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INTRODUCTION 

Phosphorus (P) is an essential nutrient for crop growth, 

indispensable in several physiological and biochemical 

processes. It is the major limiting nutrient in many 

agroecosystems; therefore, P deficiency is a constraint 

for global crop production and is estimated to impact 

>40% of agricultural soils. However, all those soils con-

tain a considerable amount of total P, and the plant-

available form of phosphorus (negatively charged pri-

mary and secondary orthophosphate ions) is in low 

concentrations (<1%) in soil solution.Even though the 

inorganic and organic forms of P fertilizers are applied 

to agricultural soils often to replenish this pool, ortho-

phosphate ions in soil solution rapidly react with soil 

components and transform into other forms that are not 

available to plants (Alotaibi et al., 2021). Shortly after P 

fertilizer application, the added P associates with domi-
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nant ions in soils like calcium, iron, and aluminum, re-

sulting in an insoluble P pool. Thus most of the applied 

P remains in the soil due to the long-term application of 

mineral and organic P sources. It has been suggested 

that accumulated P in agricultural soils can sustain crop 

yields worldwide for 100 years if available (Roberts & 

Johnston, 2015). 

Phosphorus accumulation is most commonly evident in 

arid soil conditions due to the low P use efficiency of 

these soils and the low solubility and availability rate. 

This mostly includes the calcareous soils, characterized 

by the abundance of Ca2+ ions, alkaline pH, and calcite 

(CaCO3) presence. All these factors promote the higher 

Ca- associated P precipitation, thereby reducing the P 

use efficiency and inducing P deficiency (Dhillon et al., 

2017). In order to overcome this soil P precipitation/

adsorption process and to maintain the optimal P con-

centration in soil solution, P fertilizers are dumped in 

excessive amounts exceeding the crop needs. Under 

such long-term P fertilizer application, P exceeding the 

rate of crop removal accumulates in large amounts in 

agricultural soil, widely known as "legacy P" (Blackburn 

et al., 2018). 

Historically, manufactured water-soluble phosphate 

derived from mined rock phosphate has played a signif-

icant role in replenishing the soil P pool. The recent 

reports claim that the source is rapidly diminishing, and 

this finite source will be depleted in 50 -100 years. The 

remaining reserves will be of lower quality and higher 

cost. The increasing demand for agricultural commodi-

ties increases the demand for phosphorus sources re-

sulting in a "potential phosphate crisis” globally 

(Daneshgaret al., 2018). To overcome these conflicts, 

the only solution is to find ways to make use of soil leg-

acy P as a possible P source for plants. 

Unfortunately, most legacy P in soil is not readily availa-

ble to plants. To increase the availability of this P to 

crops, the soil has to be manipulated by applying vari-

ous amendments called P-activators (Zhu et al., 2018). 

The P activators are organic in nature, which include 

microorganisms, enzymes, organic acids, and manure. 

The P-activators follow several action mechanisms, 

including dissolution/precipitation, sorption/desorption, 

and mineralisation/immobilisation. On the one hand, it 

promotes the solubilisation of soil inorganic P by pro-

ducing organic acids. On the other hand, the organic 

functional group of P activators occupies the P-binding 

sites reducing the P fixation in soil (Teng et al., 2020).In 

the present study, the performance of P-activators such 

as Farmyard manure (FYM), Humic acid (HA), Phytase, 

and Phosphorus solubilising bacteria in increasing the 

legacy P availability in a P deficient calcareous soil was 

explored via a field experiment with maize hybrid COH

(M) 6. 

MATERIALS AND METHODS 

Study area and sampling 

The study area is located in the black soil region of Per-

ianaickenpalayam in the Coimbatore district (11ºN & 

76ºE ). The soil has received the long-term regular ap-

plication of P fertilizers and was expected to have high 

levels of legacy P. The soil samples collected at a 

depth of 0- 20 cm were air-dried, ground and passed 

through a 2mm sieve before further analysis and their 

initial characteristics were; pH - 8.20, Organic carbon- 

5.5 g kg-1, Free CaCO3 -14%, Total P- 0.42 %, Olsen P

- 8.1 kg ha-1, Saloid P- 18.42 mg kg-1, Reductant solu-

ble P - 9.61 mg kg-1, Calcium P –91.46 mg kg-1 , Iron P 

- 25.89 mg kg-1 and Aluminium P - 17.22 mg kg-1. 

 

Field experiment 

A field experiment was conducted with maize (Zea 

mays L.) hybrid CO(H)M 6 as a test crop. The experi-

ment was conducted in a Randomised Block Design 

(RBD) with three replications. The treatment details are 

given in Table 1. The soil samples were collected on 

the critical stages of crop viz., Knee-high stage (30th 

T1 Soil test based NK (Control) 

T2 T1 + SSP @ 100 % recommended  soil test dose 

T3 T1 + PA1 (FYM + HA) + SSP @ 100 % recommended soil test dose 

T4 T1 + PA2 (PSB + Phytase) + SSP @ 100 % recommended soil test dose 

T5 T1 + PA3 ( Phytase + HA) + SSP @ 100 % recommended soil test dose 

T6 T1 + PA1 (FYM + HA) + SSP @ 75 % recommended soil test dose 

T7 T1 + PA2 (PSB + Phytase) + SSP @ 75 % recommended soil test dose 

T8 T1 + PA3 ( Phytase + HA) + SSP @ 75 % recommended soil test dose 

T9 T1 + PA1 (FYM + HA) + SSP @ 50 % recommended soil test dose 

T10 T1 + PA2 (PSB + Phytase) + SSP @ 50 % recommended soil test dose 

T11 T1 + PA3 ( Phytase + HA) + SSP @ 50 % recommended soil test dose 

Table 1. Treatment details 
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day), Tasseling stage (60th day), Milky stage (90th day), 

and Harvest stage (105th stage) and subjected to labor-

atory analysis of Olsen P (Olsen et al., 1954), Soil pH 

(Jackson, 2005) and P fractions (Peterson and Corey, 

1966; Mehta et al., 1954). At the harvest stage, grain 

and stover P uptake was also calculated. 

 

Statistical analysis 

Each treatment in this study was applied in a random-

ised design. Statistical Package of Social Sciences 

(SPSS) was employed for statistical analysis. The data 

recorded were analysed statistically by analysis of vari-

ance techniques appropriate for Randomised Block 

Design (RBD) as suggested by Gomez and Gomez 

(1984). Means were compared and grouped by the 

least significant difference test (CD < 5%). 

RESULTS AND DISCUSSION 

Effects of P-activators on available P (Olsen P) 

Soil available P at critical stages of the crop is given in 

Fig. 1. The application of different P activators and dif-

ferent doses of P fertilizers showed variation in soil 

available phosphorus. Higher available P was observed 

in treatment with the application of Humic acid and 

FYM with  100%  P soil test dose (T3) (18.54 kg ha-1), 

and it was found to be on par with treatment T6 (FYM 

and Humic acid with 75% P soil test dose) and T5 

(Phytase and Humic acid with 100% P soil test dose) at 

5% significant level. The available phosphorus content 

of soil followed a gradually decreasing trend along the 

growth stages due to the uptake of P by crop. In the 

Harvest stage, the treatment T3 and T6 showed a 

50.48%and 49.80 %increase in soil available P over 

the control (T1). The increased P contents with the ad-

dition of FYM are due to mineralization and higher wa-

ter content. Organic manures after decomposition re-

leases organic acids and increases P bioavailability by 

the dissolution of native and fixed P (Masood et al., 

2013). The application of P fertilizer at 75% recom-

mended soil test dose along with P activators was sta-

tistically comparable with 100% soil test P dose. Simi-

lar to inorganic P fertilization, P-activators likeFYM and 

Organic acids can also increase plant-available P in 

soil (Marschner, 2011). This may be due to the com-

plexing action of FYM and Humic acid due to its strong 

binding ability in both solid and solution phases with 

ions like iron, aluminium, and calcium (Otieno et al., 

2018). Humic materials are generally not a major 

source of P, but they have a mobilizing effect on the 

subsurface adsorbed P.The humic acid application 

increases the amount of water-soluble phosphate and 

strongly retards the formation of occluded phosphate in 

soil (Jing et al., 2020). 

 

Effect of P-activators on soil pH 

The soil pH showed a decreasing trend along thecrop 

growth stages. Different treatments showed variation in 

soil pH as depicted in Fig. 2. Comparatively, the treat-

ment T6 (Farmyard manure and Humic acid with 75% 

soil test dose of P fertilizer) showed a more significant 

decrease in soil pH (8.06 )at the harvest stage, which 

Fig. 2. Effect of P-activators on soil pH (PA 1 – Farmyard manure (FYM) @ 12.5 t ha-1 + Humic acid (HA) @ 3 kg ha-1, 

PA 2– Phosphorus Solubilising Bacteria  (PSB) @ 2 kg ha-1 + Phytase (Phy) @ 2 kg ha-1,  PA 3 – Phytase (Phy) @ 2 kg 

ha-1 + Humic acid (HA)  @ 3 kg ha-1) 
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was on par with T3 and T6 (8.08). The treatment differ-

ences were non significant (p<0.05).The application of 

FYM and Humic acid showed a 0.5 unit decrease in pH 

from its initial value. Similar results were obtained by 

Barka et al. (2018). They reported a 0.5 unit reduction 

in soil pH after four months of applying organic manure. 

The decrease in soil pH is attributed to the neutraliza-

tion of hydrogen ions produced by organic acids with 

hydroxyl groups present in soil solution resulting in the 

formation of water and other complex compounds 

(Andersen et al., 2013). The reduction in soil pH under 

the application of organic amendments like FYM, Hu-

mic acid, PSB, and Phytase may be attributed to the 

progress of decomposition and oxidation of organic 

compounds in soil. Sometimes it may also be due to 

the activity of soil microorganisms producing CO2 and 

root exudates during the decomposition of organic mat-

ter (Orman and Kaplan, 2011). 

 

Effect of P-activators on soil P fractions 

The sequential soil P fractionation done at the harvest 

stage showed significant variation among different 

treatments. All inorganic and organic P fractions 

showed a decrease in P-activators applied treatments 

compared to their initial value, as shown in Fig. 3. 

Saloid P, reductant soluble P, Iron P, and Aluminium P 

have not shown significant differences (p<0.05) among 

the treatments. Among all the inorganic fractions, calci-

um phosphate showed a more substantial reduction 

with applying P activators. Comparatively, the effect of 

farmyard manure and humic acid was more pro-

nounced, with significant variation in calcium phosphate 

fraction, indicating its contribution to increasing the leg-

acy P availability. The treatment T6 (FYM + HA + 75% 

soil test dose of P) showed a greater reduction in soil 

calcium P fraction (93.08 mg kg-1). Farmyard manure 

and humic acid increase the availability of P in the soil 

by producing CO2 and organic and inorganic acids. 

These products help in the conversion of insoluble P to 

soluble ones as they act as a carbon source, lower the 

soil pH, and dissolve the calcium phosphate in calcare-

ous soils (Song et al., 2017). The reduction of calcium 

phosphate fraction in soil over time is due to the reduc-

tion of soil affinity constants and sorption capacities by 

adding FYM/ Humates. This is attributed to the com-

plexing of exchangeable calcium by components of 

manure or the competition of P fixation sites by organic 

acids. The release of organic anions enhances the re-

lease of sparingly soluble P, not only from the acid-

soluble pool but also from more stable residual P frac-

tions (Wandruszka, 2006) 

 

Effect of P- activators on plant P concentration and 

P uptake  

The stover and grain P concentrations and their P up-

take calculated using the dry matter production is de-

picted in Table 2. The results indicate that treatment T3 

with the application of FYM and Humic acid along with 

a 100% soil test dose of P showed the higher stover 

(0.197 %) and grain (0.272 %) P content as well as P 

uptake (22.65 kg ha-1). But it was found to be statistical-

ly comparable with treatment T6 (FYM + HA + 75% soil 

test dose of P) at 5% significant level. This shows that 

the FYM and HA have solubilised and mobilised a part 

Fig. 3. Effect of P-activators on inorganic P fractions (PA 1 – Farmyard manure (FYM) @ 12.5 t ha-1 + Humic acid (HA) 

@ 3 kg ha-1, PA 2– Phosphorus Solubilising Bacteria  (PSB) @ 2 kg ha-1 + Phytase (Phy) @ 2 kg ha-1,  PA 3 – Phytase 

(Phy) @ 2 kg ha-1 + Humic acid (HA) @ 3 kg ha-1) 
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of fixed P into an available form, so their effects were 

comparable on 100% and 75% SSP applications. Com-

pared to the control(T1), the treatment T3 and T6 

showed a 61.6 % and 61.4 % increase in P uptake, 

respectively. The results also reported that P-activators 

could work well in the presence of inorganic fertiliz-

ers.The Interaction of FYM and HA with mineral P ap-

plication was significant. Apparently, an additive effect 

was noted between the FYM, HA, and mineral fertiliz-

ers on P uptake. Similarly, Rakotoson and Tsujimoto 

(2020) reported that the application of FYM with organ-

ic acid increased the biomass and P uptake of irrigated 

rice equivalent to that of mineral P application.   The 

additive effects of organic and inorganic amendments 

are responsible for higher nutrient uptake and better 

plant growth. The positive impact of FYM application on 

P uptake could be attributed to the temporary pH re-

duction due to the FYM decomposition, which reduces 

the P sorption capacity and increases the soluble P 

contents in soil (Kumar et al., 2013).  

Conclusion 

The present study concluded that FYM, Humic acid, 

Phytase, and PSB could act as good solubiliser of lega-

cy P. The combined application of FYM with humic acid 

performed better both at 100% and 75% soil test dose 

of P supplied through Single Super Phosphate (SSP) 

fertilizer. Some studies have stated that soil P deficits 

trigger legacy P availability. Here, it was evidenced that 

the 25% deficit in P application  promoted the availabil-

ity of legacy P. This is because the P-activators (FYM + 

HA)  solubilised the fixed native P into the labile pool, 

resulting in the hike of soil available phosphorus, plant 

P concentration, and P uptake. The combination of 

FYM and humic acid showed a synergistic effect on 

solubilising the calcium phosphate fraction, with the 

decline in pH due to the release of carboxylates, pro-

moting the ligand-driven mineral solubilisation. These 

results can be a theoretical base for realizing the poten-

tial of soil legacy P, at least in P enriched black calcare-

ous soils, to improve agricultural sustainability.  
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