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Abstract 33 

Ecological intensification could help return agriculture into a ‘safe operating space’ for humanity. 34 

Using a novel application of meta-analysis to data from 30 long-term experiments from Europe and 35 

Africa (comprising 25,565 yield records), we investigated how field-scale EI practices interact with 36 

each other, and with N fertiliser and tillage, in their effects on long-term crop yields. Here we 37 

confirmed that EI practices (specifically increasing crop diversity, adding fertility crops, and organic 38 

matter) have generally positive effects on the yield of staple crops. However, we show that EI 39 

practices have a largely substitutive interaction with N fertiliser, so that EI practices substantially 40 

increase yield at low N fertiliser doses, but have minimal or no effect on yield at high N fertiliser 41 

doses. EI practices had comparable effects across different tillage intensities and reducing tillage did 42 

not strongly affect yields. 43 

 44 

Main 45 

Agriculture is a leading cause of global environmental change, while also being highly vulnerable to 46 

that change1. Human activities, including agriculture, have increased greenhouse gas emissions, 47 

nutrient bioavailability, habitat loss, and species extinctions toward ‘planetary boundaries’, where 48 

Earth’s environment is at high risk of shifting to a less hospitable state2,3. This in turn threatens 49 

agriculture through increasing the likelihood of extreme weather events, resource depletion, and 50 

pest outbreaks4,5. Agriculture must address these environmental challenges whilst also meeting the 51 

needs of a growing global population. Although many political and societal changes could limit 52 

future food demand (such as fairer food distribution and reduced animal product consumption6,7), it 53 

must also be assumed that yields of the world’s staple crops will, at the very least, need to be 54 

maintained8. 55 

Ecological Intensification (EI) is one pathway proposed to sustain yields while reducing adverse 56 

impacts of agriculture on the environment (and consequently reducing threats posed to agriculture 57 

by the environment). EI is defined as the enhancement of ecosystem services9 to complement or 58 

substitute for the role of anthropogenic inputs in maintaining or increasing yields10,11. Anthropogenic 59 

inputs have underpinned necessary gains in productivity and food security since the Green 60 

Revolution, but their widespread over-use has incurred substantial environmental costs12. EI seeks to 61 

retain productivity whilst mitigating environmental impacts, and is a strategy that could be 62 

implemented under various sustainable agriculture paradigms, such as agroecology13, sustainable 63 

intensification14, and Climate Smart Agriculture15. Managing farmland to provide ecosystem services 64 

that support productivity can also encourage farmers to avoid environmentally degrading practices – 65 

leading Tittonell16 to describe EI as both “sustained by nature and sustainable in nature”.  66 

Here, we investigate the extent to which crop yields can be supported by field-scale EI practices 67 

targeted at enhancing the ecosystem services of nutrient cycling and regulating weeds, pests, and 68 

diseases. Input-based, field-scale practices to achieve high yields involve regular and intensive inputs 69 

of tillage, synthetic fertilisers, and pesticides, which together can lead to increased carbon emissions 70 

and the release of pollutants and soil particulates into surrounding habitats17,18. Identifying and 71 

upscaling farming practices that decouple high yields from high use of these inputs would therefore 72 

facilitate returning to a global ‘safe operating space’2,7. There is promising evidence that many field-73 

scale EI practices could contribute to this decoupling11, such as using legumes to fix nitrogen19, 74 
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diversifying crops to better regulate weeds, pests and diseases20, recycling manures to fertilise 75 

crops21, and managing crop residues to improve soil quality22.  76 

Realising the full potential for EI, however, requires knowledge of the relative yield response to 77 

different EI practices and inputs, and the extent to which this response is context-dependent. The 78 

aim of EI may differ depending on the context; for example, in a high-input high-yield scenario, EI 79 

practices may be intended to reduce inputs and thus environmental impacts while sustaining yields, 80 

to bring cropping systems back within a global ‘safe operating space’2. In low-yield low-input 81 

systems, EI practices might improve food security by complementing inputs to increase yields, in the 82 

face of low input accessibility31 or adverse local conditions32. However, it is important to understand 83 

whether different EI practices have different effects in these different contexts, so that the optimal 84 

combinations of EI practices and inputs can be used to achieve the desired aim. 85 

The over-arching picture of the relative effects of and interactions between EI practices and inputs 86 

has so far remained unclear, because it is challenging for individual experiments to test more than 87 

one or two practices or inputs in concert (given the need for enough area to replicate multiple 88 

treatments). Meta-analyses can compare relative effects across multiple experiments23 but have not 89 

yet been applied to explore whether different EI practices and inputs interact in their effects on 90 

yield. Previous research in EI has also been limited by the short term focus of many studies that 91 

address effects on a single crop over one or two years11, while the true impacts of different 92 

agronomic practices may only become apparent over long time scales when the effects of 93 

interannual variability, short-term perturbations, and transitional dynamics can be accounted 94 

for24,25.  95 

To address this knowledge gap, this study collated data across 30 long-term experiments (LTEs) in 96 

Europe and Africa (with a minimum age of 9 years) to investigate the relative yield effects of 97 

different EI practices and inputs. Analyses of multiple LTEs have previously been used to quantify the 98 

effect of crop diversification on yields26,27 and to compare different soil management practices23, but 99 

not yet to explore interactions among multiple EI practices and inputs. Together, the LTEs in our 100 

dataset assess three different EI practices: (1) crop diversification from a monoculture (CD), (2) 101 

addition of ‘fertility’ crops to an arable rotation (FC) and (3) organic matter management (OM; 102 

including soil amendments and crop residues) (Table 1). Each of these offers opportunities to 103 

increase ecological functioning by increasing diversity and/or connecting resource flows within 104 

and/or between farmed fields19–21. Many LTEs tested EI practices alongside different synthetic 105 

nitrogen fertiliser application rates (NF) and tillage intensities (TI), allowing us to investigate the 106 

effects of EI practices (and combinations thereof) at different levels of these inputs. We consider 107 

tillage intensity to be an anthropogenic input of energy and disturbance, which incurs fuel use and 108 

soil degradation18,28. Other inputs of high potential interest in relation to field-scale EI practices are 109 

phosphorus29 and pesticides30, but we had insufficient data to assess these.  110 

In total, our dataset consisted of 25,565 plot-by-year yield records. While individual results have 111 

been published for most LTEs, here we further realise the potential of these LTEs by synthesising 112 

data across experiments to test overarching hypotheses. To combine evidence for multiple practices 113 

across multiple LTEs with contrasting cropping systems and treatment structures, it was necessary to 114 

develop a novel meta-analysis procedure to directly quantify the association between the relative 115 

yields and differences in each EI practice and input. Our specific objectives for this analysis were to i) 116 

quantify the relative yield response to different EI practices and inputs in different combinations, ii) 117 
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use these results to assess the potential for EI practices to increase crop yields for a given level of 118 

inputs, or to sustain yields at reduced levels of inputs. 119 

 120 

Exploring EI via meta-analysis of multiple LTEs 121 

To explore the relative effects of different EI practices on yield across the 30 LTEs (Supplementary 122 

Table S1.1), we used a novel three-step procedure to integrate data from experiments with different 123 

crops and different treatment levels in mixed effect meta-analysis models. First, we defined each 124 

treatment in each LTE according to common indices (scales or categories) of our identified EI 125 

practices and inputs (Table 1, Supplementary Table S1.2). Secondly, we estimated the mean yields 126 

and variances for the ‘test crops’ in each treatment in each LTE separately, using linear mixed 127 

models to account for the appropriate treatment and blocking structure. ‘Test crops’ were crops 128 

present in all treatments of an LTE: spring or winter wheat (Triticum aestivum), maize (Zea mays), 129 

oats (Avena sativa), barley (Hordeum vulgare), sugar beet (Beta vulgaris) or potatoes (Solanum 130 

tuberosum). We then calculated response ratios between the mean yields of each treatment within 131 

each LTE (henceforth termed ‘yield ratios’). Finally, mixed effect meta-analysis models were applied 132 

to assess whether yield ratios responded consistently to particular EI practices or inputs across 133 

multiple cropping systems and locations, and whether the yield response to each EI practice or input 134 

was dependent on input levels and/or other parallel EI practices. 135 

Separate meta-analysis models were applied for each of the three EI practices (CD, FC, and OM) and 136 

two inputs (NF and TI) to test the effect of changing one across different levels of the others. Unlike 137 

a standard meta-analysis approach that compares a ‘response’ treatment to a ‘control’ treatment, 138 

our meta-analysis models were constructed to compare multiple treatments, by specifying contrasts 139 

between various ‘reference’ and ‘comparison’ treatments in each LTE. Given our aim of exploring 140 

whether EI practices can increase yields for a given level of inputs or sustain yields while inputs are 141 

decreased, the contrast between a reference and comparison treatment always comprised either an 142 

increase or change in an EI practice or a reduction in an input (the nature or magnitude of which was 143 

described using moderator variables in the meta-analysis models). Each EI practice or input was the 144 

‘focal’ variable in its own meta-analysis, and a ‘context’ variable in the meta-analysis for other EI 145 

practices and inputs (Table 1). 146 

Using multiple models based on a common set of EI and input variables allowed us to robustly 147 

identify emergent overarching patterns in the yield response to different EI practices and inputs 148 

across the 30 LTEs. However, it should be noted that our yield ratio estimates for each specific 149 

combination of EI practices and inputs are representative of the subset of LTEs that tested those 150 

treatments, which determines the extent to which the findings are generalisable (not all treatments 151 

were replicated across a range of crop types, soil types, and climates). The confidence intervals in 152 

Figures 1-4 are important to indicate which treatment combinations are underpinned by more or 153 

less evidence: wide confidence intervals indicate estimates for treatments that were tested in fewer 154 

LTEs and/or where treatment effects were either inconsistent between replicates or years within 155 

each LTE, and/or inconsistent between LTEs (or all of the above).  156 

Supporting information for the results presented in this paper is provided in the Supplementary 157 

Materials: Part 1 details each LTE and the treatments therein, Part 2 explains the use of Simpson’s 158 

index as a metric for cropping system diversity, and Part 3 provides information on the meta-analysis 159 



5 
 

models to support the interpretation of each result and the extent to which it is generalisable 160 

(including model selection metrics, significance tests for parameters, and tables and forest plots 161 

illustrating the contribution of each LTE to each model and treatment estimate). 162 

 163 

Crop diversification (CD) and fertility crops (FC) 164 

Both diversifying from a monoculture and adding fertility crops to an arable rotation usually 165 

increased test crop yields (Figure 1). However, NF interacted with legumes to moderate the effect of 166 

diversification. For CD, diversification with legumes resulted in a yield increase when NF was low 167 

(<100 kg N ha-1) but not when NF was high (>100 kg ha-1), while diversification with non-legumes 168 

resulted in a greater yield increase under high NF than low NF (Figure 1a). These results suggest 169 

different ecological functions are provided by different crop types: legumes contributed to test crop 170 

yields via biological nitrogen fixation when NF was low33, whereas non-legumes likely contributed via 171 

regulation of weeds, pests and diseases (which becomes more important at high NF34). 172 

FC also generally had the highest benefit when leguminous FC were added under low NF (Figure 1b). 173 

Under high NF, no FC crops significantly increased yields, and we observed a yield decrease when 174 

grain legumes were added to a ploughed arable rotation under high N, suggesting a possible 175 

antagonism between applied N and legumes in this context (although as only two European LTEs 176 

tested FC in this context, Supplementary Figure 3.2, the results may not be generalisable). There was 177 

also little benefit of adding annual FC to a rotation that already contained legumes and received NF, 178 

indicating that the additional biological nitrogen fixation function was redundant in this context. 179 

However, multi-annual FC, whether leguminous or grass leys, had benefits under low NF regardless 180 

of whether legumes were already present. This suggests leys provide additional functionality 181 

compared with annual FC, although leys still did not significantly increase yields under high NF.  182 

 183 

Organic matter management (OM) 184 

OM amendments were usually beneficial to long-term yields (Figure 2), although adding manure was 185 

associated with a larger yield increase than adding plant-based OM. It is possible this difference was 186 

due to greater quantities of manure compared with plant-based OM applied on average across our 187 

LTEs, or a higher nutrient content in the manure. Our assessment of the effects of different 188 

amendments was limited to the simple qualitative distinction of whether they were of plant or 189 

animal origin (Table 1), because the quantity, nutrient content, and type (e.g., plant 190 

species/fresh/composted) of OM varied too much between LTEs to explore more detailed effects in 191 

this study. We recommend further research using LTEs with more consistent OM treatments to 192 

compare different amendments more rigorously. 193 

The yield benefit of OM amendments was greater under low NF and in systems without legumes 194 

(Figure 2) suggesting that nutrient input was an important contribution of OM to yields. In 195 

combination with our finding that diversifying with legumes is more beneficial under low NF (Figure 196 

1), this suggests that N supply is an important aspect of the contribution of both legumes and OM to 197 

yields, but that multiple sources of N are not necessarily more effective than a single source. 198 

However, unlike legumes, adding OM under high NF does still have a small additional yield benefit, 199 
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perhaps related to other nutrients such as phosphorus and potassium and their rate of release35, or 200 

to increasing soil carbon and improving soil structure36. 201 

We did not observe a significant effect of retaining rather than removing crop residues on crop 202 

yields (Supplementary Table S3.3). This contradicts other research suggesting that residues can 203 

benefit yields through suppressing weeds, supporting beneficial biodiversity, improving water 204 

infiltration and conserving soil moisture37. Possibly residues have very site-specific effects, relating to 205 

residue type38 and local pedo-climatic conditions39,40, so our analysis could not identify a consistent 206 

dataset-wide effect (Supplementary Figure S3.3 shows that adding residues had small positive 207 

effects for come crop types in some LTEs and small negative effects in others). Surface residues 208 

under reduced tillage could also have different effects on soil properties and yields compared to 209 

ploughed-in residues22, but we could not assess this interaction as only one LTE in our collection 210 

tested both residues and tillage together (‘NTR’ at SLU, Supplementary Tables S1.1, S1.2 and S3.8). 211 

 212 

Reducing tillage and nitrogen fertiliser inputs 213 

Of the two anthropogenic inputs investigated in this study, we found that reducing NF had strong 214 

negative effects on yield, while reducing TI had, at most, a slight negative effect. This suggests 215 

reducing TI may be an easy win to gain some environmental benefits (and potentially also climate 216 

resilience benefits41) while sustaining yields at or near current levels. Viewed from the opposite 217 

perspective, it also suggests that increasing TI does not substantially increase yields. 218 

Our results on TI need cautious interpretation. Our null model, which tested only the effect of 219 

‘reducing tillage’ without specifying which tillage practices were compared, indicated a mean yield 220 

ratio of 0.96 (a 4% decrease) on average across our dataset that was significantly different from zero 221 

(Z = -2.097, P < 0.05). The null model also suggested that no heterogeneity remained to be explained 222 

by the TI or context variables (QE P>0.05, Supplementary Table S3.1), although, when tillage type 223 

was included in the model, it did explain some heterogeneity (Supplementary Table S3.1, 224 

Supplementary Table S3.3). Taken together, these models indicate that the change in yield relating 225 

to TI is small compared to overall yield variability in the dataset, but there is some (inconclusive) 226 

evidence that different changes in TI result in different yield outcomes. For example, basins may 227 

have resulted in slightly higher yields than more intensive tillage, while shifting to no-till or zero-till 228 

may have slightly reduced yields on average (Figure 3), as has been observed in other studies40,42. 229 

In contrast to reducing TI, reducing NF had a strong but context-specific effect on yields 230 

(Supplementary Table S3.3). Our results show the standard asymptotic N response curve typically 231 

seen in cereal crops, but in reverse, because we tested the effect of incrementally reducing NF on 232 

yield ratios (Figure 4). This curve is modified by different context variables representing different EI 233 

practices. OM amendments and legumes both prevent the end of the curve where all N is removed 234 

from falling as low as it would in the absence of EI practices, showing that OM and legumes partly 235 

support yields when N fertiliser is low or absent. Manure had the strongest effect in this regard: if a 236 

system received manure applications, then most or all of the N fertiliser could be removed without 237 

seeing a yield reduction. In this study, reduced tillage may also have mitigated the effects of N 238 

removal (Figure 4), but too few LTEs tested different NF levels under reduced tillage to be certain, 239 

and other studies have suggested the opposite effect42. 240 
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Overall, our results suggest an optimal level of NF that differs between contexts, but that is generally 241 

lower in the presence of EI practices. On average across all LTEs in our study, optimal NF was around 242 

100 kg N ha-1; Figure 4 demonstrates that reducing NF to this amount from higher NF rates did not 243 

reduce yields. Slightly more N could be removed without reducing yields if legumes were present, 244 

and more still if OM was present (especially manure), suggesting a lower optimal NF alongside these 245 

practices. Optimal N will also vary between different crops, climates, and soils (the 100 kg ha-1 figure 246 

given here is an average for our specific dataset and is not generalisable). 247 

 248 

EI and inputs are substitutive or additive depending on function 249 

A key finding of our study is that all EI practices assessed (CD, FC, and OM) increased long-term 250 

yields in most contexts, but the effects of EI practices and NF input on yields were partially 251 

substitutive: the benefits of EI practices were generally reduced at higher NF, and the requirement 252 

for NF was reduced when EI practices were employed. This indicates that N supply explains much of 253 

the contribution of the studied EI practices to crop yields. When crop demand for N is already met 254 

through fertiliser, only a relatively small additive benefit of EI practices was observed – for example, 255 

small yield increases from some forms of crop diversification (Figure 1) and OM amendments (Figure 256 

2) when NF was high. These additive benefits likely indicate functions unique to different EI 257 

practices, such as ‘break crop’ functions of diversification20, or nutrient cycling and soil structure 258 

improvements resulting from OM amendments35,36. These effects of different EI practices in 259 

different NF contexts are summarised in Figure 5. When NF is low (top panel), most EI practices 260 

increase yields whether they are applied separately or in combination, but especially if these EI 261 

practices have an N provisioning function (adding legumes or OM). In contrast, when NF is high 262 

(lower panel), then only EI practices that have functions distinct from N provisioning can increase 263 

yields. 264 

In contrast to NF, tillage did not have a strong interaction with the EI practices, indicating that 265 

farmers may be able to make decisions about tillage and EI practices independently. We found the 266 

effect of reducing tillage to be small relative to the background variance in yield differences, but 267 

possibly slightly negative. This may not, however, be consistent among all forms of reduced tillage 268 

(Figure 3), and may also be influenced by environmental factors not assessed in this study – for 269 

instance, Sun et al43 and Pittelkow et al40,42 observed greater benefits in warmer, drier climates 270 

(suggesting the optimal TI for yield must balance a clean seedbed with soil water conservation). 271 

Furthermore, a small yield decrease may be acceptable in cases where reduced tillage offers non-272 

yield benefits; either economic in terms of reduced fuel or labour costs, or environmental in terms of 273 

decreased soil erosion, increased water infiltration, or carbon sequestration44. 274 

Combining different EI practices together was more likely to result in positive effects than combining 275 

EI practices with anthropogenic inputs. The effect of diversification did not depend on whether OM 276 

was applied or not, indicating an additive benefit, while the effect of adding OM to diversified 277 

systems without legumes could be greater than the effect of adding OM to a monoculture, 278 

suggesting a possible synergistic effect. However, Figure 4 indicates that the absolute yield of 279 

systems containing combinations of only EI practices does tend to be lower than systems containing 280 

combinations of EI practices and moderate NF doses (compare yield ratios in the lower two rows 281 

where all NF is removed to where only some NF is removed). Thus, using EI in combination with 282 
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some NF may best reduce the trade-off between input use and the land required to produce a given 283 

yield. 284 

 285 

EI as a pathway to sustainable agriculture 286 

In practical terms, a substitutive relationship between EI practices and N fertiliser means there is 287 

potential to: 1) use EI to increase yields when NF availability is low, 2) use EI to sustain a given yield 288 

while reducing NF levels, or 3) use EI to reduce the NF required to increase yields. However, 289 

combining high levels of NF with most EI practices does not increase yields. We also observed that 290 

antagonistic interactions between EI practices and high NF are possible; in particular, diversifying a 291 

highly fertilised system with legume crops may risk a yield decrease.  292 

Widespread uptake of EI practices could therefore contribute to a more equitable global distribution 293 

of fertiliser. Currently, average NF rates in Africa are a small fraction of those in Europe, with 294 

smallholders in particular using much less than their fair share45. Both Foley et al6 and Springmann et 295 

al7 suggest that if fertiliser use is reduced where it is currently high, then fertiliser use could be 296 

increased where it is currently low, without exceeding planetary boundaries. EI practices could 297 

support this redistribution through sustaining yields while reducing fertiliser in current high-input 298 

high-yielding systems, and by enhancing yields in combination with moderate fertiliser inputs in 299 

currently low-yielding systems. 300 

Future assessments of EI should include a wider analysis of farming systems and externalities. By 301 

focusing only on test crop yields, our study has not attempted to quantify implications for overall 302 

nutritional value or farm profitability. Currently it is difficult to use LTEs to assess whole-system 303 

performance, as too few LTEs rigorously measure yields of diverse crop types, nor do many collect 304 

measures of ecological function and socioeconomic outcomes. EI can have benefits beyond yield, by 305 

reducing the environmental and economic input costs to achieve a given yield10,44. Diversifying with 306 

legumes can increase profits and decrease pollution potential, by both increasing yields and reducing 307 

the fertiliser requirement of the whole rotation (assuming little or no fertiliser is applied to the 308 

legumes, and that fertilisation of subsequent crops is reduced), while also providing an additional 309 

potentially high value, protein-rich product19. Crop diversity can confer resilience to weather 310 

variability41,46, increase biodiversity47, and suppress weeds, pests and pathogens20. 311 

However, some practices that increase yields via ecological function (and that are thus considered EI 312 

in this study) may not necessarily avoid environmental impacts. For example, manures and composts 313 

reconnect resource flows between crops and livestock, but both can cause nutrient leaching and 314 

greenhouse gas emissions and so may not be objectively more environmentally friendly than NF. If 315 

manures and composts are available as waste products, however, their use as amendments at least 316 

recycles the nutrients therein and avoids further impacts from new synthetic fertiliser creation and 317 

use21. 318 

Socioeconomic factors can also limit the adoption of EI practices by farmers. These factors can 319 

include a lack of markets and infrastructure that can receive diverse products at viable prices19,48, 320 

and limited access to necessary resources including land49, seed, and OM sources31. Upscaling EI 321 

practices will thus require policymakers and society to create a more conducive socioeconomic 322 

context. Nonetheless, our results demonstrate that EI could play an important role in the 323 
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development of future sustainable farming systems. Agricultural researchers could help to advance 324 

EI by further investigating which practices work best together in which contexts, to provide priorities 325 

for farmers and policymakers. We recommend that future LTEs place the development of a robustly 326 

ecologically functioning agroecosystem at the heart of their design and then explore what level of 327 

inputs are necessary to optimise the performance of these systems. Such LTEs would assist progress 328 

toward sustainable agriculture that remains within safe planetary boundaries whilst meeting human 329 

needs for food, fuel, and fibres. 330 

 331 

Methods 332 

LTEs included in this study contained at least one crop diversity (CD), fertility crop (FC), organic 333 

matter (OM), nitrogen fertiliser (NF) or tillage treatment (TI), and were located in either Europe or 334 

Africa. We defined an LTE as an ‘experiment assessing the effect of treatments over decadal 335 

timescales’ and thus all LTEs included were at least ten years old, with the exception of two nine-336 

year-old LTEs in sub-Saharan Africa included in order to increase representation of smallholder 337 

farming systems. This minimum age ensured that the mean yield estimates for each treatment were 338 

unlikely to be driven by unusual weather in just one or two years. Suitable LTEs were identified and 339 

contacted via the GLTEN (www.glten.org) and authors’ personal research networks. All LTEs that we 340 

could contact, that agreed to share their data, and that fit our criteria, were included in this study.  341 

The LTEs were located in England, Kenya, Malawi, Mozambique, the Netherlands, Nigeria, Scotland, 342 

South Africa, Sweden, Zambia, and Zimbabwe (see Supplementary Figure S1.1). More details on each 343 

LTE, including the crop types, number of replicates and the number of years of data included can be 344 

found in Supplementary Materials Part 1. 345 

Data analysis overview 346 

We used a three-step analysis procedure to jointly interrogate the 30 LTEs in our dataset:  347 

1. We first described each treatment in each LTE in terms of common EI and input indices that 348 

represented all treatments in all LTEs on comparable scales or in comparable categories; 349 

2. We then estimated the yield mean and variance for each treatment in each LTE using a 350 

different linear mixed model for each LTE to account for the appropriate experimental 351 

design; 352 

3. We explored how differences in mean crop yields between treatments related to differences 353 

in the common EI and input indices using mixed effect meta-analysis models. 354 

The common EI and input indices (step 1) are described in Table 1, and the classification of each 355 

treatment in each LTE according to the common indices is detailed in Supplementary Table S1.2. The 356 

procedures for the individual mixed models (step 2) and the meta-analysis models (step 3) are 357 

described in the subsequent Methods sections, with supporting information for the meta-analyses 358 

provided in Supplementary Materials Part 3. 359 

Together, these three steps comprised an efficient method to assess yield responses to comparable 360 

treatments across multiple cropping systems and locations. The meta-analysis approach allowed us 361 

to directly assess the size of the yield response ratio, and to identify the influence of moderating 362 

variables (different EI practice and input indices) on the size of the yield response ratio. Using mixed 363 

http://www.glten.org/
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effects meta-analysis models helped to address limitations imposed by the number of LTEs that were 364 

available to include in our study: these models incorporate information about differences between 365 

treatments within LTEs, but also about differences between LTEs within shared treatments. Thus, 366 

when estimating treatment effects for rare treatment combinations (that may only occur in one or 367 

two LTEs), the meta-analysis uses information on the reliability of each LTE to inform the measures 368 

of certainty (confidence intervals and P-values) associated with each estimate. The models estimate 369 

treatment combinations with higher certainty if they are a) tested in LTEs that have limited within-370 

LTE variation, b) tested in LTEs that have consistent effects with other LTEs included in the meta-371 

analysis model, and/or c) tested in a greater number of LTEs.   372 

Individual LTE models 373 

To estimate yield means and variances for each treatment in each LTE, a separate linear mixed 374 

model was constructed for each LTE. Models were fitted in R version 4.0.2 using function lmer in 375 

package lme450. All models followed the formula: 376 

yield ~ treatment + (blocking structure) + (year) 377 

where ‘treatment’ was a factor with each of the LTE’s distinct treatments and/or treatment 378 

combinations as a different factor level. For example, if an LTE had three treatments consisting of a) 379 

a ploughed monoculture, b) a ploughed rotation and c) a no-till rotation, then the treatment factor 380 

for this model had three levels (a, b and c). Treatment was included as a fixed effect while the 381 

physical blocking structure and year were included as random terms. 382 

Blocking structures were specified as appropriate for each LTE to account for the repeated crops 383 

grown in the same plot in multiple years (for example, sub-plot nested in main plot nested in block 384 

for a split-plot design). A random term for year was included as a factor to allow for variation 385 

between years and over time to be partitioned out, including if more recent years tended to have 386 

higher yields than past years, or vice versa. We did not account for additional temporal correlations 387 

between yields from the same plot in different years: in rotations of annual crops, the yield of a crop 388 

in one year is not strongly influenced by the yield of the same crop in previous years, with variation 389 

in weather likely to have a dominant impact51.  390 

Some initial models resulted in singular fits due to very low variance estimates for some random 391 

terms. Where this occurred the models were modified by including blocks as a fixed effect; this is 392 

often recommended for random terms with few levels (e.g. three blocks in an experiment) and does 393 

not change the model estimates and variances for each treatment. Average mean yields for each 394 

treatment across all blocks were estimated and their standard errors were calculated based on the 395 

pooled between-plot variability after allowing for any fixed block effects. If including blocks as a 396 

fixed effect did not suffice to avoid singularity, then we reduced the complexity of the random 397 

model by removing highly nested terms such as sub-plots nested within plots within blocks for which 398 

variances were estimated to be zero, or very close to zero52. 399 

The models included a weighting term to allow for the fact that the variance in the yields tended to 400 

increase as mean yield increased. Weights were obtained by running an unweighted model, 401 

obtaining the fitted values for each datapoint, and then including a weight of 1/(fitted value) in a 402 

second otherwise identical model. Plots of residuals were inspected to ensure this weighting was 403 

adequate to meet the assumption of homoscedasticity. Weights were not used for two models 404 
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where the weights led to a non-convergence or singular result, and a plot of residuals indicated that 405 

weights were not needed to achieve homoscedasticity. 406 

Where multiple test crops appeared in an LTE, a separate model was fitted for yields from each test 407 

crop. Data from all years after 1970 in which the test crop was grown were included. Years before 408 

1970 were excluded to avoid introducing variability related to historical crop protection practices 409 

and crop cultivars (all LTEs had stopped using long straw cereal varieties by 1970). For LTEs that had 410 

more than one cropping season in a year (the four IITA LTEs in Kenya) then both seasons were 411 

included, and the random term for ‘year’ in the model was substituted by ‘season.year’ (each season 412 

in each year was treated as a separate event).  Where crop failures occurred in some treatments but 413 

not others, these were included as zero yields for those treatments to capture the treatment-related 414 

variability. However, we made an exception for the complete crop failures that occurred across all 415 

treatments in all five South African LTEs in 2018, due to strong winds just prior to harvest dislodging 416 

the grain. For these LTEs in this year, yields were estimated based samples from small plots shortly 417 

before harvest. This provided information on treatment differences, whereas had we including the 418 

whole year as zero yields would have added noise to the mean yield estimates without providing 419 

information on treatment effects. 420 

Data from plots in LTEs for treatments that were not relevant to this study were not included in 421 

these analyses, and the blocking structures suitably modified. Excluded treatments were those that 422 

received suboptimal levels of P and K in Rothamsted’s Broadbalk, SRUC’s Old Rotation, and the four 423 

SOM LTEs managed by IITA and ETH, and all ‘historical manure’ plots in Rothamsted’s Woburn53 (see 424 

Supplementary Table S1.1 for details of each LTE). These exclusions may have slightly inflated the 425 

variances associated with treatment estimates from these experiments due to not including all 426 

information about between-plot variability across the whole experiment, and this may have thus 427 

slightly increased Type II error rates (the probability of not detecting a true difference between 428 

treatments), but substantially streamlined the data collation process from these LTEs. 429 

Where experiments underwent substantial changes that resulted in treatments being classified 430 

differently according to the common variables (e.g. transitions from long leys to short leys, or 431 

rotations with or without legumes), these were considered to be different treatments, and data 432 

from transition periods was excluded in order to only use data from established cropping systems. 433 

So for example, if an LTE began in 1980 but underwent substantial changes phased in between 1998 434 

and 2002 (e.g. a change to the crop rotation or fertiliser treatments), an LTE could have treatments 435 

A, B and C from 1980 – 1998 and treatments D, E and F (on the same plots) after 2002, while the 436 

years 1998-2002 were discarded. These changes are detailed for each LTE in Supplementary Table 437 

S1.2. 438 

Multi-LTE meta-analyses 439 

The treatment means and their standard errors were extracted from the individual LTE models using 440 

function emmeans in package emmeans54, then were summarised and collated into a single large 441 

dataset containing all pairwise contrasts of treatment combinations within each LTE (no pairs 442 

between LTEs). Each pair was labelled with the appropriate EI and input variables describing the 443 

‘reference’ treatment and ‘comparison’ treatment, and with the LTE and crop type. Separate meta-444 

analyses were conducted on this collated dataset to explore the effect of each EI and input focal 445 

variable in turn, accounting for the context variables in which the treatment contrasts occurred. 446 
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Each meta-analysis model was fitted to the subset of the data that included only the treatment 447 

contrasts relevant to the specific hypothesis for that focal variable (Table 1). Information on the 448 

treatment comparisons included from each LTE can be found in Supplementary Tables S3.4-10. It 449 

was not possible to fit a single meta-analysis model including all five EI and input forms as detailed 450 

variables, because there was insufficient replication of treatment combinations across the different 451 

LTEs.  452 

All meta-analysis models were fitted in R (version 4.0.2) using package metafor55. Initially, the escalc 453 

function was used to calculate log response ratios and the associated variances for each treatment 454 

contrast in the combined dataset. In our study, the response is always crop yield and thus we term 455 

the response ratio the ‘yield ratio’ for clarity. These log yield ratios (weighted by their associated 456 

variances) formed the responses in a mixed effects meta-analysis model fitted using the function 457 

rma.mv. Both the focal and context variables were specified as moderators with fixed effects, while 458 

the LTE from which each treatment contrast originated was specified as a random effect to account 459 

for potential reduced independence among treatment contrasts from the same LTE. Where multiple 460 

test crops were present within an LTE, crop type was included as an additional random effect nested 461 

within LTE (not enough LTEs tested the same crops to include crop type as a fixed effect, or even a 462 

crossed random effect, which might have allowed more heterogeneity to be accounted for).  463 

To identify the most appropriate meta-analysis model for each focal variable, several models of 464 

different complexities were fitted. This model selection process addressed the questions of 1) 465 

whether yield was affected by any directional change in the focal variable affected yield (null model, 466 

without any moderators), 2) whether the size of the specific change in the focal variable was 467 

important (base model, focal variable moderators only), 3) whether the effect of the focal variable 468 

depended on each of the context variables (intermediate model) and 4, whether the effects of 469 

different context variables on the effect of the focal variable on yield varied with the levels of the 470 

other context variables (full model) (see Supplementary Table S3.1). This approach did not consider 471 

all possible models but did allow assessment of the relative importance of different levels of 472 

complexity of the combinations of moderators. The best model was selected using the Akaike 473 

Information Criterion (AIC), and the QM and QE test statistics. The AIC describes ‘goodness of fit’ 474 

(heterogeneity explained by the model penalised by the complexity of the model), while the QM and 475 

QE test statistics assess the level of heterogeneity explained by the moderators included in the 476 

model, and the level of residual heterogeneity, respectively. The QM and QE test statistics are 477 

compared with the critical values of the appropriate chi-square distributions to calculate associated 478 

P-values.  479 

A final model selection step was performed for the two continuous focal variables, crop diversity 480 

(Simpson’s index) and nitrogen fertiliser reduction (reference nitrogen levels and proportion by 481 

which nitrogen differed between treatments). Initial models were fitted with second-order 482 

polynomials for each continuous variable, then equivalent models with only first-order polynomials. 483 

Models containing second-order polynomial terms were selected if these were significant as either 484 

main effects or interactions, and where removing the second-order polynomial terms increased the 485 

model AIC (Supplementary Table S3.2). The second-order polynomials were not intended to 486 

precisely describe the shape of the response curve to these focal variables, but simply to allow the 487 

model to identify if a curved relationship better described the data than a linear relationship. 488 



13 
 

When the model with the best fitting level of complexity had been identified, a QM test was 489 

conducted on each moderator main effect and interaction term included in the model to identify 490 

those which significantly influenced the mean yield ratio between treatments (Supplementary Table 491 

S3.3). The anova.rma function in metafor with the btt argument was used to specify each main 492 

effect or interaction separately. The importance of each term was assessed by comparing the QM 493 

test statistic with the critical values of the appropriate chi-square distribution. These tests assess the 494 

marginal contribution of each term to explain the heterogeneity in the response variable, while 495 

allowing for the effects of all other terms included in the model.  496 

Meta-analyses that include multiple comparisons with a common control (or reference treatment, in 497 

the context of this study) can suffer bias due to a lack of independence between contrasts. However, 498 

this would have been at most a minor issue in this study, for the following reasons: 1) we extracted 499 

the contrasts directly from the full analysis of each LTE and have already accounted for any design-500 

related non-independence56; 2) we included LTE as a random term in the meta-analyses models, 501 

accounting for that fact that yield ratios within the same LTE (and thus more likely to have a 502 

common reference treatment) are more related than yield ratios from different LTEs; and 3) all 503 

contrasts with common reference treatments in the intermediate and full models have different 504 

values of the moderator variables describing the comparison treatments, avoiding bias because 505 

these yield ratios are not pooled together55. A small amount of non-independence would not have 506 

been accounted for in the null models, and not always fully in the base models, due to the use of 507 

fewer moderators. This would not however have affected the model selection process (which is 508 

based on how well the moderators describe variation in the yield ratio), and so the only possible 509 

influence of non-independence would have occurred in our TI model. It may have slightly biased the 510 

overall estimate of the mean effect on yield of reducing tillage. However, as we emphasise in the 511 

main text, no strong conclusions should be drawn from this estimate anyway, given that the QE and 512 

QM values (Supplementary Table S3.3) indicate only a small effect of tillage relative to background 513 

variability in yields among the LTEs. 514 

To plot the results for significant variables in each final meta-analysis model (Figures 1-4), the 515 

predict.rma function was used to calculate predictions and confidence intervals, interpolated within 516 

the range of each focal variable at each level of the context variables in the combined LTE dataset. 517 

Care was taken not to present predictions extrapolating beyond the range of the variables in the 518 

combined LTE dataset, given the use of polynomials for the CD and NF terms included in the models. 519 

Plots were constructed in package ggplot257. 520 

Forest plots were also constructed to illustrate the contribution of each LTE to the meta-analysis 521 

estimates (Supplementary Figures S3.1-5). These show Best Linear Unbiased Predictions (BLUPS) that 522 

combine the fixed effect and random effect estimates for each LTE from the selected meta-analysis 523 

model for each EI theme (Supplementary Table S3.3). Essentially, these are the mean yield ratio 524 

estimates from each crop type in each LTE for a given treatment comparison. The plots also show 525 

standard errors for these mean yield ratio estimates, as estimates with a larger associated variance 526 

are given less weight in the meta-analysis model. 527 

Classifying EI and input interactions 528 

A key aim of this paper was to explore the interaction effects amongst the different EI practices and 529 

inputs to identify optimal combinations that maximised yield while minimising input use. We 530 
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therefore classified interactions according to the following three established definitions58 (in which A 531 

and B represent different EI practices or inputs): antagonistic, where the combined effect of A and B 532 

is less than the effect of either A or B alone; additive, where the combined effect of A and B is equal 533 

to the sum of the separate effects of A and B; and synergistic, where the combined effect of A and B 534 

is greater than the sum of the separate effects of A and B. We also included a fourth class of 535 

interaction that is less common in ecological and agricultural literature, substitutive, which we 536 

define as an interaction where the combined effect of A and B is the same as the maximum effect of 537 

either A or B alone, so that when A is reduced, the effect of B increases, and vice versa. 538 

 539 
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Table 1: Detail on each EI practice and input investigated. The first column contains the hypotheses 561 

tested in each meta-analysis and the second column describes the treatment pairs used to calculate 562 

the yield ratios for each. All yield ratios compare a reference treatment, which is either a lower level 563 

of EI or a higher level of input, with a comparison treatment, which is a higher level of EI or a lower 564 

level of input. Bold text in the hypotheses in the first column describes the change between the 565 

reference and comparison treatments (tested in the null model), italicised text describes focal 566 

variables included as moderators (tested in the base model), while normal text describes the effects 567 

of the management context in which the EI practice or input reduction is implemented (tested in the 568 

intermediate and full models; Supplementary Table S3.1). Bold text in the second column indicates 569 

which characteristics of the reference and comparison treatments were included as focal moderator 570 

variables. The final column indicates the reduced number of levels used to describe the EI practice or 571 

input when it was a context variable in a meta-analysis with a different focal variable. 572 

EI or input 
variable 

Hypothesis Focal variable(s) and treatment pairs Levels when a 
context variable 

CD: 
Crop 
diversification 
(EI practice) 

Shifting from a monoculture to a crop 
rotation or an intercrop will increase 
yields, and this increase will depend on 
how diverse the rotation or intercrop is, 
whether or not legumes are included. It 
will also depend on the level of NF, 
OM, and TI in which this change in 
diversity is implemented.  
  

Yield ratios were calculated between a 
monoculture* reference treatment 
with a Simpson’s diversity index of 1, 
and a comparison treatment consisting 
of a rotation or an intercrop. The 
comparison treatment was 
characterised by whether it was a 
rotation or an intercrop, whether it 
included legumes or not, and by its 
Simpson's index of diversity (see 
Supplementary Materials Part 2). All 
yield ratios were calculated within 
levels of OM, TT and NF. 

(1) Monoculture 
(2) Diverse with 
legumes 
(3) Diverse 
without legumes 

FC:  
Fertility crops 
(EI practice) 

Adding a ‘fertility crop’ to an arable 
rotation will increase yields. This could 
include adding a grain legume to an 
arable rotation without legumes, or 
adding a cover crop, forage crop or ley 
to an arable rotation with or without 
legumes. The effect on yield of adding 
an FC crop will depend on whether the 
initial rotation contains legumes or not, 
the type of FC crop added, and whether 
or not the FC crop contains legumes. It 
will also depend on the level of NF, 
OM, and TI in which this addition 
occurs. 
  

Yield ratios were calculated between a 
reference treatment comprising an 
arable rotation either with or without 
grain legumes and a comparison 
treatment containing a fertility crop†: 
either an annual grain legume (to a 
rotation without legumes only), an 
annual service legume (cover crop, 
forage crop or hay crop), a multi-
annual grass ley, or a multi-annual ley 
containing legumes (or a mix of 
legumes and others). We also 
considered whether the fertility crop 
was grazed by livestock physically 
present on the plots. All yield ratios 
were calculated within levels of OM, TT 
and NF. 

(1) Diverse with 
legumes 
(2) Diverse 
without legumes 

OM:  
Organic 
matter  
(EI practice) 

Adding organic matter, by either 
retaining crop residues or adding 
manure or plant materials (raw or 
composted), will increase yields. This 
increase will depend on the type of OM 
added, and on the level of CD, NF, and 
TI in which that this addition occurs. 
  

Yield ratios were calculated between 
treatment pairs that either described 
the addition of organic matter 
amendments, a change in the type of 
organic matter amendment, and/or a 
change in crop residue management 
from residue removal to residue 
retention.  
Organic matter amendments 
considered: none, plant-based, 
manure, or plant-based + manure. (No 

(1) None 
(2) Plant-based 
OM added 
(3) Manure 
added 
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plant-based amendments are living; all 
are cuttings, plant residues, compost, 
or biochar). All yield ratios were 
calculated within levels of CD, FC, TT, 
and NF.  

TI: 
Tillage 
intensity 
(input) 

Reducing tillage will increase yields, 
and this increase will depend on the 
initial type of tillage and the type of 
tillage to which it is reduced. It will also 
depend on the level of CD, NF, and 
OM. 

Yield ratios were calculated for 
treatment pairs describing a reduction 
in tillage intensity, so the reference 
treatment tillage type always 
consisted of a more intensive practice 
than the comparison treatment tillage 
type. Tillage types were considered to 
rank in intensity in the following order:  
- Deep (15-25 cm) inversion tillage (e.g. 
mouldboard plough) 
- Ridge-furrow planting (soil dug over 
and shaped into ridges and furrows) 
- Deep (15-25cm) non-inversion tillage 
(e.g. subsoiling) 
- Shallow (5-10cm) non-inversion 
tillage (e.g. tine harrow) 
- Infrequent tillage (tillage less than 
once per year) 
- Basins (soil dug within confined areas 
to create planting basins; also known 
as zai) 
- No-till (no tillage but some soil 
disturbance caused by planting 
implement, e.g. tine openers, rip-line 
seeding) 
- Zero-till (no tillage and no soil 
disturbance caused by planting 
implements, e.g. disc openers, dibble 
sticks or jab planters). 
All yield ratios were calculated within 
levels of CD, FC, OM, and NF.  

(1) Deep 
inversion tillage 
(2) Reduced 
tillage (includes 
ridge-furrows, 
non-inversion 
tillage, shallow 
tillage, basin, and 
infrequent 
tillage‡) 
(3) No till 
(includes no till 
and zero till) 

NF: 
Nitrogen 
fertilisation 
(input) 

Reducing nitrogen fertilisation will 
affect yields, and this effect will 
depend on the initial amount of 
nitrogen applied and by how much it is 
reduced. It will also depend on the 
level of CD, OM, and TI in which this 
reduction is implemented. 

Yield ratios were calculated from 
treatment pairs describing a reduction 
in N fertilisation in the reference 
treatment and the comparison 
treatment, measured as the amount of 
N fertiliser applied to the reference 
treatment in kg N ha, and proportion 
by which N was reduced in the 
comparison treatment. All yield ratios 
were calculated within levels of CD, FC, 
OM, and TT. 

(1) Zero N 
(2) Between 1 
and 100 kg N ha-1  
(3) More than 
100 kg N ha-1 

Notes: *We define a monoculture as the same crop in a plot in every year (i.e. neither an intercrop nor a 573 
rotation). †A ‘fertility crop’ is defined as a crop with distinct properties from the test crops that can be added to a 574 
rotation with the aim of increasing yield through increasing the functional diversity of a system. We use this 575 
variable to explore the effects of adding nitrogen-fixing legumes, crops with different harvest procedures (cutting 576 
or grazing), and multi-annual leys, each of which could be expected to influence test crop yields via different 577 
mechanisms. ‡That these practices are reduced relative to deep inversion tillage, not necessarily reduced in 578 
comparison to local conventional practices. 579 

  580 
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Figure Captions 581 

 582 

Figure 1: Estimated mean yield ratios for (a) CD; diversifying from a monoculture to cropping 583 

systems with higher Simpson’s indices, using diversity that includes or excludes grain legumes 584 

(panels), and (b) FC; adding fertility crops to a diverse arable system that either lacks legumes (left 585 

panel) or already contains grain legumes (right panel). In (a) the x axis does not extend below 1.5, as 586 

monocultures have a Simpson’s index of 1 (and all treatment pairs in the model compared a 587 

reference monoculture to a comparison treatment with higher diversity). In both figures, the 588 

nitrogen context in which the diversification occurs is indicated by colours, while in (b) the tillage 589 

context is indicated by point shapes and grazing by point shading (these variables were not 590 

significant in the CD meta-analysis and so are not shown in (a)). The horizontal dashed line marks a 591 

yield ratio of 1, or no change. Error bars and ribbons indicate 95% confidence intervals for the mean 592 

yield ratio. The model results and forest plots of treatment contrasts underlying these predictions 593 

are shown in detail in Supplementary Materials Part 3. 594 

 595 

Figure 2: Estimated mean yield ratios for different OM amendments (x axis) in different diversity 596 

contexts (columns), tillage contexts (point shapes) and nitrogen fertiliser contexts (colours). The 597 

labels on the x axis indicate the OM addition; ‘add plant material’ and ‘add manure’ are additions to 598 

systems currently not receiving any OM, while ‘change plant material to manure’ is the yield ratio 599 

between a system receiving plant-based OM and a system receiving manure, and ‘add plant material 600 

to manure’ is the yield ratio between a system receiving manure and a system receiving both types 601 

of OM addition. The horizontal dashed line marks a yield ratio of 1, or no change. Error bars indicate 602 

95% confidence intervals for the mean yield ratio. The model results and forest plots of treatment 603 

contrasts underlying these predictions are shown in detail in Supplementary Materials Part 3. 604 

 605 

Figure 3: Estimated mean yield ratios for shifting from a reference tillage treatment (x axis, and point 606 
colours for emphasis) to a reduced tillage comparison treatment (panels). For example, the yield 607 
ratio comparing deep inversion tillage with deep non-inversion tillage is just over 1 (leftmost panel), 608 
while most yield ratios between more intensive tillage systems and zero-till systems are negative, 609 
with the exception of shifting from a ridge-furrow system to zero-till (rightmost panel). Yield ratios 610 
were always calculated for reducing tillage, i.e. comparing the effect of shifting to a less intensive 611 
tillage treatment from a more intensive tillage treatment. The horizontal dashed line marks a yield 612 
ratio of 1, or no change. Error bars indicate 95% confidence intervals for the mean yield ratio. The 613 
model results and forest plots of treatment contrasts underlying these predictions are shown in 614 
detail in Supplementary Materials Part 3. 615 

  616 

Figure 4: Estimated mean yield ratios for systems receiving a certain amount of NF (columns) 617 
compared to systems receiving a reduced quantity of fertiliser N (x axis; expressed as a proportion of 618 
the initial N kg ha-1), in different diversity contexts (rows), tillage contexts (point or line shading) and 619 
organic matter contexts (colours). Points are shown instead of lines where only one or two N levels 620 
were present within a certain context, as a curved line cannot be reasonably estimated from only 621 
two points. The horizontal dashed line marks a yield ratio of 1, or no change. Error bars and ribbons 622 
indicate 95% confidence intervals for the mean yield ratio. The x axis does not extend to zero as all 623 
yield ratios in the model compared a higher reference amount of NF to a lower test amount of NF. 624 
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The model results and forest plots of treatment contrasts underlying these predictions are shown in 625 
detail in Supplementary Materials Part 3. 626 

 627 

Figure 5: A summary of the EI practices and combinations thereof that increase yields (green 628 

arrows), have no effect on yields (yellow arrows), or may risk a yield decrease (orange arrow), when 629 

implemented in either a low NF context (top panel) or high NF context (lower panel). White boxes 630 

represent farming systems with specific EI practices, and moving from one white box to another 631 

along the direction of an arrow symbolises the addition of an EI practice to that system. Where 632 

arrows are not shown (e.g. adding a ley to a diverse system with OM), we did not have sufficient 633 

data to test this contrast in our study. CD or FC practices that include legumes typically resulted in 634 

yield increases under low NF, while in contrast, CD or FC practices that did not include legumes 635 

resulted in yield increases under high NF. Adding OM increased yields unless the system already 636 

contained legumes and received high NF. Tillage is not shown because we did not identify any clear 637 

and consistent interactions between tillage and different EI practices. 638 

  639 
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Data availability 640 

The datasets analysed during the current study are available from the authors on reasonable 641 

request. Please contact the corresponding author for assistance. Data from LTEs belonging to 642 

Rothamsted Research are available on reasonable request via the e-RA platform 643 

(www.era.rothamsted.ac.uk). We have refrained from depositing data into a public repository due to 644 

the need for guidance to correctly interpret LTE designs and datasets, and the need to ensure that 645 

the substantial investments by each institute in maintaining LTEs do not go unacknowledged when 646 

data is used. 647 

Code availability 648 

R scripts used in the analyses are also available from the corresponding author on reasonable 649 

request. 650 
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