
1

UNIVERSITA’ DEGLI STUDI DI VERONA

DIPARTIMENTO DI

Informatica

SCUOLA DI DOTTORATO DI

Scienze Naturali e Ingegneristiche

DOTTORATO DI RICERCA IN

Informatica

Con il contributo di (ENTE FINANZIATORE)

CICLO /ANNO (1° anno d’Iscrizione) 34°

TITOLO DELLA TESI DI DOTTORATO

Personal genome editing algorithms to identify increased variant-induced off-target

potential

S.S.D. INF/01

Coordinatore: Professor Massimo Merro

 Firma __________________

Tutor: Professor Nicola Bombieri

 Firma __________________

Dottorando: Dottor Samuele Cancellieri

 Firma __________________

2

Quest’opera è stata rilasciata con licenza Creative Commons Attribuzione – non

commerciale

Non opere derivate 3.0 Italia. Per leggere una copia della licenza visita il sito web:

http://creativecommons.org/licenses/by-nc-nd/3.0/it/

Attribuzione Devi riconoscere una menzione di paternità adeguata, fornire un link alla licenza e indicare se

sono state effettuate delle modifiche. Puoi fare ciò in qualsiasi maniera ragionevole possibile, ma non con

modalità tali da suggerire che il licenziante avalli te o il tuo utilizzo del materiale.

NonCommerciale Non puoi usare il materiale per scopi commerciali.

Non opere derivate —Se remixi, trasformi il materiale o ti basi su di esso, non puoi distribuire il materiale così
modificato.

Personal genome editing algorithms to identify increased variant-induced off-target potential

Samuele Cancellieri

Tesi di Dottorato
Verona, 10 Dicembre 2021

ISBN 12324-5678-910

http://creativecommons.org/licenses/by-nc-nd/3.0/it/
http://creativecommons.org/licenses/by-nc-nd/3.0/it/
http://creativecommons.org/licenses/by-nc-nd/3.0/it/
http://creativecommons.org/licenses/by-nc-nd/3.0/it/
http://creativecommons.org/licenses/by-nc-nd/3.0/it/
http://creativecommons.org/licenses/by-nc-nd/3.0/it/

3

4

Sommario
1 Introduction ... 8

2 Background ... 10

2.1 CRISPR/Cas .. 10

2.1.1 Natural CRISPR/Cas ... 10

2.1.2 Engineered CRISPR/Cas ... 12

2.1.3 Off-Targets problem ... 13

2.2 Computational off-target enumeration and state-of-the-art 14

2.2.1 GuideScan ... 16

2.2.2 Burrows-Wheeler Aligner ... 17

2.2.3 CRISPOR .. 19

2.2.4 Cas-OFFinder .. 21

2.2.5 crispRtool .. 23

2.2.6 FlashFry .. 24

2.2.7 Off-Spotter .. 25

2.2.8 Algorithms chosen for the comparison with our proposed solution 26

2.3 Personal genetics in CRISPR/Cas off-targets enumeration and analysis 27

3 Methods for off-targets enumeration and targets analysis 30

3.1 String and Pattern matching algorithms tested and implemented in CRISPRitz

 30

3.1.1 Aho-Corasick algorithm .. 33

3.1.2 Brute Force Search Algorithm .. 35

3.1.3 Ternary Search Tree .. 36

3.1.4 Implementations details for presented algorithms 38

3.1.4.1 Common tasks for Brute Force and Tree based search, Input reading

and guide pre-processing .. 39

3.1.4.2 Brute Force Approach, PAM processing .. 40

3.1.4.3 Brute Force approach, Off-Target enumeration search..................... 42

3.1.4.4 Brute Force approach, Parallel Implementation details 43

3.1.4.5 Ternary Search Tree approach, preliminary analysis and

implementation plan .. 45

3.1.4.6 Ternary Search Tree approach, Tree Index creation (or Genome

Indexing phase) ... 47

3.1.4.7 Ternary Search Tree approach, Off-Target enumeration search 49

3.2 CRISPRitz: variant-aware off-targets enumeration tool 51

3.2.1 Add-variants tool... 52

3.2.2 Index-genome tool .. 53

3.2.3 Search tool .. 55

3.2.4 Annotate-results tool ... 57

5

3.2.5 Generate report tool .. 59

3.3 CRISPRme, web-based tool to analyze variant induced off-targets 59

3.3.1 CRISPRme general implementation and functions 60

3.3.2 Determination of putative off-targets origin ... 61

3.3.3 Off-targets selection and IUPAC code conversion 62

3.3.4 Derived targets scoring function ... 64

3.3.5 Merging targets in same genetic positions to avoid over representation in

final results 65

3.3.6 Graphical report generation and summary reports 66

3.3.7 Targets file integration, filtering and polishing 68

3.3.8 Graphical User Interface for off-target assessment and analysis with

graphical support ... 69

4 Results ... 74

4.1 CRISPRitz results and discussion ... 74

4.1.1 High-throughput and variant-aware enumeration of potential off-target

sites on the functional genome .. 75

4.1.2 Performance evaluation and comparison with similar tools 76

4.1.3 Discussion ... 83

4.2 CRISPRme results and discussion .. 83

4.2.1 CRISPRme functionalities and operational process.............................. 83

4.2.2 Real Case study and outcomes .. 86

4.2.3 Reports and individual graphs ... 90

4.2.4 Comparison with available tools ... 91

4.2.5 Discussion ... 92

5 Future Directions .. 93

6 References ... 95

6

Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technologies allow

for facile genomic modification in a site-specific manner. A key step in this process is the

in-silico design of single guide RNAs (sgRNAs) to efficiently and specifically target a site

of interest. To this end, it is necessary to enumerate all potential off-target sites within a

given genome that could be inadvertently altered by nuclease-mediated cleavage.

Off-target sites are quasi-complementary regions of the genome in which the specified

sgRNA can bind, even without a perfect complementary nucleotides sequence. This

problem is known as off-target sites enumeration and became common after discovery of

CRISPR technology.

To solve this problem, many in-silico solutions were proposed in the last years but,

currently available software for this task are limited by computational efficiency, variant

support, genetic annotation, assessment of the functional impact of potential off-target

effects at population and individual level, and a user-friendly graphical interface designed

to be usable by non-informatician without any programming knowledge.

This thesis addresses all these topics by proposing two software to directly answer the

off-target enumeration problem and perform all the related analysis. In details, the thesis

proposes CRISPRitz, a tool designed and developed to compute fast and exhaustive

searches on reference and alternative genome to enumerate all the possible off-target for a

user-defined set of sgRNAs with specific thresholds of mismatches (non-complementary

bps in RNA-DNA binding) and bulges (bubbles that alters the physical structure of RNA

and DNA limiting the binding activity).

The thesis also proposes CRISPRme, a tool developed starting from CRISPRitz, which

answers the requests of professionals and technicians to implement a comprehensive and

easy to use interface to perform off-target enumeration, analysis and assessment, with

graphical reports, a graphical interface and the capability of performing real-time query on

the resulting data to extract desired targets, with a focus on individual and personalized

genome analysis.

7

8

1 Introduction

This thesis is divided into three main chapters.

Chapter 2 introduces the reader with a background on the themes treated in the thesis,

necessary knowledge to understand the basic biology and computational requirements to

explain what the thesis is talking about. Starting with the biological background about

CRISPR/Cas and genetic engineering, also introducing the problem of off-targets.

Continuing with the explanation of state-of-the-art software for the in-silico analysis of

CRISPR/Cas, enlightening what was done in the field to accomplish tasks related to in-

silico prediction and analysis of CRISPR/Cas targets.

Chapter 3 explains the most common methods used in computer science to accomplish

string matching and how these algorithms and solutions can be customized to be used in

CRISPR/Cas related tasks. Explaining in more details how these solutions work in terms

of computational time, kind of search they can accomplish and how it is possible to modify

and customize them to solve the problems proposed in the thesis.

Chapter 4 presents to the reader what was developed in the thesis, enlightening how the

work is novel and can help the field of in-silico CRISPR/Cas analysis with the complete

set of tools developed and presented in the thesis. The chapter shows the results achieved

by the software, in terms of computation time, when compared to state-of-the-art

competitors and in terms of novelty, especially with the introduction of the variant-aware

capability. This feature is necessary to process the amount of variant data produce

nowadays by research in the genomic field and introduces the possibility of obtaining

completely new results and correct the expected outcomes of CRISPR/Cas predictions.

The following paragraph will briefly explain what CRISPR technology is and why it

obtained so much resonance in the last years, becoming one of the most popular method

used in genetic engineering and revolutionizing the field.

Clustered regularly interspaced short palindromic repeats (CRISPR) genome editing has

revolutionized the ability to modify a genome of interest in a targeted and programmable

way (Cong et al., 2013; Mali et al., 2013). The initially described CRISPR system for

eukaryotic genome editing involves a single guide RNA (hereafter referred to as a guide or

sgRNA) to direct Streptococcus pyogenes-derived Cas9 (SpCas9) protein for site-specific

genomic cleavage upstream of a protospacer adjacent motif (PAM), which is NGG for

SpCas9. The Cas9-mediated double strand break is repaired by endogenous repair

pathways including non-homologous end joining (NHEJ), microhomology-mediated end

joining (MMEJ) and homology-directed repair (HDR). NHEJ/MMEJ often result in the

introduction of insertions/deletions (indels) while exploitation of the HDR pathway allows

for precise integration of customized sequence by providing a donor repair template

(Komor et al., 2017). Since the initial description of eukaryotic genome editing by SpCas9,

the CRISPR toolbox has been greatly expanded to include a variety of novel- and modified-

nucleases with distinct PAM sequences (e.g., Cas12a, Cas9 derived from different species,

and modified-Cas nucleases) (Komor et al., 2017). Although designed for site-specific

cleavage, CRISPR nuclease-mediated cleavage may occur at other genomic sites, termed

off-target sites. Off-target cleavage(s) commonly occur at sites of sequence homology to

the on-target site; however, the rules governing off-target cleavage are incompletely

understood. In general, mismatches may lead to a reduction in cleavage activity or have no

effect at all depending on the specific base change and the relative position as described in

(Doench et al., 2014a, 2016a). Since the discovery of CRISPR/Cas, researchers tried

different methods to validate and reduce the time and costs of perform predictive analysis

to discover possible targets. Immediately, software used for sequence alignment were

converted to the use in the field, with fluctuating results. In fact, non-specific software were

not capable of correctly determining off-targets and predict realistic outcomes. Hence, the

community starts the development of specific computational solutions, aiming at producing

9

software to complete the prediction and assessment task efficiently and correctly for

CRISPR/Cas experiments.

The main contribution of this thesis, is the development of two tools, completely

designed in collaboration with technicians and experts in the CRISPR/Cas field, to produce

a result tailored to the needs of final users. The software were designed and developed

following requests and instructions of these technicians, introducing many features not

present in state-of-the-art software.

The software are capable of generating detailed and exhaustive processed files,

containing genetic information, such as gene names, genetic functions, and genomic region

annotation. Furthermore, the proposed software are capable of work with variant data of

different kind, such as SNPs (Single Nucleotide Polymorphisms) and INDELs

(Insertion/DELetions) extracted from public available databases, introducing the

possibility of genetic variability in outcome predictions, allowing the discovery of potential

harmful targets not present in the reference genome.

10

2 Background

This chapter explains the main concepts necessary to understand the work. Starting from

the biology of CRISPR/Cas protein to the algorithm and methods for in-silico off-targets

enumeration and assessment.

Section 2.1 is a general background about CRISPR/Cas, why it is a revolutionary

technology and how it works, also explaining some of the problems involved in the

technology itself.

Section 2.2 is a general background about in-silico analysis of CRISPR/Cas off-targets,

state-of-the-art software and how it is so important.

Section 2.3 explains the status of the field and concentrate more on why personal

genetics and software capable of using variants will be fundamental in the immediate

future.

2.1 CRISPR/Cas

CRISPR/Cas is a genetic engineering technique used for DNA cutting. The name of this

method comes from the main components used by it: CRISPR and Cas. Those two

components allow to manipulate the DNA through recognition of a precise target sequence

on the target DNA.

Firstly, we will introduce the natural CRISPR/Cas working. Afterward, we will explain

the differences between natural and engineered CRISPR/Cas. Finally, we will illustrate the

off-target problem related to the use of engineered CRISPR/Cas for DNA cutting.

2.1.1 Natural CRISPR/Cas

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a group of

DNA sequences composed by the alternation between two different types of strings (see

Figure 1):

• Protospacer is a peculiar large sequence motif presents in the DNA. A motif is a

pattern very common in the genomes, which has a biological meaning. Often, it

indicates sequence-specific binding sites for proteins such as nucleases

(D’haeseleer, 2006). In the CRISPR sequence there are many different

protospacers, which are involved during the system formation and each of them is

used by a CRISPR/Cas complex to match with the target region.

• SPR (Short Palindromic Repeats) is a short-repeated DNA sequence, in which each

repetition is interspersed by a protospacer. The SPR length is less than that of a

protospacer. In the complex, SPR cooperates with the tracrRNA sequence (we will

illustrate it later) to support the protospacer to detect the region where a

CRISPR/Cas complex will bind.

Protospacers and SPRs are the fundamental part of the CRISPR system, which is used

by the bacteria to protect themselves from external agents, such as viruses or plasmids

(Wiedenheft et al., 2012). CRISPR system is able to identify the presence of an external

factor because protospacer, and a part of SPR, may match with the target sequences.

CRISPR system requires to build the complexes beginning from proto-spacers and SPR

to make its identification and destruction operations. First, CRISPR sequence is transcribed

by the enzyme RNA polymerase into in an RNA sequence called pre-crRNA (see Figure

1). After the CRISPR transcription, there are three factors that bind with the pre-crRNA:

11

• RNAase III is a specific nuclease that catalyzes an RNA string into a smaller

sequence. Nucleases like RNAase III are called ribonucleases, because they work

on the RNA (Ribonucleic Acid). More precisely, nucleases have a classification

based on their activity: endonucleases and exonucleases, where the first group of

enzymes acts in the inner part of sequences. On the contrary, the second group

digest nucleotides starting from the sequence ends. Therefore, ribonucleases have

the same first classification where RNAase III belongs to the endoribonucleases.

RNAase III is able to recognize and cleave a dsRNA (double strand RNA)

sequence (Nicholson, 2014) in order to separate the pre-crRNA in the right

position.

• Cas (CRISPR associated) is the fundamental DNA endonuclease enzyme

associated with the bacteria immunity system; the most common used Cas belongs

to Streptococcus pyogenes. In this organism are present 93 Cas genes that generate

several Cas proteins. Cas genes are grouped following the sequence similarity of

the produced enzymes. The most used Cas enzyme is Cas9 (CRISPR associated

protein 9, also called SpCas9) and it is composed by only one bilobed protein. It is

widely used because it produces a double-strand breaks and, separately, it may

produce a single-strand breaks and it is able to use many different RNA sequences

to recognize distinct target strings. Therefore, Cas9 is used within the complex to

cut the double-strand in the target detected site.

• tracrRNA (trans-activing crRNA) is a small RNA sequence encoded upstream of

the Cas operon (Karvelis et al., 2013). Operon is a cluster of genes that encodes

the pre-crRNA and Cas9 enzyme. TracrRNA is involved during crRNA

maturation, and it is useful to recognize the SPR present in the pre-crRNA.

The above three elements bound with the pre-crRNA and they make the

crRNA:tracrRNA:Cas9:RNAase III (see Figure 1). The complex is made for each pair of

protospacer and SPR present on the pre-crRNA. In the next step RNAase III cut the pre-

crRNA sequence in order that each pair of protospacer and SPR splits from the other pairs

of sequences, consequently RNAase III leaves the final complex. Accordingly, we will

have several cr-RNA:tracrRNA:Cas9 complexes (see Figure 1). Concluded this phase, each

complex is ready to begin its function.

The CRISPR/Cas system is able to detect the target sequence present on the double-

strand DNA thanks to its nucleic acid sequence composed by SPR and protospacer cut from

the crRNA. More in detail, part of SPR recognizes the PAM (Protospacer Adjacent Motif)

present near the target sequence, instead, the target sequence is matched by the protospacer

because it is complementary to the protospacer (see Figure 1).

After the binding between CRISPR/Cas complex and the target sequence, the double-

stranded DNA is opened by helicase that breaks the hydrogen bonds between the nucleotide

bases presents on the opponent DNA strands and the Cas9 may implement its endonuclease

activity to cut both strands of the DNA (see Figure 1). Finally, the crRNA:tracrRNA:Cas9

complex leaves the double-stranded DNA cut (see Figure 1).

12

Figure 1. Natural functions of CRISPR/Cas system.

2.1.2 Engineered CRISPR/Cas

The CRISPR/Cas system is a good and efficient machine, which is able to recognize a

specific target sequence on the DNA. Therefore, CRISPR/Cas complex has been adapted

to make a genome editing technology that allows to manipulate DNA through strength cuts

(Ran et al., 2013). The adaptation of the natural complex is called engineered CRISPR/Cas.

The reason why it is preferable to use an engineered CRISPR/Cas with respect to a natural

system is that the used RNA for the first complex is simpler to build preserving the same

experiment results (Jinek et al., 2012). Moreover, the RNA sequence is programmable, then

it is an efficient tool used in different cells and organisms. The basic components of the

engineered CRISPR/Cas system are different from the natural complex components: the

Cas9 endonuclease is equal in both complexes, on the contrary, the RNA used for the target

identification is called guide RNA (gRNA) and it is composed by the union between a part

of crRNA and a specific trascrRNA (Sander & Joung, 2014). Then, the engineered complex

does not require to bind together crRNA and trascrRNA to build the complex, because

crRNA and trascrRNA sequences are also fused in a unique string during the transcription.

The guide RNA folds creating a linker loop (see Figure 2) and it assumes a right

conformation to be able to recognize the target sequence on the DNA using twenty or few

more nucleotides at the 5' end, which corresponds to a portion of protospacer of the crRNA

in the natural complex (see Figure 2). The engineered system may use a guide RNA of

length twenty or more nucleotides because it has been seen that protospacer is able to match

with a different target sequence simply by altering the first twenty nucleotides of the guide

RNA. Instead, the PAM is recognized by the trascrRNA sequence.

The guide RNA is now ready to bind with the Cas enzyme and CRISPR/Cas complex

may recognize the target portion of the DNA sequence in the same way of the natural

complex.

13

Figure 2. Natural (a) and engineered (b) CRISPR/Cas complex

2.1.3 Off-Targets problem

CRISPR/Cas procedure is widely used in DNA manipulation. However, it is well known

that CRISPR/Cas9 genome editing may cleave undesirable target sites not fully

complementary to the guide RNA. Therefore, there is an important question to analyze

when we want to use the CRISPR/Cas system: the guide RNA specificity. Several studies

proposed some solution to solve the guide RNA specifity problems called also "off-target",

for instance, lowering Cas9 expression or truncating the guide RNA sequences used for

targeting at the 5'-end.

However, such options may be inefficient because they may decrease on-target cleavage

percentage (Slaymaker et al., 2016) and it is not yet clear the guide RNA tolerance during

the match between itself and the target region. Matching errors are generally better tolerated

at the twenty nucleotides that bounds with the target region. On the contrary, several PAM

are able to recognize more different sequences. However, it does not allow to have

matching errors during the bond with a target sequence.

The quality results given by CRISPR/Cas system works are mainly influenced by the

used guide RNA, because it is the main component responsible for recognizing the target

regions of the DNA that will be to cut. When a CRISPR/Cas complex binds to a target

sequence it is possible to obtain two different results:

• On-target is obtained when the complex binds to an expected target sequence

on the DNA, completely complementary to the guide RNA (see Figure 2)

• Off-target is obtained when the system recognizes a not complementary target

sequence as complementary of the guide RNA and the complex binds to it. The

identification of a wrong target region may be caused by three possible events.

o Mismatch is when one or more (generally not more than four)

nucleotides match without following the Watson-Crick rules

(Feughelman et al., 1955).

o RNA bulge is a particular behavior of the RNA guide where the strand

folds with one or more (generally not more than two) nucleotides (see

Figure 3Errore. L'origine riferimento non è stata trovata.).

o DNA bulge is similar to RNA bulge, but in this case, is the DNA

sequence that folds (see Figure 3Errore. L'origine riferimento non è

stata trovata.)

The reason why off-target problem is so significant is that off-target, means that the

nucleases will cut the genome in positions that can compromise experiment results and can

also have potential implications for medical uses of the CRISPR/Cas technology

(Kleinstiver et al., 2016).

14

Therefore, several papers have tried to define some constraints able to make a biological

preview about where off-target sites will appearing. For instance, it is observed that there

is no correlation between the total number of off-target sites detected by a guide RNA and

the GC content of the on-target protospacer. Furthermore, off-target are founded dispersed

through the genome in exons, introns, and noncoding intergenic regions (Tsai et al., 2015).

With the actual knowledge, we do not have a reliable set of rules about this phenomenon,

there exists only isolated tools that may preview where and how many off-target sites it is

possible to obtain. Nevertheless, it is not sure which off-target sites a guide RNA will really

bind during the CRISPR/Cas system processing, if not before testing it in a laboratory of

molecular biology.

Figure 3. Example of DNA and RNA bulges (Lin et al., 2014a).

2.2 Computational off-target enumeration and state-of-the-art

CRISPR/Cas9 is a powerful system that enables researchers to manipulate the genome

of target cells like never.

If we want to do scientific studies by using CRISPR/Cas9, we should follow some

different steps to perform our study. First, we must select the desired kind of genetic

manipulation because each specific manipulation requires different CRISPR components.

Moreover, there may not be a perfect plasmid for our specific application, in such a case,

it may be necessary to customize an existing reagent. Secondly, it is important to select the

expression system, which will depend upon the specific application. Finally, we choose the

target sequence, and we design an appropriate guide RNA useful to find the target string.

During the last step we select one or more guide RNA based on predicted on-target and

off-target activity.

In this chapter, we desire to focus on the tools that allow to obtain useful information

about on-target and off-target activity. To obtain the desired knowledge we may use

software that aims to two different results:

• Software to perform off-target site prediction

• Software to design single guide RNA (sgRNA)

The first set of tools aims at, given a sgRNA, finding all the occurrences of

complementary sequences to the sgRNA on a target genome, within a certain range of

distance (i.e., fixed threshold of mismatches and/or bulges). This kind of tool is used when

an on-target (i.e., a specific sequence on the genome) is already known and the user wants

to find all the possible unwanted off-targets (i.e., targets complementary to the sgRNA but

in undesired/unexpected regions of the genome).

15

The second set of tools aims at finding all possible sgRNAs, given as input a specific

genomic region and a specified nuclease (Cas Protein, e.g., Cas9). In this case the tool

returns a list of possible RNA sequences that have a target (perfectly complementary

sequence) in the input genomic region.

Different software for the design of a single guide RNA or a pool of guide RNAs have

been developed and are capable of locating potential PAM and target sequences and

ranking the associated guide RNAs based on their predicted on-target and off-target

activity. Off-target site prediction tools are, instead, dedicated, to check a guides’ pool, in

fact, the user gives the RNA guide(s), the maximum number of allowed mismatches and

the genome of interest, afterwards, the software analyses the performance of the given RNA

guide(s) and returns the possible off-target sites found in the input genome. Therefore, it

does not generate a guide RNA database starting from a chosen genome because it is

necessary to know the guide RNA before launching the software.

When studies on the use of the CRISPR/Cas technique to manipulate the genome began,

off-target site prediction tools or guide RNA design program not existed yet. The first

algorithm adapted for the CRISPR/Cas behavior prediction was Burrows-Wheeler Aligner

(BWA) (Li & Durbin, 2009). The reason why BWA algorithm was used is that off-target

activity prediction may be considered as a problem of string alignment of a word (guide

RNA) on a text (genome) in which BWA is very efficient. Now, the situation is different

because there are many tools specialized on the off-target prediction or on the guide RNA

design, even if some of this software are based on BWA algorithm, for instance CRISPOR

(Haeussler et al., 2016).

During the study of the current situation about CRISPR/Cas tools, we put more attention

on these algorithms, since they were developed or adapted to work in the specific field of

CRISPR/Cas in-silico analysis and prediction (with the exception of BWA):

• GuideScan (Perez et al., 2017) is an efficient algorithm of guide RNA design, which

is able to create a single or a pool of guide RNA starting from the targeted genome.

• BWA (Li & Durbin, 2009) is the first algorithm used for off-target site prediction,

even if it was not invented exactly to solve the off-target problem.

• CRISPOR (Haeussler et al., 2016) is an algorithm of guide RNA design, which is

based on BWA, able to make also off-target site prediction starting from more

designed guide RNAs obtained from a given DNA sequence.

• Cas-OFFinder (Bae et al., 2014) is a fast and versatile software for potential off-

target site prediction, which is usable also on GPUs. Moreover, it has many add-ons

useful for a researcher to perform more in-depth analysis.

• crispRtool (Lessard et al., 2017) is an R script used to process variant genome and

found invidual off-targets. It is not a stand-alone tool since it was used in Lessard

(Lessard et al., 2017) to perform a specific analysis with 1000 Genome Project

VCFs.

• Flashfry (McKenna & Shendure, 2018) is a software developed in Java, designed

to perform fast and exhaustive searches on a target genome, enumerating all the

possible off-targets into a certain threshold of mismatches. The software takes

advantage of a block-compressed binary database to perform prefixes searches and

excluding targets failing the alignment in early stage of comparison.

• OFF-Spotter (Pliatsika & Rigoutsos, 2015) is developed in C++, is designed to

perform fast and exhaustive searches, accounting for multiple PAM sequences at

the same time, exploiting the fastness and memory optimization proper of hash

tables.

16

In the next Sections, we will explain in detail the software listed above, explaining how

they work and motivating why we decided to use Cas-OFFinder as main competitor for our

analysis with CRISPRitz and why we choose to select crispRtool as main competitor of

CRISPRme.

2.2.1 GuideScan

GuideScan is an example of design software, which allows to build a completely

customizable guide RNA database. The power of GuideScan is to design guide RNAs that

are more specific than those designed by other tools. GuideScan works following three

steps (see Figure 4):

1. The user supplies the targetable genome as FASTA file. Moreover, GuideScan

allows the user to provide additional information by defining the value of three

parameters:

• Canonical PAM, through the definition of the desired Cas enzyme. For

instance, if the user wants to use the NGG PAM, he or she will select Cas9.

The user may also specify non-canonical PAMs, since they may be

recognized by the system and contribute to off-target cutting.

1. PAM position relative to the guide RNA binding sequence.

2. Guide RNA length, in some cases truncating a guide RNA into a sequence

shorter than 20 nucleotides complementary of a target region, it is possible to

improve the used guide RNA specificity without sacrificing on-target genome

editing efficiency (Fu et al., 2014).

Furthermore, the user supplies two different Hamming distances (called also

mismatches): "M" for which guide RNAs are required to have a unique target site in the

genome and "Q" for which potential off-target sites will be enumerated. Therefore,

GuideScan examines the input le to identify all k-mers associated with canonical and non-

canonical PAM.

Figure 4. GuideScan workflow: left, input FASTA file of chosen genome; middle, canonical (red) and

non-canonical (blue) PAM define targetable sequences; right, candidate guide RNAs are indexed in the trie

(Bentley & Sedgewick, 1998a).

2. GuideScan enumerates all targetable sequences present in the genome, making a

list of all k-mers and determinates which of these are potential guide RNAs. Then,

it constructs a retrieval tree (trie) data structure of all k-mers:

• If a k-mer occurs with a canonical PAM uniquely in the genome,it is

labelled as a candidate guide RNA.

• On the contrary, if the k-mer occurs more than once or with a non-

canonical PAM, it is labelled as a non-candidate guide RNA. All guide

RNAs relabeled as non-candidates are written into the blacklist, which

contains all k-mers rejected as candidate guide RNA.

17

GuideScan ensures a unique target in the genome up to "M" mismatches for each

candidate guide RNA, having a distinction between two candidates guide RNA by at least

"M" mismatches. The software guarantees the explained condition through a trie traversal,

in which it evaluates a mismatch neighborhood for each candidate guide RNA:

• If there are mismatches between candidate guide RNA and one of its neighbors,

then the candidate guide RNA is not unique in the genome up to "M"

mismatches, it is relabeled non-candidate and written into the blacklist.

• Otherwise, a candidate guide RNA may have off-target sites completely

enumerated (where Q > M) up to "Q" mismatches.

GuideScan does again a trie traversal and computing the mismatch neighborhood for

off-target information of a given guide RNA. Therefore, thanks to the trie structure, we are

sure that until "M" mismatches between the target sequence and the guide RNA there are

no o-target and for more than "Q" mismatches there are only off-target.

3. Finally, all candidate guide RNAs are retrieved from the trie and saved in a SAM

file. Each guide RNA sequence is stored as a unique identifier in the file, and it

also stores information about off-target sites for each guide RNA. Then, the SAM

file is converted in a BAM file.

2.2.2 Burrows-Wheeler Aligner

Burrows-Wheeler Alignment tool (BWA) is an implementation of a read alignment

software based on backward search with Burrows Wheeler Transform (BWT) (Li &

Durbin, 2009). BWA is very efficiently at aligning short and long sequencing reads against

a large reference sequence such as the human genome. BWA is an inexact string-matching

algorithm because it allows to have mismatches and gaps between strings.

Before to explain the BWA workflow we need to introduce some basic information

useful to know all the aspects of the tool:

• The prefix trie (Bemer, 1961; Fredkin, 1960) for string X is a tree where each

edge is labelled with a character of the string X and the resulting string form

the concatenation of the edge characters on the path from a leaf to the root is a

unique prefix of the string X. Each node of the trie represents the substring of

the string X given by the resulting string concatenation of the edge characters

starting from considered node to the root. The resulting string associated to the

node is a unique substring of the string X. It is important to note that the prefix

trie of the string X is identical to the suffix trie of reverse of string X, suffix trie

theories then may also be applied to prefix trie.

• The suffix array (SA) (Manber & Myers, 1993) for a string X of length n is an

array of integers of range 1 to n specifying the lexicographic order of the

suffixes of the string X. It will be convenient to assume that X[n] = $, where $

is smaller than any other character (see Figure 5). It is possible to calculate a

suffix array having a prefix trie.

• The Burrows-Wheeler Transform (BWT) (Li & Durbin, 2009) is a

rearrangement of a string. BWT is used for compression, because it is a

reversible transformation, and it is easier to compress string with many

repeated characters. BWT of a string X, which has an additional last character

$ lexicographically smaller than all other characters, is defined as a string BWT

where BWT[i]=$ when the suffix array SA, which is calculated through the

prefix trie, has SA(i)=0 and BWT[i]=X [SA(i)-1] otherwise. It is important note

18

that the string X, the string BWT and the suffix array SA have all the same

length.

BWA is a recursive algorithm to search for the suffix array intervals of substrings of the

string X (input string, then the genome) that match with another shorter string W (query,

then the guide RNA). It is possible to launch BWA to perform an exact or inexact matching.

During the matching between the query W against the string X it is allowed to have no more

than n differences (mismatches or gaps) between them.

BWA uses backward search (a technique that match the query W on the string X starting

from the last character of the query) to sample distinct substrings from the genome.

Therefore, it needs a pre-calculation before starting the real matching.

During the pre-calculation BWA uses BWT algorithm to create the rearranged string B

calculated on the input string X. Afterwards, the algorithm calculates the array C, where

C(a) is the number of symbols of the string X, that are lexicographically smaller than a, and

the array O, where O(a,i) is the number of occurrences of a in B[0,i]. Therefore, BWA

calculates the rearranged string B' for the reverse reference of the input string X and the

corresponding O'. Note that BWA does not need to calculate again C' because the symbols

remain the same, but they are only permuted.

Afterwards, there is the effective procedure where BWA searches the query W (guide

RNA) into the string X (genome). The "inexact search" is done in two steps:

• CalculateD procedure uses the BWT of the reverse reference sequence to test

if a substring of the query 𝑊 is also a substring of the string 𝑋 and writes the

array 𝐷, where 𝐷(i) is the lower bound of the number of differences in 𝑊[0, 𝑖].
Note that during the CalculateD step, BWT uses both 𝐵 and 𝐵′ in order to have

an 𝑂(|𝑊|) procedure rather than 𝑂(|𝑊|2)

• InexRecur recursively calculates the SA intervals of substrings that match W

with no more than n differences. InexRecur descends into the subtrees in the

prex trie of the query W to calculate if the substrings, which are found in the

CalculateD step, have more than n mismatches.

Figure 5. Example of Suffix Array.

19

Figure 6. Example using string "BANANA".

2.2.3 CRISPOR

CRISPOR is a software based on BWA, which helps to select and express guide RNA

sequences. CRISPOR supports many genomes, but they have to be pre-computed before

using.

CRISPOR improves the results before to give them to the user. The genomic hits

retrieved from BWA are filtered for the requested PAM sequence and scored. Therefore,

they are annotated with gene model information using the UCSC Genome Browser

command line tools (Kent et al., 2002).

Below, we will explain each step of CRISPOR:

1. First, CRISPOR requires three parameters from the user:

• Input Sequence: the user specifies an input DNA sequence (no special

sequence format is required) where he wants to find the guide RNA.

Characters different from A, C, G, T and N (Adenine, Cytosine, Guanine,

Thymine, and any nucleotide respectively) will be automatically removed

from the input sequence by the software. It may not be submitted RNA

sequences; indeed U (Uracil) would be removed. In case of the input DNA

sequence contains some N characters, no guides will match with these

characters. Therefore, the user may use the N character to mark positions

that wants to exclude from the design, for instance, to avoid SNPs (single

nucleotide polymorphisms) (Kreitman, 1983)(Fujimori et al., 1989). The

input DNA sequence should usually be contained in the selected genome,

but it may not be present. For instance, during the design of some guide

RNAs against a trans-gene, such as GFP (Green Fluorescent Protein)

(Auer et al., 2014).

• Genome: the user selects the genome of interest from a list of 113 pre-

calculated genomes. The default genome automatically selected is the

Homo Sapiens - Human (hg19/GRCh37 (Browser, 2013)). For some

species there are multiple different versions of the genome, for instance

Homo Sapiens - Human and Mus Musculus - Mouse, because sequences

of different years may have different loci. More-over, the annotation with

variants (SNPs and short indels) is only available for certain genome

version, for instance, the 1000 Genomes variant annotation (“A Map of

Human Genome Variation from Population-Scale Sequencing,” 2010) is

only available for the human genome assembly called hg19/GrCh37.

• PAM: for the most current applications of the CRISPR/Cas system is used

the Streptococcus pyogenes Cas9 endoribonuclease, which the

corresponding PAM is NGG. Cas9 is the default PAM used by CRISPOR,

however, the user may choose other enzymes and corresponding PAMs

from those available on CRISPOR.

2. CRISPOR finds the possible guide RNAs in the input DNA sequence through

the matching between the PAM associated with selected Cas and the input

DNA sequence. Therefore, CRISPOR matches the guide RNAs found with the

chosen genome by using BWA aligner. Each possible guide RNA taken from

the input DNA sequence is aligned against the whole genome allowing at most

four mismatches. The results then are summarized in a table.

20

3. The output of CRISPOR is composed by two parts:

• In the first part of the results there is the annotated input DNA sequence in

which all PAMs sites are highlighted. PAM sites may also be annotated

over the reverse strand of the input sequence, showed by the reverse

complement of the PAM. For instance, if the chosen PAM is SpCas9

(NGG) and it matches with the reverse strand of the input DNA sequence,

then the shown PAM over the input DNA sequence will be "CCN". If the

genome contains annotated variants, CRISPOR shows the annotated

variants (mostly SNPs) associated with the input DNA sequence. With the

input DNA sequence, it is possible to view additional information taken

from UCSC or Ensembl, depending on the source of the genome.

• In the second part of the output, results are illustrated in a summary table,

which is sorted by the Specificity score. We will clarify the content of each

column:

i. Guide name is composed by the position of the PAM on the input

DNA sequence and the strand where it matches (reverse or

forward).

ii. Guide sequence is the sequence taken from the input DNA

sequence. The taken guide RNA will depend on the selected PAM,

for instance, the spCas9 PAM is NGG and it targets sequences

20bp (base pair) long. In Guide sequence column there are also the

PAM and the link to its PCR and cloning primers, which is the

feature of CRISPOR that allows to retrieve many extra information

about the guide RNA. In addition, depending on the genome and

guide RNA, additional data are displayed such as variants if they

are available for this genome.

iii. Specificity score is a column where the score is a prediction of how

much a guide RNA sequence, for the target site, may lead to off-

target cleavage somewhere else in the genome. Specificity score

and the next scores have range from 0-100 where 100 is the best.

In Specificity score, the best meaning that the research could not

find a single sequence in the genome, which differs from the target

sequence until four mismatches.

iv. Efficiency scores is a prediction of how well the target site may be

cut by the guide RNA sequence.

v. Out-of-frame score is a prediction of how likely a guide is to lead

to out-of-frame deletions. It is relevant if the user is doing gene

knockouts with a single guide RNA (Shalem et al., 2014). Gene

knockouts with single guide RNA works because repair after DNA

cutting is error-prone and small deletions are introduced 5' of the

PAM.

vi. Off-target mismatch counts is the number of possible off-targets in

the genome for each number of mismatches. It is a summary of the

whole-genome research for sequences similar to the guide RNA.

The total number of off-targets is shown in this column, too.

vii. Off-targets is the column where CRISPOR lists the locations of all

possible off-targets with up to four mismatches, annotated with

additional information: genomic position and an annotation

21

whether they fall into an exon, intron or between genes and the

closest gene.

CRISPOR Batch is another way to use CRISPOR, which is available for users who want

to use pre-selected guide RNAs for gene inactivation experiments in mouse (Kühn et al.,

1995) or human cells (Herman et al., 1995). It accepts one or multiple genes, which are

identified by Entrez Gene IDs or Refseq IDs, and returns several pre-selected guide RNAs

from various genome-wide libraries.

Figure 7. Example of CRISPOR results.

2.2.4 Cas-OFFinder

Cas-OFFinder (Bae et al., 2014) is a fast and highly versatile off-target searching tool

useful to preview the off-target activity of a guide RNA. Cas-OFFinder is written in

OpenCL, which is an open standard language for parallel programming based on C++

executable in diverse platforms such as central processing units (CPUs) and graphics

processing units (GPUs). We choose to analyze it because it is widely used, and it has one

of the most used guide RNA design tools.
When a researcher uses Cas-OFFinder, he or she chooses the desired Cas, the genome

to be analyzed, the input guide RNA and the off-target constraints (which corresponds to

the maximum number of allowed mismatches, RNA bulges and DNA bulges) (see Figure

8).

Cas-OFFinder uses the input information to make the following research (see Figure 9):

4. Searching the pattern in the chosen genome, which corresponds to the sequence

of the chosen PAM, and saves the position indices found during the searching.

5. Comparing the guide RNA inserted by the user with the target sequence found

in the genome during the PAM searching.

After illustrating briefly, the concept of on-line version of Cas-OFFinder, we want to

illustrate more in detail the workflow of its off-line version. The functioning of the two

versions is the same, the only difference is that in the online version the user does not

22

Figure 8. Input of Cas-OFFinder (website version).

Figure 9. Process of Cas-OFFinder.

provide the file of the genome because it is already present in the server of Cas-

OFFinder. The software is composed by two different OpenCL kernels (a searching kernel

and a comparing kernel) and three C++ wrappers (see Figure 10):

6. Cas-OFFinder reads genome sequence data files in single or multi-sequence

FASTA formats. It is possible to provide the genome also in two-bit version

(compressed version of a FASTA file).

7. Wrapper1 divides the genomes in the largest possible sequences (called chunk)

where the size is the maximum allowed by the device memory (CPU or GPU).

Wrapper1 is fundamental for big data analysis, because the memory of the

device could be not always large enough.

8. Searching kernel loads the divided chunks and compiles all sites that include

the PAM sequence. It searches and selects these specific sites quickly because

Searching kernel runs independently on every calculation unit processor.

9. Wrapper2 collects the information about the specific sites containing the PAM

sequences.

10. Comparing kernel receives the selected sequences collected by the Wrapper2.

It matches the selected sequences with the input guide RNA and count the

number of mismatched bases. Comparing kernel works similarly as Searching

kernel does.

11. Wrapper3 selects potential off-target sites that have fewer mismatched bases

than the user defined. Therefore, it writes the following information into an

23

output file: chromosome number, off-target DNA sequence, off-target position

in the genome, direction (strand) and number of mismatched bases.

12. The software repeats the previous steps until it has analyzed the whole input

genome.

Figure 10. Workflow of Cas-OFFinder.

2.2.5 crispRtool

crispRtool was used in Lessard (Lessard et al., 2017) to perform specific analysis on

reference and alternative genome, using 1000 Genome Project VCFs. This study was

performed to prove the importance and relevance of variants in the discovery of new

putative off-targets.

The tool, consists in a simple R script, that takes as input:

• FASTA file containing single-guide RNA(s)

• PAM sequence (only SpCas9)

• VCF file (optional)

• Max number of allowed mismatches

The tool searches the input sgRNA on the default genome (hg38), returning a list of

putative off-targets with different scores, like CFD and Doench On-Target (Doench et al.,

2016b; Ran et al., 2013; Sanjana et al., 2014).

If a set of VCFs data is provided, the script converts any alternative nucleotide using

the IUPAC ambiguity code (Johnson, 2010) and process each off-target by returning a

subset of valid off-targets containing alternative alleles.

Output of the script will consist in two separate files:

13. .matches.txt, containing information on the genomic matches for each guides.

It contains the following columns:

14. sgRNA ID: sgRNA ID
a. sgRNA Seq: sgRNA sequence

b. chr: Chromosome of match

c. start: Start position of match

24

d. end: End position of match

e. strand: Strand of match

f. match Seq: Sequence of match

g. score: Individual score of match

h. CFD: CFD Score

i. mismatches: Number of mismatches

15. .summary.txt, containing information on the total number of matches and

overall score of each guides. It contains the following columns:

16. sgRNA ID: sgRNA ID
j. sgRNA Seq: sgRNA sequence

k. nontargeting score: Non-targeting guide score. This score assumes that the sgRNA

should NOT match any sequence of the genome.

l. best match position: Position of best match

m. best match score: Score of best match

n. best match CFD: CFD Score of best match

o. targeting guide score: This score assumes that the sgRNA should have one

genomic match that is the intended target. If there is no perfect match, this score

will be equal to the non-targeting score.

p. mean CFD: Mean CFD Score

q. median CFD: Median CFD Score

r. max CFD: Maximum CFD Score

s. min CFD: Minimum CFD Score

t. sd CFD: Standard deviation of CFD Score

u. perc CFD: 10,25,75, and 90th percentile of CFD score.

v. Total matches: Total number of matches

w. N X: These columns contains the number of matches with X mismatches. There

will be X+1 columns ranging from N 0 (perfect match) to N X, where X is the

maximum number of allowed mismatches

2.2.6 FlashFry

FlashFry (McKenna & Shendure, 2018) is a software developed aiming at speed of

search. Therefore, the whole software runs using a hashed version of the target genome, in

which each putative off-target is splitted into fixed length prefixes and when the target

sequence is aligned to the prefixes, the comparison is stopped if at any stage the comparison

exceeds the threshold of mismatches allowed.

More in detail the phases that compose precomputation and search performed by

FlashFry:

• Software performs a scan of the target genome, using the input PAM sequence (e.g.,

NGG the most used Cas9 protein). During this scan, the software retrieves all the

putative off-targets that match the PAM sequence.

• Found off-targets are split into fixed length prefixes and ordered, then a block-

compressed database is generated. The database collects all targets with common

prefixes in the same block and link each prefix to the other prefixes that complete

the entire sequence (see Figure 11).

• After the database generation, the search engine starts aligning the target sequence

on the bins present in the first level of the database. If a bin fails to align respecting

the mismatch threshold, all the following linked bins are not checked. Then the

engine moves to another bin to start the alignment and keeps doing this until no bins

are available to check. The system also keeps a counter that stops aligning a target

sequence if a certain number of off-targets is reached (2000 by default).

• The last part of the search consists in the scoring and target characterization with

common scoring functions (CFD, Doench on-target (Doench et al., 2014b, 2016b),

25

Hsu (Hsu et al., 2013), Moreno-Mateos (Moreno-Mateos et al., 2015)) and genetic

annotation. Each reported off-target is scored and annotated, then it is written into

a text file for the user.

Figure 11. FlashFry database creation and searching phase.

The software was used as a comparison for execution time with CRISPRitz in late stage

of development. The tests are presented in Section 4.1.2.

2.2.7 Off-Spotter

Off-Spotter (Pliatsika & Rigoutsos, 2015) is a C++ software developed aiming at speed

and performing multispacer searches at the same time (i.e., the software support searching

for multiple PAM sequences at the same time).

The software starts processing the target genome extracting all the putative targets for

set of PAM sequences (e.g., NGG, NNGRRT, etc.) and collects all the 16-mers prefixes of

these sequence into a hash table. Then a second hash table is created collecting the final 4-

mers of each putative target (each target is 20bp long plus the PAM sequence). The first

hash table is linked to the second hash table that contains all the possible 4-mers connected

to the 16-mers.

After this indexing phase, a search engine starts aligning the target sequence to the first

hash table of 16-mers and when a possible match is found (i.e., the target sequence aligns

with the 16-mer respecting the mismatch threshold) the alignment continues with all the

possible 4-mers linked to the 16-mer. And if the match is found, the target is reported in its

entirety with all the information (chromosome, PAM, position, strand).

Here a more detailed explanation:

• The process starts with the indexing phase. The software starts searching on the

target genome all the putative off-targets that matches a set of PAM sequences.

26

Any found target is stored with its positional information (chromosome, strand,

genetic position).

• When the extraction process is complete, each found target is split into two

pieces. A 16-mer (i.e., a sequence of the first 16 nucleotides) is created for each

target and all the targets that shares these first 16 nucleotides are collected and

reported only once. Then the software takes the last 4 nucleotides of each target

and generates another hash table collecting all the 4-mers, with the genetic

information. Each 16-mer is linked to one or more 4-mers to be retrieve

successfully during the search (see Figure 12.).

• After this preprocess phase, the software starts a search on the database using a

set of input target sequences. Each sequence is aligned with all the 16-mers

present in the first hash table and all the 16-mers that successfully match (i.e.,

does not exceed the mismatch threshold) are aligned also with the final 4-mers.

If also this match respect the mismatch threshold, a putative target is reported.

• Finally, when the whole search phase is done, a list of putative targets is

reported to the user, with all the genetic positional information and a genetic

annotation.

Figure 12. Off-Spotter hash tables, creating during the indexing phase of the genome.

The software was used as a comparison for execution time with CRISPRitz in late stage

of development. The tests are presented in Section 4.1.2.

2.2.8 Algorithms chosen for the comparison with our proposed solution

We choose Cas-OFFinder as main competitor of CRISPRitz, the first software proposed

in this thesis. Cas-OFFinder was chosen mainly because is the only software capable of

performing the same searches as CRISPRitz (using mismatches and bulges). The following

27

list explains the reasons why we choose to exclude other software from our final

comparison.

• We sought a simple and fast software usable with every personal computer.

• GuideScan and CRISPOR website versions were very powerful, fast and

produced much information, but the off-line versions did not guarantee to

obtain the same results in a short time.

• GuideScan and CRISPOR were guide RNA design program, but our idea was

to make an off-target prediction tool.

• The real power of Cas-OFFinder was in the simplicity of the basic version that

it was extended in case of necessity.

• BWA was a very good candidate as a competitor, but it needed too many

changes in the source code to adapt it to our needs. The algorithm is primary

designed to find alignment of sequences on the genome, allowing a certain

tolerated distance between target sequence (genome) and the sequence to align.

But, since the software was not designed to properly match using PAM

sequence and bulges, the number of possible off-target returned by the software

is very low. Furthermore, the software is not immediate to use when applied to

another domain (i.e., CRISPR/Cas enumeration) and needs to be properly

configured, a non-trivial task.

As a second competitor, we choose crispRtool, since the script, proved to be the only

software capable of work with a public available dataset (1000 Genomes Project

Consortium & others, 2015) of consistent size (over a hundred million of variants in total)

reporting a comprehensive list of off-targets with variants. This script was used as

comparison for the second software proposed in this thesis, CRISPRme, since it was the

only one capable of performing the aforementioned search.

In Section 4.1.2 we performed more comparison than the ones reported in this

paragraph. This paragraph has the intention of enlightening from which software we got

the idea of developing CRISPRitz and CRISPRme and therefore it’s not exhaustively

presenting all the comparison and tests done in a later stage of development for the

software. The Section 4.1.2 is the complete Section reporting all the comparison done after

the complete development of the software and should be used to validate the efforts and

the time spend into improving CRISPRtiz and CRISPRme. This Section is collecting all

the preliminary testing and comparison done when designing the software, so it is more

limited and should be considered as part of the designing process and not a final comparison

Section.

2.3 Personal genetics in CRISPR/Cas off-targets enumeration and analysis

Personal genetics is a very discussed and new topic in biotechnology and medicine. The

possibility to personalize a treatment to maximize the effect and avoid any unwanted side

effect will revolutionize any medical field.

CRISPR/Cas experiments and following treatments, aim exactly to this target. So, in the

last years, many new trial and tests were performed adapting each treatment to a subset of

individuals to test the outcomes and how these treatments will adapt to different people and

conditions.

Obviously, these results are yet to be common or perfect and many more steps must be

taken to obtain secure and sound treatments.

Currently, the problem of working with genetical variants, it is limited by the lack of a

satisfying coverage, there are few available comprehensive and accessible datasets and the

lack of efficient and powerful tools, either for wet-lab experiments and in-silico prediction.

28

Regarding the genetic dataset availability, one of the well-known and most used

datasets, is the dataset of 1000 Genome Project (1000G from now on) (1000 Genomes

Project Consortium & others, 2015), containing more than 2500 individuals selected from

5 different geographical areas, fully sequenced with phased genotyping.

Another well-known and comprehensive dataset is represented by the Human Genome

Diversity Project (HGDP from now on) (Foster, 2008), containing more than 900

individuals from 7 different global areas, sequenced with unphased genotyping.

But other than these datasets, there is a lack of comprehensive and accessible data, since

many project are inaccessible for research purpose or they lack the coverage of different

worlds populations.

The situation from a computational perspective, is similar. Many software are available

to do off-target enumeration and prediction, but very few are variant-aware and nearly

anyone can complete a genome-wide search with a huge dataset as the 1000 Genome

Project dataset in acceptable time.

Working with variants on genomic data, introduces many issues, such as the necessity

to maintain sample information for each mutation inserted into the genome and the raw

amount of variant that needs to be processed. These issues are better detailed and explained

in following paragraphs.

The first issue that needed to be solved; it is the capability to work with many alternative

alleles without making the problem exploding in terms of computational time. When

working with these huge datasets, like 1000G, we must work with many individual presents

in the analysis, and we need to understand exactly how each individual’s variants are

changing the outcomes of the analysis.

For example, the 1000G dataset, contains 2504 individuals from different populations

and it is necessary to treat each individual as a separate person from any other. So, it is

necessary to develop a solution to work with these data, without generating a personal

genome for each individual and then perform searches on all these genomes.

After solving this problem, the data needs to be processed to understand how each

alternative target is affecting the results, for example introducing a critical mutation in a

dangerous genomic region, so each target needs to be analyzed and any information needs

to be extracted and explained to the user. This process needs to be carefully designed and

developed since the volume of output data is huge and any error in the design phase can

cost a huge increase in the computational and execution time in post-processing phases.

As explained in Section 2.2, no software was designed to work with this volume of

variant or with any variant data at all. One of the main aims of this thesis, is the

development of a tool capable of working with the variants present in the cited public

datasets remaining capable of completing searching and analysis in a reasonable amount of

time, returning also a comprehensive and extensive set of result, easy to understand for the

final user and with added knowledge to use in future processes.

29

Figure 13. Population Sampling for 1000 Genome Project (1000 Genomes Project Consortium & others,

2015).

30

3 Methods for off-targets enumeration and targets analysis

This Section presents and explains the two software object of the thesis. How the

software works, computationally speaking focusing on the result returned to the final user.

Section 3.1 describes the algorithms behind CRISPRitz (Cancellieri et al., 2020) and

therefore CRISPRme, since CRISPRitz is the core processor for CRISPRme indexing and

search tasks.

The following Sections will include the analysis done in the pre-development phase,

necessary to choose the best algorithms and the best data-structure to use in the

implementation. This Section also describes the practical implementation and the solutions

used in the development of the software.

Section 3.2 presents CRISPRitz from a user point-of-view, explaining the tools

contained in the set, the mandatory and optional input and how the tools can be used to

perform a search from scratch.

Section 3.3 describes the analysis of alternative targets done with CRISPRme. The

description includes the phases of the post-processing analysis, starting from raw

CRISPRitz targets to the final file, containing information about the variants, like the allele

frequency and the set of individuals sharing the specific variant(s). This Section also

describes details about the implementation and operational choices made during

development.

3.1 String and Pattern matching algorithms tested and implemented in
CRISPRitz

The CRISPR/Cas study is very interesting for doing genetic research. However, we

want to treat it also as a computer science problem. As mentioned previously, we may

consider the CRISPR/Cas work as a string searching problem, in which the aim is to

research one or more pattern inside of a text. The main components used by a string-

matching algorithm are the following:

• Alphabet (∑) is an unrepeated finite set of symbols, called also

characters, which may appear in every string of the language. When
we are discussing biology, we may consider the alphabet as ∑ =
{A; C; G; T} for DNA or ∑= {A; C; G; U} for RNA.

• String over an alphabet is a finite sequence of characters from ∑.

For the CRISPR/Cas problem we want to use a specific type of

string searching called pattern searching. The main characteristic

of this type of problem is that the string may be split into two

different classes according to their use:

1. Pattern (guide RNA) is a short sequence of characters, and we

are interested to detect whether it appear in a text and/or count

how many times it emerges. In biology, the pattern is a short

sequence of DNA. Note that the guide RNA is written as a

sequence of DNA to avoid the conversion phase from RNA to

DNA in the algorithms.

2. Text (genome) is a large sequence of characters, in which we
desire to search the pattern. In biology, the text is the DNA
sequence of the genome of interest.

We may face the pattern searching problem in two different ways: exact pattern

matching, which involves that the pattern is searched exactly in the text, or inexact pattern

31

matching, which is the case when the pattern is searched allowing some mistakes during

the pairing.

The algorithms used for the pattern searching changed based on the context of use and

the analyzed data.

For exact string matching there are algorithms optimized to search a single pattern in a

text and others optimized to search a set of patterns.

An example of string-matching algorithm to search one pattern is Naive string search

algorithm. It screens the whole text searching the pattern using a brute force approach.

Naive algorithm has a very simple logic, but it is underperforming because it uses a

basic logic: it slides the pattern over text one character by one and compares each time the

pattern with the current substring of the text.

Whenever a mismatch is found between pattern and text during the comparison or the

pattern matches completely with the current substring of the text, the algorithm then slides

the pattern by one character (see Figure 14).

Naive algorithm is useful to understand the basic idea of string matching. However, it

is not usually used to solve real problems. Conversely, Boyer-Moore string search

algorithm (Boyer & Moore, 1977) is a very efficient algorithm and it has also been used as

a benchmark for the exact string search in literature (Hume & Sunday, 1991). Boyer-Moore

algorithm exploits a preprocessing on the pattern to be able to skip characters during the

matching between pattern and text. Therefore, it works following two steps (see Figure 15):

• Preprocessing: during this step, the algorithm analyses the input pattern
calculating two tables:

1. Delta1 that has an entry for each character in the alphabet. Here, the value

of each entry corresponds to the maximum index of that character in the
pattern, otherwise the length of the pattern.

2. Delta2 that has an entry for each character in the pattern. Here, the value

of each entry corresponds to the rightmost plausible recurrence of a
terminal substring of the pattern.

• Matching: during this step, the algorithm searches the pattern in the text starting

from the last character of the pattern and if the characters of the text and the pattern

are the same, then it checks the previous character. Otherwise, the algorithm skips

a number of characters equal to the maximum value between Delta1 of the character

of the string and Delta2 of the character of the pattern.

Figure 14. Example of Naive algorithm process.

32

Figure 15. Example of Boyer-Moore algorithm works.

A different approach for pattern searching is to use algorithms that are optimized for

more than one pattern. The algorithms that use this approach search more patterns at the

same time. An example of this algorithm type is Aho-Corasick algorithm (Aho & Corasick,

1975) that builds a graph starting from a set of input patterns, so it is able to locate all

patterns by screening the text only one time. Aho-Corasick is the algorithm that we chose

to use for the proposed solution, and we will explain more in depth in the next Section.

Until now, we have described only solutions about exact string matching. However, for

the CRISPR/Cas problem we are interested to analyze algorithms that allow to have also

an inexact matching between pattern and text. In this case we want a more flexible

algorithm able to recognize strings with a maximum specified number of errors because

the single exact match (on-target) given by a test of a guide RNA of a CRISPR/Cas system

is not enough informative. We need to insert the exact match solution in a context with

other inexact match solutions (off-targets), so as to have a complete information about the

behavior of a CRISPR/Cas system in a specific genome.

We use the Aho-Corasick algorithm to perform the search for the PAM, the sequence

we need to start our search.

In the next Sections we will explain the two algorithms chosen to implement the

proposed solution by this thesis, which are Aho-Corasick and Brute Force Search.

 Therefore, in Section 3.1.4 we will illustrate how we modified these two algorithms

to adapt them to our problem.

33

3.1.1 Aho-Corasick algorithm

Aho-Corasick is an efficient algorithm used to locate all occurrences of any finite

number of patterns in an arbitrary text. The main structure built by the Aho-Corasick

algorithm is an efficient finite state pattern matching machine, which is constructed quickly

and simply from a restricted class of regular expressions, namely those consisting of a finite

set of patterns. Aho-Corasick combines the ideas in the Knuth-Morris-Pratt algorithm

(Knuth et al., 1977) with a finite state pattern matching machine. The machine is

represented as a graph, which may be drawn as a rooted directed tree.

The pattern matching machine for a set of patterns is a graph which takes as input the

text and produces as output the locations in the text at which patterns of the set of patterns

appear as substrings.

The Aho-Corasick algorithm consist of two parts. In the first part it constructs the finite

state pattern matching machine starting from a set of patterns. Therefore, in the second part

it applies a text as input to the pattern matching machine. Finally, the machine signals

whenever it has found a match for a pattern.

Before explaining how Aho-Corasick works, we will describe the finite state pattern

matching machine. The machine is composed by a set of states where each state of the

graph is represented by a number. The machine processes the text by successively reading

the symbols of the text, making state transitions and occasionally emitting output. The

behavior of the pattern matching machine is dictated by three functions:

• Goto function g is a directed graph (see Figure 16) that maps a pair

consisting of a state and input symbol, into a state (current state=0,

machine read A: g(A,0) =1) or the message fail (current state=1,

machine read A: g(A,1) =fail), where 0 is the start state. In the start

state, there is a goto function that loops on the root whenever it

reads a letter that does not lead the change of state.

• Output function out is an array (see Figure 16) that maps a state in

a set of patterns that are located from the graph whenever it arrives

in that state (current state=1, machine read T: g(T,1) =2, out (2)

=AT).

• Failure function f is an array (see Figure 16) used to complete the

directed graph that maps a state into another state and it is

consulted by the graph whenever the goto function reports fails

(current state=1, machine read A: g(A,1) =fail, gf(1)=0; new

state=0).

34

 (a) Goto function (b) Output function

(c) Failure function

Figure 16. Example of Aho-Corasick algorithm with set of patterns: {AT, GAT, ACG, ATCG}

Aho-Corasick exploits the pattern machine to analyze the input text. To make the text

analysis, Aho-Corasick machine is constructed in two parts:

• In the first part it determines the states and the goto functions. Goto

function is defined by the goto graph that is constructed by adding

all patterns of the set to the graph. The algorithm begins with a

graph of one vertex that represents the state 0. It then includes each

pattern into the graph by adding a directed path, which begins from

the start state and each state of the path corresponds to a character

of the pattern. New vertices and edges are added to the graph

unless a new pattern follows a path already present in the graph.

The new pattern is added to the output function of the state at

which the path terminates. Finally, Aho-Corasick adds a goto

function that is a loop from state 0 to state 0 of all input symbols

other than symbols that lead the change of state 0 (see Figure 16).

• In the second part the algorithm computes the failure function (see Figure 16).

It is constructed starting from the root and is computed for each vertex.

Failure function is calculated after the goto function because the algorithm

needs to the goto function to build failure function. To clarify this part we

define depth of a state s in the goto graph as the length of the shortest path

from the root to the state s (current state=8: depth(8)=3) and the state r is the

state of depth d-1. The failure function is built analyzing together all states

with the same depth. It starts from all states of depth 1, which have failure

equal to zero (current state=1: f(1)=0; current state=3: f(3)=0). Therefore, it

continues to build the failure function following these steps:

Starting from the current state s, the algorithm calculates the result of the failure of the

previous state r and sets the result as the new current state (current state=4: f(3)=0; new

current state=0).

Reset the current state with the result of the failure function, until the goto function

returns a state different from fail (state=0: g(0,A)=6 fail).

35

The algorithm calculates the result of the goto function of the current state and sets it as

the result of the failure of the initial state s (current state=0, initial state=4:

f(4)=g(0,A)=1).

During the computation of the failure function, the algorithm also updates the output

function. Whenever it determinates f(s) = s', where s' is the last state of a stored pattern, it

adds to the output of the state’s the output of the state s' (s=5, s' =2: f(5)=2: out(5)={GAT,

AT}, out(2)={AT}).

Now the machine pattern matching is ready to analyze the text (see Figure 16). The

input text is screening following an operating cycle, where s is the current state of the

machine and the current symbol of the input text x (Figure 17):

If g(s,a)=s', the machine makes a goto transition. It enters into the state s' and the next

symbol of x becomes the current input symbol.

In addition, if output (s')≠empty, then the machine emits the out (s') along with the

position of the current input symbol.

If g(s,a)=fail, the machine consults the failure function f and is said to make a failure

transition. If f(s)=s', the machine repeats the cycle with s' as the current state and a as the

current input symbol.

Figure 17. Example of Aho-Corasick using machine of see Figure 16.

3.1.2 Brute Force Search Algorithm

Brute Force Search is a very simple algorithm used to search a substring in a string, as

explained before (Naïve Search Algorithm), Brute Force Algorithm (see Section 3.1.2),

just search for the proposed string (guide RNA) on the genome we have before indexed

with Aho-Corasick for PAM. Practically, the algorithm takes the array list of PAM created

in the Aho-Corasick step, then uses this information to search on the genome.

So, it takes the proposed RNA guide and search on the genome, starting from the first

PAM position in the array list, after that, continue to search using all the subsequent

indexes.

After that, the algorithm takes the second RNA guide and repeat the process.

This process is executed specifically in this way:

1. Algorithm takes the first guide of the input file, inserted by the user.

2. Algorithm start searching the genome, using as index, the first index

found in the PAM array list, an array containing the list of all the PAM

indices found in the current genome.

3. The algorithm keeps doing this search, comparing every character of the

RNA guide with every character of the genome (every character is before

converted in a bit code).

4. After processing all the PAM indexes with the first guide, the algorithm

takes the second guide from the input list and repeat the process.

36

5. The process continues until the end of the guide input list.

In this step, the software, also collect information about the guides, like, total off-target

per guide and mismatch per BP.

This process is very simple, but the efficiency of the search cannot be improved other

than changing the used hardware.

In the next chapter we will present the total implementation, staring from the reading of

the input files and describing all the operations performed by the software until the writing

of results files.

3.1.3 Ternary Search Tree

Ternary search tree (Bentley & Sedgewick, 1998b) is a very simple and fast data

structure, which is able to solve many string search problems and it supports a large range

of useful operations.

The real power of ternary search tree is the combination between the time efficiency of

digital tries (see Figure 18) for the proceeding of each character, with the space efficiency

of binary search trees (Bayer & McCreight, 1972), with the only difference that ternary

search tree has three children instead of two.

Digital tries are data structures principally used to store keys, often strings. The trie

starts with an empty root node, and each edge starting from the root, is linked to a different

value of the alphabet from which the strings are generated, in the example case {A, C, G}.

When performing search on the trie, a Depth-First Search (Tarjan R, 1971) is performed,

since the leaf of a branch, contains the key searched stored following the path formed by

the characters that composed the sequence.

Another common data structure used to store sequence, is the Binary Search Tree. In

this data structure the sequences are stored in lexicographical order, and the tree is balanced

to speed-up any following search just by comparing the lexicographical value of the

searched sequence with the sequence stored in the node and taking the correct path. Each

node of the tree stores an entire sequence.

Figure 18. Examples of ternary search trees.

37

The basic idea of the ternary search tree research is that it compares the current character

of the input string with the character of the node.

If the current character is lexicographical smaller than the character of the node, the

research goes to the left child. On the contrary, if the current character is lexicographical

greater than it, the research goes to the right child. Finally, if the current character is equal

to the character of the node, the research goes to the middle child and ternary search tree

proceeds to compare the next character of the input string.

The ternary search tree algorithm searching is done following two steps:

• During the first step, the algorithm reads the input text (or list of strings) and

builds the ternary search tree by inserting string by string the whole input text.

• During the second step, the algorithm searches the input pattern (or list of

patterns) in the built ternary search tree. The flexibility of this data structure is

that the user may perform exact research or setting up research allowing to

have one or more mismatches between the input string and the found string.

The construction of the ternary search tree is performed by the insert function that inserts

an input string (word), which is taken from the input text, into the tree if it is not present in

the tree, otherwise, the function does nothing.

When the insert function inserts a new string in the ternary search tree, it starts from the

root following the path that has the longest common prefix with the input string.

The function follows the path until the whole new string is inserted in the ternary search

tree or the longest common prefix between path and new string is finished.

In the last case, the function checks if there is a middle child of the current node, if it is

not present the function creates new consecutive middle children until the end of the input

string.

On the contrary, if the last character of the path of the common prefix has a middle

child, the function moves into the middle child and compares the current character of the

input string with the character of the new current node: if the current character is

lexicographically smaller than the character of the node a left child will be created,

otherwise, a right child will be created.

The order of the string insertion influences the structure of the tree and the insertion

speed of the strings. This ternary search tree characteristic is not so sensible like in binary

search tree; however, it would be important to have a balanced final tree.

Therefore, before inserting a list of strings in the ternary search tree, it would be

appropriate to sort the string list. Afterwards, the best way to insert a sorted list of strings

is to insert the string in the middle at first, going to the left and right sub lists and inserting

the strings in the middle of these sub lists, continuing in this way by inserting each time the

string in the middle of the sub list.

The ternary search tree provides several different searches. The main research that we

are interested to analyses are two Membership Searching and Near-Neighbor Searching.

Membership searching is a recursive function that makes an exact search of a pattern into

the ternary search tree. The function starts from the root and compares character by

character the input string with the nodes of the tree. Membership searching compare a

character of the pattern moving into the tree until it finds the same character in a node.

The function then moves into the next character of the pattern and goes to the middle

child of the node. The function stops when it finds the pattern or when it arrives to a leaf.

38

Figure 19. Examples of insert on ternary search tree of figure.

Near-Neighbor Searching is a recursive inexact search function. The basic version of

the function allows to decide a Hamming distance that indicates the maximum number of

mismatches between the input pattern with the found string. The logic of Near-Neighbor

Searching is very similar to Membership searching. The only difference is that when the

first function compares two characters, if they are different the function checks if the

number of mismatches allowed is greater than zero. In case of more than zero remaining

mismatches, the function decreases the mismatch counter and continues to compare the

next character of the pattern with the character of the middle child node. In the other cases

Near-Neighbor Searching is the same as Membership searching.

3.1.4 Implementations details for presented algorithms

In this Section we want to describe CRISPRitz (Cancellieri et al., 2020), which is the

proposed solution to predict the off-target activity of a guide RNA applied on a genome

and perform an analysis of the guides profiles.

Our algorithm is based mainly on Aho-Corasick (see Section 3.1.1), Brute Force Search

(see Section 3.1.2) and Ternary Search Tree (see Section 3.1.3), which are used to perform

the pattern search action with different settings (see Figure 20). We thought to implement

CRISPRitz following the logic of Cas-OFFinder: first, searching the input PAM on the

genome, create an array list containing all the PAM indices founded by the Aho-Corasick

Algorithm step and using this list to perform an ex-novo search on the target genome, using

Brute Force Search Algorithm. Furthermore, CRISPRitz also includes an algorithm to

search over a pre generated index, stored as a Ternary Search Tree. This implementation

allows the search with bulges in addition to mismatches.

The following steps will explain how each phase is implemented.

39

Figure 20. CRISPRitz main components (PAM search, Brute Force search and Tree based search)

3.1.4.1 Common tasks for Brute Force and Tree based search, Input reading and guide
pre-processing

The first step accomplished by the software, is the reading of the user input. So, the

software takes in input:

• List of guides the user want to use to search the genome

• Reference genome, divided in FASTA files (one for chromosome)

• PAM (sequence used to search target on the genome)

• Number of threads (for multicore installation)

• Number of mismatch (threshold for the search)

• Result writing (a character activating the results writing)

After this collection of input, the software start reading all the needed information.

First of all, we implemented the main function, in which we start all the needed

functions.

The first function is the reading pam, a simple C++ function, we use to read the PAM

from a txt file, we read the PAM string, we uppercase all the PAM characters, just in case

the user forgot it, and we save the string in a variable we need for the following searching

on the genome.

After that, we proceed reading the guides from the input guide files.

This operation is similar to the reading PAM operation, but in this case, we perform

some processing on the guides.

In fact, we convert all the characters in the guide string, in a bit code composed by 4

bits.

An example,

 GCTCAG → 0100|0010|1000|0010|0001|0100

1 This operation, permit us, to codify all the guides and the genome in a bit code, very

useful to perform faster searches and to let us use wild characters in the genome or in

the guides. Like, IUPAC wild-characters, codified using the bitwise sum of their 4-bit

code representation. For example, (D → A, G, T), so the summed 4-bit code will be

40

A (0001) + G (0100) + T (1000) → 1101. This is a very fast and compact way to

represent the possible ‘undefined’ characters on the genome or the input RNA guides.

After these pre-processing phases, we dynamically generate the profile matrices, vector

of string and integers. These vectors are necessary to store execution time statistics, such

as the count mismatches and bulges occurred for a guide, the positions of these events and

the collected data grouped by off-target type (X as mismatch only target, DNA/RNA for

targets containing either DNA or RNA bulges).

At this point, we start the reading and converting the genome.

This step is summarized in the following points:

• Read the genome (one chromosome at time)

• Convert the chromosome from string to 4-bit

After those reading, we proceed to scan the genome, to find all the PAM indices, as we

will describe in the following paragraph.

3.1.4.2 Brute Force Approach, PAM processing

The second main step is the PAM searching and index creation.

After all those reading, we start processing the actual genome we saved in the RAM

variable. So, we start use the previous explained Aho-Corasick Algorithm, to perform a

rapid and efficient search of all the PAM indices on the genome.

We start using the PAM we read from the file, for example:

‘NNNNNNNNNNNNNNNNNNNNNGG 3’

This is a possible PAM sequence we can read from the input file, the number ‘3’, it is a

count that our software needs to understand how long the pam is, in fact, the PAM we need

is:

‘NGG’

So, we pass the PAM sequence to Aho-Corasick Algorithm.

The implementation of Aho-Corasick was taken as a just-made implementation found

on the internet (https://www.geeksforgeeks.org/aho-corasick-algorithm-pattern-

searching/), it is developed in C++, and we just adapted the code to our necessities, like

returning the position of the first element for a pattern that matches.

The implementation was extensively tested and used to make sure any component

worked as expected.

All the changes are listed in the following list:

• Admitting uppercase character

• Dividing all the search in two separated results arrays

• Create all the possible combination of characters starting from wildcards

The C++ implementation use a rapid way to identify a correct character, use a bit a bit

subtraction and calculate the result, to check if the character appertains or not to the input

https://www.geeksforgeeks.org/aho-corasick-algorithm-pattern-searching/
https://www.geeksforgeeks.org/aho-corasick-algorithm-pattern-searching/

41

string, in our case all the bit a bit operation had to be done with uppercase characters, so

change the bit a bit operation to perform a correct calculation with uppercase characters.

Aho-Corasick, is created to find all the occurrences of a desired pattern in a given text,

but we need a slightly different operation, we need to divide the results based on where

they were founded on the genome, in fact, when we search on the genome, we also perform

a reverse search, so we search for the reverse complement of our PAM.

For example,

‘NGG’ would also need to be searched as ‘CCN’

So, we need to collect the indices of the PAM based on which PAM is used to find the

result, and we created a very simple code to divide results from the ‘NGG’ search and the

‘CCN’ search.

Figure 21. PAM search on positive and negative strand. Accomplished by reversing complementing the

PAM sequence.

In Figure 21 it’s presented the code used in the PAM searching phase, based on the

aforementioned Aho-Corasick algorithm.

The code is basically divided into two parts.

After the first line, when an occurrence is found by the pattern matching machine, it’s

checked if the sequence is found in the first half of the pattern list, the half containing the

positive strand pattern.

If the condition it’s verified, the position of the first character of the pattern found, is

stored into the pamindices vector.

In case the condition is not verified, the position is stored into the pamindicesreverse

vector.

The two vectors store the positive and negative position for found PAM indices,

respectively.

To explain this, I recall the third point of our list:

Create all the possible combination of characters starting from wildcards.

42

To create all the possible combination, we create a short function, that takes the PAM

inserted by the user, for example:

‘NGG’

And compute all the possible combination, so:

AGG, CGG, GGG, TGG

And all the reverse complements:

CCT, CCG, CCC, CCA

Then, we save all those PAM in vector of string and we use them as explained before

(see Figure 22).

After this point we proceed with the search, using the previous explained, Brute Force

Search Algorithm. In the next paragraph we will explain the genome search.

Figure 22. Example of parallel Aho-Corasick procedure with NGG sequence.

3.1.4.3 Brute Force approach, Off-Target enumeration search

In this paragraph will be explained what the genome search is and how it is

implemented.

We implemented this part of the software taking inspiration from Cas-OFFinder but

adding some modifications that we need to add the features we explained before.

In fact, our search start with the creation of our memory vector, needed to save results

and to perform a posterior analysis to obtain profiles and counts.

The summarized steps:

• Creation of results array lists (positive and negative, for saving

all the possible results)

• Split of guides array (avoiding memory out of bound problem)

• Two search engines (one for positive PAMs and one for

negative PAMs)

The first step was simple to realize, and it is easy to explain. We create two vectors in

which we can store all the needed information to save results and to compute profiles.

The second step consist in the creation of a splitting system, that divide the total number

of input guides in part containing 100 guides, this operation, avoid memory out of bound

and avoid big writing on the results file, so it is a faster and better performing solution.

In the third step, we proceed with the real analysis, in fact we perform two searches, one

using the positive PAMs collected in the previous phase and the other search using the

negative PAMs. So, we can divide results and we can now from which strand of the

genome, comes the off targets.

43

In this step, we search the genome using the Brute Force Algorithm (see Section 3.1.2),

starting with the first index in the PAM list, we take the first guide in the guide list, we use

it as a pattern and we check, character per character, if the guide match with the genome

substring.

We use a mismatch threshold to set a cap we don’t want to exceed during this process.

The process is repeated using all guides in the list, after we complete this, we take the

second index in the PAM list and we restart the process, and so on until end of all the PAM

lists.

The following paragraph will explain how the implementation was parallelized.

3.1.4.4 Brute Force approach, Parallel Implementation details

Our competitor, Cas-OFFinder, uses an open platform and SDK to perform its

parallelization, OpenCL (Munshi, 2009a).

This platform is well known for its portability, in fact, the main goal of OpenCL, is to

permit the execution of the same identical code, on all supported platforms, without the

need of any changes in the code.

This approach is very good if you want to open the access to your software to a lot of

final users, but has also some cons, in fact, OpenCL need some pre-installation, not very

simple for a naïve operator, such a biologist without any experience in Unix platform or

usage of terminal commands.

So, we try to overcome this inconvenience using a very distributed platform, that can

be used on every Unix platform with a GCC compiler. In fact, our software reaches its

parallelization with the use of OpenMP, a very reliable and well-known API (Dagum &

Menon, 1998). The package API is pre-installed in every GCC compiler of Unix

distribution, starting from the version 4.7, one of the most spread versions of the popular

C++ compiler. To obtain the parallelization with OpenMP API, we need first to understand

correctly how it works and what we need to change our code to adapt the parallelization.

We need to change the approach we have to the analysis, in fact, the parallelization,

need safe threads accesses to maintain the output of functions in line with the serial

execution of the code.

In fact, in the first attempts to parallelize the code, we encounter some problems with

writing on files and with the overwriting of results during execution.

We need to guarantee a safe access to writing on RAM variables and disks, so we start

trying using blocks and queue. But this approach was very ruinous for the performance of

the code, we obtain a very little improving in terms of speed and so we need to develop

another approach.

So, we start thinking how we can keep all the information we need, without breaking

the safe thread need and without interrupting cycles, to obtain the maximum speed-up we

can gain.

After some testes we end up with this code:

44

Figure 23. Parallel code for guide search on the genome.

As you can see, with this implementation we never break the outer cycle, the parallel

one and we never write on files, we only use variable allocated before execution to avoid

exiting from a thread safe condition and to avoid overwriting in memory.

Now, explanation of the for-loop cycle parallelized with openMP constructs.

Figure 24. Line of code of openMP construct to use ‘parallel for’ API.

This for cycle is adapted to use the OpenMP API instructions:

• #pragma omp, instruction needed to inform the compiler we want to run this cycle

in parallel

• schedule(static), instruction we had to the for cycle to inform the compiler we want

a schedule based on a static assignment, so no changes during execution

• private(#variables), instruction added to inform the compiler that every thread in

the for cycle, need to have a copy of those variables, in this way we prevent racing condition

and overwriting

• num_threads(integer number),instruction that informs the compiler that we want to

use #number thread, so our cycle we will ask the master thread to reserve those threads for

execution

With this implementation, we solve a lot of problems in term of stability and

performance, in fact, the code runs using all the threads we reserved at maximum capacity,

without needing to stop for writing or for resetting some variables or assigning values to

shared variables, all we need to save is stored in arrays created to maintain all the possible

solutions, without need to stop the execution or causing waiting between threads.

45

3.1.4.5 Ternary Search Tree approach, preliminary analysis and implementation plan

In this paragraph we want to describe the Ternary Search Tree implementation, which

is the proposed solution to predict the off-target activity of a guide RNA applied on a

genome. Our algorithm is based mainly on Aho-Corasick and Ternary search

tree, which are used to perform the pattern search action. We thought to implement the

CRISPRitz following the logic of Cas-OFFinder: firstly, searching the input PAM on the

genome and save the target sequences and then comparing the input guide RNA with the

saved sequences.

Our initial idea about the implementation was to use only Aho-Corasick.

Being Aho-Corasick an algorithm that allows to search a set of string, we thought to

generate a set composed of all possible strings starting from the input guide RNA,

following the mismatches constraints, and build a pattern

matching machine based on the generated set. For instance, if we want to generate a

machine on the guide RNA: GAGTCCGAGCAGAAGAAGAA,

allowing one mismatch, the set will be composed by:

• GAGTCCGAGCAGAAGAAGAA

• CAGTCCGAGCAGAAGAAGAA

• AAGTCCGAGCAGAAGAAGAA

• TAGTCCGAGCAGAAGAAGAA

• GCGTCCGAGCAGAAGAAGAA

• . . .

• GAGTCCGAGCAGAAGAAGTC

• GAGTCCGAGCAGAAGAAGAA

• GAGTCCGAGCAGAAGAAGAG

• GAGTCCGAGCAGAAGAAGAT

• the reverse complement of all previous guide RNA.

It is possible to see that just allowing one mismatch on a guide RNA 20bp

long, the set generation is not trivial because the number of patterns to build

the pattern matching machine is very high (122 in the proposed example):

totalGuides = [(∑  

#𝑚𝑚

𝑖=1

(
𝑔𝑅𝑁𝐴

𝑖
) ∗ 3𝑖) + 1] ∗ 2

in the previous formula we sum the number of generated guides RNAs allowing i

mismatches, where i starts from 1 to #mm that is the maximum number of mismatches

allowed.

Each time we calculate all combinations of the positions where we will have the

mismatches with the binomial. Then, we multiply it with the number of combinations of

the possible mismatches 3𝑖, where 3 is the number of nucleotides considered for the

mismatches and i is the number of mismatches allowed.

We add 1 because we also want to insert the original input guide RNA.

Finally, we multiply by 2 the whole operation, because we need to generate also the

reverse complement of each generated guide RNA, because we have to search along both

strands of the DNA at the same time.

We performed an initial test in python (see Table 1) for the generation of the string set,

the building of the pattern machine and the test on the chromosome 2 of the Human

Genome (hg19). From the measured times we deduced that the generation was very

46

influenced from the number of mismatches and the waiting time was already too high when

we wanted to generate all guide RNA for 4 mismatches.

It is important to note that, here, we did not consider the DNA or RNA bulges case

because they were initial tests.

Building and searching time were acceptable, we then concluded that Aho-Corasick was

a very powerful algorithm, but the real problem was the generation of all possible guide

RNAs. Finally, we decided to use it only during the PAM searching because the number of

all possible generated PAMs it is negligible. PAM do not have mismatches, because the

PAM generation is conditioned only by the special symbols (Johnson, 2010) that it may

have.

For instance, if we want to search the SpCas9 PAM (NGG) on a genome, we will

generate just 8 sequences: AGG, CGG, GGG, TGG, CCA, CCC, CCG and CCT.

MM allowed Generation (s) Machine building (s) Searching on chr2 (s)

2 0.000001 0,000001 0.219

3 0.125 0.000001 0.297

4 2.047 0.047 0.3

5 23.622 0.437 0.449

6 211.263 4.534 0.551
Table 1. Times about guide RNA (GAGTCCGAGCAGAAGAAGAA) by using Aho-Corasick (python

version).

Initially, we wanted to implement CRISPRitz using python language, because the main

idea was to provide a versatile tool that all users were able to modify according to their

needs. However, after the first results we decided to implement our software in C++

because the computational time was too high if compared with the computational time of

Cas-OFFinder, which is written in C++ and OpenCL.

The implementation of CRISPRitz is divided in two parts: in the first part, the software

takes as input the PAM, searches it into the input genome, builds the ternary search tree

with the saved sequences and then CRISPRitz save through serialization the ternary search

tree into a binary file. In the second part CRISPRitz reads the ternary search tree from the

binary file and the software then searches into it the input guide RNA following the user-

defined constraints (number of RNA/DNA bulges and number of mismatches allowed).

Whenever we execute the first part of CRISPRitz, the software generates and saves a

ternary search tree for a PAM and a genome. If we want to use the o-target activity

prediction function, we may execute the second part of CRISPRitz every time we want,

without execute the first part every time.

We chose to split the implementation in two parts for two reasons: software

preprocessing time was very high, which starts from the reading of the genome until the

ternary search tree is ready for the guide RNA matching.

The second reason is that the algorithm uses too much RAM during the preprocessing,

and it is not guaranteed that all personal computers may provide enough memory for this

step.

Computational time and used space are two fundamental characteristics that we want to

optimize with our implementation, because we have designed CRISPRitz for a personal

computer of a biologist and we supposed that the common user has not performing

computer available.

Therefore, our idea was to process the input genome and the input PAM to generate the

ternary search tree, so the final users may use just our "preprocessed genome" to make their

analysis.

Finally, during all the implementations, we clashed with a very hard tradeoff between

improving the space performance or improving the time performance.

47

In the following paragraph, we will describe the part of CRISPRitz that produces the

"preprocessed genome".

3.1.4.6 Ternary Search Tree approach, Tree Index creation (or Genome Indexing phase)

CRISPRitz works by reading one chromosome at a time and making its operations on

the read chromosome. The implementation starts with taking as input the desired PAM and

the chromosome of the genome.

Before any operation, it is fundamental that the software applies the "toUpperCase"

method on the input data. It is not a problem for the input PAM, because PAM is not so

long that this operation does not influence the total time.

However, applying "toUpperCase" on a chromosome may be a problem.

The solution is to import the OpenMP library that allows to parallelize our

implementation by using the parallelized algorithm provided by openMP. Afterwards,

CRISPRitz generates all possible PAMs starting from the input PAM.

The PAM set is generated by the generatePAM function in two main steps:

1. SwitchSimbol, is the function in which the special symbols of the input PAM

are converted into nucleotides. Before that, the function splits the PAM into an

array of characters, therefore, it analyses each character of the array and

converts each special symbol into a string of the corresponding nucleotides. For

instance, in case of NRG as input PAM, switchSymbol split the PAM into an

array: [‘N’, ‘R’, ‘G’]; then it converts special symbols into a string of

nucleotides: [‘ACGT’, ‘AG’, G’].

2. getProducts, is the function that combines the characters of the strings of the

array generated by SwitchSimbol, to produce all possible PAM. For instance,

the function reads the array of string: [‘ACGT’, ‘AG’, G’]; then it picks on

character from each string and produces all ordered combinations: ["AGG",

"CGG", "GGG", "TGG", "AAG", "CAG", "GAG", "TAG"]

The two previous steps are repeated twice, because we need to generate a set that

contains all possible PAM for both strands of the chromosome.

Therefore, generatePAM generates the reverse complement of the input PAM (for

instance, the reverse complement of "NRG" is "CYN") and applies the two steps on it and

merge the two arrays.

The array generated by the generatePAM function is used as a set by the searchPAM

function that implements the Aho-Corasick algorithm. The workflow of the searchPAM

function is very similar to the workflow explained in the Aho-Corasick Section. The

preprocessing, where the matching machine is built, is the same to the theoretical version

explained previously.

There are some differences during the process of searching done by the matching

machine between the theoretical version and our implemented version.

The first difference is that our implementation has a basic parallelization, because we

want to have the fastest implementation possible. The function then splits the for loop on

the chromosome into a variable number of for loops depending on the number of available

threads. Each for loop analyses a substring of the chromosome, so, the machine may search

simultaneously in more parts of the chromosome.

Basically, each thread has its own variable for the current state of the pattern matching

machine, an index of the substring of the genome and an index on the result vector.

48

The second difference is what we save in the result vector, because in the original

version Aho-Corasick reported the recognized string whenever that it found one, instead

here we need to save all indices where we find the PAM.

Therefore, the vector is as large as the chromosome because the threads may not write

simultaneously in the same entry. So, when a thread finds an occurrence of the PAM, it

saves the index at the corresponding position in the result vector (see Figure 25). On the

contrary, if they found PAM is the reverse complement of the input PAM, the function

saves the index where the PAM matching started, and the index is saved as a negative value

(see Figure 25). Finally, the filled vector will have several empty entries that are removed

by the "erase" method.

Figure 25. Examples of Aho-Corasick saving with NGG PAM.

The vector filled by the searchPAM function is used by CRISPRitz, to retrieve the

sequences that will be used for ternary search tree building. During the sequence retrieval

a for loop reads each entry of the vector: if the read number is positive, it is saved the

chromosome substring of length 22 + |𝑃𝐴𝑀| (for instance, with NGG PAM it will be

saved substrings of length 25), starting from the position indicated by the index saved

minus 22.

Conversely, if the read number is negative, it is converted into positive and the saved

chromosome substring will have the same length of the previous case, but the starting

position will be the saved index.

The retrieved sequences, which are saved in an array, are then sorted in lexicographical

order by a parallel algorithm. When the sorting algorithm sorts the sequences, moves in the

same way the corresponding chromosome indices, which were saved previously by

searchPAM function. This step is important because the order of the strings during the

ternary search tree building influences the balancing and the building time of the data

structure.

The ternary search tree building uses the same logic proposed by the original version

explained in the Ternary search tree Section. We modified just some elements to adapt the

data structure for our use. The first main modification is the structure of the node object.

The nodes of the ternary search tree are saved in an array of nodes and each node is

composed by the character of the node and the references of the children.

In the original version, these indices were pointer of 8 bytes, then each node weighed

25 bytes (8bytes ∗ 3children + 1byteschar). If we want to use a ternary search tree to store

the target sequences, it is very common to use more than 500 million of characters,

therefore, if we need one node per each character, we need at least 12.5 Gigabytes of RAM

memory.

We improved the memory required by a ternary search tree modifying the structure of

the node. In our version each node is already composed by one char and three child indices,

but the child indices are no longer pointer to the children, they are now three int (4 bytes)

indices that contain the node vector index value of the entry of that child.

Another modification that we applied to the ternary search tree was to bind the leaves

of the tree with an array of PAMs. Considering that we insert only strings 22 characters

long, we are sure that each new leaf will not have a middle child during a later string

49

insertion. Therefore, we use the value of the index of the middle child as an index of an

array of PAMs that contains the PAM and its chromosome index connected to that string.

If CRISPRitz inserts a string already present in the ternary search tree, the new PAM

and its chromosome index will not substitute the previous values, but they will be inserted

in another entry of the array of PAMs and it will be bound with the entry connected with

the leaf of the ternary search tree like a list (see Figure 26).

Previously, we mentioned that the implementation is split into two parts, where in the

first one, CRISPRitz reads the chromosome and the PAM, builds the ternary search tree

and saves it in a binary file.

Figure 26. Example of array of PAMs.

3.1.4.7 Ternary Search Tree approach, Off-Target enumeration search

In the second part, CRISPRitz reads the binary file and the guide RNA and searches the

input guide RNA into the ternary search tree.

After the reading, CRISPRitz provides the most important function useful for the user:

guideMatch. This recursive function uses the same logic of the tree traversal. guideMatch

takes as input the root of the ternary search tree and the number of mismatches, DNA bulges

and RNA bulges.

The function starts trying to recursively go into the left children and after into the right

children.

There are two cases in which guideMatch is interested to go into the left of right child:

whenever the current character of the input guide RNA is lexicographical smaller (left

child) or greater (right child), alternately, when the matching between the input guide RNA

and the character path has used less mismatches or DNA/RNA bulges than defined by the

user.

Afterwards, guideMatch tries to go into the middle child if the current node is not a leaf

(leaves may have right and left child, but not the middle child) and it makes a recursion

calls in each of the following cases:

50

1. guideMatch compares the current character of the input guide RNA

with the character of the current node and if they are the same it saves

both in two distinct output strings, where one is for the path (target

site) and the other is for the input guide RNA. It calls itself on the

middle child with the same parameters, moving into the next character

of the input guide RNA. Otherwise, if the two characters are different,

the function checks before that if the variable of the maximum number

of mismatches is greater than zero and, in this case, it also saves both

characters, but the character of the node is saved in lower case. Then,

it calls the recursion on the middle child, decreasing the mismatch

variable by one.

2. guideMatch, checks if the variable of the maximum number of DNA bulges is

greater than zero and, in this case, it saves the character of the node and a dash

('-') instead of the current character of the input guide RNA. Therefore, the

function calls the recursion on the middle child, decreasing the DNA bulge

variable by one, maintaining the current character of the input guide RNA.

3. guideMatch, checks if the variable of the maximum number of RNA bulges is

greater than zero and the current character of the input guide RNA is not the

last character. In this case it saves the current character of the input guide RNA

and a dash ('-') instead of the character of the node. Therefore, the function

moves into the next character of the input guide RNA and calls the recursion

again on the current node decreasing the RNA bulge variable by one.

Furthermore, during the second recursion in the current node there is a

constraint that does not allow to travel into the left and right child only for that

node, because in that precise moment guideMatch is analysing the character of

the current node.

Finally, the function saves in a vector the data about the target (strings, number of

mismatches and RNA/DNA bulges) whenever the comparison between the last character

of the input guide RNA and the character of the current node satisfies the constraints

imposed by the first case explained previously.

Note that in the last character may not be a DNA or RNA bulges, because it would be

biologically wrong.

The last phase of the second part of CRISPRitz is to write all the obtained results in a

text file with the same layout used by Cas-OFFinder. So, we may compare the results given

by the two tools in the same way. In our implementation we consider more broadly the

definition of DNA and RNA bulges with respect to Cas-OFFinder. When we want to search

a guide RNA and we set a threshold for bulges greater than 1, the software considers this

value whether as the maximum number of bulges allowed or as the maximum bulge size.

Therefore, CRISPRitz returns more putative off-targets with bulges in distant positions.

Another difference between the CRISPRitz and Cas-OFFinder bulge research is that our

software may search the RNA or DNA bulges along the whole guide RNA, excluding only

the last nucleotide at the 5' end (the nucleotide at the end of the guide RNA that does not

bind with the PAM: 5'-ATC...CCNGG-3'). Conversely, Cas-OFFinder has a constraint that

does not allow to have a DNA or RNA bulge on the first nucleotide of the guide RNA that

binds to the PAM. Cas-OFFinder imposes this constraint because some papers studied the

problem of how many and where bulges and mismatches a guide RNA is able to endure

(Lin et al., 2014b) and they supposed that there are some spots that does not allow a

mismatch or a bulge.

51

3.2 CRISPRitz: variant-aware off-targets enumeration tool

CRISPRitz was developed to answer a specific request, made variant-aware off-targets

enumeration and analysis, accessible, easy and stand-alone.

The software includes all the necessary tools to perform a complete analysis from

scratch.

The software is composed of five different tools, each one developed to solve a specific

task, like create an alternative genome adding genetic variants to a reference genome or

integrating data with functional annotations to better understand if a specific target can be

predicted as harmful or dangerous.

In Figure 27 are summarized CRISPRitz functionalities, required and optional inputs,

and generated output for each tool. CRISPRitz has three required inputs: (i) PAM sequence,

(ii) a list of guides and (iii) a reference genome (in FASTA format). A collection of variants

(in VCF format) and/or genomic annotations (in BED format) can be included as optional

inputs. CRISPRitz performs the off-target site search by supporting a user-specified

number of mismatches and/or DNA/RNA bulges. Importantly, the parallelism capability

of multi-core architectures is utilized for all the computational-intensive tasks, such as

search and index-genome, in order to minimize execution time. The five tools are the

following:

• Add-variants, tool necessary to enrich a reference genome with a set of genetic

variants extracted from a VCF.

• Index-genome, tool necessary to create an indexed version of the genome to

perform faster searches and allowing the usage of bulges.

• Search, main tool of the software package, necessary to perform off-target

enumeration and extraction of sequence from the genome (reference and/or

alternative).

• Annotate-results, tool necessary to enrich off-target data with functional

information.

• Generate-report, tool necessary to produce a set of graphical reports summarizing

the results into simpler and readable images.

Each tool will be deeply analyzed and explained in the following Sections, with details

about implementation, used algorithms and computational time. Including also a pre-

development analysis to clarify why some choices were taken.

52

Figure 27. Overview of CRISPRitz tools.

3.2.1 Add-variants tool

This tool was developed to help a user with a complex task, such using huge dataset of

genetic variants in CRISPR/Cas analysis.

This task can be accomplished in many simple but inefficient ways. The first problem

that was to be solved, was the complexity of the problem itself. When dealing with many

variants and many individuals from the same dataset, it is impossible to treat the problem

as a common combinatorial task.

The naïve approach is to treat each individual as a unique set of variants and generate a

personal genome, containing only its specific genetic information. But it is simple to see

that, if we have 22 chromosomes, each carrying a mean value of 4 million variants, with

more than 2000 individuals, this solution became immediately unfeasible. In fact, applying

this solution, it is equal to generate and then perform more than 2000 searches on 2000

individual genomes, that even with a search of few minutes, will result in days of

computation and a huge amount of repetitive results that should be filtered out to avoid

overrepresentation. Practically, is unfeasible in terms of computational time, space

resources and energy consumption.

The second idea was to group each variant in a subset of individuals, so taken a variant,

find all the individual that share it and then generate a number of genomes equal to these

subsets, trying to maximize the number of variants and individuals to put into the same

genome. But also, this idea was not optimal, since we discovered that few variants are

shared by more than 2/3 individuals and this approach would have led to the creation of

hundreds of thousands of genomes.

Finally, we decided to take advantage of a code created by IUPAC association, known

as the IUPAC nomenclature code for polymorphic nucleic acids (Johnson, 2010). This code

allows to codify into a single nucleotide, any possible genetic variant. For example, if we

want to codify a T and G in a single nucleotide, we will insert the letter K into the sequence

and after that we will retrieve the reference and alternative nucleotide by just looking to

our code dictionary, without losing any information in the process.

With this solution, it is possible to codify any variant information in a single strand

reference genome, without the necessity of creating separate sequences or entire genomes

53

for each individual or each variant to analyze. Therefore, it is possible to perform a single

analysis on a genome enriched with variants, to obtain all the putative off-targets, both

reference and variant induced.

Figure 28. Aho-Corasick Automata for PAM search.

3.2.2 Index-genome tool

The two required inputs prior to genome indexing include (i) PAM sequence and (ii) a

reference genome (in FASTA format).

CRISPRitz then identifies and compiles all PAM-restricted sites (hereafter referred to

as candidate off-target sites) within the provided genome into a genome index data structure

(i.e., one genome index for each input PAM). This allows for a reduction in execution time

for all subsequent searching with bulges.

The index-genome tool starts by searching for all occurrences of the user-specified

PAM in the genome.

To efficiently find all the genome regions compatible with a given PAM, the algorithm

creates a small deterministic automata machine used to scan and enumerate all the potential

PAM matches in linear time (based on the length of the PAM).

The automata machine (see Figure 28) reduces the searching time complexity to the

minimum number of comparisons O(N), where N is the genome length (i.e., the algorithm

scans each nucleotide in the genome only once). Automata machines are usually

represented as extended graphs. In this work, the automata machine is a rooted directed

tree (also called trie) enriched with additional connections among nodes.

Each path from the root to a leaf represents a PAM. Figure 28 shows the patterns

corresponding to the NGG PAM i.e.: GGG, AGG, TGG, CGG, CCC, CCT, CCA, CCG.

With this data structure, the PAM search in the genome is performed by reading one

54

nucleotide at a time and by matching it with a node of the graph. If the nucleotide matches

with one of those nodes, then the algorithm follows the corresponding path by moving one

node forward in the tree and one nucleotide in the genome.

This node traversal iteratively continues as long as the current genome nucleotide

matches the current node. If it is not possible to match the next available node, the algorithm

jumps back to the parent node of the graph by following special failure edges (dashed lines

in Figure 28) and the search continues from the parent node. The paths following the failure

edges reduce the number of comparisons by allowing the search to restart from the longest

common substring that could be matched at that stage. Every time the graph visit, reaches

a leaf node, the algorithm saves the current index (i.e., the nucleotide position in the

genome) as it may represent the starting position of a candidate off-target site.

The full list of indices of candidate off-target sites is the output of the PAM search. Of

note, the indices are saved in two arrays to differentiate between positive and negative

strands.

For each identified PAM sequence, the genomic sequence adjacent to the PAM with

length equal to the input guide sequence is extracted and represents a candidate off-target

site. The adjacent sequence is upstream or downstream as specified by the user to

accommodate CRISPR nucleases available at the time of this thesis (e.g., Cas9 and

Cas12a). All identified candidate off-target sequences are collected, sorted following a

lexicographical order and encoded using the four-bit notation as shown in the table

presented in. index-genome is based on a ternary search tree (TST) data structure (Bentley

& Sedgewick, 1998b), which is optimized for approximate string search, such as utilized

for text autocompletion or spell checking.

CRISPRitz uses a ternary search tree (TST) data structure (Bentley & Sedgewick,

1998b) to index genome for rapid bulge searches.

In a TST, each node represents a nucleotide and can have a maximum of three children:

left, center, and right.

The TST is built by inserting one candidate off-target sequence at the time, where the

insertion is implemented through a recursive search. Starting from the first nucleotide of

the candidate target sequence and from the TST root, the algorithm compares if the two-

nucleotide match, if they match, the comparison continues to the next nucleotide on the

candidate target sequence and descend in the TST through the center child node and no

new node is added to the TST.

If the nucleotide pair between the center child node and the nucleotide from the

candidate off-target sequence do not match, then the algorithm verifies the lexicographical

order of the nucleotide on the candidate target. If it is smaller than the current nucleotide

in the TST node, the search recursively continues to the left child, otherwise if the candidate

target nucleotide is lexicographical greater, the search recursively continues to the right

child. Finally, if the node in the chosen direction does not exist, a new node is inserted in

the TST with the current nucleotide of the candidate target sequence.

Every genomic sequence inserted in the TST is 2 characters longer than the PAM

sequence to allow for searches with up to two DNA bulges. For example, for the PAM in

Figure 28, the tool inserts a string of length 25 nucleotides (23 nucleotides for the guide

plus PAM sequence as well as an additional two nucleotides for DNA bulges).

The additional nucleotides represent the appropriate PAM flanking (upstream or

downstream) sequence in the reference genome. Figure 30, shows an example of TST

construction, by considering three strings (candidate off-target sites) named CT1, CT2, and

CT3. The algorithm first inserts CT1, which is represented (by construction) by the central

vertical path of the TST. The algorithm then inserts CT2 by visiting the first seven central

nodes (corresponding to the common prefix with CT1). Since the eighth base (C) does not

match with G, a new left child is created (since C < G). The procedure recursively

completes the insertion by forming the left vertical path of the TST. CT3 is similarly

55

inserted, by sharing a common prefix of length three after which a new branch is created

on the right starting from T (T > A).

Figure 29. Brute-Force Search, with IUPAC code tables and bitwise operations.

3.2.3 Search tool

The search tool searches for candidate off-target sites with mismatches only or with

both mismatches and bulges. It is necessary to use an index genome when considering both

mismatches and bulges because the bulge-related search is computational expensive, and

the index genome is fundamental to obtain a robust reduction in computational time by pre-

computing an efficient data structure to perform searches.

The search operation is a computationally intensive task largely due to the required

number of base-to-base comparisons. However, CRISPRitz implements this task through

exploiting the fast bitwise comparison of the four-bit code used to represent each nucleotide

in the genome, generated using the IUPAC code. The inputs for analysis include:

i. Arrays of indices generated by the PAM search

ii. Input list of guides

iii. User-specified maximum number of tolerated mismatches and bulges

iv. Reference/Enriched Genome (reference genome with variants)

If a given guide from the input guide list matches to a region of the genome without

mismatches, the index (or the indices) represents the starting position of one (or more) on-

target site(s), otherwise the reported position is referred to as a candidate off-target site.

CRISPRitz also implements a search algorithm that handles a user specified number of

mismatches and DNA/RNA bulges. This algorithm requires the construction of an index

genome as presented in Section 3.1.3.

Usage of an indexed genome allows the software to search on the whole genome in

𝑂(log(𝑛) + 𝑘) with k as length of the searched sequence and n, number of putative off-

target sites.

56

This search is implemented with a function that recursively visits the TST. For all the

candidate off-target sites, the algorithm begins from the TST root and visits all TST

branches by checking if the nucleotide comparison corresponds to a match, a mismatch, or

a bulge (DNA/RNA).

When the user allows for bulges, then CRISPRitz can return duplicate results. For

example, the results may represent the same target with a different number of mismatches

and/or bulges or in different positions.

In the mismatch-bulge search type, the visit on the branch can reach the leaf if the bulge

threshold is sufficient to visit all the nodes in the branch. This may happen since the DNA

bulges are treated like supplementary characters on the guide that can match with

supplementary characters on the candidate off-target site.

The mismatch-bulge search type stops when a branch of the TST is visited completely

(i.e., when the leaf is reached), or when the TST is visited partially and any threshold of

mismatches or bulges has been exceeded, or when the visit has reached a number of nodes

equal to the guide length. The candidate off-target site search is a function that recursively

visits the TST, in a similar manner as during the TST construction, described in the

previous Section.

With the constructed TST, the search is performed in two different ways, the first only

considers mismatches (hereafter referred to as ’mismatch search’), and the second

considers mismatches in which bulges are permitted (hereafter referred to as ’mismatch-

bulge-search’).

In the mismatch-search type, it is not possible to reach any leaf of the TST by

construction (see Section 3.1.3) and every candidate off-target site is written only once (a

candidate off-target site cannot be saved, for example, with 2 mismatches and with 4

mismatches considering the same guide and the same genomic position).

The mismatch search type stops either when the pattern (the candidate off-target site)

has been found or when the number of maximum mismatches has been exceeded (the

pattern, or candidate off-target site, is not reported).

In the mismatch bulge-search type, mismatches and bulges are permitted for candidate

off-target sites (see Figure 30).

To avoid computationally expensive search iterations on the same branch, the algorithm

implements a recursive approach that tries all possible combinations of results a candidate

off-target site can generate.

Those combinations are tested recursively on the TST branch at runtime, avoiding an

iterative search restarting every time from the TST root. For example, if the target guide is

CCCAACCC, two possible combinations with bulges that share trace-backs in the

recursion are CCCA-ACCC and CCCAA-CCC, since they share the common prefix

CCCA. Every time an off-target site has been saved, the algorithm computes a recursive

trace-back and tests further combination of mismatches and bulges on the same branch.

Due to its nature, the bulges problem can be considered a combinatorial problem, in

which each position of the target, can be replace with a gap (-) and therefore many valid

combinations of the same target can be reported with a different alignment due to bulges

substitutions. The combinatorial nature of the problem is intrinsically computational

expensive, since the iterative naïve generation of all the possibile combinations of

alignments, will faster become difficult to manage. This is why the Ternary Search Tree

was the solution we adopted in CRISPRitz.

57

Figure 30. Search Operation on the indexed genome with TST. Showing how the tree is traversed.

3.2.4 Annotate-results tool

CRISPRitz allows the user to annotate genetic regions with functional data.

The software takes in input a list of genetic regions with a specific function (e.g., exon,

intron, promoter, CTCF, etc.) and annotates each putative target using this information.

The annotation is done by using an interval-tree structure (Chaim, 2014). The structure

is created by inserting the start and end coordinate of each genomic region present in a text

file.

The function takes in input a file containing a set of genomic regions with start and end

coordinates, plus the genetic function assigned to that region.

Then, CRISPRitz generates the interval-tree reading all the region’s coordinates and

generating a balanced tree, allowing for fast searches.

When a putative off-target region, falls into an interval of the tree, the interval is

extracted from the tree and the target is annotated with the correlated function to that

specific region.

With this function the user can provide any functional annotation data and the software

can mark each target with the function provided by the user.

58

Figure 31. Example of report with annotated targets and motif logo

Figure 32. Example of report with annotated targets and motif logo

59

3.2.5 Generate report tool

Based on the annotated results, generate-report creates a graphical report to aid in the

assessment of the potential functional impact of the off-target sites for a given guide.

Specifically, a radar chart is created for each mismatch threshold.

Each axis of the radar chart corresponds to a functional annotation and the plotted value

represents the similarity (in terms of found on-/off-target sites) to the examined guide as

compared with its own guide set (so the user can assess an individual guide’s behavior as

compared with all other guides from the input guide list) or to a previously analyzed guide

library (e.g., the Gecko Library v2; (Sanjana et al., 2014)).

The area in the radar chart (see Figure 31, Figure 32, Figure 33) allows the user to

quickly evaluate the off-target potential for a given guide. A small area on the radar chart

corresponds to a guide with reduced candidate off-target sites (the exact number is

displayed for each annotation) whereas a large area corresponds to guides with increased

candidate off-target sites in multiple functional regions.

generate-report also produces mismatch profiles where each position corresponds to a

bar that represents the number of observed mismatches for each nucleotide normalized on

the maximum number of mismatches. If genetic variants and enriched genomes are used

during the search operation, generate-report can also plot a bar plot showing the percentage

gain for each annotation and the additional sites as compared with the reference genome

using the annotation file created by annotate-results.

Figure 33. Set of charts generated by CRISPRitz, containing also annotations.

3.3 CRISPRme, web-based tool to analyze variant induced off-targets

CRISPRme was developed to analyze the complex and difficult outcomes of variant

generated off-targets. CRISPR/Cas off-target enumeration is per se, a difficult and non-

trivial task, since it is easy to produce lots and lots of putative off-targets just by searching

sequences on the genome, but it is not easy to generate significant reports and panels from

these huge number of targets. Furthermore, the introduction of variants makes the task more

complex, since the tool needs to consider many more targets and different conditions, such

as the new haplotypes introduced by variants.

When the development of CRISPRme started, no other software was able to complete

this task in a reasonable amount of time and with the completeness and the accuracy of

CRISPRme.

CRISPRme considers many factor that are fundamental to properly complete this

analysis. First, it takes into account the individual information, analyze each target and

extrapolating the sample and the variant(s) present in it, this accuracy is fundamental to

give the user a specific and precise view on the final results. Furthermore, it takes into

consideration the real haplotypes generated by the variant data. If a phased VCF is used

during the creation of the alternative genome, the software changes the analysis to consider

60

phased information and reports only real haplotypes, discarding the artificial haplotypes

generating by the collapsing of the whole variant information into a single genome.

Lastly, the software generates many graphical and detailed written reports, necessary to

better understand how the variants induced off-targets are changing the outcomes and to

define how incisive these were in changing the results.

All of these, will be explained in the following Sections, starting with a general

explanation of CRISPRme implementation and continuing with more details on the

alternative targets processing and accounting.

Figure 34. CRISPRme workflow with input and process.

3.3.1 CRISPRme general implementation and functions

CRISPRme was developed in collaboration with clinicians and lab technicians. This

collaboration was fundamental to abandon the more technical and informatics approach, to

focus into a more user-oriented software, easy to use, easy to understand and with a task-

oriented implementation rather than a complex and cryptic implementation for a non-

informatic user.

With this objective in mind, the development was followed during each phase by

comments and suggestions from our collaborators, to always maintain the task-oriented

approach.

CRISPRme was developed around CRISPRitz, in fact, the search phase, the index

phases and the alternative genome creation, are demanded to CRISPRitz.

CRISPRme was developed to use CRISPRitz raw results and analyze them, performing

detailed analysis of the alternative targets and to collect and report more specific

information about targets distribution in terms of mismatches and bulges, in terms of score

and how the different populations and individual’s variants, are accountable for changes in

the final outcomes in the sgRNA enumeration.

The main function of CRISPRme starts when CRISPRitz results are generated. These

functions can be split into different routines:

1. Separation of reference and alternative targets, this routine is fundamental to gain

information about the origin of the target, if the putative off-target is found in the

reference genome or if a variant is introducing a new putative off-target, not present

in the reference genome.

2. Conversion of variants in IUPAC coded targets and scoring, this routine is the core

of CRISPRme, since it is the function that converts all the IUPAC nucleotide from

targets into real nucleotide and verify if the haplotype is real, so belongs to a set of

individuals, or it is just an artificial haplotype resulting from the collapse of the

61

whole variants set into a single genome. This routine also completes the scoring for

the targets, calculating scores only for real haplotypes.

3. Target merging by position, this routine takes into care all the possible targets

falling into nearby regions, avoiding the over representation of a single region due

to repetitive sequences present in the DNA.

4. Graphics generation and reporting, this routine generates all the graphical reports,

including score graphs, summary reports and populations/individuals’ plots. It also

generates the whole reports package, like a general mismatches and bulges table, a

summary matrix that groups by targets for mismatches and bulges count and a table

that is grouping targets by individual that shares the same target.

5. Integration and panel creation, this routine is the final routine of CRISPRme. It

generates the integrated file for the user, this file is fundamental since is the file that

is subject to all the queries that the website provides to the user. It is used to

calculate the summary and generate the graphs and the graphical reports.

Furthermore, it collects all the targets adding also a specific ENCODE (E. P.

Consortium & others, 2004) and GENCODE (Frankish et al., 2019)(Frankish et al.,

2019) annotation, very useful to understand which gene is nearest to the target, and

which genetic function the region is reported to do. In the end, the integrated file

can be used as a screening panel since the targets are filtered, corrected and unique.

All these routines are internally managed by CRISPRme, and the user needs only to

wait and collects the results. Everything is stored and saved into a run-time generated

directory, and everything can be seen and searches directly from the web-based GUI or

using the integrated targets file.

3.3.2 Determination of putative off-targets origin

Selecting targets depending on their origin, is one of the main tasks done by CRISPRme.

Since it is fundamental to inform the user if the reported target is present in the reference

genome or is induced by a variant. This task is done by comparing results obtained from a

search on the reference genome with results obtain from searches done with alternative

genomes (the process can account for more than one alternative genome).

The software, groups the target per chromosome and position and then determines if a

target is already present in the reference or not, by applying a flag to all non-reference

targets found. The process is done by using a combination of python scripts and Linux bash

functions.

The used Linux functions are mainly sort operations to sort in the correct order the

targets. Then the sorted targets are input into a python script that analyze if the targets into

a specific genetic region exist in reference and also in alternative genome.

If a target is found into both genomes, nothing is done. In the case a target is variant

induced, the targets itself is flagged with a key.

With this easy and fast process, any target is flagged with its origin and in any further

processing, including the final report, it is possible for the user to determine the origin of

the targets just by looking at the presence of the flag.

62

3.3.3 Off-targets selection and IUPAC code conversion

This task is the main and more complex operation done by CRISPRme, the core of the

software.

The task starts by processing all the off targets found during the search, reference targets

are scored, as explained in the Section 3.3.4, and returned to be saved in a result file.

Variant-induced targets are subjected to a pre-scoring phase, in this phase the target is

analyzed and any present IUPAC nucleotide, is converted to a real nucleotide, generating

so a set of nearly identical targets with single nucleotide polymorphisms.

This process is very computational demanding, since testing all the possible

combinations of codified nucleotides in the IUPAC, will result in an exponential generation

of targets.

For example, the following target,

AATCTCACTKACYACRATCATGA

Can be converted into 8 different sequences:

1. AATCTCACTGACCACAATCATGA
2. AATCTCACTGACCACGATCATGA
3. AATCTCACTGACTACAATCATGA
4. AATCTCACTGACTACGATCATGA
5. AATCTCACTTACCACAATCATGA
6. AATCTCACTTACCACGATCATGA
7. AATCTCACTTACTACAATCATGA
8. AATCTCACTTACTACGATCATGA

This simple example clarifies that the number of possible combinations is the

multiplication of the cardinality of nucleotides codified into a single IUPAC nucleotide.

In the example,

• K can be converted into G and T

• Y can be converted into C and T

• R can be converted into A and G

So, if the IUPAC nucleotides are in a set 𝐼 = {𝐾, 𝑌, 𝑅} and 𝐼𝑖 is the i-th IUPAC

nucleotide, the count of resulting targets is ∏ |𝐼𝑖|𝑛
1 , where n is the number of IUPAC

nucleotides present in the original target.

Thus, resulting into a computational time of 𝑂(𝑚𝑛), where m is the cardinality of the

IUPAC nucleotide processed and n is the count of IUPAC nucleotides present in the target.

With limited number of IUPAC nucleotides in the same target, the operation remains

feasible in acceptable time, but with some cases, for example targets with 10, 15 or 20

IUPAC nucleotides, the time to process even a single targets become too much.

So, we analyzed the targets and discover that many combinations are non-real, they are

artifacts derived by the introduction of a fake genotyping profile due to collapsing all the

variant into a single sequence.

After this discovery, we completely rewrite the code processing the variant targets.

Now the process is the following:

1. Extraction of IUPAC nucleotides from the variant sequence.

2. For each extracted IUPAC nucleotide, account the samples carrying the

mutation.

63

3. Starting from the first encountered IUPAC nucleotide, try the combination of

IUPAC nucleotides that shares at least one sample, keep the target, discard the

others.

4. Processing the target from start to end with these criteria, so selecting a fixed

nucleotide and try to generate a real resulting target.

5. Repeat for each nucleotide, avoid repeating the process for already tested

combinations.

An example of this process, utilizing the preceding example.

In the target,

AATCTCACTKACYACRATCATGA

There are 3 IUPAC nucleotides: K, Y, R.

Each nucleotide belongs to a set of individuals, for example,

K = {sample1, sample2} → G, T

Y = {sample1} → C, T

R = {sample3} → A, G

For each IUPAC nucleotide, one coded nucleotide (blue) is the reference and the other

(red) is the alternative.

Processing the target, the software selects the first nucleotide as fixed position of

analysis, so starting from K, it substitutes the IUPAC code nucleotide with T and extract

the sample group carrying the variant nucleotide {sample1, sample2}. Then, the target is

read in its entirety and, when a IUPAC nucleotide is found, is tested against the set of

samples carrying the fixed variant nucleotide.

So, in this example case, when the Y is encountered, two paths are taken by the software.

The first one, converts the nucleotide in the reference allele (blue) and the process

continues, the second one, converts the IUPAC nucleotide into the alternative allele T and

intersect the set of samples from the fixed nucleotide with the set of samples {𝑠𝑎𝑚𝑝𝑙𝑒1}

of this alternative nucleotide {𝑠𝑎𝑚𝑝𝑙𝑒1, 𝑠𝑎𝑚𝑝𝑙𝑒2} ∩ {𝑠𝑎𝑚𝑝𝑙𝑒1} = {𝑠𝑎𝑚𝑝𝑙𝑒1}. The

result is a set containing {sample1}, since the set is non-void, the process can continue

from this position to the end of the sequence. In this case, since the last variant nucleotide

does not share a sample with the current set {sample1}, the target is saved with the two

alternative nucleotides, for the following phase.

This process is repeated starting from the second encountered IUPAC nucleotide, Y.

Now this nucleotide is treated as the fixed point, and any preceding combination is not

evaluated since was evaluated before.

After all the possible combinations are generated, only the target with a non-void set of

samples is kept, the targets with void sets of samples, represent non-real targets generated

by some artificial combination of reference and alternative nucleotides are discarded and

not processed.

Applying this algorithm, the process become executed in quasi-linear time 𝑂(𝑛 ∗ 𝑚)

because when a target with more than one IUPAC nucleotide is processed, each time a new

nucleotide is converted, it is also checked, at run-time, if the set of samples carrying the

nucleotide is a non-void set when intersected with the fixed point nucleotide and if the

resulting set is void, the process is stopped and no more combinations are generated, avoid

the generation and processing of non-real targets.

64

When the process is complete, the set of generated targets are scored, as explained in

the following Section, and then returned to the main function to be written into a result file

for further processing.

3.3.4 Derived targets scoring function

To score targets using Cutting Frequency Determination (CFD) (Doench et al., 2016b),

CRISPRme uses a matrix generated by the authors who introduced the scoring system

based on empirical data.

This matrix is composed of all the possible pairs of mismatches between an RNA and

DNA sequence with a length of 20 nucleotides.

Each entry in the matrix file reports an RNA and DNA nucleotide pairing. For example,

the entry “rA:dG,20', F0.227” means that the RNA nucleotide A paired with the DNA

nucleotide G in position 20 will have a score of 0.227.

This value is multiplied with values for any other mismatches present to obtain the CFD

score for the off-target sequence. If a sequence has only 1 mismatch, its final score will be

the score of the mismatch, so in the previous example, the CFD score of an off target with

only one mismatch (20A>G) will be 0.227.

The matrix also contains scores for bulges, which are indicated as “-”. An example entry

representing a bulge is “sS'r-:dA,2', F0.692,”which indicates that a RNA bulge pairing with

the DNA nucleotide A at position 2 has a score of 0.692.

Bulges are not allowed in the first position of the RNA or DNA sequence.

Computationally, targets with DNA bulges are reported with a longer sequence with

respect to the original spacer. To avoid inconsistencies when calculating CFD score for off-

targets with DNA bulges, we calculate the score based on only the last 20 nucleotides of

the protospacer as intended by the original CFD scoring method.

The process also scores the PAM nucleotides. Since CFD score was derived from

SpCas9 data, the matrix only contains scores for NGG and all the possible combinations of

the last two positions of the PAM.

An example of an off target with a DNA bulge:

Spacer: CTAACAGTTGCTT-TTATCACNNN

Protospacer: CTAACAGcTGCTTCTTATCACCTC

This off-target contains one mismatch (in lowercase) and one DNA bulge (aligned with

gap in the spacer sequence). When we calculate its CFD score, we do not consider the first

nucleotide of the protospacer because the protospacer and the spacer are one nucleotide

longer than the usual 23 bps scored by CFD.

Then each mismatch and bulge are scored according to the matrix and the value of each

pair is multiplied together to obtain the final CFD score.

In this example, the first mismatch is rT:dC in position 7 (we skip the first nucleotide

since there is 1 DNA bulge), and the score for that pair is 0.588. Then, we encounter the

bulge r-:dC in position 13, and the score of this pair is 0.

We keep moving along the sequence until we reach the PAM. In this case, the last

nucleotide couple TC has a score of 0. Finally, we multiply each value saved during the

process, so the final score is calculated as 0.588 * 0 * 0, yielding an off-target CFD score

of 0 for this example.

Scoring off-targets with RNA bulges is simpler since the sequences are not elongated

due to the bulges. An example:

65

Spacer: CTAACAGTTGCTTTTATCACNNN

Protospacer: CTAACAGTTGCTTTTAT-ACGTG

This off-target only contains an RNA bulge (protospacer gap). We scan the sequence

and encounter the bulge in position 18, so we use matrix entry “rC:d-,18” with score 0. The

final CFD score for the off target will be 0.

In addition, a global score called CFD specificity score is provided for each guide and

defined as follows:

𝐶𝐹𝐷 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 = 100 ∗ 100/(100 + ∑ 𝐶𝐹𝐷(𝑡𝑎𝑟𝑔𝑒𝑡𝑖)

𝑡𝑎𝑟𝑔𝑒𝑡𝑖

)

where 𝑡𝑎𝑟𝑔𝑒𝑡𝑖 is one of the enumerated off-targets from the search.

Its range is (0, 100], where a gRNA with no predicted off-targets given the search

parameters has a CFD specificity score of 100.

Of note, the CFD score is only applicable for SpCas9. CRISPRme does not calculate

CFD scores when searching for editors other than SpCas9. In this case, a -1 value is

reported for each off target.

3.3.5 Merging targets in same genetic positions to avoid over representation in
final results

This task was required specifically by our collaborators.

After the first testing phase, one of the most annoying things reported by our

collaborators, was the over-representation of certain genetic regions when account for off-

targets. In fact, when using bulges, the raw results reported by CRISPRitz and processed

in CRISPRme, contains a lot of ‘duplicates’ targets, so targets with a different combination

of mismatches and bulges, that fall in the same genetic region.

This is caused by the combinatorial nature of the bulge representation in the informatic

processing of the problem.

Another problem, reported by our collaborators was that near targets were treated as

different targets, so if a target is found in position X and the following targets is found in

position X+1 they represent the same genetic region, biologically speaking, but are treated

as completely independent from a computational point of view.

To solve this problem, we discussed with the collaborators to better understand how

produce useful and intelligible result without compromising the readability and the

completeness of the data.

The answer was, preserving the highest scoring target (or the target with lowest sum of

mismatches and bulges) in a determined genetic region plus a small window of nucleotides.

So, to accomplish this task, without losing data and returning a comprehensive list of

targets, CRISPRme takes the list of targets from the preceding scoring phase and with

sorting operations, returns a list of targets ordered by chromosome, position and score (or

sum of mismatches and bulges).

After this sorting operation, done with the efficient Linux implementation of merge sort

(Bron, 1972), the list of targets is processed by selecting all the targets in a specific position

and all the targets in a user defined window (3 nucleotides by default), creating a cluster of

‘near’ targets.

This cluster is then processed to preserve only the highest scoring (or lowest mismatches

and bulges count) target.

This is accomplished by keeping only the target with the characteristic and discarding

the others. The discarded targets are then saved into a ‘discarded’ file to keep track of any

other possible valid target for the specific genetic region.

The top target is then saved and reported in the final result file.

66

With this operation, we generate, for the final user, a simpler and easy to read file,

avoiding the over-representation of certain region without losing any information and

possible hazardous target.

3.3.6 Graphical report generation and summary reports

In this phase, CRISPRme process the final list of targets, polished and refined to be

given to the user.

After all the processing operations, the targets are used to generate many summary

reports, fundamental to easy visualize the search results and better understand the general

distribution of the targets, like the count of targets in different combinations of mismatches

and bulges, or how many targets belong to a specific population.

These tables and matrices are fundamental for the final user to understand, without

looking at the exhaustive target data, if a guide has many targets in low count cells or for

example if a specific population is more afflicted by putative off-target.

Figure 35. General table summarizing results. In the first three columns, are reported guide

characteristics, like the gRNA sequence, the nuclease, the CFD specificity core. The last columns, represents

the count of targets falling in the respective category (sum of mismatches and bulges).

Figure 36. Mismatches/Bulges matrix, reporting a more complete view of the general table. The targets

are accessible by clicking the link ‘Show Targets’ on the right.

67

Figure 37. Matrix representation of targets grouped by Population of samples carrying them. In the

figure are also counted the number of targets in each Super-Population.

In this phase, CRISPRme produces also the graphical reports and the necessary files to

generate run-time reports when the user required them from the GUI.

The produced reports, contains a visual representation of distribution of targets in a

cartesian plot where each target is represented with two scores. Each target is reported with

a reference score and alternative score. The first score refers to the score result for the

sequence extracted from the reference genome. If a target has no variant in it, its reference

and alternative score, are identical, since the target is identical in each representation.

If a target is alternative, the scores reported are two, one for the reference sequence and

one for the alternative sequence, since a target is preserved only if it is score is the highest

one, if an alternative target is preserved in the final representation, means that any reference

target in the same region, was discarded.

In this representation the targets are drawn as points, where the point dimension is the

MAF (Danecek et al., 2011) of each alternative target (MAF=1 for reference targets). Then

the points are connected to represent the increase in score induced by variant addition in

reference targets (see Figure 38).

With this simple, yet effective representation, it is possibile for the user to understand

how variants altered the results with respect to the solo reference analysis.

68

Figure 38. Graphical report generated.

3.3.7 Targets file integration, filtering and polishing

This final task is done by CRISRPme after all the other operations.

Since we want to have a unique and comprehensive file, this operation needs to be done

after all the procedures are completed.

This file contains all the targets selected during the previous filtering phase, in which

reference and alternative targets are merged per near positions and only the highest scoring

(or with lowest count of mismatches and bulges) target is reported.

In this phase, each target is processed to be annotated with the nearest gene found using

the start and ending positions of the sequence, the annotation is made by using the

GENCODE (Frankish et al., 2019) dataset. Paired with the functional annotations extracted

from ENCODE (E. P. Consortium & others, 2004) and GENCODE, the user can track

where the target is on the genome, and how it is presence can possibly interact with the

functionality of the gene itself. This information is very important to predict any possible

harmful and dangerous outcome.

During this process, for each target are calculated the count of mismatches and bulges

in the seed and non-seed part of its aligned sequence.

Seed and non-seed elements of the target are the half sequence nearest to the PAM and

the half sequence furthest from the PAM, respectively.

These elements are important to track, since the presence of mismatches and bulges in

different positions, can affect the likelihood of the cut itself and become an important

element when predicting if a target will be found or not in a wet-lab experiment.

One last important operation done during this phase, is the calculation of the relative

position of any variant present in the target, with respect to the target itself.

In fact, when a variant is incorporated to the target, it is absolute position, extracted

directly from the VCF dataset, can be misleading in identify the correct nucleotide or group

of nucleotides in case of an INDEL, interested by the mutation.

69

The targets are subjected to different repositioning due to strand inversion, elongations

due to bulges and insertions/deletions caused by the variants. Due to this, it is necessary to

recalculate the relative position for each variant present in the target, to help the user

understand exactly what happened on the sequence.

This procedure takes the alternative sequence and the reference sequence, both aligned

in the same way on the sgRNA, and compares them, nucleotide by nucleotide, to track

where the first different nucleotide is introduced. This position is then reported into a string,

containing also the reference and alternative nucleotide, in this format:

A12G

Where the first nucleotide, in this case, A, is the reference nucleotide, the position 12,

is the relative position with respect to the target, so the 12 nucleotide (including any

possible bulges) and the alternative nucleotide, G.

With this compact but effective visualization, the user can easily track each variant

present in the target.

When the file is completely processed, the last routine of CRISPRme is started.

This routine processes the integrated file and creates an SQL database (Allen & Owens,

2010), with this database is possible to speed up any following search on the file and do

complex query faster than any other method.

This file is used for all the queries and visualization available on the website and can be

used by any technician to perform direct extraction in a faster and secure way.

3.3.8 Graphical User Interface for off-target assessment and analysis with
graphical support

CRISPRme was developed keeping in mind that usability and ease to understand the

results, were the main aims of the project.

The graphical user interface was developed with this in mind.

The software comes with two central pages, the first one is the main submission page

(see Figure 39), the page that takes the user input and offers the possibility to select different

analysis operations and input.

In this page, the user can input a set of sgRNAs, select a PAM sequence and a nuclease

from a set, then select the reference genome, the set of variants to include and finally if the

software should or not annotate the results with genetic functions and gene proximity.

Using the online version, the software also allows the user to receive a completion mail

when the analysis is terminated.

This submission page was developed following the suggestions and comments from our

non-informaticians collaborators, so it is completely structured and designed to be user

friendly and simple to understand.

70

Figure 39. Main submission page of CRISPRme.

The second central page of the software is the result page.

This page allows the user to analyzed and query the results in an easy and intuitive way.

The page is composed by two halves, the first half, is the general summary table,

reporting a comprehensive count of targets divided by mismatches and bulges count,

basically a matrix in which each cell is reporting the count of targets that have N

mismatches and K bulges (DNA and RNA) (e.g., 300 targets with 3 mismatches and 1

bulge).

The second half of the page, it is the interactive part of the page, in which the user can

read results and query the database of targets.

In this half, there is a tab bar, showing the 6 tabs available to the user, to query the

results in different ways and collecting all the graphics generated by the website.

The tabs are the following (see Figure 40, Figure 41, Figure 43, Figure 44, Figure 45,

Figure 46):

• Custom ranking tab, the tab allows the user to perform column wise queries on

the targets databases, returning a data-table containing the results. In this tab

the user can perform different pre-set query, like filtering targets with the

highest CFD score or with the lowest count of mismatches and bulges. Then,

it is possible to select two columns on which perform group by and sorting. For

example, it is possible to show the set of targets with highest CFD score, then

group them by mismatches count and score, select a minimal and maximal

value to show and then order them in descending order.

These pre-set options are the common searches a technical user will perform, according

to our collaborators that guided this page development.

• Summary by Mismatches/Bulges tab, the tab allows the user to account for

specific subgroups of targets, grouped by mismatches and bulges count divided

into specific bins. The resulting matrix collects all the targets that falls into a

specific category, for example, targets with 1 DNA bulge and 3 mismatches.

In this tab, the user can easily access these targets, by pressing the ‘show

targets’ button and be redirected to a data-table, containing the requested

results.

• Summary by Sample tab, the tab contains the information for each individual

processed in the search, such as, the sex, the population and superpopulation

(e.g., AMR, AFR, etc.…). Each row reports the associated number of targets

that shares the sample, counting also the targets in the population and in the

71

superpopulation. This page can be filtered by the user, selecting a specific

sample or population and visualizing the results associated by clicking on the

‘show target’ link.

• Query Genomic Region tab, the tab allows to query the results by using the

genomic coordinates. Input a chromosome and start and end value of the region

to search, will return a list of targets falling into the region. The results are

returned in form of data-table and can be downloaded by exporting the table.

• Graphical Reports tab, the tab contains all the graphics generated by the

software, collected into a single place for simplicity and ease of consulting.

This tab allows the user to generate any run-time graphic, such as, the

population distribution plot and the functional region table, reporting how

many targets fell into each functional region and the motif logo of mismatches

and bulges, showing the user the base-pairs more prone to have mismatches

and/or bulges. The main graphic of the page, is the CFD-score/target count

graph, reporting the distribution of the targets ordered by the calculated CFD

score, and the differences between reference and alternative targets in the same

position, enlightening how the introduction of variants changes the expected

outcomes in terms of off-targets.

• Personal Risk Cards tab, the tab contains more specific information about a

sample interested by off-targets. This tab, allows the user to perform searches

using an individual ID and generates run-time CFD-score/targets count

graphics, these two generated graphics, are created by using the ‘personal’

individual targets, so the targets the individual shares with at least on other

individual, and the ‘private’ targets, so targets that are associated only with the

individual of interest. Furthermore, the tab contains a data-table with the

‘private’ targets and the possibility to download them as a text file.

These are the main components of the user interface developed for CRISPRme, aiming

to be simple and understandable by non-informatician. So, the format of pages and the

presented data are designed to be friendly for biologists and biotechnologists, as requested

by our collaborators.

Figure 40. Custom ranking tab, this tab allows the user to perform queries on the targets database with

different threshold and group by criteria.

72

Figure 41. Summary by Mismatches/Bulges tab. This tab separates targets into different categories, by

mismatches and bulges and allows the user to visualize the target in each category by using the ‘Show

Target’ link.

Figure 42. Show Targets table.

Figure 43. Summary by Sample tab. In this tab the user can search a specific population or sample and

extract visualize the related targets, both the counters (Targets in Variant, Targets in Population and Targets

in Super Population, PAM creation) and the ‘Show Targets’ link.

73

Figure 44. Query Genomic Region tab. In this tab the user can search the results selecting a specific

genomic range, obtaining targets in table format.

Figure 45. Graphical reports tab. In this tab the user can visualize the cartesian plot with reference and

alternative targets ordered by score and connected to represent how much the variant in target, increase the

score with respect to reference target. In the tab it is possible to generated bar plots to show the distribution

of targets on the populations and how the annotations are distributed on the targets, including a motif logo

showing the distribution of mismatches and bulges on the sgRNA sequence.

74

Figure 46. Personal Risk Card tab. In this tab the user can investigate the targets for a specific sample,

on the top the presentation of the sample top100 personal targets (left plot) and the top100 private targets

(right plot). The table collects all the private targets for the selected sample.

4 Results

This Section presents the results obtained by CRISPRitz and CRISPRme in terms of

targets and off-targets found, produced reports with images and plots, including

comparisons with competitors and performance analysis. The Section also includes a real

case study with results produced by CRISPRme for a therapeutic sgRNA.

Section 4.1 describes the results obtained by CRISPRitz, including off-targets data,

profile files with count of off-targets in categories and motif logos of mismatches and

bulges distribution on sgRNAs. Furthermore, the Section includes comparisons with other

state-of-the-art tools, in terms of execution time and found targets.

Section 4.2 describes the results obtained by CRISPRme, starting from CRISPRitz raw

targets. Including graphs and plots, variant-induced targets and respective individuals

carrying the analyzed targets. CRISPRme also produces many comprehensive files useful

to users to generate new pipelines and test panels.

4.1 CRISPRitz results and discussion

This Section presents results from CRISPRitz, reporting raw targets file and profile

files. It also reports the comparison with other software in terms of execution time and

consumed resources.

75

4.1.1 High-throughput and variant-aware enumeration of potential off-target
sites on the functional genome

In some cases, it may be necessary to identify potential off-target sites for a large

number of guides, such as for genome-wide CRISPR libraries. In addition, it is often

important to evaluate for off-target sites in multiple genomes, such as when performing

experiments in multiple cell lines and/or evaluating the effect of personalized variants in

individuals (Canver et al., 2018) given that these variants can affect the number of on- and

off-target sites or lead to false positive/negative if not accounted for.

Furthermore, once off-target sites are identified, it is useful to inform potential risk in

the setting of off-target cleavage through genomic annotation, such as off-target sites in

coding sequence or off-targets in non-coding sequence affecting function sequences (e.g.,

CTCF sites).

Therefore, CRISPRitz was designed to support genetic variants as well as provide

intuitive enrichment analysis using a set of genomic annotations for a variety of functional

regions, as discussed in Section 2.3 .

To showcase these features, we analyzed the GeCKO Library v2 (Sanjana et al., 2014)

genome-wide library, using up to five mismatches (and no bulges). For this analysis we

constructed a single enriched genome including 84.4 million genetic variants obtained from

2504 individuals across 26 populations from the 1000 Genome Project Phase 3 (1000

Genomes Project Consortium & others, 2015). CRISPRitz analysis of this dataset with a

variant-aware genome and also the reference hg19 genome resulted in a total time of ≃3500

min (2.4 days), for both analyses. Of note, differences were observed between the

CRISPRitz results when using the hg19 reference genome as compared with the enriched

genome with variants, which is consistent with previous work (we obtain an average

increase of ≃50–60% in all the analyzed genetic regions) (Lessard et al., 2017; Scott &

Zhang, 2017). It is worth noting, that although this analysis was performed using all the

variants present in at least one individual, with CRISPRitz a similar analysis can be

performed using variants from a single individual to create a personalized, enriched

genome. The results obtained from this analysis were used as a template for comparison

with subsequent analysis of the guides targeting CCR5 (see Figure 48).

Next, we evaluated the guides targeting CCR5 coding sequence, which is a therapeutic

target for patients with human immunodeficiency virus (HIV) infection. Using the hg19

and the enriched genome described in the previous Section derived from the 1000 Genomes

Project database, we observed an increase of 18–24% in putative off-target sites when

accounting for SNPs (see Figure 47), which is consistent with previous works. In addition,

the visualization of the functional annotation of identified off-target sites can aid in the

identification of specific and non-specific guides as shown in Figure 47. We also perform

an analysis on the CCR5 guides, including bulges in the search, to show that also the

inclusion of bulges is fundamental to obtain an accurate analysis (see Figure 48). The

bulges inclusion led to a dramatic increase in the total number of possible off-target sites,

from ≃36 000 with four mismatches and no bulges to ≃2.5 million with inclusion of 1

DNA and 1 RNA bulge.

Multiple flavors of high-fidelity Cas9 (e.g. SpCas9-HF1/eSpCas9/HypaCas9/evoCas9)

are available that exhibit reduced off-target activity while maintaining on-target editing

efficiency (Casini et al., 2018; Chen et al., 2017; Kleinstiver et al., 2016; Slaymaker et al.,

2016; Vakulskas et al., 2018). High-fidelity nucleases still maintain probability of cleavage

at putative off-target sites albeit a lower probability as compared with standard reagents.

Moreover, use of a high-fidelity Cas9 does not preclude off-target analysis as these

nucleases can still mediate off-target cleavage, particularly if a sgRNA is utilized with

significant off-target potential.

76

CRISPRitz analysis may be able to aid nuclease selection prior to initiation of wet-lab

experiments as high-fidelity nucleases may be preferred for sgRNAs with increased off-

target potential.

Figure 47. Graphic report from CRISPRitz with two radar charts to understand the distribution of

annotations between targets and a bar plot with the distribution of targets on reference and enriched genome.

Figure 48. Graphic reports of CRISPRitz using bulges on CCR5 guide.

4.1.2 Performance evaluation and comparison with similar tools

To evaluate the performance of CRISPRitz, we used a general dataset of guides

randomly sampled from the human reference genome hg19 using the NGG PAM (see

Section 3.1.1). The tests were performed on a machine equipped with an Intel(R) Xeon(R)

CPU E5-2650 v4, clocked at 2200 MHz and 64 GBs RAM, and the Ubuntu operating

system (version 16.04).

We performed a head-to-head comparison of CRISPRitz with Cas-OFFinder (Bae et al.,

2014), FlashFry (McKenna & Shendure, 2018) and OFF-Spotter (Pliatsika & Rigoutsos,

2015) as shown in Figure 49. We choose to exclude BWA from the final comparison, since

it is not designed to work with CRISPR/Cas sequences and does not provide the

customization necessary to properly complete the task of target enumeration. We also

choose to exclude GuideScan, since the software is designed and developed to be a guide

designer tool and not an enumeration tool, like CRISPRitz and the other tested tools.

Considering these details, we thought the two software were not good candidate for the last

round of testing and performance comparison, but they were presented at the beginning of

the thesis, as software we looked at to take inspiration for our work.

In Figure 49C and Figure 49D, we compared CRISPRitz only with Cas-OFFinder since

it was the only available tool (at the time of writing this thesis), that allowed searches with

both mismatches and DNA/RNA bulges. Both CRISPRitz and Cas-OFFinder can take

advantage of multi-core architectures. CRISPRitz was implemented using the well-known

OpenMP (Dagum & Menon, 1998), while Cas-OFFinder is implemented using OpenCL

API (Munshi, 2009b).

First, performance testing without DNA/RNA bulges was performed using a different

number of guides with up to five mismatches. FlashFry and OFF-Spotter are faster than

CRISPRitz and Cas-OFFinder, ranging from a speed-up of 30–70× comparing CRISPRitz

and Flashfry and a ranging from 7 to 25× when comparing CRISPRitz to OFF-Spotter. By

77

using CRISPRitz, we observed an ∼2-fold or greater reduction in execution time as

compared with Cas-OFFinder (see Figure 49A). Notably, the execution time slightly

increase for CRISPRitz and Cas-OFFinder tools with respect to the number of input guides;

however, we observed a significant difference between Cas-OFFinder and CRISPRitz with

1000 guides (Cas-OFFinder performed the search in ≃10 000 s with respect to the ≃3400

s used by CRISPRitz).

Next, using the same hardware, we tested the performance of CRISPRitz and Cas-

OFFinder when DNA/RNA bulges were also considered in the analysis. The same guides

were tested as in Figure 49A and Figure 49B with up to five mismatches but allowing also

one DNA and one RNA bulge. Although the execution times are similar for one guide, we

observed a 4-fold reduction in execution time for CRISPRitz with respect to Cas-OFFinder

when the number of guides increased (Figure 49C). Furthermore, the effect of the number

of mismatches was evaluated with a fixed number of guides (n = 1000) with the number of

DNA and RNA bulges set to one. The difference in execution times was greatest (up to 74-

fold reduction) when considering three mismatches (Figure 49). However, the magnitude

of execution time reduction decreased to ∼4-fold with an increased number of mismatches.

This is because the number of visited branches of the tree (and the execution time

consequently) by CRISPRitz increases due to increasing the mismatch and bulge

thresholds.

Importantly, CRISPRitz showed robust scalability by varying the number of CPU cores

(from 2 to 8), the mismatch threshold from 3 to 5 and the predicted off-target activity per

guide (see Figure 50). The results highlight that CRISPRitz performance scales

approximately linearly over the number of CPU cores (⁠≃1.8).

Finally, we compared the features and the running time of CRISPRitz with additional

four software; CRISPOR (Haeussler et al., 2016), CHOPCHOP (Montague et al., 2014),

CRISPRseek (Zhu et al., 2014) and CRISPRtool (Lessard et al., 2017), on searching with

mismatches and bulges on the reference genome and genome with variants (see Table 3,

Table 4, Table 5, Table 6).

CRISPRitz is the only software able to perform a search taking into account genetic

variants as well as mismatches and bulges while still maintaining computational efficiency

(see Table 7). Furthermore, in a comparison performed with only mismatches allowed in

the search, the fastest tool was FlashFry, followed by Off-Spotter, CHOPCHOP and

CRISPRitz. Of note, the speed-up range between FlashFry and OFF-Spotter was from 2-

to 4-fold (⁠≃100 s by FlashFry as compared with >400 s by Off-Spotter; see Table 3). In a

comparison performed with mismatches allowed in the search and using a variant genome

(only supported by CRISPRitz and CRISPRtool), CRISPRitz was the faster tool with a

speed-up range of 8.5- to 35-fold (⁠≃3000 s by CRISPRitz as compared >100 000 s taken

by CRISPRtool) (see Table 4). In a comparison performed using mismatches and bulges

allowed in the search (only supported by CRISPRitz and Cas-OFFinder), we determined

that CRISPRitz was the faster tool with a speed-up range from 4- to 75-fold (⁠≃50 000 s by

CRISPRitz as compared with >200 000 seconds by Cas-OFFinder; see Table 5). In a

comparison performed using mismatches, bulges and a variant genome in the search, only

CRISPRitz supported this combination of features with no available alternatives at the time

of this thesis (see Table 6). Taken together, when using only mismatches FlashFry is the

fastest tool; however, when bulges or genetic variants are included CRISPRitz offers a

significant speedup over all the available tools. Importantly, CRISPRitz is the only tool that

allows a complete enumeration of target and off-target sites when accounting

simultaneously for mismatches, bulges and genetic variants.

78

Figure 49. Performance comparison between CRISPRitz, Cas-OFFinder, FlashFry and Off-Spotter.

Panel A shows a comparison with increasing set of input guides with <=5 mismatches. Panel B shows a bar

plot representation of Panel A. Panel C shows a comparison between CRISPRitz and Cas-OFFinder with

<=5 Mismatches and 1 DNA/RNA bulge.

 Figure 50 shows the scalability of CRISPRitz compared to Cas-OFFinder by varying

the number of CPU cores (from 2 to 8) used for the guide search (mismatch threshold of 3,

4, and 5). The figure shows that both the tools scale very well over the number of CPU

cores used for the computation. By doubling the number of cores, the obtained speedup is

almost linear (1.8x). This underlines the portability of CRISPRitz to parallel architectures.

The tests were performed with the random dataset containing 1000 guides, on a machine

equipped with an Intel(R) Xeon(R) CPU E5-2650 v4 with 8 cores, clocked at 2200 MHz

and 64GBs RAM, and the Ubuntu operating system (version 16.04). Table 2 reports

execution time of CRISPRitz and Cas-OFFinder as a function of the number of discovered

off-targets per guide.

We sampled 3 groups of 10 guides (based on the hg19 reference genome) with similar

but increasing number of off-targets (50, 10000 and 1000000). On this dataset, we run

CRISPRitz andCas-OFFinder with 2 cores, 4 mismatches and no bulges. This analysis

shows that the number of the off targets per guide has almost no impact on the execution

time. Notably, the speed-up of CRISPRitz over Cas-OFFinder is always close to 2.5x.

Software 50 Off-Targets 10000 Off-Targets 1000000 Off-Targets

CRISPRitz 71.82 81.86 82.93

Cas-OFFinder 200.80 201.38 211.53

Table 2. Comparison between CRISPRitz and Cas-OFFinder using guides with different putative off-

targets counts to calculated scalability.

79

Figure 50. Scalability of CRISPRitz and Cas-OFFinder with increasing number of CPUs cores.

More comparisons with other software were done during the last stage of development

and when the software was proposed for publication. Hence, we propose a more detailed

and depth analysis of CRISPRitz competitors.

We compared CRISPRitz with other 7 software (Cas-OFFinder (Bae et al., 2014),

Flashfry (McKenna & Shendure, 2018), Off-spotter (Pliatsika & Rigoutsos, 2015),

CRISPOR (Haeussler et al., 2016), CHOPCHOP (Montague et al., 2014)), CRISPRseek

(Zhu et al., 2014)) and CRISPRtool (Lessard et al., 2017) which perform off-target analysis

and guide design.

The tests were executed on a machine equipped with an Intel(R) Xeon(R) CPU E5-

2650v4, clocked at 2200 MHz and 64 GBs RAM, and Ubuntu operating system (version

16.04).

Experiments were run with 2 cores on CRISPRitz and Cas-OFFinder because they

support the parallel execution, and 1 core on all the others, to better reflect a typical mid-

size personal computer.

We used a random generated dataset of 1000 guides. In Table 3 the guide search is

performed with 3, 4, 5 mismatches and no bulges on the hg19 reference.

As expected, the software that run a pre-processing step to build a database containing

candidate targets outperform all the other software if more than one search is done after the

database creation. Among the tools that support only searches with mismatches and are

based on a precomputed index, Flashfry is the fastest followed by Off-Spotter and

CHOPCHOP.

However, among the software that can perform an online search without a pre-

processing step, CRISPRitz is the fastest. Table 4 reports the search running time allowing

mismatches on the hg19 variant genome with variants from the 1000 Genome project

encoded using the IUPAC notation.

CRISPRitz and CRISPRtool are the only 2 software capable of accounting for genetic

variants during the search. CRISPRitz outperforms CRISPRtool in every test reaching a

80

speed-up of 35x when using 5 mismatches. In Table 5 we show the results searching with

3, 4, 5 mismatches, 1 DNA and 1 RNA bulges using the hg19 reference.

CRISPRitz and Cas-OFFinder are the only 2 software that can perform this search since

the other tools don’t support the incorporation of bulges.

In this case, CRISPRitz indexes the reference genome to perform analysis with bulges

(see Section 3.1.3). This step is independent of the guide to search and is performed only

one time. CRISPRitz outperforms Cas-OFFinder in every test reaching 74x of

speed-up in the 3 mismatches case. Notably, the time required by CRISPRitz

to build the database and run 1 search is about 40x less of the time than CasOFFinder

takes to perform 1 search. In Table 6, the guide search is run with

3, 4, 5 mismatches, 1 DNA and 1 RNA bulges and using the hg19 variant genome as

defined before.

The only software capable of performing this analysis is CRISPRitz.

Finally, Table 7 summarizes the features, limitations, and capabilities of the existing

software. Several software shares the same capabilities and limitations.

Only CRISPRitz and Cas-OFFinder perform bulge analysis.

Only CRISPRitz and CRISPRtool can search using reference genomes and accounting

for genetic variants.

Software 3 MM 4 MM 5 MM DB Time RAM

CRISPRitz 2890,51 3154,05 3402,73 − 4,26

CAS-OFFinder 7063,56 8969,93 10721,75 − 0,77

FlashFry 40,49 58,44 106,95 3268,29 1,43

OFF-Spotter 114,34 182,28 499,64 743,41 38,09

CRISPOR 5133,99 6160,78 7392,93 3742,59 64,71

CHOPCHOP 1791,01 ND ND 6744,57 57,41

CRISPRseek 97283,42 100135,78 104152,26 − 65,28

CRISPRtool 20599,78 49637,65 109127,31 − 10

Table 3. Search with 3, 4 and 5 mismatches on reference genome (hg19). Searches were run on a

machine with 2 cores for CRISPRitz and Cas-OFFinder, 1 core for all the others. Times are expressed in

seconds (3MM, 4MM, 5MM, DB Time) and RAM in GBs.

81

Software 3 MM 4 MM 5 MM DB Time RAM

CRISPRitz 2835,65 3078,14 3300,39 − 5,06

CAS-OFFinder − − − − −

FlashFry − − − − −

OFF-Spotter − − − − −

CRISPOR − − − − −

CHOPCHOP − − − − −

CRISPRseek − − − − −

CRISPRtool 24534,67 56345,76 116437,56 − 11,23

Table 4. Search with 3, 4 and 5 mismatches on reference genome (hg19). Searches were run on a

machine with 2 cores for CRISPRitz and 1 core for CRISPRtool. Times are expressed in seconds (3MM,

4MM, 5MM, DB Time) and RAM in GBs.

Software 3 MM 4 MM 5 MM DB Time RAM

CRISPRitz 2132,54 14258,46 52687,21 1832,24 7,12

CAS-OFFinder 158853,74 201561,34 245363,59 − 2,17

FlashFry − − − − −

OFF-Spotter − − − − −

CRISPOR − − − − −

CHOPCHOP − − − − −

CRISPRseek − − − − −

CRISPRtool − − − − −

Table 5. Search with 3, 4 and 5 mismatches and one bulge (1 DNA/RNA bulge) on reference genome

(hg19). Searches were run on a machine with 2 cores for CRISPRitz and Cas-OFFinder. Times are expressed

in seconds (3MM, 4MM, 5MM, DB Time) and RAM in GBs.

82

Software 3 MM 4 MM 5MM DB Time RAM

CRISPRitz 8627,13 57475,97 210748,84 1832,24 8,17

CAS-OFFinder − − − − −

FlashFry − − − − −

OFF-Spotter − − − − −

CRISPOR − − − − −

CHOPCHOP − − − − −

CRISPRseek − − − − −

CRISPRtool − − − − −

Table 6. Search with 3, 4 and 5 mismatches and one bulge (1 DNA/RNA bulge) on variant genome (hg19

with 1000G). Search was run on a machine with 2 cores for CRISPRitz. Times are expressed in seconds

(3MM, 4MM, 5MM, DB Time) and RAM in GBs.

Table 7. Comparison of features between CRISPRitz and other software.

83

4.1.3 Discussion

CRISPRitz was designed and presented as an all-in-one solution, with the aim of helping

technician without a computational and programming background, performing a complex

task as CRISPR/Cas off-targets prediction and enumeration.

The software was developed with this aim in mind and encloses this objective in the

entirety of the project.

CRISPRitz can be used to perform off-target enumeration and prediction, to score

targets using CFD and Doench scores, to retrieve functional and genetical annotations, to

find variant-induced targets and finally plotting all these data in graphical reports and

summarized matrix file.

So, CRISPRitz can be used by non-expert to obtain simple and exhaustive results,

without the necessity of complex and manual operations, with the possibility of using many

different types of nucleases, sgRNAs and genomes. Including also variants and BED files

with annotations.

CRISPRitz is an all-in-one solution and toolbox for any technician and biotechnologist

that need to perform in-silico CRISPR/Cas analysis and predictions. We believe also the

comparison presented in Section 4.1.2 highlights the utility and flexibility of CRISPRitz in

performing exhaustive and complete searches using variant genomes, any number of

mismatches and bulges, support for arbitrary PAM, activity and off-target scores and

providing visual reports based on user defined functional annotations.

4.2 CRISPRme results and discussion

This Section presents a real case study processed with CRISPRme, reporting the results,

the graphs and a new discovered target that led to the development of a new project. The

Section also includes computational performances comparisons with other software and

tools.

4.2.1 CRISPRme functionalities and operational process

CRISPRme is a web-based tool to predict off-target potential of CRISPR gene editing

that accounts for genetic variation. CRISPRme takes as input a Cas protein, gRNA spacer

sequence(s) and PAM, genome build, sets of variants (VCF files for populations or

individuals), user-defined thresholds of mismatches and bulges, and optional user-defined

genomic annotations to produce comprehensive and personalized reports (see Figure 51).

We have designed CRISPRme to be flexible with support for new gene editors with

variable and extremely relaxed PAM requirements (Walton et al., 2020). Thanks to a PAM

encoding based on Aho-Corasick automata (see Section 3.1.1) and an index based on a

ternary search tree (see Section 3.1.3), CRISPRme can perform genome-wide exhaustive

searches efficiently even with an NNN PAM, extensive mismatches (tested with up to 7)

and RNA:DNA bulges (tested with up to 2).

Notably, a comprehensive search performed with up to 6 mismatches, 2 DNA/RNA

bulges and a fully non-restrictive PAM (NNN) takes only 19 hours on a small

computational cluster (Intel Xeon CPU E5-2609 v4 clocked at 2.2 GHz and 128 GB RAM).

All the 1000G variants, including both SNVs and indels, can be included in the search

together with all the available metadata for each individual (sex, super-population and age),

and the search operation takes into account observed haplotypes (see Section 4.2.2).

Importantly, off-target sites that represent alternative alignments to a given genomic region

are merged to avoid inflating the number of reported sites. Although several tools exist to

enumerate off-targets, to our knowledge only a command line tool called crispRtool

(Lessard et al., 2017) incorporates genetic variants in the search. However, it has a search

84

operation limited to 5 mismatches, cannot include DNA or RNA bulges, does not provide

a graphical interface and is orders of magnitude slower than CRISPRme (see Section 4.2.4).

CRISPRme generates several reports (see Section 4.2.3). First, it summarizes for each

gRNA all the potential off-targets found in the reference or variant genomes based on their

mismatches and bulges (see Figure 35) and generates a file with detailed information on

each of these candidate off-targets. Second, it compares gRNAs to customizable

annotations. By default, it classifies possible off-target sites based on GENCODE (Frankish

et al., 2019) (genomic features) and ENCODE (E. P. Consortium & others, 2004)

(candidate cis-regulatory elements, cCREs) annotations. It can also incorporate user-

defined annotations in BED format, such as empiric off-target scores or cell type specific

chromatin features. Third, using 1000G (1000 Genomes Project Consortium & others,

2015) and/or HGDP (Foster, 2008) variants, CRISPRme reports the cumulative distribution

of homologous sites based on the reference genome or super-population. These global

reports could be used to compare a set of gRNAs to demonstrate the frequency of allele-

specific off-target sites across individuals and how genetic variation impacts the predicted

cleavage potential using cutting frequency determination (CFD) scores (Doench et al.,

2016b). Finally, CRISPRme can generate personal genome focused reports called personal

risk cards (see Figure 46). These reports indicate off-target sites modified by private genetic

variants not found in reference genome.

85

Figure 51. CRISPRme process. Panel a) presents the main input page. Panel b) contains the outcomes

from a real case study. Panel c) enlightens one variant off-target generated by a specific SNP in PAM

sequence. Panel d) present the cartesian plot with reference and alternative targets ordered by CFD score

showing the increase in score value due to variant introduction. Panel e) shows the position of the candidate

off-target with SNP.

86

4.2.2 Real Case study and outcomes

We tested CRISPRme with a gRNA (#1617) targeting a GATA1 binding motif at the

+58 erythroid enhancer of BCL11A (Canver et al., 2015; Karczewski et al., 2020). A recent

clinical report described two patients, one with SCD and one with β-thalassemia, each

treated with autologous gene modified hematopoietic stem and progenitor cells (HSPCs)

edited with Cas9 and this gRNA, who showed sustained increases in fetal hemoglobin,

transfusion-independence and absence of vaso-occlusive episodes (in the SCD patient)

following therapy (Stadtmauer et al., 2020)(. This study as well as prior pre-clinical studies

with the same gRNA (#1617) did not reveal evidence of off-target editing in treated cells

considering off-target sites nominated by bioinformatic analysis of the human reference

genome and empiric analysis of in vitro genomic cleavage potential (Canver et al., 2015;

Moore et al., 2020; Stadtmauer et al., 2020). CRISPRme analysis found that the predicted

off-target site with both the greatest CFD score and the greatest increase in CFD score from

the reference to alternative allele was at an intronic sequence of CPS1 (see Figure 51), a

genomic target subject to common genetic variation (modified by a SNP with MAF ≥ 1%).

CFD scores range from 0 to 1, where the on-target site has a score of 1. The alternative

allele rs114518452-C generates a TGG PAM sequence (that is, the optimal PAM for

SpCas9) for a potential off-target site with 3 mismatches and a CFD score (CFDalt 0.95)

approaching that of the on-target site (see Figure 51). In contrast, the reference allele

rs114518452-G disrupts the PAM to TGC, which markedly reduces predicted cleavage

potential (CFDref 0.02). rs114518452-C has an overall MAF of 1.33% in gnomAD

(Karczewski et al., 2020) v3.117, with MAF of 4.55% in African/African-American, 0.02%

in European (non-Finnish) and 0.00% in East Asian super-populations (see Figure 51).

To consider the off-target potential that could be introduced by personal genetic

variation that would not be predicted by 1000G variants, we analyzed HGDP variants

identified from whole genome sequences of 929 individuals from 54 diverse human

populations (Lowy-Gallego et al., 2019). We observed 249 candidate off-targets with CFD

≥0.2 for which the CFD score in HGDP exceeded that found for either the reference

genome or 1000G variants by at least 0.1 (see Figure 52). These additional variant off-

targets not found from 1000G were observed in each super-population, with the greatest

frequency in the African super-population (see Figure 52). 229 (92.0%) of these variant

off-targets not found in 1000G were unique to a super-population and 172 (69.1%) of these

were unique to just one individual (see Figure 52). Single individual focused searches, for

example an analysis of HGDP01211, an individual of the Oroqen population within the

East Asian super-population, showed that most variant off-targets (with higher CFD score

than reference) were due to variants also found in 1000G (n=32369, 90.4%), a subset were

due to variants shared with other individuals from HGDP but absent from 1000G (n=3177,

8.9%), and a small fraction were private to the individual (n=234, 0.7%) (see Figure 52).

Among these private off-targets was one generated by a variant (rs1191022522, 3-

99137613-A-G, gnomAD v3.1 MAF 0.0053%) where the alternative allele produces an

NGG PAM that increases the CFD score from 0.14 to 0.54 (see Figure 52).

To experimentally test the top predicted off-target from CRISPRme, we identified a

CD34+ HSPC donor of African ancestry heterozygous for rs114518452-C (the variant

predicted to introduce the greatest increase in off-target cleavage potential; see Figure 51).

We performed RNP electroporation using a gene editing protocol that preserves engrafting

HSC function19. Amplicon sequencing analysis showed 92.0 ± 0.5% indels at the on-target

site and 4.8 ± 0.5% indels at the off-target site. Evaluable indels were strictly found at the

alternative PAM-creation allele without indels observed at the reference allele (see Figure

54), suggesting 9.6 ± 1.0% off-target editing of the alternative allele. In an additional 6

HSPC donors homozygous for the reference allele rs114518452-G/G, 0.00 ± 0.00% indels

87

were observed at the off-target site, suggesting strict restriction of off-target editing to the

alternative allele (see Figure 52).

These results demonstrate how personal genetic variation may influence the off-target

potential of therapeutic gene editing. In the case of BCL11A enhancer editing, up to ~10%

of SCD patients with African ancestry would be expected to carry at least one rs114518452-

C allele. In general, therapeutic gene editing clinical trials might consider evaluating the

impact of population and private genetic variation on gene editing outcomes including

individual patient assessment.

All the wet-lab experiments were performed by our collaborators at Bauer Lab

(http://www.bauerlab.org/). The group is collaborating in the development of the software,

as experienced technicians and as end users.

Figure 52. Allele-specific off-target editing by a BCL11A enhancer targeting gRNA associated with a

common variant in African-ancestry populations. Panel a) Human CD34+ HSPCs from a donor

heterozygous for rs114518452-G/C (Donor 1, REF/ALT) were subject to 3xNLS-SpCas9:sg1617 RNP

electroporation followed by amplicon sequencing of the off-target site around chr2:210,530,659-210,530,681

(off-target-rs114518452 in 1-start hg38 coordinates). CFD scores for the reference and alternative alleles

are indicated and representative aligned reads are shown. Spacer shown as DNA sequence for ease of visual

alignment, with mismatches indicated by lowercase and the rs114518452 position shown in bold.

Coordinates are for hg38 and 1-start. Panel b) Reads classified based on allele (indeterminate if the

rs114518452 position is deleted) and presence or absence of indels (edits). Panel c) Human CD34+ HSPCs

from a donor heterozygous for rs114518452-G/C (Donor 1) were subject to 3xNLS-SpCas9:sg1617 RNP

electroporation, HiFi-3xNLS-SpCas9:sg1617 RNP electroporation, or no electroporation (mock) followed by

amplicon sequencing of the on-target and off-target-rs114518452 sites. Each dot represents an independent

biological replicate (n = 3). Indel frequency was quantified for reads aligning to either the reference or

alternative allele. Panel d) Human CD34+ HSPCs from 6 donors homozygous for rs114518452-G/G (Donors

2-7, REF/REF) were subject to 3xNLS-SpCas9:sg1617 RNP electroporation with 1 biological replicate per

donor followed by amplicon sequencing of the on-target and OT-rs114518452 sites.

http://www.bauerlab.org/

88

Figure 53. Results produced using Human Genome Diversity Project (HGDP) variant dataset. Panel a)

shows cartesian with HGDP-only targets, showing how the inclusion of new variants, introduces many new

putative off-targets. Panel b) shows the distribution of off-targets on different populations. Panel c) shows

overlapping targets for each population. Panel d) presents an analysis at individual level for sample

HGDP01211. shared with 1000G variant off-targets (left panel), higher CFD score compared to reference

genome and 1000G but shared with other HGDP individuals (center panel), and higher CFD score compared

to reference genome and 1000G with variant not found in other HGDP individuals (right panel). For the

center and right panels, reference refers to CFD score from reference genome or 1000G variants. Panel e)

enlighten the top predicted target for HGDP01211 with SNP.

89

Figure 54. Allele-specific pericentric inversion following BCL11A enhancer editing. Panel a) Concurrent

cleavage of the on-target and off-target-rs114518452 sites could lead to pericentric inversion of chr2 as

depicted. PCR primers F1, R1, F2, and R2 were designed to detect potential inversions. Panel b) Human

CD34+ HSPCs from a donor heterozygous for rs114518452-G/C (Donor 1) were subject to 3xNLS-

SpCas9:sg1617 RNP electroporation, HiFi-3xNLS-SpCas9:sg1617 RNP electroporation, or no

electroporation with 3 biological replicates. Human CD34+ HSPCs from 6 donors homozygous for

rs114518452-G/G (Donors 2-7, REF/REF) were subject to 3xNLS-SpCas9:sg1617 RNP electroporation with

1 biological replicate per donor. Gel electrophoresis for inversion PCR performed with F1/F2 and R1/R2

primer pairs on left and right respectively with expected sizes of precise inversion PCR products indicated.

Panel c) Reads from amplicon sequencing of the F1/F2 product (expected to include the rs114518452

position) from 3xNLS-SpCas9:sg1617 RNP treatment were aligned to reference and alternative inversion

templates. The rs114518452 position is shown in bold. Panel d) Reads classified based on allele

(indeterminate if the rs114518452 position deleted).

90

4.2.3 Reports and individual graphs

CRISPRme reference/alternative CFD comparison obtained using sg1617, NNN PAM

and 6 mismatches plus 2 DNA/RNA bulges, tested on the hg38 reference genome plus

1000G and HGDP variants (see Figure 53). A stem plot shows the distribution of CFD

scores for candidate off-targets ranked in descending order by CFD score. For candidate

off-targets for which a genetic variant increases the CFD score, the CFD scores for both

the alternative (blue) and reference (red) allele at the same locus is shown. The area of the

circle is proportional to allele frequency. b) On the left, stacked bar plots summarizing the

number of candidates off-targets for each category of mismatch + bulge in super-

populations present in the input variant data. On the right, radar chart showing the

percentage of off-targets falling into a specific genomic annotation with respect to the

overall count, table detailing the exact number of off-targets falling into each category (an

off-target can fall under more than one category) and motif plot showing the distribution

of mismatches and bulges with respect to the spacer+PAM.

CRISPRme provides a dedicated page to generate reports called Personal Risk Cards

(see Figure 55) that summarize potential off-target editing by a particular gRNA in a given

individual due to genetic variants. This feature is particularly useful for retrieving and

investigating private off-targets.

The report contains two dynamically generated plots depicting all the candidate variant

off-targets for the sample including those non-unique to the individual and those that are

unique to the individual. These plots highlight how the introduction of genetic variants can

change the predicted off-target cleavage potential, thereby demonstrating the importance

of variant-aware off-target assessment as in CRISPRme. The report also contains two tables

(see Figure 55), consisting of a summary (Table 1, top) and information on each extracted

candidate off-target (Table 2, bottom) with the following columns:

Table 1:

Personal, count of all the candidate variant off-targets for the selected sample (including

both variants unique and non-unique to the individual).

PAM creation, count of all the instances where a genetic variant in the sample introduces

a new PAM and the PAM used in the search in not found in the reference genome at the

same locus.

Private, count of all the candidate variant off-targets uniquely found in the selected

sample.

91

Figure 55. Personal Risk Card.

4.2.4 Comparison with available tools

Although numerous tools are available to enumerate CRISPR-Cas off-targets, to our

knowledge only two previous studies (Chaudhari et al., 2020; Lessard et al., 2017) have

reported computational strategies to assess off-target potential in presence of genetic

variants. Only crispRtool from (Lessard et al., 2017) provides a general command line

software. Therefore, we decided to focus our comparison by assessing the features and

running times of CRISPRme (v1.7.7) and crisprRtool (v2.0.5) on the same hardware (AMD

Ryzen Threadripper 3970X 32-Core Processor clocked at 2.2 GHz with 124 GB RAM) to

provide a fair assessment. For our tests we used the 1617 sgRNA, NGG PAM, variants

from 1000G and a variable number of mismatches and bulges.

Briefly, crisprRtool first adds variants (SNPs only) to the reference genome using

IUPAC notation, and then searches the input gRNA(s) on the variant genome and reports

a list of putative on-and off-targets with IUPAC nucleotides. The tool also offers the

possibility to search each VCF file individually to resolve haplotypes (SNPs and INDELs)

of the reported off-targets. However, for this step, the user needs to manually edit and

execute a script for each VCF file. In addition, the search operation with crispRtool allows

a maximum of 5 mismatches, does not account for bulges, and is not flexible in terms of

PAM location relative to the protospacer (only 3’ is supported).

Using 5 mismatches and the settings described above, crispRtool took 9 hours to

complete the non-haplotype-resolved search. The haplotype-resolved search only on chr1

using variants from 1000G (6 million SNPs and INDEL variants) took ~37 hours.

Conservatively extrapolating to all other chromosomes, the entire search would take more

than 300 hours and will not be as complete as the search CRISPRme offers due to the lack

of graphical reports and textual summaries encompassing results from all chromosomes.

On the other hand, by leveraging an efficient genome index and auxiliary data structures

that are constructed only once during the installation (~4 hours for NGG PAM, ~12 hours

92

for NNN PAM or can be downloaded directly in our complete test package), CRISPRme

can complete a haplotype-aware search for a gRNA across the entire genome with 5

mismatches in ~1 hour. The haplotype-resolved search on the entire genome with up to 6

mismatches and 2 DNA/RNA bulges only takes 2 hours (excluding the guide-independent

indexing operation described above) and includes a summary report.

4.2.5 Discussion

CRISPRme was designed and developed to help technician and biotechnologist, with

an easy-to-use tool to perform analysis and visualize CRISPR/Cas results.

CRISPRme incorporates CRISPRitz powerful search tools and integrates it, with a GUI

and more individual centric analysis.

CRISPRme allows the user to perform extensive searches with reference and variant-

enriched genomes, including also functional annotations and genes definition. The software

takes care of all the necessary steps and returns a comprehensive result directory, will a

complete result file, matrix-like files with reports and graphs.

The aim of CRISPRme is to simplify the work of the user by collecting and visualize

all possible targets and present them in an easy-to-read setting.

In fact, the software uses a web-based GUI to present the data to users, allowing them

to find targets with specific mismatches and bulges count or variant-induced targets related

to a specific sample. The software also returns counters with collected results, like a general

counter informing the user with the number of targets accounted with a specific count of

mismatches and bulges or targets found with a specific type of bulge. The software also

presents run-time graphs, generate on request when the user select a combination of

mismatches and bulges.

So, the aim of the software is to help user with the understanding of a complex problem

supporting the search with a set of files and processed data.

The results are generated in accordance with comments and requests done by our

collaborators, technicians, and biotechnologists, with the purpose of obtaining significant

targets and intelligible results.

In summary, CRISPRme answers to a precise necessity, having an all-in-one toolbox,

usable by non-informaticians, that process huge quantity of data, solves a complex task like

off-targets enumeration and returns many simple and easy-to-read and use files and plots.

93

5 Future Directions

This Section summarizes new implications and possible directions of the field.

Genetic engineering and all its correlated fields and sectors have seen a huge growth in

the last years. Leading to an increase interest in the sector and resulting in an explosion of

project and related works.

The work presented in this thesis, is directed to professionals that want to understand

and estimate outcomes of experiments without the costs in terms of money, equipment and

time. This trend is becoming very popular due to the decreasing of price of powerful

computers, in conjunction with the ease of use and simplicity of prediction software, like

the ones presented in this work.

So, future directions of the fields will be represented by the use of these software and

similar software in prediction pipelines, that will become more and more popular amongst

technicians due to necessity and ease of use.

Since CRISPR/Cas is becoming predominant and it is ever-growing, prediction

pipelines and genetic screening will become standard for any medical treatment and

personal medicine (Flores et al., 2013) will become the standardized approach in the recent

future.

Furthermore, useful computational applications and prediction tools, will become the

standard approach to avoid wasting resources and time to test with a blind approach.

In a near future, a patient will enter a hospital, got sequenced, tested for any possible

harmful predicted off-target or possible susceptibility to a drug or a treatment, and cured

with its specific condition as a starting point.

Similar software will become more and more popular, they will be integrated with

chemical and biophysical knowledge, correcting the result using the ever-growing

knowledge about CRISPR/Cas behavior. Right now, is nearly impossible to predict

outcomes without using a brute force approach and then filtering results by using empirical

data, regression algorithm and machine learning techniques, trying to extrapolate real off-

targets by comparing expected results with obtained results.

This task is now time consuming, imprecise and generates many false positives.

In fact, is not possible to certificate in-silico CRISPR/Cas outcome, without performing

in vitro and in vivo sequencing.

What is expected is to resolve these problems, by producing more and more accurate

models to predict outcome without the usage of brute force and exhaustive approaches,

resulting in fewer computational time, less junk results and more accuracy in the produced

results.

Another aspect that will surely become more and more studied in the future, is the usage

of variants and mutations.

In this work, it is explained how to use and why it is necessary to use variants to find

possible off-target, including also a real case study showing the importance of this

approach.

In the future, it is expected the growth and the production of more and more variants

databases, containing more samples, more specific mutations and with more accuracy.

This will dramatically increase the power of prediction tools and will transform them in

certifier and assessment tools, transforming the approach from a brute force, omni-

comprehensive result producer, to a specific and on-point analysis, resulting in precise and

time saving analysis. This will completely transform the field and how the computational

approach is seen and used.

94

Summarizing, future directions for the field, will be:

• Possibility to transform brute-force and exhaustive approach, to a more precise

and on-point approach, reducing time wasting and resource consumption.

• Utilization of personal data, as variants and medical records, to direct the

searches on-point, finding only the outcomes that are correlated to a specific

person or pathology.

• Substitution of time consuming and expensive lab tests, with faster, cheaper

and accurate in-silico predictions.

These directions will be taken in less years than expected and will revolutionize how

we think and how we approach these kinds of problems.

95

6 References

A map of human genome variation from population-scale sequencing. (2010). Nature,

467(7319), 1061–1073. https://doi.org/10.1038/nature09534
Aho, A. v, & Corasick, M. J. (1975). Efficient string matching: an aid to bibliographic

search. Communications of the ACM, 18(6), 333–340.

Allen, G., & Owens, M. (2010). The Definitive Guide to SQLite. Apress.

https://doi.org/10.1007/978-1-4302-3226-1

Auer, T. O., Duroure, K., Concordet, J.-P., & del Bene, F. (2014). CRISPR/Cas9-mediated

conversion of eGFP- into Gal4-transgenic lines in zebrafish. Nature Protocols, 9(12),

2823–2840. https://doi.org/10.1038/nprot.2014.187

Bae, S., Park, J., & Kim, J.-S. (2014). Cas-OFFinder: a fast and versatile algorithm that

searches for potential off-target sites of Cas9 RNA-guided endonucleases.

Bioinformatics, 30(10), 1473–1475. https://doi.org/10.1093/bioinformatics/btu048

Bayer, R., & McCreight, E. M. (1972). Organization and maintenance of large ordered

indexes. Acta Informatica, 1(3), 173–189. https://doi.org/10.1007/BF00288683

Bemer, R. W. (1961). Letters to the editor. Communications of the ACM, 4(3).

https://doi.org/10.1145/366199.366206

Bentley, J., & Sedgewick, B. (1998a). Ternary search trees. Dr. Dobb’s Journal, 23(4).

Bentley, J., & Sedgewick, B. (1998b). Ternary search trees. Dr. Dobb’s Journal, 23(4).

Boyer, R. S., & Moore, J. S. (1977). A fast string searching algorithm. Communications of

the ACM, 20(10), 762–772. https://doi.org/10.1145/359842.359859

Bron, C. (1972). Merge sort algorithm [M1]. Communications of the ACM, 15(5), 357–

358. https://doi.org/10.1145/355602.361317

Browser, U. G. (2013). Human Genome 19.

Http://Hgdownload.Cse.Ucsc.Edu/GoldenPath/Hg19/Chromosomes/.

Cancellieri, S., Canver, M. C., Bombieri, N., Giugno, R., & Pinello, L. (2020). CRISPRitz:

rapid, high-throughput and variant-aware in silico off-target site identification for

CRISPR genome editing. Bioinformatics, 36(7), 2001–2008.

https://doi.org/10.1093/bioinformatics/btz867

Canver, M. C., Joung, J. K., & Pinello, L. (2018). Impact of genetic variation on CRISPR-

Cas targeting. The CRISPR Journal, 1(2), 159–170.

Canver, M. C., Smith, E. C., Sher, F., Pinello, L., Sanjana, N. E., Shalem, O., Chen, D. D.,

Schupp, P. G., Vinjamur, D. S., Garcia, S. P., Luc, S., Kurita, R., Nakamura, Y.,

Fujiwara, Y., Maeda, T., Yuan, G.-C., Zhang, F., Orkin, S. H., & Bauer, D. E. (2015).

BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis.

Nature, 527(7577), 192–197. https://doi.org/10.1038/nature15521

Casini, A., Olivieri, M., Petris, G., Montagna, C., Reginato, G., Maule, G., Lorenzin, F.,

Prandi, D., Romanel, A., Demichelis, F., & others. (2018). A highly specific SpCas9

variant is identified by in vivo screening in yeast. Nature Biotechnology, 36(3), 265.

Chaim, L. H. K. T. (2014). Interval Tree.

Chaudhari, H. G., Penterman, J., Whitton, H. J., Spencer, S. J., Flanagan, N., Lei Zhang,

M. C., Huang, E., Khedkar, A. S., Toomey, J. M., Shearer, C. A., Needham, A. W.,

Ho, T. W., Kulman, J. D., Cradick, T. J., & Kernytsky, A. (2020). Evaluation of

Homology-Independent CRISPR-Cas9 Off-Target Assessment Methods. The

CRISPR Journal, 3(6), 440–453. https://doi.org/10.1089/crispr.2020.0053

Chen, J. S., Dagdas, Y. S., Kleinstiver, B. P., Welch, M. M., Sousa, A. A., Harrington, L.

B., Sternberg, S. H., Joung, J. K., Yildiz, A., & Doudna, J. A. (2017). Enhanced

proofreading governs CRISPR–Cas9 targeting accuracy. Nature, 550(7676), 407.

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang,

W., Marraffini, L. A., & others. (2013). Multiplex genome engineering using

CRISPR/Cas systems. Science, 339(6121), 819–823.

96

Consortium, 1000 Genomes Project, & others. (2015). A global reference for human

genetic variation. Nature, 526(7571), 68.

Consortium, E. P., & others. (2004). The ENCODE (ENCyclopedia of DNA elements)

project. Science, 306(5696), 636–640.

Dagum, L., & Menon, R. (1998). OpenMP: an industry standard API for shared-memory

programming. IEEE Computational Science and Engineering, 5(1), 46–55.

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker,

R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., & Durbin, R. (2011). The

variant call format and VCFtools. Bioinformatics, 27(15), 2156–2158.

https://doi.org/10.1093/bioinformatics/btr330

D’haeseleer, P. (2006). What are DNA sequence motifs? Nature Biotechnology, 24(4),

423–425. https://doi.org/10.1038/nbt0406-423

Doench, J. G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E. W., Donovan, K. F.,

Smith, I., Tothova, Z., Wilen, C., Orchard, R., & others. (2016a). Optimized sgRNA

design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature

Biotechnology, 34(2), 184.

Doench, J. G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E. W., Donovan, K. F.,

Smith, I., Tothova, Z., Wilen, C., Orchard, R., & others. (2016b). Optimized sgRNA

design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature

Biotechnology, 34(2), 184.

Doench, J. G., Hartenian, E., Graham, D. B., Tothova, Z., Hegde, M., Smith, I., Sullender,

M., Ebert, B. L., Xavier, R. J., & Root, D. E. (2014a). Rational design of highly active

sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nature Biotechnology,

32(12), 1262.

Doench, J. G., Hartenian, E., Graham, D. B., Tothova, Z., Hegde, M., Smith, I., Sullender,

M., Ebert, B. L., Xavier, R. J., & Root, D. E. (2014b). Rational design of highly active

sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nature Biotechnology,

32(12), 1262.

FEUGHELMAN, M., LANGRIDGE, R., SEEDS, W. E., STOKES, A. R., WILSON, H.

R., HOOPER, C. W., WILKINS, M. H. F., BARCLAY, R. K., & HAMILTON, L. D.

(1955). Molecular Structure of Deoxyribose Nucleic Acid and Nucleoprotein. Nature,

175(4463), 834–838. https://doi.org/10.1038/175834a0

Flores, M., Glusman, G., Brogaard, K., Price, N. D., & Hood, L. (2013). P4 medicine: how

systems medicine will transform the healthcare sector and society. Personalized

Medicine, 10(6), 565–576. https://doi.org/10.2217/pme.13.57

Foster, M. W. (2008). Human Genome Diversity Project (<scp>HGDP</scp>). In eLS.

Wiley. https://doi.org/10.1002/9780470015902.a0005173.pub2

Frankish, A., Diekhans, M., Ferreira, A.-M., Johnson, R., Jungreis, I., Loveland, J., Mudge,

J. M., Sisu, C., Wright, J., Armstrong, J., Barnes, I., Berry, A., Bignell, A.,

Carbonell Sala, S., Chrast, J., Cunningham, F., Di Domenico, T., Donaldson, S.,

Fiddes, I. T., … Flicek, P. (2019). GENCODE reference annotation for the human

and mouse genomes. Nucleic Acids Research, 47(D1), D766–D773.

https://doi.org/10.1093/nar/gky955

Fredkin, E. (1960). Trie memory. Communications of the ACM, 3(9), 490–499.

https://doi.org/10.1145/367390.367400

Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M., & Joung, J. K. (2014). Improving CRISPR-

Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 32(3),

279–284. https://doi.org/10.1038/nbt.2808

Fujimori, S., Davidson, B. L., Kelley, W. N., & Palella, T. D. (1989). Identification of a

single nucleotide change in the hypoxanthine-guanine phosphoribosyltransferase

gene (HPRTYale) responsible for Lesch-Nyhan syndrome. Journal of Clinical

Investigation, 83(1), 11–13. https://doi.org/10.1172/JCI113846

97

Haeussler, M., Schönig, K., Eckert, H., Eschstruth, A., Mianné, J., Renaud, J.-B.,

Schneider-Maunoury, S., Shkumatava, A., Teboul, L., Kent, J., & others. (2016).

Evaluation of off-target and on-target scoring algorithms and integration into the

guide RNA selection tool CRISPOR. Genome Biology, 17(1), 148.

Herman, J. G., Merlo, A., Mao, L., Lapidus, R. G., Issa, J. P., Davidson, N. E., Sidransky,

D., & Baylin, S. B. (1995). Inactivation of the CDKN2/p16/MTS1 gene is frequently

associated with aberrant DNA methylation in all common human cancers. Cancer

Research, 55(20), 4525–4530.

Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., Li, Y.,

Fine, E. J., Wu, X., Shalem, O., & others. (2013). DNA targeting specificity of RNA-

guided Cas9 nucleases. Nature Biotechnology, 31(9), 827.

Hume, A., & Sunday, D. (1991). Fast string searching. Software: Practice and Experience,

21(11), 1221–1248. https://doi.org/10.1002/spe.4380211105

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012).

A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial

Immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829

Johnson, A. D. (2010). An extended IUPAC nomenclature code for polymorphic nucleic

acids. Bioinformatics, 26(10), 1386–1389.

Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q.,

Collins, R. L., Laricchia, K. M., Ganna, A., Birnbaum, D. P., Gauthier, L. D., Brand,

H., Solomonson, M., Watts, N. A., Rhodes, D., Singer-Berk, M., England, E. M.,

Seaby, E. G., Kosmicki, J. A., … MacArthur, D. G. (2020). The mutational constraint

spectrum quantified from variation in 141,456 humans. Nature, 581(7809), 434–443.

https://doi.org/10.1038/s41586-020-2308-7

Karvelis, T., Gasiunas, G., Miksys, A., Barrangou, R., Horvath, P., & Siksnys, V. (2013).

crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus

thermophilus. RNA Biology, 10(5), 841–851. https://doi.org/10.4161/rna.24203

Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M., &

Haussler, a. D. (2002). The Human Genome Browser at UCSC. Genome Research,

12(6), 996–1006. https://doi.org/10.1101/gr.229102

Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., &

Joung, J. K. (2016). High-fidelity CRISPR–Cas9 nucleases with no detectable

genome-wide off-target effects. Nature, 529(7587), 490–495.

https://doi.org/10.1038/nature16526

Knuth, D. E., Morris, Jr. , J. H., & Pratt, V. R. (1977). Fast Pattern Matching in Strings.

SIAM Journal on Computing, 6(2), 323–350. https://doi.org/10.1137/0206024

Komor, A. C., Badran, A. H., & Liu, D. R. (2017). CRISPR-based technologies for the

manipulation of eukaryotic genomes. Cell, 168(1–2), 20–36.

Kreitman, M. (1983). Nucleotide polymorphism at the alcohol dehydrogenase locus of

Drosophila melanogaster. Nature, 304(5925), 412–417.

https://doi.org/10.1038/304412a0

Kühn, R., Schwenk, F., Aguet, M., & Rajewsky, K. (1995). Inducible Gene Targeting in

Mice. Science, 269(5229), 1427–1429. https://doi.org/10.1126/science.7660125

Lessard, S., Francioli, L., Alfoldi, J., Tardif, J.-C., Ellinor, P. T., MacArthur, D. G., Lettre,

G., Orkin, S. H., & Canver, M. C. (2017). Human genetic variation alters CRISPR-

Cas9 on-and off-targeting specificity at therapeutically implicated loci. Proceedings

of the National Academy of Sciences, 201714640.

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler

transform. Bioinformatics, 25(14), 1754–1760.

Lin, Y., Cradick, T. J., Brown, M. T., Deshmukh, H., Ranjan, P., Sarode, N., Wile, B. M.,

Vertino, P. M., Stewart, F. J., & Bao, G. (2014a). CRISPR/Cas9 systems have off-

target activity with insertions or deletions between target DNA and guide RNA

98

sequences. Nucleic Acids Research, 42(11), 7473–7485.

https://doi.org/10.1093/nar/gku402

Lin, Y., Cradick, T. J., Brown, M. T., Deshmukh, H., Ranjan, P., Sarode, N., Wile, B. M.,

Vertino, P. M., Stewart, F. J., & Bao, G. (2014b). CRISPR/Cas9 systems have off-

target activity with insertions or deletions between target DNA and guide RNA

sequences. Nucleic Acids Research, 42(11), 7473–7485.

Lowy-Gallego, E., Fairley, S., Zheng-Bradley, X., Ruffier, M., Clarke, L., & Flicek, P.

(2019). Variant calling on the GRCh38 assembly with the data from phase three of

the 1000 Genomes Project. Wellcome Open Research, 4, 50.

https://doi.org/10.12688/wellcomeopenres.15126.2

Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., &

Church, G. M. (2013). RNA-Guided Human Genome Engineering via Cas9. Science,

339(6121), 823–826. https://doi.org/10.1126/science.1232033

Manber, U., & Myers, G. (1993). Suffix Arrays: A New Method for On-Line String

Searches. SIAM Journal on Computing, 22(5), 935–948.

https://doi.org/10.1137/0222058

McKenna, A., & Shendure, J. (2018). FlashFry: a fast and flexible tool for large-scale

CRISPR target design. BMC Biology, 16(1), 74.

Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M., & Valen, E. (2014).

CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic

Acids Research, 42(W1), W401–W407.

Moore, J. E., Purcaro, M. J., Pratt, H. E., Epstein, C. B., Shoresh, N., Adrian, J., Kawli, T.,

Davis, C. A., Dobin, A., Kaul, R., Halow, J., van Nostrand, E. L., Freese, P., Gorkin,

D. U., Shen, Y., He, Y., Mackiewicz, M., Pauli-Behn, F., Williams, B. A., … Weng,

Z. (2020). Expanded encyclopaedias of DNA elements in the human and mouse

genomes. Nature, 583(7818), 699–710. https://doi.org/10.1038/s41586-020-2493-4

Moreno-Mateos, M. A., Vejnar, C. E., Beaudoin, J.-D., Fernandez, J. P., Mis, E. K.,

Khokha, M. K., & Giraldez, A. J. (2015). CRISPRscan: designing highly efficient

sgRNAs for CRISPR-Cas9 targeting in vivo. Nature Methods, 12(10), 982.

Munshi, A. (2009a). The opencl specification. 2009 IEEE Hot Chips 21 Symposium (HCS),

1–314.

Munshi, A. (2009b). The opencl specification. 2009 IEEE Hot Chips 21 Symposium (HCS),

1–314.

Nicholson, A. W. (2014). Ribonuclease III mechanisms of double-stranded RNA cleavage.

Wiley Interdisciplinary Reviews: RNA, 5(1), 31–48.

https://doi.org/10.1002/wrna.1195

Perez, A. R., Pritykin, Y., Vidigal, J. A., Chhangawala, S., Zamparo, L., Leslie, C. S., &

Ventura, A. (2017). GuideScan software for improved single and paired CRISPR

guide RNA design. Nature Biotechnology, 35(4), 347–349.

https://doi.org/10.1038/nbt.3804

Pliatsika, V., & Rigoutsos, I. (2015). “Off-Spotter”: very fast and exhaustive enumeration

of genomic lookalikes for designing CRISPR/Cas guide RNAs. Biology Direct, 10(1),

4.

Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome

engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11), 2281–2308.

https://doi.org/10.1038/nprot.2013.143

Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and

targeting genomes. Nature Biotechnology, 32(4), 347–355.

https://doi.org/10.1038/nbt.2842

Sanjana, N. E., Shalem, O., & Zhang, F. (2014). Improved vectors and genome-wide

libraries for CRISPR screening. Nature Methods, 11(8), 783.

Scott, D. A., & Zhang, F. (2017). Implications of human genetic variation in CRISPR-

based therapeutic genome editing. Nature Medicine, 23(9), 1095.

99

Shalem, O., Sanjana, N. E., Hartenian, E., Shi, X., Scott, D. A., Mikkelsen, T. S., Heckl,

D., Ebert, B. L., Root, D. E., Doench, J. G., & Zhang, F. (2014). Genome-Scale

CRISPR-Cas9 Knockout Screening in Human Cells. Science, 343(6166), 84–87.

https://doi.org/10.1126/science.1247005

Slaymaker, I. M., Gao, L., Zetsche, B., Scott, D. A., Yan, W. X., & Zhang, F. (2016).

Rationally engineered Cas9 nucleases with improved specificity. Science, 351(6268),

84–88. https://doi.org/10.1126/science.aad5227

Stadtmauer, E. A., Fraietta, J. A., Davis, M. M., Cohen, A. D., Weber, K. L., Lancaster, E.,

Mangan, P. A., Kulikovskaya, I., Gupta, M., Chen, F., Tian, L., Gonzalez, V. E., Xu,

J., Jung, I., Melenhorst, J. J., Plesa, G., Shea, J., Matlawski, T., Cervini, A., … June,

C. H. (2020). CRISPR-engineered T cells in patients with refractory cancer. Science,

367(6481). https://doi.org/10.1126/science.aba7365

TARJAN R. (1971). Depth- first search and linear graph algorithms.

https://doi.org/10.1137/0201010

Tsai, S. Q., Zheng, Z., Nguyen, N. T., Liebers, M., Topkar, V. v, Thapar, V., Wyvekens,

N., Khayter, C., Iafrate, A. J., Le, L. P., Aryee, M. J., & Joung, J. K. (2015). GUIDE-

seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases.

Nature Biotechnology, 33(2), 187–197. https://doi.org/10.1038/nbt.3117

Vakulskas, C. A., Dever, D. P., Rettig, G. R., Turk, R., Jacobi, A. M., Collingwood, M. A.,

Bode, N. M., McNeill, M. S., Yan, S., Camarena, J., & others. (2018). A high-fidelity

Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing

in human hematopoietic stem and progenitor cells. Nature Medicine, 24(8), 1216.

Walton, R. T., Christie, K. A., Whittaker, M. N., & Kleinstiver, B. P. (2020). Unconstrained

genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science,

368(6488), 290–296. https://doi.org/10.1126/science.aba8853

Wiedenheft, B., Sternberg, S. H., & Doudna, J. A. (2012). RNA-guided genetic silencing

systems in bacteria and archaea. Nature, 482(7385), 331–338.

https://doi.org/10.1038/nature10886

Zhu, L. J., Holmes, B. R., Aronin, N., & Brodsky, M. H. (2014). CRISPRseek: a

bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9

genome-editing systems. PloS One, 9(9), e108424.

