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Abstract 14 

Groundwater degradation from irrigated agriculture is of concern in semi-arid northern China. Data-scarcity 15 

often means the causes and extent of problems aren't fully understood. This study investigated an irrigated area 16 

in Inner Mongolia where abstraction from an unconfined Quaternary aquifer has increased threefold over 20 17 

years to 20 Mcm/yr; groundwater levels are falling at up to 0.5 m/yr; and groundwater is increasingly 18 

mineralised (TDS increase from 400 mg/L to 700–1900 mg/L), with nitrate concentrations up to 137 mg/L-N.  19 

Residence-time (chlorofluorocarbon/CFC), stable-isotope and hydrogeochemical indicators helped develop a 20 

conceptual model of groundwater system evolution, demonstrating a direct relationship between modern water 21 

proportion and the degree of groundwater mineralisation, indicating that irrigation water recycling is reducing 22 

groundwater quality. The investigations suggest that before irrigation development, active recharge to the 23 

aquifer from wadis significantly exceeded groundwater inflow from nearby mountains, previously held to be the 24 

main groundwater input.  Away from active wadis, groundwater is older with a probable pre-Holocene 25 

component. Proof-of-concept groundwater modelling supports geochemical evidence, indicating the importance 26 

of wadi recharge and irrigation return flows.  Engineering works protecting the irrigated area from flooding have 27 

reduced good quality recharge; active recharge is now dominated by irrigation returns, which are degrading the 28 

aquifer.  29 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NERC Open Research Archive

https://core.ac.uk/display/53491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

Introduction 30 

Groundwater is the primary source of water in most of arid northern China, with the largest use being 31 

for irrigation (Kendy et al. 2003).  Low rainfall and high evapotranspiration mean surface water 32 

resources are scarce. Groundwater is subject to increasing abstraction pressure as a result of rapid 33 

population and economic growth (e.g. Foster et al. 2004, Ji et al. 2006).   34 

 35 

The detrimental impacts of irrigated agriculture on groundwater resources in northern China are 36 

widely recognised (Foster et al 2004, Ma et al 2005, Ji et al 2006). Intensive abstraction has caused 37 

widespread water table decline, such as in parts of the North China Basin, where Kendy et al. (2003) 38 

report that groundwater levels are falling by more than 1.0 m/yr. Severe groundwater quality 39 

degradation has also occurred beneath many irrigated areas, linked to the recycling of salts from 40 

irrigation water, and particularly to nitrate from intensive fertiliser use (e.g. Chen et al. 2005, Ji et al. 41 

2006). As water tables fall, groundwater abstraction becomes more difficult and expensive, and 42 

eventually wells may dry up. As its quality deteriorates, groundwater may become unsuitable for 43 

higher quality uses.   44 

 45 

This paper investigates the causes and impacts of groundwater degradation in a Quaternary aquifer in 46 

an irrigated area, Chahaertan, in Inner Mongolia in northern China. Few groundwater data are 47 

available for this region, and to address this, a range of hydrogeological techniques was applied to 48 

investigate and interpret the local groundwater system and how it has developed historically in 49 

response to the expansion of abstraction for irrigation. This approach, particularly related to 50 

groundwater residence times and the historical development of groundwater systems, complements 51 

the recently growing body of hydrogeological work in China by advancing the focus on managing 52 

groundwater resources and irrigated agriculture. 53 

 54 

The Chahaertan irrigated area lies between longitude 105° 37’ to 105° 45’ E and latitude 39° 14’ to 55 

39° 29’ N, at an elevation of between 1100 and 1200 m above sea level (asl) (Figure 1). This region, 56 
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near the eastern edge of the Tengere desert, is semi-arid and characterised by low, irregular rainfall 57 

and high temperatures and evapotranspiration (Ma et al. 2005). Land use is dominated by scrub 58 

grassland, much of it degraded, and sandy desert, with some limited forest cover. Areas under 59 

irrigation, such as Chahaertan, account for a small proportion of the total land area, but are significant 60 

in terms of human and economic activity. At Chahaertan, more than 150 wells support intensive 61 

seasonal groundwater abstraction to irrigate commercial crops: dominantly maize, sunflowers and 62 

watermelon, with increasing amounts of cotton. Almost all groundwater abstraction is for irrigation 63 

and occurs between April and August. Away from the irrigated area there are only a handful of wells 64 

across the rest of the Quaternary aquifer, which abstract at low rates for domestic and small-scale 65 

livestock use.  66 

 67 

By the mid 2000s it was suspected that intensive abstraction at Chahaertan was having a detrimental 68 

effect on the groundwater resource. However, because no monitoring or investigations had been 69 

carried out since the mid 1990s (Yuan and Wu 1996), a lack of hydrogeological data and 70 

understanding precluded the establishment of an effective management strategy. The common theory 71 

at this time held that the major groundwater input to the local Chahaertan system was slow lateral 72 

flow through the aquifer from its southern boundary, where focussed recharge occurred from surface 73 

water flowing from the Helan Mountains (Figures 1 and 2) (Yuan and Wu 1996). However, this did 74 

not explain many of the observed system features.  75 

 76 

New groundwater investigations 77 

 78 

In 2006 an investigation was carried out at Chahaertan to collate existing and collect new essential 79 

information and improve understanding of the groundwater system and the state of the groundwater 80 

resource, and to provide the basis for effective resource management. To deal with the lack of 81 

historical hydrogeological and hydrological data, a set of complementary hydrogeological and 82 
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hydrogeochemical techniques, including detailed groundwater residence time analysis using CFCs, 83 

was used to establish a comprehensive picture of the groundwater system. 84 

 85 

More than 150 abstraction wells in Chahaertan were accurately located using GPS, and a 86 

questionnaire used to collect information from well owners to help document historical groundwater 87 

development and estimate current groundwater abstraction.  88 

 89 

Historical groundwater level measurements were located for six monitoring wells in the main irrigated 90 

area for the period 1984–94, and new measurements made in these wells in September 2006. All are 91 

close to abstraction wells and affected by pumping. Additional water level measurements were made 92 

in abstraction wells across the irrigated area. Outside this area there are limited historical data for the 93 

Quaternary aquifer, but what were available were collated from hydrogeological maps and reports, 94 

and where possible new measurements were also made in available (usually pumping) wells.  95 

 96 

Meteorological data were obtained from government meteorological records and research stations, 97 

published reports, and previous studies (e.g. Yuan and Wu 1996, People’s Liberation Army 1976 and 98 

1980). Additional information on aquifer geology, geometry and hydraulic properties, and well yields 99 

was collated from records, reports and maps from a variety of sources (e.g. People’s Liberation Army 100 

1976, 1980; Left Banner Water Management and Water Resource Office 1992; Yuan and Wu 1996).  101 

 102 

Twenty two groundwater samples were collected from the Quaternary aquifer: 19 from the irrigated 103 

area (including two from a separate zone to the north of the main irrigated area, called Little 104 

Chahaertan), and three from the surrounding un-irrigated aquifer (Figure 3). All except one of the 105 

samples were collected from pumped abstraction wells, the remaining one being collected from a 106 

flowing artesian well. Technical details of sample collection are given in Ó Dochartaigh and 107 

MacDonald (2006).   Proof of concept numerical modelling was used to test the results of the 108 

hydrodynamic and hydrogeochemical (including residence time) analysis and the conceptual 109 

understanding of the groundwater system. 110 
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 111 

The hydrogeology of Chahaertan and the development of irrigation and the 112 

groundwater system 113 

 114 

Irrigation wells at Chahaertan abstract from an unconfined Quaternary alluvial aquifer infilling a 115 

faulted basin in Cretaceous and Tertiary rocks. The southern edge of the aquifer basin is faulted 116 

against the Helan Mountains, ~30 km southeast of Chahaertan; the northern boundary of the 117 

groundwater catchment is at Jilantai lake, ~35 km north of Chahaertan, which is the main discharge 118 

point for surface water and groundwater in the catchment (Figure 1). The total groundwater catchment 119 

area is ~1500 km2. Aquifer thickness varies from less than 30 m at its southern edge to more than 200 120 

m around Chahaertan (Figure 2), and possibly deeper at Jilantai. Surface elevation ranges from over 121 

3000 m asl at the top of the Helan Mountains to 1000 m asl at Jilantai. Near to Jilantai the aquifer 122 

becomes confined in some areas. The exact extent of artesian conditions is unknown, but the 123 

approximate extent has been estimated (Figure 1) by the presence of vegetation and salt encrustation 124 

in unirrigated areas visible on satellite imagery.  125 

 126 

Basin infill is dominated by fluvial sediment eroded from the Helan Mountains and transported 127 

northwestwards by high-energy ephemeral rivers (wadis) (Figure 2). Previous studies showed that 128 

aquifer hydraulic properties are strongly influenced by sediment grain size variation, with generally 129 

coarser-grained deposits proximal to the Helan Mountains showing a transmissivity range of 600 to 130 

1200 m2/d, and finer-grained distal deposits around Chahaertan a range of 200 to 510 m2/d 131 

(Groundwater Development and Utilisation Teaching and Research Office 1984, Yuan and Wu, 132 

1996). There are no available data on aquifer mineralogy.  133 

 134 

Outside the irrigated area there is little soil development, and the region is dominated by sand with 135 

thin scrub vegetation. Prior to irrigation development, however, seasonal overbank flooding at 136 

Chahaertan at the confluence of wadis draining the Helan Mountains led to significant soil 137 
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development (Groundwater Development and Utilisation Teaching and Research Office 1984, Jerie 138 

2006).  139 

 140 

Long-term average (LTA) rainfall at Chahaertan is some 200 mm/yr; over the Helan Mountains to the 141 

south it is 400 mm/yr, falling to 100 mm/yr at Jilantai to the north. Most precipitation falls between 142 

June and September as short-lived intensive events.  Mean annual potential evaporation ranges from 143 

1400 mm in the mountains to 3000 mm at Jilantai, and is highest between May and August. The 144 

temperature at Chahaertan exceeds 30°C in summer but is typically below 0°C in winter, with an 145 

annual mean of ~15°C (e.g. Yuan and Wu 1996, People’s Liberation Army 1976 and 1980).  146 

 147 

There is no permanent surface water drainage. Wadis drain runoff from the Helan Mountains 148 

northwest towards Jilantai, four of which converge to the south of Chahaertan, from where a single 149 

channel flows north to Jilantai. No river flow monitoring is carried out in the region, but there is 150 

anecdotal evidence for channel flows at Chahaertan and Jilantai. Based on this and on the size of the 151 

river channel, gradient and depth (Table I), the river flow rate during these events is estimated at 152 

between 20 and 30 m3/sec. 153 

 154 

Overall groundwater flow direction in the Quaternary is from the south and southeast to the north. 155 

Natural groundwater discharge is to the lake at Jilantai and to springs and seepages in this area, seen 156 

in the distribution of artesian conditions (Figure 1). At Chahaertan, groundwater flows are likely to be 157 

influenced by local indirect recharge and by intensive groundwater abstraction. 158 

 159 

Since initial development in the late 1960s, the number of abstraction wells, volume of groundwater 160 

abstraction, and irrigated area at Chahaertan have increased markedly (Figure 4) (data from 161 

Groundwater Development and Utilisation Teaching and Research Office 1984, Left Banner Water 162 

Management and Water Resource Office 1992). Since 1990, most new wells have been drilled in 163 

Little Chahaertan, just north of the main irrigated area (Figure 4).  164 

 165 



 7

In 2006 groundwater levels ranged from 45 m below ground level (mbgl) at the northern edge of the 166 

main irrigated area to more than 75 mbgl some 8.5 km away in the south, this slope being largely 167 

controlled by topography. The only available historical monitoring data show that groundwater levels 168 

in this area fell by an average of 0.5 m/yr between 1984 and 1995, a decline that apparently continued 169 

until 2006, albeit at a slightly slower rate (Figure 4). This is likely to be linked to the slow-down in 170 

the rate of increase of abstraction in this area after the shift in focus for groundwater development to 171 

Little Chahaertan (where there has been no groundwater level monitoring) after 1990.  172 

 173 

Regular groundwater quality monitoring has never been undertaken at Chahaertan, but the limited 174 

available data indicate that pre-development groundwater chemistry is likely to have been similar to 175 

groundwater today in the surrounding non-irrigated area: moderately mineralised, Ca-Mg dominated 176 

waters with slightly alkaline pH, and less than 5 mg/L NO3-N. By 2006, TDS concentrations in the 177 

irrigated area were between 700 and 1900 mg/L, and nitrate concentrations reached up to 137 mg/L as 178 

N. Nitrogen isotope analysis has shown that the bulk of this nitrate derives from fertiliser (Jerie 2006). 179 

 180 

Irrigation development at Chahaertan was heavily dependent on its position at the confluence of four 181 

wadis and consequent local seasonal overbank flooding and soil development (Groundwater 182 

Development and Utilisation Teaching and Research Office 1984). Since development, however, the 183 

wadi channels have been engineered, including major re-routing of the original confluent channel 184 

from the centre to the western edge of the irrigated area, which has largely prevented flooding, and 185 

consequent crop and livelihood damage, in the now intensively farmed area.  186 

 187 

Groundwater chemistry  188 

 189 

An understanding of groundwater chemistry has been critical in revealing changing recharge 190 

processes at Chahaertan. Groundwater chemistry has been interpreted from the 22 samples collected 191 

from abstraction wells in the irrigated area and surrounding region. The average length of the 192 
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screened section of the production wells from which samples were collected is 45 m (Left Banner 193 

Water Management and Water Resource Office 1992). The locations and field measurements of 194 

chemistry samples are given in Table ESM1, and locations are shown in Figure 3.  Major and minor 195 

inorganic species are reported in Table ESM2.  Stable isotope and CFC analyses are provided in Table 196 

ESM3.  197 

 198 

Pre-development groundwater chemistry 199 

The nature of an intensively irrigated area means that little groundwater is likely to be fully 200 

representative of pre-development water quality, and therefore of natural processes operating along 201 

the groundwater flowline. No pre-development chemistry data for the aquifer are available, but seven 202 

of the new groundwater samples are likely to represent quasi-natural conditions. Three of`these (Sites 203 

20, 21 and 22) are away from any irrigation and outside the local Chahaertan groundwater system; 204 

four (Sites 4 and 16 in Chahaertan, and 18 and 19 in Little Chahaertan) are within the irrigated area 205 

(Figure 3). Site 22, away from any irrigation and unlikely to be influenced by agricultural or other 206 

contamination, has a NO3-N concentration of 5.6 mg/L and a TDS of ~450 mg/L. This is likely to be 207 

indicative of pre-development chemistry: arid area groundwaters frequently have detectable NO3-N 208 

originating from sources such as atmospheric deposition, bacteria in soil crusts, and termite mounds 209 

(Gates et al. 2008). All four probable quasi-natural groundwater samples within the irrigated area 210 

show similar NO3-N concentrations of <5 mg/L.  211 

These pre-development groundwaters are Ca-Mg dominated and moderately mineralised, with an 212 

average TDS of 395 mg/L, well oxygenated, with a slightly alkaline pH, and noticeably lower 213 

concentrations of all major ions (except HCO3), than the other Chahaertan waters (Tables ESM1, 214 

ESM2). They are comparable to a similar Quaternary alluvial aquifer in the semi-arid Datong Basin in 215 

northwest China, where groundwaters unaffected by agriculture or industry had an average TDS of < 216 

300 mg/l and NO3-N concentration of 7.3 mg/l (Guo and Wang 2004).  217 

 218 
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The sampled wells consistently show evolution in key species in the downstream flow direction from 219 

Chahaertan to Jilantai (Figure 5). The increase in Na as Ca decreases is typical of ion exchange, but 220 

the greater magnitude of Na enrichment compared to the Ca decline (Figure 6a) suggests an additional 221 

source of Na. Evidence from Br/Cl ratios (Figure 6b) indicates this could be halite dissolution, but in 222 

the absence of any mineralogical data for the aquifer this cannot be confirmed. From Site 19 223 

northwards, Cl and SO4 concentrations increase at the expense of HCO3.  The increase in Cl is 224 

consistent with halite dissolution.  The SIgypsum values are two orders of magnitude below saturation 225 

(Table ESM2), indicating gypsum dissolution as the cause of the increase in SO4. The excess Ca 226 

initially produced may have been taken up by ion exchange and/or precipitation of calcite due to 227 

solubility considerations.   228 

 229 

Irrigation-related changes to groundwater chemistry  230 

Sites 1–17 are all within the main irrigated area and all show evidence of irrigation-related changes in 231 

groundwater chemistry (excluding Sites 4 and 16 discussed above). The groundwaters are well-232 

oxygenated, with pH values in the range 7.4–8.0, and are significantly more mineralised than the pre-233 

development group, with an average TDS of 1156 mg/L, and generally at least double the 234 

concentrations of major ions (Table ESM2). The average NO3-N concentration is 27.9 mg/L, more 235 

than seven times that of the average in the pre-development group. This compares with evidence from 236 

similar irrigated aquifers in northwest China, where TDS is >800 mg/L and NO3-N >23 mg/L (Guo 237 

and Wang 2004). 238 

 239 

Multi-plots versus Cl of the main ions (Figure 7) show generally good correlations, positive for Ca, 240 

Na and SO4, and negative for HCO3, with Site 4 (quasi-natural water) having the least-modified 241 

composition.  The linear increases can be attributed to the effects of groundwater mixing with 242 

evaporated irrigation return water.  The decrease in HCO3 is consistent with the loss of CO2 during 243 

recycling, and therefore a tendency towards calcite precipitation, supported by the positive correlation 244 

(r2 = 0.44) between SIcalcite and pH (Table ESM2).  Nitrate has the poorest correlation with Cl, which 245 

is probably a consequence of biotic effects.   246 
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 247 

Groundwater residence time 248 

 249 

Pre-development groundwater residence times 250 

CFC analyses are only available for two pre-development samples: Sites 4 and 19 (Table ESM3). 251 

CFC-11 and CFC-12 are both below detection at Site 19 in Little Chahaertan, indicating no evidence 252 

of modern water.  This is likely to reflect the smaller influence of focussed recharge from pre-253 

development overbank flooding north of the main Chahaertan area (Figure 1). Site 4 shows evidence 254 

of modern water, indicating active modern recharge, which is likely to derive largely from pre-255 

development flooding and leakage through wadi beds. Recharge modelling to confirm this hypothesis 256 

is discussed in a subsequent section. 257 

 258 

Stable isotopes in groundwaters from Chahaertan are too depleted to represent local groundwater 259 

recharge from modern rainfall at this altitude.  The presence of CFCs and the fact that stable isotopes 260 

at Site 4 are less depleted than in the likely pre-Holocene waters further north along the flow line 261 

(Sites 18 and 20; Figure 8), imply that pre-development groundwater at Chahaertan is not particularly 262 

old, and unlikely to be pre-Holocene. The isotopic composition of end-Pleistocene groundwater is 263 

based on a 2‰ depletion in δ18O, as found by Kreuzer et al. (2009) in the North China Plain (Figure 264 

8). The most likely source of recharge is rainfall runoff from the Helan Mountains, where the higher 265 

altitude creates cooler recharge conditions. The likely presence of pre-development modern water at 266 

Chahaertan implies the recharge route is local river infiltration, as the travel time for groundwater 267 

flow to Chahaertan from recharge at the edge of the mountains is estimated at ~5kyr, based on 268 

reported or estimated aquifer hydraulic properties and Darcy’s law (assuming a hydraulic gradient of 269 

0.003 (Yuan and Wu 1996) and a hydraulic conductivity of 5 m/d).  270 

 271 

When interpreting the patterns in CFC-12 and δ18O in downgradient samples (Figure 9) in terms of an 272 

evolutionary sequence, key evidence is the below detection CFC-12 at Site 20, some 30 km north of 273 
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Chahaertan, and the presence of well oxygenated water, which argues against any microbial 274 

degradation (e.g. Busenberg and Plummer 1992). It is therefore assumed that groundwater at Site 20 275 

is more than 50 years old, which suggests that the main recharge area is at Chahaertan, with no 276 

modern recharge downgradient of Chahaertan. This is supported by δ18O values, which show a steady 277 

declinebetween Sites 4 and 20, of the order of 2 ‰, indicating that the flowline is long enough to 278 

retain some Pleistocene (>10 kyr) water in the system. By comparison, in the North China Plain 279 

similar depletions in δ18O were observed for late Pleistocene palaeowaters (Chen et al. 2003).  280 

 281 

However, the data for Site 21 at Jilantai indicate a proportion of modern water is present (Figure 9). 282 

This borehole is drilled beneath Jilantai lake, and groundwater abstracted from the borehole is 283 

discharged into the lake, which is likely to locally reverse the hydraulic gradient and cause some re-284 

infiltration of lake water into the aquifer.   285 

 286 

Irrigation-related changes to groundwater residence  287 

CFC data indicate that most of the sampled groundwaters have a modern water component of 5–10%.  288 

A plot of CFC-11 versus CFC-12 concentrations is superimposed with the expected ‘piston flow’ 289 

concentration curve relating to the year of recharge and the expected mixing line between modern and 290 

older CFC-free water (Figure 10). In practice, where the two lines are close together it is impossible to 291 

discriminate between piston flow and mixing. Additionally, there is evidence for a small amount of 292 

CFC-12 contamination in some samples, most notably Sites 1 and 4. The alternative explanation of 293 

CFC-11 reduction is unlikely based on the observed positive dissolved oxygen concentrations. 294 

Modern recharge could be from two sources: wadi flow or irrigation return water (which would 295 

acquire a modern CFC load while exposed to the atmosphere). The positive correlation between CFC-296 

11 (presumed to be uncontaminated) and TDS (total dissolved solids) (Figure 11) suggests that 297 

irrigation return water is the more likely source. Site 4 lies outwith this trend, indicating that it is not 298 

impacted by irrigation returns, and further supporting its quasi-natural status. 299 

 300 



 12

Stable isotopes from Chahaertan groundwaters are tightly grouped (the standard deviation on δ18O is 301 

0.22 ‰), but the average is slightly beneath the Yinchuan meteoric line (Figure 8). This suggests there 302 

has been minor evaporative fractionation, consistent with the evidence of recycling demonstrated by 303 

the groundwater chemistry and CFCs.  The average composition, at around –11 ‰ δ18O and –80 ‰ 304 

δ2H, is significantly depleted compared to the Yinchuan average (Figure 8).  Since Yinchuan is at an 305 

elevation of 1100 m asl, similar to Chahaertan, this implies the source of recharge at Chahaertan lies 306 

at a significantly higher altitude. The hydrodynamic factors of the system mean this source can only 307 

be the Helan Mountains, as for the pre-development water. This has subsequently been recycled as 308 

irrigation water.   309 

 310 

Testing results using groundwater modelling  311 

 312 

Proof of concept numerical modelling was used to test the results of the hydrodynamic and 313 

hydrogeochemical (including residence time) analysis and the conceptual understanding of the 314 

groundwater system. The scarcity of hydrogeological data and, therefore, limited conceptual 315 

understanding, means that numerical modelling can only support the development of the 316 

understanding of the groundwater system. It cannot provide a detailed simulation of the system (for 317 

example, for use as a management tool for assessing the impact of individual production wells) 318 

without significantly more information than is currently available.  319 

 320 

Model set up 321 

Modelling was undertaken using the ZOOM (Zoomable Object Oriented Model) suite of object-322 

oriented numerical groundwater models (Spink et al. 2003; Spink et al. 2006). This includes a 323 

distributed recharge model, ZOODRM (Zoomable Object Oriented Distributed Recharge Model) (e.g. 324 

Hughes et al. 2006, Hughes et al. 2008), which calculates spatial and temporal variations in 325 

groundwater recharge, incorporating a standard Penman-Grindley type soil moisture balance method, 326 

the modified FAO Penman-Monteith method (Allen et al. 1998), and procedures for recharge 327 
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estimation in arid countries (a “Wetting Threshold” method based on the work of Lange et al., 2003; 328 

Hughes et al., 2008) and irrigated regions, as well as surface runoff routing. The ZOOM suite also 329 

includes a groundwater flow model, ZOOMQ3D (Zoomable Object Oriented Model for Quasi-Three 330 

Dimensional Flow) (e.g. Jackson et al. 2005), which incorporates mesh refinement to aid the solution 331 

of scale-related problems, and is based on object-oriented techniques.  332 

 333 

A detailed description of model development and input parameters is given in Ó Dochartaigh and 334 

MacDonald (2006). A distributed recharge model was developed encompassing the Quaternary 335 

aquifer catchment and the surface water catchment on the northern side of the Helan Mountains that 336 

drains towards Jilantai, taking into account the discharge zone in the area around Jilantai (Figure 12). 337 

The model area is 43 km by 83 km (Figure 12) with a cell size of 1000 m.  Using data on daily 338 

rainfall, potential evaporation, land-use and topography, the model simulates LTA recharge based on 339 

average climatic data for the periods 1955-1980 and 2003-2005. It uses a wetting threshold method 340 

that is appropriate to arid and semi-arid conditions (Lange et al. 2003, Hughes et al. 2008). Two zones 341 

for wetting threshold were chosen: the outcrop of Quaternary and Tertiary age rocks.  Indirect 342 

recharge was provided by including run-off processes to the wadis deriving the aspect direction from 343 

the DEM.  Further information on the recharge model boundary conditions, model parameters, input 344 

and output and validation data is presented in Table ESM4.  345 

 346 

A steady state groundwater flow model was developed to encompass the Quaternary basin aquifer 347 

within the Jilantai catchment area (Figure 12), simulating the groundwater system for a single year 348 

under 2006 conditions (Figure 13), and using calculated LTA recharge from the distributed recharge 349 

model. The groundwater flow model is a single layer model with an identical size and mesh to the 350 

recharge model.  Inflows are rainfall recharge, indirect recharge from wadis and irrigation returns, 351 

which are provided directly from the recharge model.  Outflows are from abstractions and 352 

groundwater discharge to the Jilantai Lake.  Transmissivity and storage coefficients are distributed 353 

based on information from the available literature (e.g. Groundwater Development and Utilisation 354 

Teaching and Research Office, 1984).  Further information on the groundwater flow model boundary 355 
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conditions, model parameters, input and validation data is presented in Table ESM5. Subsequently, a 356 

dynamic balance groundwater flow model was developed to investigate the time variant nature of the 357 

system, representing a 30 year period from 1980 to 2010, and using monthly varying recharge from 358 

the recharge model (Table ESM5). A dynamic balance is achieved by inputting a repeated annual 359 

series of average monthly recharge. The repeated annual series is run through the model until the 360 

groundwater heads in each month are identical to those in the same month in the previous year 361 

(Rushton and Wedderburn 1971).  362 

 363 

Model results 364 

The recharge model was refined so the simulated river flows fit closely the available estimates of 365 

actual wadi flows across the aquifer. Little river water is lost as wadis flow over non-aquifer rocks, 366 

but losses through wadi floors occur across the Quaternary aquifer.  The rate of modelled wadi 367 

recharge depends on the volume and duration of wadi flows, and is highest along the southwest and 368 

western edges of the main irrigated area (Figure 12). There is little wadi recharge north of Chahaertan, 369 

where the river channel usually flows only once or twice a year, and at a lower rate.  Modelled 370 

recharge volumes are shown in Table II and indicate that wadi losses and irrigation returns provide 371 

the majority of recharge to the entire Quaternary aquifer, and dominate recharge in the vicinity of 372 

Chahaertan.  373 

 374 

The steady state groundwater flow model, with input from the recharge model and available aquifer 375 

parameters, represents the groundwater head distribution across the aquifer relatively closely (Figure 376 

13). This improves confidence in our understanding of the Chahaertan groundwater system, 377 

supporting the limited available hydrogeological data and implying that the recharge and flow 378 

processes inferred from hydrodynamic and hydrogeochemical (including residence time) analysis are 379 

plausible. Although the lack of data, and in particular daily rainfall, means that fully a refined 380 

historical simulation is not yet possible, a dynamic balance model reproduces the general pattern of 381 

observed annual groundwater level variations and the observed groundwater level fall over the period 382 

of irrigation development, further improving confidence in our understanding of the groundwater 383 
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system (Ó Dochartaigh and MacDonald 2006). If the decline continues at the same rate, production 384 

wells may start to show falling yields within 20 to 30 years, and the shallowest wells (100 m deep) 385 

may need to be abandoned within 40 years.  386 

 387 

Discussion 388 

 389 

The combined study of hydrodynamics, hydrochemistry (including residence times) and subsequent 390 

testing with a groundwater recharge and flow model has helped unravel the processes of groundwater 391 

degradation in the Chahaertan irrigated area.  Of particular importance is the change in recharge 392 

processes during the development of the area.  393 

 394 

Predevelopment 395 

Before irrigation development at Chahaertan, surface and groundwater flowed largely uninterrupted 396 

from the Helan Mountains to the Jilantai lake. The presence of CFC, isotopic signature, and lack of 397 

increased salinity in pre-development groundwater at Chahaertan indicate that active local wadi 398 

recharge occurred within the last 50 years, and before the onset of irrigation returns in the late 1970s. 399 

Model results confirm that infiltration occurred along the wadi channels between the Helan Mountains 400 

and Chahaertan, but was significantly enhanced at Chahaertan. This was caused by annual overbank 401 

flooding, which helped develop the soils that support agriculture Chahaertan.  This study is the first to 402 

emphasise the importance of local recharge at Chahaertan.  Previous theories held that most recharge 403 

to the aquifer basin occurred at the edge of the Helen Mountains, with subsequent slow subsurface 404 

flow to Chahaertan over thousands of years.  The new modelling and geochemical studies show that, 405 

although this mechanism may be occurring, it is not the dominant influence on the groundwater 406 

system.  407 

 408 

Groundwater modelling indicates that from Chahaertan northwards, subsurface flow dominates water 409 

movement to Jilantai. This is corroborated by residence time data, as groundwater further down the 410 
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flow line does not show detectable CFCs, and there is no evidence of active recharge for at least the 411 

past 50 years. The depletion in δ2H and δ18O in groundwaters is likely to be the product of mixing 412 

between a late-Pleistocene end-member, with a depleted isotopic composition indicating cooler 413 

recharge conditions, and younger Holocene water (up to 10 kyr) old that has an essentially modern 414 

isotopic composition. This is similar to results from other parts of northern China (e.g. Chen et al 415 

2003, Ma and Edmunds 2006), and is consistent with modelled groundwater travel times thousands of 416 

years through the aquifer to Jilantai. The one exception is at Jilantai lake itself, where mixing with re-417 

infiltrating lake water appears to have led to the presence of CFCs in groundwater.  418 

 419 

Pre-development groundwater chemistry at Chahaertan is likely to have been similar to that of 420 

groundwater today in the surrounding non-irrigated area: moderately mineralised (TDS ~400 mg/L), 421 

Ca-Mg dominated waters with slightly alkaline pH, and less than 5 mg/L NO3-N. This is comparable 422 

to studies elsewhere in semi-arid northwest China, where groundwaters unaffected by agriculture or 423 

industry have an average TDS of <300 mg/l and NO3-N concentration of 7.3 mg/l (Guo and Wang 424 

2004). Further down the groundwater flow line towards Jilantai, groundwater has evolved to become 425 

more alkaline and reducing, with cation exchange and halite dissolution being the prominent 426 

processes.  427 

 428 

Present day 429 

The present day groundwater system in Chahaertan has evolved significantly since irrigation started, 430 

and annual abstraction is now in the range 19–21 Mcm (Figure 14). There have been two major 431 

effects on the groundwater system: declining water levels and a marked decrease in water quality.  432 

This degradation has been exacerbated by engineering works to prevent virtually all seasonal over-433 

bank flooding, which has greatly reduced wadi recharge. Groundwater levels have fallen by up to 434 

0.5 m/yr for at least 20 years.  Examining this decline in greater spatial detail with a dynamic balance 435 

groundwater flow model, using a factored sequence of the available groundwater abstraction, 436 

confirms that water level decline in the main Chahaertan irrigated area has decreased slightly since the 437 

1990s.  This has corresponded with the change of focus for groundwater development to Little 438 
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Chahaertan.  However, if the decline continues at the same rate, production wells may start to show 439 

declining yields within 20 to 30 years, and the shallowest wells (100 m deep) are likely to have to be 440 

abandoned within 40 years.  441 

 442 

The direct relationship between CFC concentrations and the degree of groundwater mineralisation 443 

(represented by TDS, Figure 11) clearly demonstrates that recycling of irrigation water is causing 444 

groundwater degradation, with a marked increase in salinity (a TDS increase from 400 mg/L up to 445 

700-1900 mg/L) and an increase in nitrate concentrations (as N) from <5 mg/L up to 137 mg/L.  The 446 

fact that re-infiltration of irrigation water has almost overtaken river infiltration as the main source of 447 

recharge in some areas has radically changed the chemistry of the local groundwater system.   The 448 

majority of the wells within the irrigated area show elevated nitrate and salinity, as well as enrichment 449 

in Ca, Cl, SO4 and Mg (Table ESM2, Figure 5).  The generally slow movement of groundwater 450 

through the aquifer, which is supported by the modelling results, means there is a long lag time 451 

between cause and effect. It is likely that poor quality water from irrigation returns, which is moving 452 

downwards through the thick unsaturated zone (between 45 and 75 m thick in 2006), will continue to 453 

degrade groundwater quality in the aquifer for tens of years as it reaches the water table.   454 

 455 

Conclusions 456 

 457 

A combination of hydrodynamic and hydrogeochemical (including residence time) analysis and 458 

numerical groundwater modelling has provided a detailed insight into groundwater degradation in an 459 

irrigated area in semi-arid northern China, and by inference in other similar irrigated areas. An 460 

improved conceptual model of the groundwater system has revealed its complex nature and the 461 

multifold impacts of human activity.  462 

 463 

Previous theories held that the main groundwater input at Chahaertan was subsurface flow from the 464 

southeastern boundary of the aquifer basin, recharged from runoff from the Helan Mountains. New 465 
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evidence from this study shows that the main groundwater input in pre-development times was 466 

focussed river recharge in and around the now-irrigated area. Flood-prevention engineering works 467 

since development began have significantly reduced this recharge. Returns from inefficient flood 468 

irrigation have partially compensated (by volume) for the reduction in natural recharge, but 469 

abstraction nonetheless exceeds recharge, and groundwater levels continue to fall by up to 0.5 m/yr. 470 

Irrigation returns now comprise the largest proportion of local recharge.  471 

 472 

The close relationship between the degree of groundwater mineralisation and the proportion of 473 

modern water, shown by CFC concentrations, clearly demonstrates that recycling of irrigation water is 474 

causing groundwater degradation.  475 

 476 
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 557 

Figure 1 Location and generalised hydrology and hydrogeology of Chahaertan and the Quaternary aquifer. 558 

 559 

 560 

Figure 2 Schematic cross section of the Chahaertan Quaternary aquifer system along the line shown in 561 

Figure 1, and showing the approximate position of the groundwater table 562 
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 563 

Figure 3  Location of groundwater chemistry sample sites at Chahaertan and the surrounding aquifer. 564 

Sample numbers are as in Tables ESM1 – ESM3 565 
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 566 

Figure 4 Schematic illustrating the increase in irrigated area, number of production wells and 567 

groundwater abstraction, and the simultaneous decline in groundwater levels at Chahaertan 568 

from 1984 to 2006. 569 

570 
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 571 

Figure 5 Major ion concentrations of pre-development Chahaertan groundwaters and groundwaters 572 

outside the irrigated area, plotted versus distance downgradient from the recharge area in the 573 

Helan Mountains. Site 22 lies off the assumed flowpath and is shown as an open circle.  574 

Sample location numbers are shown on the top (Na) plot. 575 
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 576 

Figure 6 Plots of (a) Ca/Na molar ratios, and (b) Br/Cl ratios of baseline Chahaertan groundwaters and 577 

groundwaters outside the irrigated area, versus distance downgradient from the recharge area.  578 

Site 22 lies off the assumed flowpath and is shown as an open circle.    579 

580 
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 581 

Figure 7 Plots versus Cl for the Ca, Na, SO4, HCO3 and NO3-N contents of groundwaters from the 582 

irrigated area at Chahaertan. Selected site numbers shown. 583 
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 584 

Figure 8 Plot of δ2H versus δ18O for all Chahaertan groundwaters within and outwith the irrigated area, 585 

with site numbers.  The meteoric line (solid line) is for the nearest GNIP station at Yinchuan 586 

(longitude 106.13°E, latitude 38.29°N) (http://nds121.iaea.org/wiser/index.php) Yinchuan 587 

average isotope values are approximately –6.5 ‰ δ18O and –45 ‰ δ2H. The isotopic 588 

composition of end-Pleistocene groundwater is based on a 2‰ depletion in δ18O, as found by 589 

Kreuzer et al. (2009) in the North China Plain. 590 

 591 

 592 

Figure 9  Plots of the Si, CFC-12 and δ18O values for pre-development Chahaertan groundwaters and 593 

groundwaters outside the irrigated area, plotted versus distance downgradient from the 594 

recharge area.  Site 22 lies off the assumed flowpath and is shown by an open circle.    595 
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 596 

Figure 10 Plot of CFC-11 versus CFC-12 concentrations for Chahaertan groundwaters, with selected site 597 

numbers. The piston flow (solid) curve is based on secular changes in the Northern Hemisphere atmospheric 598 

mixing ratios over the past 50 years (data from http://water.usgs.gov/lab/software/air_curve/) and an average 599 

unsaturated zone recharge temperature of 15°C at an elevation of 1100 m ASL.  The dashed mixing line is 600 

between modern and older CFC-free water. 601 

 602 

Figure 11 Plot of CFC-11 versus TDS (total dissolved solids) for Chahaertan groundwaters.  Selected 603 

site numbers are shown.  604 

605 
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 606 

Figure 12  Simulated river flows for a large rainfall event (41 mm/day in the Helan Mountains) (left); and 607 

spatial distribution of modelled recharge across the Chahaertan aquifer (right) 608 

609 
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 610 

Figure 13 Modelled steady state groundwater head contours and available observed rest water levels in 611 

the aquifer around Chahaertan. All water levels in metres above sea level. 612 
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 613 

Figure 14 Conceptual model of post-development groundwater system at Chahaertan.   614 

 615 

 616 

Table I Wadi channel characteristics  617 

Wadi location Channel 
width 

Channel bed 
material  

Annual flow events Flow depth 
in channel 

Roughness 
coefficient1 

Helan Mountains 5 m 
Coarse, high-energy 
gravel to boulder size 
deposits. 

Unrecorded but likely 
to be 5-10 times, for 
>10 hours per event. 

Average 
0.5 m 0.05 

Quaternary aquifer 
at Chahaertan 20–30 m Fine sands and 

gravels. 

3–4 times, for 3–10 
hours per event. In 
smaller events, flow 

dies out c. 20 km north 
of Chahaertan. 

Maximum 
1 m, average 
0.5 m 

0.03 

Quaternary aquifer 
at the lake at Jilantai 20–30 m Fine sands. 2 times (maximum), for 

<5 hours per event. 
Average 
0.5 m 0.02 

1Based on literature values for roughness coefficients for natural channels 618 
 619 

Table II. Modelled recharge volumes at Chahaertan and across the Quaternary aquifer  620 

Recharge source Volume in Chahaertan local area 
(Mcm/a) 

Volume across Quaternary 
aquifer (Mcm/a) 

Rainfall  2 20 
Wadi leakage  6 14 
Irrigation returns 10 10 

Total 18 44 
 621 


