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Аbstrаct: 
 This work describes the investigation of the final flotation waste (FFW), originating 
from the RTB Bor Company (Serbia), as the main component for the production of glass-
ceramic materials. The glass-ceramics was synthesized by the sintering of FFW, mixtures of 
FFW with basalt (10%, 20%, and 40%), and mixtures of FFW with tuff (20% and 40%). The 
sintering was conducted at the different temperatures and with the different time duration in 
order to find the optimal composition and conditions for crystallization.The increase of 
temperature, from 1100 to 1480°C, and sintering time, from 4 to 6h resulted in a higher 
content of hematite crystal in the obtained glass-ceramic (up to 44%). The glass-ceramics 
sintered from pure FFW (1080°C/36h) has good mechanical properties, such as high 
propagation speed (4500 m/s) and hardness (10800 MPa), as well as very good thermal 
stability. The glass-ceramics obtained from mixtures shows weaker mechanical properties 
compared to that obtained from pure FFW. The mixtures of FFW with tuff have a significantly 
lower bulk density compared to other obtained glass-ceramics. Our results indicate that FFW 
can be applied as a basis for obtaining the construction materials. 
Keywords: FFW; Sintering; Glass-ceramics; Phase composition; Microstructure; 
Mechanical properties. 
 
 
 
1. Introduction 
 
 The extraction of copper, especially flotation enrichment and pyrometallurgical 
processing of the copper concentrates, generates waste materials [1]. Such waste material is a 
major source of environmental pollution. According to data obtained by RTB Bor Company, 
the total amount of smelting slag waste deposited at the landfill is about 16 million tons [2, 3]. 
In addition, a copper smelter in Bor (Serbia) every day produces additional 700-1000 tons of 
waste slag with an average copper content of about 0.75% [2, 3]. Furthermore, the mass of the 
flotation tailings, located near Bor town, is estimated at about 27 million tons, with an average 
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copper content of about 0.2-0.4% [2, 3]. 
 These materials are with ferro-silicate composition, so that, the possibility of the 
utilization is of great importance, not only with the aim of reducing the industrial waste but 
also as a potential raw material for the new technologies. 
 The glass-ceramic materials obtained from the industrial wastes, rich in iron and glass 
were explored by many authors. Vitrification of a hazardous iron-rich waste from copper [4, 
5] and zinc industry [6], provide chemically stable glass-ceramic materials with significantly 
better performance compared to traditional ceramic and natural building materials. The 
concrete which is the major material in the construction industry made with waste copper slag 
also affects the cost of construction comparable to pure concrete [7]. 
 The blast furnace slags were used as additives to cementitious materials [8, 9] as well 
as to construction materials [9, 10]. The aluminosilicate glass with a low dielectric constant 
and dielectric losses [11] is obtained by mixing such slags with quartz sand. On the basis of 
glass from the Electric Arc Furnace Slag (EAFS) from 'Ezz Steel' in Egypt, the glass-ceramic 
material was obtained by heating at the temperature 850-870°C for 0.5 to 1h [12]. In addition, 
the glass-ceramic materials with excellent glaze characteristics were obtained by vitrification 
of the furnace slag from steel industry (BFS), thermal power plants ashes (FA), K- feldspar, 
and borax [13].  
 Basalt is an important raw material for the development of glass-ceramics as it is 
cheap, present in significant quantities, possess high chemical resistance, resistance to wear, 
and corrosion [14, 15]. The glass-ceramic materials with basalt and iron-rich glass similar 
basalt compositions have been developed for nuclear waste immobilization [16] and for 
vitrification industrial wastes which are environmental pollutants [3, 17-22]. The material of 
high crystallinity and good mechanical properties is obtained by sintering the pressed (100 
MPa) alkali basalt tuff in the temperature range from 1000 to 1140°C [23]. By crystallization, 
the molten basaltic glass (basalt from the locality Vrelo Kopaonik, Serbia), at the temperature 
of 950°C over a period of 3h, the glass-ceramic material with dendritic structure was 
synthesized [14].  
 The application and use of zeolite tuffs for lightweight construction stone are known 
for centuries [24]. Especially, zeolite clinoptilolite (Ca, Na, K)2-3 Al3 (Al, Si)2 Si13 O36 • 12 
(H2O), has been widely used in construction [24] as pozzolan in the cement production [25-
27]. It was used as an additive to the composition of concrete mixtures [28, 29] to obtain 
lightweight concrete or as heat-insulating material [30]. 
 The material obtained by melting the mixture of copper flotation slag (30%), blast 
furnace slag (30%) and zeolitic tuff (40%), has a high degree of crystallization, suitable for 
the production of glass-ceramic [4]. 
 This paper describes the research of potential application of FFW for obtaining the 
glass-ceramic materials.The glass-ceramics was synthesized by sintering the FFW (RTB Bor, 
Serbia), and FFW mixture with basalt (Slavujevac near Presevo, Serbia) and with tuff (Igros 
near Brus, Serbia). In order to find the optimal composition and conditions for the 
crystallization, the sintering was done at the different temperatures and with the different time 
duration. The other aims of our research were to correct the dynamics of liquid phase 
development, to lower the sintering temperature, sintering interval, and density. 
 
 
2. Experimental 
2.1. Material and methods 
 
 To complete valorization of copper, copper smelter slag is further processed in the 
flotation plant. At the beginning, the slag is chopped (grain size below 12 mm) and then 
ground, first in the mill with rods (up to 2-3mm), then in the ball mill (60% of the grains finer 
than 74μm). The product of grinding is subjected to the flotation. As a product of the flotation 
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process, copper concentrate is extracted in the form of pulp. Waste material from the flotation 
process is transported to the thickeners and after thickening deposited in the flotation tailings. 
 The FFW was sampled at the flotation output prior to transport to the landfill. To 
examine the applicability of FFW the appropriate tests were carried out that can be divided 
into two groups. The first group of tests included the characterization of starting materials 
(FFW, basalt, and tuff). This means the examination of phase composition and thermal 
properties (interval of sintering, softening and melting). The second group of tests included 
obtaining and characterization the obtained glass-ceramics. 
 The sintering temperature was projected based on the thermal properties of starting 
materials and the data from the following references [4, 5, 23, 31-33]. 
 The glass-ceramic materials were synthesized by sintering the samples in the 
presence of a liquid phase. The FFW sintering interval is difficult to control, so the addition of 
filler is necessary. The physical properties of filler (tuff or basalt) should serve to improve the 
properties of the final product whilst FFW should provide a liquid phase for sintering. 
 The phase composition was determined by X-ray powder diffraction (XRPD). The 
diffraction patterns were obtained using a Siemens D500 diffractometer. The phases ratio has 
been determined by the Powder Cell (PCW) software using structural models of magnetite 
[34], fayalite, hematite, and maghemite [35-37]. 
 The chemical composition of FFW is determined by X-ray fluorescence analysis 
(XRF PANalytical Axios Spectrometer). The microstructure of the synthesized glass-ceramic 
has been tested on JEOL JSM-6610LV Scanning Electron Microscope (SEM). Samples were 
covered with carbon using BALTEC-SCD-005 Sputter coating device and recorded under 
conditions of high vacuum. LaB6 filament was used as a source of electrons. Chemical 
analyzes of all samples were performed on energy-dispersive spectrometer type X-Max Large 
Area Analytical Silicon Drift (Oxford). All samples were vaporized with carbon at BALTEC-
SCD-005 vaporizer. The thickness of carbon layer was 18 nm. The optical microscopy 
observation was done on the LEITZ-ORHTOPLAN Wetzlar microscope (missed light) (OM). 
 To test the thermal properties of the FFW, powder sample is dry pressed under a 
pressure of 60 MPa in a mold (cube 4x4x4 mm). Intervals of sintering, softening and melting 
of the cube samples were determined by thermomicroscope Carl Zeiss - Jena equipped with 
video system and digital camera (Canon PRO-1) for the automatic recording and monitoring. 
The changes of the sample were monitored and recorded in the temperature range between 20 
and 1500°C.  
 The characteristics of the synthesized glass-ceramic bodies obtained from FFW, T20 
and T40 (1080°C/36h), and from P20, and P40 (1000°C/48h) were evaluated by measuring 
the bulk density, hardness, propagation speed of the longitudinal ultrasound waves and the 
resistance to thermal shock (successively raising the temperature up to 800°C). The changes 
in hardness and propagation speed were monitored before and after the thermal shocks. The 
hardness is determined using a Vickers durometer Meopta PRAHA. The propagation speed 
was measured by the Krautkramer-UDP-1 (Iskra), using the probes: MB 4 S - N and B 2S-N. 
 
 
3. Results and Discussion 
3.1. Characterization of the starting materials 
 
 The chemical and phase composition of the starting materials (FFW, basalt, and tuff) 
is shown in Tab. I. The most present components in the chemical composition of FFW are 
iron oxides and silicon while in basalt and tuff are oxides of silicon and aluminum. 
 According to X-ray powder diffraction analysis, the major mineral phases of FFW are 
magnetite and fayalite, basalt consists of albite, diopside, K-feldspar, and leucite while tuff 
consists of clinoptilolite, plagioclase, biotite, and smectite [3]. The phase composition of FFW 
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(Tab. I) is calculated based on the XRPD using Rietveld analysis and chemical composition, 
using the theoretical, stoichiometric formulas for fayalite and magnetite. FFW consists of 
fayalite (40%), magnetite (25% ) and glass (35%).  
 
Tab. I Chemical and phase composition of starting material. 
 

Share (%) 
FFW Basalt Tuff Oxides 

 Mt Fy Glass   
SiO2 34.27 - 13.64 20.63 54.35 57.91 
TiO2 0.36 - - 0.36 1.08 0.54 
Al2O3 4.89 - - 4.89 15.86 11.44 
Fe2O3 52.10 25.34 25.97 0.78   
FeO  - -  6.44 4.54 

Mn3O4 0.07 - - 0.07   
MgO 0.79 - - - 6.19 1.47 
CaO 4.58 - 0.79 4.58 7.86 5.11 
Na2O 0.31 - - 0.31 3.7 0.95 
K2O 1.2 - - 1.22 3.84 0.72 
P2O5 0.07 - - 0.07   
SO3 0.5 - - 0.5   
CuO 0.49 - - 0.49   
ZnO 0.79  - 0.79   
H2O+      14.43 
H2O-      3.6 

sum % 100.44 25.34 40.4 34.7 99.32 100.71 
Phase composition Fy, Mt, glass    Ab, Dy, Kf, Lc Kp, Pl, By, Sm 

Legend: FFW - Final flotation waste, Fy - fayalite (Fe2SiO4), Mt - magnetite (FeFe2O4), Ab - albite (NaAlSi3O8), 
Dy - diopside (CaMgSi2O6), Kf - K feldspate, Lc - leucite, Kp - clinoptilolite (Ca,Na,K)2-3 Al3(Al,Si)2 Si13 O36 x 
n(H2O), Pl - plagioclase, By - biotite (K(Mg,Fe)3AlSi3O10(OH,F)2), Sm – smectite.
 
 Thermal characteristics of starting materials are shown in Tab. II and in Fig. 1 
(temperature changes 12 °C/min). The lowest start and end of sintering temperatures are 
observed for FFW. The sintering interval of basalt is narrow (1068 - 1120°C) in comparison 
with FFW. 

 
Fig. 1. Changes in volume of starting materials as a function of temperature. 

 
Clinoptilolite is the dominant mineral in tuff. The dehydration of clinoptilolite causes 
shrinkage (2%) in the temperature range from 240 to 350°C. The collapse of the clinoptilolite 
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structure causes great contractions in the temperature range from 850 to 950°C. The 
development of liquid phase started at 1140°C (start of sintering). The end of sintering occurs 
at 1160°C, with the test body deformation. The sintering interval of tuff is the narrowest in 
comparison with the other starting materials as well the change of volume. 

 
3.2. Synthesis of glass-ceramics from the glass frit of FFW  

 
 In order to obtain a frit, the sample of FFW is thermally treated at 1300°C, for 2-4h, 
then rapidly cooled in water, and pulverized in the vibrating mill. Thereafter samples were 
sintered at 1100 °C/4h, 1150 °C/4h, and 1480 °C/6h. 
 Sintering the frit of FFW at a temperature of 1100°C, for 4h, resulted in glass-
ceramics with bubble structure (Fig. 2). This is due to the emanation of gases caused by 
thermal treatment. Such structure has good insulating properties. 
 

 
 

Fig. 2. Macro photographs of the glass-ceramic samples obtained from the glass frit of FFW 
at 1100oC/4h. 

 
 Diffraction patterns of synthesized glass-ceramics (1100 °C/4h, 1150 °C/4h, and  
1480 °C/6h) are shown in Fig. 3. Because of the intensive oxidation, magnetite is transformed 
into the hematite [9, 38] while fayalite is transformed into the hematite and amorphous glass 
[9, 39]. 

 
 

Fig. 3. X-ray powder diffraction diagrams of glass-ceramics obtained from the glass frit of 
FFW at 1100 °C/4h, 1150 °C/4h, and 1480 °C/6h.
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 The microstructure of synthesized glass-ceramic consists of the glass and crystals of 
hematite. The glass-ceramic obtained at 1100 °C/4h and 1150 °C/4h (Fig. 4) consists of solid 
solution where two phases are observed: hematite and magnetite. The crystals are anhedral, 
rarely subhedral, with a diameter generally below 10 μm. At 1480 °C/6h (Fig. 4) the viscosity 
drops and the glass spills.When the glass is at the point of spillage it causes oxidation of Fe2+ 
to Fe3+ [17, 40-42], resulting in changes in the chemical composition of surface and 
subsurface layers. At that moment, the surface is to the greatest extent exposed to oxidation, 
and hematite development culminating in a large number of euhedral crystal whose content 
reaches 44%. 
 The average content of crystal phases of synthesized glass-ceramic is determined by 
digital image analysis of at least 10 digital images per each temperature of interest (Fig. 4). 
The content of the hematite at 1100 °C/4h is 26.7%, at 1150 °C/4h is32 %, while at 1480 
°C/6h is 44%. By changing the conditions of heat treatment and cooling modes microstructure 
and properties of products can be controlled and desirable glass-ceramic materials can be 
produced [4, 5]. 
 

 
 

Fig. 4. The average content of crystals in the glass-ceramics sintered from the glass frit of 
FFW with examples of the analyzed digital images. 

 
3.3. Synthesis of glass-ceramic from mixtures: P10, P20, P40, T20, and T40 at 
1260 °C/7h 
 
 To obtain glass-ceramics with the improved properties in comparison with those 
obtained from FFW, the mixtures of FFW with basalt (P10, P20, and P40) and tuff (T20 and 
T40) were heated at a temperature of 1260°C for 7h. Such obtained glass-ceramics consists of 
a vitreous phase and the iron-oxide crystals (as shown in Fig. 5). In some crystals, the zone 
separation is observed which indicates a difference in Fe distribution between the dark and the 
light gray zone. Such morphology is a typical for the hematite crystals, due to subhedral 
rhombohedral crystals. In addition to chemical variations, structural variations are also 
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observed. The hematite, magnetite, and maghemite are identified by X-ray powder diffraction 
as shown in Fig. 6.  
 In glass-ceramics obtained from P10 (Fig. 5a), iron-oxide crystals appear in small, 
anhedral, rarely subhedral forms. Also, such crystals can be observed in the form of small 
rounded crystals, connected into dendrites [43]. 
 In glass-ceramics obtained from P20 (Fig. 5b) and P40 (Fig. 5c), individual iron oxide 
crystal appears in the subhedral and euhedral rhombohedral form. Dendritic aggregates, 
however, are very widespread.  
 In glass-ceramics obtained from T20, the iron-oxide crystals (Fig. 5d) appear in the 
form of dendritic aggregates. Such microstructure of glass was also reported by M. Romero 
and J. Ma. Rincon [44]. In glass-ceramics obtained from T40, the iron-oxide crystals (Fig. 5e) 
form dendrites which are concentrated in one part of the sample while in another part of the 
sample they appear as individual crystals.  
 

 
Fig. 5. Microphotography (SEM) of the glass-ceramics obtained from: a) P10, b) P20, c) P40,  

d) T20, and e) T40.  

 
 

Fig. 6. X-ray powder diffraction diagrams of the obtained glass-ceramics.  
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 The changes in dimensions of the samples caused by heating are given in Tab. II and 
shown in Fig. 7. The heating mode is the same as for the starting material samples               
(12 oC/min). 
 
Tab. II Thermal characteristics of starting materials and mixtures.  
 

Samples 
Starting materials FFW mixtures with basalt FFW mixtures 

with tuff 
Thermal 

characteristics 
FFW Basalt Tuff P10 P20 P40 T20 T40 

Start of 
sintering (oC) 900 1068 1140 1095 1095 1090 

1118 1080 1080 

End of 
sintering (oC) 1090 1120 1160 1120 1120 1120 1160 1160 

Interval of 
sintering (oC) 190 52 20 25 25 30 

2 80 80 

Change in 
volume (%) 13 7.8 5.5 13 13 10 7 7 

 
 

 
Fig. 7. Changes in the volumes of starting materials and mixtures as a function of 

temperature: 
a) FFW, basalt, P10, P20 and P40, b) FFW, tuff, T20, and T40. 

 
 Basalt and tuff have higher temperatures of start and end of sintering, but less volume 
changes and narrower sintering interval, compared to FFW. 
 The sintering of two mutually separated systems is observed in P40, defined by 
volume minimums at 1090°C (7.4%), and 1120°C (8.8%). Their volume minimums coincide 
with the end of sintering temperatures of pure FFW and basalt. The contraction of 
components is proportional to their participation in the mixture. The observed difference of 
2% (1090°C to 1118°C) between the theoretical and measured contraction is caused by 
dilatation, due to the limited penetration of the liquid phase of FFW in the pore space of basalt 
particles. The sintering of basaltic particles starts with the development of the liquid phase at 
1118°C and the sintering process ends very fast at the 1120°C. 
 In P10 and P20 mixtures, the fall of contraction kinetics in the temperature range 
from 1065oC to 1095oC is observed. Because of the relatively low concentrations of basalt 
(10-20%), the pore space is mainly from FFW particles. Therefore the total amount of 
shrinkage is similar to that of pure FFW. The reaction between fluid phases of two 
components moves the end of sintering to a higher temperature. 
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 Mixtures T20 and T40 do not exhibit contraction caused by the collapse of the 
structure of clinoptilolite in the temperature range from 850°C to 900°C that occurs in pure 
tuff. The effect is absent because the temperature interval coincides with the development of 
liquid phase of FFW. The reaction of FFW liquid phases with clinoptilolite does not allow a 
structural collapse. The start of sintering for both mixtures occurs at the end of the sintering 
temperature of FFW (1080°C). The end of sintering temperatures for both the mixtures 
coincides with the end of the sintering temperature of pure tuff (1160°C). 

 
3.4. Synthesis of glass-ceramics from FFW, T20, T40, P20 and P40 
 
 The lozenges were made from each sample (FFW, P 20, P 40, T20, and T40) by 
putting the 35g of sample into the cylindrical mold (3 cm in diameter) that are pressed at a 
pressure of 70 MPa. Such prepared samples were sintered in an electric furnace at a 
temperature of 1080°C for 36h. Synthesized glass-ceramic is shown in Fig. 9. Samples P20 
and P40 exhibit a complete deformation so they have been sintered again. In order to avoid 
excessive development of the liquid phase that samples were sintered at the temperature of 
1000°C for 48 h (Fig. 8). 

 

 
Fig. 8. Samples sintered at: 1080 oC/36h (above), and 1000 oC/48h (below). 

 
 Characteristics of the sintered glass-ceramic bodies were evaluated by measuring: 
bulk density, Vickers hardness, propagation speed of  the longitudinal ultrasound waves and 
exposure to thermal shocks (samples were heated to 110 °C/1h, 200 °C/1h, 400 °C/1h and 800 
°C/1h, and then cooled in water at temperature from 15°C to 20°C). The changes in hardness 
and propagation speed were measured during the thermal shock tests. 
 The densities of the sintered samples of FFW, P20, P40, T20, and T40 were 3.06, 2.9, 
3.1, 2.4 and 2.5 respectively.  
 By observing the propagation speed the sintered samples can be classified into two 
groups (Fig. 9a). The first group consisted of samples: FFW (4500 m/s), T20 (4150 m/s), and 
T40 (4100 m/s). By observing the FFW sample, the propagation speed decreases slowly up to 
a temperature of 400°C. Above this temperature, the rapid decline of propagation speed is 
observed. By contrast, observing the T40 and T20 samples, the propagation speed decreases 
at temperatures of 200°C, and at 100°C, respectively, after which decreases linearly up to the 
temperature of 800°C (Fig. 9a).  
 The second group of samples consists of P20 (2080 m/s) and P40 (2230 m/s)        
(Fig. 9a). Concerning the P20 sample, almost constant propagation speed is observed up to 
thermal shock at 400°C. By contrast, the P40 sample propagation speed suddenly drops after 
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200°C. For this group, the measurement of the propagation speed was impossible after the 
thermal shock at 400°C due to a permeability drop (dotted line in the Fig. 9a). This indicates 
the presence of a discontinuity that disseminates ultrasound waves. This samples becoming 
impermeable for ultrasound waves, indicating that FFW significantly better reacts during the 
sintering with the tuff particles, compared to basalt. 
 The measurement of Vickers hardness supports a finding that the glass-ceramics 
sintered from FFW are a very hard material. The hardness of the sintered glass-ceramics is 
10800 MPa, whilst the hardness of glass is 5000 – 10000 MPa 
(http://www.dynacer.com/properties/hardness). The hematite crystals, occurring in the 
sintering process, certainly contribute to such high values of the hardness of the sintered 
glass-ceramics. The hardness of sintered glass-ceramics rapidly decreases (from 10800 to 
1730 MPa) under the thermal shocks. Other samples showed much lower hardness (Fig. 9b) 
with negligible changes in hardness under the thermal shocks. 

 

 
 

Fig. 9. a) The propagation speed of longitudinal ultrasound waves as a function of 
thermal shock temperature, b) Measured Vicker's hardness as a function of thermal shock 

temperature. 
 

The glass-ceramics sintered from the mixtures express smaller changes under the thermal 
shocks compared with the glass-ceramics sintered from FFW. It also testifies to the different 
strengths of the connection between the sintered particles in samples with the different 
composition. The bond strength between the sintered particles predominantly depends on the 
composition of the liquid phase. The FFW has a hardness that is much higher than of sintered 
tiles (4240 MPa) [3] and retains its property up to the thermal shock of 600°C (Fig. 10b). 
Therefore, the glass-ceramics sintered from FFW could be used in the construction industry 
where thermal stability at 200°C or 400°C is required. The mixtures of FFW with tuff and 
basalt would also find the application in this fields, particularly in areas where good sound 
insulation is required. 

 
 

4. Conclusions 
 

 In this work, the investigation of FFW, originating from the RTB Bor Company 
(Serbia), as the main component for the production of new glass-ceramic materials is 
described. It was confirmed that FFW consists of fayalite (40.4%), magnetite (25.3%) and 
glass (34.7%). The glass-ceramics was synthesized by the sintering of pure FFW, from a 
mixture of FFW with basalt (10%, 20%, and 40%) and tuff (20%, and 40%). The sintering 



M. Cocić et al./Science of Sintering, 49 (2017) 431-443 
___________________________________________________________________________ 

 

441
 

was done at the different temperatures and with the different time duration in order to find the 
optimal composition and conditions for the crystallization.  
 The glass-ceramic material obtained by sintering the pressed glass frit of FFW at a 
temperature of 1100°C, and 1150°C, for 4h, has bubble structure and consists of a vitreous 
phase and hematite crystals. Sintering the pressed glass frit of FFW at 1480°C for 6h resulting 
in glass-ceramics rich of large rhombohedral crystals of hematite (44%). With the increase of 
temperature and time of sintering, a higher content of crystals is obtained. It confirmed that by 
changing the conditions of heat treatment and cooling modes microstructure and properties of 
products can be controlled and desirable glass-ceramic materials can be produced. 
 The glass-ceramic material obtained by sintering the mixture of FFW and basalt or 
FFW and tuff at a temperature of 1260 °C/7h, consists of a vitreous phase and the iron-oxide 
crystals, which are often euhedral, and appears in the form of dendrites. The iron-oxide 
crystals are maghemite, magnetite, and hematite. 
 The glass-ceramic material obtained by sintering the compacted samples of FFW at 
1080 °C/36h, has excellent mechanical properties (high propagation speed (4500 m/s) and, 
Vickers hardness (10800 MPa) and very good thermal stability. The glass-ceramic materials 
obtained by sintering the compacted samples of mixtures (T20, and T40 at 1080 °C/36h, P20, 
and P40 at 1000 °C/48h) have worse mechanical properties compared with the glass-ceramics 
sintered from pure FFW. FFW reacts better with tuff particles than with particles of basalt. 
The relatively low-shrinkage of mixtures of FFW with tuff (about 7%) enables reliable shape 
control of the final products. Test results indicate that FFW can be applied as a basis for 
obtaining the construction materials. 
 A very good resistance to thermal shocks shows that it can be also applied in other 
industrial areas, that requires additional tests. By adding alkali-rich materials the melting 
point lowers so that further tests should be also continued in that direction. 
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Садржај: У раду је испитана могућност примене дефинитвне флотацијске јаловине 
пореклом из компаније РТБ Бор (Србија) за производњу нових материјала из групе 
стаклокерамике. Синтетисана је стаклокерамика синтеровањем: из дефинитвне 
флотацијске јаловине, мешавина дефинитвне флотацијске јаловине са базалтом (10%, 
20% и 40%) и мешавина дефинитвне флотацијске јаловине са туфом (20% и 40%) на 
различитим температурама и различитом времену, да би се нашао оптимални састав 
и услови кристализације за добијање применљивог материјала. 
Резултати указују да се са повећањем, температуре (са 1100 на 1480°C) и времена 
синтеровања дефинитвне флотацијске јаловине (са 4 на 6h), добија стаклокерамика са 
већим садржајем кристала хематита (44%). Стаклокерамика од чисте дефинитвне 
флотацијске јаловине (синтерована на 1080°C у току 36h) испољава добре механичке 
особине, које се огледају у великој брзини простирања ултразвучних таласа (4500 m/s) 
и тврдини по Викерсу (10800 МPа), а уз то је и отпорност на термошок веома добра. 
Механичке особине синтетисане стаклокерамике из мешавина дефинитвне 
флотацијске јаловине са базалтом (1000 °C/48h) и мешавине дефинитвне флотацијске 
јаловине са туфом (1080°C у току 36h) су скромније. Мешавине са туфом имају 
знатно мању запреминску масу. Стога се дефинитвнa флотацијскa јаловинa може 
примењивати као основа за добијање грађевинског материјала. 
Кључнe рeчи: дeфинитивнa флoтaциjскa jaлoвинa, синтeрoвaње, стакло-керамика, 
фазни састав, микроструктура, механичке особине. 
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