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by Giulio Mazzi

Partially Observable Monte Carlo Planning (POMCP) is a powerful online algorithm
that can generate approximate policies for large Partially Observable Markov Deci-
sion Processes. The online nature of this method supports scalability by avoiding
complete policy representation. However, the lack of an explicit representation of
the policy hinders interpretability. In this thesis, we propose a methodology based
on Maximum Satisfiability Modulo Theory (MAX-SMT) for analyzing POMCP poli-
cies by inspecting their traces, namely, sequences of belief-action pairs generated
by the algorithm. The proposed method explores local properties of the policy to
build a compact and informative summary of the policy behaviour. This represen-
tation exploits a high-level description encoded using logical formulas that domain
experts can provide. The final formula can be used to identify unexpected decisions,
namely, decisions that violate the expert indications. We show that this identifica-
tion process can be used offline (to improve the explainability of the policy and to
identify anomalous behaviours) or online (to shield the decisions of the POMCP
algorithm). We also present an active methodology that can effectively query a
POMCP policy to build more reliable descriptions quickly. We extensively evalu-
ate our methodologies on two standard benchmarks for POMDPs, namely, tiger and
rocksample, and on a problem related to velocity regulation in mobile robot naviga-
tion. Results show that our approach achieves good performance due to its capabil-
ity to exploit experts’ knowledge of the domains. Specifically, our approach can be
used both to identify anomalous behaviours in faulty POMCPs and to improve the
performance of the system by using the shielding mechanism. In the first case, we
test the methodology against a state-of-the-art anomaly detection algorithm, while
in the second, we compared the performance of shielded and unshielded POMCPs.
We implemented our methodology in C++, and the code is open-source and avail-
able at https://github.com/GiuMaz/XPOMCP.
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Chapter 1

Introduction

Artificial Intelligence (AI) methodologies have recently achieved impressive success
in several areas such as robotics, speech recognition, computer vision, autonomous
driving, and recommendation systems. AI is now largely considered an enabling
technology and can dramatically impact production systems and society. A key com-
ponent of an AI system is the ability to learn. One of the main paradigms of machine
learning is Reinforcement learning (RL) (Sutton and Barto 1998) that is the problem of
learning a strategy that maximizes a cumulative reward, i.e. the sequence of actions
that results in the best outcome for an agent that operates in an environment. RL
systems have overcome significant challenges in the last decade. The most popular
success has been recently obtained with AlphaGo, which reached superhuman per-
formance in the game of Go (Silver, A. Huang, et al. 2016; Silver, Schrittwieser, et al.
2017). Some current research in artificial intelligence aims to transfer these strong
results from games, such as Go, Chess, and Atari, in which the dynamics of the en-
vironment are entirely known, and the uncertainty comes from the other player to
real-world problems in which the environment is very complex and only partially
known. Consider, for instance, a robot controlled by an RL-based algorithm that
moves in a building, a warehouse, or farmland, where humans and other robots are
present. Uncertainty about the environment, in this case, comes from robot-human
interaction, weather, light conditions, and the effect of other robots on the environ-
ment.

Therefore, applying RL to real-world problems poses new exciting challenges,
one of which is safety. The robots mentioned above, for instance, should avoid per-
forming actions that make them collide with humans, even if they lack complete
knowledge of the surrounding environment. The safety and trustworthiness of AI
systems are, for this reason, critical topics of recent research in AI (High-Level Ex-
pert Group on AI 2019). In this thesis, we present a methodology that can describe
policies generated by a specific reinforcement learning algorithm called Partially Ob-
servable Monte Carlo Planning. The proposed approach generates rules that com-
bine high-level insight expressed by a human expert with an analysis of the real exe-
cution of the algorithm. These descriptions provide a compact and human-readable
representation of the behaviour of a policy. They can automatically identify anoma-
lous decisions in the policy, both offline and online. We use the offline mode method
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to detect bugs and improve the policy under investigation. The online mode allows
us to develop shields that can be used in real-time to improve the safety of the policy.

1.1 Planning and reinforcement learning in partially observ-
able environments

Planning in partially observable environments is an important problem in artificial
intelligence and reinforcement learning. One of the most popular frameworks for
modelling decision-making under uncertainty is Partially Observable Markov Deci-
sion Processes (POMDPs) (Cassandra, Littman, and N. L. Zhang 1997). POMDPs en-
code dynamical systems having partially observable states, where the hidden part of
the state can only be estimated from observations with some degree of uncertainty.
However, computing exact optimal policies for POMDPs is very complex and un-
feasible for large state spaces. Specifically, the problem is PSPACE-hard when the
horizon is finite and undecidable when the horizon is infinite (Papadimitriou and
Tsitsiklis 1987). However, several approximate and online methods have been pro-
posed to handle real-world instances because of the importance of sequential plan-
ning under uncertainty. A pioneering algorithm for this purpose is Partially Observ-
able Monte Carlo Planning (POMCP) (Silver and Veness 2010) which uses Monte
Carlo Tree Search (MCTS) (Kocsis and Szepesvári 2006) to compute the policy on-
line. POMCP uses a black-box simulator to decide which action to take in a certain
belief. This is an instance of model-based reinforcement learning, i.e. a RL problem in
which the reward function is known (unlike model-free RL, in which the function is
unknown and must be estimated). This approach is sampling-based and only com-
putes the policy for the specific states the agent reaches while operating. POMCP
uses a particle filter to represent the probability distribution over (hidden) states,
called belief, given a history of observations. We are interested in this method be-
cause i) it allows us to deal with partially observable environments and uncertainty,
ii) it uses an explicit (possibly approximated and learnable) model of the environ-
ment, which can speed up policy synthesis compared to model-free RL methods, iii)
it is online, and therefore it scales to very large state spaces, which are common in
real-world problems. A key challenge for POMCP is to identify the rationale behind
the selection of each action. The reason is twofold. First, the policy for a specific
belief the agent achieves is not available before reaching the belief itself. It is unfea-
sible to compute the policy for each possible belief reachable by the agent because
infinite beliefs exist. Second, the policy is computed in a simulation-based fashion
and represented by an MCTS, which is difficult to interpret.

1.2 Explainable AI

The widespread use of AI techniques resulted in deploying AI systems in production
environments (e.g., smart industries) and safety-critical scenarios (e.g., autonomous
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driving). In these scenarios, the AI systems need to cooperate with humans and
take decisions that can have dramatic effects. A key element to allowing the use of
AI in these scenarios is the ability to explain their decisions. Recently, this require-
ment was framed as the field of Explainable AI (XAI) (Gunning and Aha 2019). Due
to the human need to understand why complex autonomous agents take specific
decisions, this novel field is growing in popularity. In this thesis, we consider the
problem of Explainable planning (XAIP) (Fox, Long, and Magazzeni 2017; Cashmore,
Collins, et al. 2019), which focuses on explainability in planning methods. Wrong or
unexpected decisions in policies automatically synthesized by planning algorithms
can have disastrous impacts if they are used to control, for instance, cyber-physical
or robotic systems interacting with humans. Detecting policy flaws that can poten-
tially have harmful effects is fundamental for the safe deployment of autonomous
agents.

Explainability is particularly important for POMCP because its approximate and
online nature, which is crucial to scale to real-world problems, makes the policy
represented by the algorithm very difficult to analyze (Castellini, Marchesini, et al.
2020), with consequent repercussions on the safety of the policy. To address this
issue, in this thesis, we focus on analyzing the policies generated by POMCP using
a logic-based approach.

1.3 Contributions of this thesis

This thesis proposes a methodology called Explainable POMCP (XPOMCP). It builds
rules that can be used to interpret POMCP policies, detect unexpected decisions, and
shield the algorithm’s execution from unwanted actions.

1.3.1 Rule-based description of POMCP policies

The first contribution of this thesis is to develop a methodology for generating a
rule-based description of a POMCP generated policy. In particular, experts are re-
quired to provide qualitative information about expected system behaviours as log-
ical templates with free variables, and XPOMCP returns quantitative details about
those behaviours based on evidence observed in belief-action traces previously gen-
erated by the policy. For instance, in a logistic application for smart-manufacturing
(e.g., in (Jansen et al. 2020)), an expert could define a logical rule saying that “the
robot should move fast if it is highly confident that the aisle in which it is moving is
not cluttered”. After analyzing some traces produced by the policy, XPOMCP could
explain that the robot, controlled by POMCP, moves fast if the probability of being in
a cluttered segment is lower than 3%. The expert can use this information to refine
his/her knowledge of the policy and synthesize shields that guarantee some safety
properties expected by the expert.

Experts are usually interested in identifying situations where the policy does not
satisfy their assumptions and expectations. In the context of the warehouse domain,
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a possible question is: “Is there a situation in which the robot moves at high speed
even if it is likely that the environment is cluttered?”.

XPOMCP requires the expert to define a rule template representing a question.
The template is a set of logical formulas expressing partially defined assumptions.
Parameters of rule templates are then computed from traces by a Satisfiability Mod-
ulo Theory (SMT) solver (C. W. Barrett and Tinelli 2018). In particular, we formalize
the parameter computation problem as a MAX-SMT problem. This encoding allows
to express logical formulas using an expressive formalism and to compute optimal
assignments when the template is not fully satisfiable, which is very common in an-
alyzing real policies. To facilitate the usage of our methodology, we also introduce
a rich and flexible language, based on SMT-LIB (C. Barrett, Fontaine, and Tinelli
2016), that allows us to define rule templates expressing high-level concepts about
the expected behaviour of the policy.

1.3.2 Rule-based anomaly detection and shielding

The explainability achieved by XPOMCP using logical formulas to represent pol-
icy properties can be used for two main purposes, namely, to identify anomalous
decisions taken by the policy (called anomaly detection in the following) and to pre-
vent such anomalous decisions during policy execution (called real-time shielding).
Anomaly detection concerns identifying decisions that violate logical rules repre-
senting experts’ indications. To perform anomaly detection, we first compute ap-
proximated decision boundaries of the expected policy using logical rules. Then, we
mark the decisions that do not satisfy these boundaries as unexpected. For instance,
a decision to move fast in an aisle having a high probability of being highly clut-
tered does not satisfy the decision boundaries of the logical rule for action “move
fast”. Hence, this will be detected as an outlier, i.e., an anomaly. On the other hand,
shielding (Bloem et al. 2015; Alshiekh et al. 2018) refers to the capability of XPOMCP
to use logical rules to check in real-time the actions selected by POMCP and to block
unsafe actions that do not satisfy the indications provided by the expert for the cur-
rent situation faced by the agent. Specifically, XPOMCP builds a pre-shield that,
given a certain belief, returns a list of legal actions. This approach allows combin-
ing the safety guarantees specified by the shield with the performance of POMCP in
selecting the best action (among the legal ones) using Monte Carlo techniques. We
assume that representing properties related to safety is simpler than representing the
entire policy. Hence, human-understandable models can represent safety properties,
i.e., logical rules in our approach that bridge symbolic and sub-symbolic methods.

1.3.3 Active rule syntehsis

The proposed rule synthesis procedure scales to large instances but requires signif-
icant data to perform well. Some common beliefs appear multiple times in many
domains, while others’ reachable beliefs are significantly more uncommon. These
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rare scenarios often provide useful insight into the behaviour of the policy in partic-
ular situations. Thus it is relevant to collect them efficiently. To achieve this goal, we
present an extension of the methodology, called Active XPOMCP, that actively uses
the POMCP policy to improve and refine the boundaries of a rule generated with
XPOMCP. The active approach leads POMCP toward exploring significant beliefs
that were never visited before. This procedure respects the online nature of POMCP,
a crucial requirement to scale toward large instances with many possible scenarios
(of which only a small fraction is reachable).

1.3.4 Empirical evaluation

We empirically evaluate the proposed methods on an experimental setting com-
posed of two standard benchmark domains for POMDPs, namely, tiger and rock-
sample, and a real-world domain involving mobile robot navigation, called velocity
regulation. To evaluate the ability of XPOMCP to identify anomalous behaviours and
preserve the safety of the policy, we consider a POMCP implementation that suffers
from two common types of bugs related to an incorrect setting of some POMCP
parameters. In one case, the parameter that is wrongly set is the constant c of the
Upper Confidence bound for Trees (UCT) method, see (Kocsis and Szepesvári 2006).
This parameter has a very subtle effect on the decisions taken by POMCP because
a wrong c parameter produces a non-deterministic imbalance of the MCTS used to
evaluate action values, which generates wrong decisions from time to time. This
is a realistic case study for a wrong usage of POMCP that is challenging to iden-
tify. In the other case, we consider using a number of simulations in the Monte
Carlo sampling that is too small to achieve good performance. This problem could
happen in real-world applications due to limitations in computation time. In our
test, we compare the capability to identify anomalous actions of XPOMCP with that
of Isolation Forest (Liu, Ting, and Zhou 2008), a state-of-the-art anomaly detection
algorithm, and show that our methodology can outperform isolation forest in the
identification of unexpected decisions. Specifically, our approach improves the Area
Under Curve (AUC) by up to 47%. This metric is important because it measures
the quality of an approach independently by how its parameters are set. Moreover,
the shielding mechanism allows to preserve safety and improves the performance of
POMCP when the policy takes unexpected decisions. The shield POMCP improves
the average discounted return up to 188.71% compared to the original algorithm.
We also present results on the active approach, showing that active XPOMCP out-
performs the non-active strategy on two challenging experimental domains, namely,
rocksample and velocity regulation. XPOMCP uses a predefined trace generated by
executing POMCP without any strategy to search for informative beliefs. We show
that Active XPOMCP manages to reduce the uncertainty interval (i.e., the reachable
beliefs that are not already described by a rule) using less data than XPOMCP and,
consequently, it generates accurate rules using a much smaller number of runs than
XPOMCP. Furthermore, in the velocity regulation domain, we also show that the
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rules generated by Active XPOMCP can be more accurate than those produced by
XPOMCP. This increase in accuracy results in up to 264% performance improve-
ment when the rules generated with the two methodologies are used to shield the
behaviour of POMCP. This happens because the belief space is large, and the prede-
fined trace used by XPOMCP may sample only partially the belief space in the area
close to the decision boundary of the policy. Instead, the strategy used by Active
XPOMCP actively searches the decision boundary and accurately describes it using
the logical rule.

1.3.5 Summary of contributions

To summarize, this thesis makes the following contribution to state of the art:

• We provide a methodology, XPOMCP, to build logic-based representations of
POMCP policies. These descriptions merge expert knowledge and information
gathered from observed belief-action traces.

• We define an anomaly detection approach in which the rules generated by
XPOMCP are used to identify unexpected decisions taken by POMCP.

• We introduce a shielding procedure for POMCP based on the anomaly detec-
tion method, which prevents the planner from selecting actions that do not
satisfy the expert’s indications.

• We present an active approach that leads the exploration of POMCP toward
significant beliefs to make the rule synthesis procedure faster and more precise.

• We empirically evaluate the performance of the proposed methods on an ex-
tensive experimental setting concerning three benchmark domains, namely,
tiger, rocksample and a problem of velocity regulation for mobile robots.

1.4 Organization of the thesis

The rest of this thesis is organized as follows:

• Chapter 2 presents the related work. It focuses on four main areas: planning
with POMCP, explainable AI, safety, and shielding.

• Chapter 3 presents the theoretical notions used in the thesis. It describes the
planning problem, particularly for systems modelled as MDPs or POMDPs. It
also provides an in-deep description of the POMCP algorithm. The SAT and
the SMT problems are described alongside a discussion of the key elements of
state-of-the-art SMT solvers. Finally, the benchmarks used to test the presented
methodologies are described.

• Chapter 4 describes the rule generation procedure of XPOMCP. The language
for writing rule templates is also introduced.
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• Chapter 5 explains how the rules generated by XPOMCP can be used to iden-
tify anomalous decisions in POMCP policies. It also provides experimental
results by comparing the rule-based anomaly detection methodology to an
unsupervised state-of-the-art anomaly detection algorithm, i.e. isolation for-
est. Results show that XPOMCP outperforms isolation forests by exploiting
the high-level information provided by the expert.

• Chapter 6 presents how the rules generated by XPOMCP can be used to build
a shielding mechanism that blocks unexpected decisions in real-time systems.
The chapter also presents experimental results for the shielding methodology.

• Chapter 7 presents an extension of XPOMCP, called Active XPOMCP, that uses
the POMCP algorithm and actively explores an important part of the policy.
The chapter presents experimental results that show that this approach is sig-
nificantly faster than standard (passive) XPOMCP in generating strict rules.

• Finally, Chapter 8 draws conclusions and presents possible future research di-
rections.

1.5 Publications

Most of the work presented in this thesis has been published in top-ranked inter-
national conferences, as AAMAS and ICAPS. Specifically, the results presented in
Chapter 4 and Chapter 5 has been published in (Mazzi, Castellini, and Farinelli
2021a). An in-deep case study of this methodology has been presented in (Mazzi,
Castellini, and Farinelli 2020). The shielding mechanism presented in Chapter 6 is
described in (Mazzi, Castellini, and Farinelli 2021c). A combination of the results
presented in chapters 4, 5, and 6 with extended experiments is under review as a
journal paper for a top-ranked journal. The results presented in Chapter 7 were
presented as an extended abstract at AAMAS 2022(Mazzi, Castellini, and Farinelli
2022); an extension of this approach is under review as a journal paper. The re-
sults were also presented in workshops, specifically at AIRO (Mazzi, Castellini, and
Farinelli 2020), ARMS (as part of AAMS 2021), PLANROB (as part of ICAPS 2021),
and OVERLAY (Mazzi, Castellini, and Farinelli 2021b). Finally, some preliminary
analysis on the explainability of POMCP that leads to the methodologies developed
in this thesis was presented in (Castellini, Marchesini, et al. 2020). The aforemen-
tioned publications are listed in the following:

1. Giulio Mazzi, Alberto Castellini, and Alessandro Farinelli (2022). “Active Gen-
eration of Logical Rules for POMCP Shielding”. In: AAMAS. International
Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS), pp. 1696–
1698

2. Giulio Mazzi, Alberto Castellini, and Alessandro Farinelli (2021a). “Identifica-
tion of Unexpected Decisions in Partially Observable Monte Carlo Planning:
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A Rule-Based Approach”. In: AAMAS ’21: 20th International Conference on Au-
tonomous Agents and Multiagent Systems, Virtual Event, United Kingdom, May 3-7,
2021. Ed. by Frank Dignum, Alessio Lomuscio, Ulle Endriss, and Ann Nowé.
ACM, pp. 889–897

3. Giulio Mazzi, Alberto Castellini, and Alessandro Farinelli (2020). “Policy In-
terpretation for Partially Observable Monte-Carlo Planning: a Rule-based Ap-
proach”. In: Proceedings of the 7th Italian Workshop on Artificial Intelligence and
Robotics (AIRO 2020@AI*IA2020). Vol. 2806. CEUR Workshop Proceedings.
CEUR-WS.org, pp. 44–48

4. Giulio Mazzi, Alberto Castellini, and Alessandro Farinelli (2021c). “Rule-based
Shielding for Partially Observable Monte-Carlo Planning”. In: Proceedings of
the Thirty-First International Conference on Automated Planning and Scheduling,
ICAPS 2021, Guangzhou, China (virtual), August 2-13, 2021. Ed. by Susanne
Biundo, Minh Do, Robert Goldman, Michael Katz, Qiang Yang, and Hankz
Hankui Zhuo. AAAI Press, pp. 243–251

5. Giulio Mazzi, Alberto Castellini, and Alessandro Farinelli (2021b). “Rule-based
Shield Synthesis for Partially Observable Monte Carlo Planning”. In: Proceed-
ings of the 3rd Workshop on Artificial Intelligence and Formal Verification, Logic,
Automata, and Synthesis hosted by the Twelfth International Symposium on Games,
Automata, Logics, and Formal Verification (GandALF 2021), Padua, Italy, Septem-
ber 22, 2021. Ed. by Dario Della Monica, Gian Luca Pozzato, and Enrico Scala.
Vol. 2987. CEUR Workshop Proceedings. CEUR-WS.org, pp. 19–23

6. Alberto Castellini, Enrico Marchesini, Giulio Mazzi, and Alessandro Farinelli
(2020). “Explaining the Influence of Prior Knowledge on POMCP Policies”.
In: Multi-Agent Systems and Agreement Technologies - 17th European Conference,
EUMAS 2020, and 7th International Conference, AT 2020, Thessaloniki, Greece,
September 14-15, 2020, Revised Selected Papers. Ed. by Nick Bassiliades, Geor-
gios Chalkiadakis, and Dave de Jonge. Vol. 12520. Lecture Notes in Computer
Science. Springer, pp. 261–276
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Chapter 2

Related Work

We discuss four main research areas related to this thesis: POMCP-based planning,
explainable planning, safety in AI systems, and shielding. Notice that a general
discussion on planning and satisfiability Module Theories is presented in Chapter 3
as background material, while this chapter focuses on analyzing the approaches in
state-of-the-art literature having larger similarities with XPOMCP. We also explain
the main features that differentiate XPOMCP from the other approaches.

2.1 Planning with POMCP

POMCP has been first introduced in 2010 (Silver and Veness 2010) as an extension
of the UCT algorithm (Kocsis and Szepesvári 2006) to partially observable environ-
ments. Both UCT and POMCP aim at solving problems in large state spaces, and
they employ MCTS (Coulom 2006) for this purpose. UCT works on Markov decision
processes (MDPs) (Russell and Norvig 2020) and POMCP on POMDPs (Smallwood
and Sondik 1973; Cassandra, Littman, and N. L. Zhang 1997). We present a detailed
description of the algorithm in Section 3.1.4. Several extensions of POMCP have
been realized since then, and many applications have also been developed. To men-
tion a few of these methodologies, we remember an algorithm called BA-POMCP
(Katt, Oliehoek, and Amato 2017) which extends POMCP to Bayesian Adaptive
POMDPs, allowing the model of the environment to be learned during execution.
A version of POMCP for scalable planning in multiagent POMDPs (Amato and
Oliehoek 2015); a scalable extension of POMCP for dealing with cost constraints (Lee
et al. 2018); another extension, presented in (Castellini, Chalkiadakis, and Farinelli
2019), exploits prior knowledge on state-variable relationships. Regarding appli-
cations of POMCP, some examples come from the exploration of partially known
environments with robots (Lauri and Ritala 2016) and active visual search in indoor
environments (Yiming Wang et al. 2020), but also other applications are available in
the literature (Goldhoorn et al. 2014). MCTS-based approaches have been recently
used also for developing agents with superhuman performance in the game of Go
(Silver, A. Huang, et al. 2016; Silver, Hubert, et al. 2018).

The goal of our work is not to propose a methodological extension or a new
application of POMCP. Instead, we propose a symbolic approach based on logic
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rules for explaining the (non-symbolic) POMCP-based policies that are difficult to
explain because they are generated online by a complex stochastic process based on
MCTS. Moreover, the logic rules generated by XPOMCP are also used to guarantee
POMCP policies’ safety through a tool for identifying anomalous (i.e., unexpected)
decisions and a shielding approach for substituting in real-time anomalous decisions
with decisions expected by experts.

2.2 Explainability

Explainable Artificial Intelligence (XAI) (Gunning and Aha 2019) is a rapidly grow-
ing research field (Burkart and Huber 2021) focusing on human interpretability and
understanding of artificial intelligence (AI) systems. In particular, Explainable plan-
ning (XAIP) (Cashmore, Collins, et al. 2019; Fox, Long, and Magazzeni 2017; An-
jomshoae et al. 2019) aims at developing planning tools that come with justifications
for the decisions they make. These explanations are particularly important when
agents and humans interact (Chakraborti et al. 2017; Y. Zhang et al. 2017; Langley
et al. 2017). Our methodology supports this interaction by using the expert’s insight
as a basis for the explanation. This approach leads to compact explanations that can
also be used to highlight when the policy and the expert’s expectations are different.

A particularly interesting class of questions analyzed in XAIP is known as con-
trastive question (Fox, Long, and Magazzeni 2017; Brandão et al. 2021; Krarup et al.
2021), in which a user can ask an agent why it takes a certain decision instead of
another one that the expert believes to be better. The system then should answer by
motivating the advantage of its choice over the alternative one. Contrastive ques-
tions are difficult to answer in online frameworks like POMCP because the infor-
mation required is often unavailable to the agent. We, therefore, do not use con-
trastive questions but ground the interaction between humans and planners on log-
ical formulas. These formulas frame the expert’s insight and can be used to iden-
tify the decisions in contrast with the expert’s expectations. While it is possible to
compute metrics that capture interesting properties of POMCP’s generated policies
(Castellini, Marchesini, et al. 2020), the knowledge provided by the expert proves
to be crucial for proper computing representations. In particular, our approach can
be used as an iterative process in which the expert can refine these logical rules to
acquire a new understanding of specific properties of the policy by analyzing the
execution traces generated by a POMCP agent. A detailed example of iterative re-
finement of logic rules performed by XPOMCP has been recently presented (Mazzi,
Castellini, and Farinelli 2020).

A methodology that builds explanations based on logical formulas by analyz-
ing a series of events is presented in (Costa and Dasgupta 2021). The approach is
based on temporal logic and decision trees and builds sequential explanations (i.e.,
a relation between an event and past events in the sequence). This is different from
our approach because a rule generated by XPOMCP is a compact representation of
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a policy (i.e., a function that maps beliefs to actions) based on MAX-SMT formulas,
not a sequential explanation for events in a time series based on temporal logic. In
particular, we build a compact representation of the policy by combining the analy-
sis of multiple execution traces into a single rule to highlight the important aspects
of the policy and not a justification for the decisions in a specific trace. Another
logic-based methodology is presented (Mota and Sridharan 2021; Mota, Sridharan,
and Leonardis 2021; Sridharan and Mota 2020). It presents an architecture that com-
bines non-monotonic logical reasoning and incomplete knowledge bases to build
explanations for the decisions taken by a complex robotic system. This is differ-
ent from our approach for two main reasons. First, XPOMCP generates rules that
present a compact summary of the policy behaviour, not on-demand explanations
of actions based on a knowledge base. Second, we base our method on MAX-SMT,
not non-monotonic logic. This distinction is important because it leads to handling
the domains’ uncertainty in different ways. Specifically, we consider uncertainty as
a probability distribution over possible domains, while the non-monotonic logic is
based on defeasible inferences. However, extending XPOMCP to other logic is an
interesting research direction, as discussed in Chapter 8.

2.3 Safety in AI Systems

Safety of artificial intelligence methods has recently become a central research topic
(Seshia and Sadigh 2016; McAllister et al. 2017; P. S. Thomas et al. 2019). Logic-
based approaches have been developed, for instance, to verify the safety of neural
networks (Zakrzewski 2001; Cheng, Nührenberg, and Ruess 2017; X. Huang et al.
2017; Katz et al. 2017; Narodytska et al. 2018; Bunel et al. 2018; Gehr et al. 2018; Jia
and Rinard 2020) motivated by the need to use these tools in safety-critical applica-
tions, such as autonomous driving. These methodologies mainly attempt to solve
the verification problem on neural networks, which are highly non-linear because
of the activation functions employed. Hence standard verification methods are not
applicable. The approaches cited above then adapt verification methods to work on
specific classes of neural networks or approximate neural networks to allow the ap-
plicability of standard verification methods. In both cases, safety requirements must
be mathematically specified in advance by logical formulas. Verification methodolo-
gies confirm that a network satisfies those requirements or provide counterexam-
ples showing cases where the SMT formulas do not satisfy safety requirements. Our
methodology differs from these because our goal is not to verify predefined safety
requirements written with logical rules but to use logical rules to support the inter-
action between the human and the planner. Namely, we use these formulas as rule
templates describing the properties of the policy we want to investigate. XPOMCP
then uses a MAX-SMT-based procedure to instantiate the rule parameters according
to the observed traces and provides the list of observations that do not satisfy the
instantiated rule. In this way, XPOMCP can provide novel insight to the domain
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expert. This process can be iterated since the human can change the rule template
and check different aspects of the policy in this way until an explanation of which
the human is confident is achieved. The final explanation can be used as a shield
to prevent unsafe decisions of the policy, or it can be used to identify the reason
for the wrong behaviour of the policy (e.g., a wrong parameter, a small number of
simulations performed by the MCTS, or a wrong model of the environment).

The literature also provides various approaches specifically focused on the syn-
thesis of safety policies and verifying safety properties in policies for reinforcement
learning and POMDP. In these cases, temporal logic is often used to represent safety
requirements since the involved models are sequential. SMT-based approaches are
used, for instance, in (Norman, Parker, and Zou 2017; Yue Wang, Chaudhuri, and
Kavraki 2018; Bastani, Pu, and Solar-Lezama 2018; Verma et al. 2018; Cashmore,
Magazzeni, and Zehtabi 2020). These frameworks use formal approaches to synthe-
size a policy that satisfies predefined properties, an approach that presents scalabil-
ity problems and has never been applied to online and approximate solvers such as
POMCP. In contrast, we use a MAX-SMT solver to generate a human-readable repre-
sentation of pre-computed policies that summarizes properties of interest. This en-
hances policy explainability without altering the policy itself and thus can be used to
analyze complex policies generated online. This makes it possible to deal with very
large state spaces. This explanation can then be used to build a shielding mechanism
that blocks decisions that do not respect the desired properties. To the best of our
knowledge, there is no approach equivalent to XPOMCP in the literature that can
build a mechanism that checks when high-level properties hold on POMCP.

A related problem is safe reinforcement learning (Junges, Jansen, Dehnert, et al.
2016; Fulton and Platzer 2018; Hasanbeig, Abate, and Kroening 2020), in which an
agent must develop a policy for model-free systems (i.e., systems for which the re-
ward function is unknown) while respecting some safety constraints. Our problem
differs because, in POMCP, we have a black-box simulator that can be used as a
model. We exploit this element to build effective shields, specifically in the active
approach presented in Chapter 7.

The methodology recently presented in (Junges, Jansen, and Seshia 2021) can be
used to compute policies for POMDPs that satisfies safety requirements. Specifically,
The approach uses a SAT solver to compute winning regions, a subset of beliefs for
which a policy never reaches a forbidden state exists. This approach provides strong
guarantees but cannot scale to large instances of POMDPs. Instead, our approach
exploits the online nature of POMCP to handle large problems.

Another approach for verifying properties in probabilistic systems is statistical
model checking (SMC), as discussed in (Klauck et al. 2020). The approach is applied
to POMCP in (Newaz, Chaudhuri, and Kavraki 2019) where SMC is used to verify
that qualitative objectives, specified on possible states of the environment (i.e., safe
reachability), are satisfied with a certain confidence level. This is different from our
methodology since we specify properties on beliefs instead of on states, and we use
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them to build a shield that blocks undesired behaviours. SMC also requires a large
number of particles to generate reliable results, while our methodology does not
have such a requirement.

2.4 Shielding

Shields have been used to verify critical properties of a complex hardware design in
cases when traditional verification methods are unusable because of scalability is-
sues (Bloem et al. 2015; Knighofer et al. 2017). A shielding mechanism for reinforce-
ment learning agents is presented in (Alshiekh et al. 2018). This work presents two
kinds of shielding mechanisms: a preemptive shield that selects a priori to which
actions are allowed and a post-posed shield that intervenes only after the reinforce-
ment learning algorithm selects an action. These shields enforce safety constraints
expressed in temporal logic. An extension of this work is presented in (Jansen et al.
2020) where the shield is specialized to prevent unsafe actions due to the agent’s
exploration of reinforcement learning-based policies. Our shielding mechanism,
firstly introduced in (Mazzi, Castellini, and Farinelli 2021c), works as a preemp-
tive shield, but our methodology has two important differences from the abovemen-
tioned methodology. Namely, we focus on partially observable problems. Thus our
approach must deal with uncertainty, and we build the shield from a high-level rep-
resentation. Specifically, the user does not have to specify the details of the shielding
mechanism because XPOMCP computes them by analyzing execution traces.

A recent approach (Zhu et al. 2019) presents a shielding mechanism based on a
simplified policy representation. The methodology verifies properties related to the
safety of a fully observable system modelled by Markov Decision Processes (MDPs).
The approach works on a pre-trained neural network representing a black-box pol-
icy. It is composed of three main stages: synthesis, in which the complex neural policy
is approximated using linear formulas that behave as close as possible to the original
neural policy while being also easy to analyze; verification, in which an off-the-shelf
SMT solver verifies the safety of the approximated policy; shielding, in which the
behaviour of the neural policy is monitored in real-time and the synthesized (ap-
proximated) policy is used as a shield to substitute unsafe actions suggested by the
neural policy. This differs from our work for two main reasons: first, we work on
partially observable environments instead of completely observable environments,
and our logical formulas work on beliefs instead of states (i.e., the formulas that we
have to use to describe the policy are computationally more expensive and cannot
be used in the same way); second, our approach does not require a full description
of the behaviour of the policy and can be used to focus the investigation on the most
critical properties of a policy. Furthermore, in (Zhu et al. 2019) the logical formulas
are used as an input to the verification tool that uses them to verify safety proper-
ties. In contrast, we use logical formulas directly on the POMCP policy to generate
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human-readable representations of some of its properties. These logical formulas
are then used to detect anomalous actions and perform a shield.
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Chapter 3

Background

This chapter provides background for planning and Satisfiability Modulo Theories (SMT),
which are the two main problems addressed in this thesis. Furthermore, it describes
the benchmarks used in the experiments. The methodologies presented in this the-
sis aim to solve the problems of planning in partially observable environments using
the theoretical framework of Partially Observable Markov Decision Processes (POMDP).
In this context, the correct state of the system is unknown, but it can be estimated us-
ing imperfect observations received from the environment. We use a logic-based ap-
proach to generate rules that compactly describe the behaviour of a POMDP agent.
SMT formulas are used to encode the rule that describes which actions the agent can
take based on the currently available information on the actual state of the system.

3.1 Planning in partially observable domains

Artificial Intelligence is the study of rational actions (Russell and Norvig 2020). A
central topic n this context is AI planning which concerns devising strategies for exe-
cuting optimal sequences of actions. Planning systems must decide which action to
take given the information collected until the current time instant. Actions have an
impact on the state of the system. Thus, it is paramount to consider both the action
that must be taken immediately and the impact that this action has on future deci-
sions. In this thesis, we focus on planning problems in which the actions are stochas-
tic (i.e., the outcome of the actions is not always guaranteed) and the environment
surrounding the agent is only partially observable (i.e., the agent must reason about
imperfect information). In particular, we use Partially Observable Markov Decision Pro-
cesses (POMDPs) to consider the uncertainty in the planning problem. POMDPs are
an elegant mathematical framework that can model complex systems for which the
Markov Property holds, namely, the effect of the previous actions is wholly encoded
in the current state. Therefore the agent can reason on the state only, disregarding
the previous states. Computing optimal plans for a POMDP is a computationally
challenging problem, and most of the state-of-the-art algorithms provide approx-
imate and online solutions (i.e., solutions that consider only a limited part of the
solution space). An algorithm that proved to be particularly effective for planning
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in large POMDP instances is Partially Observable Monte-Carlo Planning (POMCP) (Sil-
ver and Veness 2010). This thesis proposes a methodology for better understanding
the online policies generated by the algorithm to make them more understandable to
human experts. These explanations are critical to building systems that avoid risky
decisions during their execution. This section provides the theoretical background
about Markov Decisions Processes and Partially Observable MDP. We also present
an in-depth description of the POMCP algorithm.

3.1.1 Markov Decision Processes

A Markov Decision Process (MDP) is a mathematical framework used to model deci-
sion processes with stochastic actions. An MDP is defined as a tuple (S, A, T, R, γ)

where:

• S is a set of states.

• A is a set of actions.

• T : S× A→ Π(S) is the state-transition model.

• R : S× A→ Π(R) is the immediate reward function.

• γ ∈ [0, 1] is a discount factor.

In a Finite MDP sets S and A have a finite number of elements. With Π(S) (Π(R))
we define a probability distribution over the set of states S (the real numbers R). To
present explicit distribution, we use Π(x1 : p1, . . . , xk : pk) to define a distribution
over k values where each value i has probability pi. Function T is used to specify the
dynamics of the system. Specifically, equation

T(s′|s, a) = Pr(st = s′|st−1 = s, at−1 = a) (3.1)

specifies the probability of transitioning toward a certain state s′ if action a is selected
in state s. A state has the Markov Property if it contains all the information required
to express the dynamics of the system. The goal of an MDP agent is to maximize the
expected discounted return

E[
∞

∑
t=0

γtR(st, at)]. (3.2)

To describe the behaviour of a system, we use a policy π : S× A, which is a func-
tion that maps states to actions. We compute the optimal policy (i.e., the policy that
maximizes the expected discounted return) by computing an optimal value function.
A value function vπ(s) is a mapping that specifies the expected return of each state
s given a policy π. A useful formulation of the value function, known as the Bellman
Equation is defined as follow:

vπ(s) = ∑
a

π(s) ·∑
s′,r

T(s′|s, a)[R(r|s, a) + γvπ(s′)], for all s ∈ S (3.3)
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FIGURE 3.1: Interaction between the agent and the environment in an
MDP (left) and in a POMDP (right)

This equation divides the expected return in two components, namely, the immedi-
ate rewards R(r|s, a), received by selecting action a in state s, and the future reward
vπ(s′) computed using the value function in the next state s′.

3.1.2 Partially Observable Markov Decision Processes

In this thesis, we focus on an extension of MDP called Partially Observable Markov
Decision Process (POMDP) (Smallwood and Sondik 1973; Kaelbling, Littman, and
Cassandra 1998). POMDP can be used to model systems in which the agent can-
not directly observe the actual state of the system, but it must estimate it by using
(imperfect) observations received from the environment. A POMDP is defined as a
tuple (S, A, O, T, Z, R, γ) where:

• S is a set of partially observable states.

• A is a set of actions.

• Z is a finite set of observations.

• T: S× A→ Π(S) is the state-transition model .

• O: S × A → Π(Z) is the observation model (with Π(Z) space of probability
distributions over observations).

• R: S× A→ Π(R) is the reward function (where Π(R) is a probability distribu-
tion over real numbers).

• γ ∈ [0, 1] is a discount factor.

In which S, A, T, R and γ are defined as in standard MDP, and Z, O are added to
handle the partial observability of the environment. Figure 3.1 shows a schematic of
the interaction between agent and environment for MDPs and POMDPs. An history
h is a sequence of actions and observations. We denote ht = {a1, o1, . . . , at, ot} as
the history from the beginning to the discrete time-step t. With hao, we express
that the agent selects action a after history h, and it receives an observation o from
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the environment, leading it toward a new belief B. For each story h, we can define
a belief B(s, h) = Pr(st = s|ht = h), which is a probability distribution over the
possible states. The real initial state of the system s0 ∈ S is one of the possible states
contained in the initial probability distribution B0.

A solution for a POMDP is a policy, namely a function π: B→ A that maps beliefs
into actions (where B represents the belief-space). Similarly to MDP, this policy must
maximize the discounted return defined as

E[
∞

∑
t=0

γtR(st, at)]. (3.4)

The value function Vπ(h) for a history h is defined as the expected return achieved
by applying policy π from history h. Thus, an optimal policy π∗ requires an optimal
value function V∗ = max

π
Vπ(h).

3.1.3 POMDP solvers

Computing an optimal policy for a POMDP is a challenging theoretical computing
problem. Specifically, it proves to be PSPACE-hard in the cases of finite horizons
and undecidable when the horizon is infinite (Papadimitriou and Tsitsiklis 1987).
Two elements, namely, the curse of dimensionality and the curse of history, are the main
reasons for this complexity (Pineau, Gordon, and Thrun 2006). The curse of dimen-
sionality explains that the complexity of optimally computing returns for the value
function increases exponentially with the number of states. The curse of history
expresses that the number of histories that must be evaluated grows exponentially
in the size of the horizon. Thus, exact complete algorithms, such as value itera-
tion (Kaelbling, Littman, and Cassandra 1998), does not scale to large instances.

To overcome these limitations, it is possible to compute online policies, which
are approaches that avoid full-width exploration by computing the policy only from
the current history and forward. A popular approach is to use value iteration, like
in (Pineau, Gordon, and Thrun 2006) and (Ross et al. 2008), to compute local approx-
imations for the value function. These approaches require an explicit model of the
POMDP, and they construct a search tree using a best-first approach.

A different approach to online policy generation is to use Monte Carlo tech-
niques (Bertsekas and Castañón 1999; Kearns, Mansour, and Ng 1999). These meth-
ods use a black-box simulator as a generative model to sample successor states, ob-
servation and reward, given the current state and an action. Thus, an explicit model
of the POMDP is not required. These approaches are limited to fixed horizons and
sparse samplings. A pioneering approach that overcomes these shortcomings is Par-
tially Observable Monte Carlo Planning (Silver and Veness 2010). This algorithm is the
main focus of the thesis. Therefore we provide a detailed description of the method-
ology in the next section.
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Algorithm 1: Search
Input: History: h
Output: action: a

1 while ¬Timeout() do
2 if h = ∅ then
3 pt ∼ B0;

4 else
5 pt ∼ B(h);

6 Simulate(pt, h, 0);

7 return arg max
a

V(ha);

Algorithm 2: Rollout
Input: Particle: pt, History: h,

Depth: dp
Output: Reward: rw

1 if γdp < ε then
2 return 0;

3 a← πrollout(h);
4 [pt′, o, rw] ∼ Step(pt, a);
5 return rw + γ ·

Rollout(pt′, hao, dp + 1);

Algorithm 3: Simulate
Input: Particle: pt, History: h,

Depth: dp
Output: Reward: rw

1 if γdp < ε then
2 return 0;

3 if h /∈ Tree then
4 forall a ∈ A do
5 Tree(ha)←

(Ninit(ha), Vinit(ha), ∅);

6 return Rollout(pt, h, dp);

7 a← arg max
b

V(hb) + c ·
√

log N(h)
N(hb) ;

8 [pt′, o, rw] ∼ Step(pt, a);
9 rw←

rw + γ · Simulate(pt′, hao, dp + 1);
10 B(h)← B(h) ∪ {pt};
11 N(h)← N(h) + 1;
12 N(ha)← N(ha) + 1;

13 V(ha)← V(ha) + rw−V(ha)
N(ha) ;

14 return rw;

FIGURE 3.2: Main elements of the POMCP algorithm.

3.1.4 Partially Observable Monte Carlo Planning

In this thesis, we focus on analyzing the Partially Observable Monte Carlo Planning
(POMCP) (Silver and Veness 2010) to solve POMDPs. POMCP is an online algo-
rithm that solves POMDPs by using Monte Carlo sampling techniques. One of the
strengths of POMCP is that it does not require an explicit definition of the transi-
tion model, observation model, and reward. Instead, it uses a black-box simulator
to simulate the environment and estimate the effectiveness of each action. POMCP
uses a Monte Carlo Tree Search (MCTS) at each time step to explore the belief space
and select the best action. By employing MCTS, POMCP can break both the curse
of history and dimensionality. The algorithm employs Upper Confidence Bound for
Trees (UCT) (Kocsis and Szepesvári 2006) as a search strategy to select the subtrees
to explore and to balance exploration and exploitation during the simulation. The
belief is implemented as a particle filter, which is a sampling over the possible states
updated at every step.

Particle filter

While it is possible to compute a belief state update exactly using the Bayes Theo-
rem (Ross et al. 2008), this proves to be intractable in real-world instances. POMCP
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FIGURE 3.3: POMCP Belief Update

uses an unweighted particle filter to approximate a belief to overcome this limita-
tion. Each particle encodes a possible state in the current belief, and it is updated
with a Monte-Carlo procedure. The update uses a black box that simulates the sys-
tem’s behaviour and returns an observation, a reward, and a state transition. In this
way, it is possible to perform the simulation without requiring a complete explicit
model for the POMDP.

At each time step a particle is selected from the filter (Algorithm 1 lines 2–5). In
the first step performed by the agent (i.e., step 0), the procedure selects a particle
from an initial distribution B0. The particle is selected from the updated particle
filter B(h) in the subsequent steps. The state of the particle taken from the particle
filter is used as an initial point to perform a simulation in the Monte Carlo tree (Al-
gorithm 1 line 6). Each simulation is a sequence of action-observation pairs which
collects a discounted return. Algorithm 3 presents the pseudocode for the search-
ing procedure of POMCP. If the simulation encounters a new history (Algorithm 3
line 3), it estimates the value of an action in the history using a Rollout policy (Algo-
rithm 2). Otherwise, the simulation selects an action and updates the current node’s
values according to the results provided by the black box simulator. Specifically, the
expected value of each action is approximated by averaging the discounted returns
of all simulations starting with that action, according to a backtracking procedure
(Algorithm 3 line 13).

At the end of the simulation time (see Algorithm 1 line 1), POMCP uses the best
action according to the value function V in the current history. The particle filter is
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then updated after performing a step in the real environment, considering the parti-
cles in the branch of the tree related to the observation received by that environment.
Figure 3.3 shows a graphical representation of this procedure. If required, POMCP
can use a particle reinvigoration procedure to generate new particles from the cur-
rent belief. The reinvigoration step is helpful to avoid particle depletion in which
the algorithm does not have enough particles to approximate the true belief.

Partially observable UCT

To decide which action should be selected during the simulation, POMCP uses an
extension of the UCT algorithm (Kocsis and Szepesvári 2006) to balance exploration
and exploitation. This extension, called Partialy Observable UCT (PO-UCT) (Silver
and Veness 2010), uses histories h instead of states to handle partially observable
environments. Specifically, PO-UCT uses a tree T in which each node stores the
expected value function V(h) and the number N(h) of simulations performed for
each specific history h. Since POMCP is an online algorithm, these nodes are built
when the simulation step explores them, and in general, they are a small subset of
all the possible histories. The value function is estimated as the mean return of all
the simulations performed from history h. The action selected for the simulation is
the one that maximizes the function

VUCT(ha) = V(ha) + c ·

√
log N(h)

N(ha)
(3.5)

where V(ha) is the current expected mean value achieved by selecting action a in
history h, N(h) is the total number of simulations for the current history, and N(ha)
is the number of simulations performed with action a in h (Algorithm 3 line 7). The

second element of the formula (i.e., c ·
√

log N(h)
N(ha) ) is used to encourage the exploration

of different actions, and it is higher for rarely used actions (i.e., actions with a low
value of N(ha)). This element increases as the logarithmic of the total number of
simulations N(h), thus its value is higher and more relevant when the number of
simulations is low. When both N(h) and N(ha) increase, the value of the denom-
inator log N(h) dominates, thus the value tends to zero. On the other hand, the
first element of the equation (i.e., V(ha)) is used to exploit the information currently
available to the system since it is higher for actions that prove to be effective. The ex-
ploration constant c, also known as the reward range, regulates the balance between
exploration and exploitation in the system. In particular, if c = 0, the algorithm
acts greedy on the available information. This value is important to achieve good
performance, and it must be hand-tuned for each application domain.
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3.2 Satisfiability Modulo Theory

This thesis proposes a logic-based methodology used to build rules that describe
the behaviour of a POMCP system. We express these rules using Satisfiability Modulo
Theories (SMT), which is the problem of reasoning on the satisfiability of formulas in-
volving propositional logic and specific quantifier-free fragments of first-order logic,
called Background Theories, that fix the interpretation of certain function symbols. In
this thesis, we formulate the problem of generating rules describing POMCP be-
haviour as a Maximum Satisfiability Modulo Theory (MAX-SMT) problem, a formalism
allowing us to encode rules that are abstract and approximate. This section describes
the main elements of an SMT solver and the MAX-SMT problem used for the rule
synthesis procedure.

3.2.1 Satisfiability Modulo Theory solvers

Although it is possible to use a generic first-order theorem prover to solve an SMT
formula, this is known to be computationally intractable in practice. General solvers
reason on logical formula without considering specific theory. However, we want
to reason with fixed interpretation for predicates and functions symbols in most in-
stances. Thus it is beneficial to use specialized theory solvers. For example, consider
the formula

(¬p ∨ (x > y)) ∧ (x + y− z ≤ 5). (3.6)

It contains a mix of propositional logic (i.e., ∨,∧,¬) and linear arithmetic functions
(i.e., +,−,≤,>), and predicates (i.e., 5). We are interested in a solution that uses a
standard interpretation for the arithmetic terms, not a general first-order procedure
that could apply non-standard interpretation to some symbols (e.g., by considering
> as a ≤ comparison). While it is possible to force first-order theorem prover to
only interpret symbols in accordance to a background theory T , this proves to be
impractical. On the other hand, SMT solvers provide specialized procedures that
handle these symbols efficiently (e.g., by employing the simplex algorithm to solve
linear real arithmetic).

Another critical advantage of State-of-the-art SMT-solvers is that they are built
on top of efficient SAT solvers. They combine the SAT solver with specialized mod-
ules that treat the theory fragments. Modern SAT-solvers can handle an impressive
amount of practical problems given the theoretical complexity of SAT, a notable NP-
Complete problem (Cook 1971). These solvers are based on the conflict driven clause
learning (CDCL) scheme (Moskewicz et al. 2001). This algorithm is a combination
of a research process for a satisfying assignment with a deduction system (based on
Boolean resolution) that fires only when the current assignment conflicts with the
clauses to be satisfied, from which the notion of conflict driven reasoning. Since many
SMT-solvers are built directly over an efficient SAT solver, they indirectly benefit
from the efficiency offered by CDCL.
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The most popular architecture used in state-of-the-art SMT solvers is known as
DPLL(T ) (Ganzinger et al. 2004). It is an extension of the Davis Putnam Logemann
Loveland (DPLL) (Davis and Putnam 1960) procedure for solving SAT problems be-
cause it employs the SAT solver to enumerate assignments on the Boolean abstrac-
tion of first-order formulas. A theory solvers can then intervene when the current
assignments either entail another assignment in the theory (e.g., by deduction that if
the literal x > y is true, then the literal y > x must be false), or cause a conflict in the
theory fragment (e.g., by detecting that x + y > 1 and x + y < 0 cannot be both true,
a conflict that the SAT solver cannot identify). For example, to solve the formula

(p ∨ (x + y > 2)) ∧ ((x > 2) ∨ ¬(x < 0) ∨ ¬q)

DPLL(T ) builds a new literal for each first order term

(p ∨ (x + y > 2)︸ ︷︷ ︸
l1

) ∧ ((x > 2)︸ ︷︷ ︸
l2

∨¬ (x < 0)︸ ︷︷ ︸
l3

∨¬q)

where l1 : x + y > 2, l2 : x > 2, and l3 : x < 0. The SAT solver tries to assign a truth
value to these literals without considering any first-order theory. The specialized
modules are then used to check if this assignment is correct. Otherwise, they build
a new propositional clause to “explain” to the SAT solver why this assignment is
not possible. For example, if the SAT solver decide to assign both l2 and l3 to true
(i.e., x > 2 and x < 0 must both be true) the arithemtic module should identify the
conflict, and build the new clause (¬l2 ∨¬l3), to force at least one of the two value to
be false. The propositional component then restarts its search with the extra clause,
and it could not generate the same error again.

If more than one theory is involved, it is required to use a framework to com-
bine the theories, the most popular being the Nelson-Oppen combination scheme
(Nelson and Oppen 1979). This scheme requires the theories to be disjoint and sta-
bly infinite. The theory solvers must be equipped with procedures that interact by
exchanging only disjunctions of equalities between variables shared by the theories.
The disjunctions are handled by case analysis in the SAT-solver.

In this thesis, we primarily use propositional logic and the theory of linear real
arithmetic (noted as LRA in the solver) to encode the rules that describe the behaviour
of policies. We use the Z3 solver (Moura and Bjørner 2008), and its extension for the
MAX-SMT problem (Bjørner, Phan, and Fleckenstein 2015), to compute the optimal
variable assignment of the rules.

3.2.2 Maximum satisfiability

In a classical SMT problem, the solver must prove that the problem is satisfiable by
building a model, an assignment that satisfies the formula, or to prove that no model
exists (i.e., that the formula is unsatisfiable). In general, a satisfiable formula can have
many models, and in many instances, we are not interested in a generic solution, but
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in a solution that optimizes certain objective function (e.g., by maximizing the value
of an arithmetic equation). In this thesis, we encode the rule generation procedure
as a Maximum Satisfiability Modulo Theory (MAX-SMT) problem. In MAX-SMT, there
are two kinds of clauses, namely, hard clauses that must be satisfied, and soft clauses
that can be satisfied. A model of the MAX-SMT problem hence satisfies all the hard
clauses and as many soft clauses as possible, and it is unsatisfiable only if no assign-
ment satisfies all the hard clauses. This is performed by adding a dummy literal ld

for each soft clause and building a pseudo-boolean objective function obj that sum
all the dummy literals. A dummy literal can be used to satisfy a clause artificially,
and to avoid using too many dummy literals, we minimize the objective function
obj that counts them. We use the algorithms provided by Z3 (Bjørner, Phan, and
Fleckenstein 2015) to perform this search efficiently. Since we use this formulation
to describe as many of the decisions taken by POMCP as possible, MAX-SMT pro-
vides a perfect formalism to encode this procedure. Notice that the formulation of
rule generation for POMCP as a MAX-SMT problem is one of the main contributions
of this work.

Our algorithms also perform target functions optimization in the arithmetic mod-
ule. Specifically, when we build a model that satisfies the maximum number of
clauses, we then maximize an objective function that defines how many beliefs are
described by our rule. It is important to note that this is not a MAX-SMT problem,
but it is a maximization performed on the arithmetic module over a set of arithmetic
variables.

3.3 Benchmarks

This section presents the three banchemarks used during the experiments in Chap-
ters 5, 6, and 7.

3.3.1 Tiger

Tiger is a well-known problem (Kaelbling, Littman, and Cassandra 1998) in which
an agent has to choose which door to open among two doors, one hiding a treasure
and the other hiding a tiger. Discovering the treasure yields a positive reward of +10
while finding the tiger yields a negative reward of −100. The agent can also listen
(by paying a small penalty of −1) to gain new information. However, listening is
inaccurate since there is a 0.15 probability of hearing a roar from the wrong door.
A visual representation of the domain is presented in Figure 3.4a. In details, the
POMDP model (S, A, O, T, Z, R, γ) of this domain is:

• S = {TigerL, TigerR}, the states encode the position of the tiger.

• A = {Listen, OpenL, OpenR}. The three actions are listening or opening one of
the two doors.
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(A) Tiger. (B) Rocksample With 11 rocks.

FIGURE 3.4: Visual representation of the tiger and the rocksample
domains.

• Z = {None, RoarL, RoarR}. None is used only after opening a door, while the
Listen action yields one of the other two.

• T(s, Listen) → Π(s : 1.0), ∀s, T(s, OpenL) → Π(TigerL : 0.5, TigerR : 0.5),
T(s, OpenR) → Π(TigerL : 0.5, TigerR : 0.5). Listening does not alter the cur-
rent state an while the transition function shuffle the state after an opening.

• O(TigerL, Listen)→ Π(RoarL : 0.85, RoarR : 0.15),
O(TigerR, Listen)→ Π(RoarL : 0.15, RoarR : 0.85). There is only an 85% chance
of hearing the roar of the tiger coming from the correct door.

• R(TigerL, OpenL), R(TigerL, OpenR) = +10, R(TigerR, OpenL) = +10,
R(TigerR, OpenR) = −100, R(s, Listen) = −1, ∀s. The reward funtion.

• We use a discounted factor γ = 0.95 for this domain.

Tiger is an interesting benchmark due to its tractability. The belief space is small,
and it is possible to compute an exact solution using complete methods, like incre-
mental pruning (Cassandra, Littman, and N. L. Zhang 1997). Therefore, we use tiger
as a baseline to test the capabilities of XPOMCP in detecting anomalous behaviour
and in generating successful shields.

3.3.2 Rocksample

In the well-known Rocksample domain Smith and Simmons 2004 a robot moves in
a grid to collect valuable rocks. The rocks can be valuable or valueless (see green
and red circles in the grid of Figure 3.4b). The true value of the rock is unknown,
but the robot can measure it using a noisy sensor whose precision depends on the
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distance between the agent and the rock. The available actions are i) movements
(North, South, East, West) of one cell, which have a negative reward of -1; ii) check a
specific rock, which returns the true value of the rock with probability

obs =
1
2
· (1 + 2−

d
α ) (3.7)

where d is the distance between the robot and the rock and α is the efficiency of the
sensor. The reward of this action is zero; iii) sample the rock in the same position of
the robot, which has a reward 10 if the rock is valuable and−10 if it is valueless. The
run ends when the robot exits from the east border of the board. This operation also
yields a reward of 10. The transition model is deterministic. Namely, when the robot
performs a movement, it moves according to the selected action. Our experiments
consider 11 rocks in a 11× 11 board setup. Specifically, the POMDP model is:

• S contains 211 possible states that are a distribution over the possible truth
values for the rocks, which can be valuable or valueless. It also contains an
observable component, the robot’s x, y position.

• A = {North, South, East, West, Sample, Check1,··· ,11}. The formulation has four
actions for the movement, one for sample, and eleven checks actions, one for
each specific rock.

• Z = {None, Valuable, Valueless}. When the agent uses a Checki action, the
system returns a noisy observation on the value of i.

• The transition function T is deterministic for the four movements and the sam-
pling action. Checking does not change the state.

• The observation function O returns Valuable of Valueless after a Checki action,
based on the value of rock i and the distance between i and the agent according
to Equation 3.7. It returns None for all the other actions.

• The reward function R returns zero for Checksi, 10 for sampling a valuable
rock, −100 for sampling a valueless rock, and −1 for the movements unless
this leads the robot out of the map. In this case, R returns 10 when the agent
exits from the East side, and −100 otherwise. In any case, this also terminates
the run.

• We use γ = 0.95 for this domain.

Rocksample is a challenging problem for two main reasons. First, it has a large
state space where online approaches are crucial in achieving acceptable performances.
Second, POMCP performs well in the domain, given an adequate number of parti-
cles. Nonetheless, we observed that the agent sometimes samples a rock with low
confidence in its true value using standard parameter setting. In our experiments,
we characterize these cases and prevent them online by employing the shielding
mechanism.
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(a)

f p(o = Obstructed | f )
0 0.44
1 0.79
2 0.86

(b)

f a p(c = 1 | f , a)
0 0 0.0
0 1 0.0
0 2 0.028
1 0 0.0
1 1 0.056
1 2 0.11
2 0 0.0
2 1 0.14
2 2 0.25

(c)

FIGURE 3.5: Main elements of the POMDP model for the velocity
regulation problem. (a) Path map. The map presents the length (in
meters) for each subsegment. (b) Occupancy model p(o | f ): proba-
bility of observing a subsegment occupancy given segment difficulty.
(c) Collision model p(c | f , a): collision probability given segment dif-

ficulty and action

3.3.3 Velocity regulation

In the velocity regulation domain, a robot must travel on a predefined path as fast
as possible while avoiding collisions. The difficulty of each segment is unknown
to the robot, but the agent receives (noisy) information on the real difficulty of the
segment after each move. The path is divided into eight segments which are in turn
divided into subsegments of different sizes, as shown in Figure 3.5.a. Each segment
has a (hidden) difficulty value among clear ( f = 0, where f is used to identify the
difficulty), lightly obstructed ( f = 1) or heavily obstructed ( f = 2). All the subsegments
in a segment share the same difficulty value. Hence, the hidden state-space has
38 = 6561 states. The robot’s goal is to travel on this path as fast as possible while
avoiding collisions. In each subsegment, the robot must decide a speed level a (i.e.,
action). We consider three different speed levels, namely 0 (slow), 1 (medium speed),
and 2 (fast). The reward received for traversing a subsegment is equal to the length
of the subsegment multiplied by 1 + a, where a is the agent’s speed, namely the
action that it selects. The higher the speed, the higher the reward, but a higher speed
suffers a greater risk of collision (see the collision probability table p(c = 1 | f , a)
in Figure 3.5.c). The real difficulty of each segment is unknown to the robot (i.e.,
hidden part of the state), but in each subsegment, the robot receives an observation,
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which is 0 (no obstacles) or 1 (obstacles) with a probability depending on segment
difficulty (see Figure 3.5.b). The state of the problem contains a hidden variable
(i.e., the difficulty of each segment) and three observable variables (current segment,
subsegment, and time elapsed since the beginning). The POMDP formulation of the
problem is:

• S contains 6561 possible states that specify which one of the three difficulties
values is used in each of the eight segments. It also contains an observable
component, the current segment seg and the current subsegment subseg of the
agent.

• A = {Slow, Medium, Fast}. The three speed levels.

• Z = {Clear, Obstructed}. The two possible observations. It is important to
notice that this does not distinguish between slightly obstructed and heavily
obstructed segments.

• The transition function T is deterministic since the robot always moves to the
next segment.

• The observation function O returns Clear of Obstructed based on the real diffi-
culty of the segment, as described in Figure 3.5.b.

• The reward function R returns a positive value related to the speed level (i.e.,
1 for Slow, 2 for Medium, 3 for Fast, multiplied by the length of the subseg-
ment) and a possible negative value of −100 if the robot collides. Collisions
happen with a probability that depends on speed and difficulty, as described
in Figure 3.5.c.

• We use γ = 0.95 for this domain.

In our experiments, we build a rule describing when the robot travels at maxi-
mum speed (i.e., a = Fast). We expect the robot to move at that speed only if it is
confident enough to be in an easy-to-navigate segment (i.e., in a segment with low
difficulty). However, this level of confidence varies slightly from segment to seg-
ment (due to the length of the segments, the elapsed times, or the relative difficulty
of the current segment compared to the others). To obtain a compact but informative
rule, we want the rule to be a local approximation of the robot’s behaviour. Thus we
only focus on the current segment without considering the path as a whole when we
write this rule.
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Chapter 4

Synthesis of Logic-based Rules for
Partially Observable Monte Carlo
Planning

In this chapter, we describe the proposed rule synthesis methodology. To better explain
the approach, we use a running example based on the velocity regulation domain
(as presented in Section 3.3.3). We also introduce a formal language that can be used
to express templates.

4.1 Overview

The methodology proposed in this thesis, called XPOMCP, is summarized in Fig-
ure 4.1. It leverages the expressiveness of logical formulas to represent specific prop-
erties of the investigated policy. As a first step, a logical formula with free variables
is defined (see box 2 in Figure 4.1) to describe a property of interest of the policy un-
der investigation. This formula, called rule template, defines a relationship between
some properties of the belief (e.g., the probability of being in a specific state) and an
action. Free variables in the formula allow the expert to avoid quantifying the limits
of this relationship. These limits are then determined by analyzing a set of observed
traces (see box 1 in Figure 4.1). For instance, a template saying “Do this when the
probability of avoiding collisions is at least x”, with x free variable, is transformed
into “Do this when the probability of avoiding collisions is at least 0.85”. In the
rule template, the expert provides useful prior knowledge about the structure of the
investigated property. The rule template defines the question asked by the expert.
The answer to this question is provided by the SMT solver (see box 3 in Figure 4.1),
which computes optimal values for the free variables to allow the formula to explain
as many actions as possible in the observed traces.

The rule (see box 4) provides a human-readable local representation of the pol-
icy function that incorporates the prior knowledge specified by the expert. It allows
splitting trace steps into two classes: those satisfying the rule and those not satisfy-
ing it. The approach, therefore, allows identifying unexpected decisions (see box 6)
related to actions that violate the logical rule (i.e., that do not verify the expert’s
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FIGURE 4.1: Overview of the XPOMCP approach

FIGURE 4.2: Shielding

assumption). The quantification of the severity of the violation (i.e., the distance be-
tween the rule boundary and the violation) also supports the analysis because it pro-
vides a clear way to explain the violations themselves, which could be completely
unexpected due to expert imprecise knowledge or policy errors.

This analysis can be integrated into POMCP as a shield to block unexpected de-
cisions proactively. Figure 4.2 shows an overview of the shielding mechanism. The
XPOMCP methodology is used to build a rule from a rule template and a set of
traces (boxes 1, 2, and 3 of Figure 4.2). The result is used as a base to build a shield.
This shield is then integrated into POMCP (see box 4 in Figure 4.2) to filter in real-
time the unexpected actions in the current belief. Chapter 6 presents the shielding
mechanism in detail.

4.2 A language for expressing rule templates

To facilitate the usage of the methodology, we introduce a language to write rule
templates, namely, logical formulas that express high-level expert insight. In partic-
ular, the language specifies the elements of a POMCP execution we want to use in
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our rule templates (i.e., actions, beliefs, and problem-specific information) and how
these elements should be combined. The syntax is based on SMT-LIB (C. Barrett,
Fontaine, and Tinelli 2016), a standardized language that can be used to write SMT
problems. Unlike SMT-LIB, we use a more readable infix notation for the operators.
For example, we rewrite the SMT-LIB expression (+ a b) (easier to parse for comput-
ers) as a + b, which is more readable for humans. We present the constructs of the
language alongside its application to the velocity regulation domain (Section 3.3.3).
Chapters 5 and 6 present the usage of this language in other domains.

4.2.1 Header

To write a valid rule template, we need to specify which elements of the problem
we want to describe. The elements of POMCP executions are stored in traces. A
trace contains one (or more) execution of the POMCP algorithm, also called a run,
and each run is a sequence of steps. A step corresponds to a belief-action pair where
POMCP selects the action according to the belief, possibly containing other informa-
tion (e.g., the position of a robot on a grid). Traces are stored using Extensible Event
Stream (XES) (Acampora et al. 2017), a standard format used to collect execution
traces of programs. This information is collected in the header of a rule template
and are organized as follow:

actions = {id, . . . , id} type;

belief = type;

problemInfo = {id type, . . . , id type};
runInfo = {id type, . . . , id type};
stepInfo = {id type, . . . , id type};

The actions keyword is used to specify the list of actions available to the agent and
thus the actions that can be used in the rule templates. All these actions are of the
same type (e.g., string or integers). Note that the type is usually specified after the
identifier of a variable, as in SMT-LIB. We support most of the type provided by XES.
In particular, bool, int, real, and string as simple types, and list and map as aggregate
types. Since it is very common to work with probability, we add the prob type, which
is a real number in the interval [0, 1]. The keyword belief is used to specify the type
used to store the states of the belief (usually encoded as simple integers, used as a
unique identifier). The belief is a map that contains the number of particles assigned
at each state in the current belief. Finally, problemInfo, runInfo and stepInfo are used
to define extra information specific to the domain. With problemInfo, it is possible to
specify generic information valid for all the runs, for example, the size of a grid or
the length of a certain segment in a map. They are expressed as a list of identifiers (a
uniquely defined string) with an associate type. Similarly, runInfo (stepInfo) is used
to add information specific to a certain run (step). For example, for the velocity
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regulation problem we specify the header:

actions = {SpeedL, SpeedM, SpeedF} int;

belief = int;

problemInfo = {segments int, subsegments list[int]};
runInfo = {};
stepInfo = {seg int, subseg int};

It contains three actions, namely, SpeedL, SpeedM and SpeedF (i.e., slow, medium, and
fast speed). In problemInfo, the variable segments stores the total number of segments
and the variable subsegments stores the number of subsegments in each segment.
Each belief state is stored as an integer that encodes the expected distribution of
difficulties among the segments. In particular, the number is computed by raising
the expected difficulty of each segment (i.e., 0, 1, or 2) by the id of the segment (i.e.,
0, . . . , subsegments − 1). We also store the current segment (i.e., seg) and subseg-
ment (i.e., subseg), that is the visible part of the state, for each step using stepInfo.
To simplify the usage of these information in our template, a run (step) variable is
always defined, it is used to retrieve information encoded in runInfo (stepInfo). We
also store the number of the run and step under investigation retrievable as run.num
and step.num.

4.2.2 Variable and function declaration

Rule templates capture high-level knowledge of the POMCP-generated policy. To
express them, we use the information stored in the trace alongside free variables
that the methodology must instantiate. Free variable are declared using the syntax:

declare-var id, . . . , id type;

It is also possible to declare simple functions to be used in rule templates:

define-fun id (id type, . . . , id type) type {formula};

the parentheses include the list of the parameters, while last type is the type of the
function. The formula is an SMT expression based on SMT-LIB usage. When used in a
rule template, these functions are instantiated using the proper values and variables
at each step. Functions are useful to encode information compactly. In particular, we
introduce a function p that takes a state and returns the probability in the belief for
that state, useful for working with probabilities (i.e., a number in [0.0, 1.0]) instead
of the number of particles (e.g., p(segment1hard) return 0.1 if there are 100 out of the
1000 total particles in states that consider the first segment as difficult to navigate).

For example, to explain the behaviour of the agent in the velocity regulation
problem we need to reason on the expected difficulty of the current segment. To
express this concept in a compact way, we introduce the diff function which takes
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a belief b, a segment s, and a difficulty value d as input and returns the probability
that segment s has difficulty d in the belief b, which is the sum of probabilities of all
states having difficulty d in segment s in the belief.

4.2.3 Rule templates

It is possible to specify one (or more) rule template as:

declare-rule

action a1 rel f ormula1;

. . .

action an rel f ormulan;

[where requirements; ]

for each action statement, we specify the action involved in the rule using ai. It can
be one of the actions specified in the actions declaration or a combination of multiple
actions grouped using an ∨ operator (e.g., to express the idea that two actions have
an equivalent effect under certain circumstances). The action and the formula are
combined using rel ∈ { =⇒ , ⇐= , ⇐⇒ }. With the =⇒ operator, we specify
that an action is performed only when the formula is satisfied. With the ⇐= opera-
tor, we specify that we must select that action when the formula is satisfied. Finally,
using ⇐⇒ , we specify that both requirements must be satisfied. A f ormulai is an
SMT formula that combines free variables and information stored in the trace. Our
language is based on SMT-LIB. Thus we support all the mathematical operators in-
cluded in the language for writing these formulas. A copy of the formula is created
for every single step. The methodology tries to satisfy as many of these formulas as
possible (as described in Section 4.3). The (optional) where statement can be used to
specify a set of hard requirements that the final rule must satisfy, such as the defini-
tion of a minimum value for a free variable (e.g., x0 ≥ 0.9). These are useful to define
prior knowledge on the domain, which the rule synthesis algorithm uses to compute
optimal parameter values (e.g., equality between two free variables belonging to dif-
ferent rules can be used to encode the idea that two rules are symmetrical).

For example, to express the idea that the robot in the velocity regulation problem
should move at high speed only if it is confident that the current segment is clear we
can write the rule template:

declare-var x1, x2 prob;

declare-rule

action SpeedF ⇐⇒ diff(belie f , seg, 0) ≥ x1 ∨ diff(belie f , seg, 2) ≤ x2

where x1 ≥ 0.9
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Algorithm 4: RuleSynthesis
Input: Trace ex, Rule template r
Output: instantiation of r

1 solver ← probability axioms;
2 foreach action rule ra with a ∈ A do
3 foreach step t in ex do
4 build new dummy literal la,t;
5 cost← cost ∪ la,t;
6 compute pt

0, . . . , pt
n from t.particles;

7 ra,t ← instantiate rule ra using pt
0, . . . , pt

n;
8 if t.action 6= a then
9 ra,t ← ¬(ra,t);

10 solver.add(la,t ∨ ra,t);

11 solver.minimize(cost);
12 f itness← 1− distance_to_observed_boundary;
13 model ← solver.maximize( f itness);
14 return model

The first part of the action statement specifies that we select action SpeedF (i.e., high
speed) if the probability to be in a segment seg with low difficulty (i.e., diff(belie f ,
seg, 0)) is greater than a certain threshold x1. The second literal specifies that we
select action SpeedF if the probability of being in a segment with high difficulty (i.e.,
diff(belie f , seg, 2)) is less than a certain threshold x2. Since the two literals are com-
bined with an ∨, we select SpeedF if and only if at least one of them is true. The where
clause contains an information that we expect to be true, the expression x1 ≥ 0.9.
Namely, we force the probability of the current segment to be low difficulty to be
greater than 0.9 in the final rule.

4.2.4 Traces

A trace is a sequence of (belie f , action) pairs generated by POMCP. A trace contains
one or more than one run, which are complete executions of the POMCP algorithm.
We store these traces using Extensible Event Stream (XES) (Acampora et al. 2017), a
standard format used to collect execution traces of programs. This format uses an
XML scheme. Thus it is easy to use in other tools and programs.

4.3 Rule generation algorithm

Rule synthesis is the core of the methodology presented in this thesis. It works as
a basis for the mechanisms presented in Chapters 5 and 6. In Chapter 7 we present
an extension of this approach that generates the data actively instead of relying on a
predefined trace.

This methodology generates rules from rule templates by instantiating free vari-
ables to explain as many as possible of the decisions taken by a POMCP policy in



4.3. Rule generation algorithm 35

the set of observed traces. The implementation, presented in Algorithm 4, takes as
input a trace ex, generated by POMCP and stored in XES format and a rule template
r, as explained in Section 4.2. The output is the rule r with all free variables instan-
tiated. The solver (we use Z3 (Moura and Bjørner 2008)) is first initialized and hard
constraints are added in line 1 of Algorithm 4 to force all variable of type prop in the
template to satisfy the probability axioms (i.e., to have value in range [0, 1]). Then in
the foreach loop in lines 2–10 the algorithm maximizes the number of steps that sat-
isfy the rule template r. In particular, for each action rule ra, where a is an action, and
for each step t in the trace ex the algorithm first generates a literal la,t (line 4) which is
a dummy variable used by MAX-SMT to satisfy clauses that are not satisfiable by a
free variable assignment. This literal is then added to the cost objective function (line
5) which is a pseudo-boolean function collecting all literals. This function counts the
number of fake assignments that correspond to unsatisfied clauses. The belief state
probabilities are collected from the particle filter and used to instantiate the action
rule template ra (line 7) by substituting their probability variables pi with observed
belief probabilities. This generates a new clause ra,t which represents the constraint
for step t. This constraint is considered in its negated form ¬(ra,t) if the step action
t.action is different from a (line 9) because the clause ra,t should not be true.

The set of logical formulas of the solver is then updated by adding the clause
la,t ∨ ra,t. In this formulation, the added clause can be satisfied in two ways, namely,
by finding an assignment of the free variables that makes the clause ra,t true (the
expected behaviour) or by assigning a true value to the literal la,t (unexpected be-
haviour). However, the second kind of assignment has a cost since the dummy vari-
ables have been introduced only to allow partial satisfiability of the rules. In line 11,
the solver is asked to find an assignment of free variable, which minimizes the cost
function, considering the number of dummy variables assigned to true. This min-
imization is a typical MAX-SMT problem in which an assignment maximizing the
number of satisfied clauses is found. Since there can be more than a single assign-
ment of free variables that achieves the MAX-SMT goal, the last step of the synthesis
algorithm concerns the identification of the assignment, which is closer to the be-
haviour observed in the trace. This problem is solved by maximizing a fitness func-
tion that moves the free variables assignment as close as possible to the numbers
observed in the trace without altering the truth assignment of the dummy literals.
This problem concerns the optimization of real variables, and the linear arithmetic
module solves it.

4.3.1 Complexity

Notice that, even if MAX-SMT is an NP-hard problem, in practice, Z3 can solve our
instances in a reasonable time (as shown in Section 5.3) due to the limited number
of variables involved and the structure of our instances. Specifically, the variables
used in the SMT problem are the free variables specified in the template (a constant
number, usually small) and the dummy literals that are linear on the size of the trace
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because the algorithm builds a clause for each step, and each clause introduces a
new dummy literal. Z3 employs numerous heuristics to achieve high performance.
In particular, by employing subsumption heuristics, it is possible to remove many
redundant steps (i.e., steps generated from similar beliefs) from the problem and
thus reduce significantly the number of dummy literals involved.
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Chapter 5

Rule-based Anomaly Detection

In this chapter, we present a methodology that uses the rules generated by XPOMCP,
as described in Chapter 4, to detect decisions that violate the behaviour described
by the expert with the rule templates. These decisions, called unexpected decisions
in the following, are notable steps in the trace and must be identified to provide an
accurate description of the policy. This chapter also presents an in-deep case study
of XPOMCP, alongside an extensive experimental evaluation of the methodology in
different domains.

5.1 Identification of unexpected decisions

A key element of XPOMCP concerns the characterization of steps that fail to satisfy
the rule. They can provide useful information for policy interpretation. We define
two important classes of exceptions: those related to the approximation made by
the logical formula and those actually due to unexpected policy behaviour (e.g., an
error in the POMCP algorithm or a decision that cannot be described with only lo-
cal information). Exceptions in the first class fall quite close to the rule boundary,
while exceptions in the second class are usually more distant from the boundary. In
the following, we call the second kind of exceptions unexpected decisions since their
behaviour is unexpected compared to the expert knowledge on the policy. Unex-
pected decisions are particularly important when the rule template and the policy
behaviour are very different. This could happen when the expert provides an er-
roneous rule template (e.g., because she/he does not properly understand the sys-
tem) or when there is a bug in the POMCP-generated policy (e.g., because one of its
parameters is wrongly set). These cases present, in general, significant and numer-
ous unexpected decisions that highlight the conflict between templates. For exam-
ple, consider a template that specifies that a robot should move fast only when its
confidence of being in a cluttered segment is above a threshold (instead of below).
XPOMCP builds a rule that tries to satisfy as many steps as possible but will report
many unexpected decisions. In this case, an unexpected decision would be: “in step
10 the robot decides to move fast even if its confidence of being in a cluttered seg-
ment is 0%”, a statement that highlights what is wrong in our template, i.e., it points
out that a situation that should be acceptable is anomalous regarding our template.
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Algorithm 5: UnexpectedDecisionIdentification
Input: rule r, the set of steps steps that violate the rule
Output: a set unexp of unexpected decision steps

1 Init: n = 0, points = ∅, out = ∅;
2 while n < Np do
3 x ← random point in the belief space;
4 if x ∈ r then
5 n← n + 1;
6 add x to points;

7 foreach Step s in steps do
8 lower ← ∞;
9 foreach Step p in points do

10 distance← H2(p, s);
11 if distance < lower then
12 lower ← distance;

13 if lower ≥ threshold then
14 out← out

⋃
s;

15 return out

However, if we use a correct template (i.e., “I expect the robot to move fast when the
segment is uncluttered”) but the POMCP has a wrongly set parameter, sometimes
it takes risky decisions. For instance, one unexpected decision can be: “In step 6,
the robot decides to move fast when its confidence in being in a cluttered segment
is 85%”, which highlights a genuine error in the POMCP agent that requires further
investigation from the designer.

We provide a procedure to identify unexpected decisions in Algorithm 5. Its
input is composed of a learned rule r, a set of steps (called steps) that violate the
rule, and a threshold τ ∈ [0, 1]. The algorithm’s output is a set of steps related
to unexpected decisions. The procedure first randomly generates Np beliefs b̄j, j =
1, . . . , Np, that satisfy the rule (see lines 2–6 in Algorithm 5). Specifically, we use
Np = 1000 in our experiments. Then, for each belief bi in steps a distance measure
is computed between bi and all b̄j, j = 1, . . . , Np (see Algorithm 5 lines 7–12). The
minimum distance hi is finally computed for each bi and compared to a threshold τ.
If hi ≥ τ (Algorithm 5 line 13) then bi is considered an outlier because its distance
from the rule boundary is high.

5.1.1 Distance between beliefs

Since beliefs are discrete probability distributions, we use a specific measure dealing
with these kinds of elements called the discrete Hellinger distance (Hellinger 1909).
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FIGURE 5.1: Modified version of the velocity regulation map, in
which one of the segment is shorter than the others

This distance is defined as follows:

H2(P, Q) =
1√
2

√√√√ k

∑
i=1

(
√

Pi −
√

Qi)2

where P, Q are probability distributions and k is the discrete number of states in P
and Q. An interesting property of H2 is that it is bounded between 0 and 1, which
simplify the task of identifying a meaningul threshold for the procedure. In Sec-
tion 5.3 we discuss how we set this threshold in practical cases. However, a good
rule of thumb is to use a threshold τ = 0.1.

5.2 Iterative rule synthesis example

This section presents an in-deep case study of the rule synthesis process. We define
a rule template by analyzing previous iterations of the rules and the anomalous ac-
tions detected with them. To obtain rules that are compact and informative, we want
them to be a local approximation of the behaviour of the robot in the velocity regu-
lation domain (as described in Section 3.3.3. We consider a slightly different version
of the standard map, presented in Figure 5.1, in which subsegment 8.12 is signifi-
cantly shorter than the others. This peculiar subsegment highlights an interesting
error case that is not easy to generate in the original version of the map.

Iteration 1

We start with a rule describing when the robot travels at maximum speed (i.e., a =

2). We expect the robot to move at that speed only if it is confident enough to be in



40 Chapter 5. Rule-based Anomaly Detection

an easy-to-navigate segment. We express this with the template:

declare-var x1, x2 prob;

declare-rule

action SpeedF ⇐⇒ p0 ≥ x1 ∨ p2 ≤ x2

where x1 ≥ 0.8

This template can be satisfied if the probability of being in a clear segment p0 is above
a certain threshold x1 or the probability of being in a heavily obstructed segment p2

is below another threshold x2. We expect x1 to be above 0.8 in this instance, thus we
add this information in the where statement. Our methodology provides the rule:

action SpeedF ⇐⇒ p0 ≥ 0.858∨ p2 ≤ 0.004

that fails to satisify 6 out of 370 steps.

Iteration 2

By analyzing the unsatisfiable steps, we notice that three of them are in subseg-
ment 8.12 (the robot moves at low speed with beliefs, respectively, [p0 = 0.895, p1 =

0.102, p2 = 0.003], [p0 = 0.955, p1 = 0.045, p2 = 0.0], [p0 = 0.879, and p1 = 0.120, p2 =

0.002]). Figure 5.1 shows that this subsegment is the shortest on the map. Our tem-
plate is approximate and does not consider the length of the subsegment. This local
rule cannot describe the behaviour of the policy in segment 8.12, it is too short, and
POMCP decides that it is better to move slowly even if it is nearly certain that the
subsegment is safe. This is because the reward depends on the length of the sub-
segment. Hence, we want to exclude the subsegment from the rule. Finally, by
analyzing the other three of the six unsatisfiable steps, we notice that they are close
to the rule, but cannot be described with this simple template Specifically, in these
steps, the robot move a speed 2 with belief [p0 = 0.789, p1 = 0.181, p2 = 0.031], [p0 =

0.819, p1 = 0.164, p2 = 0.017], and [p0 = 0.828, p1 = 0.162, p2 = 0.010]. To improve
the template, we add a more complex literal (p0 ≥ x3 ∧ p1 ≥ x4), that use both diffi-
culty 0 (clear) and 1 (lightly obstructed) to describe the behaviour of the policy. We
obtain the template:

declare-var x1, x2, x3, x4 prob;

declare-rule

action SpeedF ⇐⇒ p0 ≥ x1 ∨ p2 ≤ x2 ∨ (p0 ≥ x3 ∧ p1 ≥ x4))

where x1 ≥ 0.8∧ (seg 6= 8∨ subseg 6= 12)

and the rule:

action SpeedF ⇐⇒ p0 ≥ 0.841∨ p2 ≤ 0.004∨ (p0 ≥ 0.789∧ p1 ≥ 0.156)
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that only fails to satisfy 2 steps (speed 1 with belief [p0 = 0.801, p1 = 0.190, p2 =

0.009], and speed 0 with belief [p0 = 0.826, p1 = 0.162, p2 = 0.013]). These steps
were satisfied by the first iteration of the template, but now we have a stricter rule
that describes more steps. We further refine the template, but this result is a good
compromise between simplicity and correctness.

Iteration 3

We write a template to describe when the robot moves slowly. We identify three crit-
ical situations that can lead the robot to move at a slow speed. Namely, i) the robot
is uncertain about the current difficulty (the belief is close to a uniform distribution);
ii) the robot knows that the current segment is hard; iii) the robot is in the short sub-
segment 8.12. We try to use p1 ≥ y1 and p2 ≥ y2 to describe the first two situations.
The template is the following:

declare-var x1, x2, x3, x4 prob;

declare-var y1, y2 prob;

declare-rule

action SpeedF ⇐⇒ p0 ≥ x1 ∨ p2 ≤ x2 ∨ (p0 ≥ x3 ∧ p1 ≥ x4))

action SpeedS ⇐⇒ p1 ≥ y1 ∨ p2 ≥ y2

where x1 ≥ 0.8∧ (seg 6= 8∨ subseg 6= 12)

that yields the rule:

action SpeedF ⇐⇒ p0 ≥ 0.841∨ p2 ≤ 0.004∨ (p0 ≥ 0.789∧ p1 ≥ 0.156)

action SpeedS ⇐⇒ p1 ≥ 0.244∨ p2 ≥ 0.024

which fail to satisfy 38 out of 370 steps. Notice that the low value for y1, y2 (i.e.,
0.244, 0.024) describes all the belief close to the uniform distribution. By analyzing
the 38 unsatisfiable steps, we notice that 35 of them are situations in which the robot
decides to move at speed SpeedM even if the condition for moving at SpeedS are
satisfied. In particular, three of these steps have belief [p0 = 0.319, p1 = 0.342, p2 =

0.338], [p0 = 0.345, p1 = 0.337, p2 = 0.318], and [p0 = 0.335, p1 = 0.333, p2 = 0.332]
respectively. This analysis tells us that POMCP considers a worthy risk to move at
medium speed even if it does not understand the current difficulty strongly. If we
consider this a non-acceptable risk, we should modify the design of POMCP, e.g., by
increasing the number of particles used in the simulation. This is a case in which the
explainability capabilities of XPOMCP are used to understand a POMCP policy that
would be otherwise difficult to understand. The understanding can be then used to
improve the policy.
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5.3 Results on rule-based anomaly detection

We test our methodology in the three domains described in Section 3.3. In Sec-
tion 5.3.5, we use XPOMCP to detect unexpected decisions in the same three do-
mains. For tiger, we present a comparison between our methodology and a state-of-
the-art anomaly detection algorithm called Isolation Forest (Liu, Ting, and Zhou 2008)
which uses an exact policy as the ground truth. For velocity regulation and rocksam-
ple it is not possible to compute an exact policy. Thus we only provide an analysis
of the results. In Section 6.2, we present results for the shielding mechanism in the
three domains. We evaluate this approach’s effectiveness by comparing the original
(unshielded) implementation of POMCP with that of the shielded POMCP.

5.3.1 Experimental setting

We implemented two of the domains, namely Tiger and velocity regulation, as black-
box simulators in the original C++ version of POMCP (Silver and Veness 2010). For
rocksample, we used the implementation provided in (Silver and Veness 2010), and
we extended it to allow the collection of traces in the XES format. We extend the
implementation to collect traces in XES format. The RuleSynthesis algorithm (i.e.,
Algorithm 8) and the procedure for identifying unexpected decisions (see Section 5.1)
have been developed in Python. The Python binding of Z3 (Moura and Bjørner 2008)
has been used to solve the SMT formulas. The shielding mechanism is implemented
in C++ as an extension of the original POMCP implementation. Experiments have
been performed on a notebook with Intel Core i7-6700HQ and 16GB RAM. An imple-
mentation of the XPOMCP methodology and the shielding mechanism is available
at https://github.com/GiuMaz/XPOMCP.

5.3.2 Error injection

To quantify the capability of the proposed method to identify policy errors and per-
form shielding, we introduce errors in the parameters tuning of POMCP. Specifically,
we consider the reward range (called c in the following, using the notation of (Silver
and Veness 2010)) and the number of particles np, because these parameters must
be hand-tuned, and setting them to a wrong value is a frequent mistake that can
happen in practice.

The parameter c defines the maximum difference between the lowest and the
highest possible reward, and UCT uses it to balance exploration and exploitation. If
this value is lower than the correct one, the algorithm could find a reward that ex-
ceeds the maximum expected value leading to a wrong state. Namely, the agent be-
lieves to have identified the best possible action, and it stops exploring new actions,
even though the selected action is not the best one. This creeping error randomly

https://github.com/GiuMaz/XPOMCP
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affects the exploration-exploitation trade-off, making POMCP incorrect in some sit-
uations. We use this kind of error since parameter c must be set by hand in POMCP,
and it requires specific values that are not always easy to devise.

The parameter np specifies how many particles to use during the simulation.
The number of particles also corresponds to the number of simulations performed
to generate the lookahead tree in POMCP. More particles lead to better performance,
but more computing power is required to handle them. Thus it is important to find
the best trade-off between computational time and achieved performance.

5.3.3 Exact solution

We use the incremental pruning algorithm (Cassandra, Littman, and N. L. Zhang 1997)
implemented in (Bargiacchi, Roijers, and Nowé 2020) to compute an exact policy for
tiger. This is used as ground truth for evaluating the performance of our method
in detecting wrong actions. Unfortunately, we cannot compute the exact policy for
velocity regulation and rocksample, since their size makes the computation intractable.
However, we use these domains to evaluate the applicability of our method to larger
problems.

5.3.4 Baseline method for detecting unexpected decisions

Isolation forest (IF) (Liu, Ting, and Zhou 2008) is an anomaly detection algorithm that
we use as a benchmark for evaluating the performance of our procedure in identify-
ing unexpected decisions. It assumes anomalies as rare events and can be applied to
a training set containing both nominal and anomalous samples. Hence it is a good
candidate for comparison with XPOMCP. We use the Python implementation of IF
provided in scikit-learn (Pedregosa et al. 2011) and consider each step of a trace (i.e.,
a pair belief, action) as a sample (notice that the action is not used as a label). The al-
gorithm uses the contamination parameter (i.e., the expected percentage of anomalies
in the dataset) to set the threshold used to identify which points are anomalies.

5.3.5 Detection of unexpected decisions

We focus on the tiger problem to test the capabilities of our methodology in detect-
ing unexpected decisions. It is possible to compute a complete policy that works as
a baseline for evaluating performance in this domain. We also provide an analysis
of the performance of unexpected decision detection for velocity regulation and rock-
sample. These use cases show the capability of XPOMCP to scale to larger instances.
However, we cannot provide the accuracy in these domains because it is not feasible
to compute an exact policy (to be used as ground truth) for them.
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5.4 Comparison with unsupervised anomaly detection algo-
rithms

In this section, we use XPOMCP and IF to detect anomalous decisions injected into
POMCP traces.

5.4.1 Unexpected decisions in tiger

A successful policy for tiger should listen until enough information is collected about
the position of the tiger and then open a door when the agent is reasonably certain
to find the treasure behind it. However, from the analysis of the observation model
and reward function, it is not immediate to define what “reasonably certain” means.
To investigate it, we create a rule template specifying a relationship between the
confidence (in the belief) over the treasure position and the related opening action.
Then we learn the rule parameters from a set of traces performed using POMCP.
Finally, by analyzing the trained rule, we understand the minimum confidence re-
quired by the policy to open a door. The correct value of c is 110 (the reward interval
is [−100, 10]). For each value of c in {110, 85, 65, 40}, we generate 50 traces with 1000
runs each, using different seeds for the pseudo-random algorithm in every trace. For
each run, we use 215 particles and a maximum of 10 steps per episode. Lower values
of c produce a higher number of errors, as show in Table 5.1 (see column % errors).

Rule synthesis

To formalize the tiger problem within our language, we use the header:

actions = {Listen, OpenR, OpenL} int;

belief = Bool;

problemInfo = {};
runInfo = {};
stepInfo = {};

The header presents three actions (i.e., Listen, OpenR, OpenL) and a Boolean belief
(i.e., true when we believe the tiger is behind the left door, false otherwise). No extra
information is required in this domain. To formalize the property that the agent has
to gather enough confidence on the tiger position before opening a door we use the
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following rule template:

declare-var x1, x2, x3, x4 prob;

declare-rule

action Listen ⇐⇒ (p(right) ≤ x1 ∧ p(le f t) ≤ x2);

action OpenR ⇐⇒ p(right) ≥ x3;

action OpenL ⇐⇒ p(le f t) ≥ x4;

where (x1 = x2) ∧ (x3 = x4) ∧ (x3 > 0.9);

The action rule template for action Listen describes when the agent should listen.
Similarly, template action rules for OpenR and OpenL describe when the agent should
open the right and left door, respectively. To make the formula more readable, we
use p(le f t) instead of p(true) to refer to the true part of the Boolean belief and, simi-
larly, p(right) instead of p( f alse). Some hard clauses are also added (in the bottom)
to state that i) the problem is expected to be symmetric (i.e. the thresholds used to
decide when to listen and when to open are the same for both doors, namely x1 = x2

and x3 = x4), ii) minimum confidence is required to open the door (namely, x3 > 0.9,
hence the door should be opened only if the agent is at least 90% sure to find the tiger
behind it).

Performance evaluation across different thresholds

Both XPOMCP and IF use a threshold to identify anomalous points. We use the
Receiver Operating Characteristic (ROC) curve and the precision/recall curve of the two
methods to compare the performance across thresholds. The ROC curve consid-
ers the relationship between the true positive rate (tpr) and the false positive rate
(fpr) at different thresholds. As a performance measure, we use the Area Under
Curve (AUC). Similarly, the precision/recall curve considers the relationship be-
tween precision and recall at different thresholds, and we use the Average Precision
(AP) as a performance measure. Performance are compared on traces generated us-
ing c ∈ {85, 65, 40}. We do not evaluate the methods in the case with c = 110; it is
error-free; thus, it is impossible to have any true positive (AUC and AP are 0).

In Table 5.1 we compare the average performance of the two methods. We test
XPOMCP with a uniform sampling of 100 thresholds in the interval [0, 0.5]. Simi-
larly, we use IF with 100 different values for the contamination parameter uniformly
distributed in the interval [0, 0.5]. XPOMCP outperforms IF in nearly every instance
in both AUC and AP. For both AUC and AP, the difference is high with c=40. This
is because XPOMCP effectively exploits the information in the template to avoid
being influenced by the number of errors. IF performs poorly also with c=85 be-
cause it exhibits a large number of false-positive that leads to very low precision and
value of AP. Finally, with c=65 the difference between the two methods is smaller.
In this dataset, both methods achieve their best performance. IF is more effective
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• true positive (tp): a result that correctly indicates the presence of a condition.

• false positive (fp): a result that wrongly indicates the presence of a condition.

• true negative (tn): a result that correctly indicates the absence of a condition.

• false negative (fn): a result that wrongly indicates the absence of a condition.

• true positive rate (fpr) (also known as sensitivity or recall): the fraction of posi-
tive instances that was correctly identified. tpr = tp

tp+ f n

• false positive rate (tpr): the fraction of negative instances that was wrongly iden-
tified. f pr = f p

f p+tn

• Precision (ppv): the fraction of positive instances correctly identified among all
the positive tests. ppv = tp

tp+ f p

• Receiver operating characteristic (ROC): a graphical plot that shows how fpr and
tpr varies when the threshold of a binary classifier changes. It is used to show
how dependent is the methodology from its parameters.

• precision/recall curve: a graphical plot similar to ROC that use precision and recall
instead of fpr and tpr.

• Area under the curve (AUC): is the area covered by a ROC curve. An higher
value is better.

• Average precision (AP): is the area covered by a precision/recal curve. An higher
value is better.

• F1 score: measure of the accuracy of a binary classifier that combines precision
and recal. Higher is better. F1 = 2 · ppv·tpr

ppv+tpr

• Accuracy (acc): measure of the accuracy of a binary classifier that present the
fraction of correct tests over the total number of tests. acc = tp+tn

tp+tn+ f p+ f n

FIGURE 5.2: Summary of the used metrics.
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c % errors AUCXPOMCP AUCIF APXPOMCP APIF

110 0.0(±0.0) – – – –
85 0.0004(±0.0003) 0.993(±0.041) 0.964(±0.024) 0.986(±0.082) 0.057(±0.1076)
65 0.0203(±0.0021) 0.999(±0.001) 0.992(±0.001) 0.999(±0.002) 0.539(±0.0520)
40 0.2374(±0.0072) 0.995(±0.034) 0.675(±0.020) 0.987(±0.084) 0.333(±0.0153)

TABLE 5.1: Comparison between the performance of XPOMCP and
that of Isolation Forest in terms of Area Under Curve (AUC) and Av-
erage Precision (AP) in tests performed with different reward range
(c) and related error rate (%errors). Standard deviations are in paren-

thesis and the best results are highlighted in bold

FIGURE 5.3: Box-plots of AUC and AP (considering 100 different pa-
rameters) with different values of c

in identifying true error compared to the case of c = 85, but it still generates more
false-positive than XPOMCP. Figure 5.3 displays two boxplots that show how the
AUC and the AP varies for each execution trace. We compute these values as:

∆AUC = AUCXPOMCP − AUCIF

∆AP = APXPOMCP − APIF

Since a positive value in the box-plot means that XPOMCP outperforms IF the plot
shows that our algorithm is consistently better than IF except for an outlier whit
c = 85.

Performance evaluation with optimal thresholds

To provide further details on the performance of XPOMCP, here we show its per-
formance with optimal threshold τ (see Section 5.1). To compute the value of τ,
we performed cross-validation by training XPOMCP on five traces and testing it on
45 traces. The F1 score for identifying unexpected decisions was computed on the
test set using 100 threshold values uniformly distributed in [0, 0.5], and the test with
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(A) XPOMCP

c % errors τ F1 Accuracy time (s)

85 0.0004(±0.0003) 0.061 0.979(±0.081) 0.999(±0.0001) 14.30(±0.50)
65 0.0203(±0.0021) 0.064 0.999(±0.002) 0.999(±0.0001) 14.75(±0.80)
40 0.2374(±0.0072) 0.045 0.980(±0.072) 0.987(±0.049) 12.78(±0.83)

(B) Isolation Forest

c % errors Cont. F1 Accuracy time (s)

85 0.0004(±0.0003) 0.01 0.020(±0.033) 0.990(±0.001) 0.72(±0.013)
65 0.0203(±0.0021) 0.03 0.771(±0.044) 0.988(±0.001) 0.71(±0.010)
40 0.2374(±0.0072) 0.5 0.437(±0.035) 0.585(±0.026) 0.64(±0.037)

TABLE 5.2: Comparison between the performance of XPOMCP and
that of Isolation Forest in terms of F1-score, accuracy and time in tests
performed using the best threshold τ across different reward ranges
(c) and related error rate(%errors). Standard deviations are in paren-

thesis, and the best results are highlighted in bold

the best F1 score was selected. The results of this test are presented in Table 5.2.a.
Column τ contains values of threshold used and columns accuracy and F1 show
the related performance values on the test set, and column time shows the average
elapsed time (in second). We used the same procedure to tune the contamination
parameter of IF (Cont. in Table 5.2.b). Figure 5.4 compares the average F1-score
and accuracy achieved by the two approaches in each test (the value in parenthesis
presents the standard deviation). This comparison shows that with optimal param-
eters, XPOMCP always outperforms IF. Both methods achieve high accuracy due
to the high number of non-anomalous samples in the dataset (anomaly and non-
anomaly classes are unbalanced), and both methods compute several true negatives.
However, the F1 score is very different. IF achieves a low score in this metric because
it cannot identify some true positives and generates many more false positives than
XPOMCP. In general, IF is faster than XPOMCP by order of magnitude, but the per-
formance of our methodology is acceptable since it takes POMCP an average of 158
seconds to generate a tiger trace with 1000 runs, and XPOMCP analyze it in less than
15 seconds.

Analysis of a specific trace

To complete our analysis on tiger, we show the rule generated by XPOMCP on the
analysis of a specific trace generated by POMCP using a wrong value of c, namely,
c = 40. The rule generated by the MAX-SMT solver from this trace is:

action Listen ⇐⇒ (p(right) ≤ 0.847∧ p(le f t) ≤ 0.847);

action OpenR ⇐⇒ p(right) ≥ 0.966;

action OpenL ⇐⇒ p(le f t) ≥ 0.966;

(5.1)
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FIGURE 5.4: Box-plots of ∆ F1-score and ∆ accuracy using the optimal
thresholds with different values of c

It is a compact summary of the policy that highlights the important details in a struc-
tured way. Notice that this result leverage the information expressed with the hard
constraint x3 > 0.9 (i.e., x3 = 0.966 for action OpenR). There is a gap between
the value of the rule for Listen (i.e., 0.8638) and the rules for OpenR and OpenL

(i.e., 0.9644). This is because the trace does not contain any belief in this gap, and
XPOMCP cannot build a rule to describe how to act in these beliefs.

Among the total 2659 trace steps, 1601 satisfies the rule, and 1058 does not satisfy
it. We computed their Hellinger distance for all steps not satisfying the rule using
the procedure described in Section 5.1. To classify unexpected decisions, we use the
optimal threshold of τ = 0.045 (Table 5.2). This procedure identifies 637 of the 1058
unsatisfiable steps as anomalous (i.e., their H2 is above threshold τ). In this case,
we achieve an F1-score of 1.0 and an accuracy of 1.0 using the proposed approach,
and it takes XPOMCP 12, 509s to compute this solution. This confirms the ability to
detect unexpected decisions even when state-of-the-art anomaly detection methods
have degraded performance (i.e., IF reaches an F1-score of 0.59 in this test, but it only
takes 0, 791s to do so).

5.4.2 Unexpected decisions in velocity regulation

To evaluate XPOMCP on the velocity regulation problem, we analyze one-by-one the
decisions marked as unexpected by XPOMCP. (we recall that the exact policy cannot
be computed for this problem because the state space is too large). The template
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used to describe when the robot must move at high speed is the following:

declare-var x1, x2, x3, x4 prob;

declare-rule

action SpeedF ⇐⇒ p0 ≥ x1 ∨ p2 ≤ x2 ∨ (p0 ≥ x3 ∧ p1 ≥ x4)

where x1 ≥ 0.9

where x1, x2, x3, x4 are free variables and p0, p1, p2 are defined using the diff func-
tion presented in Section 4.2. The first two constraints of the rule are identical to the
running example, but we add a third constraint (i.e., p0 ≥ x3 ∧ p1 ≥ x4) that com-
bines p0 and p1 to describe when the robot must move at high speed. The correct
value of c for velocity regulation is 103 (i.e., the difference between moving at speed 1
in a short segment and collide vs. going fast in a long subsegment without collisions,
i.e., 0.6 · 2− 100, 1.4 · 3), but we set it to 90 to generate some errors. We run XPOMCP
on a trace of 100 runs and XPOMCP returns the following rule:

action SpeedF ⇐⇒ p0 ≥ 0.910∨ p2 ≤ 0.013∨ (p0 ≥ 0.838∧ p1 ≥ 0.132)

It takes 69.53 seconds to analyze the trace. This rule falls on 33 out of 3500 decisions,
but only 4 are marked by XPOMCP as unexpected using threshold τ = 0.1, which we
select empirically by analyzing the values of H2 of unexpected decisions. Table 5.3
shows some of the most notable steps that do not satisfy the rule (which are not
necessarily unexpected decisions) in decreasing order of H2. Column id shows an
identification number for the step, columns p0, p1, p2 show the probabilities in the
beliefs of unexpected actions, column H2 shows the Hellinger distance of the steps
with unexpected actions, and we write in bold the Hellinger distance values greater
than the threshold τ = 0.1. Steps 1 and 2 are unexpected behaviours since POMCP
decided to move at high speed even if it had poor information on the difficulty of
the segment (p0, p1, p2 are close to a uniform distribution). Steps number 3 and 4 are
also unexpected. While they are closer to our rule because p0 is the dominant value
in the belief, they are significantly distant from the boundary of the rule and the
decision taken by POMCP. Steps from 5 to 33 have beliefs that only slightly violate
the rules of the related actions; these steps are not marked as unexpected due to the
approximate nature of the rule.

To visualize the result, we show a T-distributed Stochastic Neighbor Embedding (t-
SNE) projection (Maaten and Hinton 2008) of the beliefs (which are vectors in 38 di-
mensions). The belief of each step is used to compute point coordinates, and dif-
ferent colours represent the action taken by POMCP (see Figure 5.5). In particular,
green, blue, and orange points represent steps in the traces in which POMCP se-
lected, respectively, a low speed, a medium speed, and a high speed. While the
rule generated by XPOMCP for action 2 (i.e., SpeedF) presents a clear and compact
boundary, there are no obvious separations between the points of the three speed
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id p0 p1 p2 H2

1 0.335 0.331 0.334 0.3526
2 0.261 0.461 0.278 0.3090
3 0.671 0.198 0.131 0.1717
4 0.678 0.228 0.094 0.1389
5 0.775 0.196 0.029 0.0411
6 0.832 0.127 0.041 0.0347

32 0.853 0.126 0.021 0.0109
33 0.826 0.160 0.014 0.0105

TABLE 5.3: Notable unsatisfiable steps in velocity regulation (c = 90).
The table present the identification (id), the belief (p0, p1, p2), and the

Hellinger distance (H2) of each step.

FIGURE 5.5: t-SNE of n-uples (belief, action) for the velocity regulation
with c = 90. Our algorithm identify 4 anomalies, they are circled in

red

values in the t-SNE chart. Most orange (i.e., high speed) points are grouped in small
clusters spread around the graph, but some isolated orange points are also present.
This kind of distribution is hard to analyze using standard anomaly detection al-
gorithms like isolation forests. The four steps that are classified as unexpected de-
cisions are circled in red. Points 1, 3 are isolated and far from any small cluster of
orange points, while points 2 and 4 are close to one of the clusters. Note that not
all isolated points are marked as unexpected. XPOMCP identifies the unexpected
points not only by using their belief but also by the insight provided by the expert.

5.4.3 Unexpected decisions in rocksample

Rocksample is a challenging problem since its state space grows quickly as the dimen-
sion of the board and the number of rock grows. For instance, Rocksample(11,11),
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which uses 11 rocks in a 11× 11 board has 247,808 states samples (Silver and Ve-
ness 2010). To achieve good performance in such large problems without using too
many particles, POMCP uses some hacks to simplify the computation. In particular,
it identifies a subset of interesting actions at each step and increases their starting
values in the MCTS (see the C++ implementation of (Silver and Veness 2010)). This
improves the performance of UCT regarding the exploration-exploitation trade-off
since the most promising actions are favoured. We are interested in applying our
methodology in this challenging domain. We inject errors by changing the number
of the particles np used for the simulation, and we use XPOMCP to quantify the
impact of this parameter. As in velocity regulation, it is not possible to compute an
optimal policy for rocksample as a ground truth. Instead, we provide an in-depth
analysis of the traces using the methodology and evaluate the results. The rules for-
mulated in this section are then used as a base to test the shielding mechanism in
Section 6.2.

We write rule templates about two important aspects of the policy. In the first
analysis, we are interested in understanding the confidence level required before se-
lecting the sampling action (i.e., the action in which the agent collects the rock and
gets a related reward). This is a crucial decision with a big impact on the perfor-
mance. In our second analysis, we investigate the impact of the distance between
the agent and the rock on the check action (i.e., the agent should decide whether to
check a rock that is at a certain distance or not). In particular, we want to understand
if the policy decides to move on the North-South axis to perform better checks.

To describe the problem, we use the header

actions = {North, East, South, West, sample, check1,...,11} int;

belief = int;

problemInfo = {};
runInfo = {Rocks list[position]};
stepInfo = {pos position};

There are four actions for movement, one for sampling, and eleven for checking. The
states used in the belief are integers that encode the true value of the eleven rocks.
At each step we store the (x, y) position of the agent (i.e., the pos value, pos.x, pos.y
can be used to specify the x and y coordinates). Finally, we store the predetermined
position of the rocks in the runInfo field. To properly describe the robot’s behaviour,
it is important to keep track of which rocks were sampled and which ones were not.
To do that, we introduce the collected(r, n) function, it takes a rock r from runInfo
and a number of steps n as input and returns true if and only if r was sampled at a



5.4. Comparison with unsupervised anomaly detection algorithms 53

step lower than n. We can write it as

define-fun collected(r rock, n step) bool

∃ n′ s.t. (n′.run = n.run) ∧ (n′.num < n.num) ∧
(n′.action = sample) ∧ (n′.x = r.x) ∧ (n′.y = r.y);

This function controls whether it exists a previous step in the same run that per-
formed a sample action on the same rock.

We compute rules from different traces using different np, namely, 2i particles
with i ∈ {11, . . . , 18}. The same number of simulations is performed. We select
these parameters because 218 provides great performance, as shown in (Silver and
Veness 2010), and 211 is the bare minimum to represent the possible states of the 11
rocks.

Analysis of sampling actions

We can now create a rule that explains when the agent considers worthy to sample
a rock:

declare-var u prob;

declare-rule

action sample ⇐⇒∨
r∈{rocks}

(pos = r.pos ∧ ¬collected(r, step) ∧ p(r.valuable) ≥ u);

The above rule specifies that we should use the sample action if and only if we are
in the position of a rock (i.e., pos = r.pos), the rock was not collected in a previous
step (i.e., ¬collected(r, step)), and the probability that the rock in this position is
valuable is above a certain unknown threshold (i.e., p(r.valuable) ≥ u). The

∨
is

used to compactly represent an or condition over the various rocks. This rule is very
important because sampling is the most dangerous action, as it can lead to great
rewards if used correctly or penalties otherwise.

Table 5.4 shows the results of our analysis. Column np shows the number of
particles used in POMCP. Column u reports the value computed for u by XPOMCP.
Columns # unsafe sample and # unnecessary check show the two kinds of unexpected
decisions that can happen, namely, the samples made with confidence below u and
the checks made on a rock with a confidence above u. As presented in column u,
a higher number of particles leads to requiring a higher level of confidence before
sampling a rock. This improves performance since the agent avoids sampling too
many worthless rocks. It is important to note that some steps do not satisfy the
rule, and this happens for two reasons. Namely, i) the agent samples a rock that
is unlikely to be valuable (i.e., # unsafe sample), ii) the agent checks the value of a
rock even if the confidence for the rock to be valuable is above the threshold u (i.e.,
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np u # unsafe sample # unnecessary check

218 0.835 0 1
217 0.818 0 4
216 0.827 0 3
215 0.79 0 8
214 0.797 5 2
213 0.708 7 7
212 0.620 58 5
211 0.627 70 39

TABLE 5.4: Rule for action sample of rocksample. For each number of
particle np the table the prob u computed by XPOMCP. Columns # un-
safe sample and # unnecessary check show the two kinds of unexpected

decisions for action sample

column # unnecessary check, that is never zero). The first kind of unexpected decision
is the most important since it can lead to poor performance. As shown in Table 5.4,
with np greater than 215 no unsafe sampling is performed.

Analysis of checks and movements

The implementation of rocksample provided in (Silver and Veness 2010) uses a heuris-
tic to favour check actions in certain circumstances. It considers checking a rock
based on the agent’s history. In particular, it considers the number of previous
checks performed on the rock and the ratio between positive and negative checks
(if any). Notice that it is possible to check a rock from every position of the board,
but the precision of these checks decreases when the distance between the agent and
the rock increases. However, the POMCP heuristic does not consider the distance
between the agent and the rock. After too many checks, the heuristic stops measur-
ing a rock (i.e., only the number of checks is considered, not their quality). We want
to investigate the strategy used by POMCP and, specifically, to understand whether
POMCP decides to approach a rock before checking it. We express this idea using
two rules, namely, one that describes when to use the various check actions and one
that explains when to move on the North-South axis. Rocksample uses a specific ac-
tion for checking each rock (i.e., check1 for checking rock 1,. . . , checkn for checking
rock n, with n = 11 in our case study). Checking is particularly difficult to capture
with a rule, mostly because it is a free action (in terms of reward); thus, the POMCP
uses several checks in different scenarios. We assume that the agent checks rocks
that are not too far and only if the confidence that the rock is valuable is inside a
certain interval, the robot should not check a rock when the confidence that it is
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valuable/worthless is high enough. For action checki, we write the rule:

declare-var v1, v2 real;

declare-var w1, w2 prob;

declare-rule

action checki =⇒ v1 < distance(pos, rocki) < v2 ∧ w1 < p(rocki.valuable) < w2;

where v1 < v2 ∧ w1 < w2;

The function distance computes the Euclidean distance between the agent’s position
and the position of the rock (a real number). Notice that the rule uses a simple
implication and not a ⇐⇒ , this means that when the robot performs a check, the
requirement must be satisfied, but the robot is not forced to select this action when
the formula is true. This is important to describe the behaviour of the policy for the
various checki actions since it is common to have multiple valid checks at a single
point, and we cannot do all of them at the same time. Finally, we want a rule that
describes when the robot should move on the North-South axis. It is important
to understand if the North (South) action is taken only when there is at least one
valuable rock North (South) of the agent or if it is worth moving on the North-South
axis to get closer to the rock before checking it. We write the template:

declare-var q real;

declare-rule

action North =⇒ ∃r s.t. ¬collected(r) ∧ r.y < pos.y ∧ p(r.valuable) ≥ q;

action South =⇒ ∃r s.t. ¬collected(r) ∧ r.y > pos.y ∧ p(r.valuable) ≥ q;

where q ≥ u;

It expresses the idea that the agent should only move on the North-South axis when
there is at least one uncollected rock with a value that is greater than u (i.e., the
threshold that describes when it is valuable to sample a rock). We are interested in
detecting unexpected decisions for this rule to understand if the policy decides to
take these actions in different circumstances (i.e., for a check).

Table 5.5 shows the results on these two rules. Column np shows the number of
particles used in POMCP. Column check distance shows the interval of the acceptable
distance between the agent and the rock before using a check. Column check confi-
dence shows the level of confidence in the value of a rock before performing a check.
Finally, column North-South shows the level of confidence required on the fact that a
valuable rock is situated North (South) of the agent before moving in that direction.

These rules do not generate any unexpected decisions and can describe all the
actions taken by the policy. This answers our doubt on the influence of the dis-
tance on the check actions: moving on to a new position to improve the quality of a
check is never worth it, and the agent considers a good strategy to check rocks far
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np check distance ([v1, v2]) check confidence [w1, w2] North-South(q)

218 [0.000, 12.728] [0.025, 0.946] 0.835
217 [0.000, 12.042] [0.037, 0.947] 0.818
216 [0.000, 12.042] [0.029, 0.951] 0.962
215 [0.000, 12.042] [0.033, 0.968] 0.79
214 [0.000, 12.042] [0.035, 0.959] 0.797
213 [0.000, 12.042] [0.027, 0.974] 0.708
212 [0.000, 12.042] [0.024, 0.986] 0.972
211 [0.000, 12.042] [0.008, 0.983] 0.627

TABLE 5.5: Rules for actions check1,...,n, North, and South of rocksam-
ple. The tables shows the values for the variables v1, v2, w1, w2, q com-

puted by XPOMCP for different number of particles np

away from their position. This is shown in columns check distance and check confi-
dence, in which values remain mostly similar regardless of the number of particles.
This happens because these checks are free. Thus, the best policy is to use many of
them, disregarding the single checks’ quality. The fact that the rule for moving on
the North-South axis never generates unexpected decisions using this rule is partic-
ularly important. It means that these actions are only taken to move toward a rock
that we already know to be valuable (i.e., we already have checked them, and we
have good confidence in their real value) and not get closer before a check.
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Chapter 6

Rule-based Shielding

In this chapter, we present a methodology that uses the rules generated by XPOMCP
(as described in Chapter 4) to build a shield mechanism. As in the anomaly detec-
tion algorithm presented in Chapter 6, this methodology identifies unexpected de-
cisions of the policy. However, the shield is used online, on top of the policy is used
by the agent. Notice also that the shield is not employed to identify anomalies in
pre-generated traces but to prevent unwanted actions during future executions of
POMCP.

6.1 XPOMCP-based shielding

It is possible to use the logical rules generated by XPOMCP as a shield to prevent
undesired actions. We integrate the shield into POMCP to preemptively (i.e., before
executing them) prune undesired actions considering the current belief. It includes a
set of rules trained as explained in Section 4.3 and a set of representative beliefs gen-
erated as described in Section 5.1. We use the procedure presented in Algorithm 6 to
shield the actions. We start with an empty set of legal actions L (line 1). We add an ac-
tion a to L if it satisfies at least one of three possible conditions, namely, i) there is no
rule for the action in the shield (line 3), ii) the current belief b satisfies the constraints
defined by the rule for a (line 5, where we use the test_constraints function to
check the constraints), iii) the current belief b does not satisfy the rule, but the dis-
tance between b and the boundaries defined by the rule for a are below the threshold
τ defined in the shield Sh (line 7). These conditions could result in an empty set of
legal actions L (i.e., if the rules are very strict). Hence, for each belief, we define a
default safe action called asa f e, which is used when no other action is permitted. We
force POMCP only to consider legal actions in the first step of the simulation. After
a legal action is selected, the Monte Carlo Tree Search is performed as usual. Notice
that when the original implementation of POMCP (Silver and Veness 2010) selects a
particle in the simulation process, it assumes that the state encoded by the particle is
the current state of the system (which for a POMDP is not observable). Therefore the
belief can only be considered in the first step. With this mechanism, we can ensure
that the rule of the shield is respected, but we do not force POMCP to select a specific
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Algorithm 6: Shielding procedure
Input: a belief b, a shield Sh, safe action asa f e
Output: set of legal actions L

1 L ← ∅;
2 foreach action a ∈ A do
3 if a /∈ Sh then
4 L ← L∪ a;

5 else if Sh.test_constraints(b) then
6 L ← L∪ a;

7 else if ∃r ∈ Sh.Repr : H2(b, r) < Sh.τ then
8 L ← L∪ a;

9 if L = ∅ then
10 L ← {asa f e};
11 return L ;

action. The best action is still decided using the regular POMCP search considering
only legal actions.

The computation of legal actions is performed only once per step since the cur-
rent belief does not change during the simulation. Checking that the belief satisfies
the constraints (by the test_constraints function) has a fixed cost. Checking the
H2 of the representative beliefs increases linearly with the number of beliefs. As
shown in Section 5.3, this is a negligible cost, and the reduced number of actions
that must be tested (because not all actions are now legal) can also slightly reduce
the execution time.

6.2 Results on rule-based shielding

We test our shielding mechanism on tiger, velocity regulation, and rocksample that are
described in Section 3.3.

6.2.1 Experimental setting

In our experimental setup, we consider several values of parameters c and np. We
create a trace for each domain and parameter value using the unshielded POMCP.
Then we train a rule to be used as a shield using XPOMCP. Notice that these traces
could contain errors. Finally, we test the shielded POMCP using the same param-
eters. We evaluate the methodology’s performance by comparing the average dis-
counted return achieved by the two versions of POMCP (original and shielded). We
consider 1000 runs for tiger and 100 runs for velocity regulation and rocksample. We
generate 1000 representative beliefs in all cases and use τ = 0.10 as a threshold to
identify anomalies.
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No Shield Shield

c return time (s) return RI time (s) #SA

110 3.702(±0.623) 0.066(±0.027) 3.702(±0.623) 0.00% 0.065(±0.029) 0
80 3.593(±0.632) 0.067(±0.030) 3.702(±0.623) 3.03% 0.061(±0.027) 4
60 3.088(±0.673) 0.060(±0.025) 3.702(±0.623) 19.88% 0.061(±0.027) 121
40 −4.173(±1.101) 0.035(±0.017) 3.702(±0.623) 188.71% 0.052(±0.023) 647

TABLE 6.1: Comparison between shielded and unshielded POMCP
for tiger. The table shown the average discounted return and the av-
erage execution time. Standard deviations are in parenthesis and the
best results are highlighted in bold. Column RI shows the relative

increase and column #SA shows the number of shielded actions

6.2.2 Shielding for tiger

We base our shield on the same rule presented in Section 5.4.1. We learn the rule
parameters from a POMCP trace and create a shield from this rule. Since this shield
gives a rule for all possible actions, it is important to provide a safe action for each
belief, as explained in Section 6.1. For this domain, we use asa f e = Listen. The
correct value of c is 110 because the reward interval is [−100, 10]. For each value of c
in {110, 80, 60, 40}, we generate a trace with 1000 runs each, using a fixed seed for the
pseudo-random algorithm. In each case, we use 215 particles and a maximum of 10
steps. POMCP with a correct value of c produces the optimal policy (we tested that
by comparing the decisions taken by POMCP with an exact policy computed using
incremental pruning (Cassandra, Littman, and N. L. Zhang 1997)). The results are
presented in Table 6.1. The first column shows the different values of c. The second
(third) column shows the average return (time) achieved by the original POMCP
and the relative standard deviation. The Shield section shows the average return
and time achieved by POMCP using a shield (columns four and six). Column RI
shows the relative increase in performance between the two original and shielded
POMCP. Finally, column #SA shows how often the shield alters the decision during
the execution.

As shown in Table 6.1, in the first row of column #SA, the shield does not inter-
fere with the correct policy. Lower values of c produce a lower average discounted
return, as shown in column return of the No Shield section. In the Shield section
we present the relative increase (computed as RI = shielded−original

|original| · 100) between
the original and the shielded version of the POMCP (see column RI). This column
shows that the benefit of using a shield increases when the number of errors in-
creases. For the return column, we report in bold values whose difference from their
no-shield counterpart is statistically significant according to a paired t-test with 95%
confidence. While there is no difference between the two cases in the first row, the
difference is statistically significant in the other three rows.

The average return achieved using the shield is the same in all four cases, and
this is also identical to the return achieved by the correct policy. This is because in
tiger we can write a shield that perfectly recreates the behaviour of the correct policy
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No Shield Shield
c return time (s) return RI time (s) #SA

103 24.716(±3.497) 10.166(±0.682) 26.045 (± 3.640) 5.38% 10.118(±0.238) 7
90 18.030(±3.794) 10.173(±0.234) 22.680 (± 3.524) 25.79% 10.166(±0.241) 12
70 4.943(±5.260) 10.278(±0.234) 8.970 (± 4.556) 81.46% 10.377(±0.230) 51
50 0.692(±5.051) 10.374(±0.230) 1.638(±4.525) 136.53% 10.435(±0.336) 171

TABLE 6.2: Comparison between shielded and unshielded POMCP
for velocity regulation. The table shown the average discounted return
and the average execution time. Standard deviations are in parenthe-
sis and the best results are highlighted in bold. Column RI shows
the relative increase and column #SA shows the number of shielded

actions

(as shown in Section 5.3.5), a goal that is difficult to achieve in real-world problems.
This is particularly interesting because the shields in the cases of c ∈ {80, 60, 40} are
obtained by using traces generated with a POMCP implementation that does make
some mistakes. As a consequence, the execution traces contain wrong decisions.
However, the combination of expert insight and MAX-SMT-based analysis of the
traces results in a shield with extremely good performance. As shown in the time
column, in general, the presence of the shield does not noticeably impact in terms
of run-time. The shield generation algorithm takes between 10 and 12 seconds to
generate the shield in this case. In the last row, the original POMCP is particularly
fast. This happens since the erroneous POMCP opens many doors as fast as possible
without listening. This leads to runs that achieve very low average return but ends
quickly.

6.2.3 Shielding for velocity regulation

We use the same rule template of Section 5.4.2 to describe when the robot moves at
maximum speed (i.e., action 2). This is the most dangerous action because there is
always a risk of collision involved, as explained in Table 3.5.c. We use a trace with
100 runs to train and test the shield. The shield generation takes approximately 50
seconds to generate velocity regulation shields. Table 6.2 shows the result of the
experiment. The first column shows the different values of c. The second (third)
column shows the average return (time) achieved by the original POMCP and the
relative standard deviation. The Shield section shows the average return and time
achieved by POMCP using a shield (columns four and six). Column RI shows the
relative increase in performance between the two original and shielded POMCP.
Finally, column #SA shows how often the shield alters the decision during the ex-
ecution. As in tiger, a lower value of c produces a lower return. In this case, the
best c is 103 (the difference between a collision when we move slowly in the short-
est segment and a fast movement in the longest segment without a collision). The
first row of the table shows that, unlike tiger, the usage of a shield can improve the
performance even when c is correct. In this case, the shield intervenes only 7 times
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No Shield Shield
np return time (s) return RI time (s) #SA
214 13.01(±0.57) 14.29(±5.0) 13.14(±0.56) 0.99% 17.11(±6.98) 5
213 12.32(±0.58) 8.05(±2.51) 12.39 (± 0.55) 0.05% 8.68(±2.95) 7
212 10.21(±0.77) 4.12(±1.37) 11.98 (± 0.54) 17.20% 4.64(±1.60) 52
211 8.83(±0.80) 2.13(±0.56) 10.25 (± 0.58) 16.01% 2.43(±0.75) 65

TABLE 6.3: Comparison between shielded and unshielded POMCP
for rocksample. The table shown the average discounted return and the
average execution time. Standard deviations are in parenthesis and
the best results are highlighted in bold. Column RI shows the relative

increase and column #SA shows the number of shielded actions.

(over the 3500 analyzed steps), yielding a 5.38% increment in the return. This hap-
pens because the shield blocks the rare cases in which the POMCP simulations are
not enough to properly assess the risk of moving at high speed. In fact, we use 215

particles as in tiger. This yields acceptable performance in general, but sometimes
the simulations are not good enough, and the robot takes a decision that the expert
considers too risky.

When c decreases, the shield intervenes more often (see column #SA) since the er-
ror due to the limited number of simulations is combined with the errors generated
by an incorrect value of c. Table 6.2 also shows that a higher number of interventions
leads to a bigger relative increase in the performance (column RI). The difference is
statistically significant in the case of c ∈ {103, 90, 70}, and shows that the shield pro-
vides up to 81% performance improvement. This happens even in cases where the
shield is trained using traces generated by a POMCP process that makes some mis-
takes. In the case of c = 50, the return increases, but the difference is not statistically
significant because the standard deviation is very high. The shield intervenes 171
times by blocking risky high-speed moves, but unlike tiger, in which we use a rule
for every possible action, here POMCP made many wrong decisions when it moves
at low or medium speed (for example, by moving slowly when the path is clear). As
in tiger, the usage of the shield does not significantly increase the time required to
perform the simulations.

6.2.4 Shielding for rocksample

We test rocksample with a shield for the sampling action. It blocks the sampling of
rocks with low confidence of being valuable in the current belief. As shown in Sec-
tion 5.4.3, the agent performs unsafe sampling only when it uses np = 214 or less.
Thus we focus our analysis on these cases. We use a trace with 100 runs to train and
test the shield. The shield generation takes 23 seconds.

Results are presented in Table 6.3. The first column shows the number of par-
ticles used by POMCP. The second (third) column shows the average return (time)
achieved by the original POMCP and the relative standard deviation. The Shield sec-
tion shows the average return and time achieved by POMCP using a shield (columns
four and six). Column RI shows the relative increase in performance between the
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two original and shielded POMCP. Finally, column #SA shows how often the shield
alters the decision during the execution. Rocksample is a harder problem than tiger
and velocity regulation, and the RI achieved is lower in this case. The difference is
significant only when we use 211 or 212 particles. In these cases, the shield provides
roughly a 15% increase in performance because the agent does not sample rocks for
which it has low confidence. In the cases of 213 and 214 particles, the difference is
minimal since unsafe samplings are rare. Notice that in these cases, the agent never
performs an unsafe action thanks to the shield, but this is not enough to build a bet-
ter policy in this case. For example, the agent does not perform unsafe sampling.
Instead, it simply ignores some potentially valuable rocks. The policies generated
using more particles perform extra checks in the same context. Due to the iterative
nature of our methodology, it is possible to investigate these aspects using new rules,
thus generating a new shield to handle these situations.
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Chapter 7

Active Rule Synthesis

In this section, we present an extension of the XPOMCP methodology, called Active
XPOMCP, that inspects the POMCP policy actively. Instead of relying on a pre-
generated trace, the active approach uses XPOMCP generated’ rules as guidance to
reach new unexplored beliefs that provide meaningful information. We show that
this approach can outperform the passive approach, achieving more precise rules
using fewer (more informative) belief-action pairs.

7.1 Active XPOMCP

The XPOMCP methodology builds logical formulas that describe the properties of
POMCP policies in a human-comprehensible way. The structure of these formulas
is, in fact, designed by human experts. Hence they can embed assumptions about
the policy, i.e., human expectations about the action the policy should select in spe-
cific conditions. The methodology uses a set of traces generated by a POMCP agent
to achieve this. The main difference between the passive approach presented in
Chapter 4 and Active XPOMCP here introduced is that XPOMCP produces rules that
describe a set of executions produced by POMCP, while Active XPOMCP produces
rules that describe the actual POMCP policy. To reach this goal Active XPOMCP
actively queries a POMCP instance providing beliefs and receiving actions to mini-
mize the number of queries to make the rule generation process as fast and accurate
as possible.

Since a rule can only describe the policy according to the beliefs sampled by
Active XPOMCP, we represent the uncertainty of a rule as a set of unexplored be-
liefs. The rule uncertainty is a key concept in our methodology, which guides two
processes: identifying the most informative beliefs and the termination of the rule
improvement when the rule convergences. The rule uncertainty depends on the fact
that given a rule template and a trace, multiple rules can be generated because the
trace could contain only partial information about the policy’s property expressed
by the rule. In more detail, a rule is located in a position that satisfies the majority
of the beliefs in the current trace. Hence, several positions are available if the beliefs
are far from the decision boundary of the policy (i.e., the hyperplane of beliefs in
which the policy changes its action). XPOMCP locates the rule as close as possible to
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FIGURE 7.1: Graphical representation of the main elements involved
in the Active XPOMCP algorithm.

the beliefs (in the trace) related to the rule action. At the same time, Active XPOMCP
reduces the uncertainty interval to locate the rule as close as possible to the decision
boundary.

7.1.1 Strict and loose rules

Figure 7.1 graphically depicts the main elements of the Active XPOMCP algorithm. It
computes two rules (yellow and green lines in the picture) to describe the behaviour
of the policy on a specific action (action 2 in the picture). The first rule (green line)
is called strict rule and is located as close as possible to the observed beliefs related
to that action (i.e., red points). The second rule (yellow line) is called loose rule, and
it is located as far as possible from the red points without including any blue point
(i.e., points that represent action 1). In summary, the strict rule behaves conserva-
tively. It describes only beliefs collected in the trace about the action of interest. The
loose rule captures all the beliefs (explored or not) that do not explicitly violate the
requirement expressed by the expert in the rule template. Active XPOMCP reduces
the distance between the two rules by selecting informative beliefs, namely beliefs in
the uncertainty interval that contribute to reducing the distance between loose and
the strict rule until the two converge. This is non-trivial in real problems because the
belief space is highly multidimensional and therefore huge. For this reason, Active
XPOMCP introduces another constraint, namely, reachability. In fact, only a small
part of the belief space is reachable from the initial belief b0, hence considering only
reachable beliefs we reduce the search space and make Active XPOMCP scalable.

7.1.2 Active analysis of POMCP policies

The methodology proposed in this chapter is implemented by the Active XPOMCP
procedure displayed in Algorithm 7. It internally calls two procedures, RuleSynthesis
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Algorithm 7: Active XPOMCP
Input: POMCP instance: POMCP; Rule template: rt; Initial belief: b0; Runs

in first trace: N; Uncertainty thrs: ε
Output: Instantiated rule: r

1 t=∅; // Trace init.
2 for i = 1, · · · , N do
3 t← t ∪ POMCP (b0);

4 [st, lo]← RuleSynthesis(t, rt); // Strict/loose init
5 while lo - st < ε do
6 ta ← ActiveTraceGeneration(POMCP,lo, st);
7 t← t ∪ ta; // Trace set update
8 [st, lo]← RuleSynthesis(t, rt); // st/lo rule update

9 r ← st ;
10 return r

(displayed in Algorithm 8) which generates the loose and strict rules given the cur-
rent trace, and ActiveTraceGeneration (shown in Algorithm 9) which generates a new
informative trace given the current loose and strict rules. Active XPOMCP (Algo-
rithm 7) receives in input a POMCP instance, a rule template rt, the number of runs
N in the initial trace, an initial belief b0, and the threshold ε on the maximum dis-
tance between loose rule and strict rules required for stopping the update process.
The procedure first generates a trace t containing a small set of runs (we usually use
only five runs to start Active XPOMCP) by launching the POMCP instance from a
starting belief b0 (lines 1-3, usually a uniform distribution over all possible states).
Empirically, this is useful to find approximate values for the strict and loose rules.
Then, it initializes the loose and strict rules (line 4) by passing the trace t and the rule
template rt to the RuleSynthesis procedure, explained in Subsection 7.2. We notice
that standard XPOMCP returns the strict rule here since the methodology considers
only the solution that is as close as possible to the beliefs related to the action of the
rule template (see Figure 7.1). Instead, Active XPOMCP starts an iterative process
of rule update (lines 5-8) in which, first, it extends the trace with a new run gen-
erated by the ActiveTraceGeneration (line 6), explained in Subsection 4.2.4, aiming to
reduce the uncertainty interval between the loose and the strict rules; second, new
strict and loose rules are generated by the RuleSynthesis procedure (line 8) using the
old set of runs together with the newly generated one. This process ends when the
difference between the loose and the strict rules becomes smaller than ε (see line 5).
If the template has a single free variable, the distance between loose and strict rules
is computed as a simple difference between the variable’s strict and loose values.
Otherwise, we consider each free variable independently, stopping when the largest
difference is below ε. When this process stops, the strict rule is returned.
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Algorithm 8: RuleSynthesis
Input: Rule template: rt; Trace: t
Output: Strict rule: st, Loose rule: lo

1 solver.initialize();
2 foreach step s in t do
3 rs ← [rt]s.belie f ; // instantiate variables in rt
4 if s.action 6= rt.action then
5 rs ← ¬ rs;

6 ls ← new literal;
7 cost← cost ∪ ls;
8 solver.add(ls ∨ rs);

9 maxsat← solver.minimize(cost); // satisfy steps
10 solver.add(maxsat);
11 slack← |rt.variables− t.belie f |;
12 st← solver.minimize(slack); // build st
13 lo ← solver.maximize(slack); // build lo
14 return [st, lo]

7.2 Strict and loose rule syntehsis

Active XPOMCP uses a rule template and a trace to build two rules that describe
the system. The procedure is presented in Algorithm 8. The algorithm builds a
clause for every step in the trace. In line 3, we instantiate the probability variables
of the rule template t with the values store in step s. For example, if we have a
rule template “select a when p > x” we substitute p with the values stored in the
trace. We aim to find a value for x (and the other free variables) that satisfies as
many of these clauses as possible. If the step uses an action that is different from
the action described by the template, we negate the formula (line 5) because the
clause must be false. We then build a dummy literal ls (line 6) for each step s. The
MAX-SMT procedure uses this to satisfy the steps that cannot be satisfied using the
rules. We want to use as few of these literal as possible. Thus we collect them into
a cost function that must be minimized. Finally, in line 8 we insert a combination
of the clause and the dummy literal into the solver. After this step, we run a MAX-
SMT solver to find a solution that minimizes the cost of using dummy literals. In
general, there could be many solutions that satisfy these requirements, and we are
particularly interested in two of them, namely, the loose and the strict solution. We
force the solver to satisfy the bound computed in the MAX-SMT step (line 10), and
we create a value that measures how far our solution is from the steps observed
in the trace. We do this by computing the shortest Euclidean distance between the
values of the free variables of a solution and the closer belief collected into the trace
(i.e., the information that we have stored in rs in line 3). The strict rule searches
for a solution that minimizes this value, while the loose rule maximizes it while
respecting the MAX-SMT constraints. Notice that the maximization procedure used
in line 9 is a MAX-SMT procedure (i.e., it tries to maximize the satisfiable clauses in
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Algorithm 9: ActiveTraceGeneration
Input: POMCP inst.: POMCP; Loose rule: lo; Strict rule: st; Initial belief: b0
Output: trace: t

1 b← b0;
2 tr ← ∅;
3 while ¬ POMCP.terminal() do
4 a← POMCP.select_action(b);
5 t← t ∪ 〈b, a〉;
6 o ← POMCP.apply(a);
7 for o′ ∈ POMCP.observations do
8 b′ ← bao′;
9 if b′ /∈ st ∧ b′ ∈ lo then

10 o ← o′;

11 b← bao;

12 return tr

the Boolean layer) while the procedure used in line 12 and 13 are maximizations on
real variables performed by the arithmetic module.

7.2.1 Heuristics for active trace generation

The goal of the ActiveTraceGeneration procedure (Algorithm 9) is to collect new be-
liefs that can be used by RuleSynthesis to make the strict and loose rules converge to
the true policy decision boundary. These beliefs should have two main features: to
be located in the uncertainty interval of the rule and to be reachable from the initial
belief. Specifically, by reachable beliefs, we mean beliefs that POMCP can generate
in one or more steps from the current belief. We use a modified black-box simula-
tor as the environment that returns observations to POMCP, instead of the standard
environment, to guide the exploration towards informative beliefs. This is because,
given a belief, the new beliefs reachable from POMCP depend on the selected action
and the received observation (returned by the environment). The action is selected
by POMCP using the policy that we are describing with the rule; thus, we do not
alter it. The observation works as a filter of particles in the belief update process
performed by POMCP. It is selected by the (simulated) environment that we modify
to explore the reachable states better. In other words, we generate a fake environ-
ment by modifying the black box simulator of POMCP to address the exploration of
reachable beliefs not yet explored. The fake environment provides, for instance, also
observations that are unlikely (but not impossible) to be obtained. In this way, we
generate several reachable beliefs. Since the number of reachable beliefs can be very
large, we then select the best observations returned by the environment by explor-
ing two main elements, namely, i) the Monte Carlo Tree generated by POMCP, ii) the
strict and loose rules built by analyzing previous executions (i.e., a trace).
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In particular, ActiveTraceGeneration searches for beliefs that have not been ex-
plored yet and are located in the uncertainty interval (i.e., the space between the
loose and the strict rule). The procedure starts from an initial belief b0 (line 1). It
builds a trace (i.e., t) containing a single run. It uses POMCP to compute the best
action in the current belief (line 4) and it adds the current belief-action pair to the
trace (line 5). The procedure must then select which reachable belief is the most sig-
nificant given the current loose and strict rules. First, it computes the observation
POMCP would have received using its black box simulator (line 6). Then it tries to
compute an alternative observation that would lead the research toward unexplored
beliefs (line 7–10). We compute the future belief as b′ ← bao′ (i.e., by applying action
a to belief b and receiving observation o′). We then select o′ if b′ does not satisfy the
strict rule but it also satisfies the loose rule (line 9). This belief is a valuable addition
to the trace t because it represents a belief not currently described by the rule (i.e.,
it does not satisfy the strict rule) but for which we do not have any explicit confir-
mation that the rule should not explain it (i.e., it satisfies the loose rule). Notice that
if an observation is not possible in a given belief, this observation is never consid-
ered because b′ is an empty belief that does not satisfy any rule (i.e., line 9 is always
false). We generate the future belief using the best action and the selected obser-
vation (line 11), and we iterate the procedure until it convergences to a final state.
When the procedure ends, we return the newly generated trace t.

7.3 Experimental results

This section tests the shielding capabilities of the rules generated using Active XPOMCP.
We consider rocksample and velocity regulation (as described in Section 3.3), and we
compare the performance of standard XPOMCP and Active XPOMCP. We do not
consider the tiger problem since it is too easy, and the active approach does not
present any advantage over the passive strategy.

7.3.1 Active rule synthesis in rocksample

We consider a rule that describes when the agent should sample a rock. Sampling
is the most critical action because it yields the biggest difference in reward. To de-
velop a successful sampling strategy, the agent must exploit the noisy observations
received from the sensor to update its belief about the true value of the rock until it
becomes confident enough about this value. Only then should it decide to sample
or not to sample the rock. Excessive use of the sensor leads to a lower return (i.e.,
cumulative reward), but sampling valueless rocks yields a strongly negative reward
(i.e., −10). Hence the agent must balance sensing and sampling to reduce the risk to
optimal levels.
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Experimental setting

We are interested in understanding when the agent should sample a rock. In partic-
ular, the value of probability above which the POMCP policy selects to sample the
rock. To this end we generate the following rule template:

declare-var u prob;

declare-rule

action sample ⇐⇒∨
r∈{rocks}

(pos = r.pos ∧ ¬collected(r, step) ∧ p(r.valuable) ≥ u);

It specifies that we expect the agent to sample a rock only if it believes that it is
valuable with a probability (i.e., p(r.valuable)) greater than a certain value u. How-
ever, the value u is a free variable in the template because we do not know it. We
use Active XPOMCP to discover this value by analyzing the behaviour of the policy
is highly informative (and reachable) situations selected using our active strategy.
The template also states that the robot should not sample rocks that have been al-
ready sampled (i.e., ¬collected(rock, step)). Furthermore, it is worth noting that
the robot can successfully sample a rock only if it is in the same position as the rock
itself. Thus, if the robot is on an empty cell, the value p(rock.valuable) is always set
to zero.

performance measure

We perform two experiments to measure the performance of Active XPOMCP. In
the first, we generate rules using different numbers of runs N (N = 5, 10, . . . , 50).
For each value of N we compute a logical rule using both XPOMCP and Active
XPOMCP. Notice that Active XPOMCP starts from N = 5 and automatically in-
creases the number of runs until convergence, while XPOMCP works with a single
trace. Hence we run it several times using traces with different numbers of sets. The
test is repeated ten times, changing the seed at each test. The measures of interest
for this test are two: the size of the uncertainty interval, which measures the uncer-
tainty of the rule, and the F1 score, which measures the capability of the logical rule
to describe the property of the POMCP policy.

In the second experiment, we compute logical rules from traces with N = {5,
10, 15, 20} runs, and we use these rules to shield future execution of POMCP. We
build this shield with the methodology presented in Chapter 6. It takes a logical rule
generated and builds a shield that guarantees that the rule is satisfied during the
execution. The maximum N we use is 20 because Active XPOMCP converges with
that number of runs. Rules are always computed using NSgen = 215 simulations.
Then we use the two rules (for each N) to shield an instance of POMCP, which uses
a smaller number of simulations, namely, NSshield = 213. This instance of POMCP is,
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of course, more imprecise but also nearly four times faster than the instance using
215 (it performs 75% simulations less). The measures in which we are interested are
the average discounted return of i) the standard POMCP, ii) the shielded POMCP
using the logical rule computed by XPOMCP, iii) the shielded POMCP using the
logical rule computed by Active XPOMCP. In all cases POMCP uses NSshield = 213

simulations. Notice that the average discounted return is computed over 100 runs
in this case.

Results on the first experiment

Figures 7.2.a,b,c show the results of the first experiment. In particular, the mean un-
certainty interval, measuring the difference between the strict and the loose value of
x, is displayed in Figure 7.2.a. The interval values decrease both for rules computed
by XPOMCP (blue line) and for rules computed by Active XPOMCP (red line), but
the decrease of the rules computed by Active XPOMCP is faster and the difference
is quite large on rules computed using 10 runs (i.e., ∆U = 0.086) and 15 runs (i.e.,
∆U = 0.098). Then this difference decreases with 20 runs, and with 30 runs Active
XPOMCP ends because it meets its stopping criterion. Interestingly, the standard
deviation represented by the shadow areas in the chart is much smaller for Active
XPOMCP than for XPOMCP, showing that the active strategy converges quickly to
the decision boundary.

The difference in the uncertainty interval of the rules produced by XPOMCP and
Active XPOMCP directly affects the capability of these rules to describe the property
of the POMCP policy investigated by the rule template. This is shown in Figure 7.2.b,
which displays the F1 score obtained comparing the actions selected by POMCP with
those selected by the generated rules on 100 runs. Starting from the trace with 15
runs, the F1 score of the rules computed by Active XPOMCP is larger than that of the
rules computed by XPOMCP, showing that the rules generated by Active XPOMCP
are more accurate in those cases.

Results on the second experiment

The final goal of these experiments is not only to show that Active XPOMCP can gen-
erate more accurate rules than XPOMCP with a smaller number of runs but also to
generate better shields than XPOMCP. In this regard, Figure 7.2.c shows the results
of the second experiment. Namely, the average discounted return of the shielded
POMCP using the rules generated by Active XPOMCP (orange line) is larger than
that of the shielded POMCP using the rules generated by XPOMCP (blue line) for
10 and 15 runs, yielding a relative increase in performance of 4.5% and 1.7% re-
spectively. As shown in the results presented in Chapters 5 and 6, rocksample is a
challenging problem because standard POMCP already provide good results except
for some very rare but significant errors. The discounted return of XPOMCP and
Active XPOMCP on five runs are equal because these runs are the same for the two
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FIGURE 7.2: Results on rocksample a. mean uncertainty interval ∆U ;
b. mean F1 score; c. average discounted return (with and without
shielding). Results on velocity regulation d. mean uncertainty in-
terval δU ; e. mean F1 score; f. average discounted return (with and

without shielding).

methods, and it is the same also for 20 runs because, in this example, XPOMCP gets a
good rule with this number of runs. Interestingly, the performance of all the shielded
POMCP (using XPOMCP and Active XPOMCP) are better than that of the standard
POMCP. This points out the importance of the shields to improve the performance
of POMCP.

7.3.2 Active rule synthesis in velocity regulation

We consider a rule that describes when the robot should move at high speed. As
in rocksample, we describe the most dangerous action (i.e., the one that incurs the
highest risk of collision). We expect that the robot should move fast only when it is
reasonably certain that the current segment is easy to navigate, and we use the same
rule templates as in Chapter 5.
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performance measure

As in the case of rocksample, we perform two experiments to compare the perfor-
mance of Active XPOMCP with that of XPOMCP. In the first experiment, we ana-
lyze how the uncertainty interval ∆U depends on the number of runs, using Active
XPOMCP and XPOMCP. In the second experiment, we measure the shielding per-
formance of the rules generated with the two methodologies. Results show again
that Active XPOMCP generates more accurate rules using fewer runs. In the first ex-
periment, we consider the rules generated using N = 5, 10, . . . , 65 runs in the trace.
For each value of N we compute a logical rule using XPOMCP and another rule
using Active XPOMCP. In the second case, the algorithm starts from N = 5, and
it converges when the uncertainty interval of each variable is lower than a thresh-
old ε = 0.02. The test is repeated ten times, changing the seed at each test. The
measures we analyze are the size of the uncertainty interval and the F1 score. In
the second experiment, we evaluate the shielding performance of the rules gener-
ated using the two methodologies. As in the first experiment, we consider traces
with N = 5, 10, . . . 65 runs, and we build the shields using the methodology pre-
sented in chapter 6. We compute the rules using 215 simulations. For each N, we
use the rules to shield an instance of POMCP, which uses fewer simulations, namely,
NSshield = 213.

Results on the first experiment

Figure 7.2.d presents the size of uncertainty interval ∆U of each variable x1, x2, x3, x4,
separately. The interval sizes decrease both for rules computed by XPOMCP and for
rules computed by Active XPOMCP, but the decrease of the rules computed by Active
XPOMCP is significantly faster. In particular, the difference is large for variable x3

(green lines) and x4 (red lines). This is important because a poor instantiation of
these variables leads to poor shielding performance. As shown in Figure 7.2.e, the
F1 score is heavily impacted by the change in ∆U . XPOMCP requires 60 or more runs,
on average, to achieve performances comparable to that reached by Active XPOMCP
with ten runs. The rules generated by Active XPOMCP reach a maximum F1 score of
0.79, which is higher than the F1 score reached by rules generated by XPOMCP (i.e.,
0.71) but lower than the maximum value 1.0. The rule generates some false negatives
(i.e., the rule predicts that the robot should move fast, but the agent selects a lower
speed). A more complex template can improve the F1 score, but it is unlikely that
this will improve the shielding performance of the rule because the shield already
blocks dangerous decisions.

Results on the second experiment

Finally, we compare the shielding performance. Figure 7.2.f shows the average dis-
counted return of the shielded POMCP using the rules generated by Active XPOMCP
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(orange line) and XPOMCP (blue line). Active XPOMCP achieves the maximum per-
formance using only ten runs, while XPOMCP reaches this value only after 35 runs.
Between 10 and 30 runs, Active XPOMCPachieves a relative performance increase
of up to 264% compared to XPOMCP. This is because the last part of the rule (i.e.,
p(0) ≥ x3 ∧ p(1) ≥ x4) is hard to tune. This condition contains two free-variable
and describes some rare but important beliefs that must be properly characterized
in the rule to describe the agent’s behaviour. The passive approach struggles to col-
lect relevant beliefs for this part of the rule, as shown in the red and green lines of
Figure 7.2.d, while Active XPOMCP collects them after 5 or 10 runs.
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Chapter 8

Conclusion and Future Work

This thesis presents a methodology that combines high-level indications provided
by a human expert with a set of execution traces generated by a POMCP agent. We
exploit such rules offline by detecting unexpected decisions in the traces and online
by shielding actions related to unexpected decisions of the policy. We show that our
methodology outperforms a state-of-the-art anomaly detection algorithm in detect-
ing anomalous decisions. The shielding mechanism also improves the performance
of POMCP policies in the three application domains we considered. Two are stan-
dard benchmarks, and one is a realistic scenario of mobile robot navigation. We
also present an extension of the base methodology that actively uses the POMCP
policy to generate relevant data to increase the beliefs that the rule can describe cor-
rectly. We show that this approach requires significantly less data than the passive
approach to generate meaningful rules. This chapter presents some final considera-
tions on the methodologies developed during this PhD and discusses possible future
research directions.

8.1 Explainability for online planning algorithms

Explainability in AI is a novel and challenging topic. Even if many methodologies
presented themselves as general explainability methodology (i.e., explanations that
work independently of algorithms and domains), there is currently no consensus
on how to build a general explanation for the behaviour of a system. A common ap-
proach, also employed in the proposed methodologies, is to present a simplified ver-
sion of the systems’ behaviour or map it toward a formalism that is already consid-
ered easy to understand. In our case, we are mapping a POMCP policy into compact
logical formulas that capture the important aspects of the decision procedure. The
procedure to automatically generate these formulas uses a template that captures
high-level intuitions. Thus explanations are always framed in an intuitive context
for the human interacting with the system. However, this is not enough to achieve
explainability. This is why we also present an analysis of the unexpected decisions,
which are the decisions in which this approximated representation fails to properly
describe the reality of the policy. Thus, this thesis’s important “take-home message”
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regarding explainability is that it is not enough to provide an abstract representa-
tion to a human expert. However, it is crucial to point out when this abstraction
is not a good abstraction. Our experiments consider POMCP instances that contain
errors against “good” rules that should not generate unexpected decisions. Thus,
the anomalies are always bugs in the policy. We decided to follow this line of work
because it provides measurable metrics that can be used to assess the quality of the
methodology. However, this is not always the case. It could be possible that POMCP
develops complex strategies in solving problems that come out as a complete sur-
prise to the expert, not because they are wrong, but because they are different (and
possibly better) than the strategies envisioned by the expert. In this case, analysing
the unexpected decision is crucial, and it should point out the differences between
reality and expectations to make the system more predictable. This is, however, hard
to measure, and we are actively trying to identify interesting scenarios that will let
us experiment on this aspect of the proposed approach.

An important design choice we followed in our line of work is focusing on the
POMCP algorithm. The basic XPOMCP methodology can be used on any POMDP
policy, assuming it generates a trace of belief-action pairs. However, it is impor-
tant to notice that our approach is particularly relevant for online methodologies
because they must rely on traces since they do not build complete representations of
the policy. A possible direction is to extend the basic XPOMCP towards other online
approaches, e.g. the DESPOT algorithm (Ye et al. 2017). Another possible direction
is to focus future studies on increasing the interaction between the rule synthesis
procedure and the POMCP algorithm. The first result achieved in this line of work
is the active approach presented in chapter 7. This approach improves performance
over the basic approach that relies on traces, thanks to integrating the POMCP al-
gorithm and the rule generation procedure. The next step that we plan to follow in
this direction is to improve this integration further, to provide formal guarantees on
the completeness of this representation. Right now, the active approach improves
the rule synthesis procedure by leading POMCP towards unexplored beliefs that
provide new useful information. It stops when the uncertainty in the rules (i.e., the
difference between strict and loose rules) is lower than a small threshold. However,
this does not guarantee that the policy could present unexpected behaviours in un-
related scenarios not described by the rule. In theory, it is possible to overcome this
limitation by using a complete and correct implementation of the observation func-
tion of the POMDP model. The POMCP algorithm does not require this function
because it only relies on a black-box simulator. However, having the observation
function as an additional requirement is not uncommon, as it is used in DESPOT
and some POMCP extensions (for example, in the extension of POMCP to handle
ρ−POMDPs, as presented in (V. Thomas, Hutin, and Buffet 2020)). With this extra
element, it is possible to use automated reasoning techniques to identify important
unexplored beliefs and thus prove the approach’s completeness (while still respect-
ing the online nature of POMCP).
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8.2 Extending XPOMCP to different logics

The main advantage of using a logic-based formalism is that rules and rule templates
are both formal and easy to read for a human expert. First-order logic is widely used
to express understandable but formal requirements. By restricting the general case
of first-order logic to SMT, it is possible to achieve higher performance while main-
taining a rich language to express high-level ideas. In the proposed methodologies,
we always use SMT as the formalism to encode the indications of the expert, and our
experiments show that a state-of-the-art SMT-solver can handle meaningful POMCP
instances. However, we aim to improve the expressiveness of the logical formulas
used in these rules by employing temporals and non-monotonic logics. Different
kinds of logic can further improve the benefit of a logic-based formulation. For ex-
ample, extending this approach to temporal logic could make it easier to express
requirements and expectations on future events of a run. For instance, it is harder
to formulate questions such as “The robot should arrive at the destination before a
certain time frame; thus, it should move fast when it can” because this template has
requirements on future beliefs (i.e., the confidence of reaching the end of a run in
a certain timeframe), not only in the current one. This extended formalism could
improve the readability of the rules and make it possible to express more complex
safety constraints on the expected behaviour. Specifically, formal requirements for
AI systems are often expressed as temporal logic requirements. In this formulation,
the requirements specify a set of forbidden states that must be avoided and a reach-
ability requirement (i.e., a guarantee that the system will reach a specific final state).
Supporting these specifications as requirements for a shield could extend the use-
fulness of XPOMCP. However, the extension of the MAX-SMT-based methodology
toward temporal logic is not simple since this logic raises different theoretical and
computational challenges. In particular, it is crucial to encode the rule synthesis as
MAX-SMT and not simply SMT to allow high-level rules that admit some small er-
rors, but the extension of this approach to other kinds of logic is not straightforward.
Specifically, it is important to encode high-level requirements as soft clauses in MAX-
SMT. We plan to investigate how temporal requirements could be handled similarly
to preserve flexibility in composing XPOMCP templates. However, the extension is
non-trivial because it is not clear how to handle this kind of uncertainty on temporal
operators (e.g., finally and until).

8.3 Rule-based safety for POMCP agents

In this thesis, we present a methodology that uses the rules generated by XPOMCP
as a basis to build a shielding mechanism that prevents unwanted action on a POMCP
agent. This is done by expressing meaningful high-level requirements that are fine-
tuned by the rule synthesis method. Shielding approaches are popular because they
are lightweight mechanisms that work online alongside the system after building
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them offline from formal specifications. Thus, in general, they scale well to large in-
stances. In the proposed methodology, XPOMCP builds a rule (from a set of traces,
or actively as shown in Chapter 7) that is then embedded in the shield, and the rule
is used during the execution. An interesting research direction, explored in (Pranger
et al. 2021), is to refine this shield during the agent’s execution. This can be achieved
by leveraging the effectiveness of the active approach, but with the aim of safety,
not completeness, i.e., without pushing POMCP towards unexplored beliefs, but by
optimising the need of recomputing the parameters of the shield. Specifically, an
improved active methodology should balance the cost of rebuilding the shield while
acting in the environment. This can make the shield more robust in handling unex-
plored situations during the rule synthesis step.

Recent results (Junges, Jansen, and Seshia 2021) show that it is possible to prove
that a POMDP system verifies a safety requirement formally. However, this ap-
proach cannot provide formal guarantees in certain scenarios. Specifically, if two
beliefs are identical, but one could lead to a forbidden future state, and one is safe,
it is impossible to provide formal guarantees on the system. In this context, it is
useful to shift the focus from risk-free systems to risk aware systems. Using the rules
generated by XPOMCP makes it possible to characterise the risk involved in select-
ing a certain action properly. This could be the basis for building shields that help
overcome these limitations.

8.4 Multi agent XPOMCP

All the methodologies proposed in this thesis work for a single agent that takes ac-
tion in a partially observable environment. However, it is common to consider sys-
tems involving multiple agents that act together in the same environment. While
POMCP is meant to consider only single agents, there are interesting extensions
of POMCP to multi-agent systems (Amato and Oliehoek 2015). The methodology
relies on a factorised value function representation to avoid the exponential explo-
sion in actions and observations typical of multi-agent systems. We plan to extend
XPOMCP to multi-agent agent POMCP. To achieve this goal, it is important to build
rules that can describe the behaviour of each agent independently and incorporate
features that regulate the interplay between the agents. In particular, a successful ex-
planation should properly describe the interaction between different agents because
this is usually the most crucial aspect in these domains. This line of work should
emphasise the description of these interactions. However, this is a challenging ex-
tension because XPOMCP is meant to explain traces generated by a single agent,
in which each one of the belief-action pairs is a direct consequence of the POMCP
policy. Multi-agent XPOMCP should identify the elements in the traces that charac-
terise the interaction between robots and use them to build a rule-based description
of the agents and their interactions. This improved description could prove useful
in discovering bugs, as in the anomaly detection procedure described in Chapter 5.
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We also plan to employ the rule-based shielding mechanism to improve the perfor-
mance in the multi-agent problem by regulating the interactions between agents.

8.5 Application of XPOMCP

Finally, an important research direction is to extend XPOMCP to new application
domains. A particularly interesting domain is co-operative robotics (Pellegrinelli et
al. 2017), i.e. domains in which a robot and a human should act together to achieve
their goals. The agent’s behaviour should be understandable and predictable for a
human to trust a robot. An approach similar to XPOMCP could prove to be effec-
tive in these cases since it can be used both to improve the understanding of the
robot’s behaviour and shield unwanted actions in future interactions. These exten-
sions present many exciting challenges because several aspects of the rule synthesis
steps, currently executed offline, should work online and act reactively to human
requests.

Another important topic is to assess the impact of explainability in AI systems.
For these experiments, the results should be evaluated using user studies. In gen-
eral, the goal should not measure “how explainable” a rule is but prove that an
explanation system could improve the performance of a system. For instance, con-
sider a problem in which a human cooperates with a robotic arm guided by a well-
performing, but complex, POMCP algorithm. A good experiment should prove
that the results achieved by a human are higher when the robot is equipped with
a good explanation system, i.e., a system that can justify the decisions taken by the
arm. However, these experiments are complex because they require transversal and
multi-disciplinary skills, e.g., robotics and psychology. In this thesis, we focused
our effort on the computational aspect of XPOMCP. We are looking to collaborate
with researchers in different areas of expertise to extend the usage of the proposed
methodologies.

8.6 Conclusion

In conclusion, achieving explainability and safety in complex AI systems is clearly
an important challenge that must be addressed to further the adoption of AI in real-
life scenarios. We believe that this thesis provides an important contribution in this
direction. The provided methodologies also serve as the first step in several signifi-
cant research lines.
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