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1 INS Vinca, Department of Atomic Physics, University of Belgrade, Mike Petrovića Alasa 12–14,
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Abstract: PtAu nanoparticles spontaneously deposited on graphene support, PtAu/rGO, have shown
remarkably high catalytic activity for hydrogen evolution reaction (HER) in sulfuric acid solution.
SEM images of the PtAu/rGO electrode surface showed that Pt nanoparticles that are non-uniform
in size occupy both the edges of previously deposited uniform Au nanoparticles and the edges of
graphene support. XPS analysis showed that the atomic percentages of Au and Pt in PtAu/rGO were
0.6% and 0.3%, respectively. The atomic percentage of Au alone on previously prepared Au/rGO
was 0.7%. Outstanding HER activity was achieved for the PtAu/rGO electrode, showing the initial
potential close to the equilibrium potential for HER and a low Tafel slope of −38 mV/dec. This
was confirmed by electrochemical impedance spectroscopy. The chronoamperometric measurement
performed for 40 min for hydrogen evolution at a constant potential indicated good stability and
durability of the PtAu/rGO electrode.

Keywords: platinum; gold; PtAu nanoparticles; graphene; SEM; XPS; hydrogen evolution

1. Introduction

Hydrogen evolution reaction (HER) is one of the most extensively studied reactions
in electrocatalysis due to its general importance, from both a fundamental and practical
point of view. The world needs an alternative to fossil fuels, economically and from an
environmental aspect. Since hydrogen is a simple and “clean” energy carrier, it is an
excellent fuel produced by water splitting through the hydrogen evolution reaction [1–3].
The efficient and cost-effective hydrogen production process requires a suitable catalyst
for HER. A catalyst should be cheap with great activity, stability, and durability. It is well
known that platinum group metals are the best electrocatalysts, with Pt on the top, for
hydrogen evolution reaction, but very expensive and scarce to be the electrode materials.
Therefore, the aim is to find a more economical catalyst with the best possible performances.
The studies are focused on obtaining catalysts either with a low content of precious [4,5] or
non-precious metals [6] supported by carbon-based materials.

Recently, single-atom catalysts made a breakthrough in the catalysis of the hydrogen
evolution reaction [7,8]. There are many reports in the literature on precious [9–11] and
non-precious metal single-atom catalysts [12–14], from the synthesis to their usage as
catalysts for HER and other reactions of importance for fuel cells and electrolyzers. The
density-functional theory (DFT) calculations and machine-learning techniques are valuable
tools for the theory-guided design of advanced suitable catalysts for reactions in different
power devices, including HER [15].
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Carbon-based materials have attracted attention as excellent supports for various
metallic catalysts [16]. They have many advantages, including their availability, low cost,
and stability in acid and alkaline solutions. Most importantly, for hydrogen evolution
electrocatalysis, these supports provide a large surface area, high electronic conductivity,
and suitability for the deposition and growth of smaller catalytic particles, including mono-
and multi-metallic nanoparticles. Besides, a synergetic effect between the carbon support
and the catalyst leads to the better catalytic activity of the electrode.

Graphene is one of the carbon-based materials that has become very interesting
for researchers after the first report on the syntheses of thin graphene sheets and their
remarkable electronic properties [17]. Besides, the two-dimensional structure of graphene
provides extraordinary electrical, mechanical, and optical properties, excellent thermal
conductivity, and electron mobility. Hence, graphene, as well as its derivatives graphene
oxide (GO) and reduced graphene oxide (rGO), have found application as catalyst supports
for HER and many other reactions [18–20].

Previously, we showed that PdAu nanoparticles (NPs) supported on rGO were ex-
cellent catalysts for HER, showing low Tafel slope, low onset potential, and high current
density under the same conditions [21]. Additionally, there are reports in the literature on
electrocatalysts consisting of various PtAu nanoparticles supported on different carbon-
based materials that have shown good performances for HER in the same 0.5 M H2SO4
solution. Among reduced graphene oxide-supported bimetallic AuPt catalysts, core–shell
Au@Pt nanoparticles synthesized using various methods have exceptionally high HER
activity. Among them, Au@Pt NPs/rGO, fabricated by a simple one-pot aqueous ap-
proach [22], Au-monolayer Pt/rGO via layer-by-layer growth of Pt monolayers on Au
NPs using the electrochemical methods [23], AuPt@Pt nanocrystals/rGO produced by
the addition of Au and Pt depositing salts to the rGO suspension [24], and AuPt alloy
nanodendrites/rGO [25] synthesized by a one-pot reduction approach using ionic liquid.

The spontaneous deposition at the open circuit potential (OCP) of precious metals
from aqueous solutions containing depositing metal salts is a very simple and easy method
that is used for the preparation of electrodes with a low amount of precious metal(s). We
demonstrated in our previous work [21] that a successive spontaneous deposition of Au,
and Pd on rGO support produced a PdAu/rGO catalyst consisting of a small amount of
PdAu nanoparticles, which has shown exceptionally high HER activity. Based on that, we
examined a similar PtAu/rGO system, expecting even better HER catalytic activity.

In this paper, the preparation of Au/rGO and PtAu/rGO working electrodes involved
subsequent spontaneous deposition of Au and Pt on graphene support. The techniques
used for the electrodes surface characterization were field emission scanning electron micro-
scope with energy dispersive X-ray spectrometer (FESEM/EDS) and X-ray photoelectron
spectroscopy (XPS). The electrodes were characterized electrochemically by cyclic voltam-
metry (CV) in a 0.5 M H2SO4 solution. HER activity of obtained catalysts was examined by
linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). The
stability of the most active PtAu/rGO electrode was tested by chronoamperometry (CA).
The electrodes surface was characterized using field emission scanning electron micro-
scope with energy dispersive X-ray spectrometer (FESEM/EDS) and X-ray photoelectron
spectroscopy (XPS). The electrochemical characterization in a 0.5 M H2SO4 solution was
performed by cyclic voltammetry (CV). HER activity of obtained catalysts was examined by
linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). The
stability of the most active PtAu/rGO electrode was tested by chronoamperometry (CA).

2. Results and Discussion
2.1. Characterization of Au/rGO and PtAu/rGO

The Au/rGO and PtAu/rGO electrodes were prepared for surface characterization
by SEM and XPS techniques as follows: firstly, the 30 µL of 3 g/L rGO ethanol suspension
was spread on the GC disc (7 mm diameter) and dried at room temperature. After that, the
prepared rGO/GC substrate was immersed at the open circuit potential in a gold depositing
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solution for 10 min to prepare the Au/rGO electrode, and subsequently into platinum
depositing solution for 30 min to prepare the PtAu/rGO electrode. The prepared electrodes
were then dried at room temperature before being used for surface characterization. For
the electrochemical characterization, the preparation of the electrodes involved the same
procedure, except that 15 µL of graphene suspension was spread over a GC disc (5 mm
diameter) mounted into a Teflon holder.

2.1.1. SEM/EDS Characterization

SEM results in Figure 1 show the morphology of Au/rGO and PtAu/rGO electrodes
and the lateral size distribution of the corresponding individual Au and PtAu nanoparticles.
Size distributions are each estimated from five images with the magnification of 100,000×.

Figure 1. SEM images (magnification = 50,000×, scale-bar = 1 µm) of: (a) Au/rGO and Au NPs size
distribution; (b) PtAu/rGO and PtAu NPs size distribution.

The SEM image of Au/rGO, Figure 1a, shows a random distribution of the deposited
Au nanoparticles over the graphene layer and their lateral size distribution. The size of
Au nanoparticles is within the range of 30 to 120 nm. The deposited Au nanoparticles are
almost uniform. According to the higher peak on the distribution curve, their average size
is about 68 ± 10 nm. The second peak in the size distribution curve with a maximum at
about 100 nm indicates the presence of agglomerated Au nanoparticles.

Figure 1b shows the SEM image of PtAu/rGO and the corresponding lateral size
distribution of the deposited PtAu nanoparticles. After Pt deposition on previously pre-
pared Au/rGO, the size distribution curve shows that the resulting PtAu nanoparticles are
not uniform in size ranging from 20 to 140 nm. The average size of PtAu nanoparticles
is about 73 ± 10 nm and falls within the higher peak in the size distribution curve. A
smaller peak at about 110 nm indicates a smaller number of agglomerated particles. This
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non-uniformity of PtAu nanoparticles size means that platinum is deposited partly on the
previously deposited Au nanoparticles and partly on bare graphene edges.

The chemical composition analysis by energy dispersive X-ray spectroscopy (EDS),
Figure 2, confirms that Au/rGO consists of carbon, oxygen, and gold, while PtAu/rGO
consists of carbon, oxygen, gold, and platinum. Table 1 gives the weights and atomic
percentages of these elements estimated as average values from the whole area over the
presented SEM images. The estimated Au:Pt ratio of 2:1 for PtAu/rGO is only the average
one. This ratio differs for the individual PtAu nanoparticles, all of which consist of gold
and platinum.

Figure 2. EDS of: (a) Au/rGO; (b) PtAu/rGO.

Table 1. Weight and atomic percentages of C, O, Au and Pt in Au/rGO and PtAu/rGO obtained
by EDS.

Element/Line Type
Au/rGO PtAu/rGO

Weight % Atom % Weight % Atom %

C K 85.63 94.76 81.32 93.80
O K 5.60 4.65 6.14 5.31

Au M 8.77 0.59 4.14 0.29
Pt M 8.40 0.60

2.1.2. XPS Characterization

The chemical composition of Au/rGO and PtAu/rGO was determined using X-ray
photoelectron spectroscopy after subsequent Au and Pt deposition and additional potential
cycling. In survey spectra of Au/rGO and PtAu/rGO, Figure 3, the main photoelectron
lines C 1s, O 1s, and Au 4f, are denoted for both, but Pt 4f only for PtAu/rGO. These lines
confirm the presence of C, O, Au, and Pt and no other elements or impurities. The intensities
of C 1s and O 1s lines do not differ significantly for Au/rGO and PtAu/rGO due to the
small amount of both deposits. The intensities of Au 4f doublet lines for Au/rGO do not
significantly decrease after Pt deposition, meaning that Pt is deposited preferably on edges
and less on top of already deposited Au. The oxidation state of Au and Pt and different
functional groups in graphene support are determined by recording high-resolution spectra
for all PtAu/rGO components.

Figure 4 shows high-resolution XPS spectra of C 1s, O 1s, Au 4f, and Pt 4f lines for the
PtAu/rGO sample. The deconvolution of the C1s line, Figure 4a, gives five components for
different carbon functional groups. A sharp C 1s component at the lowest binding energy at
284.9 eV corresponds to sp2 carbon with C=C bonds and another at 285.1 eV to sp3 carbon
atoms in C–C bonds [26,27]. The other two components with higher binding energies at
286.6 eV and 286.9 eV correspond to sp3 carbon atoms in the C–O bond in hydroxyl and the
O–C=O carboxylate functional group, respectively [26–28]. The low-intensity wide peak at
around 291.4 eV corresponds to a π–π* satellite bond [28]. The relatively small intensity of
oxygen-containing functional groups in the C 1s line indicates that the supporting graphene
is reduced graphene oxide.
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Figure 3. Survey spectra for rGO supported Au and PtAu nanoparticles.

Figure 4. High-resolution XPS spectra for PtAu/rGO constituents showing the following deconvo-
luted peaks: (a) C 1s; (b) O 1s; (c) Au 4f; and (d) Pt 4f.

O 1s line, Figure 4b, is deconvoluted into three components with the peaks at 530.9 eV,
531.9 eV, and 533.4 eV. These peaks correspond to oxygen originating from Pt hydroxide
from the deposited Pt nanoparticles [29], O–C=O, and C–O, respectively [28]. Oxygen peaks
confirm the presence of oxygen-containing functional groups and indicate the presence of
PtO in the deposited PtAu nanoparticles, as shown below.

Figure 4c shows Au 4f lines, each deconvoluted into two components. The higher
intensity peaks at 84.5 eV and 88.2 eV, attributed to the bulk components of Au 4f7/2
and Au 4f5/2 lines, show a slight upward shift compared to bare metallic Au(111) [30,31]
but agree with those for Au/rGO [21], such as the peaks at 84.6 eV and 88.3 eV of the
corresponding surface components. Therefore, the shift of all Au 4f components can be
attributed to the influence of graphene substrate and deposited Pt.
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Figure 4d shows Pt 4f lines, each deconvoluted into two components. Components at
71.5 eV and 74.8 eV for Pt 4f7/2 and Pt 4f5/2, are from metallic Pt, while those at 72.1 eV
and 75.5 eV are from PtO [30,32,33]. Pt 4f peaks are shifted from peaks for bare metallic Pt
(71.1 eV and 74.4 eV for Pt 4f7/2 and Pt 4f5/2, respectively [30,32]) due to the lower coverage
of the substrate surface with Pt nanoparticles and their interaction with the underlying
substrate (in this case either graphene support or Au nanoparticles). Both O 1s components
at 530.9 eV and for Pt 4f7/2 and Pt 4f5/2 components at 72.1 eV and 75.9 eV, respectively,
confirm that Pt is oxidized partially to PtO, whose binding energies depend on the degree
of bulk Pt oxidation [30], and in the case of supported Pt nanoparticles on the platinum
coverage [32,33].

Table 2 shows the share in atomic percentages (atom %) of carbon, oxygen, gold, and
platinum in Au/rGO and PtAu/rGO obtained from high-resolution XPS spectra. Due to
the difference in graphene synthesis (see below Materials and Methods), the share of C 1s
is slightly higher, and of O 1s lower than in the case reported in our previous work [21]
for PdAu/rGO. The percentages of the deposited Au and Pt differ from Au and Pd for
the same deposition conditions [21] due to a difference in supporting rGO. Besides, the
intrinsic properties of the deposited Pt and Pd take a role in their deposition affinity.

Table 2. The share of carbon, oxygen, gold, and platinum in Au/rGO and PtAu/rGO.

Line Au/rGO
Atom %

PtAu/rGO
Atom %

C 1s 83.3 82.8
O 1s 16.0 15.0

Au 4f7/2 0.7 0.6
Pt 4f7/2 0.3

2.2. Hydrogen Evolution on Au/rGO and PtAu/rGO
2.2.1. Cyclic Voltammetry Characterization of Au/rGO and PtAu/rGO

The cyclic voltammograms of rGO, Au/rGO, and PtAu/rGO electrodes recorded in
0.5 M H2SO4 with the same lower potential limit set at 0.01 V, are presented in Figure 5.
The electrochemical characterization involved recording CVs in a positive potential win-
dow to observe the double-layer capacity of the electrodes, and a possible appearance of
oxidation/reduction peaks of Au for Au/rGO, and hydrogen adsorption/desorption on
platinum for PtAu/rGO electrode taking into account a small amount of both Au and Pt.
CV curve of rGO in the potential range from 0.01 V to 0.71 V shows a characteristic shape
comparable to our previous work [21]. A higher limit was set at a potential of 0.71 V to
avoid further oxidation of graphene since hydrogen evolution measurements followed CV
characterization. CV for Au/rGO electrode was recorded from 0.01 V to 1.66 V, with the
higher limit set at a potential positive enough to identify Au oxidation/reduction. In the
forward scan, Au oxidation begins at approx. 1.25 V, and proceeds with a higher current
density at higher potentials, most likely due to the simultaneous oxygen evolution. In the
reverse scan, a small AuO reduction peak appears at 1.17 V, confirming the presence of Au
on Au/rGO [21,23,25].

CV for PtAu/rGO electrode was recorded from 0.01 V to 1.21 V, with previous condi-
tioning by holding the potential at 0.11 V for 10 min to reduce the Pt oxide that originates
from the deposition. The higher potential limit of 1.21 V was chosen low enough to
avoid Pt oxidation and possible dissolution. Hydrogen evolution is already visible at
lower potentials, and an anodic peak at 0.03 V, most likely originating from hydrogen
oxidation on Pt [34], confirms successful Pt deposition. It is hard to distinguish hydrogen
adsorption/desorption from hydrogen evolution/oxidation for such a small amount of the
deposited platinum.
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Figure 5. Cyclic voltammograms of rGO, Au/rGO, and PtAu/rGO. The scan rate was 50 mV/s.

2.2.2. HER Catalytic Activity of rGO, Au/rGO, and PtAu/rGO

The examination of the catalytic activity of the electrodes for HER involved LSV mea-
surements in deaerated 0.5 M H2SO4, and the evaluation of the corresponding Tafel slopes,
as illustrated in Figure 6. Hydrogen evolution reaction on Au/rGO, and PtAu/rGO was
investigated in separate measurements, where spontaneous deposition of Au and Pt was fol-
lowed by short conditioning at the initial potential, without any previous potential cycling.

Figure 6. Hydrogen evolution reaction in 0.5 M H2SO4: (a) LSV curves recorded at a scan rate of
10 mV/s for rGO, Au/rGO, and PtAu/rGO electrodes, as well as for PtAu/rGO alone after stability
test; (b) Derived Tafel slopes.

LSV curves, Figure 6a, show a significant shift of the HER onset potentials starting
from rGO, with the subsequent addition of small amounts of Au and Pt. The onset potential
on LSV curves is where the current density increases visibly from zero. That means that the
tangent line, drawn to estimate the onset potentials, is not at zero, due to the overlap of
the current densities corresponding to the double-layer and HER. Setting up the tangent
lines after subtracting the corresponding contribution of the double-layer current densities
(see CVs in Figure 5), the obtained onset potential values are −0.1 V for rGO, −0.05 V
for Au/rGO, and −0.005 V for PtAu/rGO. At a higher current density of −10 mA/cm2

(denoted by a dotted line in Figure 6a), the obtained potentials for HER are −0.27 mV for
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rGO, −0.18 mV for Au/rGO, and −0.05 V for PtAu/rGO. The rGO and Au/rGO electrodes
are more active for HER than previously reported for PdAu/rGO system [21], while the
addition of only a small amount of Pt on Au/rGO decreases the overpotential for HER
for 130 mV. PtAu/rGO electrode alone has extraordinarily high activity, which remains
approximately equal after stability measurements.

Figure 6b shows derived Tafel slopes. The slope of −167 mV/dec for rGO confirms
its low activity as already reported [35]. For Au/rGO, the slope of −68 mV/dec differs
from previously reported for a similar Au/rGO electrode [21], although the reaction occurs
with a relatively higher rate, but also following a Volmer-Heyrovsky pathway [36,37].
The lowest Tafel slope of −38 mV/dec obtained for HER on PtAu/rGO indicates a much
faster reaction rate, meaning that the electrode activity approaches the activity of bare
Pt [1,22]. Supposedly, hydrogen evolution on PtAu/rGO also proceeds according to Volmer-
Heyrovsky reaction pathway. It is worth noting that the reaction mechanism, including a
rate-determining step, cannot be determined with certainty owing to its dependence on the
potential that reflects on the coverage of adsorbed hydrogen [38].

2.2.3. EIS Measurements

Figure 7 shows the results obtained using the electrochemical impedance spectroscopy
method to examine HER kinetics on PtAu/rGO electrode. Figure 7a shows the Nyquist
plots for rGO and PtAu/rGO electrodes at a potential of −0.06 V vs. RHE.

Figure 7. Nyquist plots for HER on PtAu/rGO electrode in 0.5 M H2SO4 for: (a) rGO and PtAu/rGO
electrodes; (b) PtAu/rGO electrode at several applied potentials. Inset shows the details at a high
frequency region.

The PtAu/rGO electrode shows a smaller semicircle, meaning the faster electron
transfer rate and higher HER kinetics when compared to the substrate rGO electrode. This
is in agreement with LSV results. Furthermore, the PtAu/rGO electrode was examined at
electrode potentials of −0.04, −0.06, and −0.08 V vs. RHE, and Nyquist plots are presented
in Figure 7b.

The interpretation of these impedance data involved the construction of the Armstrong
and Henderson equivalent electric circuit [39–42]. Figure 8 shows the electric circuit, where
Rs is the solution resistance, R1 is the charge transfer resistance related to the reaction at the
working electrode, and CPE1 to the double-layer capacitance. R2 is the pseudo-resistance
concerning mass transfer resistance of the adsorbed hydrogen intermediate. CPE2 is a
working electrode pseudo-capacitance.
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Figure 8. The equivalent electric circuit, used for fitting the data.

Table 3 shows the parameters obtained by fitting the EIS data. The values obtained
for Rs have a slightly increasing trend with a decrease in the applied potential in line with
the increasing number of bubbles in the electrolyte [40]. The charge transfer resistance, R1,
and the pseudo-resistance, R2, show a decreasing trend with increasing applied electrode
potentials. These results suggest the improved electron-transfer kinetics with increasing
electrode potentials [43], as indicated by the increasing current density in LSV curves.

Table 3. The parameters, obtained from EIS data for PtAu/rGO at different applied potentials.

E (V) vs. RHE −0.04 −0.06 −0.08

Rs (Ω) 5.33 5.55 5.78
R2 (Ω) 11.8 2.28 2.4
R3 (Ω) 262.6 20.8 11.8

CPE1 (F) 27.8 × 10−3 4.98 × 10−3 1.958 × 10−3

CPE2 (F) 3.075 × 10−3 72.04 × 10−3 0.127

2.2.4. Stability Test for Hydrogen Evolution on PtAu/rGO

Chronoamperometry was used to test the stability and durability of the most active
PtAu/rGO electrode. It was performed in deaerated 0.5 M H2SO4 with a rotating disc
electrode at a rotation rate of 2500 rpm. Chronoamperometry (CA) curve, Figure 9, is
recorded at a constant potential of −0.02 V held for 40 min. The high current density of
−3.7 mA/cm2 was reached almost immediately and only slightly decreased during the
measurement time. The LSV curve recorded after CA measurements showed the identical
electrode activity as before the stability test, demonstrating the PtAu/rGO electrode stability
for a prolonged time.

Figure 9. Chronoamperometry curve for PtAu/rGO recorded in 0.5 M H2SO4 at a constant potential
of −0.02 V.
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The activity parameters for HER on previously studied PtAu catalysts supported on
carbon-based materials in 0.5 M H2SO4 solution, involving the onset potentials and Tafel
slopes, are listed in Table 4.

Table 4. Comparison of the activity of various PtAu catalysts for HER in 0.5 M H2SO4 solution.

Catalyst Onset Potential
E (mV) vs. RHE

Tafel Slope
(mV/dec) Ref.

Au@Pt NPs/rGO −20 42 [22]
Au-monolayer Pt/rGO ≈0 27 [23]

AuPt@Pt nanocrystals/rGO −25 33 [24]
AuPt alloy nanodendrites/rGO −37 34 [25]

Au-Pt (54:47) alloy NPs/GC −6 34 [44]
Au38.4@Au9.3Pt52.3 -NP/C −4 14 [45]

Pt/C −5 31 [45]
PtAu/rGO −5 38 This work

In this wok the onset potential for HER on PtAu/rGO is similar or better than most
PtAu catalysts supported by rGO or the other carbon-based materials listed in Table 4,
including the best performance of a commercial Pt/C catalyst found in the literature.

3. Materials and Methods
3.1. Materials Preparation

The synthesis of graphene powder involved the electrochemical exfoliation of spectral
graphite (carbon rod, 5 mm diameter, Specpure, Grade 2, Johnson Matthey Chemicals Ltd.,
London, UK) as described in detail in ref. [21]. Instead of drying graphene powder at a
higher temperature, in this case, the drying at room temperature was performed. As a
result, the obtained rGO contained a bit lower at% of carbon and higher of oxygen. GC
disc (7 mm diameter, geometric area 0.385 cm2.) was as a supporting electrode for SEM and
XPS measurements, and GC disc (5 mm diameter, geometric area 0.196 cm2), embedded in
a Teflon holder for the electrochemical measurements. The supporting rGO/GC electrode
was prepared by spreading three drops of 3 g/L of graphene powder suspension on GC
support in the total quantity of 15 µL (0.045 mg rGO) on 5 mm diameter GC, and 6 drops
containing the total quantity of 30 µL (0.090 mg rGO) on 7 mm in diameter GC. Such a
supporting electrode was immersed for 10 min in a 1 mM HAuCl4 + 0.5 M H2SO4 solution
to allow the gold to deposit spontaneously at the open circuit potential. After rinsing with
water, a working Au/rGO electrode was prepared. Finally, the PtAu/rGO electrode was
obtained by subsequent immersion of previously prepared Au/rGO for 30 min spontaneous
deposition at the OCP of platinum from 1 mM H2PtCl4 + 0.5 M H2SO4 solution. After a
final rinsing with water, the electrodes were dried and characterized by XPS and SEM.

3.2. Materials Characterization

SEM images and EDS spectra were recorded using FESEM (FEI Scios 2) (Thermo
Fisher Scientific, Waltham, MA, USA) at the pressure of 1 × 10−4 Pa with the electron
beam voltage of 10 kV. The time for spectrum acquisition from the chosen micro areas
was 30 min.

XPS spectra were acquired by SPECS Systems using an XP50M X-ray source (SPECS
Surface Nano Analysis GmbH, Berlin, Germany) with AlKα source (1486.74 eV) at 12.5 kV
and 32 mA. The chamber pressure was 9 × 10−9 mbar. Survey spectra (0–1000 eV binding
energy) of Au/rGO and PtAu/rGO were aquired using a constant pass energy of 40 eV, step
size 0.5 eV, and dwell time 0.2 s. For PtAu/rGO, high-resolution spectra were collected for
C 1s, O 1s, Au 4f, and Pt 4f photoelectron lines using a constant pass energy of 20 eV, step
size 0.1 eV, and dwell time 2 s. The sample charging was neutralized by SPECS FG15/40
flood gun. All peak positions are given relative to C 1s at 284.8 eV.
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3.3. Electrochemical Measurements

Electrochemical measurements were conducted by Gamry potentiostat PCl4 (Warmin-
ster, PA, USA) in a three-electrode cell, with Pt wire as counter and Ag/AgCl, 3 M KCl
as a reference electrode.The working electrodes mounted in a Teflon holder were rGO,
Au/rGO, or PtAu/rGO. All potential scales and values were given vs. the reference hydro-
gen electrode (RHE). The obtained electrodes were characterized, and their HER activity
was examined by cyclic and linear sweep voltammetry in a deaerated 0.5 M H2SO4 solu-
tion. Electrochemical impedance spectroscopy measurements were performed in the same
solution at different applied potentials. The amplitude was 5 mV, and the frequency ranged
from 20 kHz to 0.01 Hz.

3.4. Chemicals

The solutions were prepared using supra pure H2SO4 (Merck, Darmstadt, Germany),
HAuCl4(aq) (MaTeck, Jülich, Germany), H2PtCl4 (Alfa Aesar, Thermo Fisher Scientific,
Kandel, Germany), and Milli-pure water. All solutions were deaerated by N2 (99.9995%,
Messer, Frankfurt, Germany).

4. Conclusions

In this work, we demonstrate the remarkable catalytic activity of PtAu/rGO for
hydrogen evolution in sulfuric acid solution. SEM images show that randomly distributed
and non-uniform in size PtAu nanoparticles are situated primarily on the edges of rGO
sheets. EDS and XPS analysis both confirm the low atomic percentage of gold (0.6 at%)
and platinum (0.3 at%). The LSV curve for the PtAu/rGO electrode shows the outstanding
onset potential for HER of −0.005 V and a low Tafel slope of −38 mV/dec. EIS analyses
agree with LSV results, indicating high HER activity. The CA measurement performed
for 40 min at a constant electrode potential shows good stability and durability of the
PtAu/rGO catalyst for hydrogen evolution.
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36. Smiljanić, M.; Srejić, I.; Grgur, B.; Rakočević, Z.; Štrbac, S. Catalysis of hydrogen evolution on Au(111) modified by spontaneously
deposited Pd islands. Electrocatalysis 2012, 3, 369–375. [CrossRef]

37. Wang, Y.; Sun, Y.; Liao, H.; Sun, S.; Li, S.; Ager, J.W., III; Xu, Z.J. Activation effect of electrochemical cycling on gold nanoparticles
towards the hydrogen evolution reaction in sulfuric acid. Electrochim. Acta 2016, 209, 440–447. [CrossRef]

38. Shinagava, T.; Garcia-Espanza, A.T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis
for energy conversion. Sci. Rep. 2015, 5, 13801. [CrossRef]

39. Armstrong, R.D.; Henderson, M. Impedance plane display of a reaction with an adsorbed intermediate. J. Electroanal. Chem. 1972,
39, 81–90. [CrossRef]

40. Amaral, L.; Cardoso, D.S.P.; Šljukić, B.; Santos, D.M.F.; Sequeira, C.A.C. Electrochemistry of hydrogen evolution in ionic aqueous
mixtures. Mater. Res. Bull. 2019, 112, 407–412. [CrossRef]

41. Franceschini, E.A.; Lacconi, G.I.; Corti, H.R. Kinetics of the hydrogen evolution on nickel in alkaline solution: New insight from
rotating disk electrode and impedance spectroscopy analysis. Electrochim. Acta 2015, 159, 210–218. [CrossRef]
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