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Abstract. Heating load forecasting is a key task for operational plan-
ning in district heating networks. In this work we present two advanced
models for this purpose, namely a convolutional neural network (CNN)
and a Stochastic Variational Gaussian Process (SVGP). Both models are
extensions of an autoregressive linear model available in the literature.
The CNN outperforms the linear model in terms of 48-hours prediction
accuracy and its parameters are interpretable. The SVGP has perfor-
mance comparable to the linear model but it intrinsically deals with
prediction uncertainty, hence it provides both load estimations and con-
fidence intervals. Models and performance are analyzed and compared
on a real dataset of heating load collected in an Italian network.

Keywords - Heating load forecasting, smart grids, convolutional neural net-
works, Stochastic Variational Gaussian Processes, model interpretability.

1 Introduction

Energy management for smart grids gained strong interest from the artificial
intelligence community [17]. A branch of smart grids concerns District Heating
Networks (DHNSs), centralized heating plants that provide heating to residential
and commercial buildings through a network of pipes. In particular these mea-
surements consider the temperature and the water flow rate. Accurate prediction
of heating load plays a key role in energy production, supplying planning and
energy saving, with economical and environmental benefits.

Data-driven forecasting [4,3,5] involves learning models of a variable of inter-
est (i.e., the heating load in our case) from historical data of the same and other



variables (e.g., meteorological or social factors) to predict future values of the
variable of interest. Several methodologies are available in the literature for this
purpose. Autoregressive linear models [15,1] predict the target variable consid-
ering a linear combination of environmental and social factors (day of the week,
calendar events). These models are usually simple to interpret but they have a
quite rigid function form that can limit their performance in case of complex
variable relationships. In [1] a multiple equation autoregressive linear approach
is proposed, where the heating load of each pair (hour of the day, day of the
week) is modeled independently, resulting in 168 equations.

Recurrent Neural Networks (RNN), in particular Long Short-Term Memory
(LSTM) [10] and convolutional-LSTM [19], are among the most used methods
for time series forecasting. The disadvantage of these models is that they require
large training datasets to be learned and they are hardly interpretable. CNNs
have been used for energy load forecasting and other problems related to time
series forecasting [14]. What differentiates these works from ours is that we
focus on the specific problem of heating load forecasting and provide a simple
CNN model having good interpretability and better forecasting performance
than available linear regression models.

Gaussian processes (GPs) [16] are other approaches used for time series fore-
casting. Their advantage is that they explicitly consider uncertainty in analyzed
data, hence their predictions are equipped with both expected values and con-
fidence intervals. On the other hand, exact learning of these models is very
time consuming and unfeasible for large datasets, hence approximated training
methods are used. Usage of GPs for time series analysis has recently gained in-
terest [18,8], and applications to the energy forecasting domain are present in
the literature [2,7,20]. The main differences between these approaches and our
model is that we use stochastic variational Gaussian processes (SVGPs), which
enable model training on a two-years dataset in few minutes using GPUs, and
that our model uses specific variables for heating load forecasting.

In the following of this paper we propose two models for heating load fore-
casting, a CNN and a SVGP. Both models take inspiration from the autoregres-
sive model proposed in [1] (see model called ARMy) and extend it with specific
features of CNN and SVGP, respectively. An analysis of the models is proposed
with the aim to explain [6] how they extend the autoregressive model. Models are
trained, tested and their performance are compared on a real dataset collected
in a DHN located in Verona (Italy), containing hourly heating load produced
by the plants in years 2016, 2017 and 2018. Novelties of this work are i) CNN
outperforms a state-of-the-art autoregressive linear regression model, ii) SVGP
has slightly lower performance but it provides useful confidence intervals on the
prediction, iii) first step towards model interpretability. Comparison with other
methods (e.g., LSTM and T-CNN) has been considered in some of our experi-
ments but in this paper we only presented the two models with best results in
terms of both performance and interpretability. The main contributions to the
state-of-the-art are summarized in the following:



- a CNN and a SVGP model are proposed for heating load forecasting in
DHNS;

- model parameters are analyzed and explained highlighting connections with
parameters of the autoregressive linear model in the literature;

- model performance are tested and compared on a real-world dataset.

The rest of the manuscript is organized as follows. Section 2 presents the
framework for model comparison, the dataset, the used methodologies and the
performance measures. Result and performance are analyzed in Section 3. Con-
clusions and future directions are described in Section 4.

2 Material and Methods

In this section we formalize the problem of heating load forecasting for DHNs,
we describe the dataset composed by heating load and environmental variables.
We finally introduce the modeling methodologies and performance measures we
used to compare the models.

2.1 Problem definition and system overview

District heating networks are plants in which a power station, often through
co-generation, produces heat and distributes it through a network of pipes con-
nected to commercial and residential buildings. The heating load is collected by
direct measurements performed in the plant. Forecasting methods are an im-
portant task for improving the process of planning, production and distribution
of heating. In Figure 1 an overview of data analysis framework is displayed. In
the first phase, models are trained using real-world data. In the second phase
models are tested on a different test set by performing all possible 48-hours pre-
dictions of heating load. In the last phase model parameters and performance
are analyzed and compared.
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Fig. 1. Overview of the data analysis framework



2.2 Dataset

In the present work we use a real dataset provided by AGSM! an Italian utility
company that manages a DHN in Verona. Data was collected from 01.01.2016
to 21.04.2018 with hourly sampling interval including historical load [ and fore-
cast of weather variables like temperature T, relative humidity (Ry), rainfall
(R), wind speed (Wg), wind direction (Wp). We first selected only observations
belonging to time intervals in which the heating is on (this is regulated by law
in intervals from 01.01.2016 to 11.05.2016, from 11.10.2016 to 14.05.2017, and
from 16.10.2017 to 21.04.2018). We engineered new variables according to sim-
ilar applications in the literature [15]. The complete list of variables is display
in Table 1. Models are trained using data related to years 2016 and 2017 (10140
observations) and tested on 2018 data (2497 observations).

Table 1. List of variables used in the models.

Variable Description Variable Description

l Heating load [MW] (target) Ws Wind speed [m/s]

l; 1 € [1, 7] Heating load i days ago|Wp Wind direction [0,9], 9=no wind
T Temperature [°C] R Rainfall (1 = rain, 0 = no rain)
T2 Square of T' H Holiday (0 = false, 1 = true)
Trna(7) Moving avg of T last 7 days h Hour of the day [0, 23]

T Maximum T of the day d Day of the week [1, 7]

T Square of Ty of the day w Weekend (0 = false, 1 = true)
Trip T of the previous day Sa Saturday (0 = false, 1 = true)
TJ%/IP TZ, of previous day Su Sunday (0 = false, 1 = true)
Ry Relative humidity [%)]

2.3 Convolutional Neural Network model

CNNs are neural networks that use a linear mathematical operator called con-
volution in at least one of their layers [10]. Each convolutional neuron takes two
functions z(¢) and k(t) as inputs and generates a new function f(¢) which is de-
fined, when t is discrete, as f(t) = (zxk)(t) = 32.°°__ 2(i)k(t—i) where function
x is often referred to as input, function k as kernel (or filter) and function f as
feature map. The kernel is learned by suitable algorithms to allow the network
to approximate a function of interest, in our case study, the future values of
heating load from past and present values of environmental and social factors.
Working with time series data, we apply convolution over a single dimension,
i.e., time t, hence our kernels are bidimensional matrices of parameters having
one column for each input variable and one row for each time instant considered

in the convolution.

! nttps://wuw.agsm.it/



The CNN presented in this work has a simple architecture which however
outperforms the autoregressive linear model presented in [1], showing the strong
capabilities of CNNs to forecast future values of heating load. The network ar-
chitecture is displayed in Figure 2.a. It takes as an input a matrix having one
column for each variable (22 columns in total) and one row for each time in-
stant considered for predicting the heating load of the next hour (168 rows
in total). The first layer is a CNN layer with five neurons. Each neuron per-
forms a convolution of the input using a kernel of the same dimension of the
input itself (i.e., 3697 weights are used in each kernel, bias included) and then
applies a ReLU activation function (i.e., ReLU(v) = max(v,0)) generating a
single real value for each neuron. The five feature maps fo, ..., f1 thus obtained
are then passed to a dense neuron, which computes their linear combination
Yy = 'LUOfO + wlfl + w2f2 + ’wgfg + ’LU4f4 + ws where w; € R are the Weights
and the bias of the dense neuron. This operation can be seen as an extension of
the linear model presented in [1] since that linear model has one autoregressive
equation for each pair (weekday, hour), i.e., 168 equations with 20 variables for a
total of 3360 parameters, while this CNN model is the composition of 5 convolu-
tions made by kernels having a parameter for each pair (variable, time instant),
namely, 22 variables and 168 time instants for each of the 5 convolutions plus 6
parameters used to compose the convolutions, plus 6 biases, for a total of 18491
parameters. The CNN model is trained using a dataset containing weather vari-
ables T, Ry, Wg, Wp, R, T?, Tona(ry, T, T2, Tap, T]ap, historical heating
load variables I;, 1 < ¢ < 7 and social factors H, h, d, w (see Table 1 for variable
definitions).

Weight initialization for each layer is performed by Xavier normal initial-
izer [9]. We trained the model using Keras?, splitting further training dataset
into train (6500 observations) and validation (3460 observations) to improve the
model selection and avoid overfitting problem, typical of neural networks. The
weights are learned by optimized gradient descent Adam [13], for 20 epochs us-
ing batch sizes of 32. Early stopping procedure monitors the training process,
saving the best set of weights that minimize a loss function computed at the end
of each epoch as mean squared error (MSE) over the validation dataset.

2.4 Stochastic Variational Gaussian Process model

Let X be a finite set of input points z1,...,xz, (they can be scalars or vec-
tors), Gaussian processes assume the probability distribution of function values
p(f(x1),..., f(z,)) at those points to be jointly Gaussian, namely x ~ A (m, K)
where matrix K is called the covariance matriz or kernel [16,18]. It has dimen-
sion n X n, where n is the number of inputs of the training set. During model
training the kernel matrix is filled in with covariance values between all possible
pairs of inputs in the training sets. A key point of GP model design is the choice

s 2 ’
of kernels. We use periodic kernels kperiodic(,2') = 02 exp (fw>

for modeling cyclical behaviors due to social factors and Radial Basis Function
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(RBF) kernels krpr(7,2') = 02 exp (— (x;g)z) for environmental factors, such

as temperature. The parameters of periodic kernel are the output variance o,
the period length p and the length scale I. Those of RBF kernels are the output
variance ¢ and the length scale [.

The posterior distribution of the function values on the testing locations f,
(i.e. load predictions) is jointly Gaussian distributed with the function values
f on the training locations. GP predictions provide both expected values and
confidence intervals, which are extremely important in forecasting applications.
The downside of this approach is its computational cost, the time and space
complexity for training.

A solution to the complexity problem is approximate training methods. We
use, in particular, Stochastic Variational Gaussian Processes (SVGPs) that use
stochastic optimization to scale GP training to large datasets. The main idea of
this model is to select a set of datapoints called inducing inputs or pseudo inputs
on which the covariance matrix is generated. The position of these points in the
dataset is optimized together with the model parameters through gradient-based
optimization with the aim to maximize the evidence lower bound (ELBO) [11],
a lower bound of the log-marginal likelihood. Improving the ELBO improves
the variational posterior approximation by minimizing the Kullback-Leibler di-
vergence between the true posterior and the variational approximation. Since
inducing inputs variational parameters and not model parameters, they can be
optimized without risk of overfitting. We perform SVGP training by Adamazx
[13] with predictive log likelihood loss function [12]. Batches of 256 points are
used and 500 inducing inputs are chosen from all input dimensions. Parameter
optimization was iterated for 100 epochs. Finally, the Cyclical Learning Rate
(CLR) [21] method is used to optimize the learning rate of the model during
the training phase. Models are trained using GPyTorch® on GPUs provided by
Google Colab*.

The model proposed in this work uses 13 variables, namely, T, Ry, Wg, Wp,
R, T?, Tna(ry, T, T2, Top, Tf/[p, Sa and Su (see Table 1). For each of these
variables we introduce an RBF kernel because future heating load values should
be inferred from past load values having similar values for these variables. Then
we introduce two periodic kernels for considering the daily and the weekly cycle of
the heating load due to social factors. We finally compose the two periodic kernels
by summing them (to consider both periodicities) and we multiply the result by
the product of all the RBF kernels of environmental factors. We multiply kernels
because the effect of multiplication is similar to the intersection (logical and) of
data filters, hence we predict future heating loads considering more important
past loads having similar values of all social and environmental factors. The final
kernel is kp(x1,X2) = (kp_2an(X1,X2) + kp_16sn(X1,%2)) * [[,cv kFrRBF.v (X1, X2)
where kp o4n(x1,x2) is the daily periodic kernel, kp_16sn(X1,X2) is the weekly
periodic kernel and krpr_y(X1,%2) is the ard-version of the RBF kernel. We
notice that in the proposed SVGP model, variables related to previous loads

3 https://gpytorch.ai/
* https://colab.research.google.com



li;1 <4 < 7 are not used because the model intrinsically computes loads as a
weighted sum of past loads corresponding to similar environmental and social
conditions.

2.5 Performance measure

Performance is evaluated by Root Mean Square Error (RMSE) on 48-hours fore-
casting horizon. Given an observed time-series with n observations yi, . .., ¥, and

1 N
predictions 1, .. ., Un, the formula is RMSE = N > (4 — y¢)2. Performance
t=1

is evaluated on the overall test set, therefore we iterate the computation of the
RMSE on a sliding window of 48-hours, moving from the beginning to the end
of the test set. For example, starting from the first point p; we forecast the next
48-hours and compute the RMSE on the interval [p;,pss], then we move to the
next point ps repeating the previous step on the interval [ps,p49], and so on. The
measure thus obtained is called (RMSEFE) in the following and it is the average
RMSE over all 48-hours predictions in the test set. The RMSE was computed
on a 48-hours basis for because of a specific application requirement.

3 Results

In this section we evaluate the proposed models, first analyzing the CNN and the
SVGP independently, then for CNN we show some kernel parameters and how
single CNN neuron signals are composed to generate the heating load prediction.
For SVGP we display the kernels of a few single variables and their composition.
Some details are provided to investigate the interpretability and the evaluation
of models performance on test set.

3.1 CNN model

The CNN model described in the previous section (Figure 2.a) computes the
heating load as a weighted sum of five signals (i.e., fo,..., f4) generated by
convolution of the multivariate input signal. One of the five kernels used to
perform the convolution, namely kernel 0, is displayed as a heatmap in Figure
2.c, where rows are time instants (i.e., index 168 corresponds to one hour before
and 0 corresponds to 168 hours before the current time), columns are variables
and colors values of parameters.

Interestingly enough, temperature 7" and previews day load [y have value of
parameters with a quite direct interpretation, although CNN are known to be
hardly interpretable. In Figure 2.d we show the values of kernel for only these
two variables in a line chart having time in the x-axis and value of parameter
in the y-axis. Temperature parameters (blue line) are negative in 168 (i.e., one
hour before the prediction instant) and they increase (from right to left) to
about 0.05 moving towards 0 (i.e., one week before the prediction). These values



CNN architecture Feature maps over a week (08.01.2018 - 14.01.2018)
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Fig. 2. a) CNN’s architecture; b) Neuron outputs for one week of prediction; ¢) Kernel
of neuron 1; d) Weights of T and I variables in kernel 1.

show that the temperature in the previous two days have a negative impact on
the heating load, and its informativeness becomes almost null after two days.
This behaviour makes sense since we know that low temperatures imply high
heating load to warm up buildings. Also the decrease of the absolute value of
the parameter when moving back in time seems to make sense, since it means
that recent temperatures are more informative than old one for the prediction.
The parameters related to the load of the previous day (red line) have even more
interesting behavior, with daily peaks that decrease from 168 to about 75 (from
right to left) and then increase from 75 to 0. All peaks are positive because
past load have a positive influence on future loads. The daily peaks show the
social component of load, namely, to predict today’s load at time ¢ it is more
informative the yesterday’s load at ¢ than loads at different hours of the day.
This is because people usually warm up buildings differently in hours of the day.
Moreover, the increase of the peak corresponding to indices 48 and 24 highlights
the weekly pattern of the load, due to the fact that to predict heating load on
day d (e.g., Sunday) it is more informative to use past loads observed in day d
than in other days, because people use heating differently in days of the week.

Finally, the charts of Figure 2.b show the output of each of the 5 neurons
of the convolutional layer (blue, green, gray, orange and black lines), the output
of the network (red dashed line), and the true load (blue dashed line) for the



week from 08.01.2018 to 14.01.2018. We first observe that feature map f; has
an almost constant negative value, while feature map f; shows the typical load
peaks more than others. Considering the weights of the dense layer, i.e., wy =
0.900,w; = —0.561,wy = 0.221, w3 = 0.928, wy = 0.298, w5 = 0.030, we notice
that all of them but w, are positive, and wg and w3 have higher absolute values,
hence feature maps fo and f3 have stronger influence to the final prediction than
others. Finally, the load prediction y which is the weighted sum of convolution
signals is very similar to the true load signal .
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Fig. 3. a) SVGP kernels; b) Highlight on kernel parameters (similarity) of observations
taken on 09/02/2016 at 4:00pm against observations taken from 23/01/2016 at 10:00pm
to 09/02/2016 at 4:00pm; ¢) Kernel hyperparameters after training.

3.2 SVGP model

The SVGP model is based on a product of n x n kernels. Figure 3.a shows
the final kernel on the right and some of the factor kernels in the center. They



are all depicted as heatmaps in which yellow (and bright) to high parameter
values and blue (and dark) corresponds to parameters close to zero. Notice that
pictures show only a submatrix of each kernel and that each cell (7, j) of the final
kernel contains the product of the corresponding (i, j) cells of all factor kernels.
Patterns in the colors correspond to correlation patterns since each cell contains
a similarity measure between two values. In Figure 3.b we explain them in the
particular case of the row corresponding to 09.02.2016 at 4:00 pm. The x-axis
value 400 corresponds to the same date and moving from 400 back to 0 the time
decreases of one hour at each step. The day cycle is quite visible, since night
temperatures are lower than the temperature of 09.02.2016 at 4:00 pm, hence
the RBF kernel produces a smaller covariance value (see the periodical lower
values in the chart). Similar pattern, although with differences, can be seen in
the relative humidity kernel which is also RBF. Kernel (kp_o4n + kp_16sn) has a
more stable trend with a clear daily period (with peaks at 4:00 pm) summed to
a weekly period (with peaks on Tuesdays 09.02.2016). The corresponding values
of the final kernel (red line) tend to be high only when all factor values are high.
As the figure shows, recent values (close to 400) have high values since they are
very important to predict the heating load of the next hour. The parameters
(i.e., length scale and periodicity) of the various kernels are listed in Table 3.c.

3.3 Model comparison

The main properties of the two proposed models are listed in Figure 4.a, where
also the autoregressive linear model presented in [1] is reported for comparison.
The best performance is achieved by the CNN which however has a very high
number of parameters. The SVGP model has a slightly worse performance than
ARM but it has a small number of parameters and it provides confidence inter-
vals on prediction, which is a key feature in some applications. The training time
of the CNN is also low, because the network is very simple and the optimizer
reaches good performance with a small number of training epochs. However, the
training times of ARM and SVGP are also low for our application, since the
model is required to be updated only every 24 hours.

In Figure 4.b we show the trend of RMSE for the CNN (blue line) and
the SVGP (red line) on the test set (year 2018). Each point (x,y) represents a
RMSE (y) of a 48-hours forecast starting at instant x. The blue and red points
show the maximum and minimum RMSE of, respectively, the CNN and the
SVGP model. CNN has the maximum RMSE on February 25th at 9:00 am with
3.295 MW h, while the SVGP model has it maximum RMSE on February 12th
at 6:00 am with 3.184 MW h. Minimum RMSEs are achieved on February 5th at
10:00 am by CNN with 0.652M W h, whereas for SVGP on April 14th at 9:00 am
with 0.662M W h. The 48-hours predictions that generate these (best and worst)
performance are displayed in Figure 4.c-d-e-f). For SVGP confidence intervals
are also provided. Blue lines represent the true load and red lines the predicted
load. The heating load here displayed is standardized, to guarantee the privacy
of the dataset, as requested by the utility company.



RMSE evolution on test dataset
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Fig. 4. a) Models performance; b) RMSE evolution of CNN and SVGP for each 48
hours forecast performed in 2018. Each point (x,y) represents the RMSE (y) of a 48
hours forecast starting at instant x; c-d-e-f) 48-hours forecasting with minimum and
maximum RMSE error for CNN and SVGP.

4 Conclusion and ongoing work

CNN and SVGP models have been used to predict heating load in a real DHN.
Results show that the CNN outperforms a state-of-the-art autoregressive linear
regression model and the SVGP has slightly lower performance but it provides
useful confidence intervals on the prediction. Both models have been analyzed
and interpreted. More complex CNN architectures were also tested, obtaining
slightly better performance in terms of RMSE (i.e., up to 1.397) but with a large
increase of parameters (i.e., up to 121, 255). These architectures will be developed
in future work and their interpretability will be further investigated. Future
work concerns the improvement of model explainability and the integration of
automatic feature engineering in neural network and Gaussian process based
models.
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