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INTRODUCTION 

Human melanoma is a fatal type of skin cancer and 

causes most skin cancer deaths. Only 20-30% of mela-

noma patients with visceral metastasis live beyond 5 

years, and early detection with excision surgery is the 

sole reliable treatment of melanoma (Dind et al., 2021; 

Melo et al., 2021; Baldelli et al., 2020). Inflammation is 

important for maintaining homeostasis and monitoring 

stress signals that arise with tissue malfunction 

(Medzhitov, 2008). Chronic inflammation has been rec-

ognized as a driving force for epidermal cell transfor-

mation and malignant progression. Increased risk for 

the development of certain cancers is associated with 

inflammatory processes. Human melanoma is a type of 

tumor strongly related to inflammatory processes due 

to the high levels of secreted cytokines and the produc-

tion of reactive oxygen species (ROS) and reactive 

nitrogen species (RNS). Chronic inflammatory mole-

cules drive skin cancer development by signaling to 

both tumor cells and immune cells (Tang and Wang, 

2016). Many clinical studies support a possible link 

between chronic inflammation and cancer. Tumours 

can develop at chronically inflamed tissues, triggered 

by various factors (Kim et al., 2021). 

Nitric oxide (NO•) is a major mediator of inflammation 

derived from endogenous or exogenous sources (Li 

and Wogan, 2005). An excessive production of NO• 

was related to inflammation, which can lead to  

increased mutations and altered enzyme and protein 
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function important to the multistage carcinogenesis pro-

cess, while Low levels of endogenous or exogenous 

NO• enhance the progression of cancer in vitro and in 

vivo (Li and Wogan, 2005; Miranda et al., 2021). There-

fore, this is complicated because it would appear to 

have both tumor promoting and inhibiting effects which 

are probably dependent on the local concentration of 

the molecule. 

NO• is present in various types of skin cells, including 

keratinocytes, melanocytes, Langerhans cells, fibro-

blasts and endothelial cells. Previously unknown roles 

for nitric oxide in dermatology continue to be uncov-

ered. NO• may also be pivotal during skin cancer thera-

py by way of mediating treatment resistance to cisplatin 

treatment in melanoma cells in vitro (Chen et al., 2021; 

Drača et al., 2021; Mazurek and Rola, 2021). Strong 

clinical and experimental evidence shows a correlation 

between the production of NO• by tumor cells and re-

duced survival of patients with advanced melanoma 

(Dind et al., 2021; Li et al.; 2022, Obrador et al., 2021) 

as well as poor response to chemotherapy and radia-

tion therapy (Skudalski et al., 2022; Hanly et al., 2022). 

However, the molecular mechanisms through which 

NO• induces apoptosis in human melanoma cells or 

protects tumors have not been fully defined.  

The purpose of the present study was to extend the 

above findings to determine how NO• dose adminis-

tered continuously over substantial periods affects hu-

man melanoma cell growth and apoptotic cell death. 

The systems used to introduce NO• in these experi-

ments were designed to approximate conditions of ex-

posure physiologically relevant to chronic inflammation 

states.  

MATERIALS AND METHODS 

Cell cultures and chemicals   

The human melanoma A375 cell line was selected in 

this study because existing evidence suggests the pos-

sible involvement of NO• in the etiology of melanoma 

(Ekmekcioglu et al., 2006). A375 cells were maintained 

in culture media composed of DMEM with 10% FBS, 2 

mM L-glutamine, 100 U/mL penicillin, 100 μg/mL strep-

tomycin. This cell line was maintained at 37 ºC in hu-

midified 5% CO2 atmosphere. Reagents were pur-

chased from the following sources: cell culture materi-

als, Lonza (Walkersville, MD); 1400W dihydrochloride, 

S-Methyl-L-thiocitrulline (SMTC), aminoguanidine 

(AMG) and GenEluteTM mammalian genomic DNA mini-

prep kit, Sigma (St. Louis, MO); N
G-Monomethyl-L-

arginine, Monoacetate Salt (NMA), CalBiochem (Salt 

Lake City, UT); NO• assay kit, R&D Systems 

(Minneapolis, MN); Apoptosis detection kit, Clontech 

Laboratories (Palo Alto, CA); ECLTM western blotting 

detection reagents, GE Healthcare Bio-Sciences 

(Piscataway, NJ); RIPA lysis buffer and secondary goat 

anti-rabbit or anti-mouse IgG conjugated to horseradish 

peroxidase, Santa Cruz Biotechnology (Santa Cruz, 

CA); anti-Bax and anti-caspase 3 antibodies, Cell Sig-

naling Technology (Beverly, MA); anti-Fas and anti-

DR5 antibodies, StressGen Biotechnologies Corp 

(Victoria, BC, Canada); anti-caspase 9 and PARP anti-

bodies, BD PharMingen (San Diego, CA); and anti-p53 

and anti-actin antibodies, Oncogene (Cambridge, MA). 

Other reagents were obtained as follows: gases from 

Air Gas (Edison, NJ); Silastic™ tubing (0.058 in. i.d., 

0.077 in. o.d.) from Dow Corning (Midland, MI). 

NO• exposure   

One day prior to treatment, A375 cells cultured at a 

density of 70-80% confidence were plated in 60 mm 

tissue culture plates to allow the cells to adhere, after 

which they were exposed to NO• by diffusion through 

permeable SilasticTM tubing utilizing specially designed 

reactors, with which NO• dose and dose-rate can be 

tightly controlled at steady-state concentrations de-

scribed elsewhere (Kim and Kim, 2016; Kim, 2017; Kim 

et al., 2012; Tripathi et al., 2013). In this experiment, 

100% NO• was used at a steady-state concentration of 

11 μM. The total NO• dose delivered into the medium 

was controlled by varying the exposure time and ex-

pressed in units of μM • min: 630 μM • min (90 min); 

1260 μM • min (180 min); 2520 μM • min (360 min); and 

3360 μM • min (480 min). Cells exposed to argon gas 

under the same conditions served as negative controls.  

Determination of cell viability and NO• levels   

Cell viability 24 h after treatment was determined by 

trypan blue exclusion. Total NO• [nitrate (NO3¯) plus 

NO2¯] and NO2¯ production were measured with a NO• 

assay kit (R&D Systems) according to manufacturer's 

instructions.  

Detection of apoptosis   

For determination of the rate of apoptosis, cells were 

cultured as described above and exposed to 3360 μM • 

min NO•, followed by 24, 48 and 72 h incubation in a 

humidified incubator with 5% CO2. Cells were harvest-

ed by trypsinization centrifugation and measured by a 

Becton Dickinson FACScan (excitation at 488 nm) 

equipped with CellQuest software following annexin V-

FITC and propidium iodide staining modification of a 

previously described protocol (Kim et al., 2009).  

DNA fragmentation   

A375 cells were treated as above in the NO• delivery 

system. For analysis of DNA fragmentation by agarose 

gel electrophoresis, total DNA was isolated at times 6, 

12, 24 and 48 h posttreatment, using a GenEluteTM 

mammalian genomic DNA miniprep kit as described 

(Kim et al., 2009). DNA fragments were separated on a 

1.8% (w/v) agarose gel (50 V for 2 h) and photographic 
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documentation was performed after staining with 0.5 

ng/mL ethidium bromide.  

Immunoblotting   

Cells were collected from time points 12, 24 and 45 h 

after treatment and were lysed and the lysates were 

prepared using RIPA buffer with a protease inhibitor 

cocktail. The protein content was measured by the 

Bradford assay and 60 μg of total protein were separat-

ed by SDS-PAGE and transferred to polyvinylidene 

difluoride (PVDF) membranes (Bio-Rad). Membranes 

were blocked for 1-3 h in 5% w/v dried nonfat milk in 

TBS with 0.1% Tween-20 and incubated with primary 

antibodies in the blocking buffer overnight at 4 °C: anti-

p53 (diluted 1:1000), anti-Bax (diluted 1:1000), anti-

DR5 (diluted 1:1000), anti-Fas(CD95) (diluted 1:2000), 

anti-caspase 9 (diluted 1:1000), anti-caspase 3 (diluted 

1:1000), anti-PARP (diluted 1:1000), and anti-actin 

(diluted 1:8000). The secondary reaction was per-

formed using HRP-conjugated anti-mouse or anti-goat 

IgG diluted 1:8000 in the blocking buffer. As directed by 

the manufacturer, the immunoblots were detected us-

ing ECL. Finally, protein blots were visualized by chem-

iluminescence using the ChemiDoc imaging system 

(Bio-Rad). 

Statistical analysis  

Results were expressed as mean ± standard deviation 

(SD) of triplicate values. They were analyzed with 

SPSS version 12.0 (SPSS Inc. Chicago, IL, USA) using 

two-tailed Student’s t-test. Significant difference was 

considered at p < 0.05 and p < 0.01. 

RESULTS AND DISCUSSION 

Effect of NO• on cell viability 

The role of NO• in tumor progression remains unclear. 

NO• has been demonstrated to promote apoptosis of 

cancer cells (Skudalski et al., 2022; Shi et al., 2022). 

Whereas NO• has been demonstrated to inhibit apopto-

sis in a number of cell types (Özenvera and Efferth,  

2020; D'Este1 et al., 2020). Here the present study 

hypothesized that NO• might participate in regulating 

melanoma survival and apoptotic death. Importantly, in 

this present study, continuous NO• and O2 were trans-

fered into culture media in a stirred chamber by diffu-

sion through gas-permeable tubing, the rates of replen-

ishment balancing the respective rates of consumption. 

A model to calculate NO• and O2 concentrations as a 

function of tubing lengths and delivery-gas composition 

have been described and reported previously (Kim et 

al., 2012). This system has been used to quantify NO•-

induced cytotoxicity and mutagenesis.  

A375 cells were exposed to increasing NO• cumulative 

doses from 0 to 3360 μM • min. This dose escalation 

was achieved by exposing cells in a reactor to a steady

-state concentration of 11 μM NO• for increasing 

lengths of time from 0 to 280 min. Twenty-four hours 

postexposure, cells showed decreased cell viability, 

compared with argon controls, ranging from 12% to 

78% after exposure to cumulative doses of NO• from 

1260 μM • min (180 min) to 3360 μM • min (480 min), 

respectively (Fig. 1). Control cells with argon treatment 

had no effect on cell viability. 

Cell cycle distribution 

By FACS analysis of cell DNA content, there was an 

accumulation of subploid cells, sub-G1 peak (apoptotic 

cells), in A375 cells after treatment with NO• (0 to 3360 

μM • min) following twenty-four hours of exposure 

when compared with Ar-treated control group (Table 1). 

Exposure of NO• resulted in a progressive and sustained 

accumulation of cells in the S phase, while those in the 

G1 and G2/M phases decreased after treatment with NO• 

(Table 1). Treatment with argon, the carrier for NO•, did 

not affect cell survival, apoptosis, or cell cycle. 

Apoptosis of A375 cells identified by flow  

cytometric analysis and internucleosomal DNA 

fragmentation 

Further, annexin V staining showed that 3360 μM • min 

NO• led to increased apoptosis in A375 cells (Fig. 2). 

Apoptosis was sharply increased 24 and 48 h after 

treatment; approximately 37 and 68% of cells were 

apoptotic 24 and 48 h after treatment with NO• (3- and 

5.5-fold over Ar control level), respectively. All increas-

es were statistically significant (p < 0.01) (Fig. 2A). One 

of the biochemical features of apoptosis is the frag-

 Apoptotic cells (%) Non-apoptotic cells (%) 

Total NO• dose (μM • min) (sub-G1) S G2/M 

Ar 1.6 ± 0.71 12.9 ± 0.39 59.6 ± 2.19 

1260 9.4 ± 2.71** 13.9 ± 2.41 55.6 ± 4.35 

2520 12.2 ± 3.02** 12.9 ± 3.76 49.2 ± 3.65 

3360 24.3 ± 3.12** 21.7 ± 0.89** 41.4 ± 1.03 

Table 1. Effect of steady-state NO• on cell cycle distribution in A375 cells 

Cellular distribution (as percentage) in different phases of the cell cycle (sub-G1, G0/G1, S and G2/M) 48 h after treatment with cumula-

tive total dose of NO• is represented. Results are presented as mean ± SD of three assays. *p < 0.05 and **p < 0.01 compared to Ar 

control by Student t-test.  
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mentation of the genomic DNA. Therefore, we isolated 

the genomic DNA after treating the cells with 3360 μM • 

min NO• for 6-48 h postexposure. NO• induced a DNA 

ladder formation, which confirmed death by apoptosis 

of the melanoma treated (Fig. 2B).    

Expression of apoptotic pathway-regulating  

proteins 

As a next step, we investigated the mechanisms under-

lying NO• induced cell death, focusing on apoptosis 

regulating proteins. For this purpose, the levels of p53, 

Bax, Fas, DR5, caspase 9, caspase 3 and PARP pro-

tein expression were analyzed by western blotting. 

Substantial increases in cellular p53, DR5, caspase 9 

and PARP levels were observed 12-48 h after expo-

sure, whereas levels of the Bax, Fas proteins were un-

affected (Fig. 3). Caspase 3 protein levels were de-

creased 12 and 24 h after treatment, returning to con-

trol levels by 48 h (Fig. 3).    

Effect of NOS inhibitors on cell proliferation 

If NO• acts as a proliferative factor in growing A375 

cells, the inhibition of NO• synthase (NOS) should de-

Treatment 
Viability 

(% control) 

NO3
- + NO2

- 

(μM) 

NO2
- 

(μM) 

Untreated 100 21.4 ± 3.58 8.8 ± 1.24 

2 mM NMA 103.2 ± 5.67 20.7 ± 1.63 8.1 ± 0.48 

4 mM AMG 117.1 ± 9.70 19.0 ± 4.19 8.6 ± 2.71 

1 mM 1400W 12.5 ± 1.44** 10.9 ± 0.13* 5.7 ± 0.61* 

1 mM SMTC 77.5 ± 7.60* 13.1 ± 3.01* 7.9 ± 1.25 

1 mM 1400W + 1 mM SMTC 23.9 ± 5.25** 11.3 ± 1.50* 6.4 ± 0.82 

Table 2. Cell viability, total NO• and NO2¯ concentration by NOS inhibitors in A375 cells 

A375 cells were treated with NOS inhibitors for 48 h. Results are presented as mean ± SD of three assays. *p < 0.05 and **p < 0.01 

compared to untreated control by Student t-test. 

Fig. 1. Dose−response of loss of viability following  

exposure of A375 cells to cumulative dose (630-3360 μM • 

min) of NO•. Survival was determined by a trypan blue 

assay 24 h after NO• treatment. Cells treated with Argon 

acted as negative controls. The data are represented as 

mean ± SD. 

Fig. 2. Induction of apoptosis by NO•. (A) Apoptosis was determined by annexin V versus PI staining and (B) apoptotic 

DNA fragmentation was detected using agarose gel electrophoresis in A375 cells treated with 3360 μM • min NO• at 6, 

12 and/or 24 and 48 h postexposure. Data shown are the mean of three independent experiments ± SD. *p < 0.05 and 
**p < 0.01 compared to Ar control by Student t-test.  
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crease cell proliferation. To assess impacts of endoge-

nous NO• on the physiology of melanoma cells, growth 

was evaluated in cells cultured in presence of the se-

lective iNOS inhibitor 1400 W, which resulted in marked 

decrease in viability (1 mM, 12.5%) in A375 cells (Table 

2). A strong correlation has been shown between the 

prevalence of tumor cells expressing iNOS and short-

ened survival of patients with advanced melanoma (Liu 

et al., 2022; Gonçalvesa et al., 2019; Özenvera and 

Efferth,  2020; Monteiroa et al., 2020). Constitutive ex-

pression of iNOS has been detected in most metastatic 

melanomas and melanoma cell lines (Liu et al., 2022; 

Gonçalvesa et al., 2019; Özenvera and Efferth,  2020; 

Monteiroa et al., 2020), and it has been suggested that 

NO• contributes to tumor survival (Gonçalvesa et al., 

2019; Obrador et al., 2021). Similar results were seen 

in A375 cells for nNOS inhibitor SMTC (1 mM, 77.5%), 

and the combination with 1400 W was more effective 

than SMTC alone (Table 2). Under the same experi-

mental conditions, an iNOS inhibitor AMG (4 mM) and 

a nonselective NOS inhibitor NMA (2 mM) did not alter 

cell proliferation when compared with the untreated 

control (Table 2). We subsequently investigated total 

NO• and nitrite production in culture media following 

treatment with NOS inhibitors for 48 h. Significant lev-

els of total NO• and nitrite were detected in the culture 

medium of A375 cells treated with NOS inhibitors 

(Table 2). Cells treated with 1 mM 1400W and/or 1 mM 

SMTC showed 1.5- to 2-fold decreases in total NO• and 

nitrite levels compared with untreated controls (p < 

0.05). These data suggest that the depletion of endoge-

nous NO• is a prerequisite for melanoma cell growth 

inhibition. 

Conclusion  

Advances in the present understand-

ing of melanoma would facilitate the development ap-

proval of various novel cancer therapies with NO•. The 

present study showed that NO• induced cell cycle arrest 

and apoptosis, and the depletion of endogenous NO• 

inhibited the growth of A375 cells. Therefore, the regula-

tion of NO• expression may be of extreme importance in 

melanoma resistance to therapy. In these experiments, 

the systems used to introduce NO• in these experiments 

were designed to approximate exposure conditions phys-

iologically relevant to chronic inflammation states. Fur-

ther studies are required to elucidate precise mecha-

nisms underlying these effects and their potential rele-

vance to NO• induced apoptosis in vivo. 
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