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Introduction 
 Eye tracking as a technique to estimate human gaze 

in relation to a variety of visual stimuli has proven highly 
successful over the years, whether as a research method 
in fields such as experimental psychology and cognitive 
science (König et al., 2016; Kowler, 2011; Troje, 2019), 
as an assistive technology (Majaranta et al., 2011), or as a 
method for human-computer interaction (Bulling & Gel-
lersen, 2010; Duchowski, 2018; Majaranta & Bulling, 
2014). For a large part of its history, participants in eye 
tracking studies were usually seated, and their gaze was 
tracked relative to a two-dimensional monitor or screen. 
More recently, however, virtual reality (VR) technology 

has made great strides in quality and accessibility and 
subsequently found its way into many research labs, now 
making it possible to study dynamic human behavior in 
naturalistic but highly controlled virtual environments 
(Clay et al., 2019; Drewes et al., 2021; Hayhoe & Roth-
kopf, 2011; Rothkopf et al., 2007; Troje, 2019). With the 
advent of widespread and affordable consumer VR hard-
ware, more and more head-mounted displays (HMDs) are 
now starting to include eye tracking technology out of the 
box. Besides the growing use in behavioral research, eye 
tracking in VR can enable a variety of different use cases 
(Duchowski, 2002, 2017; Plopski et al., 2022). To high-
light just some examples: Approaches such as foveated 
rendering allow higher visual fidelity and reduce render-
ing demands and power consumption for VR graphics 
(Albert et al., 2017; Patney et al., 2016), gaze-based 
pointing and target selection can be utilized to create 
intuitive and multimodal methods of interaction (Jacob & 
Stellmach, 2016; Majaranta & Bulling, 2014; Plopski et 
al., 2022; Tanriverdi & Jacob, 2000), and knowledge 
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about a user’s current gaze direction can enable novel 
ways to experience and imperceptibly manipulate a virtu-
al environment (e.g., Langbehn et al., 2018; Marwecki et 
al., 2019). All of these applications have different re-
quirements relating to the quality of eye tracking data, 
such as high spatial accuracy and precision of the esti-
mated gaze position in the case of gaze selection and 
interaction (Feit et al., 2017; Orquin & Holmqvist, 2018; 
Schuetz et al., 2019, 2020), or very low latency between 
performing an eye movement and the corresponding 
change in a visual scene for foveated rendering (Albert et 
al., 2017; Stein et al., 2021). Because the wide availabil-
ity of eye tracking in VR is relatively recent, the current 
generation of consumer hardware often still falls behind 
research-grade devices in terms of data quality. Addition-
ally, while accuracy and precision metrics are reported in 
the manual by most manufacturers, such values are typi-
cally best-case estimates and do not necessarily reflect 
the performance achievable under real-world conditions 
and with a diverse group of eye tracking participants 
(Blignaut et al., 2014; Ehinger et al., 2019; Hansen & Ji, 
2009; Nyström et al., 2013). Therefore, the main goal of 
the present study was a real-world evaluation of eye 
tracking performance for a specific VR HMD with built-
in eye tracking, the HTC Vive Pro Eye (HTC Corp., 
Xindian, New Taipei, Taiwan). 

A growing body of research highlights the importance 
of defining and reporting metrics of data quality in tradi-
tional screen-based eye tracking, starting with McConkie 
(1981), who first suggested that researchers should de-
scribe the properties of the recorded eye tracking signal 
and any algorithms used in classification and analysis. 
More recently, Holmqvist, et al. (2012) provided best-
practice definitions for a variety of metrics such as spatial 
accuracy and precision. Generally, when measuring data 
quality, participants are instructed to fixate a target or set 
of targets with known position for a certain period of time 
while their gaze angle and/or position on the screen are 
recorded by the eye tracker. Spatial accuracy is then 
defined using the error or offset of the measured gaze 
relative to the target’s actual position, with larger error 
indicating lower accuracy. Accuracy may be reported as 
an angle of rotation in degrees (used for measurements of 
gaze angle, e.g. relative to a head-mounted eye tracker or 
VR HMD), as a distance in pixels or cm in the case of 
gaze position measurements on a screen plane, or as a 
distance in three-dimensional space if the intersection 
point of gaze direction and a virtual environment is used, 

such as when applying eye tracking in VR. Where accu-
racy measures the absolute deviation of the gaze estimate 
from a known target, spatial precision as defined by 
Holmqvist et al. (2012) refers to the stability of individual 
measured gaze samples over time: Low precision indi-
cates a wider spatial spread of the gaze samples belong-
ing to a given target or fixation, while high precision 
implies that individual samples fall much closer to their 
average value. Multiple metrics for gaze precision have 
been proposed, with the two most common metrics being 
the Standard Deviation (SD) of gaze position or angle 
and the Root Mean Square error between individual sam-
ples (RMS). The achievable accuracy and precision in an 
eye tracking experiment can be significantly influenced 
by a variety of factors, such as participants’ eye physiol-
ogy or vision correction (Hornof & Halverson, 2002; 
Nyström et al., 2013; Orquin & Holmqvist, 2018) or the 
specific method employed to calibrate the eye tracking 
system (Nyström et al., 2013). A recent review article by 
Holmqvist et al. (2022) further summarizes factors that 
can influence eye tracking data quality and reiterates the 
need to define and report standardized descriptions and 
metrics when publishing eye tracking research. 

Indeed, an extensive number of evaluations using a 
variety of metrics are now available for traditional 
screen-based eye tracking devices, which are likewise 
summarized in detail in the aforementioned review arti-
cle. At the same time, the authors state that "little is 
known of the data quality of eye trackers integrated into 
VR goggles" (Holmqvist et al., 2022). Because only a 
limited number of VR devices with built-in eye tracking 
have been released to date (see Stein et al., 2021, for 
examples of current commercial models), relatively few 
systematic evaluations of the achievable gaze accuracy 
and precision specific to VR HMDs have been published 
so far. Lohr et al. (2019) investigated the data quality of 
the SMI eye tracking add-on to the original HTC Vive, 
but this add-on is now discontinued after SMI was ac-
quired by Apple in 2017. The authors report a mean accu-
racy of 0.67° and precision of 0.11° across saccade tar-
gets spanning ±15° horizontally and ±10° vertically 
(however, their mean absolute deviation measure of pre-
cision may not be directly comparable to the more widely 
used SD or RMS measures). The same HMD add-on was 
compared to a mobile eye tracker (SMI glasses) by Pastel 
et al. (2020), who found comparable accuracy between 
the HMD and glasses in different fixation tasks (0.39°-
0.51°), but reported RMS precision to be worse using the 
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VR add-on (0.07° vs. 0.03°). Adhanom et al. (2020) re-
cently published an open-source package to measure gaze 
accuracy and precision within the Unity rendering engine. 
They report an average accuracy of 1.23° and RMS preci-
sion of 0.62° for 9 validation targets presented at a dis-
tance of 1 m in the HTC Vive Pro Eye HMD, but only 
show data for two participants. More recently, Sipatchin 
et al. (2021) evaluated the same HMD for use in visual 
perimetry and tested 25 target positions spanning a range 
of ±26.6° in a head-fixed and head-free condition. They 
report an average accuracy of 4.16° and SD precision of 
2.17° in their head-fixed condition, with accuracy de-
creasing noticeably at greater target eccentricities (around 
8-10° at 26.6° eccentricity). Finally, a recent paper from 
our own group includes example data for a tutorial on VR 
behavioral studies and reports an average accuracy for the 
same HMD of around 0.5°, albeit for a limited field of 
view (FOV) of ±5° (N=5; Schuetz et al., 2022). 

Looking at the results summarized above, it is clear 
that the Vive Pro Eye headset is currently widely used for 
behavioral experiments in academic research labs. At the 
same time, the only data quality metric for this device 
that is available from the manufacturer is a spatial accu-
racy of 0.5° - 1.1° (HTC Corporation, 2021), with pub-
lished accounts of measured eye tracking performance 
showing a large variation. To more closely determine the 
eye tracking performance that can be expected from this 
hardware during a real VR experiment, we here present a 
systematic evaluation of the spatial accuracy and preci-
sion achieved using the Vive Pro Eye HMD when using 
the Vizard VR rendering platform. We recorded data 
from eighteen participants, who repeatedly underwent the 
standard calibration procedure before performing a cus-
tom fixation task with 74 head-fixed target positions in 
the HMD. In contrast to the head-fixed task in Sipatchin 
et al. (2021), who calibrated the eye tracker once at the 
start of the session and then presented multiple repetitions 
of each target, participants in our study performed ten 
separate measurement sessions over multiple days. This 
allowed us to quantify the reliability of the built-in cali-
bration and describe participants’ individual accuracy and 
precision. Spatial metrics were collected over a span of 
±15° horizontally and vertically using two separate Vive 
Pro Eye devices. This was done to assess potential varia-
tions in hardware performance: While devices are likely 
factory-calibrated and should not differ significantly in 
data quality, any such difference would be important to 
know for researchers planning a study and deciding 

whether their HMD needed to be individually character-
ized. Additionally, one of the two HMDs we tested 
(HMD 1, see below) was in active lab use for ca. 1.5 
years while the other was new, allowing us to detect 
potential changes in metrics over the device life span. 
Besides potential hardware-related effects and beyond the 
metrics reported by Sipatchin et al. (2021), we further 
investigated the influence of participants’ vision correc-
tion (glasses, contact lenses, or not wearing vision correc-
tion) on accuracy and precision across the visual field. 
Based on previous work (Holmqvist et al., 2022; Nyström 
et al., 2013), we hypothesized that wearing vision correc-
tion should yield lower accuracy and precision than un-
corrected vision.  

In addition to the spatial performance of an eye track-
ing device, inter-pupillary distance (IPD) is a property of 
a participant’s individual eye and face geometry that is 
very important for VR. IPD generally refers to the hori-
zontal distance between both eye pupils of an observer 
(Dodgson, 2004), and an accurate measure of the user’s 
IPD allows to correctly position the lenses within the 
HMD and adjust the virtual camera viewpoints from 
which the left and right eye images are rendered by the 
3D engine. This ensures correct stereoscopic presentation 
and an immersive VR experience (Scarfe & Glennerster, 
2019), and incorrect IPD settings in a VR HMD can even 
lead to visual discomfort (Hibbard et al., 2020). The eye 
tracker built into the Vive Pro Eye HMD reports the 
position of each pupil in a coordinate system referenced 
to the HMD itself, and this allows for a direct estimate of 
each participant’s IPD (in fact, one of the steps in the eye 
tracker’s automated calibration protocol is to help the 
wearer physically adjust the lenses to their IPD to achieve 
an optimal visual image). We therefore compare IPD 
values estimated using the eye tracker for each participant 
and session to those measured for distance viewing using 
an optometric pupilometer. If estimated values are accu-
rate, this would facilitate better visual quality by setting 
correct viewpoint geometry and to skip optometric IPD 
testing as a separate step when testing participants in 
behavioral studies. 

Our evaluation and metrics presented below can serve 
as a starting point when designing a study or interactive 
experience using the Vive Pro Eye eye tracker, and we 
give concrete recommendations on how to achieve opti-
mal performance with this device based on our experi-
ence gained during data collection. 
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Methods 
Participants 
Eighteen volunteers (9 female, 9 male; mean age: 29 

± 7 years, range 20 to 49 years) took part in the experi-
ment. Out of these, 6 persons wore glasses during the 
experiment, 6 wore contacts, and 6 wore no vision cor-
rection. Because we used two separate HMDs (see be-
low), vision correction groups were balanced across both 
devices. All participants verbally reported good stereo 
vision and no history of oculomotor or neuromuscular 
deficits. In fourteen out of eighteen participants, we addi-
tionally measured stereo acuity using the Graded Circle 
Test (Stereo Optical, Chicago IL, USA) and their inter-
pupillary distance (while fixating at optical infinity) using 
a pupilometer (Hangzhou Feng Hai Electronic Commerce 
Co. Ltd, Hangzhou, China). These additional measures 
were collected at a later date and four participants were 
no longer available for in-person testing due to having 
moved away at the end of the academic term. Stereo 
acuity was used to confirm verbal reports of good depth 
perception where available. Participants failing the first 
level of the Graded Circle Test (stereopsis of worse than 
400 seconds of arc) would have been excluded from 
analysis, but all participants achieved stereopsis of 100 
seconds of arc or better. Individual demographic, vision 
correction, and other relevant parameters are shown in 
supplementary Table S1. Participants were researchers or 
students in our lab, gave written informed consent and 
received no financial compensation for their participa-
tion. The experiment was approved by the research ethics 
board at Justus Liebig University Giessen, and was run in 
accordance with the Declaration of Helsinki (2008). 

 

Apparatus 
Participants wore one of two Vive Pro Eye VR HMDs 

during the experiment. This headset has a display resolu-
tion of 1440 × 1600 pixels per eye, 90 Hz refresh rate 
and a FOV of 110° as stated by the manufacturer. Recent 
work by Sauer et al. (2022) found the official FOV speci-
fications for most VR headsets to be overstated and re-
ports the effective FOV of the Vive Pro Eye at 94° hori-
zontally. The HMD is equipped with an eye tracking 
system running at 120 Hz sampling rate and reported to 
achieve a spatial accuracy of 0.5° - 1.1° (HTC Corpora-
tion, 2021). For the purpose of the present study, we 

chose to sample eye position and orientation data once 
per display frame within the Vizard rendering loop (i.e., 
at 90 Hz). This is a common setup in VR eye tracking 
experiments, because it avoids the need for additional 
background data recording processes outside of the ren-
dering engine. We selected this method to more closely 
measure typical rather than theoretical best performance 
in a VR experiment. To investigate potential differences 
in calibration and data quality between devices, two sepa-
rate units were used, hereafter labeled HMD 1 and HMD 
2, which were pseudo-randomly assigned to participants 
while balancing vision correction groups. Single-use 
disposable paper covers were applied to the HMD before 
testing (VRCover, Gauss Labs Limited, Hong Kong), and 
participants and the experimenter wore surgical face 
masks due to the ongoing COVID-19 pandemic. 

The experiment was implemented in Python using the 
Vizard VR toolkit (version 6.3; WorldViz, Santa Barbara, 
CA, USA), SRanipal software development kit (SDK; 
version 1.1.2.0), SteamVR (version 1.17.16) and our in-
house software toolbox for behavioral experiments in VR 
(vexptoolbox version 0.1.1; Schuetz, et al., 2022). Each 
participant was tested using one out of three separate lab 
setups, subject to room availability. Two SteamVR 2.0 
base stations ("lighthouses"; Valve Corp., Bellevue, WA, 
USA) were set up in each lab room for positional track-
ing, and each lab was equipped with a VR-capable desk-
top computer (Lab 1: Intel Core i9 CPU, 3.60GHz, 32 
GB RAM, NVidia GeForce RTX 3080 GPU; Lab 2: Intel 
Core i9 CPU, 2.6 GHz, 32 GB RAM, Dual NVidia Ge-
Force GTX1080 Ti GPU; Lab 3: Intel Xeon W2135 CPU, 
3.7 GHz, 32 GB RAM, 2 GB NVidia Quadro P2200 
GPU). Lab setups were used equally often, but could not 
be completely balanced across factors such as HMD and 
vision correction due to availability and the relatively low 
number of participants (for the lab setup used for each 
participant, see Table S1). 

 

Procedure 
Each participant performed a total of ten measurement 

sessions. In each session, the participant was first seated 
in the lab and fitted with the HMD if necessary. To better 
approximate variability seen in real-world lab experi-
ments, where participants might be invited for multiple 
sessions, they were encouraged to take off the HMD 
between sessions and perform the ten sessions over the 
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course of multiple days, although this was not a require-
ment. Participants took between one and seven individual 
testing days to complete the experiment (cf. Table S1). At 
the start of each session, participants were shown a sim-
ple virtual environment consisting of a wooden tiled floor 
and floating instruction text. After a key press, the eye 
tracker’s built-in calibration provided by the SRanipal 
SDK was performed. In brief, this process guides the 
wearer through correctly fitting the HMD onto their head 
and adjusting the lenses for their individual inter-
pupillary distance (IPD) using a knob on the HMD, then 
presents five calibration positions for the user to fixate in 
sequence ("follow the dot"). After all five positions were 
fixated, the calibration process ends and reports calibra-
tion success or failure.  

After a successful calibration, participants pressed a 
key to start the main validation procedure. The SRanipal 
SDK only provides a calibration routine but no validation 
mechanism or numerical measure of accuracy, at least 
when running under Vizard. Therefore, validation was 
entirely performed by our Python code. During valida-
tion, target stimuli of known position were presented in 
sequence, and the participant was instructed to fixate the 
currently visible target. Validation targets consisted of a 
black sphere (radius: 0.1°) superimposed on a white disc 
(radius: 0.5°) and were presented at two different depths 
(distances from the participant’s eyes; near: 0.5 m and 
far: 6 m). Targets were always presented in a fixed posi-
tion relative to the participant’s head position (head 
locked) and superimposed on a fronto-parallel back-
ground plane that extended beyond the horizontal and 
vertical FOV. To avoid measurement errors due to large 
variation in pupil size (Drewes et al., 2014), the back-
ground plane was presented at a constant, medium gray 
color, keeping illumination within the HMD consistent. 
In order to sample spatial data quality across a large part 
of the field of view, target positions in the far (6 m) depth 
plane spanned ±15° and targets in the near depth plane 
(0.5 m) were shown at ±10° from straight ahead, yielding 
a total number of 49 + 25 = 74 trials per session. Each 
target was presented for a duration of 2 s and then 
changed color to green for another 0.2 s before disappear-
ing. Participants were instructed to fixate the central 
black sphere of each target until the color change, and to 
blink after the color change if necessary. The next target 
was then presented automatically after an interval of 1 s. 
While Nyström et al. (2013) reported that allowing the 
participant to confirm target fixation can yield higher 

calibration accuracy, this was not implemented here to 
standardize target presentation durations across all partic-
ipants and sessions. Each measurement session lasted 
around 6 minutes and participants took around one hour 
in total to complete all measurement sessions. 

During each trial (presentation of a single target stim-
ulus), we continuously recorded the gaze origin (general-
ly equal to the position of the pupil within the HMD) and 
gaze direction vector for the left eye, right eye, and com-
bined gaze representation in the HMD’s intrinsic frame of 
reference. Figure 1 gives an overview of the coordinate 
system and vectors involved. Pupil positions are specified 
relative to the center point between the HMD’s lenses 
(HMD origin), and gaze vectors are provided relative to a 
left-handed coordinate system with the positive X-axis 
pointing towards the right eye and the positive Z-axis 
pointing forward. Additionally, we recorded the vector 
from each gaze origin to the current target (eye-target 
vector; Rt, Lt, and Ct in Figure 1) as well as the headset’s 
position and orientation within the SteamVR (world 
space) coordinate system. Note that our code does not 
actually compute the combined gaze vector – both mo-
nocular and combined gaze representations are directly 
provided by Vizard and the SRanipal SDK and used as-is. 

 

 
Figure 1. Depiction of the HMD with eye tracker coordinate 
system and relevant vectors. Small arrows represent the eye 
tracker’s coordinate frame, with its origin centered between the 
HMD’s lenses and x (red) towards the right eye, y (green) up 
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and z (blue) representing the forward facing direction. Gaze 
direction vectors (solid lines) and gaze-target vectors (dashed 
lines) are shown for the left (L; purple), and right (R; orange) 
monocular gaze representations and the combined binocular 
gaze representation (C; white). Gaze error as defined in the text 
represents the angular offset between each solid and the corre-
sponding dashed line (e.g. the angle between C and Ct repre-
sents gaze error for the combined gaze representation). HMD 
model based on “HTC Vive Pro” by user “Eternal Realm” on 
sketchfab.com (licensed CC-BY). 

 

Data Processing 
Data were processed and analyzed using Python (ver-

sion 3.8). Statistical analyses were performed in jamovi 
(version 2.2.5) and R (version 4.0.3). For each recorded 
trial, we computed gaze error in each sample as the angu-
lar difference between the gaze direction and eye-target 
vectors. Gaze error for left, right, and combined ("cyclo-
pean") gaze was computed both as a combined error 
(absolute angular difference) and as individual horizontal 
and vertical errors. Note that in this manuscript, we use 
"horizontal" and "vertical" gaze error to refer to a hori-
zontal or vertical deflection from the HMD’s forward 
direction (i.e., a yaw or pitch rotation, respectively), not 
to a rotation around the horizontal or vertical axis. The 
first 0.5 s (45 samples) of each trial were skipped to ac-
count for saccade latency and corrective saccades (Beck-
er & Fuchs, 1969; Kowler & Blaser, 1995; Schuetz et al., 
2019). We then selected the next 1 s of gaze data (90 
samples) for further processing. The entire 90 samples 
were used for summary statistics and no fixation detec-
tion algorithm was used to refine data selection. This was 
done because event detection algorithms can produce 
very different results for the same dataset depending on 
the chosen parameters (Andersson et al., 2017; Holmqvist 
et al., 2012; Komogortsev et al., 2010; Nyström & 
Holmqvist, 2010), and we were interested in characteriz-
ing the performance of the eye tracking hardware without 
restricting the results to a specific combination of algo-
rithm and parameters. 

Spatial data quality metrics were defined as previous-
ly suggested by Holmqvist et al. (2012). Because we used 
head-fixed targets and measured gaze angles relative to 
the headset’s frame of reference, we report all metrics in 
degrees. For the purpose of this manuscript, accuracy 
thus refers to the mean angular error between the eye-
target and gaze directions, with lower errors indicating 

higher accuracy of the eye tracker’s gaze direction esti-
mate. Precision was defined using the standard deviation 
(SD) of gaze error values as well as the inter-sample root 
mean square error (RMS). 

In addition to accuracy and precision, prior work has 
shown that data loss or invalid samples can have an im-
pact on data quality measures, such as when the pupil 
cannot be reliably detected by the eye tracker’s camera 
(Holmqvist et al., 2012; Nyström et al., 2013). For the 
present study, eye tracking data collection was imple-
mented using the Vizard sensor object functionality, 
which is the recommended way to access external hard-
ware in Vizard due to its consistent interface. Unfortu-
nately, this programming interface does not directly re-
port a measure of data validity or confidence. Instead, we 
observed during piloting that when tracking of a sensor 
object is lost, such as when occluding a controller from 
the external base stations, Vizard repeats the most recent 
valid data sample until tracking is reestablished and new 
sensor data is available. Receiving multiple, exactly iden-
tical samples in sequence would otherwise be highly 
unlikely due to the inherent variability in the gaze estima-
tion process. We therefore chose to report repeated sam-
ples as an indirect measure of sample validity, defined as 
the fraction of gaze error values in each trial which are 
exactly identical to the preceding sample. 

Finally, because our experiment was not set up for ac-
curate measurement of temporal precision or latency we 
here do not report any temporal measures of data quality. 
For further reference, two recent studies specifically 
investigated latency in the Vive Pro Eye HMD and found 
gaze tracking delays of approximately 50 ms (Stein et al., 
2021) and 58 ms (Sipatchin et al., 2021), respectively. 

 

Analysis 
We report accuracy and precision metrics after aggre-

gation at multiple levels. First, we summarize the distri-
bution of repeated samples, gaze angles, and spatial 
quality metrics across all individual trials (targets), inde-
pendent of the experimental session or participant they 
were recorded from. This analysis gives a broad overview 
of aggregate eye tracking performance expected from a 
typical behavioral experiment across a large part of the 
headset’s FOV. Second, we then average metrics within 
each session (across all 74 presented target positions) and 
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investigate how factors such as the specific HMD used 
and vision correction worn by each participant influence 
eye tracking performance within a session, including with 
regard to target eccentricity. Before aggregating at this 
level, we removed individual trials with an absolute an-
gular error of 5° or greater as outliers, motivated by the 
fact that our targets were spaced at a minimum distance 
of 5°. We additionally removed all trials in which one or 
both eyes had a large fraction (> 90%) of repeated data 
samples (see below). Finally, we describe how each per-
son’s inter-pupillary distance (IPD) can be estimated 
using the recorded eye position data. 

To analyze the general effect of vision correction and 
compare HMDs with regard to accuracy and precision, 
we used a 3 × 2 linear model with between-subjects fac-
tors vision correction (glasses, contacts, or no correction) 
and HMD (1 or 2). For vision correction, we tested the 
hypothesis that contact lenses or glasses should yield 
lower spatial accuracy and precision than uncorrected 
vision, whereas for the factor HMD the null hypothesis 
assumed no performance differences between two units 
of the same hardware. To further illustrate the spatial 
pattern of data quality across the field of view, we split 
the data into the 6 between-subjects groups described 
above and plot the spatial distribution of accuracy and 
precision across the FOV. All statistical analyses were 
based on an alpha level of 0.05, and the Holm method 
was used to correct for multiple comparisons whenever 
necessary.  

All data as well as Python and R code for the experi-
ment and analysis are available at https://osf.io/gahcp/  
(Schütz & Fiehler, 2022). 

Results 
Gaze Sample Validity 
As described above, we first computed the rate of 

identically repeated gaze samples in each trial as a proxy 
for sample validity (cf. Holmqvist et al., 2012). Figure 2 
shows a frequency density histogram of the rate of 
repeated samples across all trials (regardless of whether 
data from the left eye, right eye, or combined gaze 
samples was repeated), highlighting three main clusters 
of data. Most trials (10479 trials, 79%) showed fewer 
than 20% of repeated samples. Although this measure 
cannot distinguish between individual reasons for sample 

repetition, this is a reasonable range of values to assume 
causes such as eye blinks, individual data recording 
errors, or spurious repeated values. In a small number of 
trials (131 trials, 0.9%), 100% of the samples recorded 
from one eye were identical while the other eye had a 
much lower rate of repetition, suggesting that one eye 
was closed or could not be correctly tracked by the eye 
tracker’s camera. Because missing data from one eye 
could bias the combined gaze representation, we decided 
to exclude these trials from further analysis. Finally, 2280 
trials (17%) fell into a range between 60% and 70% 
sample repetition (mean: 65.0%), visible as a peak in the 
histogram (Figure 2). When analyzed further, gaze traces 
from these trials showed intermittent sample repetition 
("stuttering") instead of large chunks of repeated data. 
However, spatial distributions and eye movement traces 
of these trials were comparable to trials not affected by 
this phenomenon, and results of statistical analyses 
remained qualitatively similar if these trials were 
temporarily excluded. Therefore, we did not remove 
these trials from final analysis and discuss possible 
explanations in more detail in the Discussion section. 

 

 
Figure 2. Frequency density histograms of the fraction of 
repeated samples in each trial (an indirect measure of invalid 
samples). The inset in the top right corner displays the same 
histogram with the y axis zoomed to a maximum value of 0.5 
(dotted line) to better visualize small frequency densities 
beyond the three major clusters. Data shown includes all trials 
regardless of whether the left, right, or combined gaze 
representation had repeated samples.  
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Raw Fixation Data and Outlier Correction 
All participants were able to successfully complete 

the eye tracking calibration procedure in every session. 
As a first characterization of overall eye tracking 
performance, we computed summary statistics for 
accuracy and precision (measured as both SD and RMS) 
pooled across all recorded fixation trials, independent of 
which participant they were recorded from (74 targets × 
10 sessions × 18 participants = 13320 trials). These 
metrics were computed before any correction for outliers 
and missing monocular data took place (see below). 
Individual trial accuracy values thus ranged from 0.09° to 
28.04° (mean: 1.22°; median: 0.86°; interquartile range 
(IQR): 0.55° - 1.41°). SD precision ranged from 0.03° to 
29.13° (mean: 0.43°; median: 0.21°; IQR: 0.14° - 0.34°), 
and RMS precision from 0.014° to 14.47° (mean: 0.23°; 
median: 0.08°; IQR: 0.05° - 0.15°).  

As mentioned above, we then removed any trials with 
fixations showing an absolute angular error of 5° or larg-
er as outliers (237 trials, 1.8%), and trials in which one or 
both eyes had a large fraction (> 90%) of repeated sam-
ples as invalid data (131 trials or 0.9%). In total, 368 
trials (2.76%) were removed from further analysis due to 
these criteria. All results reported below are based on the 
outlier-corrected dataset. Out of the trials removed due to 
gaze errors larger than 5°, the majority came from partic-
ipants who wore glasses (205 of 237 trials, 86%). Visual 
inspection of the outlier trials’ gaze sample data revealed 
many instances of highly variable or erratic data, suggest-
ing that occlusion or distortion by the glasses’ lenses or 
rims might play a role in data loss. Other outlier trials 
showed that participants looked at the target location very 
late in the trial or not at all. Finally, for some trials at the 
most far peripheral target locations, participants’ gaze 
was stable but deviated too far toward the periphery, 
suggesting that at least some of these instances might be 
caused by peripheral HMD lens distortion.  

 

Overall Accuracy and Precision 
Final gaze accuracy after correcting for outliers lay 

between 0.09° and 4.99° (mean: 1.08°; median: 0.84°; 
IQR: 0.54° - 1.35°) across all fixations from all 
participants. SD precision lay between 0.03° and 8.98° 
(mean: 0.36°; median: 0.20°; IQR: 0.13° - 0.32°), and 
RMS precision was between 0.014° and 8.85° (mean: 

0.20°; median: 0.08°; IQR: 0.05° - 0.14°). Figure 3 
displays the resulting frequency density histograms for all 
three measures based on the combined gaze 
representation as reported by the SRanipal SDK, together 
with their mean and 50th, 90th, and 95th percentiles. 

 

Figure 3. Frequency density histograms of accuracy and preci-
sion metrics across all validation trials (combined gaze). Top: 
Accuracy (average absolute error relative to target), Middle, 
Bottom: Precision (standard deviation and inter-sample root 
mean square error of gaze angles). Histograms are based on 
fixations to all presented target positions. Means and percentiles 
for each measure are annotated to allow direct comparison with 
device specifications. Data computed before outlier correction. 
Note: Plots are truncated at a specific x value (4°, 1.5°, and 1°, 
respectively) to better visualize the overall distributions and 
percentiles. 
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The Vive Pro Eye’s technical specifications report a 
spatial accuracy of 0.5° - 1.1° "within FOV 20°" (HTC 
Corporation 2021). Our mean accuracy of 1.08° after 
outlier correction falls within this specified accuracy 
range (Figure 3). For a more direct comparison, we also 
computed the same metrics after selecting only the target 
positions that fell within the inner 20° of FOV (i.e., 
removing targets at positions 15° from center). With this 
“inner target set”, we found a mean accuracy of 0.97° 
after outlier correction. While it is unclear whether the 
manufacturer’s numbers refer to standard deviations 
around the mean, quantiles, or absolute range, the 
interquartile range in our outlier-corrected data came 
relatively close to the reported values (full targets: 0.54° - 
1.35°; inner targets: 0.50° - 1.20°). 

When computed separately for each eye, gaze error 
and variability were generally larger than for the 
combined gaze data but comparable between eyes in each 
metric (monocular data not shown in Figure 3). Corrected 
for binocular outliers, accuracy in the left eye ranged 
from 0.10° to 24.01° (mean: 1.59°; median: 1.11°; IQR: 
0.68° - 1.90°) compared to 0.12° - 45.35° in the right eye 
(mean: 1.45°; median: 1.02°; IQR: 0.66° - 1.61°). A 
similar pattern was found for SD precision (left: 0.04° - 
25.89°, mean: 0.51°; median: 0.24°; IQR: 0.16° - 0.40°; 
right: 0.04° - 21.40°, mean: 0.49°; median: 0.22°; IQR: 
0.15° - 0.36°) and RMS precision (left: 0.02° - 13.92°, 
mean: 0.28°; median: 0.09°; IQR: 0.06° - 0.17°; right: 
0.02° - 21.67°, mean: 0.28°; median: 0.09°; IQR: 0.06° - 
0.15°). Note that outlier correction was performed only 
on the binocular (combined) gaze data. Since the process 
used by the SRanipal SDK to combine data from both 
eyes is undocumented, large values for monocular 
accuracy and precision likely reflect trials on which the 
system was able to compensate for unreliable data in one 
eye using data from the other eye. 

To investigate the overall spatial pattern of gaze 
errors relative to each target position across the field of 
view, Figure 4 plots all 74 target angles relative to the 
HMD (split across depth planes; top: 6 m, bottom: 0.5 m 
viewing distance) together with the average gaze angle 
recorded in each trial (yielding 180 values per target, 
minus removed outliers). Additionally, Figure 4 includes 
95% (± 2 standard deviations) confidence ellipses for 
each target. Ellipses and fixations are color-coded 
depending on each target’s average accuracy. In the far 
depth plane (top plot), gaze error increased from an 

average of 0.71° just below the central position (0°/-5°) 
to 1.72° in the upper right corner (+15°/+15°). Average 
errors were generally larger towards the upper compared 
to the lower periphery, and confidence ellipses indicate a 
radial error pattern with the major axes oriented outward 
from the central position. In the near depth plane (lower 
plot), average error was more equally distributed over the 
FOV and ranged from 0.69° (at 0°/-5°) to a maximum of 
1.54° at the top left (-15°/+15°). Here, ellipse major axes 
indicate the greatest variability along the horizontal axis. 
Average SD precision in the far depth plane was also 
smallest near the center (0.24° at -5°/0°) and generally 
highest along the top row of targets (maximum: 0.51° at -
15°/15°), with a similar distribution in the near depth 
plane (minimum: 0.28° at -5°/0°, maximum: 0.44° at -
10°/10°). 

 
Figure 4. Average gaze position and 95% confidence ellipses 
for each target position, shown separately for the 6 m (top) and 
0.5 m depth plane (bottom). Color scale illustrates average gaze 
accuracy in degrees across all trials presenting the correspond-
ing target. Black crosses indicate target positions (cross arms 
approximate 1°). 
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Data Quality for Participants and Sessions 
As a next step, we aggregated data quality metrics 

over all presented fixation targets within each 
measurement session of each participant. If the previous 
analysis on the level of individual targets approximates 
an experiment with multiple participants and sessions, 
each aggregated dataset here more closely represents the 
performance achievable by a given participant in an 
experimental session, at least as long as visual stimuli are 
generally presented within the tested target range. The 
resulting metrics are shown in Figure 5 for accuracy (top 
panel) and SD precision (bottom panel). Small markers 
here indicate values from individual sessions, while large 
markers and error bars indicate participant means and 
standard deviations across all ten sessions, thus serving as 
a measure of individual calibration reliability across 
repeated testing. Participants are sorted by their 
individual average accuracy, which ranged from 0.58° to 
1.62° (SDs: 0.18°-1.12°). Icons below individual data 
indicate whether this participant wore contact lenses (eye 
icon) or glasses (glasses icon) during their measurement 
sessions.  

Participants showed very consistent average 
accuracies across sessions, suggesting that they are likely 
to reach comparable eye tracking performance when 
calibrated and tested multiple times, for example over the 
course of multiple study sessions. Individual accuracy 
ranges (defined as the difference between the "best" and 
"worst" session accuracy of a given participant) ranged 
from 0.12° to 2.32°. Most participants’ accuracy range 
spread fell below 1°, with the exception of four persons 
who showed very noticeable outliers in one of their 
sessions (participants 2 and 8-10; Figure 5, top). If these 
"outlier sessions" were excluded, calibration ranges for 
all participants would be within 0.92°. Angular gaze 
precision (SD) in each session (cf. Figure 5, bottom) 
ranged from 0.14° to 2.44°. With decreasing accuracy, 
precision was also reduced: Gaze SD values increased 
with higher mean gaze error, and both measures were 
moderately correlated across participants (r = .62, p = 
.006, R² = 0.379). 

 

 
Figure 5. Accuracy (mean gaze error, top) and precision 
(standard deviation, bottom) of all individual participants. Small 
colored circles represent individual validation sessions. Large, 
open circles and error bars indicate mean and standard deviation 
across sessions, small black circles the median. Participants are 
sorted by average accuracy, numbers follow Table S1. Icons in 
the top panel indicate that a participant wore glasses or contact 
lenses (eye icon). Icons designed by OpenMoji (openmoji.org) 
under CC-BY-SA 4.0 license. 

 

Vision Correction and HMD Hardware 
Figure 5 suggests that participants who wore glasses 

had lower gaze accuracy compared to those with contacts 
or uncorrected vision, evidenced by higher average gaze 
errors. To more closely evaluate how vision correction 
influences accuracy and precision metrics and explore 
whether individual HMD units differ in eye tracking 
performance, we fit a linear model with the factors vision 
correction × HMD. Estimated marginal means from this 
analysis for both accuracy and precision are shown in 
Figure 6 (colored markers and lines). 

For average gaze error as a measure of accuracy 
(filled markers and solid lines in Figure 6), the model 
indicated a significant main effect of vision correction 
(F2,174 = 26.8, p < .001, η²p = .235). Gaze errors were 
significantly larger for glasses than for either contacts 
(t174 = -6.02, p < .001) or no vision correction (t174 = -
6.61, p < .001), while contacts and no vision correction 
were not significantly different (t174= -0.59, p = 0.554). 
Accuracy also differed between individual HMDs, with 
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HMD 1 showing on average 0.21° lower gaze error (F1,174 
= 14.3, p < .001, η²p = .076). There was no interaction 
between vision correction and HMD (F2,174 = 1.0, p = 
0.376) for spatial accuracy. 

 
Figure 6. Estimated marginal means resulting from linear 
models on aggregated session data, each comparing the effects 
of vision correction and HMD. Model results are shown for 
accuracy (mean gaze error; filled markers) and precision (SD; 
open markers). Error bars indicate ±1 SEM.  

With regard to precision (gaze error SD; open 
markers and dotted lines in Figure 6), vision correction 
again showed a significant effect (F2,174 = 33.2, p < .001, 
η²p = .276). Similar to accuracy, glasses were associated 
with higher variability (lower precision) than either 
contact lenses (t174 = -7.39, p < .001) or uncorrected 
vision (t174= -6.67, p < .001), with contacts and no vision 
correction not significantly different (t174 = 0.73, p = 
.469). HMDs did not differ significantly in their 
measured precision (no main effect; F1,174 = 0.9, p = 
0.340), and vision correction and HMD also showed no 
evidence of an interaction (F2,174 = 0.2, p = 0.834). 

The two tested HMD units showed a small but 
significant difference in accuracy, but not precision. As 
discussed below, this might reflect an actual difference in 
hardware or, more likely, be related to individual 
participants in the sample despite our efforts to balance 
vision correction and device. Under the assumption that 

the effect is likely to be sample-related, we also report 
results of a reduced linear model for accuracy and 
precision which only included the factor vision correction 
(collapsing data across HMDs; cf. Figure 6, gray markers 
and lines). For accuracy, this model also yielded a 
significant main effect of vision correction (F2,177 = 24.9, 
p < .001, η²p = .220). Glasses still had significantly larger 
gaze errors than contact lenses (t177 = -5.80, p < .001) and 
no vision correction (t177 = 6.38, p < .001), while contacts 
and uncorrected vision remained similar (t177 = 0.57, p = 
0.568). When we compared both models directly using a 
standard F-test, the full model (vision correction × HMD) 
for accuracy fit the data significantly better than the 
reduced model (F3,174 = 5.4, p = 0.0014; adjusted R²full = 
.266; adjusted R²reduced = .211). Results of the reduced 
model for SD precision were also comparable to the full 
model, showing a main effect of vision correction (F2,177 
= 33.5, p < .001, η²p = .275) and the same pattern 
between correction types in post-hoc analysis (glasses – 
contacts: t177 = 7.43, p < .001; glasses – no correction: t177 
= 6.70, p < .001; contacts – no correction: t177 = -0.73, p = 
0.467). For SD precision, adding the factor HMD did not 
lead to a significant improvement in model fit over the 
reduced model (F3,174 = 0.4, p = 0.735; adjusted R²full = 
.259; adjusted R²reduced = .267). 

Finally, because the linear model analysis found 
significant main effects of vision correction and HMD on 
gaze accuracy, we further split the spatial accuracy data 
shown in Figure 4 by the same two factors. The resulting 
matrix plots (Figure 7) illustrate the spatial distribution of 
gaze accuracy over the visual field for each HMD and 
vision correction group. Glasses show larger error along 
the periphery independent of the HMD used, and HMD2 
shows generally larger errors with a strong tendency to 
reduced accuracy along the upper rows of targets. 

 

Inter-Pupillary Distance 
We extracted average 3D positions of the left and 

right pupil in the eye tracker’s frame of reference for each 
session and computed an estimate of IPD as the mean 
horizontal distance between both pupil positions. Figure 8 
shows the individual sessions and mean IPD values ex-
tracted from gaze data as a function of each participant’s 
actual IPD value when measured using a pupilometer.
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Figure 7. Average gaze accuracy at each presented target position across the FOV, split between HMD 1 (top row) and HMD 2 
(bottom row), as well as by vision correction (columns) 

 
Actual participant IPDs ranged from 55 mm to 70 mm 

(mean: 61.1 mm; median: 60.8 mm), which is in good 
agreement with data previously estimated from a larger 
population (Dodgson, 2004). However, the range of 
physical IPD settings on the Vive Pro Eye is 
approximately 60 mm to 72 mm, meaning that five 
participants fell outside of the range supported by the 
HMD’s lenses. Average participant IPDs measured using 
gaze data ranged from 53.8 mm to 70.3 mm (mean: 60.7 
mm; median: 60.1 mm) and were highly correlated with 
participant’s optometric IPD values (r = .988, p < .001, 
R² = .977; cf. Figure 8).  

Gaze-based IPD values were on average smaller than 
optometric measures, with a mean error of -0.48 mm 
(standard deviation: 0.70 mm; range -1.35 mm - 0.83 
mm).  

 

Discussion 
Here, we present an in-depth evaluation of the real-

world eye tracking performance achieved using the HTC 
Vive Pro Eye’s built-in eye tracking system. Overall, we 
found the built-in calibration to be highly reliable as 
evidenced by the highly reproducible post-calibration 
accuracy for most participants (Figure 5). The device’s 
spatial accuracy was found to be in accordance with the 
official device specifications. All participants were suc-
cessfully calibrated, independent of vision correction, but 
accuracy and precision were significantly reduced for 
participants wearing glasses. Additionally, there was a 
small but significant difference in accuracy between the 
two tested devices. Gaze accuracy and precision were 
generally highest near the center of the field of view and 
decreased towards the periphery, and this pattern was 
further influenced by the choice of vision correction. 
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Figure 8. Participants’ inter-pupillary distance (IPD) estimated 
using eye tracker data, plotted as a function of true optometric 
IPD measured using a pupilometer. Small markers represent 
separate measurement sessions, large markers indicate average 
estimated IPD (used for regression analysis). Note that optomet-
ric data was only available for fourteen participants, as it was 
recorded after the study was concluded. 
 

When analyzing individual fixations independent of 
participant and session, we found an average binocular 
accuracy of 1.08° for the Vive Pro Eye. Additionally, the 
average binocular gaze accuracy across participants in 
this task was 1.10°, with some individual participants’ 
mean gaze errors as low as 0.58°. While not as accurate 
as tower-mounted systems operated by a skilled experi-
menter, this is a good level of performance, especially 
since a consumer eye tracking device is likely to be fo-
cused on robustness across a large range of users rather 
than optimized for accuracy (Holmqvist et al., 2022; 
Nyström et al., 2013). The human oculomotor system 
explores visual scenes by moving the fovea, the region of 
highest visual acuity which spans approximately 1-2° of 
visual angle, from one location of interest to the next 
(Gegenfurtner, 2016). Based on this approximation of 
foveal size, 0.5° of spatial error is often given as a good 
threshold accuracy in eye tracking studies in order to be 
able to reliably identify the current fixation location 
(Holmqvist et al., 2012, 2022). In some of our partici-
pants, individual average accuracy was quite close to this 
rule of thumb, especially when not wearing glasses. 
However, the present level of accuracy currently pre-

cludes the analysis of small fixational eye movements 
such as drifts and microsaccades (Martinez-Conde et al., 
2004; Rucci et al., 2007). 

Researchers should therefore carefully control the size 
of scene objects within a complex virtual environment 
(Clay et al., 2019), or adapt the size of gaze target areas 
in a gaze interaction or selection task. As an example, the 
minimal target size to achieve 80% capture rate as de-
fined by Orquin and Holmqvist (2018) is predicted by 
their heuristic as 3.7° - 10.1° for our range of participants 
(7.1° if computed using the across-participant average 
accuracy of 1.1° and SD precision of 0.37°). Similarly, 
the model in Schuetz et al. (2020) predicts a minimal 
target size of approximately 3.5° for the same capture 
rate, also using across-participant average metrics (note 
that both papers acknowledge that the models use simpli-
fied assumptions and may be specific to circular stimuli 
and/or a specific eye tracker model). These and similar 
predictions for minimal stimulus size need to be taken 
into account when designing an interaction task for the 
Vive Pro Eye. 

As mentioned above, participants’ average gaze accu-
racy was at the upper end of the published specifications 
(0.5° - 1.1°; HTC Corporation, 2021), yet the exact cir-
cumstances under which these values were measured are 
not mentioned anywhere. In relation to published aca-
demic accounts, the average accuracy measured here was 
comparable to other values found for this hardware (Ad-
hanom et al., 2020; Schuetz et al., 2022), with the excep-
tion of the work by Sipatchin et al. (2021) who report 
much larger average gaze errors of 4.16° for head-fixed 
target presentation. This difference might be related to 
the larger range of target eccentricities they presented (up 
to 26.6°) due to their goal of approximating a visual pe-
rimetry task. At the same time, both Sipatchin et al. 
(2021) and our data show a clear increase in gaze error 
with increasing target eccentricity, and their values for 
13° of eccentricity are comparable to our 15° targets in 
the present study. These findings further underline the 
importance of reporting multiple data quality metrics 
including a distribution of error across the FOV (Feit et 
al., 2017; Holmqvist et al., 2022), as a single measure of 
"average accuracy" does not adequately capture an eye 
tracking system’s performance in all situations. Another 
possible explanation for differences in average accuracy 
between the two studies could lie in the software used: 
Sipatchin and colleagues (2021) report using the Tobii 
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Pro SDK, which allows access to unfiltered gaze data but 
is not available within the Vizard VR engine, while our 
experiment was based on HTC’s SRanipal SDK. If the 
latter applied significant filtering by default, this could 
naturally bias our results toward greater accuracy while 
introducing other effects such as added latency that 
would not have been detectable in our experimental para-
digm. Sipatchin et al. (2021) did not find evidence of 
temporal filtering, but future work might still compare 
the spatial metrics achieved using both SDKs in a more 
direct manner. Finally, drifts or eye blinks during the 
longer fixation interval used in their paradigm (4.5 s of 
analyzed gaze data, compared to 1 s in our study) might 
also explain some of the difference in accuracy. In any 
case, the fact that the first few device evaluation studies 
for VR eye tracking hardware yield such diverging results 
with different approaches merely underlines the need for 
further work in this area.  

A general pattern of decreasing gaze accuracy for pe-
ripheral compared to central targets as shown in Figure 4 
has previously been reported in screen-based eye tracking 
systems (Feit et al., 2017; Holmqvist et al., 2022; Hornof 
& Halverson, 2002; Nyström et al., 2013). This suggests 
that a peripheral decrease in accuracy is not specific to 
HMD-based devices. At the same time, the small form 
factor of an HMD could necessitate more oblique views 
of the eye tracking camera onto the pupil and increase 
subsequent gaze misestimations (known as pupil fore-
shortening; Drewes et al., 2014). Additionally, residual 
distortions from the optical lens system have been shown 
to influence perception even after appropriate correction 
(Tong et al., 2020) and likely also affect eye tracking 
calibration. Figure 4 also reveals interesting qualitative 
differences between targets presented in different depth 
planes. For the far depth plane, where gaze directions 
were almost parallel due to targets being shown at optical 
infinity, the radial error pattern seen in Figure 4 is com-
parable to what has been reported before (Feit et al., 
2017; Holmqvist et al., 2022; Hornof & Halverson, 2002; 
Nyström et al., 2013; Schuetz et al., 2020; Sipatchin et 
al., 2021). However, when targets were located in the 
near plane (at 0.5 m distance and therefore at a much 
steeper vergence angle), confidence ellipses were instead 
dominated by variability along the horizontal axis. The 
actual field of view of the eye tracking cameras inside the 
HMD is unknown, but for eyes verging this close the 
pupils might end up near the nasal edge of the range 
visible to the camera, again causing pupil foreshortening 

and distortion effects and leading to a noisier estimate of 
pupil position and gaze direction. Alternatively, since we 
report the combined binocular estimate in Figure 4, this 
horizontal variability might also reflect noisier integration 
of monocular data into the combined ("cyclopean") gaze 
vector. In any case, gaze targets in a VR study should be 
presented at sufficient distance to achieve a more stable 
estimate, with targets used for calibration ideally at opti-
cal infinity (6 m or 20 ft.). Future VR devices might also 
support distance-dependent calibration, especially once 
variable-focus display technology becomes generally 
available for VR and AR (e.g., Jamali et al., 2018). 

As suggested by prior work (Holmqvist et al., 2022; 
Nyström et al., 2013), we found reduced accuracy and 
precision when participants wore vision correction com-
pared to when they did not. However, only glasses caused 
a statistically significant increase in gaze errors and vari-
ability, whereas participants with contact lenses were 
comparable to those with no vision correction on all met-
rics despite previous reports of reduced accuracy with 
contact lenses (Nyström et al., 2013). It is possible that 
effects of contact lenses become detectable only when 
using a well-calibrated tower-mount eye tracking system 
with its correspondingly high spatial accuracy. For prac-
tical applications, we could not see a disadvantage to 
measuring participants with contact lenses, whether nu-
merically or anecdotally based on calibration success. 
The significant impact of glasses could be explained by a 
number of additional optical factors, such as further im-
age distortions and reflections from the additional lens 
layer between eye and camera or physical impedance of 
the eye tracking camera’s view by glasses frames. During 
testing, two anecdotal observations helped significantly 
improve calibration success and metrics for glasses-
wearing participants: First, glasses had a tendency to fold 
the light blocking rubber flaps at the bottom of the head-
set against the HMD’s lenses, blocking eye tracking illu-
minators and in some cases part of the participant’s visual 
field. In these cases, folding the flaps down while don-
ning the headset generally allowed successful calibration 
and improved eye tracking performance. Second, both 
HMD lenses and glasses had a tendency to fog up espe-
cially during colder temperatures, likely exacerbated by 
the requirement to wear surgical masks. This mostly 
happened on the first session of a measurement day (cf. 
also the "outlier sessions" in Figure 5), and letting the 
HMD "warm up" for some time reduced fogging issues. 
Following these provisions, all participants with glasses 
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could successfully complete calibration in our study (al-
beit at the reported lower levels of accuracy and preci-
sion). 

Interestingly, we found a significant difference be-
tween individual headsets when it came to accuracy (but 
not SD precision), with HMD 1 being more accurate than 
HMD 2 by 0.2° on average. This is still likely to be a 
spurious effect, dependent on the assignment of partici-
pants to HMDs or individual headset fit issues, as the 
number of individual participants tested with each HMD 
was still relatively low (9 per HMD). Nevertheless, future 
studies should compare metrics recorded on each HMD 
in a within-subjects design with a consistent group of 
participants to rule out true differences in gaze estimation 
accuracy. In any case, we recommend a quick data quali-
ty evaluation similar to the metrics measured here for a 
newly bought HMD or before a large-scale eye tracking 
experiment, to guard against differences in accuracy but 
also against hardware defects. 

With all eye tracking methods, it is generally impos-
sible to know where a participant is truly fixating at any 
given moment. Therefore, a potential limitation of our 
paradigm (and others like it) is that the assumption of 
accurate fixation on the presented calibration or valida-
tion target has to be treated as “ground truth” in absence 
of any external reference measurement, and any error or 
variability herein are reflected in the measured accuracy 
and precision. Future work could evaluate the Vive Pro 
Eye hardware using other approaches such as one based 
on smooth pursuit eye movements (cf., Blignaut, 2017;  
Drewes et al., 2019). Pursuit eye movements require a 
moving target stimulus, thus allowing to more easily 
validate during the experiment that the participant is 
correctly following the target.  

Taken together, we have found the Vive Pro Eye a 
capable eye tracking device for behavioral experimenta-
tion in virtual environments, as long as care is taken to 
adjust stimulus and task properties to the achievable eye 
tracking performance. We hope that the metrics summa-
rized above can serve as a starting point for study design 
and encourage other researchers and manufacturers to 
publish similarly detailed metrics in the future. 
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