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Abstract In this paper, we described generation and
performances of feedforward neural network models
that could be used for a day ahead predictions of the
daily maximum 1-h ozone concentration (1hO3) and 8-h
average ozone concentration (8hO3) at one traffic and
one background station in the urban area of Novi Sad,
Serbia. The six meteorological variables for the day
preceding the forecast and forecast day, ozone concen-
trations in the day preceding the forecast, the number of
the day of the year, and the number of the weekday for
which ozone prediction was performed were utilized as
inputs. The three-layer perceptron neural network
models with the best performance were chosen by test-
ing with different numbers of neurons in the hidden
layer and different activation functions. The mean bias
error, mean absolute error, root mean squared error,
correlation coefficient, and index of agreement or
Willmott’s Index for the validation data for 1hO3 fore-

casting were 0.005 μg m−3, 12.149 μg m−3, 15.926 μg
m−3, 0.988, and 0.950, respectively, for the traffic sta-
tion (Dnevnik), and − 0.565 μg m−3, 10.101 μg m−3,
12.962 μg m−3, 0.911, and 0.953, respectively, for the
background station (Liman). For 8hO3 forecasting, sta-
tistical indicators were − 1.126 μg m−3, 10.614 μg m−3,
12.962 μg m−3, 0.910, and 0.948 respectively for the
station Dnevnik and − 0.001 μg m−3, 8.574 μg m−3,
10.741 μg m−3, 0.936, and 0.966, respectively, for the
station Liman. According to the Kolmogorov–Smirnov
test, there is no significant difference between measured
and predicted data. Models showed a good performance
in forecasting days with the high values over a certain
threshold.
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Introduction

Most cities around the world are dealing with serious air
pollution problems, which have been receiving increas-
ing attention in the recent decades. The main cause of
the air pollution is the rapid growth of the urban popu-
lation, accompanied by increased motor vehicle traffic.
The ground-level or tropospheric ozone (O3) is the basic
component of photochemical smog and is considered a
very dangerous pollutant. Unlike stratospheric O3,
which protects us from harmful UV radiation, it is
located at altitudes inhabited by humans and represents
a threat to human health. Ozone has a harmful influence
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on the respiratory organs causing an increase in mortal-
ity, which is registered in areas with high O3 concentra-
tion (Ito et al. 2005; Bates 2005; Zanobetti and Schwartz
2008). Studies in 23 European cities have shown that the
daily mortality rate increases linearly with an increase of
the average hourly concentration of O3 by 50–60 μg
m−3 (Gryparis et al. 2004). Similar studies have been
carried out for 98 cities in the USA and have shown that
concentrations lower than 40 μg m−3 do not significant-
ly affect mortality and that mortality increases linearly
with concentrations of 70–80 μg m−3 and above (Bell
et al. 2006). Ozone also affects vegetation and materials
(Lee et al. 2003; Cape 2008). High levels of O3 can
damage the leaves and reduce plant productivity. Expo-
sure to O3 over time leads to degradation of the quality
of materials and shortens their life span.

Ozone formation in urban areas is a unique phenom-
enon, i.e., it is not emitted directly into the atmosphere,
but it is the result of the complex interaction between
nitrogen oxides and organic volatile compounds in fa-
vorable meteorological conditions. It has a relatively
long lifetime in polluted urban regions and can be
transported to areas hundreds of kilometers away from
the place of formation (Stevenson et al. 2006). At a
certain location, concentration depends on photochem-
ical reactions that produce O3, regional transport, de-
scending of O3 from stratosphere, and ozone-destroying
reactions (Cape 2008). Meteorological conditions
strongly influence O3 concentrations. They play an es-
sential role in the formation, dissemination, transporta-
tion, and also destruction of tropospheric O3. The high
amount of solar radiation and high atmospheric pressure
increase tropospheric O3 concentrations, while high rel-
ative humidity and rain reduce it (Lelieveld and Crutzen
1990; Zanis et al. 2014). Wind velocity can increase or
decrease O3 concentrations, depending on photochemi-
cal production in the boundary layer (Biancofiore et al.
2015).

In Europe, during hot and sunny summer weather
conditions, O3 concentrations significantly may exceed
the allowable values (EPA 2009), ranging from 200 to
300 μg m−3. The European standard for the daily max-
imum 8-h average O3 concentration is 120 μg m−3 (not
to be exceeded more than 25 days per calendar year;
averaged over 3 years). In 2006, the WHO reduced the
threshold limit of the daily maximum 8-h average con-
centration that poses health risks from 120 to 100 μg
m−3 (WHO 2006). In addition to the daily maximum 8-h
average ozone concentration, the European standards

defined an “information threshold” of 180 μg m−3 and
an “alarm threshold” of 240 μg m−3 for daily maximum
1-h O3 concentration. There are many epidemiological
studies dealing with short-term exposure threshold;
however, their findings are not consistent. According
to the WHO (2013), the threshold for a daily maximum
1-h O3 concentration is likely to be below 90 μg m−3.
Therefore, in order to monitor and predict changes in
tropospheric O3 concentrations in the future and to
provide the latest information on its current and future
levels that can be used as a warning when the limit value
is expected to be exceeded, it is necessary to understand
its nature and conditions that contribute to its creation.

Predicting O3 concentration is difficult due to very
complex interactions between pollutants, and it can be
done by using deterministic and statistical modeling.
Deterministic models provide the output which is fully
determined by the parameter values and the initial con-
ditions, and they are very time-consuming. These
models require a significant number of data on meteo-
rological elements and O3 precursors, which are rarely
available. On the other hand, statistical models are much
simpler. They are not aiming to establish cause–effect
relationships, but to find a statistical relationship be-
tween predictors and output data. There are many stud-
ies using various statistical techniques to predict O3

concentration such as multiple linear regression, princi-
pal component analysis, and clustering technique
(Abdul-Wahab et al. 2005; Duenas et al. 2005; Ghazali
et al. 2010; Sun et al. 2013). Although linear models are
easy to use and acceptable for O3 modeling, they do not
take into account the nonlinear response of O3 to pre-
cursor concentrations. These deficiencies can be com-
pensated by the use of neural networks. Neural network
models are based on the use of a set of the input
variables that include meteorological parameters and
concentrations of O3 precursors. They have been used
in air quality modeling since the 1990s. As input param-
eters, neural network models use measured air pollutant
concentrations and meteorological variables. The com-
parison of linear and nonlinear methods showed better
performance of neural network models compared to
linear regression (Prybutok et al. 2000; Chaloulakou
et al. 2003; Sousa et al. 2007; Nghiem and Kim Oanh
2009).

So far, no forecasting tools have been applied to
predict tropospheric O3 in the city of Novi Sad. This
study aimed to examine the possibility of using artificial
neural network models to make predictions of daily
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maximum 1-h O3 concentration (1hO3) and daily max-
imum 8-h average O3 concentration (8hO3) for the next
day at an urban location in north Serbia by using mete-
orological parameters and O3 concentration from the
previous day. The daily maximum 1-h O3 concentration
is the maximum value of the hourly average concentra-
tion on a particular day, while daily maximum 8-h
average O3 concentration is the maximum of moving
averages of eight consequent hourly averaged concen-
trations calculated between 1 and 24 h on a particular
day. Therefore, the aim of this study is to predict tropo-
spheric O3 concentration on day t + 1 on the both mon-
itoring stations, Dnevnik and Liman, using measure-
ments of meteorological parameters on the day t, pre-
dictions of meteorological parameters on the day t + 1,
and measurements of O3 concentration on the day t.

Materials and methods

Site description and data

The observations were carried out in the city of Novi
Sad (45.15° N, 19.50° E; 80–130 m a.s.l.), the second
largest urban area in the Republic of Serbia. It is situated
in Central Europe in Pannonian pain (Fig. 1). The area is
characterized by temperate continental climate with
warm summers. The built-up area of the city covers
102 km2 and has a population approximately 350,000
inhabitants (Statistical Office of the Republic of Serbia
2019). The main sources of air pollution are local trans-
portation and residential heating (heating plants and
individual furnaces). The main fuels used for residential
heating are natural gas, wood, and coal (Official Gazette
of the City of Novi Sad, No. 49 2018).

Air pollutants and meteorological data for five years
(2010, 2011, 2012, 2013, and 2016) were used in the
models developed in this study. During 2014 and 2015,
O3 measurements were not conducted in Novi Sad. Air
pollutant data was collected from the Serbian National
Air Monitoring network (SEPA 2019). The dataset con-
sists of hourly average tropospheric O3 concentrations
collected from the two air quality monitoring stations,
Dnevnik and Liman. The Dnevnik station is an urban
traffic type, while Liman station is an urban background
type. Both stations are located in a densely populated
urban area, while the distance between them is about 2
km. Ozone concentrations were recorded every 60 min
by an automatic detector (Teledyne API Model 400A

O3 Analyzer). Meteorological data used in the study
were obtained from the nearest meteorological station,
Rimski Sancevi, operated by the Republic Hydromete-
orological Service of Serbia (RHMZ 2019). The dis-
tance between meteorological and air pollution stations
is 8.5 and 10.5 km, respectively. Used meteorological
parameters are as follows: the daily mean temperature,
°C (Tav); the daily maximum temperature, °C (Tmax),
global radiation,MJm−2 (GR), wind speed, m s−1 (WS),
relative humidity, % (RH), and atmospheric pressure,
mbar (P). Daily values of global radiation were deter-
mined using data on daily duration of sunshine using
Prescott’s formula (Coulson 1975).

Structure of input parameters

To build the model that can be used to forecast O3

concentration, historical meteorological and O3 data,
as well as forecasted values of meteorological
parameters for a day ahead, are needed in the input
layer. Although Kukkonen et al. (2003) showed that
incorporating forecasted meteorological variables im-
proves the performance of artificial neural network
(ANN) models, we decided not to include forecasted
values at this stage of the modeling. We considered that
error in the forecast of the meteorological input param-
eters might influence the prediction model, so for the
purpose of model construction instead of forecasted
values, we used measured meteorological values for a
day ahead. This usual approach assuming a perfectly
accurate weather forecast is proposed for the use in the
developingmodel stage byKlein et al. (1959) andWilks
(1995).

There were interruptions in the measurement of O3

concentrations due to device malfunctions and mainte-
nance; therefore, if the value is not measured more than
6 h during the day, the entire day was removed from the
dataset. Hence, the total dataset used in this study was
704 at Dnevnik station and 902 at Liman station (1 per
day).

The daily, weekly and annual pattern of ozone con-
centration at both measuring stations is clearly visible in
(Fig. 2). The highest concentrations occur during the
periods of the highest radiation, in the middle of the day,
and during summer. Annual variations in ozone concen-
trations depend on different factors, such as the proxim-
ity of the original ozone precursor, latitude, meteorolog-
ical factors, and transportation from the stratosphere. At
both measuring stations, ozone concentrations show
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summer maximum, and winter minimum, which is an
annual cycle typical for polluted areas. The existence of
a broad summer maximum is associated with the pho-
tochemical production of ozone which is formed in
reactions involving the VOCs and NOx under the influ-
ence of solar radiation (Logan 1985). At both measuring
stations, an occurrence of higher maximum surface O3

concentrations on weekends is also visible, so-called
ozone weekend effect, caused by the lower NOx emis-
sions from motor vehicles indicating complex O3 for-
mation chemistry (Altshuller et al. 1995). Figure 3 re-
veals that relative humidity shows an inverse correlation
with temperature, showing lower values in summer and
higher values in winter, which confirms that production
of O3 is the most intense during sunny, warm, and dry
meteorological conditions.

Artificial neural network models

Neural network-based models are complex and flexible,
and they can model the expression of nonlinear depen-
dencies arising from measurement data. Among the
variants of the ANN model for urban air quality model-
ing, the multi-layer perceptron model (MLP) stands out

(McKendry 2002; Rahman et al. 2020). This model has
proven to be very accurate and reliable for the urban air
quality forecast. The MLP model consists of a network
of simple process elements and their links. Process
elements, or neurons, take their place in the respective
layers. There are several layers: the input layer, one or
more hidden layers, and the output layer. For each
neuron, the weighted sum of the inputs received from
adjacent neurons is calculated, then is processed using
the activation function, and the result obtained is sub-
mitted to the next layer. Finally, an output signal is
obtained (Kukkonen et al. 2003).

We used a feedforward neural network, consisting of
15 input nodes: meteorological variables (Tav, Tmax, GR,
WS, RH, P) for the day preceding the forecast (t) and
forecast day (t + 1); O3 concentrations for the day pre-
ceding the forecast, 1hO3(t) or 8hO3(t); number of day
of year for which O3 forecast was carried out, DOY(t +
1); and number of weekday for which O3 forecast was
carried out, DOW(t + 1). An output node, the target
variables are daily maximum 1-h O3 concentration,
1hO3(t + 1), or daily maximum 8-h average O3 concen-
tration, 8hO3(t + 1). The complete dataset was imple-
mented in Statistica Automated Neural Networks

Fig. 1 aLocation of Serbia in Europe, Novi Sad in Serbia and b the air quality monitoring stations (Dnevnik and Liman) andmeteorological
stations (Rimski Sancevi) in Novi Sad
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(SANN) (TIBCO Software 2020) which tests a three-
layer neural network model with different numbers of
hidden layer neurons and various activation functions
(Logistic, Tanh, Exponential, and Identity), and then
chooses the networks with the best performance. All
input variables were automatically normalized to pro-
vide values between 0 and 1. Guided by the claim of

Hecht-Nielsen (1987) that any continuous function with
n inputs in the range 0–1 can be implemented exactly by
a three-layer neural network having 2n + 1 neurons in
the hidden layer, we have limited the maximum number
of hidden layer neurons to 31. The entire dataset is
automatically divided into subsets of training (70% of
cases), testing (15%), and validation (15%) using the

Fig. 2 Daily, monthly, and weekly pattern of hourly O3 concentrations at measuring sites Dnevnik and Liman

Fig. 3 Monthly averages of
global sun radiation (GR), air
temperature (T), and relative
humidity (RH) in Novi Sad
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“Random Sampling method.” The training dataset are
samples used to create the model, while the test and
validation datasets are used to qualify performance. The
validation set is used to evaluate the model during the
training process, while the test set is used to evaluate the
final trained model. For the network learning process,
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm was used. The error function used to find the best
solution was the sum of the squares of errors (SOS). The
selection of the optimal model is made on the basis of
correlation coefficients of validation and test subsets.

Performance indicators

Evaluation of the model performances was done using
the following statistical indicators: mean bias error
(MBE), mean absolute error (MAE), root mean square
error (RMSE), correlation coefficient (R), and index of
agreement (d).

TheMBE, MAE, and RMSE are the most commonly
used statistical indicators. The MBE shows overestima-
tion or underestimation of the model and MAE mea-
sures the size of the error without considering their
direction, while RMSE quantifies the average disper-
sion.

MBE ¼ 1

N
∑ P−Oð Þ

MAE ¼ 1

N
∑ P−Oj j

RMSE ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑ P−Oð Þ2
q

The correlation coefficient (R) shows the strength of
the connection between measured and modeled data and
it is calculated as:

R ¼
∑ O−O
� �

P−P
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑ O−O
� �2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P−P
� �2

r

The Willmott index of agreement (d) is a dimension-
less measurement of model accuracy. It represents the
ratio of the mean square error and the potential error
which varies between 0 and 1.

d ¼ 1−
∑ O−Pð Þ2

∑ P−O
�

�

�

�

�

�
þ O−O
�

�

�

�

�

�
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The O and P are observed and predicted values and
an overbar indicates an arithmetic average, while N is
the number of data points.

Results and discussion

Input variables arranged according to their relative im-
portance in the respective model are shown in Table 1.
The ratio sensitivity quotients (RSQ) in Table 1 were
calculated using SANN as the sums of squares residuals
or misclassification rates for the model when the corre-
sponding predictor was eliminated from the neural net-
work (TIBCO Software 2020). According to RSQ, the
predictors are sorted by their relevance in a particular
model. A higher RSQ value indicates a greater ability of
a particular predictor to influence better model perfor-
mance. The RQS values are 1 and above, which indicate
that all parameters are important for the learning pro-
cess. Generally, the most important predictors are max-
imum air temperature on the forecast day, Tmax(t + 1);
O3 concentration on the day preceding the forecast,
1hO3(t) or 8hO3(t); and the global radiation on forecast
day, GR(t + 1). The positive relationship between ozone
and global radiation is the result of the generation OH
radicals from the photolysis of ozone at wavelengths <
319 nm that leads to cycles of reactions that result in the
photochemical degradation of organic compounds and
the enhanced formation of ozone (WMO 1986). Anoth-
er reason for the general increase in O3 concentrations in
the troposphere due to increased temperature and in-
creased short-wave radiation is increasing emissions of
biogenic isoprene which reacts with OH and producing
peroxy radicals. In the presence of NO, these radicals
can react to form NO2, which is then photolyzed to
produce O3 precursor, O(3P)( Han et al. 2005; Watson
et al. 2006).

To achieve the best forecasting performance, hun-
dreds of networks have been tested. The results of the
performance indicators for the training, testing, and
validation datasets data are given in Table 2. Examina-
tion of combinations of activation functions showed that
the exponential functions in the hidden layer give the
best results. The MBE is negative and small (up to −
2.98 μg m−3) and indicates that all models have a
tendency to slightly underestimate O3 values. The
RMSE varies from 10.278 to 15.553 μg m−3 and is
higher than MAE for all models, while R and d are
relatively high at both sites. The obtained indicators
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show that prediction models for Liman station have
lower error values regarding MBE, MAE, and RMSE,
and higher dimensionless measures (R and d) than pre-
diction models for Dnevnik station. Also, the prediction
of 8hO3 is slightly better than the prediction of 1hO3 at
both stations. The small differences between the perfor-
mance indicators for the subsets of training, testing, and
validation indicate good generalization performance of
the models.

To test the performance of used neural network
models, we compared the statistical parameters RMSE
and MAE with other neural network models that use
meteorological parameters and O3 values from previous
days as input parameters. Chaloulakou et al. (2003)
made neural network models to forecast the next day’s
1hO3 using eight meteorological predictors and 1hO3

values for three previous days in the Athens basin at four
monitoring stations and reported RMSE between 18.4
and 39.4 μg m−3 and MAE between 14.4 and 32.6 μg
m−3. Pawlak and Jaroslawski (2019) used neural net-
work models to predict 1hO3 for the following day in
rural and urban locations in central Poland, using six
meteorological parameters and 1hO3 recorded the
previous day. The values of RMSE found by Pawlak

and Jaroslawski (2019) ranged from 9.9 to 16.3 μg m−3,
while MAE ranged from 8.6 to 13.0 μg m−3. When we
compared MBE and RMSE by our models, we found
better results than Chaloulakou et al. (2003), and similar
results with Pawlak and Jaroslawski (2019). We also
compared our models with models where measured
concentrations of other air pollutants were used, as an
input, besides meteorological parameters and O3

concentrations for the previous day. Inal (2010) used,
as additional input parameters, measured concentrations
of seven air pollutants (SO2, PM10, CO, NO, NO2, CH4,
NMHCs) as additional input parameters to forecast
1hO3 in Istanbul, Turkey, while Kocijan et al. (2016)
additionally used four air pollutants (NOx, NO2, SO2,
and CO) to forecast 1hO3 and 8hO3 at mobile stations in
five Slovenian cities. Inal (2010) reported RMSE be-
tween 10.9 and 11.6 μg m−3, MAE between 8.1 and
9.3 μg m−3, R between 0.89 and 0.90, and d between
0.94 and 0.95. The values of RMSE found by Kocijan
et al. (2016) ranged from 14.6 to 17.4 μg m−3 for 1hO3,
and from 13.4 to 15.9 μg m−3 for 8hO3. When we
compared the RMSE and MBE by our models to the
RMSE and MBE given by Inal (2010), we found slight-
ly lower but comparable results, and similar R and d.

Table 1 Input parameters for the final models ranked according to ratio sensitivity quotients (RSQ), where t + 1 means values on the
forecast day, while t presents values on the day preceding the forecast

Rank 1hO3 8hO3

Dnevnik Liman Dnevnik Liman

Input variable RSQ Input variable RSQ Input variable RSQ Input variable RSQ

1 Tmax(t+1) 2.67 Tmax(t+1) 3.25 8hO3(t) 3.48 Tmax(t+1) 3.85

2 1hO3(t) 2.64 GR(t+1) 2.29 GR(t+1) 1.79 8hO3(t) 2.14

3 Tav(t+1) 1.44 1hO3(t) 1.69 GR(t) 1.46 GR(t+1) 1.94

4 GR(t+1) 1.43 Tmax(t) 1.39 RH(t+1) 1.27 Tmax(t) 1.57

5 GR(t) 1.21 RH(t+1) 1.19 Tmax(t+1) 1.21 RH(t+1) 1.35

6 RH(t+1) 1.20 Tav(t+1) 1.14 Tav(t+1) 1.08 Tav(t+1) 1.34

7 P(t) 1.05 Tav(t) 1.07 Tav(t) 1.05 DOY(t+1) 1.07

8 Tmax(t) 1.04 P(t+1) 1.07 P(t+1) 1.04 WS(t+1) 1.07

9 DOY(t+1) 1.04 WS(t+1) 1.06 WS(t+1) 1.03 P(t+1) 1.06

10 WS(t+1) 1.03 P(t) 1.03 P(t) 1.03 GR(t) 1.05

11 P(t+1) 1.03 DOY(t+1) 1.03 RH(t) 1.02 RH(t) 1.03

12 RH(t) 1.03 DOW(t+1) 1.02 DOY(t+1) 1.02 Tav(t) 1.03

13 Tav(t) 1.01 WS (t) 1.01 DOW(t+1) 1.02 P(t) 1.02

14 DOW(t+1) 1.01 RH(t) 1.01 Tmax(t) 1.00 DOW(t+1) 1.01

15 WS (t) 1.00 GR(t) 1.01 WS (t) 1.00 WS (t) 1.01
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When we compared the RMSE by our models to the
RMSE reported by Kocijan et al. (2016), we found
better results. Overall, the comparative results discussed
above show that the forecast quality of our models at
both sites is in accordance with those reported in the
similar studies.

We also compared our models with other non-
neural network models. Moustris et al. (2012) applied
a multiple linear regression model (MLR) against an
ANN to forecast 1hO3 of the forthcoming 24 h in
Athens, Greece, using meteorological parameters and
observed ozone levels of the previous day. The authors
concluded that ANN has limited precedence against
MLR. Performance statistics, R, MBE, RMSE, and d,
for developed MLR were 0.8, − 1.6 μg m−3, 25.5 μg
m−3, and 0.89, respectively. Salazar-Ruiz et al. (2008)
applied three non-neural network models and three
non-parametric ANN models for forecasting 1hO3 in
Mexico and the USA, using meteorological parame-
ters, and values of several air pollutants for the previ-
ous day (O3, NOx, NO2, NO, and CO2). The authors
also concluded that the results of non-parametric
models are better than those obtained with parametric

and semiparametric techniques. Salazar-Ruiz et al.
(2008) reported RMSE between 16.0 and 19.6 μg
m−3, MAE between 11.3 and 13.1 μg m−3, R between
0.52 and 0.59, and d between 0.71 and 0.72, for non-
neural-network models. When we compared statistical
parameters of our models with parameters of non-
neural network models, we found significantly better
results, which confirm the advantages of neural net-
work. One of the main advantages is that ANN enables
the modeling of non-linear complex relationships with-
out the need for mathematical representations. Howev-
er, neural ANN requires a large amount of input pa-
rameter data to cover a wide range of results’ predic-
tion possibilities.

Scatter plots of measured maximum daily O3 con-
centrations against predicted concentrations are given in
Fig. 4 for the training and testing datasets, while the
courses of measured and predicted values during the
summer season are given in Fig. 5. The time series of
measured versus predicted concentrations show that the
predicted values are in a good agreement with the ob-
served ones. According to Fig. 4, the measured daily
maximums, 1hO3 and 8hO3, are higher at the

Table 2 Performance measures at two air quality monitoring stations for predictions of the 1-h daily maximum and the 8-h daily maximum
concentrations

Dnevnik Liman

Training Testing Validation All Training Testing Validation All

1-h daily maximum concentration (1hO3)

Performance indicator MBE 0.000 − 0.004 0.005 − 0.289 0.116 − 0.383 − 0.565 − 0.060

MAE 12.114 11.946 12.149 12.094 9.122 9.299 10.101 9.295

RMSE 15.535 15.254 15.926 15.553 12.163 11.716 12.962 12.221

R 0.889 0.898 0.899 0.891 0.930 0.936 0.911 0.981

d 0.938 0.937 0.940 0.939 0.962 0.966 0.953 0.962

Architecture 15-29-1 15-4-1

Activation function Hidden Exponential Exponential

Output Tanh Logistic

8-h daily maximum concentration (8hO3)

Performance indicator MBE 0.021 − 0.442 − 1.126 − 0.218 0.000 − 0.005 − 0.001 − 0.152

MAE 10.495 10.915 10.614 10.575 8.026 8.296 8.574 8.148

RMSE 12.163 11.716 12.962 13.445 10.201 10.158 10.741 10.278

R 0.900 0.900 0.910 0.904 0.946 0.951 0.936 0.993

d 0.947 0.941 0.948 0.948 0.971 0.973 0.966 0.971

Architecture 15-26-1 15-7-1

Activation function Hidden Exponential Exponential

Output Identity Logistic
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background station Liman (averages are 89.1 μg m−3

and 79.6 μg m−3, respectively) than at the traffic station
Dnevnik (averages are 65.2 μg m−3 and 54.4 μg m−3,
respectively). This situation is a result of the effect of
intense local conversion (NO into NO2 by O3) in areas
with high concentrations of freshly emitted NO, such as
areas with heavy traffic (Pison and Menut 2004; Liu
et al. 2007) The average values of forecasted O3 con-
centrations at both stations are similar to measured
averages, with differences lower than 0.3 μg m−3.

To determine if the differences between observed and
predicted data are statistically significant, we performed
the D’Agostino normality test which describes normal-
ity in a way that combines the test for skewness and
kurtosis. The analysis of the data given in Table 3 shows
that the distribution of data at both stations is not normal
because the p value of the test is lower than the signif-
icance of α = 0.05. Therefore, to determine if there is a
statistically significant difference between observed and
predicted O3 values, we used non-parametric two-

Fig. 4 Scatter plots of observed versus predicted O3 levels. a Dnevnik 1hO3. b Liman 1hO3. c Dnevnik 8hO3. d Liman 8hO3
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sample Kolmogorov–Smirnov test with significance
level 0.05. The statistical comparison between observed
and predicted data presented in Table 3 reveals that the
difference between measured and predicted data is not
significant.

Air pollution models commonly have fairly good
ability to predict middle-range values of O3

concentrations. However, many of them have a tenden-
cy to overestimate low values and underestimate high
values (Comrie 1997; Niska et al. 2004). Therefore, we
decided to examine the performance of our models to
predict days with values over a certain threshold,
modeled on the manuscript by Tsai et al. (2009). We
have defined thresholds based on WHO guidelines and
recommendations, which aim to provide guidelines for
reducing adverse health impacts. The value of 100 μg
m−3 was used for 8hO3 threshold, while the value of
90 μg m−3 was used for 1hO3 threshold. We classified
all days into those in which the threshold was exceeded
and those in which there was no exceedance, and then,
we calculated the ability of the model to predict whether
the threshold will be exceeded. Results are presented in
Table 4. It can be seen that all four models have high
accuracy to classify days on those with threshold
exceedances and those with non-exceedances. When it
comes to the ability of a model to predict days with
threshold exceedance, three out of the four models can

Fig. 5 The courses of measured and predicted ozone concentration values for the summer season. a Dnevnik 1hO3. b Liman 1hO3. c
Dnevnik 8hO3. d Liman 8hO3

Table 3 Results of the D’Agostino normality test and the two-
sample Kolmogorov–Smirnov test

D’Agostino
normality test

Kolmogorov–Smirnov
test

Observed Predicted Observed vs predicted
p value p value p value

1hO3 Dnevnik 0.000 0.000 0.422

Liman 0.002 0.000 0.814

8hO3 Dnevnik 0.000 0.000 0.164

Liman 0.000 0.000 0.582
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accurately forecast more than 75% cases. The lowest
ability to predict exceedance has a model for 8hO3 at
station Dnevnik (51.4%). The relatively small number
of days with exceedances of the O3 threshold at this
station (only 9.9%) is the reason for the lower accuracy
because rarer events are more difficult to predict.

Conclusions

This work demonstrates the generation and use of neural
network models for predicting one day ahead of daily
maximum 1-h O3 concentration and daily maximum 8-h
average ozone concentrations at the two monitoring
sites in the city of Novi Sad, Serbia. Neural network
models were generated using historical meteorological
parameters and O3 concentrations for the day before
forecasting day and predicted values of meteorological
parameters for the forecast day. This study is based on
observational data from two urban stations (traffic and
background) in a period of five years.

The analysis revealed that the most important predic-
tors for O3 forecasting are air temperature and global
radiation on the forecast day, as well as O3 concentration
on the day preceding the forecast. The modeled data and
actual observations were found to be consistent in both
traffic and background stations. The statistical test
showed that there is no statistically significant difference
between measured and predicted data. The results
showed that the quality of our models’ comparable with
the quality of models of similar studies around the
world. The forecasts of days with values over a certain
threshold revealed very good statistical consistency with
the measured data.

This investigation shows that the feedforward neural
network approach is well-suited for modeling daily
maximum 1-h O3 concentration neural and daily maxi-
mum 8-h average O3 concentration at traffic and back-
ground urban stations in Novi Sad, Serbia. Future work

in this area should focus on examining the merit of
including O3 precursors in modeling and increasing
the time frame for the forecast to 48 h ahead.

Data Availability Data and material are available at Serbian
National AirMonitoring network and Republic Hydrometeorolog-
ical service of Serbia
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