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Abstract 34 

Neurodegenerative diseases (ND), as a group of central nervous system (CNS) and one of the biggest medical 35 

problems in the 21st century, are often associated with considerable disability, motor dysfunction and dementia and 36 

are more common in the aged population. ND imposes a psychologic, economic and social burden on the patients and 37 

their families. Currently, there is no efficient treatment for ND. Since many of ND result from the gain of function of 38 

a mutant allele, small interference RNA (siRNA) can be a potential therapeutic agent for the management of ND. 39 

siRNA is a powerful tool, based on the RNA interference (RNAi) approach, for modulating the gene expression 40 

through gene silencing. However, there are some obstacles in the clinical application of siRNA including unfavorable 41 

immune response, off-target effects, instability of naked siRNA, nuclease susceptibility and a need to develop a 42 

suitable delivery system. Since there are some issues related to siRNA delivery routes, in this review we focus on the 43 

application of siRNA in the management of ND treatment from 2000 to 2020. 44 

 45 

Keywords: Central Nervous System; neurodegenerative disorders; siRNA; RNAi; delivery system; antisense 46 
technology.  47 
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1. Introduction 48 

According to the World Health Organization (WHO) reports, the central nervous system (CNS) related diseases are 49 

the main medical problem in the 21st Century. These group of diseases is serious, divergent, numerous and prevalent 50 

worldwide. Neurodegenerative diseases (ND) are a large group of CNS disorders. They are often associated with 51 

disability, motor dysfunction and dementia (the weakness of mental functions that could affect different intellectual 52 

process including language, learning, thinking, calculation, behavior, and memory) due to the progressive 53 

deterioration and death of the neurons [1-3].  ND consist of various disorders such as Alzheimer's disease, Huntington's 54 

disease, Parkinson's disease, Multiple Sclerosis and spinal cord injury [4].  55 

 56 

Currently, the treatment of these diseases is a big challenge for clinicians and researchers. The currently available 57 

medications can only relieve some of the symptoms of these diseases, but they are not capable to stop the progression 58 

of these diseases [5]. However, the characterization of the genes and the molecular pathway involved in the 59 

pathogenesis of ND as well as the advancement in the gene therapy methods have made some advances towards 60 

finding an effective and satisfactory treatment approach for the management of these disorders [6]. One of the most 61 

promising approaches to fight ND is the antisense technology due to its high ability to target mutant genes. This 62 

technique includes a variety of methods, such as antisense oligonucleotides (ASO), RNAi technology (siRNA, 63 

miRNA, shRNA), ribozyme, DNAzyme and aptamer. Many studies based on the antisense technology in pre-clinical 64 

and clinical phases are currently underway to find a suitable solution for the challenge in managing ND. For example, 65 

RO7234292 or Tominersen, an investigational drug from ASO class, is undergoing clinical trials at phase 3 66 

(NCT03761849) to treat patients with Huntington's disease. WVE-120102 is another ASO which is currently under 67 

investigation at Phase 1b/2a clinical study (NCT03225846) for the same disease [7-8]. Some of them have even 68 

received FDA approval. Spinraza™ (Nusinersen) is the first FDA-approved antisense drug for the management of a 69 

CNS disease, spinal muscular atrophy (SMA), that recovers the expression of survival motor neuron protein through 70 

splicing correction [9-10]. 71 

 One of the gene targeting procedures is RNAi technology that also has been used for the treatment of ND in recent 72 

years. siRNA, a promising class of RNAi, has been a significant achievement in the world of biology in the last two 73 

decades.[11]. Theoretically, this can focus on any mRNA target that is translated into protein [12]. Hence, siRNA is 74 

a powerful means for drug discovery in medical research [13]. siRNA has some advantages over other common 75 
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therapeutic approaches such as antibodies, small molecules, and proteins. siRNA does not require a particular target 76 

on the cell membrane surface or a druggable target [14]. Compared to other typical drugs, siRNA can be designed 77 

easily since it has only a fewer number of nucleotides (21-23) and follows the Watson–Crick base pairing rules [15]. 78 

The siRNA can work in lower concentrations suggesting siRNA has high fidelity and efficacy [12]. siRNA also has 79 

some advantages over ASO. For in vitro experiments, siRNAs are preferred. Unmodified RNAs have a great potency, 80 

so finding a potent siRNA is comparably easier than ASO since ASOs must have chemical modifications to function 81 

appropriately [16]. 82 

Considering the highlighted benefits of siRNA technology, it is not surprising many investigators used this method to 83 

find a solution for the treatment of ND. This review focuses on the application of the therapeutic potential of siRNA 84 

in the treatment of ND based on the existing evidence.  85 

 86 

2. siRNA-mediated RNAi pathway 87 

The RNAi process is started when a double-strand (ds) RNA is introduced into the cell [17]. It comprises of an 88 

initiation stage followed by and effector stage. In the initiation stage, an endoribonuclease enzyme, Dicer, cleaves the 89 

dsRNA and produces a shorter fragment (21-23 base pair), called siRNA. Dicer belongs to the RNase III family and 90 

is described as the “molecular ruler” (Figure 1). The 3’ end of new siRNA has two nucleotides overhangs, which are 91 

necessary for its specific function, whereas the 5’ end consists of a monophosphate group [18-22]. In the second 92 

(effector) stage, the siRNA molecule is loaded into a multiprotein complex called the RISC (RNA induced silencing 93 

complex). The rest of the steps such as completion of the siRNA processing, target recognition and the digestion are 94 

facilitated with the help of this complex [23]. After the siRNA-RISC formation, one of two-strand with the more stable 95 

5’ end, namely the guide or antisense strand, remains in connection with the RISC. While the other strand, the so-96 

called passenger or sense strand, is digested and is discharged from the complex by the argonaute protein 2 (AGO2), 97 

which is an important part of the RISC [24-28]. AGO is the major player and the critical effector molecule in the 98 

RNAi associated silencing. It is a family with 4 members (AGO 1-4) in which only the AGO2 has the catalytic function 99 

in the mammalian cells [26, 29] It is thought that following the release of the passenger strand, the RISC is activated 100 

and then the guide strand can bind to the target mRNA. An impressive gene silencing will be accessible only if the 101 

guide strand of siRNA and mRNA transcript are paired completely (unlike miRNA) which leads to the cleavage of 102 
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the target mRNA by AGO2 part of RISC [26, 30]. Subsequently, the cleaved mRNA is degraded by the cellular 103 

nuclease [31]. 104 

 105 

3. siRNA delivery systems 106 

The development of an effective and safe approach for the siRNA delivery to the target cells is the major impediment 107 

for the clinical use of siRNA [32-33]. There are various reasons for these challenges with siRNA including the large 108 

size of siRNA (13 kD), its polyanionic nature and its inability to pass from the cell membrane because of the negative 109 

charge [13, 34]. A suitable delivery approach should have some features such as no or low toxicity, improve the 110 

cellular uptake of the siRNA, siRNA protection from the serum nuclease attack, lowering the rate of siRNA renal 111 

filtration, ability to extravasate from the blood to the target site (after intravenous injection administration) and 112 

preservation of siRNA from the phagocytosis [33, 35-38]. 113 

 114 

There are two major types of delivery systems for the siRNA transfer which are viral vectors and non-viral vectors. 115 

The hallmark of viral vectors is their high efficiency but some safety issues limit their clinical application. The most 116 

common viral vectors consist of adenoviruses (AVs), adeno-associated viruses (AAVs) and lentiviruses (LVs) [39]. 117 

The non-viral vectors are more preferred rather than the viral vectors due to their safety profile, although their 118 

efficiency is not very high. They can be divided into different types [40] including lipid base (e.g. liposome)[38, 41], 119 

non-lipid inorganic-based (e.g. golden nanoparticles [42] and superparamagnetic iron oxide nanoparticles (SPIONs)) 120 

[43] and non-lipid organic-based (e.g. chitosan, PEI, polyplexes) [38, 41]. Moreover, siRNA can be modified to 121 

increase its stability [44-46]. 122 

 123 

4. siRNA and Neurodegenerative disorders 124 

4.1.  Alzheimer’s disease 125 

Alzheimer’s disease (AD) is a progressive, devastating and the most prevalent neurodegenerative disorder [47]. The 126 

clinical symptoms of the disease include ongoing deterioration of memory, learning, cognition and consequently 127 

personality and behavioral changes [47-48].  AD is an age-dependent disease  and the most common reason for 128 

dementia (>80%) in the aging population. It is predicted that by 2060, the number of peoples who lives with AD in 129 

the U.S. will increase to 9.3 million [49]. 130 
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 131 

AD is highlighted by two major forms of pathological protein aggregates namely extracellular amyloid plaques which 132 

are an accumulation of β-amyloid (Aβ) and intracellular neurofibrillary tangles (NFTs) which are an aggregation of 133 

abnormally phosphorylated tau  (Figure 2) [50]. The precise process of AD is not elucidated yet. Many factors could 134 

promote the development of AD but it is not easy to ascertain the exact role of each in the development of AD [51]. 135 

 136 

There is no effective treatment for AD yet [52], however, a few drugs are prescribed to alleviate some of the symptoms 137 

of patients suffering from AD. As mentioned above, the siRNA is a powerful technique to suppress the expression of 138 

specific genes [53]. Inhibition of AD-related genes by the siRNA approach could be a good therapeutic option for 139 

AD’s treatment (Table 1). 140 

One of the most recognized hypotheses regarding the development of AD is the amyloid cascade theory. This 141 

hypothesis suggests that the aggregations of Aβ activate a harmful cascade in the brain, which leads to the degeneration 142 

of the neurons, progressive deterioration of cognition and development of dementia [54-56]. Aβ is a peptide that is 143 

normally produced from the amyloid precursor protein (APP) cleavage. The APP is a membrane protein that takes 144 

part in cell signaling. Alternative splicing can produce different isoforms of the APP [50, 58]. In normal cell 145 

processing, the APP first is cut by the α-secretase(s) and then is cleaved by the γ-secretase. The result of this enzymatic 146 

process is a very soluble and non-pathological product, a p3/p3-like portion [54, 59-60]. In opposition to this, the APP 147 

could be cut first by the β-secretase, then the different left-over membrane linked fragments are cleaved by the γ-148 

secretase [61-62]. The resultant fragment consists of 99 residues from the C-terminal of APP. Hereafter a distinctive 149 

γ-secretase cleaves this fragment at position 40 (Aβ 1-40) or 42 of the Aβ region (Aβ 1-42). Notably, these forms of 150 

Aβ could pass from presynaptic end to the ECM (extracellular matrix) and consequently, the insoluble fibrillary Aβ 151 

plagues are formed in the outer space of the neurons [63-66]. 152 

 153 

Besides Aβ, tau is another major player in the AD pathology. In AD, hyperphosphorylated tau protein can aggregate 154 

and form intracellular bodies known as NFT. Tau is a microtubule-related protein with an important role in both axonal 155 

and dendritic function. It has been revealed that tau protein could mediate Aβ toxicity through the regulation of 156 

dendritic function [67]. 157 

 158 
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APP and tau could be a favorable target for RNAi therapy, because of their critical role in both familial and sporadic 159 

forms of AD [54, 68]. Accordingly, in an in vitro study using SHSY5Y cells (human neuroblastoma cell line) the 160 

expression of three AD-related genes, APP, tau and VDAC1, were silenced by a specific siRNA. Consequently, the 161 

level of their mRNA and protein is reduced in the cells. The results of this study demonstrated that the transfected 162 

SHSY5Y cells by specific siRNA against APP, tau and VDAC1 showed an improved synaptic activity and also a 163 

better mitochondrial function. Based on these findings, the reduction of expression of these three genes could have a 164 

protective role in AD [69]. 165 

 166 

Not only the APP gene but also the APP-related pathways could be targeted by the siRNA to decrease the Aβ plaque 167 

formation. For example, BACE1 is a β-secretase that is involved in the cleavage processing of APP. This step is the 168 

limiting rate of the Aβ formation [70-71]. Hence, it is not surprising that this gene quickly became an attractive 169 

therapeutic target for the researchers. For instance, in 2005, a group of investigators used a transgenic mouse model 170 

of AD to assess the effect of reducing the BACE1 level on the improvement of Alzheimer-like symptoms in AD’s 171 

models. They utilized a lentiviral vector which expressed siRNA against the BACE1. Their experiment showed that 172 

the BACE1 suppression specifically diminished amyloid plaque rate in vivo and the neuropathological, as well as 173 

behavioral signs of mouse models, got better [72]. 174 

Interestingly, BACE1 has a positive regulator known as BACE1-antisense transcript (BACE1-AS). It is a long 175 

noncoding RNA (lncRNA) which is transcribed from the reverse strand of the BACE1 gene. The BACE1-AS enhances 176 

the stability of BACE1 through forming the RNA duplex. It has been demonstrated that the concentrations of BACE1-177 

AS are increased in patients with AD and also in the transgenic model mouse of AD. Also, changes in the BACE1-178 

AS level could alter the amount of Aβ1–40 and Aβ 1–42 product [73]. Consistently, in a recent study, BACE1-AS 179 

expression was inhibited through the administration of siRNA lentivirus to bilateral hippocampi of SAMP8 mice (an 180 

AD mouse model). The main result of BACE1-AS knockdown was the amelioration of learning problem and memory 181 

loss in mice models, probably because of the improvement in neuronal growth in the hippocampus, BACE1 182 

suppression, blocking of Aβ accumulation and decreasing of the phosphorylated tau protein [52]. 183 

 184 

As mentioned earlier, γ-secretase has an indispensable function in the cleavage of APP and producing the Aβ peptide. 185 

Additionally, it has been proven that presenilins (PS1 and PS2) are a critical unite of the γ-secretase complex and are 186 
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needed for the γ-secretase cleavage action. On the other hand, some mutations in the PS1 gene is seen in a large group 187 

of inherited AD [75-76]. Hence, some researchers studied the siRNA technology in the IMR-32 neuronal cell line to 188 

find out the role of the PS1 in Aβ42 formation. Their results showed that the transfected IMR-32 cells with anti-PS1 189 

siRNA reduced the level of Aβ42. Therefore, PS1 also could be a potential therapeutic target for gene therapy of AD 190 

[78]. 191 

 192 

4.2. Parkinson’s disease 193 

Parkinson’s disease (PD) is the most common movement-related disorder and also the second most prevalent 194 

neurodegenerative disease following AD [79]. PD is an extremely disabling, finally fatal, and until now an incurable 195 

disease [80]. The frequency of PD has grown up during the past two decades [79]. PD has some common symptoms 196 

including rigidity, resting tremor, bradykinesia and posture instability [81]. The psychological problems may also 197 

appear in later stages. Two main processes lead to the progression of PD including the formation of intracellular 198 

bodies, Lewy bodies (LB), which consist of filamentous α-synuclein aggregations in the brain of patients and the 199 

destruction of the dopaminergic neurons [82]. 200 

The current accessible therapeutic approach for PD is limited to some medications, none of them can cure the 201 

symptoms of disease entirely. They only can decelerate the progression of the disease and also have unfavorable side 202 

effects [83]. The PD is a multifactorial disorder with a combination of both genetics and environmental factors [84]. 203 

Based on this rationale, the siRNA dependent approach suggests a novel treatment strategy for the management of 204 

PD. 205 

 206 

A large number of the studies which used the siRNA technology for the treatment of PD focused on the α-Synuclein 207 

(α-syn) gene, because of its critical role in the pathology of PD. α-syn is a small peripheral membrane protein that is 208 

expressed in the axonal end of the neurons [85]. The main role of this protein is to process the neurotransmitters in 209 

the presynaptic region. In this region, the α-syn interacts with the pre-synaptic membrane proteins and synapsis derived 210 

vesicles. The other functions of α-syn include proteasome processing and mitochondrial function [87-91]. The first 211 

evidence demonstrating the important role of α-syn in the PD pathology was obtained from the identification of a 212 

missense mutation (A53T) in the α-syn in four unrelated families with inherited PD. The high susceptibility of people 213 

with duplicated α-syn to the PD is another confirmation for the critical role of α-syn [85, 93-94]. 214 
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 215 

Several lines of experiments using different methods to target the α-syn by siRNA were used to assess the potential 216 

of this approach in the treatment of the PD (Table 2). For instance, the effect of the naked siRNA against the SNCA 217 

(the gene of α-syn) was evaluated, both in vivo and in vitro, and the ability of this siRNA to decrease the expression 218 

of SNCA was demonstrated [95]. In another study for the first time, the anti-SNCA siRNA was administrated to the 219 

brain (substantia nigra) of a monkey model. There was a reduction in the level of α-syn mRNA and protein. Also, no 220 

tissue-specific or systematic toxicity was reported in these monkeys. These results showed the feasibility and safety 221 

of using siRNA in the primates [96]. The efficacy of naked siRNA is very low, for the reasons mentioned before. 222 

Hence, a research group used a viral vector (AAV vector) containing α-syn siRNA in a mice model. This vector was 223 

tolerated well in the mouse models of PD and successfully reduced the amount of α-syn mRNA and protein [97]. In 224 

another study, an anomalous RNAi by siRNA, namely “expression-control RNAi” (ExCont-RNAi) was developed. 225 

This method was designed to regulate the level of overexpressed SNCA. In this study, the PD model flies were exposed 226 

to the ExCont-RNAi. They showed motor function recovery following the reduced level of the SNCA. There was a 227 

positive association between the grade of motor dysfunction and the level of SNCA in the PD flies [98]. 228 

 229 
4.3.  Huntington’s disease 230 

Huntington’s disease (HD) is an inherited disorder with an autosomal dominant pattern. The genetic cause of HD is 231 

trinucleotide expansion (CAG: glutamine codon) in the exon 1 of the Htt gene [99-100]. The product of this gene is 232 

the huntingtin protein, a 348-kDa protein which is present in various cells especially in the neurons of the brain [102]. 233 

This protein plays a crucial role in a wide range of functions including endocytosis, regulation of transcription, 234 

transport in synapsis and axonal transport [104]. The normal alleles of the Htt gene have <36 repeats of the CAG. But 235 

if these repeats increase to 36 and more, the mutant alleles are formed at the HD locus [105]. Cognitive impairment, 236 

motor dysfunction, dementia and neuronal death are the results of this gain of function mutation in patients with HD 237 

[107]. 238 

 239 

Among all the neurodegenerative diseases, HD is one of the best one to be targeted by siRNA since this treatment is 240 

a suitable therapy for the autosomal dominant disorders [108-112]. The effect of the Htt gene silencing by siRNA 241 

method was assessed through different in vitro and in vivo experiments (Table 3). As a first step towards developing 242 
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an effective siRNAs as a therapeutic tool for HD, three different siRNA against Htt was tested in the cell culture. The 243 

results showed that one of them, which was specific for an upstream region of CAG repeated, successfully suppressed 244 

the expression of the Htt [113]. 245 

 246 

In a study of the anti-Htt siRNA in HD, R6/2, a transgenic mouse model of HD was used. These animals expressed 247 

the mutant alleles of Huntingtin and have unusual behavior. They also formed the aggregations of polyglutamine in 248 

their neurons, namely neuronal intranuclear inclusions (NIIs). Intraventricular injection of anti-Htt siRNA showed 249 

promising results including inhibition of the Htt in transgenic mouse and reduction in the size and number of NIIs 250 

[109]. In a modified study, a “cholesterol-conjugated (cc) siRNA” was used to target the Htt gene. This was used since 251 

it has been demonstrated that in vitro conjugation of cholesterol and bioactive molecules could improve the uptake 252 

process [114]. This conjugation could also increase siRNA uptake [115].  In addition, the LDL receptors are present 253 

in the brain cells [116]. Their results also showed the knockdown of the Htt gene, extended survival of neurons, 254 

diminished NIIs and improvement of movement with the cholesterol-conjugated (cc) siRNA [112].   255 
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4.4.  Spinal cord injury 256 

Spinal cord injury (SCI) is a serious clinical issue all over the world, because of the irreversible impairment of the 257 

neurons and the secondary problems [117]. SCI has a heavy economic and social burden on the affected people, their 258 

family and the health services [118]. SCI results in transitional or constant damage in the sensory, motor and 259 

autonomous function of the spinal cord [119]. It is regarded as a permanent disability since the CNS is not able to 260 

regenerate its neuronal axons [120]. So far, significant progress has been made in the diagnosis, recovery and has 261 

increased the survival rate of SCI, although there is a long way to develop an effective treatment. 262 

 263 

Since some genetic aspect of SCI was established in the last years, using the siRNA technology to silence the involving 264 

genes have been considered as an alternative therapeutic approach (Table 4). For example, ephrinB3 (ephB3) is a 265 

useful target since it has been proven that this gene is involved in the inhibition of axonal growth and also decreasing 266 

the rate of recovery after the CNS injury [121]. Accordingly, the effects of a lentiviral vector expressing the anti-267 

ephB3 siRNA were tested in a rat model. The results of this experiment revealed that the spinal cord administration 268 

of anti-ephB3 siRNA and consequently reducing the expression of ephB3 gene lead to the recovery of the axonal 269 

regeneration and the motor function after SCI. It could also enhance the Basso-Beattie-Bresnahan (BBB) score  [122]. 270 

 271 

One of the pathological features of SCI is the accumulation of reactive astrocytes in the damaged region. The 272 

regeneration process of the neurons is disrupted and the permanent disability is the inescapable result of such events. 273 

Reactive astrocytes are characterized by up-regulation of the intermediate filament (IF) proteins such as glial fibrillary 274 

acidic protein (GFAP) and vimentin [123]. In a study using siRNA technology, the expression of GFAP and vimentin 275 

were down-regulated in a rat model. For the assessment of its efficacy, the improvement of the bladder function was 276 

tested. There was an improvement of bladder function demonstrating the efficacy of siRNA [120]. 277 

 278 

Another pathological condition in the SCI is neuroinflammation where M1 macrophages have a critical role [124-279 

126]. M1 macrophages produce a large number of inducible nitric oxide synthase (iNOS) and its product, nitric oxide 280 

(NO) which following SCI can lead to axon degeneration and demyelination [127-128]. Hence, in the acute stage of 281 

the SCI, iNOS can be a suitable target. Recently a siRNA-chitosan-antibody nanoparticle complex was used to 282 

suppress the iNOS expression in vitro and in vivo. This antibody complex helped the M1 macrophages to phagocytosis 283 
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the nanoparticle by the Fc-receptor. There was a successful reduction of the iNOS expression by this complex. The 284 

results demonstrate promising evidence for improving the secondary damage following the SCI [129]. 285 

 286 

Recently a newly discovered protein with specific expression in neurons, Nischarin (Nis), was used as a target for 287 

siRNA therapy in the SCI. Nischarin can suppress neurite outgrowth as well as neurons regeneration [130-131]. For 288 

silencing of the Nis a nano complex consisting of Nis-siRNA and PEI-ALG was developed and then administrated to 289 

a rat model with SCI. The improvement of motor function in the rat models confirmed the therapeutic potency of this 290 

method [132]. 291 

4.5.  Multiple sclerosis 292 

Multiple sclerosis (MS) is the most common non-traumatic debilitating disorder that affects a young person [133]. It 293 

is a chronic, demyelinating, neurodegenerative and inflammatory disorder of the CNS [134]. Although the precise 294 

etiology of this disease is not clear, it is obvious that MS is a heterogeneous, multifactorial complex disease that is 295 

developed by both the genetic susceptibility and the environmental factors [134-135]. 296 

 297 

The focal plaques made of demyelinating lesions are the generic hallmark of all MS subtypes. They appear over the 298 

post-capillary venules in the grey and white matter of the spinal cord as well as the brain of the patients [134, 136-299 

137]. MS is also defined as an autoimmune disorder in which both autoantibody and autoreactive T cells can destroy 300 

the myelin sheath [138]. It has an early inflammation stage and a delayed neurodegeneration stage which are related 301 

to, respectively, relapsing-remitting form, and non-relapsing forms such as the primary and secondary progressive MS 302 

[139-140]. 303 

 304 

The existing treatments for MS are limited to the immunomodulatory or immunosuppressant agents meaning that the 305 

patients have to take treatment continuously. Moreover, these medications do not improve the patient’s quality of life 306 

[141-142]. It can be said that MS is a more convenient target for the treatment by siRNA than other neurodegenerative 307 

diseases. Firstly, MS has an immunological basis so the target cells can be triggered easily through systemic 308 

administration. Secondly, usually in MS, BBB has been broken, hence getting the siRNA to the target lesion is simpler 309 

[143].  310 
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Different genes and molecular pathways can be triggered by this method (Table 5). It has been revealed that T-bet is 311 

an important regulator of the IFN-γ gene in Th1 (major T cell in MS pathogenesis), but not TH2. IFN-y is also a major 312 

mediator in the signaling pathway that leads to the naive T cell differentiation into the T helper cells [144-146]. The 313 

investigation through siRNA against T-bet had interesting results, in both prevention and treatment. Normally, the 314 

transfection of myelin derived antigen into the mice could induce MS, namely the EAE model. But if treated T cells 315 

with both specific myelin antigen and anti-T-bet siRNA transfer to the naïve mice, the EAE induction process would 316 

fail [147]. However, if anti-T-bet siRNA was injected intravenously during the EAE induction, will block the 317 

development of disease [147]. 318 

 319 

There is a close association between the potency of remyelination and the level of oligodendrocyte progenitors in MS 320 

[148]. It has been revealed that in the animal models the noch1 signaling pathway plays a role in the inadequate and 321 

impaired remyelination process [149]. More confirmation was obtained by a study in which the Notch1 specific siRNA 322 

was injected into the MS mice models. Improvement in the potency of oligodendrocyte differentiation and promotion 323 

of remyelination were the major results of this study [150]. It has also been demonstrated that LINGO-1 protein could 324 

suppress the myelination and oligodendrocyte differentiation. Accordingly, in a recent study, a chitosan-based 325 

nanoparticle was loaded with siRNA against LINGO-1, and was administrated intranasally to the rat model of 326 

demyelination. The results in the treatment group were promising. In the molecular sight, the downregulation of 327 

LINGO-1 leads to higher level of myelin basic protein (MBP) and lower level of caspase-3. The motor function in the 328 

remyelination treated group was also improved, indicating the neuroprotective effect of LINGO-1 silencing via siRNA 329 

[151]. 330 

 331 

5. Conclusions 332 

Finding an optimal treatment for ND is still a tremendous medical challenge, maybe due to the specific conditions of 333 

these diseases such as their complex nature, incompletely understood etiology or the physiological barrier such as 334 

BBB (blood-brain barrier) which make them difficult for drug delivery. siRNA as an alternative strategy, with its 335 

features to specific gene silencing, is a potential therapeutic option for the treatment of ND. Although more than two 336 

decades have passed since the discovery of siRNA, there are only two siRNA drugs that have been approved for 337 

clinical use yet (Onpattro and Givlaari ) [152-153]. There are some hurdles which slow the progression of siRNA 338 



14 
 

technique including immunological adverse effects [154-155], off-target effects [156-157], instability of naked siRNA 339 

and nuclease susceptibility [158] and most importantly the development of an optimal in vivo delivery system [159]. 340 

 341 

As reviewed in this paper, many siRNAs were used in different experiments for various ND. Nevertheless, they have 342 

hardly entered the clinical phase, indicating that some issues with siRNAs must be clarified before their translation 343 

into clinic applications. This suggests that more studies, especially clinical studies, should be performed in this field. 344 

Our increasing understanding of the different aspects of siRNA and also the growing advancement in the development 345 

of novel delivery systems will pave the way for the next generation of research studies. 346 
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translocation-associated (Drosophila), NR4A2; Nuclear receptor subfamily 4 group A member 2, ON; Optic neuritis, 367 
OLs; Oligodendrocytes, PD; Parkinson’s disease, PEI; Polyethylenimine, PEI-ALG; Polyethyleneimine-alginate, PS; 368 
presenilin, RGC; Retinal ganglion cells, RhoA; Ras homolog family member A, RISC; RNA induced silencing 369 
complex, RNAi; RNA interference, RNFL; Retinal nerve fibre layer, ROCK; Rho-associated protein kinase, TRIF; 370 
TIR-domain-containing adapter-inducing interferon-β, SAMP8; Senescence accelerated mouse-prone 8, SCI; Spinal 371 
cord injury, siRNA; Small Interference RNA, SPIONs; Superparamagnetic iron oxide nanoparticles, T-bet; T-box 372 
transcription factor, VDAC1; Voltage-dependent anion-selective channel 1, WHO; World Health Organization 373 

 374 
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 376 

Figure Legends  377 

Figure 1. Mechanism of RNAi by dicer. 378 

Figure 2. Mechanism of Tau formation and aggregation in Alzheimer. 379 
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Table 1. siRNA therapeutic applications in Alzheimer’s disease. 408 
Target gene(s) Delivery approach Model(s) Effect(s) Reference 

 

BACE1‑AS 

 

lentiviral vector 

 

In vivo: 

SAMP8 mice 

 

-Improvement of memory and 

learning behaviors 

 

[52]* 

APP  

Naked siRNA 

 

In vitro: 

human neuroblastoma cell line 

(SH-SY5Y) 

 

-Improvement in synaptic activity 

and mitochondrial function 

 

[69]* 

Tau 

VDAC1 

 

BACE1 

 

Lentiviral vectors 

In vivo: 

mouse 

model of Alzheimer disease 

-Decreasing amyloid plaque rate  

-improvement in neuropathological 

and behavioral signs 

 

[72]* 

 

presenilin1 (PS1) 

 

Naked siRNA 

 

In vitro: 

IMR-32 

(human neuroblastoma cells) 

 

-Reducing the level of Aβ 42 

 

[78]* 

 

ROCK-II 

PEG–PEI 

co-polymer 

In vitro: 

C17.2 

(neural stem cells) 

 

-Promoting axonal regeneration 

 

[160] 

mutant presenilin1 

(L392V PS-1) 

Lentiviral vector 

and synthetic 

chemically 

modified siRNA 

In vivo: 

rat model 

In vitro:  

dividing and neural stem cells 

-Decreasing the level of amyloid 

plaque 

 

[161] 

BACE1 

 

I2 PP-2A 

 

lentiviral vector 

 

In vivo: 

TG2576 mice 

-Decreasing the level of Aβ and APP 

and phosphorylated tau 

-Improvement of memory and 

learning ability 

 

[162] 

 

ACAT-1 

 

chemically 

synthesized siRNA 

 

In vitro: 

human APP751 (H4APP751) 

-Reducing the enzymatic process of 

APP 

-Enhancing the level of free 

cholesterol 

 

[163] 

 

BACE1 

 

PEGylated 

magnetite 

nanoparticles 

 

In vitro: 

HFF-1 cells 

 

-Significant suppression of BACE1 

expression 

 

[164] 



17 
 

 

BACE1 

 

Fusion protein 

TARBP-BTP 

 

In vivo: 

AbPP-PS1 mice 

 
-Reduction of plaque load in the 
cerebral cortex and hippocampus 

 

[165] 

 

 

Nogo receptor 

 

poly - lysine starch 
nanoparticle 

 

 

In vivo: 

Male SD mice 

 

 

Promoting the regeneration and 

repair of cholinergic neurons 

 

[166] 

 

BACE1 

 

PEG-PDMAEMA 

nanocomplex 

In vivo: 

APP/PS1 transgenic mice 

In vitro:  

bEnd.3 

- Increasing the level of 

synaptophysin 

- Rescued memory loss  

 

[167] 

*Explained in the text 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 
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Table 2. siRNA therapeutic applications in Parkinson’s disease. 431 
Target gene Delivery system Model(s) Effect(s) Reference 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α-synuclein 

(SNCA) 

Anionic liposomes 

decorated with a rabies 

virus glycoprotein 

-derived peptide 

 

In vitro: 

neuronal cell from P0 newborn 

C57BL/6J mice 

 

 

-Reducing the level of 

SNCA 

 

 

 

 

[80] 

 

Naked siRNA 

In vitro: 

human neuroblastoma cells 

(BE(2)-M17) 

In vivo: 

wild-type C57BL6 

female mice 

-Reducing the level of 

SNCA 

 

 

[95]* 

 

 

Naked siRNA 

 

 

In vivo: 

Primate Substantia Nigra 

Reducing the level of 

SNCA and the first 

evidence of 

successful anti-α-syn 

uclein intervention in 

the primate 

 

 

[96]* 

 

Viral vector 

 (AAV vectors)) 

 

In vivo: 

Thy1-hSNCA mice 

 
-Decreased hSNCA 

expression  

-Rescue of hSNCA-

mediated behavioral 

deficits 

 

 

[97]* 

ExCont-RNAi In vitro: 

Drosophila S2 cells and human 

fibroblasts 

In vivo: 

flies model of PD 

-Reducing the level of 

SNCA  

- Improvement in 

motor dysfunction  

 

[98]* 

Nanoparticle (LDH) In vitro: 

human neuroblastoma cell line 

(SH-SY5Y) 

-Reducing the level of 

SNCA 

[168] 

 

PEG-PEI 

In vitro: 

 PC12 cells 

-Protect cells from 

death via apoptosis 

 

[169] 
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PEI F25- LMW 

In vitro: 

human neuroblastoma cell line (SH-

SY5Y) 

 In vivo: 

Thy1-aSyn mice 

 

-Reducing the level of 

SNCA 

 

 

[170] 

 
Peptide mediated 

delivery 
 

 

In vivo:  

transgenic mouse model of PD 

 

 

-Reducing the 

accumulation of α-syn 

-Amelioration of 

inflammatory 

pathology 

 

[171] 

*Explained in the text 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 
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Table 3. siRNA therapeutic applications in Huntington’s disease.  454 
Target 

gene(s) 

 

Delivery approach 

 

Model(s) 

 

Effect(s) 

 

Reference 

 

 

 

 

 

 

 

 

Htt 

 

 

Naked siRNA 

 

In vivo: 

HD transgenic mouse model, R6/2 

 

-Inhibition of the Htt 

expression 

- reduction of size and 

number of NIIs 

 

[109]* 

 

cholesterol-conjugated 

(cc) siRNA 

 

 
In vivo:  

viral transgenic mouse model of HD 

 

-Inhibition of the Htt 

expression 

- Improvement of some 

movement problem 

-Survival of neurons 

 

 

[112]* 

 

 

 

Naked siRNA 

 

In vitro : 

-COS-7 (African green monkey 

fibroblasts); 

-SH-SY5Y (human neuroblastoma); 

-Neuro-2A (mouse neuroblastoma). 

 

- Inhibition of the Htt 

expression 

 

 

[113]* 

 

Chitosan-based 

nanoparticle 

 

In vivo: 
transgenic YAC128 

mouse 

 

- Decreasing the level of 
mutant htt protein 

 

[172] 

*Explained in the text 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 
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Table 4. siRNA therapeutic applications in spinal cord injury.  466 
Gene 

target(s) 

Delivery system Mode(s) Effect(s) Reference 

GFAP  

adenovirus vectors 

In vitro: 

C6 glioma cells 

In vivo: 

 SCI model rat 

 

-Improvement of urinary function 

 

[120]* 

Vimentin 

 

EphB3 

 

Lentiviral vector 

 

In vivo: 

female Wistar rats 

-Improvement in axonal 

regeneration and the motor function 

 

[122]* 

 

iNOS 

 

chitosan 

In vivo:  

Female BALB/c mice1 

-Improvement of the secondary 

damage following SCI 

 

[129]* 

 

Nischarin 

 

PEI-ALG 

 

In vivo:  

SCI model rat 

 

-Improvement of motor function 

 

[132]* 

RhoA 2’O-methylated siRNA In vivo: 
female Sprague- 

Dawley rats 

-Improvement in walking 

-declining of allodynia 

 

[173] 

*Explained in the text 467 

 468 
 469 
 470 
 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 
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Table 5. siRNA therapeutic applications in multiple sclerosis.  484 
Target Delivery system Model(s) Effect(s) Reference 

 

T-bet 

 

Naked siRNA 

In vivo: 

EAE mice 

 (mouse model of MS) 

- Specifically regulate IFN 

- Prevented the onset of disease 

 

[147]* 

 

 

Notch1 

 

pIRES2‐EGFP vector 

In vivo: 

Mouse model of acute 

demyelination 

 

- Promotion of the 

remyelination 

- Improve OL differentiation  

-Increase mature OL 

[150]* 

 

LINGO-1 

 

Chitosan nanoparticles 

 

 
In vivo: 

Male Wistar rats 

 

- Better motor function 

-Repair in histopathological 

sections 

 

 

[151]* 

 

NR4A2 

hemagglutinating Virus 

of Japan envelope (HVJ-

E) vector kit 

 

In vivo: 

EAE mice 

 (mouse model of MS) 

-Inhibiting the pathogenic 

potentials of IFN and IL-17 

[174] 

 

TRIF 

 

Liposome 

 

In vivo: 

EAE mice 

 (mouse model of MS) 

-Alleviating the severity of 

EAE via the inhibition of 

interleukin and cytokine 

release 

 

[175] 

 

caspase-2 

 

 

Naked siRNA 

 

In vivo: 

EAE mice 

 (mouse model of MS) 

-Significant inhibition of nerve 

cell loss   

-Decreasing in RNFL thickness 

- Increased survival of RGC 

after ON 

[176] 

 

CaMKII 

 

Naked siRNA 

 

In vivo: 

EAE mice 

 (mouse model of MS) 

-Reduced mechanical and 

thermal hypersensitivity 

- Essential role of CaMKII_ in 

inducing and maintaining the 

evoked and non-evoked pain in 

EAE. 

[177] 

*Explained in the text 485 

  486 
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