be inside that disc, but outside or on the boundary of a

second disk of radius
√

8τα−4
2τα+1 . Hence, the second condition

is more restrictive.
It remains to determine conditions on τ and α such that

(46) is always satisfied for all eigenvalues γ of the matrix Q.
As the matrix A(uk) is real-valued and symmetric, we can
diagonalise it in the same fashion as Q: There exist an orthog-
onal matrixW and a diagonal matrix � with the eigenvalues
λ on its diagonal such that

A(uk) = W�W�. (47)
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With the help of this representation, we can write

Q = 4τα

1 + 2τα
I − 2τ

1 + 2τα
A
(
uk

)

= 4τα

1 + 2τα
WWT − 2τ

1 + 2τα
W�WT

= W
(

4τα

1 + 2τα
I − 2τ

1 + 2τα
�

)
WT .

(48)

Hence, the eigenvalues of Q are given by

γ = 4τα

1 + 2τα
− 2τ

1 + 2τα
λ, (49)

where λ is an eigenvalue of A(uk).
With this formula, the first case of (46) reduces to

0 < λ < 4α. (50)

This condition is similar to the stability condition of the
explicit scheme, however now for α instead of 1

τ
. The esti-

mate on the left-hand side is always fulfilled if A(uk) is
positive definite. For now, we assume that A(uk) is positive
definite and consider the case of a zero eigenvalue afterwards.

The inequality (50) has to hold for every eigenvalue of
A(uk). If A(uk) is positive definite, we can replace λ by
the spectral radius ρ(A(uk)) as an upper bound. Hence, we
arrive at

α >
ρ
(
A(uk)

)

4
. (51)

This is in line with the result that has been derived for the
linear case [41].

For the second case in (46), plugging in (49) and simpli-
fying yields

0 < λ ≤ 2α −
√
4α2 − 1

τ 2
or

2α +
√
4α2 − 1

τ 2
≤ λ < 4α

(52)

As we are in the case in which −1 < 1−2τα
1+2τα

< 0, the square
root is a nonnegative real number.

Moreover, we have to investigate what happens if

− 1 ≤ 1 − 2τα

1 + 2τα
< 0 and

2α −
√
4α2τ 2 − 1

τ 2
< λ < 2α +

√
4α2τ 2 − 1

τ 2
.

(53)

With some tedious but straight-forward computations, one
can show that this case corresponds exactly to the case with

a negative discriminant, which did not introduce any new
stability conditions.

Lastly, we consider the case where A(uk) is only positive
semidefinite. If 2τα < 1, then λ = 0 lies in the range given
for λ in (53). For this case, we have already shown that |μ| <

1 and the scheme is stable.
If 2τα > 1, we obtain from (49):

γ = 4τα

1 + 2τα
. (54)

We can plug this value of γ into (40) to see that μ = 1 is
always a solution in this case.We have to ensure that all other
solutions for μ fulfil |μ| < 1. The other solution of (40) for
λ = 0 is

μ = 2τα − 1

2τα + 1
, (55)

which yields |μ| < 1 since τ > 0 and α > 0. All other
eigenvalues of B have an absolute value of less than one by
the considerations above. Thus, we can conclude that also in
this case, the Du Fort–Frankel scheme is stable.

Consequently, the only stability condition on α is the one
in (51). In a similar manner as for the symmetric ResNet, we
can transform this condition into an a priori constraint

α ≥ L

4
. (56)
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