
GRAPH DECOMPOSITION ALGORITHMS FOR ANALYZING SOCIAL AND
LARGE COMPLEX NETWORKS

WALI MOHAMMAD ABDULLAH
Master of Science, IICT, Bangladesh University of Engineering and Technology, 2014

A thesis submitted
in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

THEORETICAL AND COMPUTATIONAL SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

© Wali Mohammad Abdullah, 2022

GRAPH DECOMPOSITION ALGORITHMS FOR ANALYZING SOCIAL AND
LARGE COMPLEX NETWORKS

WALI MOHAMMAD ABDULLAH

Date of Defence: June 09, 2022

Dr. S. Hossain Professor Ph.D.
Supervisor

Dr. R. Benkoczi Professor Ph.D.
Committee Member

Dr. M. Khan Chief Tech Officer Ph.D.
Committee Member

Dr. P. Ghazalian Associate Professor Ph.D.
Internal External Examiner

Dr. W. Haque Professor Ph.D.
External Examiner
University of Northern British
Columbia, Prince George, BC

Dr. W. Osborn Associate Professor Ph.D.
Chair, Thesis Examination Com-
mittee

Dedication

To my parents for all their support and sacrifices

To my wife for being with me through the good and bad stuff

To my son for making my world beautiful

iii

Abstract

Graphs are often used to model or represent large and sparse networks with billions of

vertices and edges and store extensive amounts of structural and semantic information.

Therefore, analyzing characteristics in networked data, such as graphs that can yield im-

portant information on the modelled structure, is challenging due to their linked nature and

size. A common way to uncover this high-quality information is by analyzing subgraphs

to get a deeper understanding of the data, which are helpful for classification, clustering,

and knowledge discovery. This thesis proposes using a compact network data representa-

tion based on sparse matrix data structures. We will consider the enumeration of subgraphs

(edge clique cover problem) with some ordering schemes. Finally, we benefit from the lin-

ear algebraic approach to graph algorithms for counting triangles, triangle enumeration, the

k-count algorithm, and triangle centrality calculation. This thesis will present both serial

and parallel algorithms for solving these problems.

iv

Acknowledgments

First and foremost, I would like to thank the Almighty Allah for giving me the opportunity,

strength, and patience to undertake this research. This work would not have been possible

without His blessing.

I am lucky that I have worked under the supervision of Dr. Shahadat Hossain. The

way he treated me made me feel like he was not my supervisor but my guardian. It may be

difficult for me to work under any supervisor after working with such a great person. Thank

you, Sir, for everything.

I want to express my sincere gratitude to my supervisory committee members, Dr.

Saurya Das, Dr. Robert Benkoczi, and Dr. Muhammad Ali Khan. Their guidance, en-

couragement, and suggestions helped me a lot. Their immense efforts and way of directing

the students of the optimization research group can be a model to others.

Without the encouragement I got from my family, it would not be possible for me to

come this far and go forward. I am very grateful to my parents: Dr. Md Mohiuddin Ab-

dullah & Afsir Begum, my parents-in-law: Late Md Tazul Islam & Joly Akhter, sisters:

Mahmuda & Shahnaz, brothers: Deen & Rafat. I want to thank my wife, Sharmin Islam.

Without her, my life would be a lot more complicated.

I also want to thank all my friends, well-wishers and all the members of the Mathematics

and Computer Science Department. Special thanks to David Awosoga for his collaborations

during my research.

I am thankful to the Alberta Innovates for Technology Futures Graduate Student Schol-

arship, the School of Graduate Studies (SGS), Graduate Students’ Association (GSA), and

the Department of Mathematics and Computer Science for their financial support. A part

v

ACKNOWLEDGMENTS

of our computations was performed on Compute Canada HPC system, and I gratefully

acknowledge their support. I thank Lab2Market-Manitoba and their partners Mitacs and

North Forge for providing me the opportunity for an internship during my Ph.D. studies.

Last but not least, I am also grateful to the researchers for their ideas and contributions

in this field.

vi

Contents

Contents vii

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Motivation . 1

1.1.1 Some Applications . 5
1.1.2 Use in Real Large Complex Networks 6

1.2 Content of the Thesis and Contributions 6

2 Background 11
2.1 Introduction . 11
2.2 Preliminaries . 11

2.2.1 Graph . 11
2.2.2 Set Representation . 15
2.2.3 Clique . 16

2.3 Literature Review . 18
2.4 Conclusion . 27

3 Covering Large Complex Networks by Cliques using Ordered vertices 29
3.1 Introduction . 29

3.1.1 Organization of the Chapter . 31
3.2 Representation of Sparse Graphs . 31
3.3 A Heuristic for Clique Cover . 38

3.3.1 Algorithm . 40
3.4 Numerical Results . 43
3.5 Conclusion . 47

4 Covering Large Complex Networks by Cliques using Ordered Edges 48
4.1 Introduction . 48

4.1.1 Organization of the Chapter . 49
4.2 A Motivating Example . 49
4.3 An Edge-Centric minECC Algorithm . 52

4.3.1 Edge Ordering Techniques . 53
4.3.2 Algorithm . 55
4.3.3 Removing Redundant Cliques . 61

vii

CONTENTS

4.3.4 Assignment Minimum Edge Clique Cover 62
4.4 Numerical Results . 63

4.4.1 Analyzing Clique Size Distribution 65
4.4.2 Covering Index . 70
4.4.3 Runtime Analysis of EO-ECC . 71
4.4.4 Analysis of the Assignment Minimum Edge Clique Cover 75

4.5 Parallel Implementation of EO-ECC . 80
4.5.1 OpenCilk . 82
4.5.2 Edge Clique Cover Algorithm . 85
4.5.3 Parallel Implementation on the OpenCilk 89
4.5.4 Results . 91

4.6 Conclusion . 95

5 Analyzing Large Complex Networks by Counting and Enumeration of Trian-
gles 97
5.1 Introduction . 97

5.1.1 k-count Distribution . 98
5.1.2 Triangle Centrality and Ranking 99
5.1.3 Organization of the Chapter . 101

5.2 Intersection Representation of Network Data 101
5.2.1 Adjacency Matrix-based Triangle Counting 102
5.2.2 Intersection Matrix-based Triangle Counting 103
5.2.3 Data Structure . 104
5.2.4 Local Triangle Count and Edge Support 105
5.2.5 Algorithm . 106

5.3 Numerical Results . 107
5.3.1 Traingle Counting Algorithm . 109
5.3.2 Triangle Counting, Triangle Vertex & Edge degree, and k-Count

Calculations . 111
5.3.3 Triangle Centrality and Ranking 113

5.4 Parallel Algorithms . 116
5.4.1 Basic Triangle Counting Algorithm 117
5.4.2 fullCount Algorithm . 119
5.4.3 Triangle Centrality . 121

5.5 Conclusion . 122

6 Summary and Future Work 124
6.1 Introduction . 124
6.2 Results in “Vertex-centric Edge Clique Cover” 124
6.3 Results in “Edge-centric Edge Clique Cover” 125
6.4 Results in “Triangle Counting & Enumeration” 126
6.5 Future work . 127
6.6 Conclusion . 128

Bibliography 129

viii

List of Tables

3.1 Steps of DGO . 40
3.2 Test Results for Real-World Matrices . 45
3.3 Test Results for DIMACS10 Matrices . 45
3.4 Test Results for SNAP Matrices . 45
3.5 Test Results for Real-World (Compact Letter Displays) Matrices [29] . . . 46

4.1 Test Results (number of cliques) for DIMACS10 Graphs 65
4.2 Relative Difference in Number of Cliques between Conte-Method and EO-

ECC . 68
4.3 Graph Processing Rate (Number of Edges Processed per Sec) 72
4.4 Test Results (run-time) for DIMACS10 matrices 73
4.5 Relative Difference in Number of Nonzeros to Store Clique Cover by using

and without using Post-processing (Assignment Minimum) 75
4.6 Test Results for Parallel Processing . 93

5.1 Comparing Our Intersection Algorithm with miniTri on Large Synthetic
Networks . 109

5.2 Comparing Our Full Count Intersection Algorithm with miniTri1 and mini-
Tri2 on Large Real World Networks . 111

5.3 Test Results of Our Intersection Algorithm without k-count on Dense Brain
Networks . 114

5.4 Test Results of Our Intersection Algorithm without k-count on Large Syn-
thetic Instances from GraphChallenge . 115

5.5 Performance Comparison between GraphBLAS and Our int Algorithm for
Implementing Triangle Centrality . 115

1 Test Results (number of cliques) for Erdos-Renyi and Small-World Graphs 136

ix

List of Figures

1.1 Example of two different graphs having the same number of vertices and
edges. 2

1.2 (a) An undirected graph G, (b) Matrix graph duality 4

2.1 Example of different graphs. 12
2.2 Example of an undirected graph. 12
2.3 Example of a simple directed graph. 13
2.4 Example of a digraph D . 14
2.5 The competition graph of the digraph shown in Figure 2.4 14
2.6 The common enemy graph of the digraph shown in Figure 2.4 15
2.7 The niche graph of the digraph shown in Figure 2.4 15
2.8 A simple graph G . 16
2.9 Example of clique covers . 17
2.10 Equivalent vertices (x,y) . 22

3.1 Example of an undirected graph . 32
3.2 Adjacency representation of graph shown in Figure 3.1 32
3.3 Intersection representation of graph shown in Figure 3.1 33
3.4 Finding adjacency matrix from an intersection matrix 35
3.5 Intersection representation of the edge clique cover of the graph shown in

Figure 3.1 . 36
3.6 CSR data structure of intersection matrix shown in Figure 3.3 38
3.7 CSC data structure of intersection matrix shown in Figure 3.3 38

4.1 An undirected graph G . 50
4.2 An edge clique cover for the graph shown in Figure 4.1. Let, we label the

cliques from left to right and from top to bottom. Therefore, the top-left
clique is Clique-1 and the bottom-right clique is Clique-6 51

4.3 Total nonzeros required to store ECC shown in Figure 4.2 51
4.4 Total nonzeros required to store processed ECC after removing redundant

cliques . 52
4.5 Processed ECC and number of nonzeros 52
4.6 An example of an undirected graph . 54
4.7 Improvement in clique cover size using EO-ECC 66
4.8 Ratio between the time used by Conte-Method and EO-ECC for each graph,

as a function of the number of the edges (y-axis is in log-scale) 72
4.9 Runtime to find clique cover using EO-ECC and to remove redundant cliques

using post-processing method . 74

x

LIST OF FIGURES

4.10 Total merge cost for using FindCommonNeighbors function 79
4.11 Total intersection cost for using GetRowIndex function in AM-ECC 81
4.12 Copy between lists using parallel loop . 84
4.13 Copy between lists using parallel recursive function 85
4.14 OpenCilk implementation of merge operation 86
4.15 Given graph G and its intersection matrix 87
4.16 An example of finding a vertex’s neighbor set from the intersection matrix . 88
4.17 Common neighbor set between vertices 4 and 5 89
4.18 Find neighbor set of vertex 4 using parallel method 89
4.19 OpenCilk implementation of FindNeighbors method 90
4.20 Find common neighbor between vertices 4 and 5 using parallel method . . . 91
4.21 OpenCilk implementation of FindCommonNeighbors method 92
4.22 EO-ECC speedup . 94

5.1 k-count table for the example input graph 100
5.2 Intersection matrix representation of the example input graph 102
5.3 FN and FDC for the example graph . 104
5.4 vertDeg and edgeDeg for the example graph 105
5.5 Comparing our intersection algorithm with both miniTri implementations

on large real-world networks . 108
5.6 Testing our intersection algorithm on networks with billions of triangles . . 110
5.7 Speed-up of brain networks for parallel basic count algorithm 118
5.8 Speed-up of Graph-500 networks for parallel basic count algorithm 118
5.9 Speed-up of selected test instances for ParallelFullCount algorithm 119
5.10 Speed-up of brain networks for ParallelFullCount algorithm with parallel

triangle centrality . 122
5.11 Speed-up of Graph-500 networks for ParallelFullCount algorithm with

parallel triangle centrality . 123

xi

Chapter 1

Introduction

1.1 Motivation

We can store an extensive amount of information using graphs. From these graphs, one

can extract lots of information by analyzing and mining. However, extracting information

from large graphs is challenging due to their sparse nature. Therefore, we see significant

interest in studying and mining data from extensive sparse graphs in the literature.

Analyzing graph properties is the most basic form of graph analysis. This analysis is

related to graph dynamics, such as density, diameter, and clique number of a given graph.

For instance, density measures the interconnectedness of the graph, diameter measures the

distance among vertices in the worst or average case, and clique number corresponds to the

size of the largest complete subgraph in the graph.

In most cases, graph properties are simple numeric values and can be calculated easily.

Unfortunately, these properties do not give the full picture of the information that a graph

can contain. For instance, Figure 1.1 shows that two graphs that are structurally different

can have the same number of vertices and edges. There are different ways for graph de-

composition, but all of them are useful in large network analysis. Now, if we consider the

number of complete subgraphs of a graph, then the two graphs shown in Figure 1.1 give

two different numbers. Identification of special interest groups or characterization of in-

formation propagation are examples of frequently performed operations in social networks

[82] which we can examine through graph analysis.

Analyzing characteristics in networked data, such as graphs can yield important infor-

1

1.1. MOTIVATION

Figure 1.1: Example of two different graphs having the same number of vertices and edges.

mation on the structure being modelled. Identification of, and computation with, dense or

otherwise highly connected subgraphs are two of the kernel operations arising in areas as

diverse as sparse matrix determination, and complex network analysis [43, 36, 40]. Efficient

representation of network data is critical to addressing algorithmic challenges in analyzing

massive data sets using graph-theoretic abstractions. In particular, enumerating graph is a

way to discover essential features in graphs and compactly represent sparse graphs. An-

alyzing graph (using decomposition or enumeration) has different methods. For instance,

one of the methods can be finding a set of k cliques that cover all the edges of the given

graph. This problem is called the edge clique cover problem (see Figure 2.9). Another

problem could be counting and enumerating local topological structures, such as triangles.

We see an enormous number of algorithms for graph analysis from the literature, es-

pecially clique cover, triangle count & enumeration, k-count, and triangle centrality. Coen

Bron and Joep Kerbosch [7] presented an exact algorithm for generating all the maximal

cliques of a graph. Again, Etsuji Tomita et al. [81] presented a depth-first search algorithm

2

1.1. MOTIVATION

to solve this problem. Gramm [30] shows exact algorithms are feasible; for instance, classes

that can be covered with a small number of cliques. Some researchers solved this problem

for sparse graphs [25]. Erich Prisner [64] showed that for certain superclasses of the class

of line graphs, their presented algorithm could compute minimum sets of maximal cliques

covering and partitioning the edge set of a graph efficiently. Counting and enumerating

triangles from a given graph is another form of graph analysis, where we can say a triangle

is a clique with cardinality three. Hasan and Dave [2] discussed the existing methods of tri-

angle counting, ranging from sequential to parallel, single-machine to distributed, exact to

approximate, and off-line to streaming. Li and Bader [51] presented a rapid implementation

of triangle centrality using SuiteSparse GraphBLAS.

Large real-life networks are usually sparse and are challenging to analyze. In the lit-

erature, we also see that the graph algorithms can be expressed in the language of linear

algebra by exploiting this duality between graphs and sparse matrices [43, 44]. Graph

kernel operations such as breadth-first search, graph connected components etc. can be ex-

pressed as sparse matrix-matrix multiplication [43]. This mapping between graphs and

sparse matrices can be exploited in data analysis and algorithm design. This is especially

important because of the unstructured nature of data access and the memory-bound nature

of graph algorithms. From the inception of the graph theory, the duality between the graph

representation as abstract collections of vertices and edges and a sparse adjacency matrix

representation has been a part of graph decomposition.

In mathematics, a duality translates concepts, theorems, or mathematical structures into

other concepts, theorems, or structures, in a one-to-one fashion. The adjacency matrix A

in Figure 1.2 is dual with the corresponding undirected graph G = (V,E), then the vector-

matrix multiply is dual with breadth-first search, where we can find the neighbor of vertex

4, i.e. 3,5,6, and 7. Adjacency matrices (2D array) have not traditionally been used for

analyzing large sparse graphs. Therefore, we need efficient data structures and algorithms

for the practical array-based approach to computing large sparse networks (graphs).

3

1.1. MOTIVATION

Figure 1.2: (a) An undirected graph G, (b) Matrix graph duality

In this thesis, we benefit from the linear algebraic approach to graph algorithms to

analyze graphs and, more precisely, solve edge clique cover problems, count & enumerating

triangles for a given graph, and calculate k-count and triangle centrality. Basing simple but

crucial observations on some linear algebraic approaches, we provide improved algorithms

for these problems.

While there have been excellent and continuing developments in algorithm theory, the

algorithms are usually designed and analyzed under the assumption of some abstract ma-

chine model, such as RAM. In theoretical computer science, efficiency usually means

polynomial-time solvability. Unfortunately, there has been a growing gap between algo-

rithm theory and its effective implementation. Consequently, many excellent theoretical

algorithmics rarely translates into practical implementation. In this thesis, one of our key

goals is to fill this gap by engineering effective data representation to design algorithms that

scale to big-data instances [58].

4

1.1. MOTIVATION

1.1.1 Some Applications

Computational Biology

In computational biology, discovering protein complexes is a well-known problem. A

protein complex is a group of proteins that bind together to perform a specific task. Multi-

protein complexes carry out most cellular processes. At different stages of a cellular pro-

cess, proteins form stable complexes, and some others form transient associations [84]. To

analyze evolutionary mechanisms behind biological networks, finding the organization of

proteins into overlapping complexes is essential. Now, these protein networks can be repre-

sented using graphs where the proteins would be the vertices, and edges would represent the

interactions between proteins. Therefore, analyzing graphs can help to find these protein

interactions.

Food Science

In food science, one interesting problem is to efficiently analyze large numbers of com-

binations of food items, such as components on a salad [59]. For instance, we can use a

graph to represent the interaction between the food components, where components are the

vertices and the edges’ compatibility. Using any graph analytic method, we can find a set

of food components perfect for a specific salad.

Efficient Representation of Pairwise Information

In different studies, we see that the representation of pairwise information is crucial

because of the comparison required between two products for their statistical difference,

equivalence, and compatibility [21]. Therefore, analyzing graphs can help find these com-

parison results by efficiently representing them. For instance, if there are many products

with many attributes, the total number of comparisons can be tens of thousands.

5

1.2. CONTENT OF THE THESIS AND CONTRIBUTIONS

Maximal Cliques

Community detection from a network is another well-studied problem. Dense sub-

graphs are often used to detect communities in undirected and connected graphs G= (V,E).

Identification of, and computation with, dense or otherwise highly connected subgraphs are

two of the kernel operations arising in areas as diverse as sparse matrix determination, and

complex network analysis [43, 36, 40]. Identification of special interest groups or char-

acterization of information propagation are examples of frequently performed operations

in social networks [82]. Therefore, finding maximal cliques or covering edges by a set of

subgraphs can still be seen in future research.

1.1.2 Use in Real Large Complex Networks

Analysis of real-world networks has attracted significant attention due to its enormous

real-life applications. In the literature, we see many algorithms addressing this problem.

However, different contexts sometimes require different algorithms: for example, under-

standing network evolution over time can be found from triangle counting and detecting

community using clique cover. Because of the size of these networks, some algorithms

cannot manage them due to insufficient memories and long running times. However, these

real-world networks are sometimes relatively easy to process, and in that case, the primary

issue would be storing all the network (graph) information efficiently. Schmidt et al. [76]

showed how real-world networks contain the number of maximal cliques, which is some-

times linear in the size of the graph where the number of maximal cliques in a graph could

be exponential. Therefore, instead of general real-world network analysis, we should look

at the problem from different angles, leading us to an efficient algorithm.

1.2 Content of the Thesis and Contributions

• Chapter 2. We start Chapter 2 discussing the graph theoretic concepts that we use

in the rest of this thesis. First, we discuss the theoretical progress that has been made

6

1.2. CONTENT OF THE THESIS AND CONTRIBUTIONS

on the clique cover problems and the practical design of algorithms. We then discuss

some of the recent exact and heuristic algorithms. The reviews and summaries of this

chapter give a broad idea of the background of this thesis.

• Chapter 3. Efficient representation of network data is critical to addressing algo-

rithmic challenges in analyzing massive data sets using graph-theoretic abstractions.

In this chapter, we propose sparse-matrix data structures to enable the compact rep-

resentation of graph data and use an existing sparse matrix framework [32] to design

efficient algorithms for the Edge Clique Cover (ECC) problem.

We see many algorithms in the literature solving the ECC problem, but only a few

exact methods because of the limitation to solve small-size instances. In a recent

approach, Gramm et al. [27] introduced and analyzed data reduction techniques to

shrink the instance size without sacrificing the optimal solution. Their main idea was

about the feasibility of exact algorithms for small enough instances.

In this chapter, we present a compact representation of network data based on sparse

matrix data structures [35]. Our implemented algorithm is based on an algorithm due

to Kellerman [42]. We experimentally verify that the ECC algorithm is sensitive to

the ordering in which the vertices are processed. We employ three vertex ordering al-

gorithms from the literature: Largest-degree order (LDO), Degeneracy order (DGO),

and Incidence-degree Order (IDO) prior to applying the algorithm [42].

Part of the work in Chapter 3 is published in the following contributions.

– Wali M. Abdullah, Shahadat Hossain, and Muhammad A. Khan. Covering

Large Complex Networks by Cliques - A Sparse Matrix Approach. AMMCS

2019 International Conference, Waterloo, Canada, 2019.

– Wali Mohammad Abdullah, Shahadat Hossain, and Muhammad Ali Khan. Cov-

ering large complex networks by cliques—a sparse matrix approach. in: D.

M. Kilgour, H. Kunze, R. Makarov R. Melnik, X. Wang (Eds.), Recent De-

7

1.2. CONTENT OF THE THESIS AND CONTRIBUTIONS

velopments in Mathematical, Statistical and Computational Sciences, Springer

International Publishing, Cham, 2021, pp. 117–127.

• Chapter 4. The Edge Clique Cover problem (ECC) considered in Chapter 4 is

concerned with finding a collection of complete subgraphs or cliques such that every

edge and every vertex of the input graph is included in some clique. The computa-

tional challenge is to find an ECC with the smallest number of cliques (minECC).

The minECC problem is computationally intractable or NP-hard [47].

Effective representation of network data is critical to meeting algorithmic challenges

for exactly or approximately solving intractable problems, especially when the in-

stance sizes are large and sparse. We use sparse matrix data structures to enable

compact representation of sparse network data and an existing sparse matrix frame-

work [32] to design efficient algorithms for the minECC problem motivated by the

works of Bron et al. [7], and E. Tomita et al. [81].

In Chapter 3, we used a similar compact representation of network data. While the

vertex-centric ECC algorithm from Chapter 3 frequently produced smaller clique

covers compared with other methods, the high memory footprint of the method made

it less scalable on very large problem instances. In this chapter, we propose an

“edge-centric” minECC algorithm, which exhibits good scalability when applied to

extremely large synthetic and real-life network instances.

We present the comparing results concerning the clique cover size and runtime with

the current state-of-the-art algorithm for minECC [17]. For 219 test instances (from

DIMACS10, SNAP, Real-World, Small-World, and Erdős-Rényi groups), where the

number of edges varies between 170 and 7.6× 107, our “edge-centric” minECC al-

gorithm produces smaller or equal size clique covers than the algorithm presented in

[17]. Our “edge-centric” minECC algorithm is also significantly faster than state-of-

the-art algorithm for minECC [17]. Finally, we present a post-processing step to get

8

1.2. CONTENT OF THE THESIS AND CONTRIBUTIONS

the assignment minimum edge clique cover motivated by Ennis et al. [22].

In Section 4.5, we present a parallel version of our “edge-centric” minECC algorithm.

We compile and run the code using OpenCilk’s built-in LLVM, Clang, and Clang++

with optimization level 3 (O3 flag). Our algorithm shows promising speedup for large

test instances while we varied the number of threads between 1 and 8.

Part of the work in Chapter 4 is published as an abstract, a short paper, and a refereed

contribution.

– Wali Mohammad Abdullah, Shahadat Hossain, and Muhammad Ali Khan. A

Sparse Matrix Approach for Covering Large Complex Networks by Cliques.

18th Cologne-Twente Workshop on Graphs and Combinatorial Optimization.

Sep 2020.

– Wali Mohammad Abdullah, Shahadat Hossain, and Muhammad Ali Khan. A

Sparse Matrix Approach for Covering Large Complex Networks by Cliques.

Canadian Operational Research Society (CORS-2021). June 2021.

– Wali Mohammad Abdullah, and Shahadat Hossain. A Sparse Matrix Approach

for Covering Large Complex Networks by Cliques. In International Conference

on Computational Science. London, UK. Springer. 2022.

– Part of this chapter is prepared to submit in a journal.

• Chapter 5. Triangles are an essential part of network analysis, representing metrics

such as transitivity and clustering coefficient. Linear algebraic methods can use the

correspondence between sparse adjacency matrices and graphs that can apply for

triangle counting and enumeration. Here, the main computational kernel is sparse

matrix-matrix multiplication.

In this chapter, we use an intersection representation of graph data implemented as

a sparse matrix and engineer an algorithm to compute the “k-count” distribution of

9

1.2. CONTENT OF THE THESIS AND CONTRIBUTIONS

the triangles of the graph. The main computational task of computing sparse matrix-

vector products is carefully crafted by employing compressed vectors as accumula-

tors. Our method avoids redundant work by counting and enumerating each triangle

exactly once. We present results from extensive computational experiments on large-

scale real-world and synthetic graph instances that demonstrate the excellent scala-

bility of our method. In terms of run-time performance, our algorithm has been found

to be orders of magnitude faster than the reference implementations of the miniTri

data analytics application [83].

In Section 5.4, we describe the parallel implementation of our intersection algorithm,

fullCount for triangle count, enumeration, k-count, and triangle centrality. First, we

describe the parallel triangle counting algorithm. Then we discuss the parallel algo-

rithm for our fullCount algorithm concerning triangle count, local triangle count, and

k-count. Finally, we present a parallel version of our triangle centrality calculation

method. A shared memory parallel implementation of our algorithm using OpenMP

is being developed. We observe reasonable speedups using multiple threads.

Part of the work in Chapter 5 is published in the following refereed contributions.

– Wali Mohammad Abdullah, David Awosoga, and Shahadat Hossain. Intersec-

tion Representation of Big Data Networks and Triangle Counting. In 2021 IEEE

International Conference on Big Data (Big Data), pages 5836–5838, 2021, and

– Wali Mohammad Abdullah, David Awosoga, and Shahadat Hossain. Intersec-

tion Representation of Big Data Networks and Triangle Enumeration. In Inter-

national Conference on Computational Science. London, UK. Springer. 2022.

• Chapter 6. We conclude this thesis by summarizing the ideas and results of all the

chapters and pointing out some future directions of our research.

10

Chapter 2

Background

2.1 Introduction

Graphs are among the essential abstract data structures in computer science, and the

algorithms that operate on them are critical to modern life. The field of graph algorithms

has become one of the pillars of theoretical computer science, informing research in such

diverse areas as combinatorial optimization, complexity theory, and topology. In our large-

network analysis, the simplicity and generality of graphs play potent tools in modeling our

problems.

This chapter discusses the graph theoretic concepts that we use in this chapter and the

rest of this thesis. First, we discuss the theoretical progress that has been made on the clique

cover problems and the practical design of algorithms. We then discuss some of the recent

exact and heuristic algorithms.

2.2 Preliminaries

2.2.1 Graph

A graph G = (V,E) consists of a set of vertices V , and a set of edges E ⊆ V ×V ,

which represent relationships (or links) between two vertices. For rest of this thesis we let

|E|= m be the number of edges and |V |= n be the number of vertices.

Kozyrev and Yushmanov [48] surveyed representation of graphs by families of sets of

objects of different kinds, such as, intersection graphs of geometrical objects, curve graphs,

function graphs, permutation graphs, circular permutation graphs, chord graphs, circular-

11

2.2. PRELIMINARIES

Figure 2.1: Example of different graphs.

arc graphs, interval graphs, unbounded interval graphs, intersection graphs of subgraphs of

a graph, chordal graphs, split graphs, 3-split graphs, undirected path graphs, directed path

graphs. In this section, we only discuss some common and related graphs.

Undirected Graph

An undirected graph is a graph whose edges are unordered pairs of vertices and do not

have a direction. Sometime these undirected graphs are called undirected networks where

all the edges are bidirectional.

From now on, we will use “G = (V,E)” to mean “an undirected and connected

graph” unless explicitly stated otherwise.

Figure 2.2: Example of an undirected graph.

Directed Graph

A directed graph (or digraph) is a graph whose edges (or arcs) are ordered pairs of

vertices and edges have direction. Figure 2.3 shows a simple directed graph, where the

12

2.2. PRELIMINARIES

double-headed arrow represents two distinct edges, one for each direction.

Figure 2.3: Example of a simple directed graph.

Subgraph

Let G = (V,E) be a graph. A graph, G′, is called subgraph of G, if the vertices and

edges of G′ are subsets of V and E of G respectively. Formally we can define as follows.

A graph G′ = (V ′,E ′) is a subgraph of another graph G = (V,E) iff

• V ′ ⊆V , and E ′ ⊆ E

An induced subgraph of a graph G is a graph formed from a subset of V and all of the

edges connecting pairs of vertices in that subset.

Interval Graph

A graph is an interval graph if and only if each of its vertices can be associated with an

interval on the real line in such a way that two vertices are adjacent in the graph exactly

when the corresponding intervals have a nonempty intersection.

Let a family of intervals are given as Si, where i = 1,2, . . . ,n. Then, we can define an

interval graph formally as follows. An interval graph is an undirected graph G = (V,E)

formed from S by creating one vertex vi for each interval Si, and E =
{
{vi,v j}|Si∩S j ̸= /0

}
.

Competition Graph

Biologists describe the feeding relations among species living together in a community

by a “food web,” a directed graph with vertices corresponding to species and a directed

13

2.2. PRELIMINARIES

edge from a to b if b preys on a (energy flows from a to b) [13].

Let D = (V,ED) be a directed graph (which represents a food web), where V is the set

of vertices and ED is the set of directed edges or arcs. A competition graph of D is an

undirected graph C(D), and we say two vertices i and j are in competition if there are arcs

{l, i} and {l, j} in ED. Then there will be an edge {i, j} in graph C(D). For example, Figure

2.5 shows a competition graph for a given digraph shown in Figure 2.4.

Figure 2.4: Example of a digraph D

Figure 2.5: The competition graph of the digraph shown in Figure 2.4

Niche Graph

Let D = (V,ED) be a directed graph (Figure 2.4) which represents a food web and C(D)

be the competition graph of D (Figure 2.5). Now, two vertices p and q, where p,q ∈ V ,

have common enemy if there are arcs {p,r} and {q,r}. Therefore there will be an edge

{p,q} in common enemy graph CE(D) (Figure 2.6).

14

2.2. PRELIMINARIES

Figure 2.6: The common enemy graph of the digraph shown in Figure 2.4

Figure 2.7: The niche graph of the digraph shown in Figure 2.4

The niche graph corresponding to D (i.e. N(D)) is the undirected graph G = (V,E) with

an edge between two distinct vertices x and y of V if and only if for some z ∈ V , there are

arcs {x,z} and {y,z} in ED or there are arcs {z,x} and {z,y} in ED. Figure 2.7 is the niche

graph of D. Here, an edge between two vertices represents they have a common enemy, a

common prey or both.

2.2.2 Set Representation

Consider the undirected simple graph G which has six vertices and nine edges as shown

in Figure 2.8. Graph G can be represented by a family of finite sets. S1 = {e1,e2,e3,e4},

S2 = {e1,e5,e6,e7}, S3 = {e2,e5,e8,e9}, S4 = {e3,e6}, S5 = {e4,e8} and S6 = {e7,e9}.

Here, Si represents the set of edges incident on vertex i. Let, the family of subsets be

represented by F = {S1, . . . ,S6}.

15

2.2. PRELIMINARIES

Figure 2.8: A simple graph G

k-set Representation

A family of finite set, F is called a k-set representation of G if each of the subset Si has

at least k elements.

Distinct Set Representation

We say F is a distinct set representation of graph G if Si and S j do not contain exactly

the same elements, i.e. Si ̸= S j for all i, j ∈V .

Simple Set Representation

We have a simple set representation if the intersection between two different subsets

is less than or equal to one, i.e. |Si ∩ S j| ≤ 1. In other wards, the given graph G does not

contain any multiple edges.

2.2.3 Clique

A clique is a subset of vertices such that every pair of distinct vertices are connected by

an edge in the induced (by the subset of vertices) subgraph. In other words, a clique of an

undirected and connected graph G is a complete subgraph of G.

16

2.2. PRELIMINARIES

Vertex Clique Cover (VCC)

A vertex clique cover is a set of cliques that cover all the vertices of a graph. If two

cliques share the same vertex v, we can delete v from one of the two cliques. The vertex

clique cover number is the smallest number of cliques needed to cover all the vertices.

Edge Clique Cover (ECC)

An edge clique cover of size k in graph G is a decomposition of set E into k subsets

C1,C2, . . . ,Ck such that Ci, i = 1,2, . . . ,k induces a clique in G and each edge {u,v} ∈ E is

included in some Ci. In this thesis, we will focus on the edge clique cover problem. From

now on, we will use “clique cover” to mean “edge clique cover” unless explicitly stated

otherwise.

Figure 2.9: Example of clique covers

Clique Partition

A clique partition of G is a set of cliques of G, containing each edge of G exactly once.

We can also refer to this as edge clique partition. From now on, we will use “clique

partition” to mean “edge clique partition” unless explicitly stated otherwise.

Clique Cover Number (cc(G))

The smallest cardinality of any clique covering of G is called the clique covering number

of G and is denoted by cc(G). cc(G) = min {|C| : C a clique cover of G}

17

2.3. LITERATURE REVIEW

Trivial Clique Cover

A trivial clique cover can be specified by the set of edges E with each edge being a

clique.

Minimum Clique Covering

The minimum clique cover of G is a clique cover C with |C|= cc(G)

Clique Partition Number (cp(G))

The smallest cardinality of any clique partition of G is called the clique partition number

of G and is denoted by cp(G). cp(G) = min {|P| : P a clique partition of G}

Minimum Clique Partition

The minimum clique partition of G is a clique partition P with |P|= cp(G).

2.3 Literature Review

Edge clique covering of a simple undirected and connected graph with a minimum num-

ber of complete subgraphs (cliques) is a well-studied problem. We have already indicated

earlier that a closely related problem is vertex clique cover, which can also be formulated

as a coloring problem. The edge clique covering problem was widely studied under a few

different names: Covering by Cliques, Intersection Graph Basis, and Keyword Conflict.

This chapter reviews some of the central results from the literature on the edge clique cover

problem. This review also emphasizes different applied problems related to the edge clique

cover problem.

N.J. Pullman [65], and Roberts [67] surveyed some of the progress on clique covering

and partitioning where the works concerned on global bounds on clique partition number

and clique cover number. Let, k be the number of cliques to cover all the edges of the given

graph G. A “bipartite graph” is a graph whose vertices can be divided into two disjoint

and independent sets V1 and V2 such that every edge connects a vertex in V1 to one in V2.

18

2.3. LITERATURE REVIEW

A complete bipartite graph K is a special kind of bipartite graph where every vertex of the

first set V1 is connected to every vertex of the second set V2. Erdös et al. [26] presented the

following theorem.

Theorem 2.1. If G is any graph with n vertices, then cp(G)≤
⌊
n2/4

⌋
with equality holding

for G = K⌊n/2⌋,⌈n/2⌉ [26]

We note that if C = {C1,C2, . . . ,Ck} is a k-clique partition for a graph then it is also a

k-clique cover for the same graph. Therefore, cc(G) ≤ cp(G). Thus, the upper bound on

cp(G) provided by the Theorem 2.1 is also an upper bound on cc(G).

For general graphs, not much is known on the relationship between cc(G) and cp(G).

If G is a complete graph on n vertices we cc(G) = cp(G) = 1 and therefor 1 ≤ cc(G) ≤

cp(G) ≤ n2

4 . Erdös et al. show that for large n, cp(G)/cc(G) ≤ n2

12 . Erdös et al. [26] also

mentioned a possible improvement in the bound if we know the number of edges of the

graph. Later Lovász [52] presented Theorem 2.2 to address that improvement.

Theorem 2.2. Let G = (V,E) is any graph with |V | = n vertices and |E| = m edges. If

k =
(n

2

)
−m and t = max{s ∈ Z : s2− s ≤ k}, then cc(G) ≤ k + t, where Z is the set of

nutural numbers [52]

The computational intractability of edge clique cover was independently proved by

Alon [39] and Kou et al. [47]. Orlin established the NP-hardness of the minimum edge

clique cover problem (ECC).

Theorem 2.3. The problem of deciding if cc(G) is at most k is NP-complete [47]

Chung and Muller showed that ECC remains NP-hard even when the graph is planar,

while Hoover showed that ECC is NP-hard for graphs with a maximum vertex degree of

six. On the other hand, ECC can be solved in polynomial time when restricted to chordal

graphs, line graphs, and circular-arc graphs. ECC is one of the hardest computationally

intractable problems; it is not approximable within a factor of |V |ε for some ε > 0, unless

P = NP [54].

19

2.3. LITERATURE REVIEW

We see some interesting theoretical developments for special graphs, such as interval,

competition, niche, and line graphs. For these graphs, the authors derive some better bounds

or favorable complexity results.

Roberts shows the connection between the intersection number and edge clique cover

[67]. There are many other authors who also have observed the same result [26], [47], [60],

[5], [63], [78].

Theorem 2.4. For all graph G, IN(G) = cc(G), where cc(G) is the minimum edge clique

cover number [67]

Cohen [13] showed that the theory of “interval graph” can illuminate the study of eco-

logical systems mentioning two problems concerning the structure of “ecological phase

space” and “the food web”. He also introduced the concept of the “competition graph” in

connection with this study. From a food web, D = (V,ED), we can get a competition graph,

by which one can identify competition between vertices (species).

The competition number κ(G) was first introduced by Roberts in [66] for recognizing

the competition graph. For any graph G, G together with sufficiently many isolated vertices

is the competition graph of some acyclic digraph. Roberts defined the competition number

κ(G) of a graph G as the minimum number of such isolated vertices. Then Opsut [60] gave

lower bounds for the competition number of graph G. Opsut settled a question posed by

Roberts [66] by demonstrating that the problem of determining whether or not an arbitrary

graph is the competition graph of some acyclic digraph is NP-complete. Sano [74] then

generalized the lower bound for the competition number of a graph presented by Opsut.

The new lower bound given by Sano is a reliable tool to compute the exact values of the

competition numbers of graphs.

Cable et al. [10] presented the following theorem relating the niche graph with the edge

clique cover.

Theorem 2.5. G is a niche graph if and only if G has subgraphs G1 and G2, G = G1∪G2,

20

2.3. LITERATURE REVIEW

and G1 has an edge clique cover {C1, . . . ,Ck} such that i ∈C j implies i > j and {i, l} is an

edge in G2 if and only if Ci∩Cl ̸= /0 [10]

Sean and Rolf [55] studied the number of distinct minimal clique partition and clique

covers of line graphs. Let G be an undirected graph. H is called the line graph of G if

the vertices of H are the edges of G, and two vertices x and y in H are adjacent if and

only if (viewed as edges in G) they intersect. G⋆ also denotes the line graph of G. A

wing in G is a triangle with the property that exactly two of its vertices have degree 2 in

G. Authors obtained a constructive proof of Orlin’s result [61], where Orlin determined

the clique covering and clique partition numbers cc(G⋆) and cp(G⋆) respectively (Theorem

2.6).

Theorem 2.6. Let G be an undirected graph, G ̸= K3, and let v2 be the number of vertices

of degree at least two in G and w be the number of wings in G. Then cc(G⋆) = v2−w and

cp(G⋆) = v2. [61]

In terms of easily calculable parameters of G, Sean and Rolf [55] were able to com-

pletely enumerate the number of distinct minimal clique covers and partitions of G using

that constructive proof.

An isolated vertex v is a vertex with degree zero. Let, an undirected and connected

graph G = (V,E), where V is the set of vertices and E is the set of edges. Vertices x and y

(x,y ∈ V) are equivalent, if {x,y} ∈ E and for all vertices z (z ∈ V) different from x and y,

{z,x} ∈ E if and only if {z,y} ∈ E. (Figure 2.10). András Gyárfás [31] presented a lower

bound on edge coverings by cliques for graphs with no isolated vertices and no equivalent

vertices.

Let cc(G) denotes the edge clique-cover number of a graph G.

Theorem 2.7. If a graph G has n vertices and G contains neither isolated vertices nor

equivalent vertices then cc(G)≥ log2(n+1) [31]

21

2.3. LITERATURE REVIEW

Figure 2.10: Equivalent vertices (x,y)

Determining cc(G) for an arbitrary graph is NP-hard, and much progress has been made

in producing algorithms to find such coverings. We see three different methodologies that

have been used to solve edge clique cover problems; these are branch and bound, inte-

ger linear programming, and data reduction. Besides these exact algorithms, we also see

heuristics to solve edge clique cover problem.

In 1973, Bron and Kerbosch [7] proposed an algorithm to list all the maximal cliques of

a given graph using a branch-and-bound technique. Cutting off branches of the search tree

that will not lead to new cliques at a very early stage the algorithm attempts to minimize

the computation. In order to allow an easy understanding, we are going to discuss their

algorithm in two steps. First, we discuss the notations, basic principles, and data structure

used for the algorithm, and then we discuss the Bron-Kerbosch algorithm.

A maximal clique (complete subgraph) is a clique that cannot be extended by including

one more adjacent vertex, meaning it is not a subset of a larger clique.

For the Bron-Kerbosch algorithm, the following three sets of vertices play a significant

role.

• The set CS (Complete Subgraph) is the set of vertices that induces a complete sub-

graph of G. The set CS is extended by one vertex on branching or reduced by one

vertex on backtracking during the execution of the algorithm.

22

2.3. LITERATURE REVIEW

• The set CA is a set of vertices, where the vertices will be used to extend CS towards

a maximal clique. Therefore these vertices are referred to as candidates.

• The set NOT contains all vertices that were previously used to extend CS and are now

explicitly excluded from the extension.

The two sets CA and NOT contain all vertices not contained in CS but adjacent to all

vertices in CS. At recursion depth i, the sets CA and NOT are denoted by CAi and NOTi ,

respectively.

Bron-Kerbosch algorithm: The core of the algorithm is a recursively defined exten-

sion operator that uses the three sets described above. A call of the operator generates all

extensions of the current set CS by adding vertices that are present in CA but not in NOT .

We exclude the vertices from NOT because those vertices have already been considered at

an earlier algorithm stage. Initially, the sets CS and NOT0 are set to empty sets and CA0 to

V . Then, at recursion depth i, the extension operator performs the following five steps.

• (Step 1-i): Determine the vertex v from NOT ∪CA with the least number of non-

adjacent vertices in CA.

• (Step 1-ii): If v was found to be in CA, we take v as the next candidate. On backtrack-

ing of the extension operator, v is moved to NOT .

• (Step 2): Add v to CS.

• (Step 3): Create new sets CAi+1 and NOTi+1 from the old sets CAi and NOTi by

removing all vertices not adjacent to v, keeping the old sets intact.

• (Step 4): Call the extension operator to operate on the sets CS, CAi+1, and NOTi+1.

• (Step 5): Upon return, remove v from CS and add it to NOTi. Go to (Step 1).

Etsuji Tomita et al. [81] presented a depth-first search algorithm for generating all max-

imal cliques of an undirected graph. The main contribution of Tomita et al. is finding the

23

2.3. LITERATURE REVIEW

worst-case time complexity for generating all maximal cliques. The run time complexity

of the algorithm is O(3n/3), where n is the number of vertices.

Eppstein and Strash [25] implemented a new algorithm (due to Eppstein et al. [24]) for

listing all maximal cliques in sparse graphs and analyzed its performance on a large corpus

of real-world graphs. The algorithm presented by Tomita et al. [81] was faster than all

other algorithms; however, the algorithm used an adjacency matrix of the input graph and

required too much space for large sparse graphs. For sparse graphs, the algorithm presented

by Eppstein and Strashin [25] is as fast or faster than Tomita et al., and sometimes faster by

very large factors. For non-sparse graphs, their algorithm is sometimes slower than Tomita

et al. but remains within a small constant factor of its performance. The implementation

idea is described below.

Let, G = (V,E) be an undirected graph with n vertices and m edges. For a vertex v ∈V ,

let Γ(v) be its neighborhood
{

w|{v,w} ∈ E
}

, and similarly, for a subset W ⊂ V , let Γ(W)

be the set ∩w∈W Γ(w), the common neighborhood of all vertices in W .

• The basic recursive Bron-Kerbosch algorithm maintaining three sets of vertices.

1) a partial clique R,

2) a set of candidates for clique expansion P, and

3) a set of forbidden vertices Y .

In each recursive call of this algorithm, a vertex v from P is added to the partial clique

R. Then the sets of candidates for expansion and forbidden vertices are restricted to

include only neighbors of v. Finally, if P∪Y becomes empty, the algorithm reports

R as a maximal clique. On the other hand, if P becomes empty while Y is nonempty,

the algorithm backtracks.

• With this basic idea, the pivoting heuristic reduces the number of recursive calls by

choosing a vertex v in P∪X called a pivot. Tomita et al. [81] chose the pivot so that

v has the maximum number of neighbors in P and, therefore, the minimum number

of non-neighbors among all possible pivots.

24

2.3. LITERATURE REVIEW

• The algorithm of Eppstein et al. [24], slightly modified the previous algorithm. First,

this algorithm orders all the vertices (degeneracy ordering). In this order, the recur-

sive algorithm selects the vertices v to be used in each recursive call. Then for each

vertex v in the order, it calls Tomita’s algorithm to compute all cliques containing v

and v’s later neighbors while avoiding v’s earlier neighbors.

In many studies, data reduction techniques for exactly solving NP-hard combinatorial

optimization problems have proved helpful [29]. Preprocessing data (e.g., to eliminate re-

dundancies) is a common practice used in many optimization solvers. One of the main

objectives of preprocessing is to enable the main algorithmic task to execute faster or make

the overall computational work more efficient. A specific instance of such a preprocess-

ing framework, the polynomial time data reduction or kernelization is concerned with the

reduction of the input size while preserving the optimal solution of the problem. The pa-

rameterized complexity theory aids in the rigorous analysis of data reduction in terms of a

parameter that is independent of the input size of NP-hard problems. The time complexity

of such kernelization algorithms can be expressed in terms of a function of the parameter

and, therefore, independent of the input size. Gramm et al. [27] developed polynomial-time

data reduction rules that, combined with a search tree algorithm (exact algorithm), allow

for exact problem solutions.

Formally, an instance x of a parameterized problem comes with an integer parameter k.

Where a parameterized problem is a language L ⊆ ∑
∗×N and ∑ is a finite alphabet. We

say that a problem is fixed-parameter tractable (FPT) if there exists an algorithm solving

any instance (x,k) in time f (k) . |x|O(1) for some computable function f and f is solely

depending on parameter k. Here, x is the size of the input and k is the parameter.

Gramm et al. [27] proved the fixed-parameter tractability of covering edges by cliques.

More specifically, clique cover can be solved in O(f (2k)+n4) time, where n is the number

of vertices of the given graph.

A closely related problem is deciding whether the edge-set of a given graph can be

25

2.3. LITERATURE REVIEW

partitioned into at most k cliques. Mujuni and Rosamond [57] investigated this problem

from the point of view of parameterized complexity. They showed that choosing the number

of cliques as a parameter makes this problem fixed-parameter tractable. More precisely, if

k is the number of cliques, then a kernel bounded by k2 can be obtained in polynomial time.

Formally we can define the problem as follows. Given an undirected connected graph

G = (V,E) and an integer k, where n = |V | is the number of vertices. Is there a set of at

most k cliques in G such that each edge in E has both its endpoints in exactly one of the

selected cliques? The main result of their work showed that clique partition has a kernel

bounded by k2; hence it is fixed-parameter tractable.

Cygan et al. [19] have shown a doubly exponential lower bound for Edge Clique Cover

parameterized by the number of cliques, obtaining tight complexity bounds for this prob-

lem. They presented a polynomial-time algorithm that reduces an arbitrary instance of

3-CNF-SAT with n variables and m clauses to an equivalent ECC instance (G,k) with

k = O(logn) and |V (G)| = O(n+m). According to the authors, Edge Clique Cover is

the first example of a natural parameterized problem for which doubly exponential upper

and lower bounds were proved.

The significant advances made in the area of fixed-parameter tractability of many com-

putationally intractable problems can provide valuable insights to design algorithms that

provably solve these problems optimally as long as the size of the parameter is small. How-

ever, coping with big-data instances requires algorithmic solutions that are scalable and

amenable to parallelization. The classical characterization of “efficient algorithm” as one

that runs in polynomial time on the input size may no longer be entirely satisfactory. To be

practically viable, it is essential that the algorithms run in nearly linear or sub-linear time

on the input size.

In spite of the significant practical implications of the ECC problem, there has been only

a handful of works concerned with the design and implementation of efficient algorithms

that meets real-world requirements on performance and reliability.

26

2.4. CONCLUSION

Kellerman [42] proposed a heuristic algorithm for determining keyword conflicts, which

is related to the edge clique cover problem. Unfortunately, that algorithm does not guar-

antee that the number of cliques is maximal. Then Kou et al. [47] improved Kellerman’s

heuristic and used that algorithm to solve the edge clique cover problem.

Gramm et al. [27] proposed a heuristic algorithm and showed how to improve the per-

formance of Kellerman’s [42] heuristic algorithm from O(m2n) to O(mn) while preserving

the same result they got for their exact algorithm, where m is the number of the edges and

n is the number of vertices of the given graph.

The goal of the edge clique cover problem is to minimize the number of overall cliques.

A less well-studied but equally important goal is to minimize the number of individual

assignments of vertices to cliques. This latter problem is also NP-hard and known as “As-

signment Minimum Clique Cover”. In some works, this problem is addressed as the “Local

Clique Cover”. Ennis et al. [23] proposed algorithm for assignment-minimum clique cover-

ings. They experimented with their post-processing algorithm with both exact and heuristic

algorithms.

In a recent approach, Conte et al. [17] have introduced O(m∆) heuristic, due to Bron et

al. [7], to cover all edges of a given graph; where m is the number of edges, and ∆ is the

highest degree of the graph. Their heuristic processes uncovered edges one after another to

find a clique cover. They presented experimental data for large sparse networks.

2.4 Conclusion

Analyzing characteristics in networked data, such as graphs, can yield important in-

formation on the modeled structure. Efficient representation of network data is critical to

addressing algorithmic challenges in analyzing massive data sets using graph-theoretic ab-

stractions. Graph decomposition is a way to discover essential features in graphs and com-

pactly represent sparse graphs. We see tremendous interest in analyzing graphs by solving

graph problems from the literature, such as graph coloring problems, clique cover prob-

27

2.4. CONCLUSION

lems, and counting and enumerating local topological structures, such as triangles. This

thesis focuses on edge clique cover problems, assignment-minimum edge clique cover, tri-

angle counting & enumeration, k-count, and triangle centrality. The following chapters will

discuss our algorithms and comparative results with the state-of-the-art algorithms.

28

Chapter 3

Covering Large Complex Networks by
Cliques using Ordered vertices

3.1 Introduction

In diverse areas as sparse matrix determination and complex network analysis, two

kernel operations are to identify and compute with dense or otherwise highly connected

subgraphs [43, 36]. Identifying special interest groups or characterizing information prop-

agation in social networks are examples of frequently performed operations [82]. Efficient

representation of network data is critical to addressing algorithmic challenges in the anal-

ysis of massive data sets using graph theoretic abstractions. In this chapter, we propose

sparse-matrix data structures to enable the compact representation of graph data and use an

existing sparse matrix framework [32] to design efficient algorithms for the Edge Clique

Cover (ECC) problem.

The literature shows the ECC problem’s applications in disparate areas from the ex-

tensive theoretical investigation on the ECC problem and its variants. Hossain et al. [35]

describe a branch-and-bound approach to determine sparse Jacobian matrices. Given the

sparsity pattern of the Jacobian, the problem is to find a partition of the columns into struc-

turally orthogonal column groups of smallest cardinality. The intersection graph associated

with the sparse Jacobian is obtained as a collection of cliques. The coloring algorithm

exploits this clique decomposition to guide branching steps and cutting down on extrane-

ous computation. In computational biology, the study of the protein complex identification

problem is to identify overlapping protein complexes in protein-protein interaction net-

29

3.1. INTRODUCTION

works [6]. Modelling this problem as a graph problem aims to decompose the network into

a small collection of cliques. In sensory science, a frequently occurring task is concerned

with the concise representation of pairwise interaction of products with many attributes

[22]. One can give this pairwise information in a tabular form called “compact letter dis-

play”. Minimizing redundant information is the main challenge of this problem. Ennis and

Ennis [22] showed that this problem can be posed as a variant of the ECC problem. Heuris-

tics have been proposed in the literature to approximately solve ECC problem while there

are only a few exact methods which are usually limited to solving small instance sizes.

A recent approach is described by Gramm et al. in [27], where they introduce and

analyze data reduction techniques to shrink the instance size without sacrificing the optimal

solution. The main idea is that with small enough instance sizes, exact algorithms may

become feasible.

In this chapter, we present a compact representation of network data based on sparse

matrix data structures [35]. Employing this data structure, we propose an algorithm to

solve the edge clique cover problem. Our implemented algorithm is based on an algorithm

due to Kellerman [42]. In the next chapter, we propose another method to solve this exact

problem (edge clique cover), which shows a significant improvement over state-of-the-art

(algorithm by Conte et al. [17]).

Our approach is based on the observation presented by Hasan et al. [32]. In that work,

the authors show that for a sparse matrix X ∈ Rm×n, the row intersection graph of X is

isomorphic to the adjacency graph of XX⊤. Similarly, the column intersection graph of A

is isomorphic to the adjacency graph of X⊤X . From this observation, we see, the subset of

columns corresponding to nonzero entries in row i induces a clique in the adjacency graph

of X⊤X . Analogously, the subset of rows corresponding to nonzero entries in column j

induces a clique in the adjacency graph of XX⊤. We followed this approach in our work

because even if matrix X is sparse, matrices X⊤X and XX⊤ are most likely dense. We

exploit the connection between sparse matrices and graphs in the reverse direction. We

30

3.2. REPRESENTATION OF SPARSE GRAPHS

can define a sparse matrix, intersection matrix, for a given graph (or network) such that

graph algorithms of interest can be expressed in terms of the associated intersection matrix.

We use the existing sparse matrix computational framework to solve graph problems for

this structural reduction [32]. In the literature, we also see that the graph algorithms can

be expressed in the language of linear algebra by exploiting this duality between graphs

and sparse matrices [43, 44]. Graph kernel operations such as breadth-first search, graph

connected components etc. can be expressed as sparse matrix-matrix multiplication [43].

This mapping between graphs and sparse matrices can be exploited in data analysis and

algorithm design. This is especially important because of the unstructured nature of data

access and the memory-bound nature of graph algorithms. Sparse matrix infrastructure that

is available in very high-level programming languages such as MATLAB and Python and

the efficient linear algebraic software libraries implementing BLAS/sparse BLAS provide

a realistic and practical approach to a wide range of graph algorithms.

3.1.1 Organization of the Chapter

We organize the rest of the chapter in the following way. In Section 3.2, we describe the

classical data structure of graphs: adjacency representation, and adjacency list, followed

by the intersection matrix representation, enabling an efficient representation of pairwise

information. Section 3.3 describes our vertex-centric method to compute an edge-clique

cover for a given graph. The central idea of our method is inspired by an algorithm due

to Kellerman [42]. For ease of presentation, we discuss the algorithm in graph-theoretic

terms. Results from numerical experiments on a standard collection of test instances are

provided in Section 3.4. Fianally, Section 3.5 concludes the chapter.

3.2 Representation of Sparse Graphs

Adjacency representation is known as the classical data structure for graphs. However,

adjacency representations such as adjacency matrix and adjacency list are inadequate for

31

3.2. REPRESENTATION OF SPARSE GRAPHS

efficient computer implementation of many graph operations. Using the adjacency matrix

for representing a sparse graph is costly. On the other hand, typical adjacency list imple-

mentations employ pointers where indirect access leads to poor cache utilization. For an

undirected graph implementation, the adjacency list typically stores each edge twice. This

redundancy is avoided where the edges incident on each vertex is stored in the sorted order

of vertex labels [80].

Figure 3.1: Example of an undirected graph

Figure 3.1 presents an undirected graph (G) with seven vertices and ten edges and Figure

3.2 shows the adjacency representation of G.

Each row and column of the adjacency matrix (Figure 3.2-a) represents an adjacency,

i.e. neighborhood, of a vertex. Every non-zero entry indicates an edge, thus A(i, j) = 1

identifies an edge between vertices i and j. The adjacency matrix also stores zero if there is

no edge between two vertices. Therefore, the total memory requirement is O(n2), where n=

(a) Adjacency matrix (b) Adjacency list

Figure 3.2: Adjacency representation of graph shown in Figure 3.1

32

3.2. REPRESENTATION OF SPARSE GRAPHS

Figure 3.3: Intersection representation of graph shown in Figure 3.1

|V |. On the other hand, in the adjacency list representation (Figure 3.2-b), we store ordered

pairs and their permutations, e.g. (i, j) and (j, i) and need to spend additional memory space

to store the address of the next pointer (not shown in the figure for brevity).

The close connection between the set intersection representation and undirected graphs

has a long been known in graph-theory literature.

A collection of subsets {S1,S2, ...,Sn} where Si, i = 1,2, . . . ,n ⊂U for a universal set

U can be represented by a simple undirected graph G = (V,E) with |V | = n and |E| = m.

To see this, we associate vertex i ∈ V with set Si and for i ̸= j, {i, j} ∈ |E| whenever

Si ∩ S j is not empty. On the other hand, Szpilrajn-Marczewski [79] showed that given

an undirected simple graph G = (V,E), there is an universal set U and a collection of of

subsets S1,S2, . . . ,Sn there is a bijection between vertices in V and the collection of subsets

S1,S2, . . . ,Sn such that {i, j} ∈ E if and only if i ̸= j, Si∩S j ̸= /0.

We now introduce the intersection matrix representation, enabling an efficient represen-

tation of pairwise information. The trivial intersection matrix is only the simplest matrix

that belongs to the class of intersection matrix. The transpose of the trivial intersection

matrix is also known as the incidence matrix [43].

Intersection Matrix: An intersection representation of graph G is a matrix X ∈

{0,1}k×n, where k ≤ m, in which for each column j of X there is a vertex v j ∈ V and

{vi,v j} ∈ E whenever there is a row l for which X(l, i) = 1 and X(l, j) = 1.

33

3.2. REPRESENTATION OF SPARSE GRAPHS

For k = m, the rows of X represent the edge list sorted by vertex labels. Therefore,

matrix X can be viewed as an assignment to each vertex a subset of m labels such that there

is an edge between vertices i and j if and only if the inner product of the columns i and j

is 1. Since the input graph is unweighted, the edges are simply ordered pairs, and can be

sorted in O(m) time. Unlike the adjacency matrix which is unique (up to a fixed labelling

of the vertices) for graph G, there can be more than one intersection matrix representation

associated with graph G [1]. We exploit this flexibility to store a graph in a structured and

space-efficient form.

Figure 3.3 shows an intersection matrix representation of graph shown in Figure 3.1.

Each column represents a vertex, and each row represents an edge between vertices of

corresponding columns.

Graph algorithms can be effectively expressed in terms of linear algebra operations [43].

We now show a connection between a graph and its sparse matrix representation and cast

the edge clique cover problem using linear algebra operations.

Column Intersection Graph: The column intersection graph associated with matrix

X ∈ Rm×n is a graph G = (V,E) in which for each column k of X there is a vertex vk ∈ V

and {vi,v j} ∈ E whenever there is a row l for which X(l, i) ̸= 0 and X(l, j) ̸= 0.

Theorem 3.1. Let X ∈ {0,1}m×n be the intersection matrix associated with a graph G =

(V,E), and consider B = X⊤X. Then the adjacency graph of matrix B is isomorphic to

graph G.

Proof. Consider an arbitrary edge ek = {vi,v j} of graph G. By construction, row k of the

intersection matrix X has X(k, i) = X(k, j) = 1 and X(k, l) = 0 for l ̸∈ {i, j}. Since there

are no multiple edges in G, there is one and only one such row k corresponding to edge

ek. Element B(i, j) is the inner product of column vectors i and j of matrix X . The inner

product is 1 if and only if X(k, i) = X(k, j) = 1. Thus, ek is in E if and only if B(i, j) = 1

implying that it is an edge connecting vertices vi and v j of the adjacency graph of matrix B.

This proves the theorem.

34

3.2. REPRESENTATION OF SPARSE GRAPHS

Figure 3.4: Finding adjacency matrix from an intersection matrix

Theorem 3.1 establishes the desired connection between a graph and its sparse matrix

representation (see Figure 3.4). For a vertex v ∈V we define by Nv =
{

w ∈V | {v,w} ∈ E
}

the set of its neighbors. The degree of a vertex v, denoted d(v), is the cardinality of set Nv.

The following result follows directly from Theorem 3.1.

Corollary 3.2. The diagonal entry B(i, i) where B = X⊤X and X is the intersection matrix

of graph G, is the degree d(vi) of vertex vi ∈V, i = 1, . . . ,n of graph G = (V,E).

We can easily get the adjacency matrix from the intersection matrix X using B = X⊤X .

For example, consider the undirected graph (G) shown in Figure 3.1. Figure 3.4-a shows an

intersection matrix representation of the given graph. Using matrix-matrix multiplication

(X⊤X) we get the adjacency matrix (Figure 3.4-b), which is relatively dense.

Intersection matrix X defined above represents an edge clique cover of cardinality m

for graph G. Each edge {vi,v j} constitutes a clique of size 2 (e.g. Figure 3.3). In the

intersection matrix X , the clique (edge) is represented by row k with X(k, i) = X(k, j) = 1

and other entries in the row being zero. In general, column indices l in row k where X(k, l)=

1 constitutes a clique on vertices vl of graph G. Thus the edge clique cover problem can be

cast as a matrix compression problem.

minECC Matrix Problem. Given X ∈ {0,1}m×n determine X ′ ∈ {0,1}k×n with k min-

imized such that the intersection graphs of X and X ′ are isomorphic.

35

3.2. REPRESENTATION OF SPARSE GRAPHS

Figure 3.5: Intersection representation of the edge clique cover of the graph shown in Figure
3.1

Figure 3.5 shows how we can represent the edge clique cover of a given graph using

the intersection matrix representation. Here each row represents a clique, and columns

represent corresponding vertices.

Storing a graph G in a sparse intersection matrix form requires less space than the ad-

jacency representation. If we store the graph as a clique cover, it requires even less space

than the sparse intersection matrix representation. With the help of a real network, we can

show how an intersection matrix representation can save lots of space. For a concrete ex-

ample, we consider the LiveJournal Graph collected from the Stanford Network Analysis

Platform (SNAP) data sets [20]. LiveJournal is a free online community with almost

10 million members. The graph we have used from SNAP consists of 4,847,571 vertices

(members) and 68,993,773 edges (the connection between members). To store this graph

in the adjacency and sparse intersection representation would require the following space.

• Adjacency matrix stores n2 integers, where n is the number of vertices. The size of an

integer is 4 bytes, and therefore, the total space required to store the graph is 87540

gigabytes.

• Adjacency list requires (n+ 2m) nodes to store the graph, where n is the number of

vertices and m is the number of edges. Each node needs 16 bytes to store an integer

and the address of the next node. Therefore, the total space required to store the graph

is 2.13 gigabytes. However, accessing data from the adjacency list is costly.

• Sparse intersection matrix requires to store 2(m+n) integers. The total space required

is 0.55 gigabytes.

36

3.2. REPRESENTATION OF SPARSE GRAPHS

Our computer implementation to solve the edge clique cover problem uses a sparse

matrix framework of DSJM [32], and all computations are expressed in terms of intersection

matrices. Let us discuss the data structures used to store the sparse intersection matrices in

DSJM.

Compressed Sparse Row (CSR) Data Structure

We can implement CSR using three arrays: rowptr, colind and value. In colind array

we store the column index of each non-zero element and value of that element is stored in

value array. However, we do not require the array, value, to solve the edge clique cover

problem beacuse we asume the nonzero value is 1. The rowptr indices the array, colind.

colind and rowptr are integer arrays. The size of colind is 2m and the size of rowptr is m+1,

where m indicates the number of rows of the matrix, which is the number of edges of the

graph. rowptr(i) is the column index of first non-zero entry of row i. Suppose rowptr(1)

is 1. So its column index is colind(rowptr(1)). We can also access all non-zero entries

of a row using CSR data structure. If rowptr(1) is 1 and rowptr(2) is 3 then we have

rowptr(2)− rowptr(1) = 3− 1 = 2 non-zero entries in row 1. We get the column indices

and values of the non-zero entries of row 1 form colind and value arrays. We can access

elements of row i as colind(rowptr(i)) to colind(rowptr(i+1)−1).

Compressed Sparse Column (CSC) Data Structure

The CSC data structure is similar to the CSR. However, the three arrays are colptr,

rowind and value. Again, we do not need array, value, for solving the edge clique cover

problem as we assume the nonzero value is 1. colptr indices the array rowind. col ptr(j)

is the row index of the first nonzero element of column j. rowind and colptr are integer

arrays. The size of rowind is 2m and the size of colptr is n+ 1, where n indicates the

number of columns of the matrix. We can access elements of col j as rowind(col ptr(j)) to

rowind(col ptr(j+1)−1).

37

3.3. A HEURISTIC FOR CLIQUE COVER

Figure 3.6: CSR data structure of intersection matrix shown in Figure 3.3

Figure 3.7: CSC data structure of intersection matrix shown in Figure 3.3

An Example How CSR and CSC are Used to Store Sparse Intersection Matrix

We can efficiently perform graph operations using CSR and CSC without explicitly

constructing the graph. Using CSC, we get the non-zero entry of any specific column, and

from their row index and then using CSR, we can find if any non-zero entries in that row

are the neighbors of that column.

A simple example will make it easier to understand. Below, the non-zero entries of

matrix X in Figure 3.3 is given then colind, rowptr arrays of CSR and rowind, colptr arrays

of CSC are given in Figure 3.6 and in Figure 3.7 respectively.

3.3 A Heuristic for Clique Cover

We are now ready to describe our vertex-centric method to compute an edge-clique

cover for a given graph. The central ideas of our method is inspired by an algorithm due to

38

3.3. A HEURISTIC FOR CLIQUE COVER

Kellerman [42]. For ease of presentation we discuss the algorithm in graph theoretic terms.

However, our computer implementation uses sparse matrix framework of DSJM [32] and

all computations are expressed in terms of intersection matrices.

There is a close connection between the vertex clique cover of a graph G = (V,E) and

the coloring of vertices of the complement graph G = (V,E) where E =
{
{u,v} | {u,v} ̸∈

E
}

[30]. A graph has a vertex clique cover of size k iff its complement graph can be

colored with k colors such that adjacent vertices have different colors. In the classical

graph coloring problem, vertices of the graph are partitioned into subsets (colors) such that

pairs of vertices connected by an edge are in different subsets. The optimization version

asks for the partition with the smallest number of subsets. It is well-known that the greedy

coloring heuristic is sensitive to the order in which the vertices are processed (see [35]).

Consider an optimal coloring of graph G and order the vertices in the nondecreasing color

index. It is not difficult to see that the greedy heuristic on graph G with the given order

of the vertices produces optimal coloring. We experimentally verify that the ECC heuristic

is sensitive to the ordering in which the vertices are processed. We employ three vertex

ordering algorithms from the literature: Largest-degree order (LDO), Degeneracy order

(DGO), and Incidence-degree Order (IDO) prior to applying the heuristic [42]. We recall

that d(v) = |Nv| denotes the degree of vertex v in graph G = (V,E).

• (LDO) Order the vertices such that {d(vi), i = 1, . . . ,n} is nonincreasing.

• (DGO) Let V ′ ⊆ V be a subset of vertices of G. The subgraph induced by V ′ is

denoted by G[V ′]. In this thesis, one of the methods we use to order the vertices

is using the degeneracy. Assume the vertices V ′ = {vn,vn−1, . . . ,vi+1} have already

been ordered. The ith vertex in DGO is an unordered vertex u such that d(u) is

minimum in G[V \V ′] where, G[V \V ′] is the graph obtained from G by removing the

vertices of set V ′ from V .

Let us demonstrate the DGO ordering for the graph shown in Figure 3.1. Table 3.1

shows step by step calculation of the degeneracy to order the vertices. In each step, we

39

3.3. A HEURISTIC FOR CLIQUE COVER

Table 3.1: Steps of DGO

Step Column removed Minimum degree DGO ordering

1 1 2 {1}
2 2 1 {2,1}
3 3 1 {3,2,1}
4 7 3 {7,3,2,1}
5 6 2 {6,7,3,2,1}
6 5 1 {5,6,7,3,2,1}
7 4 0 {4,5,6,7,3,2,1}

choose the column which has the minimum degree in the induced subgraph G[V \V ′]

and remove that column. Therefore, after all the steps, we get the ordering of vertices

{4,5,6,7,3,2,1}.

• (IDO) Assume that the first k− 1 vertices {v1 . . . ,vk−1} in incidence-degree order

have been determined. Choose vk from among the unordered vertices that has maxi-

mum degree in the subgraph induced by

{v1, . . . ,vk}

3.3.1 Algorithm

Now, we present the algorithm for the ECC problem. Let the vertices of graph G =

(V,E) be ordered in one of DGO, LDO, and IDO: v1, . . . ,vn. Also, let VP = {v1, . . . ,vi−1}

denote the vertices that have been assigned to one or more cliques {C1, . . . ,Ck−1} and vi be

the vertex currently being processed. Denote by set

W = {v j | j < i and {vi,v j} ∈ E}

the neighbors of vi in VP . An edge {u,v} ∈ E is said to be covered if both of its incident

vertices have been included in some clique; otherwise the edge is uncovered. The task is

40

3.3. A HEURISTIC FOR CLIQUE COVER

to assign vi to one or more of the existing cliques (or create a new clique) such that each

edge incident on vi that connects to a vertex in VP is covered by a clique. There are three

possibilities:

Case I. W is empty: Create a new clique Ck = {vi}

Case II. W is not empty:

Case a. There is a clique Cl, l ∈ {1, . . . ,k−1} such that W =Cl: add vi to Cl

Case b. There is no such clique:

i. If Cl ⊂W for some l, add vi to Cl and update W by W \Cl .

ii. If there are uncovered edges after step II(b(i)), create a new clique from an

existing clique and add vi and the incident edges until W is empty.

The complete algorithm is presented in Algorithm 1.

We argue that the cliques C1,C2, ...,Ck returned by the algorithm constitutes an edge

clique cover for the input graph G.

The main for-loop (line 2) reads the next vertex (i) from the ordered list of vertices

and tries to include it in one of the existing cliques, or creates new clique(s) with vertex

i included. If vertex i has no neighbor (i.e. W = /0) in VP , a new clique gets created (line

6). If the neighbor set W is not empty, the algorithm tries to identify existing cliques

Cl that are subsets of W and assigns vertex i to each of them (lines 9 – 15, Case 2. a.

and Case 2. b. i.). This step covers edges of the form {i, i′} where i′ ∈ Cl, Cl ⊂ W .

Finally, the while-loop (line 16) covers the remaining edges (Case II. b. ii.) of the form

{i, i′} where i′ ∈ S,S =W ∩C′l , l′ ∈ {1,2, . . . , l} with |S| maximum. The maximality on |S|

ensures that each newly created clique covers largest number of uncovered edges. For a

graph G = (V,E) each edge is a clique of size 2 so that set E constitute an (trivial) ECC.

Therefore, each edge of input graph G eventually gets assigned to one of the cliques output

by Algorithm 1.

The above discussion can be summarized in the following result.

41

3.3. A HEURISTIC FOR CLIQUE COVER

Algorithm 1 VertexOrderedECC (W , list)
1 k← 0 ▷ Number of cliques
2 for index = 1 to N do ▷ N denotes the number of vertices
3 i← list[index] ▷ list contains the vertices in a predefined order
4 if W = /0 then ▷ W ←{ j| j < i and {i, j} ∈ E}
5 k← k+1
6 Ck←{i} ▷ Ck denotes kthclique
7 else
8 U ← /0 ▷ Contains neighbors of i, which are in the cliques
9 for l = 1 to k do

10 if Cl ⊆W then
11 Cl ←Cl ∪{i}
12 U ←U ∪Cl
13 if U =W then
14 break
15 W ←W \U
16 while W ̸= /0 do
17 Max← /0

18 MINl ← 0
19 for l = 1 to k do
20 if |Max|< |(Cl ∩W)| then
21 Max← (Cl ∩W)
22 MINl ← l
23 l←MINl
24 k← k+1
25 Ck← (Cl ∩W)∪{i}
26 W ←W \Cl

27 return C1,C2, ...,Ck

42

3.4. NUMERICAL RESULTS

Lemma 3.3. The collection {C1,C2, . . . ,Ck} computed by Algorithm 1 constitutes an ECC

of graph G.

3.4 Numerical Results

In this section, we provide results from numerical experiments on selected test in-

stances. The graph instances are chosen from standard benchmark collections that are

used in the literature for ECC and closely related graph problems such as, graph color-

ing and graph partitioning. The data set for the experiments is obtained from the University

of Florida Sparse Matrix Collection [20]. Instances chesapeake, delaunay n10 to 13,

as-22july06 are from “10th DIMACS Implementation Challenge” benchmark collection

for graph clustering and graph partitioning. Instances ca-GrQc, as-735, Wiki-Vote, p2p-

Gnutella04, Oregon-1 are from “Stanford Network Analysis Platform (SNAP)” collection.

These instances represent social networks from variety of apllications. We also consider

the data set for Compact Letter Displays used by Gramm et al. [29]. The experiments were

performed using a PC with 3.4G Hz Intel Xeon CPU, 8 GB RAM running Linux. The im-

plementation language was C++ and the code was compiled using −O2 optimization flag

with a g++ version 4.4.7 compiler.

A short description of the data set for our experiments is as follows:

• chesapeake: Symmetric, undirected graph and contains 39 vertices and 170 edges.

• delaunay n10 to 13: The graphs are symmetric and undirected. The minimum de-

gree is 3 for all of them and the maximum degrees are 12, 13, 14 and 12 respectively.

• as-22july06: The graph is symmetric and undirected having maximum degree 2.4K

and minimum degree 1.

• ca-GrQc: General Relativity and Quantum Cosmology network covers scientific

collaboration between authors in this field. This graph contains an undirected edge

from i to j, if author i co-authored a paper with author j.

43

3.4. NUMERICAL RESULTS

• as-735: An autonomous system which represents a communication network of who-

talks-to whom.

• Wiki-Vote: This data set contains voting data of Wikipedia till January 2008 where

the contest was between volunteers to become one of the administrator. There is a

directed edge from node i to node j if user i voted for user j.

• p2p-Gnutella04: A snapshoot of Gnutella peer-to-peer file sharing network on Au-

gust 04, 2002. A directed graph where nodes represent hosts and edges represent

connection between hosts.

• Oregon-1: Undirected graph where autonomous system peering information is in-

ferred from Oregon route-views on May 26, 2001.

• Triticale, winter wheat and oilseed rape yield trials: These instances are from the

application “compact letter display” [29] to test ECC algorithms.

Gramm et al. [30] presented their heuristic method inspired by Kellerman [42] and Kou

et al. [47] to find edge clique cover and implemented their method in Objective Caml

3.08.3. We will refer thier method as Gramm-Method. Our “Vertex-centric edge clique

cover” algorithm, VO-ECC, is also inspired by Kellerman’s algorithm [42]. The implemen-

tation is in C++ and gives better results than Gramm-Method. In the latter chapter, we

propose another method to solve the edge clique cover problem, “Edge-centric edge clique

cover” algorithm, EO-ECC, and compare the results with the state-of-the-art algorithm by

Conte et al. [17]. Conte et al. (referred to as Conte-Method) presented their method for

finding edge clique cover and showed that their algorithm performs better than other edge

clique cover algorithms.

Here, in Table 3.2, we present comparative results between Gramm-Method, VO-ECC,

Conte-Method, and EO-ECC reporting clique cover sizes and running time for five real-

world instances. n represents the number of vertices and m represents the number of edges

44

3.4. NUMERICAL RESULTS

of the graph. |C| represents number of cliques required to cover all the edges, and t repre-

sents the running time in seconds.

Table 3.2: Test Results for Real-World Matrices

Graph Gramm-Method Conte-Method VO-ECC EO-ECC
Name m n |C| t (sec) |C| t (sec) |C| t (sec) |C| t (sec)
triticale1 55 13 4 0 4 0.1 4 0 4 0
triticale2 86 17 6 0 5 0.03 5 0 5 0
wheat1 4847 124 50 0.15 50 0.08 50 0.06 49 0.01
wheat2 4706 121 48 0.13 50 0.07 48 0.05 48 0.01
wheat3 3559 97 34 0.03 34 0.06 32 0.01 31 0.01

Now we present test results of VO-ECC. Test results for the selected test instances from

group DIMACS10 and SNAP are reported in Table 3.3 and Table 3.4 respectively. Test

results for Compact Letter Display are reported in Table 3.5.

Table 3.3: Test Results for DIMACS10 Matrices

Graph Natural DGO LDO IDO
Name m n |C| |C| |C| |C|
chesapeake 170 39 90 79 83 80
delaunay n10 3056 1024 1300 1223 1302 1268
delaunay n11 6127 2048 2610 2482 2617 2527
delaunay n12 12264 4096 5228 4973 5264 5061
delaunay n13 24547 8192 10489 9937 10541 10121
as-22july06 48436 22963 34695 34772 34568 34666

Table 3.4: Test Results for SNAP Matrices

Graph Natural DGO LDO IDO
Name m n |C| |C| |C| |C|
ca-GrQc 14496 5242 3791 3879 3777 3900
as-735 13895 7716 9055 9108 8985 9038
Wiki-Vote 103689 7115 43497 45530 42482 45491
p2p-Gnutella04 39994 10876 38475 38474 38475 38474
Oregon-1 23409 11174 15736 15807 15631 15857

45

3.4. NUMERICAL RESULTS

Table 3.5: Test Results for Real-World (Compact Letter Displays) Matrices [29]

Graph VO-ECC Insert-Absorb Clique-Growing Search Tree
Name m n |C| |C| |C| |C|
Triticale 1 55 13 4 4 4 4
Triticale 2 86 17 5 5 5 5
Wheat 1 4847 124 50 56 50 49
Wheat 2 4706 121 48 50 48 48
Wheat 3 3559 97 32 39 32 31
Rapeseed 1 576 47 20 20 20 20
Rapeseed 2 1040 57 20 20 20 20
Rapeseed 3 1260 64 24 24 24 24
Rapeseed 4 1085 62 19 19 19 19
Rapeseed 5 1456 64 19 19 19 19
Rapeseed 6 1416 70 27 27 27 27
Rapeseed 7 1758 74 26 29 27 25
Rapeseed 8 1128 59 17 17 17 17
Rapeseed 9 1835 76 30 30 30 30

For comparison we also show the ECC results where no specific vertex ordering is

employed, in addition to ordering algorithms LDO, DGO, and IDO. Column labelled “Nat-

ural” reports the ECC result when the vertices are processed in the order they are specified

in the data file. On DIMACS10 instances, degeneracy order (DGO) gives the best result

except for instance named as-22july06. On SNAP instances largest-degree order (LDO)

is the overall winner. Note that on both sets of test instances ordered approach produces

strictly better ECC compared with Natural. We remark that OCaml implementation by

Gramm et al. [28], fails (hangs) to run on DIMACS10 and SNAP instances. As such no

comparison of the ECC quality (size) can be made. Table 3.5 displays results using our

degree ordered method and two other algorithms discussed by Gramm et al. [29]. Insert

Absorb and Search Tree require exponential running time while Clique Growing method

is an improved implementation of the heuristic of Kellerman [42]. Search Tree is an exact

method that produces optimal ECC. VO-ECC reports the best edge clique cover of our im-

plementation. It is evident from the table that our method produces optimal or near optimal

46

3.5. CONCLUSION

(off by 1) ECC.

3.5 Conclusion

In this chapter, we have shown that the connection between large networks and their

sparse matrix representation can be exploited to employ efficient techniques to find edge

clique covers by employing graph-sparse matrix duality as in sparse matrix determination

literature [37, 38]. The edge clique cover problem is recast as a sparse matrix determination

problem. The notion of intersection matrix provides a unified framework that facilitates

compact representation of graph data and efficient implementation of graph algorithms.

The adjacency matrix representation of a graph can potentially have many nonzero entries

since it is the product of an intersection matrix with its transpose. We have shown that,

similar to graph vertex coloring problem, the ECC problem is sensitive to ordering of the

vertices.

47

Chapter 4

Covering Large Complex Networks by
Cliques using Ordered Edges

4.1 Introduction

In Chapter 3, we presented a “vertex-centric” algorithm for solving the edge clique

cover (VO-ECC) problem where the central idea of our method is inspired by an algorithm

due to Kellerman [42]. There we proposed an efficient representation of network data and

showed that the algorithm is sensitive to the ordering in which the vertices are processed.

In this chapter, we use a compact representation of network data based on sparse matrix

data structures [32] and present an “edge-centric” minECC method motivated by the works

of Bron et al. [7], and E. Tomita et al. [81] for finding clique covers. Moreover, we explore

a variant of edge clique cover, namely, “Assignment Minimum Clique Cover” and develop

a scalable algorithm to heuristically solve the problem.

We experimentally verify that our “edge-centric” minECC algorithm is sensitive to the

ordering in which the edges are processed. Therefore, we also present three edge ordering

techniques and use them in our algorithm. We will refer to our “edge-centric” minECC

algorithm as EO-ECC in the following sections.

In a recent approach, Conte et al. [17] have introduced O(m∆) algorithm to cover all

edges of a given graph, where m is the number of edges, and ∆ is the highest degree of the

graph. For the rest of this chapter, we will refer to Conte’s algorithm as Conte-Method.

Finally, we provide results from numerical experiments on selected large test instances.

From the literature, we see that most of the experiments show results for small graphs

48

4.2. A MOTIVATING EXAMPLE

[68, 23, 28, 27, 29, 30]. However, Conte et al. [17] presented their experimental results

for large graphs, but their algorithm is unable to handle large real-life instances (for in-

stance, com-LiveJournal). On the other hand, our algorithm finds assignment minimum

edge clique cover for graphs with more than eighty million edges. Moreover, our EO-ECC

algorithm has performed significantly better compared with Conte-Method in running time

and scalability on all tested instances.

4.1.1 Organization of the Chapter

The chapter is organized as follows. Section 4.2 presents a motivating example for solv-

ing the edge clique cover problem focusing on the assignment minimum edge clique cover.

In Section 4.3, we present the new edge-centric minECC algorithm. An essential ingredi-

ent of our algorithm is to select edges incident on the vertex being processed in specific

orders. The details of the implementation steps are described, followed by the presentation

of the ECC algorithm. This section contains a detailed discussion of the computational

complexity of the algorithm.

Section 4.4 contains results from elaborate numerical experiments. We choose different

network data sets consisting of real-world networks and synthetic instances.

In Section 4.5, we describe the parallel implementation of our “edge-centric” edge

clique cover algorithm, EO-ECC for finding edge clique cover for a given graph.

Finally, the chapter is concluded in Section 4.6.

4.2 A Motivating Example

We used intersection matrix (discussed in Section 3.2), to store the given undirected

graph. Still, it requires a row for each edge. This section presents an example showing that

a clique cover can store all the graph information using less space.

Consider the undirected graph (G) in Figure 4.1 having |V |= 9 and |E|= 18. In a trivial

clique cover, we can consider an edge as a clique. Using the intersection matrix, we can

49

4.2. A MOTIVATING EXAMPLE

Figure 4.1: An undirected graph G

store the clique cover with 2×18 = 36 nonzeros. Let, using an algorithm, we get an edge

clique cover for the given graph G (as shown in Figure 4.2).

For this edge clique cover, we observe the number of nonzeros to represent this cover

decreases to 21 (See Figure 4.3).

Still, more optimization is possible, and we can achieve that with some post-processing

steps. One important post-processing step is eliminating redundant cliques from the edge

clique cover. By the word “redundant clique” we mean a clique where other cliques already

cover all of it’s edges. For example, Clique-4 in Figure 4.2 is a redundant clique. Because

edges {2,6}, {2,4} and {4,6} are covered by Clique-6, Clique-2 and Clique-5 respectively.

So, after this post-processing step, we get five cliques, and the total number of nonzeros to

represent this processed cover decreases to 18 (see Figure 4.4).

Another important post-processing step minimizes the number of nonzeros to store the

cover, creating an assignment minimum edge clique cover. The goal of the assignment-

minimum-cover is to minimize the number of individual assignments of vertices (number

of nonzeros) to cliques. In the minECC problem, there might be cases where more than one

cliques cover the same edges, and therefore, the clique cover is not assignment minimum

clique cover. However, we apply this post-processing step after we find the minimum edge

50

4.3. AN EDGE-CENTRIC MINECC ALGORITHM

Figure 4.2: An edge clique cover for the graph shown in Figure 4.1. Let, we label the
cliques from left to right and from top to bottom. Therefore, the top-left clique is Clique-1
and the bottom-right clique is Clique-6

Figure 4.3: Total nonzeros required to store ECC shown in Figure 4.2

clique cover. Because this post-processing step does not decrease the number of cliques but

tries to remove vertices (nonzeros) from the cliques of the cover. For example, Clique-1

of the ECC, presented in Figure 4.2, contains six edges. Here, we can remove vertices 3

and 4 because all the edges incident to these vertices are covered in other cliques (Clique-2

and Clique-3). Therefore, the total number of nonzeros to represent this processed cover

decreases to 16 (Figure 4.5).

51

4.3. AN EDGE-CENTRIC MINECC ALGORITHM

Figure 4.4: Total nonzeros required to store processed ECC after removing redundant
cliques

Figure 4.5: Processed ECC and number of nonzeros

4.3 An Edge-Centric minECC Algorithm

We have implemented our algorithm based on algorithms due to C. Bron et al. [7], and

E. Tomita et al. [81]. For ease of presentation, we discuss the algorithm in graph-theoretic

terms. However, our computer implementation uses a sparse matrix framework of DSJM

[32] and expresses all computations in terms of intersection matrices.

We introduce edge ordering techniques and process edges according to that order. In the

following section, we will discuss the edge ordering techniques followed by our improved

algorithm and post-processing steps.

Definition 4.1. Intersect(L1,L2): We are given two sorted lists: L1, and L2. Now we

52

4.3. AN EDGE-CENTRIC MINECC ALGORITHM

can find the set intersection, S, between these two lists, by merging L1 and L2. The time

complexity is given by O(max{|L1|, |L2|}).

Definition 4.2. FindNeighbors(v): For an undirected graph G, we can define the neighbor

set of a vertex v ∈V as Neighbor(v) =
{

w | {v,w} ∈ E
}

We store the given graph using the column intersection matrix (see Section 3.2). In this

column intersection matrix X , the number of rows is |E|= m. Each row contains only two

nonzeros: v, and another is the neighbor of v. Because a row corresponds to an edge and

stores only two endpoints of that edge. Let, d(v) be the degree of vertex v. Now, while

finding the neighbor of vertex v, we only look up the rows where v is present. Therefore,

we do a constant time (two times) operation in each row. For a vertex v, we lookup |d(v)|

number of rows, therefore, for all vertices, total lookup is ∑
n
v=1 |d(v)|, which is equals to

2×m. Therefore, to find the neighbor set of all the vertices, our algorithm takes linear time,

O(m).

Definition 4.3. FindCommonNeighbors(Neighbor(v1),Neighbor(v2)): We are given lists

of neighbors for vertex v1 and vertex v2: Neighbor(v1), and Neighbor(v2) respectively.

We use FindNeighbors(v), to get these lists. Now using Intersect(L1,L2) we can get the

common neighbor of vertices v1 and v2. The running time of this method for using in our

algorithm (EO-ECC) will be discussed later in the following section.

4.3.1 Edge Ordering Techniques

Vertex Ordering

We described vertex ordering techniques in the previous chapter. We recall that d(v)

denotes the degree of vertex v in graph G = (V,E). Let Vertex Order be a list of vertices

of graph G using one of the ordering schemes below.

• Largest-Degree Order (LDO) (see [35]): Order the vertices such that {d(vi), i =

1, . . . ,n} is nonincreasing.

53

4.3. AN EDGE-CENTRIC MINECC ALGORITHM

• Degeneracy Order (DGO) (see [25, 71]): Let V ′ ⊆ V be a subset of vertices of

G. The subgraph induced by V ′ is denoted by G[V ′]. Assume the vertices V ′ =

{vn,vn−1, . . . ,vi+1} have already been ordered. The ith vertex in DGO is an unordered

vertex u such that d(u) is minimum in G[V \V ′] where, G[V \V ′] is the graph obtained

from G by removing the vertices of set V ′ from V .

• Incidence-Degree Order (IDO) (see [16]): Assume that the first k− 1 vertices

{v1 . . . ,vk−1} in IDO have been determined. Choose vk from among the unordered

vertices that has maximum degree in the subgraph induced by {v1, . . . ,vk}.

Edge Ordering

After the vertices have been ordered using one of the above schemes, the algorithm

proceeds to choose a vertex in that specific order, which has at least one uncovered incident

edge. If there is more than one uncovered edge incident on the vertex being processed, the

order in which the edges are processed (i.e., to include in a clique) is as follows. Place all

the edges {u,v} before {p,q} in an ordered edge list, Edge Order, such that vertex u or

vertex v is ordered before vertices p and q in Vertex Order list.

Figure 4.6: An example of an undirected graph

Figure 4.6 shows an undirected graph. {4,3,5,6,7,1,2} would be a list with LDO.

Then the edge list induced by the Vertex Order will have the following form.

Edge Order =
{
{4,3},{4,5},{4,6},{4,7},{3,1},{3,2},{5,6},{5,7},{6,7},{1,2}

}

54

4.3. AN EDGE-CENTRIC MINECC ALGORITHM

Edge Selection

We select an edge to {u,v} ∈ E to include in a new clique if {u,v} is uncovered and

ordered before all uncovered edges in Edge Order. The clique that gets constructed with

edge {u,v} may cover other uncovered edges that are further down the list.

We consider three variants of edge selection for our algorithm, denoted by L, D, and I.

• L: In this variant, the set of vertices are ordered using the Largest-Degree Ordering

(LDO) scheme. We select a vertex u in that order and then return all the uncovered

edges of the form {u,v}.

• D: All the vertices are ordered using Degeneracy Ordering (DGO) scheme. Select a

vertex u in that order, and then return all the uncovered edges of the form {u,v}.

• I: Finally, this variant orders the set of vertices using the Incidence-Degree Ordering

(IDO) scheme. We select a vertex u in that order and return all the uncovered edges

{u,v}.

4.3.2 Algorithm

Let EP = {e1, . . . ,ei−1} denote the edges that have been assigned to one or more cliques

{C1, . . . , Ck−1} and ei = {vi,v j} be the edge currently being processed. The set

W (vi,v j) =
{

vl | {vi,vl},{v j,vl} ∈ E
}

denotes the set of common neighbors of two vertices vi and v j. The task is to assign edge

{vi,v j} (if not covered yet) to one new clique and add its common neighbors if they satisfy

clique properties.

For an uncovered edge {vi,v j}, the algorithm creates a new clique Ck = {vi,v j}. Then

there are two cases.

Case I. W (Ck) is empty: do nothing.

55

4.3. AN EDGE-CENTRIC MINECC ALGORITHM

Case II. W (Ck) is not empty:

i. Take a vertex vl from W (Ck) such that vl is ordered before all the vertices vp ∈

W (Ck), l ̸= p.

ii. Update W (Ck) by W (Ck)∩Neighbor(vl)

iii. Include vl in Ck.

iv. Repeat steps i to iv until W (Ck) is empty.

The complete algorithm is presented below.

Algorithm 2 EO-ECC (Edge Order)
Input: Edge Order, set of edges in a predefined order using schemes L, D, or I

1 k← 0 ▷ Number of cliques
2 for index = 1 to m do ▷ m is number of edges
3 {u,v}← Edge Order[index]
4 if {u,v} is not covered then
5 W ← FindCommonNeighbors(u,v)
6 if W = /0 then
7 k++
8 Ck←{u,v}
9 Mark {u,v} as covered.

10 else
11 k++
12 Ck←{u,v}
13 Mark {u,v} as covered.
14 while W ̸= /0 do
15 let t be a vertex in W
16 W ←W \ t
17 if {t,s} ∈ E for each s ∈Ck then
18 Mark {t,s} as covered
19 Ck←Ck∪{t}
20 FindCommonNeighbors(W,FindNeighbors(t))
21 return C1,C2, ...,Ck

Lemma 4.4. Let C = {C1,C2, . . . ,Ck} be the clique decomposition produced by EO-ECC

algorithm. Then, for indices i not equal to j for Ci,C j ∈ C, it holds that Ci is not a subset

of C j.

56

4.3. AN EDGE-CENTRIC MINECC ALGORITHM

Proof. Let C1,C2, . . . ,Ck be the cliques of the edge clique cover in their order of discovery

by EO-ECC, namely, Ci is discovered before C j iff i < j. We will prove that:

• no clique Ci is contained in another clique C j, where i ̸= j

Suppose by contradiction that Ci ⊆C j for i ̸= j. First, we observe that it cannot be that

Ci =C j as they must be found from one uncovered edge, and the first discovered of the two

would cover all the edges of the other. Thus, it must be Ci ⊂C j. Second, it must be i < j

for the same reason: if it were j < i, then Ci would contain only covered edges.

Now we get a contradiction for using the method to find the set of common neighbors.

This method finds the common neighbor list of all the vertices of Ci. It includes such vertex

in Ci, and updates the common neighbor list. Therefore, our algorithm does not leave any

edge which is incident to all the vertices of Ci. So, C j will start creating the clique with

a covered edge and therefore will create a clique with all covered edges. But, this is not

possible according to our construction of edge clique cover (i.e. picking an uncovered edge

for creating a new clique).

Corollary 4.5. Each Ci, i = 1,2, . . . ,k is a maximal clique in G = (V,E).

Proof. Let C = {C1,C2, . . . ,Ck} be the clique decomposition produced by EO-ECC algo-

rithm. Now if Ci is not a maximal clique than we shall get another clique C j in the given

decomposition where Ci is the subset of C j. It is not possible according to Lemma 4.4.

Lemma 4.6. For each edge {i, j} ∈ E there is at least one clique Cl such that i, j ∈Cl .

Proof. Algorithm 2 terminates when there is no edge to process. Therefore, all the edges

are covered by at least one clique.

Lemma 4.7. Algorithm 2 is correct.

Proof. Algorithm 2 is correct because it gives a maximal clique cover (Corollary 4.5) and

all the edges are covered by at least one clique (Lemma 4.6).

57

4.3. AN EDGE-CENTRIC MINECC ALGORITHM

Remark 4.8. Let C = {C1,C2, . . . ,Ck} be the clique decomposition produced by EO-ECC

algorithm. Here for any graph, k ≤ m, where m is the number of edges. Because, in the

trivial case, we can consider an edge as a clique, therefore k = m. When we cover more

than one edge in a clique, we get k < m. There is no chance where k can be larger than m.

Lemma 4.9. The operation to check whether all edges of the given graph are covered or

not takes O(m) time in total.

Proof. In the column intersection matrix, each column represents a vertex. To get the index

of an edge, we intersect two columns of that matrix. If there is an edge between these two

vertices, they intersect in exactly one row and using that index; we keep track of whether it

is covered.

The total intersection cost is ∑
n
i=1

ρi×(ρi−1)
2 = O(m), where ρi is the degree of vertex vi.

Note, we check each edge twice because we select the edges from its two incident

vertices. Still, the running time is O(m) for checking the status of all the edges.

Lemma 4.10. The operation FindNeighbors in EO-ECC to calculate neighbor set of vertex

v ∈ V is implemented in linear space, taking O(m) time to find neighbor sets for all the

vertices.

Proof. In EO-ECC, we need to know the set of neighbors of at most two vertices at a time.

We have two n size arrays, where n is the number of vertices. Therefore, the space require-

ment is linear.

Recall, we store the given graph using the column intersection matrix (see Section 3.2).

In column intersection matrix X , the number of rows is |E| = m. Each row contains only

two nonzeros: v, and another is the neighbor of v. Let, d(v) is the degree of vertex v.

Now, while finding the neighbor of vertex v, EO-ECC only checks the rows that contains

v. Therefore, we do a constant time (two times) operation in each row. For a vertex v,

we check |d(v)| number of rows, therefore, for all vertices, we check ∑
n
v=1 |d(v)|, which

is equals to 2×m. Therefore, to find neighbor set of all the vertices, our algorithm takes

linear time, O(m).

58

4.3. AN EDGE-CENTRIC MINECC ALGORITHM

Lemma 4.11. The operation FindCommonNeighbors in EO-ECC is implemented in linear

space and to find all the cliques Ci of ECC, it takes O(∑k
i=1

ρi×(ρi−1)
2) time, where k is the

number of cliques and ρi is the size of clique Ci.

Proof. In EO-ECC, at a time, we need to compute one common neighbor set between two

vertices. At this time, we do not need to know about the common neighbor set of other

vertices. Therefore, we have one n size array, where n is the number of vertices to store the

common neighbors set. So, the space requirement is linear.

According to our algorithm, we start with an uncovered edge {u,v} and include these

vertices in a new clique Ci. Then the FindCommonNeighbors operation takes O(max{d(u),

d(v)}) time, where d(v) denotes the degree of vertex v, to find the neighbor set between

these two vertices. Now the while loop at line 14 of Algorithm 2 runs until the common

neighbor set W is empty and each time it includes a vertex from W to the current clique Ci.

Therefore, if ρi denotes the size of Ci, then we say, this loop runs for ρi times. Now, inside

the FindCommonNeighbors operation, it merges two sorted lists (lists of neighbors) where

the set of vertices that this operation returns after each call has at least one fewer vertices

and in each iteration, this merging cost decreases at least by one. So, to find clique Ci, total

cost would be ρi +(ρi− 1)+ · · ·+ 2+ 1. Therefore cost of this operation to find a clique

Ci, is (ρi×(ρi−1)
2). As we have k cliques, the total cost is O(∑k

i=1
ρi×(ρi−1)

2).

Remark 4.12. The time required for the FindCommonNeighbors operation, presented in

Lemma 4.11, depends on the number of times the EO-ECC covers an edge.

Let, for an undirected graph G, we get a clique cover with k number of cliques using

the EO-ECC algorithm.

1. If the graph is triangle-free (k = m), the running time of the FindCommonNeighbors

operation is O(m).

2. If G is a clique of size n (k = 1), the running time of the FindCommonNeighbors

operation is O(m).

59

4.3. AN EDGE-CENTRIC MINECC ALGORITHM

3. If G is a graph with n− l cliques and each clique contains exactly l+1 vertices, then

the running time of the FindCommonNeighbors operation is (n− l) (l+1)×l
2 > m.

Here, cases 1 and 2 are the two extreme cases for any given graphs, and case 3 is an

example of a graph where the operation FindCommonNeighbors has its worst-case scenario.

From Lemma 4.11, we know that the operation FindCommonNeighbors in EO-ECC,

takes

O(
k

∑
i=1

ρi× (ρi−1)
2

)

time, where ρi is the size of clique Ci.

For Case 1, ρi = 2 for i = 1, . . . ,k, and k = m. Therefore solving the equation we get,

O(m).

Similarly for Case 2, ρi = n for i = 1, . . . ,k, and k = 1. We know, for a complete graph,

the number of edges, m = n(n−1)
2 . Therefore, we get total running time O(m).

Case 3 is an example of a graph where we have n− l cliques of the same size, l + 1,

and all cliques have a common sub-clique, l-clique. Therefore, l×(l−1)
2 number of edges are

covered n− l times. For this case, ρi = l +1 for i = 1, . . . ,k, and k = (n− l). According to

Lemma 4.11, the total time for this operation is (n− l) (l+1)×l
2 .

From the discussion on these cases, it is clear that the runtime for the operation Find-

CommonNeighbors depends on the number of times the ECC covers an edge.

Theorem 4.13. For an undirected and connected graph G = (V,E), where |V | = n, and

|E| = m, Algorithm 2 takes O(n+m) space and O(m+∑
k
i=1

ρi×(ρi−1)
2) time to find edge

clique cover C= {C1,C2, . . . ,Ck}, where ρi denotes the size of clique Ci and (k ≤ m).

Proof. EO-ECC stores the given graph in an intersection matrix, where rows represent an

edge and columns represent vertices. Each row consists of two vertices, and therefore a

total of O(2m) space is required, where m is the number of edges. We also calculate the

degree of each vertex to get their order list. Therefore, we require O(n) space to store that

degree and order information of the vertices. EO-ECC algorithm has two primary operations:

60

4.3. AN EDGE-CENTRIC MINECC ALGORITHM

FindNeighbors, and FindCommonNeighbors. According to Lemma 4.10 and 4.11, both

operations use O(m) space. Therefore, total space required for the Algorithm 2 is linear,

i.e. O(n+m).

EO-ECC requires an ordered list of vertices. We use an existing sparse matrix framework

[32] to design the efficient algorithm, EO-ECC. Hossain et al. [32] showed a graph coloring

algorithm along with a vertex ordering scheme and proved that accessing this sparse matrix

framework takes linear time, O(m) for ordering the vertices. To check whether all edges

of the given graph are covered or not, EO-ECC algorithm takes O(m) time (Lemma 4.9).

Then Lemma 4.10 shows the operation FindNeighbors takes O(m) time to calculate the

list of neighbors for all the vertices. The operation FindCommonNeighbors depends on the

number of times the ECC covers an edge (Remark 4.12) and takes O(∑k
i=1

ρi×(ρi−1)
2) time

to get the edge clique cover C = {C1,C2, . . . ,Ck} (4.11), where ρi is the size of clique Ci.

Therefore, the total time requires for the EO-ECC algorithm is O(m+∑
k
i=1

ρi×(ρi−1)
2).

4.3.3 Removing Redundant Cliques

The example in Section 4.2 shows we have two post-processing methods after we get

the edge clique cover using Algorithm 2. The first post-processing method is to remove

the redundant cliques. A clique is said to be a redundant clique if other cliques cover all

the edges of that clique. Kou et al. [47] proposed a similar concept to removing redundant

cliques after having the edge clique cover using Kellerman’s [42] algorithm. However,

those approaches work well for small graphs, and we cannot test that algorithm for large

graphs. We present our post-processing method in Algorithm 3.

Algorithm 3 RemoveRedundantCliques (C=C1,C2, . . . ,Ck)

1 k′← k ▷ k′ is the number of cliques after removing redundant cliques
2 for i = 1 to k do ▷ k is number of cliques
3 if all the edges {u,v} ∈Ci is covered more than once then
4 Remove clique Ci
5 k′← k′−1
6 return C1,C2, ...,Ck′

61

4.3. AN EDGE-CENTRIC MINECC ALGORITHM

Lemma 4.14. The post-processing step, Algorithm 3 takes O(∑k
i=1

ρi×(ρi−1)
2) time, where k

is the number of cliques and ρi is the size of clique Ci.

Proof. Algorithm 2 finds an edge clique cover, C=C1,C2, . . . ,Ck. Then Algorithm 3 takes

that clique cover as an input and checks cliques one by one. For a clique Ci, algorithm

checks all the edges of that clique, whether those edges are covered more than once or not.

Therefore, it takes O(ρi×(ρi−1)
2) time, where ρi is the size of clique Ci. To check all the

cliques (k number of cliques), this algorithm takes O(∑k
i=1

ρi×(ρi−1)
2) time.

4.3.4 Assignment Minimum Edge Clique Cover

The second post-processing method is for achieving assignment minimum edge clique

cover. We pass the given graph through Algorithm 2 and Algorithm 3 and then this post-

processing method takes that edge clique cover without the redundant cliques as input.

After we pass this post-processing step, the number of cliques remains the same in the edge

clique cover, but the size of the cliques may decrease, and therefore we get assignment

minimum edge clique cover. Ennis et al. [23] presented an algorithm for assignment min-

imum edge clique cover. However, their backtracking algorithm becomes costly for large

graphs, especially when they have many maximal cliques. In the following section, we have

presented comparative results between EO-ECC and Ennis’s algorithm.

For our post-processing method we get an edge clique cover without redundant cliques,

C′ =C1,C2, ...,Ck′ . Now we examine all the cliques one after another. For a clique Ci, we

consider a subgraph, Sv that contains all the edges incident to vertex v ∈ Ci. Now if all

the edges of this subgraph Sv, is covered by other cliques C j ∈ C′, and i ̸= j, then we can

remove this vertex v from Ci. We presented the complete method in Algorithm 4.

Lemma 4.15. The post-processing step, Algorithm 4, takes O(∑k′
i=1 ρi +

ρi×(ρi−1)
2) time,

where k′ is the number of cliques and ρi is the size of clique Ci.

Proof. After we remove all the redundant cliques using Algorithm 3 we get an edge clique

cover, C′ = C1,C2, . . . ,C′k. Then Algorithm 4 takes that clique cover as input and checks

62

4.4. NUMERICAL RESULTS

Algorithm 4 AM-ECC (C′ =C1,C2, . . . ,Ck′)

1 for i = 1 to k′ do
2 for u ∈Ci do
3 f lagu← 0
4 for edge {u,v} in Ci do
5 if edge {u,v} ∈Ci is covered only once then
6 f lagu← 1
7 f lagv← 1
8 for u ∈Ci do
9 if f lagu == 0 then

10 Remove u from Ci

cliques one by one. For each clique Ci, this algorithm has the following steps: (1) set the

flags of each vertex of Ci to zero. (2) examine each edge, whether those are covered exactly

once or not. If an edge is covered exactly once, it means, only Ci covers that edge, and

therefore we cannot remove the vertices incident to that edge. Set the flag of such vertices

to one. (3) Examine the flags of each vertex, and remove the vertex u ∈Ci if its flag value

is still zero.

Step 1 takes ρi times for clique Ci. Then Step 2 takes ρi×(ρi−1)
2 time as it examine all the

edges of clique Ci. Finally, Step 3 takes ρi time. Therefore total time required to examine

all the cliques is O(∑k′
i=1 ρi +

ρi×(ρi−1)
2).

4.4 Numerical Results

In this section, we provide results from numerical experiments on selected real-life and

generated test instances.

10th Discrete Mathematics and Theoretical Computer Science (DIMACS10) data sets

and Stanford Network Analysis Platform (SNAP) data sets for the experiments are obtained

from the University of Florida Sparse Matrix Collection [20]. We obtain some real-world

instances, such as triticale, winter wheat, and rapeseed trials instances from [29], where

they presented the application of “compact letter display” to test Edge Clique Cover (ECC)

algorithms. We also test our algorithms for some large social networks, available in the

63

4.4. NUMERICAL RESULTS

Network Repository [69]. Here, the most extensive graph we tested had 35 million edges

and 4 million vertices. We then generated 182 Erdős-Rényi and Small-World instances

using a general-purpose, high-performance system for graph and network manipulation

and analysis, Stanford Network Analysis Platform (SNAP) [50]. The number of edges of

these generated graphs is varied from 800 edges to 72 million edges.

The experiments were mainly performed using a PC with 3.4GHz Intel Xeon CPU,

with 8 GB RAM running Linux. The implementation language was C++ and the code was

compiled using −O2 optimization flag with a g++ version 4.4.7 compiler. We employed

the High-Performance Computing system (Graham cluster) at Compute Canada for large

instances that could not be handled by the PC.

Conte et al. [17] presented their method to find edge clique cover and showed that their

algorithm performs better than other edge clique cover algorithms. Therefore, we compared

our result for the EO-ECC algorithm with Conte’s method. Conte et al. implemented their

method in Java language, and we ran their code in the same environment we used for our

algorithm. In this chapter, we show that our algorithm takes less time than Conte’s method

to find an edge clique cover. For 219 test instances (from DIMACS10, SNAP, Real-World,

Small-World, and Erdős-Rényi groups), where the number of edges varies between 170

and 7.6×107, our EO-ECC algorithm produces smaller or equal size clique covers than the

Conte-Method [17].

With post-processing, we achieve assignment minimum edge clique cover. Ennis et al.

[23] presented a post-processing method to find assignment minimum edge clique cover.

They tested their method after they got edge clique cover using different existing algo-

rithms. Therefore, we compare our assignment minimum edge clique cover result with

Ennis’s result. We show that our algorithm finds assignment minimum edge clique cover.

However, Ennis et al. could not test their algorithm for large graphs. Nevertheless, in our

result, we present results for large graphs too.

This section refers to Conte’s method as Conte-Method, Ennis-ALG will refer to the

64

4.4. NUMERICAL RESULTS

Table 4.1: Test Results (number of cliques) for DIMACS10 Graphs

Graph Number of cliques
Name m n Conte-Method EO-ECC-D EO-ECC-L EO-ECC-I

chesapeake 170 39 75 76 75 76
delaunay n10 3056 1024 1250 1233 1275 1241
delaunay n11 6127 2048 2485 2449 2544 2481
delaunay n12 12264 4096 4993 4906 5095 4939
delaunay n13 24547 8192 9989 9881 10211 9920
delaunay n14 49122 16384 19974 19672 20435 19855
delaunay n15 98274 32768 39923 39501 40876 39782
delaunay n16 196575 65536 79933 78792 81528 79445
delaunay n17 393176 131072 159900 157792 163321 158851
delaunay n18 786396 262144 319776 315684 326741 317987
com-DBLP 1049866 317080 238854 237713 237685 237685
belgium osm 1549970 1441295 1545183 1545183 1545183 1545183
delaunay n19 1572823 524288 639349 631354 653383 635877
delaunay n20 3145686 1048576 1279101 1262843 1307080 1271229
delaunay n21 6291408 2097152 2557828 2525301 2613106 2542333

Ennis’s algorithm, and our algorithm as EO-ECC. Our algorithm (EO-ECC) employed three

different techniques to order the edges described in the previous section. EO-ECC has three

variants associated with the three different edge ordering schemes D, L, and I. They are:

EO-ECC-D, EO-ECC-L, and EO-ECC-I respectively.

4.4.1 Analyzing Clique Size Distribution

Number of Cliques

Test results for the selected test instances from group DIMACS10 are reported in Table

4.1. Here, n represents the number of vertices and m represents the number of edges of the

graph. In this table, the smallest cardinality clique cover is marked in bold.

For comparison, we show the results of Conte-Method, EO-ECC-D, EO-ECC-L, and

EO-ECC-I. For twelve out of fifteen instances, EO-ECC-D gives the least number of cliques

to cover all the edges of a given graph. For one graph, EO-ECC-L and EO-ECC-I produce

smaller cardinality ECC. Finally, all algorithms give the same result for two out of fif-

teen instances. Figure 4.7 shows the improvement (percentage) in clique cover size using

65

4.4. NUMERICAL RESULTS

Figure 4.7: Improvement in clique cover size using EO-ECC

EO-ECC over Conte-Method. We report the best results from all the twenty versions of

Conte’s method. For all the DIMACS10 instances, our EO-ECC finds an equal or smaller

size clique cover than Conte-Method.

Besides DIMACS10 selected instances, we compare these algorithms on 182 generated

instances where the graph’s number of edges is varied from 800 to 7.2×107. Using SNAP

tool [50], we generated 72 “Small-world” and 110 “Erdős-Rényi” graphs. For all the in-

stances, EO-ECC produces smaller (47.3%) or equal (52.7%) cardinality of the clique cover

than Conte-Method. The detailed test results of these instances are reported in Table 1 of

Appendix A.

Maximal Clique Size Dimension

To find a maximal size clique in the clique cover, EO-ECC-L and EO-ECC-I are more

effective. These algorithms gave maximal size cliques for all of the instances: SNAP,

DIMACS10, Erd}os-Rényi, and Small-World. For example, Conte-Method finds equal

(40% cases) or smaller (60% cases) sized cliques in the cover than the one found by EO-ECC

for the DIMACS10 instances.

66

4.4. NUMERICAL RESULTS

Average Clique Size

From a clique cover, we compute the maximal average size of the cliques using ∑
k
i=1 |Ci|
|C| ,

where C is a clique cover, and k is the size of the clique cover. In all the cases EO-ECC

achieves the maximal average size than Conte-Method. In 27.55% cases, Conte-Method

gives an equal average size of the cliques, and for the rest of the cases, it gives a smaller

average size of cliques than EO-ECC.

Trivial Maximal Clique

EO-ECC gives maximum size cliques in all cases, and it also achieves the maximum

average size of cliques. Therefore, it provides less number of trivial maximal cliques (i.e.,

a clique of size 2). In 72% of the cases, EO-ECC gives less trivial maximal cliques than

Conte-Method, and on average, this value is 12.7% smaller than that of Conte-Method. In

the rest of the cases, both algorithms give an equal number of trivial cliques.

Relative Difference in Number of Cliques

In this chapter, we have presented two post-processing methods: to remove redundant

clique (Algorithm 3), and to achieve assignment minimum edge clique cover (Algorithm

4). Therefore, after the post-processing, we can say we do not have any redundant cliques.

So, we would get a more trivial maximal clique, i.e., a clique of size two. Again, we

want to compare the results between EO-ECC and Conte-Method for the number of cliques,

but we ignore the clique of size two. Mathematically we can represent this as follows.

|C′′| = |C′| − |T|, where C′ is the edge clique cover we get from EO-ECC and using two

post-processing algorithms, T⊆C′, where T contains the cliques of size two, and C′′ is the

set of cliques where C′′ ⊆ C′ and it contains all the cliques of size more than two.

67

4.4. NUMERICAL RESULTS

Table 4.2: Relative Difference in Number of Cliques between Conte-Method and EO-ECC

|ECC|− |trivial cliques| Relative

Graph Conte-Method EO-ECC Difference

Group Name m n a b (a−b)
a ×100 %

D
IM

A
C

S1
0 chesapeake 170 39 47 47 0.00

delaunay n10 3056 1024 1050 984 6.29

delaunay n11 6127 2048 2125 1989 6.40

delaunay n12 12264 4096 4251 3982 6.33

delaunay n13 24547 8192 8587 7966 7.23

delaunay n14 49122 16384 17098 15922 6.88

delaunay n15 98274 32768 34141 31807 6.84

delaunay n16 196575 65536 68208 63647 6.69

delaunay n17 393176 131072 136504 127277 6.76

delaunay n18 786396 262144 273228 254478 6.86

com-DBLP 1049866 317080 153392 152094 0.85

belgium osm 1549970 1441295 2417 2414 0.12

delaunay n19 1572823 524288 546594 508896 6.90

delaunay n20 3145686 1048576 1092346 1017901 6.82

delaunay n21 6291408 2097152 2185359 2036084 6.83

SN
A

P

as-735 12572 7716 2279 2279 0.00

ca-GrQc 14484 5242 1990 1954 1.81

ca-HepTh 25973 9877 5100 5038 1.22

p2p-Gnutella04 39994 10879 861 845 1.86

p2p-Gnutella24 65369 26518 912 897 1.64

p2p-Gnutella25 54705 22687 754 742 1.59

Table 4.2 – Continued on next page

68

4.4. NUMERICAL RESULTS

Table 4.2 – Continued from previous page

|ECC|− |trivial cliques| Relative

Graph Conte-Method EO-ECC Difference

Group Name m n a b (a−b)
a ×100 %

p2p-Gnutella30 88328 36682 1430 1403 1.89

R
ea

l-
W

or
ld

Rapeseed 6 1416 70 26 25 3.85

Rapeseed 7 1758 74 23 22 4.35

E
rd

ős
-R

én
yi er-n6 8.00E+06 1.00E+06 731 731 0.00

er-2n6 1.60E+07 2.00E+06 696 695 0.14

er-3n6 2.40E+07 3.00E+06 683 683 0.00

er-4n6 3.20E+07 4.00E+06 634 634 0.00

er-5n6 4.00E+07 5.00E+06 660 659 0.15

er-6n6 4.80E+07 6.00E+06 712 712 0.00

er-7n6 5.60E+07 7.00E+06 669 668 0.15

er-8n6 6.40E+07 8.00E+06 694 691 0.43

er-9n6 7.20E+07 9.00E+06 NA 666 NA

Sm
al

l-
W

or
ld sw-n6 8.00E+06 1.00E+06 NA 1181708 NA

sw-2n6 1.60E+07 2.00E+06 NA 2362921 NA

sw-3n6 2.40E+07 3.00E+06 NA 3544153 NA

sw-4n6 3.20E+07 4.00E+06 NA 4727802 NA

sw-5n6 4.00E+07 5.00E+06 NA 5907930 NA

sw-6n6 4.80E+07 6.00E+06 NA 7086309 NA

sw-7n6 5.60E+07 7.00E+06 NA 8270077 NA

sw-8n6 6.40E+07 8.00E+06 NA 9450576 NA

sw-9n6 7.20E+07 9.00E+06 NA 10634374 NA

Table 4.2 – Continued on next page

69

4.4. NUMERICAL RESULTS

Table 4.2 – Continued from previous page

|ECC|− |trivial cliques| Relative

Graph Conte-Method EO-ECC Difference

Group Name m n a b (a−b)
a ×100 %

So
ci

al
N

et
w

or
k com-Amazon 9.26E+05 3.35E+05 186345 186330 0.01

com-DBLP 1.05E+06 3.17E+05 153522 152094 0.93

soc-youtube-snap 2.99E+06 1.13E+06 415060 415060 0.00

com-LiveJournal 3.47E+07 4.00E+06 N/A 6538414 N/A

Table 4.2 shows the comparative results between Conte-Method and EO-ECC. We see

there is no negative value in “Relative Difference” column. That means Conte-Method

produces more number cliques that have a size of more than two. Table 4.1 showed

Conte-Method gives a larger clique cover than EO-ECC, and now we have shown that

their clique cover has more nonzeros than EO-ECC. Table 4.2 shows N/A in some fields.

It means Conte-Method could not find an edge clique cover for those instances. We ran

Conte-Method in Compute-Canada machine (graham) with 500 Gigabyte memory, and for

seven days, and then we reported N/A if we did not get result or got an error.

4.4.2 Covering Index

Minimizing the space occupied by the solution is another measure to find redundancy.

We measure the covering index concerning how many times a vertex or edge is present in

cliques of the cover. As our EO-ECC algorithm, in most of the cases, find larger-sized cliques

than Conte-Method, we see a higher covering index for using EO-ECC. Here we report the

result of EO-ECC without using the post-processing method for assignment minimum edge

clique cover (Algorithm 4).

Let, C be a clique cover of size k for graph G = (V,E), where |V |= n is the number of

vertices and |E|= m is the number of edges.

70

4.4. NUMERICAL RESULTS

Mean Vertex Covering

The size of cliques in terms of vertices can be defined as, ∑
k
l=1 |Cl| and therefore,

the average vertex covering index is ∑
k
l=1 |Cl |

n . In the 27.6% of the cases, EO-ECC and

Conte-Method have equal average vertex covering. Conte-Method for the rest of the cases,

achieves less mean vertex covering than EO-ECC, and on average, this value is 3.4% smaller

than that of EO-ECC.

Mean Edge Covering

The mean edge covering index is equal to ∑
k
l=1 |Cl |.|Cl−1|

2.m . In 54 out of 197 cases, EO-ECC

and Conte-Method have equal average edge covering. For the rest of the cases (72.4%),

Conte-Method achieves less mean edge covering than EO-ECC, and on average, this value

is 12% smaller than that of EO-ECC.

4.4.3 Runtime Analysis of EO-ECC

The performance comparison between Conte-Method and EO-ECC is shown in Figure

4.8. For this comparison, we consider the time required to find edge clique cover and

the post-processing method to remove redundant cliques. Because Conte’s algorithm dealt

with removing redundant clique and therefore, for a fair comparison, we included that time

too. Conte did not consider assignment minimum clique cover, so we separately show the

runtime analysis for that post-processing method.

For fifteen DIMACS10 instances and 182 Erdős-Rényi, Small-World instances, we

draw a cross, which is the ratio between the time needed by Conte-Method and EO-ECC, as

a function of the number of the edges. The horizontal green line at height 100 means that

Conte-Method took the same time as EO-ECC to process the corresponding graph, and a

point at height 101 means that Conte-Method was ten times slower.

The graph processing rate is one of the quality assessment metrics for an algorithm.

We report the processing rate of our algorithm for a selection of real-world (DIMACS10,

SNAP) and synthetically generated (Erdös-Rényi, Small World) graphs in Table 4.3. Ta-

71

4.4. NUMERICAL RESULTS

Figure 4.8: Ratio between the time used by Conte-Method and EO-ECC for each graph, as
a function of the number of the edges (y-axis is in log-scale)

Table 4.3: Graph Processing Rate (Number of Edges Processed per Sec)

Group Total instances Largest rate Smallest rate Average rate
DIMACS10 15 2.7E6 3.0E5 1.7E6
SNAP 9 2.5E6 6.2E4 1.5E6
Erdős-Rényi 110 2.0E6 1.2E5 8.9E5
Small World 72 1.7E6 4.3E5 1.1E6

ble 4.3 shows the largest rate, the smallest rate, and the average rate for each set of graph

instances. On DIMACS10 instances, the algorithm performs the best, while on Erdös-Rényi

instances, the algorithm is not as efficient. This can be explained by the structural proper-

ties of graphs. Real-life and Small World synthetic instances display a power-law degree

distribution resulting in a large proportion of vertices with very small degrees. Thus, the set

intersection operation in our algorithm can be very efficient on those types of graphs.

The time needed by Conte-Method, EO-ECC-D, EO-ECC-L, and EO-ECC-I to process

the corresponding graph from the DIMACS10 group is reported in Table 4.4. We observe

that for all cases, Conte-Method took more time than EO-ECC.

72

4.4. NUMERICAL RESULTS

Table 4.4: Test Results (run-time) for DIMACS10 matrices

Graph Time in seconds
Name m n Conte-Method EO-ECC-D EO-ECC-L EO-ECC-I
chesapeake 170 39 0.027 0 0 0
delaunay n10 3056 1024 0.126 0 0 0.01
delaunay n11 6127 2048 0.157 0.01 0 0
delaunay n12 12264 4096 0.27 0.01 0 0.01
delaunay n13 24547 8192 0.381 0.01 0.01 0.01
delaunay n14 49122 16384 0.544 0.03 0.03 0.02
delaunay n15 98274 32768 1.09 0.06 0.05 0.05
delaunay n16 196575 65536 2.305 0.12 0.11 0.11
delaunay n17 393176 131072 3.772 0.25 0.23 0.21
delaunay n18 786396 262144 7.067 0.49 0.46 0.43
com-DBLP 1049866 317080 7.382 1.26 1.12 1.02
belgium osm 1549970 1441295 14.569 0.75 0.67 0.57
delaunay n19 1572823 524288 11.144 1.01 0.95 0.87
delaunay n20 3145686 1048576 21.046 2.04 1.98 1.78
delaunay n21 6291408 2097152 35.904 4.04 3.9 3.47

Complexity

Theorem 4.13 shows that, for an undirected and connected graph G = (V,E), where

|V | = n, and |E| = m, Algorithm 2 takes O(m+∑
k
i=1

ρi×(ρi−1)
2) time to find edge clique

cover C= {C1, . . . ,Ck}, where ρi denotes the size of clique Ci and (k ≤ m).

Here the runtime depends on the number of edges and the size of each clique of the

clique cover. However, we want to see the relationship between the total time (used to

compute clique cover by EO-ECC) and the number of edges (m) for all the groups of our test

instances.

Figure 4.9 shows the time used to compute clique covers by EO-ECC, where the time is

a function of the number of edges in the graph. We consider the time in microseconds. A

dot (x,y) states that the graph has x edges, and the algorithm spent y microseconds to finish

the computation. We observe that the dots align with a line (y = c× x), suggesting a linear

running time of the algorithm, where c is a constant.

The runtime of the EO-ECC algorithm depends on the size of the cliques due to the Find-

CommonNeighbors function that we used to grow the clique for an uncovered edge. Find-

CommonNeighbors function does a merge operation between two sorted lists. So, the cost

of using this function (merge cost), for two given sorted lists L1, and L2 is max{|L1|, |L2|}.

Therefore, we also want to see the edge vs. merge cost relationship for using the FindCom-

73

4.4. NUMERICAL RESULTS

Figure 4.9: Runtime to find clique cover using EO-ECC and to remove redundant cliques
using post-processing method

74

4.4. NUMERICAL RESULTS

monNeighbors function.

In Figure 4.10, a dot (x,y) states that the graph has x edges, and the total merge cost for

using FindCommonNeighbors is y. We observe that the dots align with a line (y = c× x),

suggesting the cost of finding common neighbors is linear, where c is a constant.

4.4.4 Analysis of the Assignment Minimum Edge Clique Cover

After we find a clique cover using EO-ECC, we use our proposed post-processing method

to minimize the number of nonzeros to store the cover, creating an assignment minimum

edge clique cover. The goal of the assignment-minimum-cover is to minimize the number

of individual assignments of vertices (number of nonzeros) to cliques. Ennis et al. [23]

presented a similar idea to get assignment minimum edge clique cover. However, their

backtracking algorithm becomes costly for large graphs, especially when they have many

maximal cliques.

Relative Difference in Number of nonzeros

We compare the total number of nonzeros before and after the post-processing method

(Table 4.5). Ennis et al. [23] presented their result for some real-world graphs (triticale and

wheat). We got the same assignment minimum cover for those instances. Table 4.5 shows

that our post-processing method reduces the total number of nonzeros significantly.

Table 4.5: Relative Difference in Number of Nonzeros to Store Clique Cover by using and
without using Post-processing (Assignment Minimum)

Number of nonzeros Relative

Graph Unprocessed Processed Difference

Group Name m n a b (a−b)
a ×100 %

chesapeake 170 39 241 209 13.28

delaunay n10 3056 1024 3839 3548 7.58

Table 4.5 – Continued on next page

75

4.4. NUMERICAL RESULTS

Table 4.5 – Continued from previous page

Number of nonzeros Relative

Graph Unprocessed Processed Difference

Group Name m n a b (a−b)
a ×100 %

D
IM

A
C

S1
0 delaunay n11 6127 2048 7656 7100 7.26

delaunay n12 12264 4096 15331 14218 7.26

delaunay n13 24547 8192 30719 28473 7.31

as-22july06 48436 22963 85732 80055 6.62

delaunay n14 49122 16384 61486 56971 7.34

delaunay n15 98274 32768 122993 113920 7.38

delaunay n16 196575 65536 245386 227497 7.29

delaunay n17 393176 131072 491477 455409 7.34

delaunay n18 786396 262144 983203 910904 7.35

com-DBLP 1049866 317080 806486 775868 3.80

belgium osm 1549970 1441295 3092786 3092780 0.00

delaunay n19 1572823 524288 1966239 1821680 7.35

delaunay n20 3145686 1048576 3933219 3643890 7.36

delaunay n21 6291408 2097152 7863444 7286128 7.34

SN
A

P

as-735 12572 7716 21724 20741 4.52

ca-GrQc 14484 5242 11295 10931 3.22

ca-HepTh 25973 9877 27341 26117 4.48

Oregon-1 23409 11492 40374 37655 6.73

p2p-Gnutella04 39994 10879 77904 77830 0.09

p2p-Gnutella24 65369 26518 128413 128358 0.04

p2p-Gnutella25 54705 22687 107523 107482 0.04

Table 4.5 – Continued on next page

76

4.4. NUMERICAL RESULTS

Table 4.5 – Continued from previous page

Number of nonzeros Relative

Graph Unprocessed Processed Difference

Group Name m n a b (a−b)
a ×100 %

p2p-Gnutella30 88328 36682 173204 173056 0.09

wiki-Vote 100762 8297 208486 154581 25.86

R
ea

l-
W

or
ld triticale1 55 13 23 20 13.04

triticale2 86 17 42 32 23.81

rapeseed1 576 47 314 215 31.53

rapeseed2 1040 57 451 300 33.48

rapeseed3 1260 64 567 344 39.33

rapeseed4 1085 62 384 268 30.21

rapeseed5 1456 64 561 358 36.19

rapeseed6 1416 70 684 413 39.62

rapeseed7 1758 74 756 476 37.04

rapeseed8 1128 59 369 231 37.40

rapeseed9 1835 76 902 565 37.36

wheat1 4847 124 2320 1337 42.37

wheat2 4706 121 2209 1316 40.43

wheat3 3559 97 1480 856 42.16

sw-n6 7999975 1000000 10790377 9844929 8.76

sw-2n6 15999981 2000000 21573978 19683409 8.76

Sm
al

l-
W

or
ld sw-3n6 23999985 3000000 32359873 29524152 8.76

sw-4n6 31999984 4000000 43147212 39367809 8.76

sw-5n6 39999980 5000000 53933287 49208233 8.76

Table 4.5 – Continued on next page

77

4.4. NUMERICAL RESULTS

Table 4.5 – Continued from previous page

Number of nonzeros Relative

Graph Unprocessed Processed Difference

Group Name m n a b (a−b)
a ×100 %

sw-6n6 47999982 6000000 64710048 59041147 8.76

sw-7n6 55999984 7000000 75519359 68906926 8.76

sw-8n6 63999976 8000000 86305387 78742474 8.76

sw-9n6 71999983 9000000 97087183 88579564 8.76

E
rd

ős
-R

én
yi er-n6 8000000 1000000 15997821 15997821 0

er-2n6 16000000 2000000 31997939 31997937 6.25E-06

er-3n6 24000000 3000000 47997975 47997975 0

er-4n6 32000000 4000000 63998145 63998144 1.56E-06

er-5n6 40000000 5000000 79998081 79998079 2.50E-06

er-6n6 48000000 6000000 95997937 95997936 1.04E-06

er-7n6 56000000 7000000 111998062 111998060 1.79E-06

er-8n6 64000000 8000000 127998017 127998013 3.13E-06

er-9n6 72000000 9000000 143998082 143998080 1.39E-06

So
ci

al

com-Amazon 925872 334863 1266929 1169319 7.70

com-DBLP 1049866 317080 806486 775868 3.80

soc-youtube-snap 2987624 1134890 5477826 5041656 7.96

com-LiveJournal 34681189 3997962 54614110 44062611 19.32

Runtime Analysis of the Post-processing Method for Assignment Minimum ECC

We have presented an algorithm, AM-ECC (Algorithm 4), to get assignment minimum

edge clique cover for the given cover. Lemma 4.15 shows that AM-ECC takes O(∑k′
i=1 ρi +

ρi×(ρi−1)
2) time, where k′ is the number of cliques (after removing the redundant cliques

78

4.4. NUMERICAL RESULTS

Figure 4.10: Total merge cost for using FindCommonNeighbors function

79

4.5. PARALLEL IMPLEMENTATION OF EO-ECC

from the cover), and ρi is the size of clique Ci.

This lemma denotes that the runtime of the AM-ECC algorithm depends on the size of

the edge clique cover because we test all the edges of each clique. We store our clique

cover using an intersection matrix. Therefore, the cost for the AM-ECC algorithm is to find

the edge index for the given two vertices. Assume we are testing clique Ci, where Ci is a

clique of ECC, C. Now, for two vertices u and v, where u,v ∈Ci, we need to find out their

edge index. We have a function GetRowIndex that returns the edge index of the input graph

for given two vertices. Note, the input graph is stored using a column intersection matrix,

where each column represents a vertex and each row represents an edge. This function

intersects two columns corresponding to given vertices to get an edge index (row index).

While we examine all the edges of a clique cover, for two given vertices, we might call the

function GetRowIndex more than once. Therefore, we want to see how many intersection

operations are done for the calling GetRowIndex function to test all the edges of the clique

cover by plotting the edge vs. cost graph.

In Figure 4.11, a dot (x,y) states that the graph has x edges, and the total intersection

operation cost for using GetRowIndex function is y. We observe that the dots align with a

line (y = c× x), suggesting the cost of AM-ECC is linear, where c is a constant.

4.5 Parallel Implementation of EO-ECC

In this section, we describe the parallel implementation of our algorithms. Alabandi et

al. [3] proposed an algorithm that increases the parallelism without affecting the coloring

quality and performs better than other parallel-coloring algorithms. Most of the parallel

graph coloring algorithms [11, 15, 34, 77] followed the Jones-Plassmann approach [41],

where Alabandi et al. included two shortcut techniques to improve the performance. Unfor-

tunately, there is no parallel implementation for the edge clique cover algorithms. However,

these coloring algorithms inspired us for the parallel implementation of our ECC algorithm.

Now the question is whether it is possible to get perfect speed-up solving ECC. Indeed, we

80

4.5. PARALLEL IMPLEMENTATION OF EO-ECC

Figure 4.11: Total intersection cost for using GetRowIndex function in AM-ECC

81

4.5. PARALLEL IMPLEMENTATION OF EO-ECC

can not tell, but we can try to parallelize the sub-methods used in EO-ECC algorithm, such

as FindNeighbors, and FindCommonNeighbors.

This section targets parallel copy and merges algorithms because finding neighbors of

a vertex copies a portion of our intersection matrix into an array. Finding the common

neighbors set is related to merging two-sorted lists. We discussed the intersection matrix in

previous chapters. Finally, we evaluate our EO-ECC algorithm with this parallel FindNeigh-

bor, and FindCommonNeighbor.

OpenCilk [75] is considered as one of the powerful tools for optimizing parallelized

algorithms on the CPU, an open-source platform to support Cilk multithreaded program-

ming. It provides dynamic-analysis tools that can detect race conditions and can plot a

speed-up graph for available threads. For these unique features, we have chosen OpenCilk

over CUDA or OpenMP.

Section 4.5.1 describes the OpenCilk. After that, Section 4.5 recaps the serial imple-

mentation of the EO-ECC algorithm, and Section 4.5.3 describes the parallel implementa-

tions using OpenMP. Afterward, Section 4.5.4 explains the results.

4.5.1 OpenCilk

Cilk, developed by MIT in 1990, is a Parallel Asynchronous Many-Tasking System

that aims towards extending the ordinary serial programming paradigm in a user-friendly

manner. Compared to other concurrency platforms, Cilk is distinguished by its simplistic

design and implementation while enabling big multithreading performance based on proven

mathematical foundations. Then the same team from MIT developed OpenCilk in 2019 and

has taken on the goal of supporting and delivering the language to the High-Performance

Computing community via an open-source project. The openCilk initiative plays a crucial

role in next-generation multicore research. OpenCilk [75] is a full-featured, open-source

implementation of Cilk designed to run on Linux and other Unix-like systems.

82

4.5. PARALLEL IMPLEMENTATION OF EO-ECC

Keywords

OpenCilk enables inherent parallelism to both C and C++. It introduces three simple but

powerful keywords within its environment.

• cilk spawn: Denotes that the right-hand side of the expression runs in parallel with

the following statements in a fork-join execution mode.

• cilk sync: Blocks the execution until all children of the current task block finish.

• cilk for: Analogous to the standard C/C++ for loop keyword, permits loop iterations

to run in parallel. Each iteration of a cilk for loop is a separate strand that executes

asynchronously.

By combining keywords cilk spawn, and cilk sync, the user can form complex se-

quences that compose non-trivial algorithms as we also have taken advantage of these to

model parallel EO-ECC algorithm.

Reducer

OpenCilk provides most out-of-the-box reduction operations that aid in a large spectrum of

algorithmic problems.

• op list append: Creates a list by appending elements at the back.

• op list prepend: Creates a list by appending elements at the front.

• op max: Finds the maximum value over a set of values.

• op min: Finds the minimum value over a set of values.

• op add: Performs a reduced summation or subtraction over a set of elements.

• op string: Creates string by appending characters.

• op vector: Creates a vector by appending elements at the back.

83

4.5. PARALLEL IMPLEMENTATION OF EO-ECC

• op and: Performs the AND bitwise operations with reduction.

• op or: Performs the OR bitwise operations with reduction.

• op xor: Performs the XOR bitwise operations with reduction.

OpenCilk has a reducer class template by which user can create their reducers. In this

work, we have used reducer op vector while creating the common neighbor set by using a

parallel set-intersection operation (similar to merge) on two sorted neighbor lists.

Applications

Example: Copy a list into another list

Let us have a list of elements. Now copying a given list into another is a widely used but

rather demanding one in terms of memory utilization.

Figure 4.12: Copy between lists using parallel loop

Now we can design two different parallel algorithms: (1) a parallel loop using keyword

cilk for and append reducer (see Figure 4.12), or (2) a recursive function using keywords

cilk spawn, and cilk sync, and using vector reducer (see Figure 4.13).

Example: Merge operation

We have implemented the parallel merge algorithm in OpenCilk discussed by Cormen et al.

[18] in their book “Introduction to Algorithms,” Chapter 27, Section 3. The implementation

84

4.5. PARALLEL IMPLEMENTATION OF EO-ECC

Figure 4.13: Copy between lists using parallel recursive function

is shown in Figure 4.14. Cormen et al. showed parallelism of merge algorithm has work:

T1(n) = O(n), and Span: T∞ = O(lg2n), where n is the length of the list.

In our EO-ECC algorithm, we can compute the list of neighbors of a vertex. Then we

need to compute the common neighbors between two vertices by intersecting the neighbor

lists. We used the same parallel merge technique to find the common neighbor between two

vertices.

4.5.2 Edge Clique Cover Algorithm

At the beginning of this chapter, we discuss our “edge-centric” edge clique cover algo-

rithm, EO-ECC, for solving edge clique cover problems using ordered edges. In this section,

we recap EO-ECC, but our main focus is on two used sub-methods: FindNeighbors, and

FindCommonNeighbors.

EO-ECC Algorithm

EO-ECC algorithm frequently needs to find out the neighbor sets of the vertices and find

the common neighbor set between two vertices. The complete algorithm is discussed in

Section 4.3.2. Case-II runs until W is empty, where W is the set of common neighbors.

85

4.5. PARALLEL IMPLEMENTATION OF EO-ECC

Figure 4.14: OpenCilk implementation of merge operation

Each iteration then finds the neighbor set of a vertex and updates the common neighbor set

W . We also showed that this Case-II dominates the EO-ECC algorithm’s run time. There-

fore, we were motivated to parallelize these two sub-methods: FindNeighbors, and Find-

CommonNeighbors. Before explaining the parallel implementation, we need to visualize

how we have implemented these methods with an example.

Serial Implementation

FindNeighbors

For an undirected graph G, we can define the neighbor set of a vertex v ∈V as follows.

Neighbor(v) =
{

w | {v,w} ∈ E
}

86

4.5. PARALLEL IMPLEMENTATION OF EO-ECC

Recall, we store the given graph using the column intersection matrix (see Section 3.2).

In this column-intersection matrix X , the number of rows is |E| = m. Each row contains

only two nonzeros: v, and another is the neighbor of v. Let, d(v) is the degree of vertex v.

Now, while finding the neighbor of vertex v, we only check the rows where v is present.

Figure 4.15: Given graph G and its intersection matrix

Example:

Given a graph G= (V,E) consists of a set of vertices V , and a set of edges E, where |E|=m

and |V | = n. An intersection matrix associated with graph G is a matrix X ∈ {0,1}m×n

where for edge el = {vi,v j}, l = 1, . . . ,m we have X(l, i) = X(l, j) = 1, and all other entries

of matrix X are zero. Figure 4.15 represents a graph and its intersection matrix.

But with our sparse matrix representation we can store only the non-zero values of this

intersection matrix using two 2m size array, one m size array, and one n size array (see

Figure 4.16).

Let we need to find out the neighbor set of vertex 4. Figure 4.16 shows how we can

find the neighbor set for a given vertex. First, from the Col Ptr, we get the range of row

indices of vertex 4, and the range i is from Col Ptr[4] to Col Ptr[5]−1. Second, we access

Row Ind[i] with these indices and get the rows where vertex 4 is present in the intersection

matrix. Third, we have to find the columns of these rows to find the neighbors. Note,

each row contains exactly two vertices (columns). One is vertex 4, and another one is 4’s

neighbor. Therefore, using Row Ptr we get the range j of the indices of columns for row

87

4.5. PARALLEL IMPLEMENTATION OF EO-ECC

Figure 4.16: An example of finding a vertex’s neighbor set from the intersection matrix

Row Ind[i]. Finally, Col Ind[j], or Col Ind[j + 1] contains 4, and so we take the other

vertex as a neighbor. We get, Neighbor(4) = {3,5,6,7}

In summary, we access a one-dimensional matrix of size 2m, i.e., Col Ind to find the

neighbor set, where other arrays help map the intersection matrix. The job of finding a

neighbor set was to copy some selected data from the Col Ind matrix to the Neighbor

array.

FindCommonNeighbors

Let, we are given lists of neighbors for vertex v1 and vertex v2. To get neighbor list, we use

FindNeighbors(v) method, where v ∈ V . We construct the set of neighbor in a way that it

will be sorted (for example, see Figure 4.16). Now using Intersect(L1,L2) we can get the

common neighbor of vertices v1 and v2.

We can find the set intersection, S, between these two lists, by merging L1 and L2. The

time complexity is given by O(max{|L1|, |L2|}).

Example: Given a graph G = (V,E) as shown in Figure 4.15. Let us have neighbor set

88

4.5. PARALLEL IMPLEMENTATION OF EO-ECC

for vertices 4 and 5 using the FindNeighbors method. We now find the common neighbor

set between vertices 4 and 5.

Figure 4.17: Common neighbor set between vertices 4 and 5

Like regular merge operation, we check all the elements of the smaller list and store

only if it matches an element of the other list. Therefore, we get CommonNeighbor(4,5) =

{6,7}.

4.5.3 Parallel Implementation on the OpenCilk

ParallelFindNeighbors

The parallel version of the FindNeighbors method works as a parallel algorithm to copy a

given list as described in Section 4.5.1. This section illustrates the parallel version of the

FindNeighbors method with an example.

Figure 4.18: Find neighbor set of vertex 4 using parallel method

Figure 4.18 shows an example of finding the neighbor set of vertex 4 using the parallel

method. In the first span, the list (Col Ind[7] . . .Col Ind[14]) is divided into two sub-lists.

Then span-2 divides both sub-lists into another two sub-lists, and therefore span-2 has four

89

4.5. PARALLEL IMPLEMENTATION OF EO-ECC

sub-list, and those lists are undividable. This span copies four neighbors to the neighbor list

simultaneously, assuming four threads are available. Practically, instead of dividing the lists

until we get one neighbor, we set a T hreshold value; below that value, the FindNeighbors

method works sequentially. This technique helps to reduce overhead.

The parallel implementation of the FindNeighbors method in OpenCilk is shown in

Figure 4.19.

Figure 4.19: OpenCilk implementation of FindNeighbors method

ParallelFindCommonNeighbors

The parallel version of the FindCommonNeighbors method works as a parallel algorithm

to merge two sorted lists as described in Section 4.5.1. This section illustrates the parallel

version of the FindCommonNeighbors method with an example.

Figure 4.20 shows an example of finding the common-neighbor set between vertices 4

and 5 using the parallel method. The list, Neighbor(4), is divided into two sublists in the

first span. The mid-value of the list Neighbor(4) is 5. Using binary search, we look for 5

in the list Neighbor(5). Therefore the list Neighbor(5) has two sub-lists: {4} and {6,7}.

90

4.5. PARALLEL IMPLEMENTATION OF EO-ECC

Figure 4.20: Find common neighbor between vertices 4 and 5 using parallel method

Using the same technique, span-2 divides sub-lists from span-1. After this span, we have

four groups of lists to intersect. These groups can intersect two sublists simultaneously,

assuming we have four threads. Finally, we get common neighbors 6 and 7. Practically,

instead of dividing the lists until we get one element in the sublist, we set a T hreshold value;

below that value, the FindCommonNeighbors method works sequentially. This technique

helps to reduce overhead.

The parallel implementation of the FindCommonNeighbors method in OpenCilk is

shown in Figure 4.21.

4.5.4 Results

Test Environment

We use high-performance computing resources available at the Graham cluster (located

at the University of Waterloo) of Compute Canada facility. A node at the Graham cluster

consists of multiple 2.1 GHz Intel E5, E7, or Xeon CPUs, also referred to as threads, with

memory varying from 124G to 3022G [12].

91

4.5. PARALLEL IMPLEMENTATION OF EO-ECC

Figure 4.21: OpenCilk implementation of FindCommonNeighbors method

We compile our OpenCilk algorithms with optimization level 3 (O3 flag). We compile

and run the code using OpenCilk’s built-in LLVM, Clang, and Clang++. For each graph,

we ran our code using threads (CILK NWORKERS) 1 to 8.

Benchmarks

Extracting information from large graphs is challenging due to their sparse nature. We

presented an efficient graph representation technique and proposed algorithms to solve the

edge clique cover problem and triangle counting, which helps analyze graphs. However, the

performance of our FindNeighbors and FindCommonNeighbors methods depends on the

vertices’ degree. From our previous analysis, we observed that even though some vertices

92

4.5. PARALLEL IMPLEMENTATION OF EO-ECC

have a considerable degree, most of the vertices have a minimal degree. Therefore, to

benefit from parallelism, we need a large degree for a reasonable amount of vertices. For

this reason, we set a threshold value for both of our methods, below which the methods will

work sequentially.

We test our parallel implementation for large sparse graphs, such as “delaunay” from

the DIMACS10 group. The degree of the vertices of these “delaunay” graphs vary from 2

to 4; Therefore, we got no speedup.

To visualize the benefit of parallelism, we need graphs where the vertices have a large

degree. Therefore, we generate graphs, G = (V,E), where |V | = n, and |E| = m, such that

each vertex has degree dv =
n
2 . Therefore, m = n2

4 . With these attributes, we generated

Random k-regular graphs using the Stanford Network Analysis Project (SNAP) [50].

Discussion

Table 4.6: Test Results for Parallel Processing

Graph Time (sec) using thread
Name m n deg 1 2 3 4 5 6 7 8
GEN-1 32000000 8000 4000 437.802 221.39 150.5 115.04 99.6 78.25 70.1 59.52
GEN-2 4000000 4000 2000 109.51 55.85 38.29 29.267 24.918 21.6 19.35 15.806
GEN-3 1000000 2000 1000 27.748 13.979 10.097 7.724 6.943 6.01 5.69 5.1
GEN-4 250000 1000 500 6.887 3.587 2.624 2.073 1.955 1.901 1.789 1.67

Table 4.6 reports run time required by the generated test instances to run the EO-ECC al-

gorithm with parallel FindNeighbors and FindCommonNeighbors methods varying number

of threads from 1 to 8. Figure 4.22 shows the speedup for these instances. We observe that

when the degrees of the vertices are higher (Gen-1, Gen-2, and Gen-3), we get a nearly per-

fect linear speedup. On the other hand, speedup is not achieved when we use more threads

for instances having fewer vertex degrees(Gen-4).

OpenCilk heavily relies on the compiler to achieve optimizations, while its simplistic ar-

chitecture encourages the user to achieve great results with minimal effort. The predefined

set of reducers powerfully tackles the barriers introduced by locks and mutual exclusions

93

4.5. PARALLEL IMPLEMENTATION OF EO-ECC

Figure 4.22: EO-ECC speedup

94

4.6. CONCLUSION

and provides extraordinary results in terms of performance. We can focus on paralleliz-

ing the entire edge clique cover algorithm for future research, including ordering the ver-

tices and edges. OpenCilk has several reducers and holders other than three keywords:

cilk spawn, cilk sync, and cilk f or. These additional features can help us with this further

research.

4.6 Conclusion

In this chapter, we have proposed a compact representation of network data. The edge

clique cover problem is recast as a sparse matrix determination problem. The notion of

intersection matrix provides a unified framework that facilitates the compact representation

of graph data and efficient implementation of graph algorithms. The adjacency matrix

representation of a graph can potentially have many nonzero entries since it is the product

of an intersection matrix with its transpose.

We have compared our results concerning the clique cover size and runtime with the cur-

rent state-of-the-art algorithm for minECC [17]. For 219 test instances (from DIMACS10,

SNAP, Real-World, Small-World, and Erdős-Rényi groups), where the number of edges

varies between 170 and 7.6× 107, our EO-ECC algorithm produces smaller or equal size

clique covers than the Conte-Method [17]. EO-ECC is also significantly faster than the

Conte-Method. EO-ECC algorithm runs in linear time, which allowed us to process ex-

tremely large graphs, both real-life and generated instances. Finally, our algorithm is highly

scalable on large problem instances, while the algorithm of Conte-Method does not termi-

nate on instances containing 7×107 or more edges within a reasonable amount of time.

A less well-studied but related problem, known as the Assignment Minimum Edge

Clique Cover arising in computational statistics, is to minimize the number of individual

assignments of vertices to cliques. It is not always possible to find assignment-minimum

clique coverings by searching through those that are edge-clique-minimum. Ennis et al. [22]

presented a post-processing method with an existing ECC algorithm to solve this problem.

95

4.6. CONCLUSION

However, their backtracking algorithm becomes costly for large graphs, especially when

they have many maximal cliques. In this chapter, we have proposed an algorithm AM-ECC,

where our edge-centric method with a post-processing step gives the assignment minimum

cover calculation.

96

Chapter 5

Analyzing Large Complex Networks by
Counting and Enumeration of Triangles

5.1 Introduction

The presence of triangles in network data has led to the creation of many metrics to aid

in the analysis of graph characteristics. As such, the ability to count and enumerate these

triangles is crucial to applying these metrics and gaining further insights into the underly-

ing composition and distribution of these graphs. Generalizations aside, the applications of

triangle counting are as ubiquitous as the triangles themselves, including transitivity ratio -

the ratio between the number of triangles and the number of paths of length two in a graph

- and clustering coefficient - the fraction of neighbors for a vertex i of a graph who are each

other’s neighbors. Other real-life applications of triangle counting include spam detection

[4], network motifs in biological pathways [56], and community discovery [62]. However,

before any network analysis can be undertaken, the underlying data structure of a graph

must be critically examined and understood. An efficient representation of network data

will dictate analysis capabilities and improve algorithm performance and data visualization

potential [8]. Note that large real-life networks are typically sparse in nature, so efficient

computations of these graphs must be able to account for their sparsity and skewed degree

distribution [2]. A consistent structure makes linear algebra-based triangle counting meth-

ods appealing, and most methods use direct or modified matrix-matrix multiplication, with

a notable exception being the implementation of Low et al. [53]. In this chapter, we pro-

pose an “intersection” representation of network data obtained as a list of edges [79] and

97

5.1. INTRODUCTION

based on sparse matrix data structures [33]. Our triangle enumeration algorithm derives its

simplicity and efficiency by employing matrix-vector product calculations as its main com-

putational kernel. The local triangle count and edge support information are then acquired

from the enumerated triangles obtained as the result of this matrix-vector multiplication.

5.1.1 k-count Distribution

Application proxies provide a simple yet realistic way to assess the performance of real-

life applications’ architecture and design. Below, we outline the main components of the

miniTri data analytics proxy [83], which we use to demonstrate the effectiveness of our

intersection-based graph representation and computation.

Consider an undirected graph, G = (V,E). For v ∈ V a path of length 2 through v is

a sequence of vertices u− v−w such that e1 = {u,v} ∈ E and e2 = {v,w} ∈ E. Such a

length-2 path is termed a wedge at vertex v. Let d(v) denote the number of edges incident

on v, also defined as the number of vertices x such that {v,x} ∈ E, or the degree of v. The

number of wedges in G is then given by ∑v∈V
(d(v)

2

)
. A wedge u− v−w is a closed wedge

or a triangle if e3 = {v,w} ∈ E. Let δ(v) and δ(e) denote the number of triangles incident

on vertex v and edge e = {u,v} respectively. In the literature δ(v) is known as the local

triangle count or triangle degree of vertex v and δ(e) is known as the support or triangle

degree of edge e = {u,v}. We denote by ∆(G) the number of triangles contained in graph

G. Since a triangle is counted at each of its three vertices, we have ∆(G) = 1
3 ∑v∈V δ(v). Let

H =(V ′,E ′) be a subgraph of G where |V ′|= k and each pair of vertices are connected by an

edge (H is a k-clique). Then H contains
(k

3

)
triangles and δ(v) =

((k−1)
2

)
and δ(e) = (k−2)

for v ∈V ′ and e ∈ E ′. Let t be a triangle in G and let δ(tx) = minx δ(x), where x is a vertex

of t and δ(te) = mine δ(e) where e is an edge of t. The k-count of triangle t is defined to be

the largest k such that

1. δ(tx)≥
((k−1)

2

)
and

2. δ(te)≥ (k−2)

98

5.1. INTRODUCTION

The main computational task of miniTri is to compute the k-count distribution of the

triangles of an input graph. Figure 5.1 displays an example input graph with 7 vertices and

13 edges. Each vertex i is circled and contains a label that represents its identity. Beside

each vertex i is an integer denoting its local triangle count δ(i), and there is an integer beside

each edge e = {i, j} denoting its support δ(e). The graph contains 7 triangles. The table of

Figure 5.1 enumerates the triangles in the graph and displays the local triangle count and

support of the vertices and edges together with the k-count of the triangles. Each row of the

table lists the vertex labels of a triangle followed by the local triangle count, support, and

k-count. There are 4 triangles with k-count value 4 and 3 triangles with k-count value 3.

Let ω be the size of the largest clique in G. Then the graph contains at least
(

ω

3

)
triangles

with k-count value of at least ω. Therefore, the k-count distribution can be used to obtain a

lower bound on the size of the largest clique of a graph.

5.1.2 Triangle Centrality and Ranking

Triangle centrality helps find important vertices in a graph basing the concentration of

triangles surrounding each vertex. An important vertex in triangle centrality is at the center

of many triangles [9]. Such vertex may be present in many triangles.

99

5.1. INTRODUCTION

Figure 5.1: k-count table for the example input graph

Consider an undirected graph G. Let N(v) be the neighborhood set of v, N∆(v) is the set

of neighbors that are in triangles with v, and N+
∆
(v) is the closed set that includes v. ∆(v)

denotes the local triangle count of vertex v, and ∆(G) denotes the total triangle count of the

graph G. Recently, Burkhardt [9] introduced triangle centrality as a new centrality measure

that captures the influence of triangles on the importance of vertices. The triangle centrality

for v is given by

TC(v) =
1
3 ∑u∈N+

∆
(v)∆(u)+∑w∈{N(v)\N∆(v)}∆(w)

∆(G)

By definition, the centrality values indicate the proportion of triangles centered at a

vertex bounded in the range [0,1].

Li and Bader [51] presented a rapid implementation of triangle centrality using Graph-

BLAS [45], an API specification for describing graph algorithms in the language of linear

algebra. This chapter implements triangle centrality and presents a comparative result fol-

lowed by a parallel salable version.

100

5.2. INTERSECTION REPRESENTATION OF NETWORK DATA

5.1.3 Organization of the Chapter

The remainder of the chapter is organized as follows. In Section 5.2, we introduce the

notion of the intersection representation of network data and our data structure, followed by

a brief description of the triangle enumeration, the k-count algorithm, and triangle centrality

calculation. The rest of the section explains the main ideas in our intersection matrix-based

triangle enumeration using an illustrative example. Section 5.3 outlines the computing en-

vironment employed to perform numerical experiments and presents triangle enumeration

results on three sets of representative network data. miniTri [83] and its successor, which

we call miniTri2, are the reference implementations by which we present comparative run-

ning times and demonstrate that our method scales very well on massive network data, and

can be very flexible in its extensions to the analysis of network characteristics such as Truss

Decomposition [14] and triangle ranking [9]. In Section 5.4, we describe the parallel imple-

mentation of our intersection algorithm, fullCount for triangle count, enumeration, k-count,

and triangle centrality. First, we describe the parallel triangle counting algorithm. Then we

discuss the parallel algorithm for our fullCount algorithm concerning triangle count, local

triangle count, and k-count. Finally, we present a parallel version of our triangle central-

ity calculation method. A shared memory parallel implementation of our algorithm using

OpenMP is being developed. We observe reasonable speedups using multiple threads. The

chapter is summarized in Section 5.5 with pointers on future research directions.

5.2 Intersection Representation of Network Data

We used intersection matrix (discussed in Section 3.2), to store the given undirected

graph. This matrix requires a row for each edge. Figure 5.2 shows the intersection matrix

representation of the example input graph.

101

5.2. INTERSECTION REPRESENTATION OF NETWORK DATA

Figure 5.2: Intersection matrix representation of the example input graph

5.2.1 Adjacency Matrix-based Triangle Counting

Many of the existing triangle counting methods use the sparse representation of adja-

cency matrices in their calculations. The adjacency matrix A(G) ≡ A ∈ {0,1}|V |×|V | asso-

ciated with graph G is defined as,

A(i, j) =

 1 if {vi,v j} ∈ E, i ̸= j

0 otherwise

It is well known in the literature that the number of closed walks of length k ≥ 0 are

obtained in the diagonal entries of kth power Ak. Therefore, the total number of triangles in

a graph G, ∆(G), is given by the trace of A3,

∆(G) =
1
6

Tr(A3).

The factor of 1
6 accounts for the multiple counting of a triangle (the number of ways closed

102

5.2. INTERSECTION REPRESENTATION OF NETWORK DATA

walks of length 3 can be obtained is 3! = 6). There is a large body of literature on sparse

linear algebraic triangle counting methods based on adjacency matrix representation of the

data [8]. In [83], the miniTri’s triangle counting implementation takes the adjacency matrix

A of the input graph and creates an incidence matrix B. Then the enumeration and counting

of the triangles occur in the overloaded matrix multiplication [83]. Here, an entry in the

resultant matrix with a value of 2 corresponds to a completed triangle. miniTri method

triple-counts each triangle, once for each vertex, so the final result is divided by 3 to give

the total number of triangles in the graph. Since the multiplication of two sparse matrices

usually results in a dense matrix, this is a memory intensive process.

5.2.2 Intersection Matrix-based Triangle Counting

Graph algorithms can be effectively expressed in terms of linear algebra operations

[46], and we combine this knowledge with our proposed data representation to count the

triangles in a structured three-step method. For vertex i we first find its neighbors j > i

such that {i, j} ∈ E by multiplying the submatrix of X consisting of rows corresponding

to edges incident on i (let us call them (i− j)−rows) by the transpose of the vector of

ones of compatible length. A value of 1 in the vector-matrix product indicates that the

corresponding vertex j is a neighbor of vertex i.

Next, we multiply the submatrix of X consisting of columns j identified in the previous

step and the rows below the (i− j)−rows by a vector of ones of compatible length. A value

of 2 in the matrix-vector product indicates a triangle of the form (i, j, j′) where j and j′

are neighbors of vertex i with j < j′. Let k be the row index in matrix X for which the

matrix-vector product contains a 2. Then it must be that X(k, j) = 1 and X(k, j′) = 1. Since

each row of X contains exactly 2 nonzero entries that are 1, it follows that { j, j′} ∈ E. The

forward neighbor of a vertex v is the set of neighbors of v having a higher label than v.

The mentioned operation to get the matrix-vector product is identical to performing a set

intersection on the forward neighbors of vertices j and j′.

103

5.2. INTERSECTION REPRESENTATION OF NETWORK DATA

The number of triangles in the graph is given by the sum of the number of triangles

associated with each vertex as described. Since the edges are represented in sorted order in

our algorithm, unlike many other triangle counting methods [83], each triangle is counted

exactly once. Figure 5.2 displays the intersection matrix representation of the input graph

X . The triangles of the form (1, j, j′) where j, j′ ∈ {3,5,6} are obtained from the product

X(7 : 13, [3 5 6]) ∗ 1, where 1 denotes the vector of ones. The product has a 2 at locations

corresponding to rows 7, 8, and 12 of X and the associated triangles are (1,3,5),(1,3,6),

and (1,5,6). Therefore, there are three triangles incident on vertex 1, and we can easily

verify the graph contains a total of 7 triangles across all of the vertices.

5.2.3 Data Structure

In our preliminary implementation, we use two arrays to store useful information that

can be computed after we sort the edges. FDC (Forward Degree Cumulative) is an array of

size n, with elements corresponding to the total number of “forward neighbors” across the

vertices of a graph. Forward neighbors are defined as the neighbors of a vertex that have a

higher label than the vertex of interest. With the vertices of the graph labelled, finding the

forward degree of a vertex j can be calculated as fd(j) = FDC[j+1] - FDC[j]. FN is an

array of size m that stores which vertices are the forward neighbors of a vertex j. Using FN

we can find these forward neighbors of j as fn(j) = FN[k], where k ranges from FDC[j]

to FDC[j+1]-1. The arrays FDC and FN thus save the vector-matrix products needed to find

the forward neighbors. Figure 5.3 displays the arrays FDC and FN for the graph of Figure

5.2.

Figure 5.3: FN and FDC for the example graph

To identify a triangle we need to identify it’s three corner points (vertices). For a vertex

104

5.2. INTERSECTION REPRESENTATION OF NETWORK DATA

j, we can get its forward neighbors from FN array. Then we need to identify the common

forward neigbors between j and forward neighbors of j, fn(j) = FN[k], where k ranges

from FDC[j] to FDC[j+1]-1. We have implemented three different techniques to get these

common forward neighbors between j and f n(j).

• Version 1. The first version is using std::set intersection, the standard set inter-

section operation. This operation constructs a sorted range beginning in the location

pointed by the result with the set intersection of the two sorted ranges. This operation

has linear time complexity concerning the sizes of the lists.

• Version 2. In version 2, we avoid using standard set intersection operation and im-

plement our intersection operation to get the common forward neighbors between j

and f n(j). The complexity is the same as standard intersection operation.

• Version 3. In this third version, our computer implementation uses a sparse matrix

framework of DSJM [32] and expresses all computations in terms of intersection

matrices.

5.2.4 Local Triangle Count and Edge Support

As discussed in Section 5.1, there are many other metrics related to triangle computation

that can be found using our intersection matrix data structure. The bases for these metrics

are the triangle degrees, which are the number of triangles incident on an edge (edge sup-

port) or vertex (local triangle count) of a graph. This is illustrated in Figure 5.4 as edgeDeg

and vertDeg, respectively, derived from Figure 5.1.

Figure 5.4: vertDeg and edgeDeg for the example graph

Let j be the column (vertex) of matrix X (graph G) currently being processed in the

fullCount algorithm. For each pair of its forward neighbors j′ and j′′ there is an edge

105

5.3. NUMERICAL RESULTS

between them if and only if both of the corresponding columns contain a 1 in some row k

identifying the triangle (j, j′, j′′). In terms of the matrix-vector multiplication in line 7 of

algorithm fullCount, vector T will get updated as T (k)← 2. Thus the triangle (j, j′, j′′)

can be enumerated and stored instantly. The vertex triangle degrees of each triangle are

dynamically updated with this same information, and stored in an array. The edge triangle

degrees are stored in a separate array and updated by exploiting the structure of the FN

and FDC arrays in tandem. The entries of the FDC array, while primarily used to store

the forward degree of a vertex, also contain the edge number (edge id) that the forward

neighborhood of the vertex of interest begins and ends at. Since the sub-arrays in FN that

correspond to the forward neighborhood of the vertices are in the same order as the listed

edges of the intersection matrix, any edge between two vertices can be identified by first

finding the distance between the higher labelled vertex and the beginning of the forward

neighborhood in which it is found (using FN), and then adding this distance to the entry

in FDC that corresponds to the edge of the lower numbered vertex. Finally, the k-count

distribution of the triangles is used to give a bound on the maximum clique of a graph [83],

and with the triangles enumerated and the edge and vertex triangle degrees computed and

stored as shown in Figure 5.4, the k-count calculations can be quickly computed using the

method described Section 5.1.

Triangle centrality helps find important vertices in a graph basing the concentration of

triangles surrounding each vertex. With the edge and vertex triangle degrees computed and

stored as shown in Figure 5.4, the triangle centrality calculations can be computed using

the method described in Section 5.1. For this calculation, we do not require storing the

enumerated triangles.

5.2.5 Algorithm

The algorithm in its entirety is given in this section (as Algorithm 5), and for calculating

the triangle centrality, we can avoid lines 14 and 15.

106

5.3. NUMERICAL RESULTS

Algorithm 5 fullCount (X)
Input: Intersection matrix X

1 Calculate FDC ▷ Forward degree cumulative
2 Calculate FN ▷ Forward neighbor
3 count← 0 ▷ Number of triangles
4 for j = 1 to n−1 do ▷ j ∈V , where V is the set of vertices
5 f d← FDC[j+1]−FDC[j] ▷ f d is the forward degree of j
6 if f d > 1 then ▷ j has more than one forward neighbor
7 T = X([FDC(j+1) : m], f n j)∗1
8 S = {t | T [t] = 2}
9 if S ̸= /0 then

10 count← count + |S|
11 for t ∈ S do
12 update edgeDeg ▷ Array of triangle edge degrees
13 update vertDeg ▷ Array of triangle vertex degrees
14 Triangles← Triangles∪ t ▷ Array that stores enumerated triangles
15 kCountTable← computeKCounts(count, vertDeg, edgeDeg, Triangles)
16 return count, vertDeg, edgeDeg, kCountTable, and Triangles

5.3 Numerical Results

This section contains experimental results from selected test instances. The first set

comprises real-world social networks from the Stanford Network Analysis Project (SNAP),

obtained from the Graph Challenge website [72]. SNAP is a collection of more than 50 large

network datasets containing a large number of nodes and edges, including social networks,

web graphs, road networks, internet networks, citation networks, collaboration networks,

and communication networks [49]. The first set of experiments were performed using a PC

with a 4th Gen Intel Core I7-4770 Processor (Quad Core HT, with 3.4GHz Turbo and 8GB

RAM), running Centos Linux v7.9. The implementation language was C++ and the code

was compiled using−O3 optimization flag with a g++ version 4.4.7 compiler. Performance

times are reported in seconds and were averaged over three runs where possible, using the

following implementation abbreviations: mt1 for miniTri1, mt2 for miniTri2, and int for our

intersection algorithm.

107

5.3. NUMERICAL RESULTS

Fi
gu

re
5.

5:
C

om
pa

ri
ng

ou
ri

nt
er

se
ct

io
n

al
go

ri
th

m
w

ith
bo

th
m

in
iT

ri
im

pl
em

en
ta

tio
ns

on
la

rg
e

re
al

-w
or

ld
ne

tw
or

ks

108

5.3. NUMERICAL RESULTS

5.3.1 Traingle Counting Algorithm

Figure 5.5 shows the speedups of our algorithm versus the two reference miniTri im-

plementations on these real-world instances. The speedups ranged from 22× to an im-

pressive 1383× over miniTri1, and from 16× to 642× over miniTri2, with two instances

(“flickrEdges” and “Cit-Patents”) failing to compute with miniTri2. Instances with an * had

speedups greater than 650× against miniTri1 and were cut off from the figure for ease of

viewing.

Table 5.1: Comparing Our Intersection Algorithm with miniTri on Large Synthetic Net-
works

Graph Characteristics Time in Seconds
Name |V | |E| ∆(G) mt1 int
graph500-scale18-ef16 262144 4194304 82287285 17440 9.357
graph500-scale19-ef16 524288 8388608 186288972 49211.8 25.21
graph500-scale20-ef16 1048576 16777216 419349784 197456 72.34
graph500-scale21-ef16 2097152 33554432 935100883 N/A 171.2
graph500-scale22-ef16 4194304 67108864 2067392370 N/A 481.43
graph500-scale23-ef16 8388608 134217728 4549133002 N/A 1340.05
graph500-scale24-ef16 16777216 268435456 9936161560 N/A 3317.15
graph500-scale25-ef16 33554432 536870912 21575375802 N/A 7959.39

Table 5.1 compares our algorithm performance on large synthetic test instances from

GraphChallenge to miniTri1 (miniTri2 was only able to compute the first instance and thus

omitted). “N/A” denotes instances where miniTri1 timed out after four days of computa-

tion. Due to the large sizes of this second set of instances, they were run on the large High

Performance Computing system (Graham cluster) at Compute Canada. On the first 3 in-

stances, our method is over 1800 times faster than miniTri1, and the relative performance

improves with increasing instance size, further demonstrating the scalability of our triangle

counting algorithm.

Figure 5.6 demonstrates our algorithm’s performance on relatively dense brain networks

from the Network Repository [70], back in the Linux environment. These graphs have

109

5.3. NUMERICAL RESULTS

Figure 5.6: Testing our intersection algorithm on networks with billions of triangles

between 15 and 268 million edges and up to 42 trillion triangles, and neither miniTri im-

plementation was able to provide results for any of the instances. The line of best fit is

(y = 6× 10−15x2 + 5× 10−07x+ 12.144), a polynomial of degree 2 and shows that our

algorithm scales very well with graphs with massive amounts of triangles.

Our intersection-based implementation also produces competitive results when com-

pared to the state-of-the art triangle counting algorithms [73]. Algorithms were analyzed

and compared by fitting a model of graph counting times, Ttri, as a function of the number

of edges Ne = |E|. This data was then used to estimate the parameters N1 (the number of

edges that can be processed in one second) and β:

Ttri = (Ne/N1)
β

to compare different counting implementations. Implementations with a larger N1 and

smaller β perform the best, and the top entries from the 2019 review had N1 values ranging

from 5×105 to 5×108, and β values ranging from 1
2 to 4

3 [73]. For reference, our algorithm

110

5.3. NUMERICAL RESULTS

had β = 3
4 and N1 = 1×107.

5.3.2 Triangle Counting, Triangle Vertex & Edge degree, and k-Count Calculations

After examining the comparative performance of our triangle counting algorithm, we

proceeded to expand the implementation to include the metrics described in Section 5.2.4

- triangle counting, triangle vertex degree, triangle edge degree, and k-count calculations.

Similar to the basic counting experimental results, our intersection method of this “full

count” was faster than miniTri1 and miniTri2 on every instance. miniTri1, miniTri2, and

our full count intersection algorithm were run on the large High Performance Computing

system (Graham cluster) at Compute Canada. The speedups range between 3× and 839×

on fifty-three instances, displayed in Table 5.2. One noteworthy observation about these

results is that due to the data structure that stored the enumerated triangles, the k-count

calculation of our algorithm ran much faster than those of miniTri, even though the code

implementation was nearly identical. This demonstrates the versatility of FDC and FN in

their ability to perform a wide range of network analytics.

Table 5.2: Comparing Our Full Count Intersection Algorithm with miniTri1 and miniTri2
on Large Real World Networks

Graph Characteristics Time in Seconds Speedup

Name |V | |E| ∆(G) mt1 mt2 int mt1/int mt2/int

amazon0302 262111 899792 717719 10.2 3.34 0.38 26.84 8.79

amazon0312 400727 2349869 3686467 94.57 21.06 1.87 50.57 11.26

amazon0505 410236 3356824 3951063 102.76 22.26 1.95 52.70 11.42

amazon0601 403394 3387388 3986507 98.21 24.4 1.99 49.35 12.26

As-20000102 6474 25144 6584 1.07 0.88 0.01 107.00 88.00

As-caida20071105 31379 53381 36365 9.81 2.66 0.03 327.00 88.67

Ca-AstroPh 18722 198050 1351441 17.75 4.32 0.55 32.27 7.85

Ca-CondMat 23133 93439 173361 2.22 0.68 0.07 31.71 9.71

Ca-GrQc 5242 14484 48260 0.17 0.08 0.02 8.50 4.00

Ca-HepPh 12008 118489 3358499 28.23 5.32 1.62 17.43 3.28

Ca-HepTh 9877 25973 28339 0.22 0.1 0.01 22.00 10.00

Table 5.2 – Continued on next page

111

5.3. NUMERICAL RESULTS

Table 5.2 – Continued from previous page

Graph Characteristics Time in Seconds Speedup

Name |V | |E| ∆(G) mt1 mt2 int mt1/int mt2/int

Cit-HepPh 32233 417294 1276868 38.4 8.2 0.6 64.00 13.67

Cit-Patents 3774768 33037894 7515023 421.65 115.4 8.75 48.19 13.19

Cit-HepTh 24982 348238 1478735 58.1 11.17 0.68 85.44 16.43

Email-Enron 36692 183830 727044 51.58 8.21 0.37 139.41 22.19

Email-Eu-All 265214 364481 267313 209.73 52.51 0.25 838.92 210.04

facebook 4039 88234 1612010 13 3.29 0.66 19.70 4.98

flickrEdges 105938 2316948 107987357 2808.79 277.47 89.58 31.36 3.10

Loc-brightkite 58228 214078 494728 22.1 4.51 0.24 92.08 18.79

Loc-gowalla 196591 950327 2273138 658.74 74.29 1.7 387.49 43.70

Oregon1 010331 11492 22002 17144 3.44 0.65 0.01 344.00 65.00

Oregon1 010407 11492 21999 15834 3.42 0.65 0.01 342.00 65.00

Oregon1 010414 11492 22469 18237 3.56 0.68 0.01 356.00 68.00

Oregon1 010421 11492 22747 19108 3.6 0.69 0.01 360.00 69.00

Oregon1 010428 11492 22493 17645 3.84 0.69 0.01 384.00 69.00

Oregon1 010505 11492 22607 17597 3.9 0.69 0.01 390.00 69.00

Oregon1 010512 11492 22677 17598 3.64 0.69 0.01 364.00 69.00

Oregon1 010519 11492 22724 17677 3.71 0.71 0.01 371.00 71.00

Oregon1 010526 11492 23409 19894 4.12 0.73 0.01 412.00 73.00

Oregon2 010331 11806 31180 82856 4.47 0.84 0.04 111.75 21.00

Oregon2 010407 11806 30855 78138 4.56 0.85 0.04 114.00 21.25

Oregon2 010414 11806 31761 88905 4.69 0.88 0.04 117.25 22.00

Oregon2 010421 11806 31538 82129 4.77 0.88 0.04 119.25 22.00

Oregon2 010428 11806 31434 78000 4.81 0.88 0.04 120.25 22.00

Oregon2 010505 11806 30943 72182 4.63 0.86 0.04 115.75 21.50

Oregon2 010512 11806 31303 72866 4.72 0.87 0.04 118.00 21.75

Oregon2 010519 11806 32287 83709 5.2 0.91 0.04 130.00 22.75

Oregon2 010526 11806 32730 89451 5.27 0.94 0.04 131.75 23.50

P2p-Gnutella04 10879 39994 934 0.29 0.16 0.005 58.00 32.00

P2p-Gnutella05 8846 63678 1112 0.25 0.13 0.004 62.50 32.50

P2p-Gnutella06 8717 63050 1142 0.25 0.13 0.004 62.50 32.50

P2p-Gnutella08 6301 41554 2383 0.2 0.12 0.003 66.67 40.00

P2p-Gnutella09 8114 52026 2354 0.24 0.12 0.004 60.00 30.00

p2p-Gnutella24 26518 65369 986 0.43 0.21 0.006 71.67 35.00

Table 5.2 – Continued on next page

112

5.3. NUMERICAL RESULTS

Table 5.2 – Continued from previous page

Graph Characteristics Time in Seconds Speedup

Name |V | |E| ∆(G) mt1 mt2 int mt1/int mt2/int

p2p-Gnutella25 22687 54705 806 0.32 0.16 0.005 64.00 32.00

p2p-Gnutella30 36682 88328 1590 0.56 0.31 0.009 62.22 34.44

p2p-Gnutella31 62586 147891 2024 0.98 0.48 0.02 49.00 24.00

roadNet-CA 1965206 5533214 120676 6.55 2.26 0.22 29.77 10.27

roadNet-PA 1090920 1541898 67150 3.82 1.3 0.12 31.83 10.83

roadNet-TX 1393383 1921660 82869 4.52 1.62 0.15 30.13 10.80

soc-Epinions1 75888 405740 1624481 178.97 25.19 1.08 165.71 23.32

soc-Slashdot0811 77360 469180 551724 152.31 18.71 0.49 310.84 38.18

soc-Slashdot0902 82168 504230 602592 167.39 20.27 0.52 321.90 38.98

5.3.3 Triangle Centrality and Ranking

We refer our intersection algorithm as fullCount when it calculates triangles, triangle

vertex degree, triangle edge degree, and k-count. The dense brain networks from the Net-

work Repository [70] and the large synthetic test instances from GraphChallenge require

huge memory space to store the enumerated triangles. Therefore, to test the scalability and

runtime of these dense graphs, we avoid calculating k-count and only calculate triangles,

triangle vertex degree, and triangle edge degree. These metrics are essential to find triangle

centrality and rank the vertices. miniTri1 and miniTri2 failed to calculate the number of

triangles for these dense graphs. Therefore, we report the runtime of our intersection al-

gorithm without k-count. Due to the large sizes of these dense instances, they were run on

the High-Performance Computing system (Graham cluster) at Compute Canada. Table 5.3

reports our algorithm’s performance on brain networks and Table 5.4 reports the running

time required for the synthetic test instances from GraphChallenge, Graph-500.

Li and Bader [51] presented a rapid implementation of triangle centrality using SuiteS-

parse GraphBLAS (Version 5.1.5) [45] an API specification for describing graph algorithms

in the language of linear algebra, and the implementation language was C. We refer to their

implementation method as TC-GrB. We use our int algorithm to calculate triangle central-

113

5.3. NUMERICAL RESULTS

Table 5.3: Test Results of Our Intersection Algorithm without k-count on Dense Brain
Networks

Graph Characteristics Time in Seconds
Name (bn-human) |V | |E| ∆(G) int
BNU 1 0025890 session 1 177,584 15,669,037 662694994 324.928
Jung2015 M87125334 763,149 40,258,003 1515479025 360.075
Jung2015 M87104509 737,579 50,037,313 2512591873 853.852
Jung2015 M87119472 835,832 59,548,327 3023865951 932.158
Jung2015 M87104300 851,113 67,658,067 3516573387 1208.99
Jung2015 M87118347 428,842 79,114,771 6884218472 3308.74
Jung2015 M87102575 935,265 87,273,967 4732564614 1660.09
Jung2015 M87122310 924,284 94,370,886 5577667716 1895.23
BNU 1 0025914 session 2 701,145 103,134,404 9531928703 4003.07
BNU 1 0025916 session 1 714,571 112,519,748 10147347192 4135.25
Jung2015 M87118219 791,219 121,907,663 11287089562 4688.94
BNU 1 0025889 session 2 742,862 131,926,773 14550152774 7473.56
BNU 1 0025873 session 2-bg 692,397 140,102,158 16480195100 8636.88
BNU 1 0025868 session 1 727,487 150,443,553 18944842260 12778.2
BNU 1 0025918 session 1 748,521 159,835,566 23287278951 18409.3
Jung2015 M87112427 728,874 171,231,873 21603267930 11800.3
Jung2015 M87118465 774,886 181,569,095 24857761263 17265.8
Jung2015 M87104201 707,284 191,224,983 25942442887 16681.4
Jung2015 M87101705 776,644 201,198,184 26497580631 16450.6
Jung2015 M87125286 753,905 209,976,387 34150382906 27672.8
Jung2015 M87113878 784,262 267,844,669 41727013307 28300.8

114

5.3. NUMERICAL RESULTS

Table 5.4: Test Results of Our Intersection Algorithm without k-count on Large Synthetic
Instances from GraphChallenge

Graph Characteristics Time in Seconds
Name (graph500) |V | |E| ∆(G) int
scale18-ef16 262144 4194304 82287285 107.739
scale19-ef16 524288 8388608 186288972 352.135
scale20-ef16 1048576 16777216 419349784 1104.34
scale21-ef16 2097152 33554432 935100883 3217.23
scale22-ef16 4194304 67108864 2067392370 10565.3
scale23-ef16 8388608 134217728 4549133002 33227
scale24-ef16 16777216 268435456 9936161560 97678.2
scale25-ef16 33554432 536870912 21575375802 311789

Table 5.5: Performance Comparison between GraphBLAS and Our int Algorithm for Im-
plementing Triangle Centrality

Graph Characteristics Time in Seconds
Name |V | |E| ∆(G) TC-GrB Our Method

int TC Total
Com-Youtube 1134890 2987624 3056386 3.84 3.41 0.02 3.43
as-Skitter 1696415 11095298 28769868 9.66 60.97 0.05 61.02
com-LiveJournal 3997962 34681189 177820130 47.5 43.25 0.28 43.53
com-Orkut 3072441 117185083 627584181 642.74 468.01 1.04 469.05

ity. First, we calculate the total and local triangle count. Then using the triangle centrality

equation, we calculate the triangle centrality. We report runtime for triangle count, trian-

gle vertex & edge degree calculation separately from triangle centrality calculation. Our

implementation language was C++ and the code was compiled with a g++ version 4.4.7

compiler in ASUS VivoBook Flip 14 PC with a 7th Gen Intel Core I5-7200U Processor

(Dual Core, with 2.5GHz and 5GB RAM), running Linux Mint 19. For a fair comparison,

we test TC-GrB in the same PC.

Table 5.5 shows the performance comparison between GraphBLAS and our int algo-

rithm for implementing triangle centrality. Our method can calculate triangle centrality

within a fraction of a second for all the instances. Our triangle centrality calculation re-

115

5.4. PARALLEL ALGORITHMS

quires triangle counting and triangle vertex & edge degree calculation. Therefore, if we

consider the running time for our int algorithm with our triangle centrality calculation,

still we get better performance except for one instance as-Skitter.

Triangle centrality depends on the number of triangles and the triangle vertex & edge

degrees. Therefore, finding important vertices from the given graph is one of the important

application of our int algorithm. Burkhardt [9] introduced triangle centrality for identi-

fying important vertices in a graph. The author also presented a parallel version of his

method. We will discuss the parallel version of our algorithm in the next section. However,

we get the same highest-ranked vertex for graphs Borgatti 2006 Figure 3, Zachary’s

Karate club, and Lusseau’s Dolphin network as Burkhardt. Detail of these graphs

can be found in [9].

5.4 Parallel Algorithms

In this section, we describe the parallel implementation of our intersection algorithm,

fullCount. We target to parallelize our basic triangle counting algorithm. Then we dis-

cuss the parallel algorithm for our fullCount algorithm concerning triangle count, local

triangle count, and k-count. Finally, we present a parallel version of our triangle centrality

calculation method.

Burkhardt [9] presented a Parallel Random Access (PRAM) algorithms for triangle cen-

trality. Burkhardt mentioned Concurrent Read Concurrent Write (CRCW) PRAM permits

concurrent read and write to a memory location by any number of processors. However, a

resolution protocol handles values concurrently written by multiple processors to the same

memory location. Instead of following the same steps as Burkhardt, we are interested in

analyzing the speed-up we achieve from our parallel algorithms.

We run our parallel algorithms on the High-Performance Computing system (Graham

cluster) at Compute Canada. The implementation language was C++, and we varied the

number of threads between 1 and 16 while using OpenMP.

116

5.4. PARALLEL ALGORITHMS

OpenMP (Open Multi-Processing) is an application programming interface (API) for

shared memory parallel computing. It is supported on numerous platforms, including Linux

and Windows, and is available for the C/C++ and Fortran programming languages. The API

consists of directives, a software library, and environment variables.

5.4.1 Basic Triangle Counting Algorithm

We describe our parallel triangle count algorithm in this section. In Section 5.2.2, we

discussed in detail the serial version of this triangle count algorithm. Algorithm 6 presents

the complete parallel triangle count algorithm. In the parallel region, all the threads count

triangle using the private variable, local count. After all the threads complete counting

triangles locally, the master thread then updates the count variable in the critical region to

avoid the race condition.

Algorithm 6 ParallelBasicCount (X)
Input: Intersection matrix X

1 Calculate FDC ▷ Forward degree cumulative
2 Calculate FN ▷ Forward neighbor
3 count← 0 ▷ Number of triangles
4 parallel region
5 local count← 0 ▷ Local number of triangles
6 do in parallel
7 for j = 1 to n−1 do ▷ j ∈V , where V is the set of vertices
8 f d← FDC[j+1]−FDC[j] ▷ f d is the forward degree of j
9 if f d > 1 then ▷ j has more than one forward neighbor

10 T = X([FDC(j+1) : m], f n j)∗1
11 S = {t | T [t] = 2}
12 if S ̸= /0 then
13 local count← local count + |S|
14 critical region
15 count← count + local count
16 return count

The brain networks from the Network Repository [70] are relatively dense. These

graphs have between 15 and 268 million edges and up to 42 trillion triangles. Graph-500

network is the large synthetic test instances from GraphChallenge. Our serial triangle count

117

5.4. PARALLEL ALGORITHMS

Figure 5.7: Speed-up of brain networks for parallel basic count algorithm

Figure 5.8: Speed-up of Graph-500 networks for parallel basic count algorithm

algorithm showed that our algorithm scales very well with graphs with massive amounts of

triangles where the existing miniTri implementations could not provide results for any of the

instances. Therefore, to test our parallel implementation’s scalability, we are interested in

testing for these instances. Figure 5.7 shows the speed-up of brain networks, and Figure 5.8

presents the speed-up of Graph-500 networks. Our parallel basic triangle count algorithm

shows perfect linear speed-up up to four threads and close to perfect linear speed-up up to

eight threads.

118

5.4. PARALLEL ALGORITHMS

5.4.2 fullCount Algorithm

We describe our parallel fullCount algorithm in this section. We described in detail

the serial version of this algorithm in Section 5.2.4. Algorithm 7 presents the complete

parallel fullCount algorithm. The k-count is one of the applications of triangle count and

enumeration. We compute k-count after we enumerate triangles. Algorithm 7 includes

parallel k-count along with triangle count, edge support, and local triangle count.

Each thread counts triangles using the private variable, local count in the parallel re-

gion. There are other metrics too. local edgeDeg tracks the number of triangle incidents

on edge (edge support), and local vertDeg tracks the number of triangles incident on the

vertex (local triangle count)—finally, loacal Triangles stores the enumerated triangles for

the thread. After all the threads complete their task locally, the master thread updates all

the variables in the critical region to avoid the race condition.

Figure 5.9: Speed-up of selected test instances for ParallelFullCount algorithm

Figure 5.9 presents the speed-up of Graph-500 instances for ParallelFullCount algo-

rithm including the k-count. Up to using four threads, we observe speedups close to the

119

5.4. PARALLEL ALGORITHMS

Algorithm 7 ParallelFullCount (X)
Input: Intersection matrix X

1 Calculate FDC ▷ Forward degree cumulative
2 Calculate FN ▷ Forward neighbor
3 count← 0 ▷ Number of triangles
4 parallel region
5 local count← 0 ▷ Local number of triangles
6 do in parallel
7 for j = 1 to n−1 do ▷ j ∈V , where V is the set of vertices
8 f d← FDC[j+1]−FDC[j] ▷ f d is the forward degree of j
9 if f d > 1 then ▷ j has more than one forward neighbor

10 T = X([FDC(j+1) : m], f n j)∗1
11 S = {t | T [t] = 2}
12 if S ̸= /0 then
13 local count← local count + |S|
14 for t ∈ S do
15 update local edgeDeg ▷ Local array of triangle edge degrees
16 update local vertDeg ▷ Local array of triangle vertex degrees
17 local Triangles← local Triangles∪ t ▷ Local array storing

enumerated triangles
18 critical region
19 count← count + local count
20 for j = 1 to m do
21 edgeDeg[j]← edgeDeg[j]+ local edgeDeg[j]
22 if j ≤ n then
23 vertDeg[j]← vertDeg[j]+ local vertDeg[j]
24 Triangles← Triangles∪ local Triangles
25 kCountTable← ParallelComputeKCounts(count, vertDeg, edgeDeg, Triangles)
26 return count, vertDeg, edgeDeg, kCountTable, and Triangles

120

5.4. PARALLEL ALGORITHMS

perfect speedup line, and beyond eight threads, we do not see any speedup. The reason is

storing and accessing an extensive amount of triangles for these dense graphs.

5.4.3 Triangle Centrality

Triangle centrality helps find important vertices in a graph basing the concentration of

triangles surrounding each vertex. An important vertex in triangle centrality is at the center

of many triangles. Such vertex may present in many triangles. To find the triangle centrality

of each vertex, we do not require storing the enumerated triangles. So we avoid lines 24,

and 25 of Algorithm 7 for the ParallelFullCount and then use Algorithm 8 to calculate the

triangle centrality.

The ParallelTriangleCentrality algorithm is straightforward and has no chance of race

conditions. Therefore, we calculate triangle centrality for each vertex j ∈V using a parallel

f or loop.

Algorithm 8 ParallelTriangleCentrality (X , vertDeg, Total Triangles)
Input: Intersection matrix X , vertDeg, Totoal triangle count Total Triangles

1 do in parallel
2 for j = 1 to n do ▷ j ∈V , where V is the set of vertices
3 core triangle sum← vertDeg[j]
4 non core triangle sum← 0
5 for k ∈ neighbors(j) do ▷ Find neighbors(j) using sparse matrix data structure
6 if k forms a triangle with j then
7 core triangle sum← core triangle sum+ vertDeg[k]
8 else
9 non core triangle sum← non core triangle sum+ vertDeg[k]

10 TC[j]←
1
3×core triangle sum+non core triangle sum

Total Triangles

11 return TC

The brain networks and the Graph-500 instances are dense and large, and therefore, it

is hard to store all the enumerated triangles on a PC. We do not require the enumerated

triangles during triangle centrality calculation. Therefore, we are interested in testing our

parallel triangle centrality algorithm for these instances.

Figure 5.10 shows the speed-up of Algorithm 8 for the brain networks, and Figure 5.11

121

5.5. CONCLUSION

Figure 5.10: Speed-up of brain networks for ParallelFullCount algorithm with parallel
triangle centrality

presents the speed-up for the Graph-500 networks.

5.5 Conclusion

Network data is usually input as a list of edges which can be preprocessed into a repre-

sentation such as an adjacency matrix or adjacency list, suitable for algorithmic processing.

We have presented a simple, yet flexible scheme based on intersecting edge labels, the in-

tersection matrix, for the representation of and calculation with network data. A new linear

algebra-based method exploits this intersection representation for triangle computation – a

kernel operation in big data analytics. By using sparse matrix-vector products instead of

the memory-intensive matrix-matrix multiplication, our implementation has the capacity

to enumerate and extend triangle analysis in graphs so that important information such as

triangle vertex and edge degree can be gleaned in a fraction of the time of reference imple-

mentation of miniTri on large benchmark instances. The computational results from a set

of large-scale synthetic and real-world network instances clearly demonstrate that our basic

implementation is efficient and scales well. The two arrays FDC and FN together constitute

122

5.5. CONCLUSION

Figure 5.11: Speed-up of Graph-500 networks for ParallelFullCount algorithm with par-
allel triangle centrality

a compact representation of the sparsity pattern of network data, requiring only n+m units

of storage. This is incredibly useful in the exchange of network data, with the potential

to allow for the computation of many additional intersection matrix-based network analyt-

ics such as rank and triangle centrality [9]. The comparative results of our algorithms for

ranking and triangle centrality show better scalable results for large instances. A shared

memory parallel implementation of int algorithm using OpenMP is being developed. We

observe reasonable speedups using multiple threads. This algorithm can still be tuned, and

cache efficiency is being studied for additional optimizations, exploring temporal and spa-

tial locality to analyze the memory footprint and provide further improvements. A natural

extension of the research presented in this paper is to use the intersection representation in

graphlet counting methods. Similar to the k-count distribution, graphlet frequency distribu-

tion (a vector of the frequency of different graphlets in a graph) provides local topological

properties of graphs [79].

123

Chapter 6

Summary and Future Work

6.1 Introduction

For high-quality analysis of large networks, graph enumeration algorithms are consid-

ered as a powerful tool. Large real-life, synthetic and dense networks create challenges

in network analysis study. This thesis addresses the challenge of representing these large

networks. The algorithms considered in this thesis span a wide range of problems and ap-

plications: edge clique cover problem, assignment-minimum edge clique cover problem,

triangle counting & enumeration problem, k-count, and triangle centrality. These algo-

rithms are all connected to finding important structures within real-life networks. With

parallel versions of these graph algorithms, this thesis also focuses on utilizing the threads

all modern PCs have. Therefore, one can use this thesis as a guideline for approaching

graph enumeration problems with parallel algorithms.

6.2 Results in “Vertex-centric Edge Clique Cover”

In Chapter 3, we showed the connection between large networks and their sparse ma-

trix representation that can be exploited to employ efficient techniques from sparse matrix

determination literature in graph algorithms [37, 38].

The edge clique cover problem is recast as a sparse matrix determination problem. The

notion of intersection matrix provides a unified framework that facilitates the compact rep-

resentation of graph data and efficient implementation of graph algorithms. The adjacency

matrix representation can potentially have many nonzero entries since it is the product of an

124

6.3. RESULTS IN “EDGE-CENTRIC EDGE CLIQUE COVER”

intersection matrix with its transpose. We showed that similar to the graph vertex coloring

problem, the ECC problem is sensitive to the ordering of the vertices.

We presented test results of “vertex-centric edge clique cover” algorithm, VO-ECC for

the selected test instances from group DIMACS10, SNAP, and real-life. We compared our

algorithm using different vertex ordering methods and showed that for all test instances, the

ordered approach produces strictly better clique cover compared with natural ordering. Fi-

nally, we showed that our algorithm is scalable for large test instances where the comparing

algorithm (presented by Gramm et al. [28]) fails to run DIMACS10 and SNAP instances.

6.3 Results in “Edge-centric Edge Clique Cover”

We proposed a compact representation of network data, where the notion of intersection

matrix provides a unified framework that facilitates the compact representation of graph

data and efficient implementation of graph algorithms.

This thesis presented an “edge-centric” minECC method, EO-ECC motivated by the

works of Bron et al. [7] and E. Tomita et al. [81] for finding clique covers. Then presented

comparative results concerning the clique cover size and runtime with the current state-

of-the-art algorithm for minECC [17]. For 219 test instances (from DIMACS10, SNAP,

Real-World, Small-World, and Erdős-Rényi groups), where the number of edges varies be-

tween 170 and 7.6×107, our EO-ECC algorithm produces smaller or equal size clique covers

than the Conte-Method [17]. EO-ECC is also significantly faster than the Conte-Method,

and is highly scalable on large problem instances.

A less well-studied but related problem, known as the Assignment Minimum Edge

Clique Cover arising in computational statistics, is to minimize the number of individual

assignments of vertices to cliques. It is not always possible to find assignment-minimum

clique coverings by searching through those that are edge-clique-minimum. This thesis

addressed this problem and proposed an algorithm AM-ECC, where EO-ECC with a post-

processing step gives the assignment minimum cover calculation.

125

6.4. RESULTS IN “TRIANGLE COUNTING & ENUMERATION”

Finally, the parallel implementation of EO-ECC using OpenCilk in this thesis established

a guideline for parallel implementation of the edge clique cover problem.

6.4 Results in “Triangle Counting & Enumeration”

The presence of triangles in extensive network data has led to the creation of many

metrics to analyze graph characteristics. As such, the ability to count and enumerate these

triangles is crucial to applying these metrics and gaining further insights into the underlying

composition and distribution of these graphs.

This thesis presented a simple-flexible scheme based on intersecting edge labels, the

intersection matrix, to represent and calculate with network data. A new linear algebra-

based method exploits this intersection representation for triangle computation – a kernel

operation in big data analytics. In our implementation, we used sparse matrix-vector prod-

ucts instead of the memory-intensive matrix-matrix multiplication to enumerate and extend

triangle analysis in graphs. Therefore, important information such as triangle vertex and

edge degree can be gleaned in a fraction of the time of reference implementation of miniTri

on large benchmark instances.

The computational results from large-scale synthetic and real-life network instances

demonstrate that our basic implementation is efficient, scales well, and requires O(n+m)

space. The presented idea in this thesis is incredibly useful in the exchange of network data,

with the potential to allow for the computation of many additional intersection matrix-based

network analytics such as rank and triangle centrality [9].

We measured the speedup we gained the two reference miniTri implementations on

these real-world instances for our triangle count and enumeration algorithms. However,

both miniTri implementations failed to compute triangles for large test instances, such as

“flickrEdges” and “Cit-Patents”, and also large instances from the brain and Graph500

networks. We reported those failed cases using N/A.

Our implemented fullCount algorithm is highly scalable, and therefore, we tested this

126

6.5. FUTURE WORK

algorithm with all instances from the brain network and large synthetic test instances from

GraphChallenge. The reference implementations failed to calculate results for most of

these large instances while we ran those for seven days with 900GB memory in a high-

performance Computing system (Graham cluster) at Compute Canada.

Calculating k-count requires huge space to store enumerated triangles, and for the dense

brain networks, it is challenging. Therefore, to test the scalability and runtime of these

dense graphs, we avoid calculating k-count and only calculate triangles, triangle vertex

degree, and triangle edge degree.

In this thesis, we also implemented triangle centrality using our fullCount algorithm.

We compared our result with Li and Bader’s [51] SuiteSparse GraphBLAS implementation.

Our method calculated triangle centrality within a fraction of a second for all the in-

stances. Our triangle centrality calculation requires triangle counting and triangle vertex

& edge degree calculation. Therefore, if we consider the running time for our fullCount

algorithm with our triangle centrality calculation, still we get better performance except for

one instance as-Skitter. These results showed a prospect of using our triangle centrality

calculation method for large instances.

Finally, we presented the parallel implementation of our intersection algorithm, full-

Count. We parallelized our basic triangle counting algorithm, fullCount algorithm, k-

count, and triangle centrality calculation method. All of this implementation showed rea-

sonable speedup for using multiple threads.

6.5 Future work

• Our vertex-ordered ECC (VO-ECC) algorithm selects an unprocessed vertex, and

then it examines all the existing cliques to find whether we can include this processing

vertex into an existing clique or not. Therefore, we required a two-dimensional array

to store and grow the clique cover. In a future implementation, we will try to use the

intersection-based matrix to store the cover to reduce the space complexity.

127

6.6. CONCLUSION

• There are two important functions in our EO-ECC algorithm: FindNeighbors, and

FindCommonNeighbors. We have implemented parallelized version of these func-

tions. Therefore, one future direction can parallelize the full EO-ECC algorithm.

• We have developed a parallelized version of our triangle counting and enumeration

algorithm. This implementation has optimistic preliminary results. This algorithm

can still be tuned, and cache efficiency is being studied for additional optimizations,

exploring temporal and spatial locality to analyze the memory footprint and provide

further improvements.

6.6 Conclusion

Analyzing characteristics in networked data, such as graphs that can yield important

information on the modelled structure, is challenging due to their linked nature and size.

For classification, clustering, and knowledge discovery, analyzing subgraphs is helpful to

get a deeper understanding of the data. This thesis proposed using a compact network data

representation based on sparse matrix data structures. We considered the enumeration of

subgraphs (edge clique cover problem) with some ordering schemes. We used the linear

algebraic approach to implement graph algorithms for counting triangles, triangle enumer-

ation, the k-count, and triangle centrality calculation. This thesis presented both serial and

parallel algorithms for solving these graph problems in analyzing social and large complex

networks.

128

Bibliography

[1] W. M. Abdullah, S. Hossain, and M. A. Khan. Covering large complex networks
by cliques—a sparse matrix approach. In D. Marc Kilgour, Herb Kunze, Ro-
man Makarov, Roderick Melnik, and Xu Wang, editors, Recent Developments in
Mathematical, Statistical and Computational Sciences, pages 117–127, Cham, 2021.
Springer International Publishing.

[2] Mohammad Al Hasan and Vachik S Dave. Triangle counting in large networks: a
review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
8(2):e1226, 2018.

[3] Ghadeer Alabandi, Evan Powers, and Martin Burtscher. Increasing the parallelism of
graph coloring via shortcutting. In Proceedings of the 25th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pages 262–275, 2020.

[4] L Becchetti, P Boldi, and C Castillo. Efficient algorithms for large-scale local triangle
counting. In ACM Trans Knowl Discovery Data, pages 1–28, 2010.

[5] Claude Berge. Graphs and hypergraphs. North-Holland Pub. Co., 1973.

[6] M Blanchette, E Kim, and A Vetta. Clique cover on sparse networks. In 2012
Proceedings of the Fourteenth Workshop on Algorithm Engineering and Experiments
(ALENEX), Society for Industrial and Applied Mathematics, pages 93–102, 2012.

[7] Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques of an undirected
graph. Commun. ACM, 16(9):575–577, September 1973.

[8] Paul Burkhardt. Graphing trillions of triangles. Information Visualization, 16(3):157–
166, 2017.

[9] Paul Burkhardt. Triangle centrality. ArXiv, abs/2105.00110, 2021.

[10] Charles Cable, Kathryn F Jones, J Richard Lundgren, and Suzanne Seager. Niche
graphs. Discrete applied mathematics, 23(3):231–241, 1989.

[11] Ümit V Çatalyürek, John Feo, Assefaw H Gebremedhin, Mahantesh Halappanavar,
and Alex Pothen. Graph coloring algorithms for multi-core and massively multi-
threaded architectures. Parallel Computing, 38(10-11):576–594, 2012.

[12] Graham cluster. Compute Canada high power computing resource. https://docs.
computecanada.ca/wiki/Graham, 2021. [Online; accessed 28-November-2021].

129

BIBLIOGRAPHY

[13] Joel E. Cohen. Interval graphs and food webs: a finding and a problem. RAND
Corporation Document 17696-PR, 1968.

[14] Jonathan Cohen. Trusses: Cohesive subgraphs for social network analysis. National
security agency technical report, 16(3.1), 2008.

[15] Jonathan Cohen and Patrice Castonguay. Efficient graph matching and coloring on
the gpu. In GPU Technology Conference, pages 1–10, 2012.

[16] Thomas F Coleman and Jorge J Moré. Estimation of sparse jacobian matrices and
graph coloring blems. SIAM journal on Numerical Analysis, 20(1):187–209, 1983.

[17] Alessio Conte, Roberto Grossi, and Andrea Marino. Large-scale clique cover of real-
world networks. Information and Computation, 270:104464, 2020.

[18] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Intro-
duction to algorithms. MIT press, 2009.

[19] Marek Cygan, Marcin Pilipczuk, and Michał Pilipczuk. Known algorithms for edge
clique cover are probably optimal. SIAM Journal on Computing, 45(1):67–83, 2016.

[20] T. Davis and Y. Hu. Suitesparse matrix collection. https://sparse.tamu.edu/. Accessed:
2019-10-02.

[21] Daniel M Ennis, Benoit Rousseau, and John M Ennis. Tools and Applications of
Sensory and Consumer Science: 59 Technical Report Scenarios Based on Real-life
Problems. Institute for Perception, 2014.

[22] JM Ennis and DM Ennis. Efficient Representation of Pairwise Sensory Information.
IFPress, 15(3):3–4, 2012.

[23] John M Ennis, Charles M Fayle, and Daniel M Ennis. Assignment-minimum clique
coverings. Journal of Experimental Algorithmics (JEA), 17:1–1, 2012.

[24] David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal cliques in
sparse graphs in near-optimal time. In International Symposium on Algorithms and
Computation, pages 403–414. Springer, 2010.

[25] David Eppstein and Darren Strash. Listing all maximal cliques in large sparse real-
world graphs. In International Symposium on Experimental Algorithms, pages 364–
375. Springer, 2011.

[26] Paul Erdös, Adolph W Goodman, and Louis Pósa. The representation of a graph by
set intersections. Canadian Journal of Mathematics, 18:106–112, 1966.

[27] J. Gramm, J. Guo, F. Huffner, and R. Niedermeier. Data reduction, Exact and Heuristic
Algorithms for Clique Cover. Proceedings of the Eighth Workshop on Algorithm
Engineering and Experiments (ALENEX), SIAM, pages 86–94, 2006.

130

BIBLIOGRAPHY

[28] J. Gramm, J. Guo, F. Huffner, and R. Niedermeier. Data reduction and exact algo-
rithms for clique cover. Journal of Experimental Algorithmics (JEA), 13:2–15, 2009.

[29] J. Gramm, J. Guo, F. Huffner, R. Niedermeier, H. Piepho, and R. Schmid. Algorithms
for Compact Letter Displays: Comparison and Evaluation. Computational Statistics
& Data Analysis, 52:725–736, 2007.

[30] Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Data reduction and
exact algorithms for clique cover. Journal of Experimental Algorithmics (JEA), 13:2–
2, 2009.

[31] András Gyárfás. A simple lower bound on edge coverings by cliques. Discrete Math-
ematics, 85(1):103–104, 1990.

[32] M. Hasan, S. Hossain, A. I. Khan, N. H. Mithila, and A. H. Suny. DSJM: A Software
Toolkit for Direct Determination of Sparse Jacobian Matrices. In: G.M. Greuel, T.
Koch, P. Paule, A. Sommese and Editors. ICMS2016. Springer International Pub-
lishing Switzerland, pages 425–434, 2016.

[33] Mahmudul Hasan, Shahadat Hossain, Ahamad Imtiaz Khan, Nasrin Hakim Mithila,
and Ashraful Huq Suny. DSJM: a software toolkit for direct determination of sparse
Jacobian matrices. In International Congress on Mathematical Software, pages 275 –
283. Springer, 2016.

[34] William Hasenplaugh, Tim Kaler, Tao B Schardl, and Charles E Leiserson. Ordering
heuristics for parallel graph coloring. In Proceedings of the 26th ACM symposium on
Parallelism in algorithms and architectures, pages 166–177, 2014.

[35] S. Hossain and A. I. Khan. Exact Coloring of Sparse Matrices. In: D.M. Kilgour et
al. (eds.) Recent Advances in Mathematical and Statistical Methods. Springer Pro-
ceedings in Mathematics and Statistics, Springer Nature Switzerland AG, 259:23–36,
2018.

[36] S. Hossain and A. H. Suny. Determination of Large Sparse Derivative Matrices: Struc-
tural: Orthogonality and Structural Degeneracy. In: B. Randerath, H. Roglin, B. Peis,
O. Schaudt, R. Schrader, F. Vallentin and V. Weil. 15th Cologne-Twente Workshop on
Graphs & Combinatorial Optimization, Cologne, Germany, pages 83–87, 2017.

[37] Shahadat Hossain and Trond Steihaug. Graph models and their efficient imple-
mentation for sparse jacobian matrix determination. Discrete Applied Mathematics,
161(12):1747–1754, 2013.

[38] Shahadat Hossain and Trond Steihaug. Optimal direct determination of sparse jaco-
bian matrices. Optimization Methods and Software, 28(6):1218–1232, 2013.

[39] Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM Journal
on Computing, 7(4):413–423, 1978.

131

BIBLIOGRAPHY

[40] O. James. Contentment in graph theory: covering graphs with cliques. Indagationes
Mathematicae (Proceedings), 80(5), 1977.

[41] Mark T Jones and Paul E Plassmann. A parallel graph coloring heuristic. SIAM
Journal on Scientific Computing, 14(3):654–669, 1993.

[42] E. Kellerman. Determination of keyword conflict. IBM Technical Disclosure Bulletin,
16(2):544–546, 1973.

[43] J. Kepner and J. Gilbert. Graph Algorithms in the Language of Linear Algebra, Soci-
ety for Industrial and Applied Mathematics. Philadelphia, PA, USA, 2011.

[44] J. Kepner and H. Jananthan. Mathematics of big data: Spreadsheets, databases, ma-
trices, and graphs. MIT Press, 2018.

[45] Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluç, Franz Franchetti, John
Gilbert, Dylan Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning Meyerhenke,
et al. Mathematical foundations of the graphblas. In 2016 IEEE High Performance
Extreme Computing Conference (HPEC), pages 1–9. IEEE, 2016.

[46] Jeremy Kepner and John Gilbert. Graph algorithms in the language of linear algebra.
SIAM, 2011.

[47] LT Kou, LJ Stockmeyer, and CK Wong. Covering edges by cliques with regard to
keyword conflicts and intersection graphs. Communications of the ACM, 21(2):135–
139, 1978.

[48] VP Kozyrev and SV Yushmanov. Representations of graphs and networks (coding,
layouts and embeddings). Journal of Soviet Mathematics, 61(3):2152–2194, 1992.

[49] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014. Accessed: 2019-10-02.

[50] Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-
mining library. ACM Transactions on Intelligent Systems and Technology (TIST),
8(1):1, 2016.

[51] Fuhuan Li and David A Bader. A graphblas implementation of triangle centrality. In
2021 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–2.
IEEE, 2021.

[52] László Lovász. On covering of graphs. In Theory of Graphs (Proc. Colloq., Tihany,
1966), pages 231–236. Academic Press New York, 1968.

[53] Tze Meng Low, Varun Nagaraj Rao, Matthew Lee, Doru Popovici, Franz Franchetti,
and Scott McMillan. First look: Linear algebra-based triangle counting without ma-
trix multiplication. In 2017 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–6, 2017.

132

BIBLIOGRAPHY

[54] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimiza-
tion problems. Journal of the ACM (JACM), 41(5):960–981, 1994.

[55] Sean McGuinness and Rolf Rees. On the number of distinct minimal clique partitions
and clique covers of a line graph. Discrete mathematics, 83(1):49–62, 1990.

[56] R Milo, S Shen-Orr, and S Itzkovitz. Network motifs: simple building blocks of
complex network. Science, pages 824–827, 2002.

[57] Egbert Mujuni and Frances Rosamond. Parameterized complexity of the clique par-
tition problem. In Proceedings of the fourteenth symposium on Computing: the Aus-
tralasian theory-Volume 77, pages 75–78, 2008.

[58] Matthias Müller-Hannemann and Stefan Schirra. Algorithm Engineering. Springer,
2001.

[59] MA Nestrud, JM Ennis, CM Fayle, DM Ennis, and HT Lawless. Validating a graph
theoretic screening approach to food item combinations. Journal of sensory studies,
26(5):331–338, 2011.

[60] Robert J Opsut. On the computation of the competition number of a graph. SIAM
Journal on Algebraic Discrete Methods, 3(4):420–428, 1982.

[61] James Orlin. Contentment in graph theory: covering graphs with cliques. In Indaga-
tiones Mathematicae (Proceedings), volume 80(5), pages 406–424. Elsevier, 1977.

[62] G Palla, I Dereny, I Frakas, and T Vicsek. Uncovering the overlapping community
structure of complex networks in nature and society. Nature, pages 814–818, 2005.

[63] Svatopluk Poljak, Vojtěch Rödl, and Daniel TURZiK. Complexity of representation
of graphs by set systems. Discrete Applied Mathematics, 3(4):301–312, 1981.

[64] Erich Prisner. Clique covering and clique partition in generalizations of line graphs.
Discrete applied mathematics, 56(1):93–98, 1995.

[65] Norman J Pullman. Clique coverings of graphs—a survey. Combinatorial Mathemat-
ics X, pages 72–85, 1983.

[66] Fred S Roberts. Food webs, competition graphs, and the boxicity of ecological phase
space. In Theory and Applications of Graphs, pages 477–490. Springer, 1978.

[67] Fred S Roberts. Applications of edge coverings by cliques. Discrete applied mathe-
matics, 10(1):93–109, 1985.

[68] Marcos Okamura Rodrigues. Fast constructive and improvement heuristics for edge
clique covering. Discrete Optimization, 39:100628, 2021.

[69] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive
graph analytics and visualization. In Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, 2015.

133

BIBLIOGRAPHY

[70] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive
graph analytics and visualization. In AAAI, 2015.

[71] Ryan A Rossi, David F Gleich, Assefaw H Gebremedhin, and Md Mostofa Ali Pat-
wary. Fast maximum clique algorithms for large graphs. In Proceedings of the 23rd
International Conference on World Wide Web, pages 365–366, 2014.

[72] Siddharth Samsi, Vijay Gadepally, Michael Hurley, Michael Jones, Edward Kao, San-
jeev Mohindra, Paul Monticciolo, Albert Reuther, Steven Smith, William Song, Di-
ane Staheli, and Jeremy Kepner. Static graph challenge: Subgraph isomorphism.
http://graphchallenge.mit.edu/data-sets, 2017. Accessed: 2021-07-09.

[73] Siddharth Samsi, Vijay Gadepally, Michael Hurley, Michael Jones, Edward Kao, San-
jeev Mohindra, Paul Monticciolo, Albert Reuther, Steven Smith, William Song, Diane
Staheli, and Jeremy Kepner. Graphchallenge.org triangle counting performance, 2020.

[74] Yoshio Sano. A generalization of opsut’s lower bounds for the competition number of
a graph. Graphs and Combinatorics, 29(5):1543–1547, 2013.

[75] Tao B Schardl, I-Ting Angelina Lee, and Charles E Leiserson. Brief announcement:
Open cilk. In Proceedings of the 30th on Symposium on Parallelism in Algorithms
and Architectures, pages 351–353, 2018.

[76] Matthew C Schmidt, Nagiza F Samatova, Kevin Thomas, and Byung-Hoon Park. A
scalable, parallel algorithm for maximal clique enumeration. Journal of Parallel and
Distributed Computing, 69(4):417–428, 2009.

[77] Nandini Singhal, Sathya Peri, and Subrahmanyam Kalyanasundaram. Practical multi-
threaded graph coloring algorithms for shared memory architecture. In Proceedings of
the 18th International Conference on Distributed Computing and Networking, pages
1–7, 2017.

[78] Peter J Slater. A note on pseudointersection graphs. J. Res. Nat. Bur. Standards B,
80:441–445, 1976.

[79] Edward Szpilrajn-Marczewski. A translation of sur deux propriétés des classes
d’ensembles by. Fund. Math, 33:303–307, 1945.

[80] G Tinhofer. Generating graphs uniformly at random. In Computational graph theory,
pages 235–255. Springer, 1990.

[81] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case time complex-
ity for generating all maximal cliques and computational experiments. Theoretical
computer science, 363(1):28–42, 2006.

[82] S Wasserman and K Faust. Social network analysis: Methods and applications. Cam-
bridge university press, 1994.

134

BIBLIOGRAPHY

[83] Michael M Wolf, Jonathan W Berry, and Dylan T Stark. A task-based linear algebra
building blocks approach for scalable graph analytics. In 2015 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), pages 1–6. IEEE, 2015.

[84] Elena Zotenko, Katia S Guimarães, Raja Jothi, and Teresa M Przytycka. Decom-
position of overlapping protein complexes: A graph theoretical method for analyz-
ing static and dynamic protein associations. In Systems Biology and Regulatory Ge-
nomics, pages 23–38. Springer, 2005.

135

BIBLIOGRAPHY

Appendix A

Table 1: Test Results (number of cliques) for Erdos-Renyi and Small-World Graphs

Graph Number of cliques
Name m n Conte-Method EO-ECC-D EO-ECC-L EO-ECC-I
er n2 800 100 374 365 367 368
er 1p5n2 1200 150 667 640 645 643
er 2n2 1600 200 975 954 959 957
er 2p5n2 2000 250 1274 1255 1256 1257
er 3n2 2400 300 1596 1580 1584 1582
er 3p5n2 2800 350 1993 1984 1987 1985
er 4n2 3200 400 2328 2324 2324 2322
er 4p5n2 3600 450 2691 2678 2678 2680
er 5n2 4000 500 3024 3016 3016 3016
er 5p5n2 4400 550 3399 3395 3395 3396
er 6n2 4800 600 3808 3804 3804 3804
er 6p5n2 5200 650 4215 4208 4209 4209
er 7n2 5600 700 4588 4587 4587 4587
er 7p5n2 6000 750 4914 4911 4911 4911
er 8n2 6400 800 5305 5302 5302 5302
er 8p5n2 6800 850 5708 5707 5707 5707
er 9n2 7200 900 6116 6115 6115 6115
er 9p5n2 7600 950 6424 6422 6422 6422
er n3 8000 1000 6821 6821 6821 6821
er 1p5n3 12000 1500 10777 10777 10777 10777
er 2n3 16000 2000 14782 14782 14782 14782
er 2p5n3 20000 2500 18635 18634 18634 18634
er 3n3 24000 3000 22652 22652 22652 22652
er 3p5n3 28000 3500 26712 26712 26712 26712
er 4n3 32000 4000 30705 30704 30704 30704
er 4p5n3 36000 4500 34720 34720 34720 34720
er 5n3 40000 5000 38647 38647 38647 38647
er 5p5n3 44000 5500 42646 42646 42646 42646
er 6n3 48000 6000 46558 46558 46558 46558
er 6p5n3 52000 6500 50681 50681 50681 50681
er 7n3 56000 7000 54586 54586 54586 54586
er 7p5n3 60000 7500 58615 58615 58615 58615
er 8n3 64000 8000 62699 62699 62699 62699
er 8p5n3 68000 8500 66620 66620 66620 66620
er 9n3 72000 9000 70681 70681 70681 70681
er 9p5n3 76000 9500 74710 74710 74710 74710

Table 1 – Continued on next page

136

BIBLIOGRAPHY

Table 1 – Continued from previous page
Graph Number of cliques

Name m n Conte-Method EO-ECC-D EO-ECC-L EO-ECC-I
er n4 80000 10000 78650 78650 78650 78650
er 1p5n4 120000 15000 118693 118693 118693 118693
er 2n4 160000 20000 158649 158649 158649 158649
er 2p5n4 200000 25000 198593 198593 198593 198593
er 3n4 240000 30000 238669 238669 238669 238669
er 3p5n4 280000 35000 278675 278675 278675 278675
er 4n4 320000 40000 318660 318660 318660 318660
er 4p5n4 360000 45000 358654 358654 358654 358654
er 5n4 400000 50000 398648 398648 398648 398648
er 5p5n4 440000 55000 438639 438639 438639 438639
er 6n4 480000 60000 478666 478666 478666 478666
er 6p5n4 520000 65000 518511 518511 518511 518511
er 7n4 560000 70000 558667 558667 558667 558667
er 7p5n4 600000 75000 598576 598576 598576 598576
er 8n4 640000 80000 638619 638619 638619 638619
er 8p5n4 680000 85000 678725 678725 678725 678725
er 9n4 720000 90000 718613 718613 718613 718613
er 9p5n4 760000 95000 758554 758554 758554 758554
er n5 800000 100000 798737 798737 798737 798737
er 1p5n5 1200000 150000 1198666 1198666 1198666 1198666
er 2n5 1600000 200000 1598603 1598603 1598603 1598603
er 2p5n5 2000000 250000 1998582 1998582 1998582 1998582
er 3n5 2400000 300000 2398561 2398561 2398561 2398561
er 3p5n5 2800000 350000 2798653 2798653 2798653 2798653
er 4n5 3200000 400000 3198576 3198576 3198576 3198576
er 4p5n5 3600000 450000 3598533 3598533 3598533 3598533
er 5n5 4000000 500000 3998588 3998588 3998588 3998588
er 5p5n5 4400000 550000 4398603 4398603 4398603 4398603
er 6n5 4800000 600000 4798718 4798718 4798718 4798718
er 6p5n5 5200000 650000 5198570 5198570 5198570 5198570
er 7n5 5600000 700000 5598612 5598612 5598612 5598612
er 7p5n5 6000000 750000 5998716 5998716 5998716 5998716
er 8n5 6400000 800000 6398614 6398614 6398614 6398614
er 8p5n5 6800000 850000 6798625 6798625 6798625 6798625
er 9n5 7200000 900000 7198633 7198633 7198633 7198633
er 9p5n5 7600000 950000 7598639 7598639 7598639 7598639
er n6 8000000 1000000 7998545 7998545 7998545 7998545
er 1p5n6 12000000 1500000 11998646 11998646 11998646 11998646

Table 1 – Continued on next page

137

BIBLIOGRAPHY

Table 1 – Continued from previous page
Graph Number of cliques

Name m n Conte-Method EO-ECC-D EO-ECC-L EO-ECC-I
er 2n6 16000000 2000000 15998621 15998621 15998621 15998621
er 2p5n6 20000000 2500000 19998715 19998715 19998715 19998715
er 3n6 24000000 3000000 23998646 23998646 23998646 23998646
er 3p5n6 28000000 3500000 27998674 27998674 27998674 27998674
er 4n6 32000000 4000000 31998755 31998755 31998755 31998755
er 4p5n6 36000000 4500000 35998669 35998669 35998669 35998669
er 5n6 40000000 5000000 39998710 39998710 39998710 39998710
er 5p5n6 44000000 5500000 43998661 43998661 43998661 43998661
er 6n6 48000000 6000000 47998612 47998612 47998612 47998612
er 6p5n6 52000000 6500000 51998699 51998699 51998699 51998699
er 7n6 56000000 7000000 55998696 55998696 55998696 55998696
er 7p5n6 60000000 7500000 59998656 59998656 59998656 59998656
er 8n6 64000000 8000000 63998661 63998661 63998661 63998661
er 8p5n6 68000000 8500000 67998726 67998726 67998726 67998726
er 9n6 72000000 9000000 71998747 71998747 71998747 71998747
er 9p5n6 76000000 9500000 N/A 75998685 75998685 75998685
er 2n2 dup 1600 200 941 930 935 929
er 4n2 dup 3200 400 2350 2342 2341 2341
er 7n2 dup 5600 700 4555 4554 4554 4554
er 9n2 dup 7200 900 6135 6133 6133 6133
er 2n3 dup 16000 2000 14711 14711 14711 14711
er 4n3 dup 32000 4000 30791 30791 30791 30791
er 7n3 dup 56000 7000 54724 54724 54724 54724
er 9n3 dup 72000 9000 70661 70661 70661 70661
er 2n4 dup 160000 20000 158616 158616 158616 158616
er 4n4 dup 320000 40000 318764 318764 318764 318764
er 7n4 dup 560000 70000 558540 558540 558540 558540
er 9n4 dup 720000 90000 718638 718638 718638 718638
er 2n5 dup 1600000 200000 1598668 1598668 1598668 1598668
er 4n5 dup 3200000 400000 3198716 3198716 3198716 3198716
er 7n5 dup 5600000 700000 5598523 5598523 5598523 5598523
er 9n5 dup 7200000 900000 7198570 7198570 7198570 7198570
er 3n6 dup 24000000 3000000 23998533 23998533 23998533 23998533
er 5n6 dup 40000000 5000000 39998674 39998674 39998674 39998674
er 7n6 dup 56000000 7000000 55998702 55998702 55998702 55998702
er 9n6 dup 72000000 9000000 71998707 71998707 71998707 71998707
sw n2 777 100 251 248 249 246
sw 1p5n2 1184 150 427 427 433 426

Table 1 – Continued on next page

138

BIBLIOGRAPHY

Table 1 – Continued from previous page
Graph Number of cliques

Name m n Conte-Method EO-ECC-D EO-ECC-L EO-ECC-I
sw 2n2 1580 200 599 584 591 589
sw 2p5n2 1977 250 765 755 764 755
sw 3n2 2382 300 959 948 943 945
sw 3p5n2 2776 350 1152 1128 1136 1129
sw 4n2 3175 400 1323 1309 1310 1309
sw 4p5n2 3575 450 1566 1541 1538 1539
sw 5n2 3974 500 1693 1671 1691 1677
sw 5p5n2 4385 550 1961 1929 1954 1933
sw 6n2 4778 600 2084 2056 2068 2051
sw 6p5n2 5173 650 2295 2257 2276 2259
sw 7n2 5577 700 2472 2440 2450 2441
sw 7p5n2 5981 750 2673 2635 2640 2630
sw 8n2 6373 800 2905 2863 2893 2875
sw 8p5n2 6780 850 3100 3061 3074 3061
sw 9n2 7182 900 3280 3225 3226 3223
sw 9p5n2 7579 950 3438 3371 3398 3387
sw n3 7981 1000 3598 3528 3562 3554
sw 1p5n3 11972 1500 5421 5317 5358 5328
sw 2n3 15974 2000 7312 7232 7261 7218
sw 2p5n3 19974 2500 9303 9134 9202 9182
sw 3n3 23975 3000 11227 11037 11105 11041
sw 3p5n3 27979 3500 13112 12923 13006 12946
sw 4n3 31985 4000 15040 14839 14892 14814
sw 4p5n3 35973 4500 16866 16655 16753 16671
sw 5n3 39982 5000 18899 18614 18716 18640
sw 5p5n3 43973 5500 20857 20573 20658 20603
sw 6n3 47983 6000 22760 22439 22602 22476
sw 6p5n3 51977 6500 24620 24294 24406 24295
sw 7n3 55981 7000 26701 26351 26475 26344
sw 7p5n3 59973 7500 28340 27941 28084 27938
sw 8n3 63983 8000 30132 29679 29830 29675
sw 8p5n3 67973 8500 32349 31861 32060 31894
sw 9n3 71970 9000 34496 34043 34185 34000
sw 9p5n3 75981 9500 36045 35537 35707 35548
sw n4 79981 10000 38297 37728 37922 37738
sw 1p5n4 119965 15000 57200 56427 56733 56437
sw 2n4 159974 20000 76420 75311 75675 75300
sw 2p5n4 199978 25000 95423 93979 94489 94012

Table 1 – Continued on next page

139

BIBLIOGRAPHY

Table 1 – Continued from previous page
Graph Number of cliques

Name m n Conte-Method EO-ECC-D EO-ECC-L EO-ECC-I
sw 3n4 239983 30000 114310 112596 113186 112706
sw 3p5n4 279973 35000 133609 131469 132384 131714
sw 4n4 319977 40000 153196 150879 151860 151059
sw 4p5n4 359982 45000 172231 169603 170584 169744
sw 5n4 399977 50000 191447 188535 189601 188721
sw 5p5n4 439973 55000 210817 207723 208965 207896
sw 6n4 479977 60000 230235 226878 228308 227069
sw 6p5n4 519976 65000 249033 245310 246597 245467
sw 7n4 559981 70000 268415 264532 266167 264758
sw 7p5n4 599973 75000 286940 282570 284349 282897
sw 8n4 639982 80000 305777 301354 302920 301448
sw 8p5n4 679974 85000 324852 319896 321770 320072
sw 9n4 719976 90000 344627 339563 341412 339867
sw 9p5n4 759979 95000 363134 357848 359811 358243
sw n5 799982 100000 382413 376638 378904 376915
sw 1p5n5 1199984 150000 573387 564891 568221 565304
sw 2n5 1599982 200000 764882 753682 757845 754086
sw 2p5n5 1999981 250000 956541 942263 947438 942795
sw 3n5 2399977 300000 1147827 1130875 1137471 1131681
sw 3p5n5 2799977 350000 1340075 1320374 1327843 1321250
sw 4n5 3199982 400000 1530792 1508066 1516658 1509066
sw 4p5n5 3599981 450000 1722783 1697178 1706735 1698305
sw 5n5 3999977 500000 1913519 1885375 1896492 1886862
sw 5p5n5 4399981 550000 2105795 2074576 2086190 2076190
sw 6n5 4799984 600000 2298734 2265206 2277675 2266410
sw 6p5n5 5199990 650000 2488676 2451375 2465513 2453064
sw 7n5 5599975 700000 2678465 2638847 2653956 2640735
sw 7p5n5 5999972 750000 2870722 2828343 2843773 2830134
sw 8n5 6399973 800000 3063567 3017993 3034988 3019657
sw 8p5n5 6799966 850000 3252942 3204666 3222967 3207088
sw 9n5 7199983 900000 3446088 3395083 3414789 3397958
sw 9p5n5 7599982 950000 3638065 3584306 3604182 3586335

140

