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Review Article 

INTRODUCTION 

Brassinosteroids (BRSs) are a class of plant regulating 

steroidal hormones that regulate plant growth at differ-

ent stages of the life cycle. BRS plays different essen-

tial functions in both biotic and abiotic stresses. BRS 

control different physiological and biochemical process-

es of plants under stress and non-stress conditions. It 

interacts with other hormones in the different physiolog-

ical processes to control their response. Salinity has 

emerged as a major threat to agricultural sector in re-

cent times. In India, around 6.727 million hectares of 

area is salinity affected which represent around 2% of 

the total geographical area of the country (Arora et al., 

2016; Arora and Sharma, 2017). Ahanger et al. (2020) 

reported that BRS treatment helps plants to alleviate 

the deleterious effects of salinity. 

 

Occurrence and structure of BRSs  

Brassinolide (BL) (C28H48O6) was the first BRS, isolated 

from pollen of the rape plant in 1979, after which a sec-

ond BRS was isolated from Catanea crenata in 1982, 

named castasterone (Grove et al., 1979; Yokota et al., 

1982). BRS are found in all divisions of the plant king-

dom, including angiosperms, gymnosperms, algae, 

bryophytes and pteridophytes (Fujioka, 1999; Hayat 

and Ahmad, 2010). Pollens and immature seeds con-

tain a high concentration of BRSs as compared to veg-

etative cells like stem or leaf. BL and castasterone are 

the most widely found BRSs in plants, present in 22 

and 33 species. Most of the BRSs are found only in a 

restricted number of species (Fujioka & Sakurai, 1997). 
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However, BRSs are rarely found in algae and till now 

only two BRSs of C28 group are reported in algae 

named 24-epicastasterone and 28-homocastasterone 

in Hydrodictyon reticulatum (Camoni et al., 2018). Liu et 

al. (2017) reported 81 natural BRS in plants along with 

137 analogs and 8 metabolites. 

 

BRASSINOSTEROID SIGNALING PATHWAY 

 

In BRS signaling pathway, the receptor for BRS is pre-

sent on the surface of the cell, named BRI1 

(brassinosteroid insensitive 1). BKI1 (BRI1 Kinase In-

hibitor 1) acts as an inhibitory protein that binds to BRI1 

receptor and restricts its activity. BRS binds to the BRI1 

receptor via its C-terminal domain, which leads to differ-

ent events like auto-phosphorylation and detachment of 

BKI1, which means that BRI1 now becomes active. 

Apart from BRI1, another receptor named BAK1 (BRI1-

associated receptor kinase 1) is found in the mem-

brane. Both BAK1 and BRI1 are leucine-rich region 

receptor-like kinase (LRR-RLK), which can add phos-

phate ions. On getting activated by the BRS binding, 

BRI1 binds to the BAK1 and forms a heterodimer (Li 

and Nam, 2002; Wang and Chory, 2006). This binding 

initiated a phosphorylation cascade in which one inter-

mediate molecule phosphorylates the next molecule 

present in the signaling pathway. BIN2 (brassinosteroid

-insensitive 2) plays a key role in this cascade pathway. 

It acts as a regulatory molecule that regulates the activ-

ity of BZR1 (brassinazole-resistant 1) and BES1 (bri1-

EMS-suppressor 1). These regulatory molecules act as 

a transcriptional factor that regulates the transcription 

of BRS-regulated genes. In BRS absence, BIN2 re-

mains activated and phosphorylates both BES1 and 

BZR1 (Li and Nam, 2002; Vert and Chory, 2006). In the 

phosphorylated state, BES1 and BZR1 can’t bind to the 

DNA, due to which BRS-regulated gene remains inac-

tive. While in the case of binding of BRS with BRI1, 

     

 

 

Fig. 1. Structures of different BRSs, analogues and inhibitor. (a) 24-epibrassinolide (b) 28-homobrassinolide (c) Cas-

tasterone (d) Typhasterol (e) Dolicholide (f) Dolichosterone (g) Secasterone (h) Cathasterone (a-h are natural BRs) (i) 

Biobras-16 (brassinosteroid analogue) (j) brassinazole (brassinosteroid biosynthesis inhibitors) (Sources: Fujioka & Sa-

kurai, 1997; Díaz et al., 2003; Asami et al., 2000). 
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BIN2 becomes inactivated while other signaling cas-

cade molecule, named BSU1 (bri1 suppressor 1), be-

comes activated. BSU1 acts as dephosphorylase, 

which removes the phosphate group from the next sig-

naling molecule (Mora-García et al., 2004). It is also 

documented that in the phosphorylated state, both 

BZR1 and BES1 undergo degradation in the pro-

teasome (Gampala et al., 2007). Another protein mole-

cule, named 14-3-3 protein, binds with phosphorylated 

BZR1 and BES1 complex and exports this complex in 

the cytosol. In the unphosphorylated state, BES1 and 

BZR1 bind to DNA, which ultimately leads to the tran-

scription of BRS-regulated genes. In conclusion, when 

BRS does not bind with its receptor, that will ultimately 

lead to phosphorylation of BES1 and BZR1, which in-

hibits the BRS regulated genes while in BRS presence, 

BES1 and BZR1 get dephosphorylated and BRS regu-

lated genes get expressed (He et al., 2005; Yin et al., 

2005). Planas-Riverola et al. (2019) reported that BRS 

helps the plant to grow normally when subjected to 

stress conditions via maintaining a balance between 

plant growth and plant resistivity to particular stress. 

They further added that BRS maintains this balance 

independently or through crosstalk via ABA. Different 

mechanisms are reported to explain the involvement of 

BRS in alleviating various stress conditions like heat, 

cold, and drought. These mechanisms are: enhanced 

synthesis of osmoprotectant (Fàbregas et al., 2018), 

antioxidant machinery activation (Kim et al., 2012; Lima 

and Lobato, 2017; Tunc-Ozdemir and Jones, 2017; Xia 

et al., 2009; Zou et al., 2018) and fine-tuning stress-

responsive transcript machinery (Ye et al., 2017). 

 

Salt stress  

Stress is stated as the environmental conditions, in-

cluding both biotic and abiotic, which cause an adverse 

impact on vegetative and reproductive stages of life 

and affect the growth as well as the development of 

plants. Biotic stress includes the adverse impact 

caused by the living factors like microorganisms or her-

bivores, while abiotic stress is caused by non-living 

factors like different environmental factors, including 

temperature, drought, salinity, etc. According to Grime 

(1977), stress is the external condition that decreases 

the photosynthetic ability of plants. At present, when 

the world's total population is more than 7.9 billion, the 

demand for food is also high, so we need to focus on 

enhancing food productivity on a global scale. But the 

major limitation to approaching this target is generated 

by different stress conditions that negatively affect plant 

growth through different physiological functions, which 

decrease the quality as well as quantity of food produc-

tion. Biotic stress can be controlled at plant levels or by 

preventing the growth of the biotic factor with different 

pesticides, insecticides, etc. But in the case of abiotic 

stress, we can control it only at the plant level by en-

hancing the tolerance level of the plant. 

Salinity stress can be defined as negative impacts 

caused by the high concentration of minerals like sodi-

um or potassium ions (Munns, 2005). Among the abiot-

ic stress, salinity becomes a major limiting factor be-

cause approx. 45 million hectares of irrigated land is 

badly damaged by salt stress (Shrivastava and Kumar, 

2015) which is around 20% of total irrigated land. Irri-

gation is considered the major reason for salinity (Zhu, 

2001). Szabolcs (1974) categorizes saline soil into sa-

line soil and sodic soil. In saline soils, NaCl and 

Na2SO4, while in sodic soil, NaCO3 is considered the 

chief salt. On the basis of causing agent, salt stress is 

categorized into two sub-parts: (A) Natural salt stress: 

it is the gathering of salts in soil or water for a longer 

duration via a natural process, (B) Anthropogenic salt 

stress: it is caused as a result of human activities like 

irrigation. Natural causes of salt stress include rock 

weathering, rainfall or evaporation, etc. Replacement of 

perennial crops with annual vegetation is also the main 

reason for salinity stress. 

Salinity is considered the most affecting abiotic stress, 

which causes a great loss of crop yield worldwide. It 

reduces the plant's yield by affecting different growth 

parameters. Each plant can withstand a particular 

range of salinity, after which its growth will reduce, and 

at extreme salinity, it even results in the death of the 

plant. On the basis of the plant’s threshold capacity, 

plants are divided into two main categories: salt tolerant 

and salt sensitive. Salinity affects the plant in both the 

vegetative phase as well as reproductive phase. In the 

vegetative stage, it causes a negative impact on seed 

germination. It is studied that presence of salt in plant-

soil environment decreases capability of the seed to 

absorb water which reduces the growth rate. Along with 

this, salinity also causes injuries in leaves, which affect 

the photosynthetic ability of plants, due to which plant 

growth reduces. This process is known as the salt-

specific effect of salt stress (Greenway and Munns, 

1980). Salt stress negatively affects the plant’s growth, 

measured via different morphological and physiological 

parameters. Petretto et al. (2019) reported a significant 

reduction in various parameters in Eruca sativa Mill. and 

Diplotax tenuifolia L. under salinity stress. They record-

ed that shoot biomass, leaf area, and plant height were 

significantly decreased under saline conditions. Salinity 

stress also affects the germination process and de-

crease germination percentage, seedling root and shoot 

length, germination index, and seedling fresh and dry 

weight in sorghum plant (Rajabi Dehnavi et al., 2020). 

 

EFFECT OF BRSs ON SEED GERMINATION UNDER 

SALINITY STRESS 

 

Salinity stress affects a plant via disturbing water bal-

ance, ion homeostasis, and ion toxicity, leading to re-
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duced plant growth. Salinity negatively affects the ger-

mination process; with the enhancement in salt concen-

tration in soil, germination percent decreases. De-

creased germination percentage is reported under sa-

linity stress conditions in Oryza sativa (Xu et al., 2011) 

and Brassica juncea (Ibrar et al., 2003). Salinity stress 

affects the osmotic balance among seeds and germina-

tion media, which changes the water absorption pro-

cess of seeds (Ḵẖān et al., 2006). It is believed that 

alteration in the seed imbibition process alters the be-

havior of enzymes involved in nucleic acids metabolism 

(Gomes-Filho et al., 2008). Similar results were found in 

tomatoes (Kaveh et al., 2011). Seeds of Brassica napus 

also show decreased seed germination under high salt 

stress conditions (Bybordi, 2010). 

Wang et al. (2011) conducted an experiment on cucum-

Fig. 2.  Brassinosteroid signaling pathway (a) without brassinosteroid (b) with brassinosteroid (Mao and Li, 2020). In the 

absence of 24-EBL, BES1/BZR1 protein undergoes degradation which results in repression of BR induced genes (a). In 

the presence of 24-EBL, BIN2 undergoes degradation and BES1/BZR1 bind to DNA and causes the expression of BR 

induced genes (b). 
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bers to examine the role of BRS on seed germination 

under salinity stress and reported that BRSs ameliorate 

the harmful effects of salinity stress in cucumbers in the 

seed germination process. They further concluded that 

BRSs enhance seed germination by improving ethylene 

synthesis via enhancing the expression of CsACO1 

and CsACO2. It is suggested that BRSs enhance the 

salt tolerance efficiency of plants by modulation of pu-

trescine metabolism, which improves the germination 

process. It is reported that a proper concentration of BRS 

can improve the stress tolerance efficiency in plants. 

However, a high concentration of BRS can be harmful for 

plants similar to its deficiency (Liu et al., 2020). 

 

EFFECT OF BRSs ON PLANT LENGTH UNDER  

SALINITY STRESS 

 

Khodarahmpour et al. (2012) studied different growth 

parameters of Zea mays under salt stress conditions. 

At a high salt concentration (240mM NaCl), different 

growth parameters like length of plumule and radicles 

and seed vigor were observed. Similar results were 

also recorded in Oenanthe javanica (Kumar et al., 

2021). They found a reduction in plant height, branches 

and leaves number, fresh and dry weight of root and 

shoot under increased salinity stress. Sensitive culti-

vars of coriander were more affected by salinity stress 

than tolerant cultivars (Meriem et al., 2014). It is be-

lieved that salinity stress results in osmotic stress in 

plants, disturbing the water balance and transport that 

ultimately affects different physiological and biochemi-

cal processes. Researchers believe that salt stress 

decreases the growth of plants because the energy 

produced in plants is diverted to maintain homeostasis 

(Atkin and Macherel, 2009; Sarker and Oba, 2020). 

During salt stress conditions, there is an elevation in 

the synthesis of reactive oxygen species (ROS) that 

disturbs the enzyme activity of cells. It also disturbs bio-

membrane stability, which results in reduced biomass 

(Ali et al., 2017; Alzahrani et al., 2019). 

The harmful impacts of salinity on plant length can be 

alleviated with the application of epibrassinolide (EBL). 

EBL neutralizes the harmful impacts of saline condi-

tions on length and biomass. It also improves the root 

and shoots length and number of roots (Sharma et al., 

2013). Similar results were also recorded in Medicago 

sativa (Zhang et al., 2007) and Zea mays (Arora et al., 

2008). It is believed that in rice and Arabidopsis, plant 

height is controlled by the interaction between BRs and 

GAs. This interaction between BRs-GAs was found to 

be involved in regulating cell elongation. (Che et al., 

2015; Sun et al., 2015). BZR1, a component of BRS 

signaling pathway, interacts with DELLA protein 

(negative regulator of GAs signalling) and forms a com-

plex, which inhibits the DNA-binding ability of BZR1. On 

application of GA, DELLA proteins degrade, which 

causes the release of BZR1 and induces plant growth 

by improving the expression of genes whose product 

controls the cell elongation. (Bai et al., 2012; Gallego-

Bartolome’ et al., 2012; Li et al., 2012). It is reported 

that in BRS-related rice mutants, BRS application im-

proved the level of GA. Further, it is observed that it 

also enhances the expression level of genes, which are 

involved in GA metabolism, like GA20ox-2/SD1 and 

GA3ox-2/D18 (Tong et al., 2014). BRS also improved 

the expression of the GA3ox-2 enzyme that converts 

the inactive form GA20 to the active form GA1. Expres-

sion of the GA2ox-3 gene is repressed by BRS, which 

is involved in GA inactivation, which indicates the posi-

tive involvement of BRS in plant growth (Castorina and 

Consonni, 2020). 

 

EFFECT OF BRSs ON PLANT BIOMASS  

UNDER SALINITY STRESS 

 

Biomass of a plant define by two major components, 

including root and shoot weight of the plant. In terms of 

growth parameters, plant biomass gives an idea about 

the level of severity of a stress condition. Foolad (2004) 

studied the impact of salinity on plants and reported 

that at lower salt stress conditions, plant growth reduc-

es due to low availability of nutrients to plant, while at 

higher salinity, plant growth reduces due to different 

factors like ion imbalance, nutrient imbalance osmotic 

stress which disturbs the functioning of a plant at the 

cellular level. A significant reduction in the dry weight of 

root as well as of the shoot was observed in some se-

lected rice varieties (Puvanitha and Mahendran, 2017). 

This reduction in dry weight may be due to high meta-

bolic energy costs, which leads to decreased carbon 

content (Netondo et al., 2004). This decrease in dry 

weight is caused due to high ion toxicity that affects the 

nutrient uptake in the seedling (Datta et al., 2009). 

A significant elevation in fresh weight of both root and 

shoot has been observed in Lucerne on priming the 

seeds with EBL (Zhang et al., 2007).  It is reported that 

BRS application improves growth of plants by enhanc-

ing cell division and cell elongation in Liriodendron tuli-

pifera. BRSs also modify the carbohydrate content of 

the cell wall, which depicts the positive role of BRSs in 

plant growth that are subjected to stress (Jin et al., 

2014). There is an increase in shoot biomass in the 

wheat plant by applying BRS under salinity stress 

(Shahbaz and Ashraf, 2007). Similarly, BRS application 

also improves soybean biomass accumulation under 

salinity stress (Soliman et al., 2020). Sousa et al. 

(2021) reported that EBR spray-on salinity exposed 

tomato plant enhances the dry matter of different plant 

parts like root and shoot. According to Steffens (1991), 

BRSs affect plant growth by controlling the cell division 
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and cell enlargement process. BRSs application also 

improves plant growth during zinc stress in radish 

plants (Ramakrishna and Rao, 2015) and in Phaseolus 

vulgaris L. under salinity and cadmium stress (Rady, 

2011). BRs also reported enhancing cell division in pa-

renchyma cells of Helianthus tuberosus (Clouse and 

Zurek, 1991). BRSs are known to be involved in wall 

loosening of epicotyl (Zurek et al., 1994) and hypocotyl 

of Brassica chinensis and Cucurbita maxima (Wang et 

al., 2001), which indicates the positive role of BRSs in 

maintaining plant biomass. 

 

EFFECT OF BRSs ON PHOTOSYNTHETIC  

PIGMENTS UNDER SALINITY STRESS 

 

Salinity has a negative effect on photosynthetic pig-

ment, which ultimately affects the photosynthesis pro-

cess. The major reason for photosynthesis inhibition via 

salinity is disturbed water potential (Betzen et al., 

2019). It is believed that in salt stress conditions, there 

is an increased accumulation of Na+/Cl- in the chloro-

plast, which directly inhibits the photosynthesis process 

in plants (Slabu et al., 2009). Similar results were also 

observed in rice plants (Amirjani, 2011). They conclud-

ed that chlorophyll-b concentration was more affected 

as compared to chlorophyll-a. Saha et al. (2010) and 

Chutipaijit et al. (2011) also found a reduction in chloro-

phyll content under salt stress in Vigna radiata and Ory-

za sativa, respectively. It is reported that the decrease 

in chlorophyll content of sunflower under salinity is due 

to salinity-induced chlorophyll degradation or reduced 

synthesis of chlorophyll. Reduced production of 5-

aminolaevulinic acid, which acts as a precursor of chlo-

rophyll biosynthesis, ultimately leads to reduced chloro-

phyll synthesis (Santos, 2004; Parida et al., 2002). 

Fang et al. (1998) stated that during the process of 

chlorophyll degradation, there is a conversion of chloro-

phyll-a into chlorophyll-b. Reduction in chlorophyll con-

tent can also be linked with the increased ROS concen-

tration, which leads to photosynthetic pigment oxida-

tion. Enhanced activity of chlorophyllase also results in 

decreased chlorophyll content (Kato et al., 1985). 

A decrease in photosynthetic pigment can be alleviated 

with the treatment of EBL by regulating the transcription 

as well as translational processes of photosynthetic 

pigment formation. EBL application also decreases the 

rate of chlorophyll degradation (Bajguz and Piotrowska-

Niczyporuk, 2014; Honnerová et al., 2010). The use of 

BRSs improves the photosynthetic efficiency of plants 

via regulating the chlorophyll concentration and de-

creasing the ROS content to ameliorate the deleterious 

effects of salinity stress (Wu et al., 2017). EBL applica-

tion also improved the chlorophyll content in Pisum 

sativum L. (Shahid et al., 2011) and Brassica oleraceae 

L. under salt stress (Çağ et al., 2007). Siddiqui et al. 

(2018) also reported the increase in chlorophyll content 

of Brassica juncea L. by treating the plants with 28-HBL 

and 24-EBL. Behnamnia et al. (2009a) suggested that 

BRS treatment improves the light-capturing efficiency 

of plant and enhances both the transcriptional and 

translational process of the enzymes involved in the 

chlorophyll biosynthesis.  BRS shows a significant posi-

tive effect on the chlorophyll content including both 

chlorophylls a and b of Robinia pseudoacacia L. under 

salinity (Yue et al., 2019). BRs improve the chlorophyll 

content in Brassica juncea by enhancing the gene ex-

pression involved in the synthesis of enzymes, leading 

to chlorophyll synthesis (Hayat et al., 2007). It is also 

suggested that BRS improves the chlorophyll content 

via retarding the process of chlorophyll degradation and 

other proteins related to this protein primarily associat-

ed with the light-harvesting complex (Holá, 2011). How-

ever, the exact mechanism is still unknown, and a lot of 

study on this topic needs to be done.  

 

EFFECT OF BRSs ON PHOTOSYNTHESIS UNDER 

SALINITY STRESS 

 

Photosynthesis is the major physiological process that 

occurs in plants. This process indicates the physiologi-

cal status of the plant. Out of these two photosystems, 

photosystem-II is considered more sensitive to salt 

stress (Allakhverdiev et al., 2000). Stepien and Klobus 

(2005) reported that reduced efficiency of photosystem-

II under salt stress conditions, leading to reduced pho-

tosynthetic performance. This reduction in photosynthe-

sis leads to decreased plant biomass production as 

well as storage (Demetriou et al., 2007). Salt stress 

alters the process of oxygen-evolving in barley by af-

fecting the photosystem-II functioning and reducing 

plant growth (Kalaji et al., 2011). Similar results were 

also recorded in Brassica juncea (Mittal et al., 2012). 

They suggested that reduced photosynthetic activity is 

due to alteration in D1 protein of photosystem-II and 

rate of electron transport. It is also reported that during 

salt stress, there is a reduction in the ability of electron 

transfer in photosystem-II. During salinity stress condi-

tions, alteration at both donor and acceptor side of pho-

tosystem-II occurs, resulting in decreased electron 

transport efficiency (Lu and Vonshak, 2002). 

BRSs application enhances the photosynthetic rate of 

plants by enhancing the RuBisCo activity and other 

main enzymes included in the Calvin cycle (Yin et al., 

2021). BRSs also improve the uptake of CO2 that en-

hance the stomatal conductance (Siddiqui et al., 

2018b). Fariduddin et al. (2014 a) and Yusuf et al. 

(2017) suggested that BRS application improved the 

formation and activity of RuBisCo enzyme, enhancing 

the gaseous exchange parameters under salinity 

stress. It promotes the photosynthetic efficiency in 

https://link.springer.com/article/10.1007/s11356-014-3739-1#ref-CR50
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plants by improving the repair process of D1 protein 

and enhance its stabilization. BRs protect the plant 

from the damage resulting from the excess energy ex-

citation in the reaction center. It is also suggested that 

EBL treatment increases the activity of different antioxi-

dant enzymes like superoxide dismutase (SOD), ascor-

bate peroxidase (APX), and glutathione peroxidase 

(GPX), which reduces the concentration of ROS and 

protects the photosynthetic apparatus and synthesis of 

pre-D1 protein from the inhibitory effect of H2O2 (Xia et 

al., 2009). EBL also improves the expression of the 

different gene that encodes peroxidase, ATP24a, and 

ATP2 (Goda et al., 2002). Siddiqui et al. (2018c) in-

formed that BRS regulates photosynthesis process via 

maintaining the development of stomatal and chloro-

plast structures. They further revealed that BRS regu-

lates the photosynthesis process under stress as well 

as non-stress conditions. The efficiency of PSII (ϕPSII) 

indicates the overall photosynthesis state. It is reported 

to increase with the application of BRS (Yu et al., 2004; 

Jiang et al., 2012a; Hu et al al., 2013a, b; Li et al., 

2016). BRS enhances the net photosynthetic rate by 

elevating the concentration of CO2 assimilation and 

improving the stomatal conductance and RuBisCo ac-

tivity (Gruszka, 2013). 

 

EFFECT OF BRSs ON PROTEIN CONTENT UNDER 

SALINITY STRESS 

 

Proteins are considered the major biomolecules global-

ly and play a wide range of different functions in plants. 

They play both functional as well as structural roles in 

plants. Both positive and negative impacts of salinity 

stress on protein content have been recorded in vari-

ous studies. A negative impact of salinity on different 

rice varieties has been reported which causes a signifi-

cant loss of protein content in rice. Salt stress causes a 

great reduction in the water potential of plants which 

results in a decreased protein formation (Jamil et al., 

2012). Along with it, salt stress also causes the dissoci-

ation of poly-ribosomal units ultimately leading to de-

creased protein content in plants (Bardzik et al., 1971; 

Jones, 1996). However, contrasting results were found 

in tomato (Chao et al., 1999) and clover plants (Sibole 

et al., 2003).  

Rattan et al. (2012) studied the growth of maize (Zea 

mays) plants subjected to salinity stress and then treat-

ed these plants with BRS and observed that BRS miti-

gates the impacts of salinity via enhancing the level of 

protein concentration and different compatible solutes. 

Similar results were also reported in Wolffia arrhiza, 

which shows the positive role of BRSs in maintaining 

the accumulation and synthesis of protein. BRSs im-

prove the protein content by enhancing the rate of 

translation that leads to enhanced protein formation 

(Chmur and Bajguz, 2021; Bajguz and Asami, 2005). 

Similarly, Bajguz and Piotrowska-Niczyporuk (2014) 

also reported the higher protein content in Chlorella 

vulgaris on BRS treatment. According to them, BRS 

improve protein content by enhancing the expression of 

target genes. BRSs increase the total soluble protein 

content in the rice by enhancing the Hill reaction effi-

ciency, which leads to an increased accumulation of 

photosynthetic pigments (Maibangsa et al., 2000). Un-

der stress conditions, BRS is reported to improve the 

activity of proteins and membrane-related enzymes via 

regulating the protein folding or by enhancing the inter-

action of proteins with sterols (Lindsey et al., 2003). 

However, contrast results were recorded in Malus hu-

pehensis. It is documented that level of soluble protein 

content is elevated in M. hupehensis under salinity 

stress conditions significantly, but BRS application 

does not have any significant positive impact on protein 

content (Su et al., 2020). 

 

EFFECT OF BRSs ON PROLINE CONTENT UNDER 

SALINITY STRESS 

 

Proline is a common amino acid that acts as one of the 

major osmolytes. It is accumulated in plants under 

stress conditions and helps the plant maintain its os-

motic status. High concentration levels of proline occur 

under saline conditions, which reflects the positive role 

of proline in stress conditions (Sharma et al., 2013). 

This increase in proline content, along with other organ-

ic molecules, prevents the cell from different toxic or 

inhibitory processes, including maintenance of turgidity 

of cells, providing enzyme stability, and regulating ROS 

activity (Szabados and Savouré, 2010). Proline also 

stabilizes the cell membrane and protein structure and 

helps regulate redox potential in plants (Ashraf and 

Orooj, 2006). Increased proline content in 

Clerodendron inerme was recorded under salinity 

stress conditions (Silambarasan and Natarajan, 2014). 

Similar results were also observed in rice (Demiral and 

Türkan, 2006), Brassica juncea (Madan et al., 1995). 

Different researchers have different views to justify in-

creased content of proline under salinity stress. It is 

suggested that it could be due to the prevention of 

feedback inhibition of proline biosynthetic pathway 

(Widholm, 1988). It is also believed that increased pro-

line content is due to decreased activity of proline de-

grading enzymes (Kandpal et al., 1981). 

Zeng et al. (2010) observed that if there were a muta-

tion in the BRSs synthetic pathway or its signaling path-

way, plants would show increased sensitivity to salt 

stress. It is suggested to occur due to decreased tran-

scriptional activity of proline-producing enzymes. This 

indicates the positive involvement of BRSs and proline 

in improving salinity tolerance.  

An enhancement in proline content was also recorded 

by 24-EBL application in Lycopersicum esculentum 
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cultivars under drought stress (Behnamnia et al., 

2009b). 24-EBL treatment increases the proline content 

under salinity stress which defines the protective role of 

BRSs during salinity. It is suggested that BRSs in-

crease proline content due to improved expression of 

proline biosynthesis (Özdemir et al., 2004). BRs treat-

ment increases the proline content in cucumber, which 

helps the plant to mediate the adverse impact of auto-

toxicity stress by maintaining the cell membrane sta-

bility (Yang et al., 2019). Kutby et al. (2020) observed 

the increase in proline content in tomatoes under sa-

linity stress which further increased under BRS appli-

cation. According to them, proline aids the plants to 

alleviate the osmotic stress by reducing the uptake of 

toxic ions (Hayat et al., 2012). Wani et al. (2019) also 

observed the elevation in proline content via BRS ap-

plication in mustard. Similar results were also record-

ed in cowpea under salinity stress (Cardoso et al., 

2019). Elevation in proline content through BRS appli-

cation was also observed in soybean under salt stress 

(Alam et al., 2019). 

 

EFFECT OF BRSs ON MDA CONTENT UNDER  

SALINITY STRESS 

 

Lipid peroxidation is believed to be the major process, 

which defines the metabolic state of membranes. It 

gives an idea of the overall status of membrane fluidity, 

membrane permeability, and separation of membrane 

protein that regulates the distribution of ions across the 

cell membrane. Malondialdehyde (MDA) content repre-

sents the status of the extent of lipid peroxidation in a 

plant. MDA content in sunflower was reported to be 

elevated under salt stress conditions, which shows the 

negative impact of salinity on membrane (Ebrahimian 

and Bybordi, 2012). Under the salinity stress condi-

tions, there is an increased concentration of ROS, 

which leads to lipid peroxidation and increases the 

MDA content of plants. However, after the application 

of EBL, a decline in the level of MDA was observed. 

This signifies that under salinity stress conditions, treat-

ment of EBL increases the activity of antioxidant en-

zymes, which reduces the ROS content and prevents 

lipid peroxidation (Ahammed et al., 2013). EBL applica-

tion also helps to maintain membrane integrity by regu-

lating the MDA content of the cell, which prevents the 

cell membrane from being damaged (Sharma et al. 

2013). Rajewska et al. (2016) believed that BRs treat-

ment helps the plant in the adjustment of cell redox 

potential via maintaining the lipid peroxidation level in 

the cell membrane by BRs. It is reported that both en-

dogenous and exogenous BRs protect the plant from 

oxidative stress by improving the stress tolerance effi-

ciency of maize plants. Further, it is found that vp14 

gene is an important gene involved in the abscisic acid 

(ABA) biosynthesis pathway and BRs upregulate this 

gene expression in the leaves of maize plants. This 

indicates that BRs enhance the stress tolerance to 

oxidative stress by maintaining the synthesis of ABA 

(Zhang et al., 2011). A decline in MDA content in EBL 

and HBL treated maize plants was observed under 

salinity stress (Rattan et al., 2020). This reduction in 

MDA content involves the enhanced scavenging of 

ROS, which decreases the membrane damage due to 

lipid peroxidation (Tanveer et al., 2018). Amraee et al. 

(2020) observed the NaCl treatment causes an in-

crease in MDA content in tolerant variety of flax, 

whereas no significant change was recorded in sensi-

tive varieties. However, BRS application declines the 

total MDA content in both tolerant and sensitive varie-

ties. Similar results were also recorded in potatoes 

through BRS priming subjected to salinity stress which 

indicates the positive role of BRS in metigating the 

negative impact of salt stress on lipid peroxidation 

level (Efimova et al., 2018). Yue et al. (2018) also re-

ported that pretreatment of BRS declines the MDA 

content in Robinia pseudoacacia L. under salinity 

stress. 

 

EFFECT OF BRSs ON ANTIOXIDANT ENZYMES 

UNDER SALINITY STRESS 

 

All plants produce different ROS via various metabolic 

processes. To protect the excess ROS accumulation, 

these plants produce different antioxidant enzymes like 

catalase (CAT), SOD, peroxidase (POD), etc. (Foyer et 

al., 1994). Enhanced level of antioxidant enzymes has 

been reported in many plants like maize and wheat 

(Lewis et al., 1989), rice (Fadzilla et al., 1997), and 

Catharanthus roseus (Misra and Gupta, 2006) in re-

sponse to salinity stress. To increase the salt tolerance 

of a plant, it is necessary that the formation and scav-

enging of ROS must be regulated in the chloroplast 

(Miller et al., 2010). BRSs enhance the activities of vari-

ous antioxidant enzymes that help the plant to diminish 

the harmful effect of accumulated ROS, which ultimate-

ly improve their stress tolerance efficiency (Vázquez et 

al., 2019). BL has been reported to mitigate the harmful 

effects of salinity stress in maize plants by improving 

the activity of antioxidant enzymes (El-Khallal et al., 

2009). 28-HBL improves the activity of different antioxi-

dant enzymes under salt conditions (Arora et al., 2008). 

Vardhini (2011) also reported similar results in sor-

ghum. Along with the enhanced activity of glutathione 

reductase (GR), SOD, and CAT, they also observed 

the declined activity of two other antioxidant enzymes, 

named POD and polyphenol oxidase (PPO). Exoge-

nous application of BRs increases the activity of antiox-

idant enzymes, leading to improved stress tolerance 

efficiency and increasing the accumulation of proline 
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and sugar (Qingmao et al., 2006). Similar results were 

also obtained by pre-treating the seeds with BL sowing 

(Zhang et al., 2007). The application of BRs enhances 

the storage of apoplastic hydrogen peroxide (H2O2), 

which improves the antioxidant system of the plant and 

leads to enhanced tolerance efficiency of plant species 

to oxidative stress (Jiang et al., 2012b; Fariduddin et 

al., 2014b). Sharma et al. (2013) also observed similar 

results and found that EBL treatment increases the 

overall activity of different antioxidant enzymes like 

SOD, CAT and APX except for GR and monodehy-

droascorbate reductase (MDHAR), which indicates the 

significant role of EBL in controlling the level of ROS 

activity. Similar results were also obtained in cucumber 

(Xiao-min and Wei, 2013), eggplant (Ding et al., 2012), 

and Lycopersicon esculentum (Ogweno et al., 2008). 

Application of 24-EBL increases the expression of 

osBRI1 and OsDWF4 in the plants, which are involved 

in BRS receptor and BRS biosynthesis, respectively, 

which ultimately leads to improved activity of antioxi-

dant enzymes (Sharma et al., 2013). 

Jiang et al. (2012c) also believed that the stress toler-

ance induced via BRS application is facilitated through 

enhanced expression of different antioxidant enzymes. 

This stress tolerance mechanism is facilitated by in-

creased synthesis and storage of H2O2, which acts as a 

signaling molecule. This enhanced concentration of 

H2O2 improves the activity of antioxidant enzymes, pro-

teins and different transcription factors that improve the 

ROS scavenging activity at the cellular level and ulti-

mately leads to enhancing the efficiency of plants to 

tolerate the harmful effects of abiotic stress (Xia et 

al., 2009; Cui et al., 2011; Zhu et al., 2013). Nie et al. 

(2013) studied the role of BRSs in H2O2 accumulation in 

tomatoes and in improving stress tolerance in plants. It 

suggested role of respiratory burst oxidase homolog1 

(RBOH1), and mitogen-activated protein kinase 1/2 

(MPK 1/2) in the accumulation of H2O2 in the apoplast. 

They reveal that MPK2 plays a more significant role in 

its H2O2 accumulation than MPK1. When the activity of 

RBOH1 is silenced in Nicotiana benthamiana, it is ob-

served that ROS scavenging activity is reduced which 

leads to decreased stress tolerance efficiency of the 

plant (Deng et al., 2015). BRS application also im-

proves the activity of antioxidant enzymes like CAT, 

SOD, APX and POX in Eucalyptus urophylla plants that 

are subjected to salinity (Oliveira et al., 2019). Singh et 

al. (2020) observed that different antioxidant enzymes 

like CAT, SOD, and others increased under salinity 

stress conditions which were further elevated by the 

application of EBL. It is documented that application of 

28-HBL improves the stress tolerance efficiency in 

Brassica juncea via improving the ROS scavenging 

activity of different antioxidant enzymes (Kaur et al., 

2018). 

 

EFFECT OF BRSs ON ION HOMEOSTASIS  UNDER 

SALINITY STRESS 

 

An appropriate ratio of ions is necessary for the normal 

growth and development of plant (Wang et al., 2003). It 

is suggested that enhanced absorption of ions Na+ and 

Cl- reduced the uptake of other nutrients like nitrogen, 

which are important for the proper growth of plants 

(Zhu, 2001). Along with this, there are also many other 

harmful effects of sodium accumulation in plants like 

disturbed membrane stability as well as also membrane 

structure (Kurth et al. 1986). Khan et al. (2000) record-

ed effect of salinity on Atriplex griffithii and suggested 

that with the increase of salinity, there is an elevation in 

the level of Na+ and Cl- in root, stem and leaves. On the 

other hand, a reduction in the level of Ca2+ and Mg2+ 

concentration is observed in stems and leaves. High 

concentration of Cl- is the primary reason for the re-

duced growth of plants. A decrease in the photosyn-

thetic efficiency of plants is observed due to elevated 

levels of Na+ because it reduces the stomatal conduct-

ance of leaves by reducing the uptake of Ca+ and K+. In 

contrary to Na+, a higher concentration of Cl- inhibits 

photosynthesis by degrading chlorophyll molecules 

(Tavakkoli et al., 2011). 

In a study, when canola plant was grown under salt 

stress with the application of BRSs, it is found that 

BRSs helps the plants to maintain the osmotic potential 

in leaves and also regulates the level of different ions 

which helps the canola plant to attain ionic homeostasis 

(Liu et al., 2014). Application of HBL and EBL under 

salinity maintains ionic balance in seedlings by reduc-

ing the concentration of Na+ and restoring the level of 

K+ (Rattan et al., 2020). It is believed that BRS applica-

tion maintains the ionic homeostasis in plants by de-

creasing the transportation of Na+ (Eleiwa et al., 2011). 

Exogenous application of 24-EBL enhances the activity 

of nitrate reductase, nitrite reductase, glutamine syn-

thase and glutamate synthase, which helps to maintain 

the ionic balance in tomato seedlings. Further, BRSs 

treatment also maintains the electrochemical gradient 

in root and leaves of plant, which help the plants allevi-

ate the stress conditions (Shu et al., 2016). Talaat and 

Shawky (2013) observed that BRS application in wheat 

plant under salinity stress conditions maintain the ionic 

balance in plant cell by regulating the uptake of differ-

ent ions like Na+, K+, Ca2+, Mg2+, N and P. BRSs en-

hances the uptake of all ions except Na+. They also 

observe the elevation in the organic content of plant by 

BRSs application. A positive co-relation is reported be-

tween Ca2+ and Calcium/calmodulin-dependent protein 

kinase (CCaMK) under BRSs treatment in plants. An 

increase in Ca2+ concentration is observed during BRS 

treatment, which enhances the activity of CCaMK. They 

also revealed that this increased activity of CCaMK 

https://link.springer.com/chapter/10.1007/978-981-13-6058-9_11#CR22
https://link.springer.com/chapter/10.1007/978-981-13-6058-9_11#CR147
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Gene/Transcriptional  
factors 

Plant Response Effect of EBL Reference 

MhSOS1 Malus hupehensis Maintaining cytoplas-
mic Na+ concentration 

Increasing gene 
expression 

Su et al., (2020) 

MhNHX1-3, 
MhNHX4-1, MhNHX4-2 

Malus hupehensis Maintaining cytoplas-
mic K+ concentration 

Increasing gene 
expression 

Su et al., (2020) 

CsAOX, 
CsACO1, 
CsACO2, 
CsACS1, CsACS2 
CsACS3 

Cucumis sativus, to-
mato 

Enhance salt toler-
ance 

Increase gene 
expression 

Li et al., (2013), 
Zhu et al., (2016) 

ERF115 
PSK5 

Arabidopsis Enhance quiescent 
cell division 

Regulate gene 
expression 

Yang et al., (2001), 
Kutschmart et al., 
(2009), Heyman et 
al., (2013), Wei & Li 
(2016) 

Table 1. Regulation of different genes and transcriptional factors with the application of BRs. 

further increases the concentration of Ca2+ in the cyto-

sol (Yan et al., 2015). Otie et al. (2021) reported that 

an exogenous application of BL improves the uptake of 

different ions like K+, Ca2+, and Mg2+ in soybean plants 

subjected to salinity stress. They also recorded that BL 

application reduces the concentration of Na+ in the soy-

bean leaves. It is observed that BL application under 

salinity stress causes the modification of plasma mem-

brane, enhancing the plant's ability to uptake and as-

similate the different nutrients (Ali et al., 2008). Various 

reports suggested that BL reverses the negative impact 

of NaCl on K+ leakage in the root and shoot region of 

the plant (Azhar et al., 2017). BL treatment also allevi-

ates the Na+ toxicity by maintaining the K+/Na+ ratio 

(Dong et al., 2017). 

Conclusion 

The review clearly shows that salinity has a great neg-

ative effect on crop plants. Salinity stress is one of the 

most common abiotic stress that affects crop produc-

tion in the soil. The physiological and biochemical pro-

cesses in plants are badly affected by the increased 

concentration of salinity. Various approaches have 

been developed to counter the negative impact of sa-

linity until now, but the situation is almost the same. So, 

there is a great need for attention to sustainable agri-

cultural production. BRS is the most important plant 

hormone in relation to various stresses. BRS help the 

plant to alleviate the harmful salt stress and provide 

tolerance to the particular stress. It also enhances the 

antioxidant enzyme activities and regulates the ROS 

formation in the plant cell under salt stress conditions. 

BRSs act as a signaling molecule in the plant during 

stress conditions and activate all the defense mecha-

nisms to face the stressed condition. The BRSs re-

sponse in plants activates various enzymes involved in 

the defense mechanism. With the application of BRSs, 

plants gain much resistance to cope with the stress and 

improve their processes under salinity. BRSs play a 

great role in the improvement in yield production under 

salinity. There has been much research on the molecu-

lar level of BRS under salinity but there is a lack of 

proper mechanism and a better understanding of how it 

reduces salt stress in plants. Much research is needed 

to clearly understand its mechanism in salt stress alle-

viation. 
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