
IJDC | General Article

OpenStack Swift: An Ideal Bit-Level Object Storage
System for Digital Preservation

Guanwen Zhang
University of Alberta Library

Kenton Good
University of Alberta Library

Weiwei Shi
University of Alberta Library

Abstract

A bit-level object storage system is a foundational building block of long-term digital preserva-
tion (LTDP). To achieve the purposes of LTDP, the system must be able to: preserve the au -
thenticity and integrity of the original digital objects; scale up with dramatically increasing de-
mands for preservation storage; mitigate the impact of hardware obsolescence and software
ephemerality; replicate digital objects among distributed data centers at different geographical
locations; and to constantly audit and automatically recover from compromised states. A real -
istic and daunting challenge to satisfy these requirements is not only to overcome technological
difficulties but also to maintain economic sustainability by implementing and continuously op-
erating such systems in a cost-effective way. In this paper, we present OpenStack Swift, an
open-source, mature and widely accepted cloud platform, as a practical and proven solution
with a case study at the University of Alberta Library. We emphasize the implementation, ap -
plication, cost analysis and maintenance of the system, with the purpose of contributing to the
community with an exceedingly robust, highly scalable, self-healing and comparatively cost-ef-
fective bit-level object storage system for long-term digital preservation.

Keywords: Digital objects, long-term digital preservation, bit-level digital preservation,
OpenStack Swift, physical infrastructure, object storage.

Submitted 10 July 2021 ~ Accepted 9 September 2022

Correspondence should be addressed to Guanwen Zhang, University of Alberta. Email: guanwen@ualberta.ca

The International Journal of Digital Curation is an international journal committed to scholarly excellence and dedicated to
the advancement of digital curation across a wide range of sectors. The IJDC is published by the University of
Edinburgh on behalf of the Digital Curation Centre. ISSN: 1746-8256. URL: http://www.ijdc.net/

Copyright rests with the authors. This work is released under a Creative Commons Attribution
License, version 4.0. For details please see https://creativecommons.org/licenses/by/4.0/

International Journal of Digital Curation
2022, Vol. 17, Iss. 1, 19 pp.

1 http://dx.doi.org/10.2218/ijdc.v17i1.782
DOI: 10.2218/ijdc.v17i1.782

http://dx.doi.org/10.2218/ijdc.v17i1.782
http://www.ijdc.net/
mailto:guanwen@ualberta.ca

2 | OpenStack Swift: An Ideal Bit-Level Object Storage System for Digital Preservation

Introduction

Driven by technological advancement, data and information are mostly produced in digital
form in the current information age; they are inherently fragile and volatile, and at a high risk of
loss. To prevent the potential loss and inaccessibility of valuable digital assets, long-term digital
preservation (LTDP) has become a necessity rather than an option, and has found widespread
applications in libraries, archives and museums (Giaretta, 2011; Lu & Pan, 2010; Myntti &
Zoom, 2019). The more advanced the information technologies that have evolved, the more
digital data they generate, and the more demands emerge to preserve digital data of historical
and future value. LTDP, undoubtedly a daunting task with great complexity, is a synergy of a
wide variety of factors: technological, economical, legal, financial, organizational and
managerial (Rieger, 2018). From the perspective of technology, it relies on the ability to preserve
digital objects in bit streams, which is often referred to as bit-level digital preservation and
constitutes an essential building block of LTDP. Hence, sound, cost-effective, and sustainable
bit-level digital preservation infrastructures are vital to ensure the success of LTDP.

However, there exist a multitude of challenges for bit-level digital preservation, which have
been well documented by the scientific community (Haughton, 2016; Hedstrom, 1998;
Rosenthal, 2005, 2010). The first challenge is the scalability of the storage capacity with respect
to the massive growth rate of digital data. Rosenthal reported that the average annual growth
rate of data creation is some 60%; that of bit density of storage media is 20% or so; and that
of data center budgets is in the vicinity of 2% (Digital Preservation Handbook, 2015; Rosenthal,
2014). The striking disparity inevitably leads to unnecessary exclusion of some digital objects
from being preserved by the preservation infrastructure due to limited storage capacity.
Secondly, an infrastructure, effective and efficient in preserving a smaller number of digital
objects, might not scale up well with a large volume of digital objects, degrading the
performance of auditing, accessing, and fixity checking, and rendering the preservation
infrastructure less reliable. Thirdly, hardware deterioration and eventual failure are
unavoidable. For instance, hard disks--employed to store the digital objects in bit streams--have
a limited life span; they are susceptible to complete failure at times that are hard to predict
(Kamarthi, Zeid, & Bagul, 2009). A bit-level digital preservation system should have the
resilience to tolerate and recover from such failures without performance degeneration, service
disruption, or worst of all, data loss. Fourthly, LTDP makes it imperative to maintain
authenticity and integrity of the preserved digital objects, which necessitates constant auditing,
frequent fixity checking and automatic recovery from data abnormalities. These are onerous
tasks demanding efficient algorithms and sufficient computer processing power. Moreover,
power failure, water leakage, fire and other natural disasters add more complexities to the
challenges of bit-level digital preservation infrastructure (Rosenthal, 2005). It is highly desirable
for such an infrastructure to be distributed and networked so that multiple copies of the same
digital objects can be replicated among different data centers situated at separate geographical
locations (Digital Preservation Handbook, 2015). As a result of assiduous planning with
replication, distribution and interconnectedness in mind, a complete failure of one data center
will not disrupt the accessibility of preserved digital objects, let alone cause data loss.

Over the last few years, OpenStack Swift--an open-source cloud object storage platform --
has attracted the attention of members of the digital preservation community because it offers a
suite of desired features that can not only meet the requirements and overcome the challenges
for long-term bit-level digital preservation, but also offers the digital preservationists a cost-
effective solution (Arnold, 2014). The adoption of OpenStack Swift as a bit-level preservation
platform has been gaining momentum. It has been at work at the University of Alberta Library
(UAL) since 2013. Scholars Portal has capitalized on OpenStack Swift to provide LTDP services
for members of the Ontario Council of University Libraries (OCUL) and non-members as well
through the Ontario Library Research Cloud (OLRC) (Askey & Ruest, 2016). Many digital

IJDC | General Article

Zhang, Good, and Shi | 3

preservation software and tools have extended or are in the process of extending their support
for the integration of OpenStack Swift into their storage layers. Most typical examples include
DuraCloud (Kimpton & Payette, 2010), Archivematica (Goodchild & Hurley, 2019), Dataverse
(Durand, 2020), and Fedora Commons (Wilcox & Wenraub, 2017), to name a few. David
Rosenthal (2013), co-founder of the LOCKSS digital preservation system, conducted a cost-
effectiveness study by integrating LOCKSS boxes with a virtual storage box in Amazon cloud
environment, and concluded that “[public] cloud storage is not even close to cost-competitive
with local disk storage for long-term preservation purposes in general, and LOCKSS boxes in
particular.” Breeding (2012, p34) indicates that cost advantages for local storage become more
pronounced in comparison with public cloud storage options. Using the 140TB of storage
underlying the Vanderbilt Television News Archive as example, it would cost $16,560 per
month, or $198,720 per year, had the Amazon S3 storage been used. To be cost-effective,
OpenStack Swift can be deployed as an on-premises private cloud storage system for LTDP by
leveraging its compatibility with commodity-grade hardware and HDDs.

However, there is a lack of systematic presentation of the use of OpenStack Swift by the
community as a cloud-based digital object storage for the purpose of LTDP. The objective of
this paper is to fill the void with a systematic introduction of OpenStack Swift: what LTDP
features it has; how it can be used as storage for LTDP; and how it can be implemented,
operated and maintained in the face of budgetary challenges. A case study of the usage of
OpenStack Swift at UAL is presented, together with cost analysis of the competitiveness of on-
premises OpenStack Swift storage with respect to Azure cloud. These are described with more
details in the following three sections: OpenStack Swift; Implementation; and A Case Study.
The final section of the paper is dedicated to conclusion and discussion.

OpenStack Swift

OpenStack Swift is an open-source cloud-based platform for object storage which is intended to
run on any commodity hardware compatible with Linux or Windows Operating Systems
(Arnold, 2014). It originated from a joint effort between NASA and RackSpace in their pursuit
of a reliable storage system to store and preserve massive unstructured data. It is a software
product under the umbrella of OpenStack, a large cloud computing platform, but can be run
standalone.

Architecturally, OpenStack Swift usually consists of a node running the proxy service, a
node running the authentication service, and a set of storage nodes running a suite of storage
related services, which is schematically illustrated in Figure 1 (Kapadia, Varma, & Rajana,
2014; OpenStack Swift Architecture (OSA).1 A ‘node’ here is interchangeable with a computer
server: virtual or physical. A proxy node is the gateway for a client to persist or access digital
objects on the storage nodes. An authentication node grants or denies access permission to a
client depending on the result of credential verification. To scale up with load, enhance
performance, and eliminate a single point of failure, multiple authentication and proxy nodes
can be deployed with a load balancer. Additional storage nodes can be added to the cluster
dynamically, or existing storage nodes can be removed if needed, making the storage capacity
horizontally scalable without sacrificing performance. The storage nodes are distributed and
interconnected, and grouped into geographic ‘Regions’. Each ‘Region’ can have one or more
‘Zones.’ A ‘Zone’ is a failure boundary; it can be as large as a data center; it can be a rack of
servers; or it can be as small as a single hard disk. The failure of one or more ‘Zones’ should not
affect the functionalities and performances of the system. Each ‘Zone’ has one or more storage
nodes, and each node can have as many hard drives as it can power. The above arrangement
gives rise to an architecture with a hierarchy of four-tier failure domains: hard disks, storage

1 OpenStack Swift Architecture (OSA) https://www.swiftstack.com/docs/introduction/openstack_swift.html

IJDC | General Article

https://www.swiftstack.com/docs/introduction/openstack_swift.html

4 | OpenStack Swift: An Ideal Bit-Level Object Storage System for Digital Preservation

nodes, zones, and regions, offering tremendous tolerance of hardware or data center failure.

 Figure 1: A schematic diagram of the deployment architecture of OpenStack Swift.

In operation, a digital object is preserved with a primary copy and at least two replicas; the
number of replicas is configurable. If there are three or more regions, the primary copy and its
replicas are distributed across regions, avoiding co-location at region level. The failure of a

IJDC | General Article

Zhang, Good, and Shi | 5

region does not impact the end users. However, if OpenStack Swift is deployed with only one
region, a digital object and its replicas are adaptively placed among different zones, avoiding co-
location at zone level. The failure tolerance is then reduced to zone level. In a similar vein, if
there is only one zone, a digital object and its replicas are preserved on separate storage nodes; if
there is only one storage node, a digital object and its replicas are placed on separate hard disks.
In a production deployment, it is strongly recommended to have three or more zones.

After digital objects are ingested into the system, they are organized in logical hierarchy:
account, container, and object. An account has a set of containers. A container, similar to a
logical file folder, contains many objects. An object, in essence a bit stream, is the smallest
storage unit. It can be associated with extensive metadata to further characterize the preserved
objects. Access control policy can be customized and enforced. Versioning can be applied to
individual digital objects. A suite of consistency services--auditor, replicator, and updater--run
constantly in the background in each storage node to check integrity and consistency. If an
object is found to be corrupted due to bit-rot or to be missing, the background consistency
services work jointly to restore it from two or more other good copies.

Generally speaking, OpenStack Swift has many characteristics making it an ideal bit-level
storage candidate for LTDP. An incomplete list of characteristics alongside the LTDP
challenges they address are summarized in Table 1 below:

Table 1. Matching the challenges for the bit-level digital storage systems of LTDP with
corresponding features of OpenStack Swift.

LTDP Challenges Comments Swift Characteristics

Storage scalability Digital data grows
exponentially, leading to
ever-increasing demands
for storage space.

More hard drives or more storage nodes
can be dynamically added, scaling the
capacity up.

Object scalability The number of preserved
digital objects multiply,
stressing the storage
systems, degrading the
performance of data access
and integrity check.

Swift uses a hash algorithm to map object
location to the exact partition of a
particular hard disk. Read and write
performance scales extremely well.
Account, container, object structure allows
for billions of objects.

Sustainability The fund for LTDP is not
guaranteed over years to
come. Budget cuts are
commonplace. It is hard to
sustain LTDP

Swift is open-source freeware, requiring
only commodity hardware and storage
media (HDD), low maintenance, cost-
effective and sustainable.

Hardware
degeneration

HDD deteriorates/fails
over time causing data loss.
Refreshing data is a
constant need. Servers
break down causing
disruption of access and
services

Swift is designed with redundancy in mind,
and thus agnostic of hardware/HDD
failure. Refreshing data from an old
medium to a new one is simple. No data
loss, no access disruption, no service
interruption within allowed failure
boundary.

Software
obsolescence

Operating systems,
software enabling the

Swift is compatible with all major operating
systems. Swift software is developed in the

IJDC | General Article

6 | OpenStack Swift: An Ideal Bit-Level Object Storage System for Digital Preservation

LTDP Challenges Comments Swift Characteristics

storage may become
obsolete.

popular Python language, and compatible
with Amazon S3 API.

Content corruption Bit-rot or other reasons
causing content corruption

Swift can auto detect corrupted files, and
recover the content with a good copy, a
crucial “self-healing” ability.

Authenticity/Integrity Maintaining authenticity
and integrity is a key
requirement for LTDP. It
demands constant effort.

Swift has cleverly designed algorithms and
data structures, allowing services running in
the background to check and enforce
authenticity/integrity efficiently and
constantly. Access control policy,
versioning, and metadata are instrumental
to enhance authenticity.

Availability &
Reliability

Preserved items need to
survive natural disasters,
human errors, hardware
failures, with high
availability and strong
reliability.

Swift keeps three or more copies of each
object at different locations, even different
regions. Such redundancy enables high
availability of objects, and reliability of
services. Swift can protect accounts from
deletion due to mistakes by setting a
retention period after the delete command
is executed.

Implementation

The configuration of production deployment in the University of Alberta Library organization is
illustrated in Table 2 and Table 3 below. The system consists of an authentication node, a proxy
node, and six storage nodes. The six storage nodes are in the same region, distributed at three
physically separate data centers; and each node is within its own zone. Each storage node has
32GB RAM, 18 hard disks of 4TB each, and a subtotal of 72TB. There are two sockets for each
storage node, and eight cores with two threads per core, equivalent to 32 CPUs. The grand total
of raw storage space for the storage platform is 432TB. With such an arrangement, the storage
system can tolerate failure of two data centers at the same time for read operations; and one
data center for write operations. If failure happens at zone level, the tolerance of failure is up to
four zones for reading, and up to three zones for writing.

The hardware for the storage nodes is commodity Supermicro machines as shown in Fig-
ure 2. There are 24 disk slots in the front of the machine, and 12 additional slots in the back. The
storage space can be expanded by filling all of the slots, or replacing the old disks with smaller
storage capacity by new ones with larger storage capacity. In addition, the storage node can be fur-
ther expanded by attaching a SAS3 storage expander with more disk slots. More storage nodes
can be purchased and added to the storage system, provided there is a need and budget allows.
The 32GB RAM and 32 CPUs are sufficient for the running of background services to check and
enforce authenticity, integrity and consistency.

IJDC | General Article

Zhang, Good, and Shi | 7

Table 2: Names, roles, types, assigned computing resources for each computer node
constituting the private OpenStack Swift storage cloud at UAL.

Name Role Type Memory CPU Disks Storage Zone Location

auth Authentication Virtual 4GB 2 N/A N/A N/A N/A

proxy Swift proxy Virtual 8GB 8 N/A N/A N/A N/A

snode01 Object storage Hardware 32GB 32 18 72TB Zone 1 Data centre 1

snode02 Object storage Hardware 32GB 32 18 72TB Zone 2 Data centre 1

snode03 Object storage Hardware 32GB 32 18 72TB Zone 3 Data centre 2

snode04 Object storage Hardware 32GB 32 18 72TB Zone 4 Data centre 2

snode05 Object storage Hardware 32GB 32 18 72TB Zone 5 Data centre 3

snode06 Object storage Hardware 32GB 32 18 72TB Zone 6 Data centre 3

Table 3: Network configuration settings of and services running on each node. For privacy and
security purposes, actual IP addresses are replaced with non-routable ones.

Name IP Address Gateway Services Firewall ports

auth 192.168.1.10/24 192.168.1.1 httpd, MySQL database server 5000

proxy 192.168.1.11/24 192.168.1.1 proxy service 8080

snode01 192.168.1.12/24 192.168.1.1 account, container, object services 6000,6001,6002

snode02 192.168.1.13/24 192.168.1.1 account, container, object services 6000,6001,6002

snode03 192.168.1.14/24 192.168.1.1 account, container, object services 6000,6001,6002

snode04 192.168.1.15/24 192.168.1.1 account, container, object services 6000,6001,6002

snode05 192.168.1.16/24 192.168.1.1 account, container, object services 6000,6001,6002

snode06 192.168.1.17/24 192.168.1.1 account, container, object services 6000,6001,6002

IJDC | General Article

8 | OpenStack Swift: An Ideal Bit-Level Object Storage System for Digital Preservation

 Figure 2: A Supermicro machine with 36 disk slots, 32 CPUs and 32GB RAM.

All nodes were installed with CentOS, a distribution of Linux, which is freely available, and
stable with great community support. In fact, OpenStack Swift is compatible with a wide variety
of distributions: RedHat, Debian, Ubuntu, openSUSE and SUSE enterprise, relieving concerns
over software obsolescence in this regard.

The installation procedures for OpenStack Swift software packages are well documented for
the latest release (OpenStack Swift Documentation (OSD).2 OpenStack releases a new version
every six months. Instructions for installation of previous versions are easy to find on the web site
as well. Generally speaking, there are three types of installation: proxy nodes, storage nodes, and
authentication nodes. To facilitate, streamline and automate the deployment process, we
implemented an Ansible playbook for each type of installation. For simplicity of illustration, the
Ansible playbook and its associated configuration settings for deploying the Swift proxy node are
presented in the code snippet, omitting the Ansible playbooks for the storage and authentication
nodes. The purpose of presenting Ansible playbooks is to show a way of deployment with ease
and automation. With moderate knowledge of Linux command line environments, deployment
of OpenStack Swift is not a daunting but a manageable task.

2 OpenStack Swift Documentation (OSD). Retrieved from https://docs.openstack.org/swift/latest/

IJDC | General Article

https://docs.openstack.org/swift/latest/

Zhang, Good, and Shi | 9

Figure 3. Ansible playbooks to automate the deployment of the proxy node by
sproxy.yml in (a) as the driving code. (b) is the configuration file containing settings for
the installation. (c) contains the actual installation steps.

With the help of the respective Ansible playbooks for storage nodes, proxy and authentic-
ation nodes, the deployment is reduced to running the following commands with right configura-
tion settings defined:

ansible-playbook --ask-vault-pass auth.yml
ansible-playbook --ask-vault-pass sproxy.yml
ansible-playbook --ask-vault-pass storage.yml

A Case Study

Sample Digital Collections

As the second largest academic library in Canada, UAL has diverse digital collections, both
born-digital and digitized, of intellectual and cultural value that warrant long-term preservation
for future generations. For instance, ERA, an acronym for Education and Research Archive, is
an open-access institutional repository (IR) of UAL.3 It encompasses theses, dissertations,
intellectual output of researchers, and teaching materials with enduring value. DIGITIZATION
collection is the product of UAL’s own digitization endeavour to preserve the history of the
Canadian West and the culture of the Canadian prairies. Part of this diverse and rich collection
consists of “approximately 7,500 digitized books, over 66,000 news issues (4.8 million articles!),
16,000 postcards, and 1,000 maps.”.4 In addition, UAL collaborates with organizations across

3 ERA Education and research archive. Retrieved from: https://era.library.ualberta.ca/
4 Peel’s Prairie Provinces. Retrieved from: http://peel.library.ualberta.ca/

IJDC | General Article

http://peel.library.ualberta.ca/
https://era.library.ualberta.ca/

10 | OpenStack Swift: An Ideal Bit-Level Object Storage System for Digital Preservation

Canada. CWRC, an abbreviation for the Canadian Writing Research Collaboratory, is an
online repository of digital scholarly resources, digitized texts, images, audios, videos, and
metadata. These digital materials are nation-wide cultural knowledge and literary heritage,
which stand “to be lost entirely in the long term, creating what has been called a second dark
age.”5 CIHM, which stands for Canadian Institute of Historic Microreproduction, was
established by Canadian Council in 1978 with a mandate to preserve “works printed or
published in Canada, about Canada, or written by Canadians from as early as the 17th century
and as recent as the 1920s.” 6The collection was originally preserved on microfiche, and was
digitized later on and preserved at many research libraries across Canada including UAL.

These represent some digital collections preserved by UAL which are tabulated dataset by
dataset in Table 4 with the number of digital objects; the minimum and maximum size of files;
the average, the median and the total size. The variation of the size of the digital objects is
dramatic, ranging from a couple of hundred bytes to approximately 5GB. The size distribution
is also presented in Figure 4. CWRC is dominated by files smaller than 50KB, approximately
87%. In contrast, close to 47% of DIGITIZATION collections are files bigger than 50MB.
ERA and CIHM are relatively evenly distributed with a smaller spike on either side of the size
spectrum. These testify to OpenStack Swift’s capability of handling heterogeneous digital objects
with size ranging from hundreds of bytes to multiple gigabytes.

Table 4: A representative digital datasets preserved by the on-premises OpenStack Swift cloud
storage system at UAL.

Dataset Num. of
Objects

Min. (B) Max. (B) Average (B) Median(B) Total

CIHM 323,073 122 2,058,002,525 24,415,959 1,674,129 7.88TB

 CWRC 405,635 867 5,190,428,915 2,978,182 7,805 1.21TB

DIGITIZATIO
N

19,975 10,240 5,115,289,600 299,920,032 42,598,400 5.91TB

ERA 60,710 35,840 1,881,790,976 8,751,864 3,447,808 531GB

5 The Canadian Writing Research Collaboratory. Retrieved from: https://cwrc.ca/
6 Canadian Institute for Historic Microreproduction/Early Canadiana. Retrieved from
https://www.uvic.ca/library/locations/home/microforms/CIHMhandout.pdf

IJDC | General Article

https://www.uvic.ca/library/locations/home/microforms/CIHMhandout.pdf
https://cwrc.ca/about

Zhang, Good, and Shi | 11

 Figure 4: the file size distribution of different collections. CWRC contains
dominantly files smaller than 50KB; DIGITIZATION mainly comprises larger files
(>50M); ERA and CIHM are relatively evenly distributed.

Uploading and Retrieving Performance

OpenStack Swift is designed to be massively scalable, capable of storing billions of
digital objects and hundreds of petabytes of data with virtually no disturbances. In order to shed
light on the uploading and downloading performance from containers with a large difference
between the numbers of objects, the CWRC container (with 405,635 objects) and an empty
Demo container were chosen. The six object files used for the test have different sizes: 250MB,
500MB, 750MB, 1GB, 2GB and 3GB. Each object was uploaded to and downloaded from both
CWRC and Demo containers three times, and the average time taken to finish the uploading or
downloading process is used for comparison. Figure 5 demonstrates the uploading times; Figure
6 shows the downloading times. The results show that both downloading and uploading times
are virtually independent of the size of a container, taking about the same amount of time to
upload or download a file with the same size to or from different containers. With the increase
of file size, the time taken to upload or download grows near linearly.

In the scientific realm, Toor et al. (2012) conducted a similar scalability and performance
study of OpenStack Swift using data generated from the experiments carried out on the Large
Hadron Collider (LHC) of the European Organization for Nuclear Research (CERN). These
experiments normally generate about 15 PB data per year which is massive and demands
enormous scalability for both capacity and I/O performance. Two of Toor et al.’s goals are to
study performance of the storage solution when users extract data with different block sizes from
a large dataset; performance of the storage solution when there are a large number of objects in
a single, very large container. They uploaded and downloaded data in different block sizes such
as 4K, 64KB and 1MB. Our experiments differ from theirs by treating a single digital object as a

IJDC | General Article

12 | OpenStack Swift: An Ideal Bit-Level Object Storage System for Digital Preservation

whole for uploading and downloading; what is varying is the size of the individual file instead of
data block size. They used a single large container for performance testing; we used a large and
an empty container to compare. In addition, Toor et al. used a 10GB/s network which is 10
times faster than ours. Thus it is not suitable to compare results by numbers. Despite these
differences, the experimental results from both parties substantiate the allegation of the superb
scalability of OpenStack Swift in dealing with colossal datasets.

.

 Figure 5. Comparison of uploading times for objects with varying sizes from two
vastly different containers.

 Figure 6: Comparison of downloading times for objects with varying sizes from
two vastly different containers.

IJDC | General Article

Zhang, Good, and Shi | 13

Maintenance: Software Upgrading and Hardware Deterioration/Failures

Generally speaking, the effort to maintain the OpenStack Swift cluster at UAL is relatively low.
The maintenance falls into two broad categories: software upgrades and hardware
maintenance.

Software wise, OpenStack Swift has a six month release cycle. A version two or three
release cycles older than the most recent stable version is usually not maintained, receiving no
updates or security fixes. There are two major implications of running an old version of
OpenStack Swift. The first one is the potential security risk. The other is the difficulty of
upgrading to the most recent stable version if the current running version is too old. It is possible
that a database schema has been modified, making direct migration very hard--if not
impossible-- from a version too old and not supported to the most recent version. Thus, it is
always a good practice to upgrade the cluster following the official release cycle. To upgrade
timely also aligns with the spirit of LTDP to avoid software obsolescence. To reduce upgrading
effort and to enhance reliability and consistency, we developed scripts in Ansible to automate
the upgrading process.

A second type of software upgrading is the new kernels of the Operating Systems. This
requires an ordered reboot of each component node in the system to avoid service disruption.
The effort involved is minimal. Yet a more time consuming software upgrade is to upgrade the
Operating Systems from one major release to the next one. For example, the OpenStack Swift
cluster at UAL was originally deployed to CentOS 6 in 2013. It was upgraded from CentOS 6
to CentOS 7 in 2018. The installation of new Operating Systems on the storage servers requires
experiments on test environments prior to applying to the production cluster. It requires both
knowledge and careful planning to avoid mistakes that can cause data loss or inaccessibility of
data. The effort is indeed moderate.

Hardware wise, HDDs--the storage media of OpenStack Swift--are susceptible to
deterioration. Detection of pre-failure signs is conducive to proactive response. There are 108
disks for the UAL OpenStack Swift system, 18 disks per storage node. A cron job in bash script
checks each disk for uncorrectable (or bad) sectors on a daily basis. A disk with some bad sectors
is still operable because these bad sectors are marked as bad and abandoned by the file systems.
No future read or write will be performed on these bad sectors. However, when the number of
the bad sectors becomes alarmingly high, it is a forewarning of disk failure and time to replace
the failing hard disk. A heatmap is used to visually show which disk on which storage node has
bad sectors in Figure 7. From Figure 7, it is shown that the node snode03 has a disk /dev/sdm
with one bad sector. The node snode06 has two disks with bad sectors: 296 for the disk
/dev/sdk; and 12 for the disk /dev/sdo. Based on our empirical experience, when bad sectors
are under 100, the hard disks can still run for quite some time. There is no urgency to replace it
right away. If the number of bad sectors increases fast over time, it is a sign of dying. It is better
to replace the failing hard disk. Indeed, the disk with 296 bad sectors shown in Figure 7 died in a
couple of days.

Instead of using uncorrectable sectors as a litmus test of the health status of HDDs,
Kamarthi et al. (2009) used two more parameters: hardware ECC recovery and read/write rate.
They developed an artificial neural network to assess the health status and remaining useful
lifetime of HDDs with a claimed 88% accuracy. Kamarthi et al.’s approach is more complex
than ours, but it corroborates our approach to monitor the health status of HDDs. Considering
its good but not great 88% accuracy and the fact that we don’t have to wait till the last moment

IJDC | General Article

14 | OpenStack Swift: An Ideal Bit-Level Object Storage System for Digital Preservation

for a dying HDD to be replaced, it is not necessary to adopt their approach.

Figure 7: The health status of hard disks. The x-axis is for disk names, and the y-axis is for
node names.

It is normal for hard disks to die after running for some time. OpenStack Swift withstands
failure of hard disks without disruption of services or loss of data. The failure of hard disks can
be monitored and reported by running the built-in health status check command. The failed
hard disks can be replaced with new ones formatted in XFS format and mounted properly with
correct ownership. The digital objects originally stored on the failed hard disks are automatically
replicated back to the new ones from the corresponding copies on other good disks.

Refreshing is a necessary proactive strategy that is vital for the success of LDTP, because
storage media becomes unavoidably outdated or degraded, which might lead to bit-rot or
alteration of digital objects. With OpenStack Swift, refreshing data from old storage media to
new ones is as simple as replacing a failed hard disk. If bit-rot or unintentional changes of digital
objects do happen, the background auditing processes are designed to detect the abnormalities
and respond with corresponding services to bring the impacted digital objects into a consistent
state. These failure scenarios have been tested and verified through the OpenStack Swift system
at UAL.

Economics: OpenStack Swift vs Azure cloud

Budget plays an important role in the sustainability of LTDP. It is instrumental in
knowing how cost-effective it is to choose OpenStack Swift as the bit-level storage system for
LTDP over the commercial clouds such as Azure. Microsoft Azure is chosen for a number of
reasons. First, Microsoft Azure provides a tool named Total Cost of Ownership (TCO) for
prospective customers to compare costs between on-premises and Azure cloud, for a lift-and-
shift migration. Second, other major cloud service providers do not have a tool that is
comparable to Microsoft Azure’s TCO. Third, Rosenthal (2014) and Breeding (2012) separately
conducted a cost comparison between local storage and AWS cloud storage; it is beneficial to
conduct a cost comparison different from AWS to widen our view regarding cloud storage cost.

IJDC | General Article

Zhang, Good, and Shi | 15

With the TCO calculator, we entered the actual specifications of the currently running
OpenStack Swift in the data center of our organization. These include:

 Six identical physical servers for storage each with 32GB RAM, 2 processors, and 8
cores per processor, 2 threads per core, equivalent to 32 CPUs.

 Two virtual machines: 16GB RAM and 8 CPUs for Swift Proxy; and 4GB RAM and 2
CPUs for authentication.

 Raw storage space in HDDs (used and unused): 432TB

 Monthly outbound network usage: 2TB

 Open-source software: Operating Systems; virtualization; application software

 On the Azure side, local redundant storage (LRS) rather than geographic redundant
storage (GRS) is assumed to reflect the reality of the on-premises configuration. The TCO tool
assumes that neither backup nor disaster recovery is configured. The sole purpose is to simulate
a lift-and-shift migration from on-premises to the cloud, taking advantage of the cloud’s
Infrastructure as a Service (IaaS) feature.

The cost is broken down into five categories: Compute; Data Center; Networking;
Storage; and IT Labor. The compute cost is further decomposed into hardware, software,
electricity and virtualization. The cumulative costs estimated by TCO over a five year period for
both on-premises and the corresponding Azure cloud are presented in column 2 and 3 of Table
5. For comparison, our actual on-premises costs based on purchase orders are also presented in
column 4 of the table.

For the computing cost, our purchase order shows its hardware part is C$39,330.36, which
is the cost for the physical servers. Considering the maintenance of these physical servers, usually
15% of the original purchase price is added as maintenance cost. Therefore, the final hardware
cost over five years is C$45,229.91. For the electricity part, the power supply is 1200W which is
the maximum allowable. In reality, the power drawn from the power supply is a lot smaller than
the maximum. As a conservative estimate, each physical server is assumed to run at 1000W 24
hours a day, 7 days a week. The resulting total electricity cost in five years is C$26,280,
assuming C$0.10/kWh which is slightly above the market average rate. Open source operating
systems and application software are used. Therefore software cost is reasonably computed as 0,
so for virtualization technology. Therefore, the conservative estimate produces a total cost of
C$71,509.91 for the computing part, which is 63% of the Azure cloud cost, and 23% of the
TCO estimate for the on-premises option. It is clear that TCO over-estimates the on-premises
cost by a lot; and Azure cloud computing cost is more expensive than the actual on-premises
option.

For the storage cost, the actual purchase price for all the HDDs is C$26,772. The HDDs are
more susceptible to failure, a 50% maintenance cost for five years is assumed, which is
C$13,386. Therefore, the total storage cost is C$40,158. The Azure cloud storage cost in five
years is shown to be C$764,411.90 which is overwhelmingly more expensive than the actual
cost. The TCO estimate for the on-premises storage is C$195,349.68, which is 25% of the
Azure storage cost. However, it is still a big overestimate in comparison to the actual cost. The
high cost of Azure storage for large scale datasets agrees well with the findings of both Rosenthal
(2010) and Breeding (2012).

For the networking cost, TCO assumes that firewall hardware, switches, routers and other
networking related components are dedicated to the OpenStack Swift. In reality, these hardware
components are shared by many other applications of the same organization. In the UAL case,
many of these components are provided to UAL for use for free. Therefore, we assume the
networking cost is the same as the TCO estimate for the Azure networking cost.

For IT labor cost, TCO underestimate the cost. TCO underestimates the IT labor for the
on-premises option. TCO’s underestimate of IT labor can be attributed to its assumption of a

IJDC | General Article

16 | OpenStack Swift: An Ideal Bit-Level Object Storage System for Digital Preservation

low hourly salary rate and a low number of working hours. Hourly salary rate for the same IT
job can vary a lot from region to region, or from nation to nation. Thus, the estimate can only
be used as a rough guidance. In reality, the system administrator spends about 15% of his total
working hours to support the on-premises OpenStack Swift system. Based on the system
administrator’s five-year salary, the IT labor cost to support the on-premises OpenStack Swift
system is about C$70,500.00 over five years.

The most debatable and most ambiguous part of cost is for the data center. TCO estimates
data center cost over five years to be C$874,406.70, among which the rack mounting and
installation cost about $835,716.10, accounting for 96% or so. This dominance shows that the
cost of other parts of a data center is marginal. It is important to note that UAL uses the data
centers belonging to the University; UAL is not charged for electricity, server racks, and cooling.
Thus, in column 4 of Table 5, the corresponding data center cost is not presented. The authors
recognize that not every organization like UAL can be waived from paying costs related to
running a data center. Therefore, this part has no meaning for these organizations.

It is reasonable to conclude that 1) TCO tends to overestimate the computing and storage
costs for the on-premises options; 2) Azure computing and storage costs are more expensive than
the on-premises options; 3) Azure storage cost is costly and dwarfs other costs. In addition, for
small organizations that cannot afford or justify the cost of running data centers, Azure cloud is
potentially more cost-effective, depending on how much the data center costs. However, for
large organizations that can share data center cost, or even better the data center cost is covered
by its parent organizations, on-premises is still more cost-effective, especially when large scale
datasets are involved.

Category On-Premise (TCO)(C$) Azure (TCO)(C$) On-Premise (Actual)(C$)

Compute
 Hardware
 Software
 Electricity
 Virtualization

306,032.90
265,000.96
0.0
36,958.46
4,073.50

113,621.30
0.00
0.00
0.00
0.00

71,509.91
39,330.36
0.00
26,280
0.00

Data Center 874,406.70 0.00 N/A

Networking 68,752.67 1,536.00 1,536.00

Storage 195,349.68 764,411.90 40,158.00

IT Labor 22,550.53 19,609.11 70,500.00

Total 1,467,092.40 899,194.88 183,703.91

Table 5: Cost comparisons between the actual on-premises Swift storage system and its
corresponding lift-and-shift Azure cloud migrated system. Considering maintenance
costs, the resulting computing cost is 15% more than the hardware purchase price
(C$39,330.36). Similarly, the storage cost is 50% more than the original purchase
price (C$26,772).

Conclusion and Discussion

In this paper, the distinctive features of OpenStack Swift are elaborated. Its unlimited scalability
of storage space, its linear performance with regard to dramatically increasing numbers of
objects, its effectiveness and efficiency in enforcing authenticity, integrity and consistency of
preserved digital objects, its highly distributed and interconnected nature and configurable

IJDC | General Article

Zhang, Good, and Shi | 17

degree of redundancy, its high tolerance of hardware failure, and what is more, its self-healing
ability to repair corrupted objects, make it an ideal bit-level storage system for LTDP. In
addition, OpenStack Swift’s compatibility with commodity hardware and consumer grade
storage media, together with its free availability and low maintenance, makes it a cost-effective
solution in the face of not uncommon budgetary challenges.

The contribution of this paper is to fill the void in the LTDP community with a systematic
introduction of OpenStack Swift, supplemented with both the implementation of the solution
and operational results in production environments. It offers a testament of the feasibility and
practicability of using OpenStack Swift as a large scale storage system for LTDP. Indeed, the
adoption of OpenStack Swift as a viable solution for LTDP, even though not well documented,
has gained traction over the past years. The private cloud storage at UAL, the community cloud
storage at Scholars Portal, and Japan’s NTT’s 7PB private cloud, all built on top of OpenStack
Swift, offer convincing arguments for the adoption of OpenStack Swift.

However, OpenStack Swift is not proposed as the ultimate solution for bit-level digital
preservation. It is universally accepted by the digital preservation community that more than
one type of storage media and more than one storage technology are desired for LTDP; the
storage media of OpenStack Swift are dominantly hard disk drives; and thus OpenStack Swift is
proposed as a competitive alternative to diversify the means for LTDP so that different means
can complement one another. One drawback of OpenStack Swift as a bit-level digital
preservation system is its eventual consistency. Specifically, if a replica of a digital object has
been altered for whatever reason, the change is not detected right away, and the recovery
doesn’t happen immediately. There is a time delay to bring the altered object back to a
consistent state. The length of the delay depends on the performance of the auditing, updating
and replicating processes, which in turn depend on the CPU power and the efficiency of
algorithms underlying these processes. It is also worth noting that OpenStack Swift alone can’t
meet other imperative requirements for a full-fledged digital preservation system that conforms
to the NDSA levels of digital preservation, for example, file format check and migration (Phillips
et al. 2013). It needs to be integrated with other software packages to fulfil these requirements.

In our implementation of the private OpenStack Swift cloud at UAL, collaboration with
external organizations was contemplated but not materialized. It’s advantageous to leverage
OpenStack Swift’s support for storage across geographic regions, capitalizing on pooled
resources and expertise, increasing tolerance of failure, and cutting cost at the same time. The
prospect of inter-organizational collaboration using OpenStack Swift as a vehicle is promising,
but the network latency between two organizations which are geographically separated is a
barrier to overcome. It is a subject of interest for future research.

Additionally, commercial cloud storage services from Google, Microsoft and Amazon have
become readily available. There are contradicting views about the cost-effectiveness of their
application as a storage system for LTDP. A preliminary cost comparison between the on-
premises OpenStack Swift system at UAL and the commercial Azure cloud demonstrates the
cost competitiveness of the former. The study finds that the cost of Azure computing is high, and
the storage cost of Azure for large datasets is alarmingly high, which is in good agreement with
the findings of other researchers (Rosenthal, 2010; Breeding, 2012). From an economic
perspective, if data center cost is not a concern for an organization, on-premises deployment of
OpenStack Swift with large storage capacity for LTDP makes more sense. However, a
systematic and comprehensive comparative study of cost-effectiveness--one of the principal
driving forces for the adoption of commercial cloud storage for LTDP--between the private
OpenStack Swift and these public cloud services is lacking, and thus a natural and necessary
topic for further research in the near term.

IJDC | General Article

18 | OpenStack Swift: An Ideal Bit-Level Object Storage System for Digital Preservation

Acknowledgements

The Authors would like to thank Dr. Peter Binkley for his original proposal of adopting
OpenStack Swift as a bit-level storage system for LTDP, and for his many insightful suggestions
for improvement based on his deep knowledge in the field of LTDP. The authors are equally
grateful to John Huck, metadata librarian of UAL, for his critical review and constructive
advice. The authors are also deeply indebted to Neil MacGregor for his technical advice and
assistance.

References

Askey, D. & Ruest, N. (2016). Ontario library research cloud: From idea to infrastructure in
three easy years. Retrieved from:
http://hdl.handle.net.login.ezproxy.library.ualberta.ca/11375/19543.

Arnold, J. (2014). OpenStack Swift: Using, administering, and developing for Swift Object Storage. O’Reilly
Media, Inc.

Breeding, M. (2012). Cloud computing for libraries. ALA TechSource, an imprint of the
American Library Association.

Digital Preservation Coalition. (2015). Digital preservation handbook (2nd ed.). Retrieved from
https://www.dpconline.org/handbook

Durand, G. (2020). Dataverse’s Approach to Technical Community Engagement. Septentrio
Conference Series, 2, Article 2. https://doi.org/10.7557/5.5424

Giaretta, D. (2011). Advanced digital preservation. [electronic resource]. Springer.
https://doi.org/10.1007/978-3-642-16809-3_3

Goodchild, M. & Hurley, G. (2019). Integrating Dataverse and Archivematica for Research
Data Preservation. In IPRESS 2019. Retrieved from:
https://www.ipres2019.org/static/pdf/iPres2019_paper_147.pdf

Hedstrom, M. (1998). Digital preservation: A time bomb for digital libraries, Computer and
Humanities 31: 189-202.

Haughton, B. (2016). Preservation challenges in the digital age. D-Lib Magazine. 22(7), pp. 1-6.
doi:10.1045/july2016-houghton

Kamarthi, S., Zeid, A. & Bagul, Y. (2009). Assessment of current health of hard disk drives.
2009 IEEE International Conference on Automation Science and Engineering. pp. 246-249, doi:
10.1109/COASE.2009.5234105.

Kimpton, M., & Payette, S. (2010). Using Cloud Infrastructure as Part of a Digital Preservation
Strategy with DuraCloud. EDUCAUSE Quarterly, 33(2), 13.

Kapadia, A., Rajana, K., Varma, S. (2014). Implementing cloud storage with OpenStack Swift.
Birmingham, UK : Packt Publishing.

IJDC | General Article

https://doi.org/10.1045/july2016-houghton
https://www.ipres2019.org/static/pdf/iPres2019_paper_147.pdf
https://doi.org/10.1007/978-3-642-16809-3_3
https://doi.org/10.7557/5.5424
https://www.dpconline.org/handbook
http://hdl.handle.net.login.ezproxy.library.ualberta.ca/11375/19543

Zhang, Good, and Shi | 19

Lu, D., & Pan, Y. (2010). Digital preservation for heritages: technologies and applications. Springer.

Myntti, D. & Zoom, J. (2019). Digital preservation in libraries: Preparing for a sustainable digital future.
Chicago : ALA Editions, an imprint of the American Library Association

Phillips, M., Bailey, J., Goethals, A., & Owens, T. (2013). The NDSA levels of digital
preservation: Explanation and uses. In Archiving conference (Vol. 2013, No. 1, pp. 216-
222). Society for Imaging Science and Technology.

Rieger, O.Y. (2018). The state of digital preservation in 2018: A snapshot of challenges and
gaps. Ithaka S+R. https://doi.org/10.18665/sr.310626

Rosenthal, D.S.H. (2010). Bit preservation: A solved problem?” The International Journal of Digital
Curation. 5 (1). Retrieved from: http://www.ijdc.net/index.php/ijdc/article/view/151/224

Rosenthal, D.S.H., Robertsoni,T., Lipkisii, T., Reichi, V., & Morabitoi, S. (2005).
Requirements for digital preservation systems: A bottom-up approach. D-Lib Magazine,
11(11). Retrieved from http://www.dlib.org/dlib/november05/rosenthal/11rosenthal.html

Rosenthal, D.S.H. & Vargas, D.L. (2013). Distributed digital preservation in the cloud, 8th
International Digital Curation Conference. Retrieved from
https://web.stanford.edu/group/lockss/resources/2018-
01_Distributed_Digital_Preservation_in_the_Cloud.pdf

Rosenthal, D.S.H. (2014). Costs: why do we care? DSHR’s Blog. Retrieved from:
https://blog.dshr.org/2014/11/talk-costs-why-do-we-care.html

Toor, S., Holmgren, S., Töebbicke, R., & Resines, M. Z. (2012). Investigating an open source
cloud storage infrastructure for CERN-Specific data analysis. Proceedings – 2012 IEEE 7th
International Conference on Networking, Architecture and Storage, NAS pp. 84–88.
doi:10.1109/NAS.2012.14.

Wilcox, D. & Weinraub, E., (2017). Supporting digital preservation and access with Fedora.
IFLA World Library Information Congress Conference. Paper presented at: IFLA WLIC 2017 –
Wrocław, Poland – Libraries. Solidarity. Society. in Session 150 - Preservation and
Conservation, Acquisition and Collection Development. Retrieved from:
https://library.ifla.org/id/eprint/1758

IJDC | General Article

https://library.ifla.org/id/eprint/1758
https://blog.dshr.org/2014/11/talk-costs-why-do-we-care.html
http://www.dlib.org/dlib/november05/rosenthal/11rosenthal.html
http://www.ijdc.net/index.php/ijdc/article/view/151/224
https://doi.org/10.18665/sr.310626

	 Introduction
	 OpenStack Swift
	 Implementation
	 A Case Study
	 Sample Digital Collections
	 Uploading and Retrieving Performance
	 Maintenance: Software Upgrading and Hardware Deterioration/Failures
	 Economics: OpenStack Swift vs Azure cloud

	 Conclusion and Discussion
	 Acknowledgements
	 References

