Journal of Automated Reasoning
https://doi.org/10.1007/510817-022-09620-8

®

Check for
updates

Larry Wos: Visions of Automated Reasoning

Michael Beeson'(® - Maria Paola Bonacina?(® - Michael Kinyon3 -
Geoff Sutcliffe*

Received: 14 June 2021 / Accepted: 24 January 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract

This paper celebrates the scientific discoveries and the service to the automated reasoning
community of Lawrence (Larry) T. Wos, who passed away in August 2020. The narrative
covers Larry’s most long-lasting ideas about inference rules and search strategies for theorem
proving, his work on applications of theorem proving, and a collection of personal memories
and anecdotes that let readers appreciate Larry’s personality and enthusiasm for automated
reasoning.
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1 Introduction

by Maria Paola Bonacina and Geoff Sutcliffe

Larry Wos was born on July 13, 1930, in Chicago, USA. His parents were Polish
immigrants, a background that he remembered with pride. Wos was an accomplished
mathematician and computer scientist, with an exceptional vision for theorem proving, an
inexhaustible enthusiasm for its application in mathematics and logic, and a vivid curiosity
for computer experiments. There was a certain playfulness about him, as if research was a
bit like a game or puzzle, where he found joy in the discovery of patterns.
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After studying at the University of Chicago (BS and MS) and at the University of Illinois
at Urbana-Champaign (PhD), Wos spent his entire career at the Mathematics and Computer
Science (MCS) Division of Argonne National Laboratory, in Argonne near Chicago. Argonne
was the birth place of resolution: (John) Alan Robinson alternated summer jobs at Argonne
and at Stanford University in the years 1961-1966, with an implementation of the Davis—
Putnam procedure as his initial task in the summers at Argonne. It was at Argonne that
Robinson worked on resolution and unification in 1962—-1964, writing his milestone paper
on “A Machine-Oriented Logic Based on the Resolution Principle” in 1963 [61]. Larry Wos, at
Argonne since 1957, seized the moment and developed Argonne into the cradle of automated
theorem proving.

Larry Wos understood right away the power of resolution, as well as the need to control
it by appropriate strategies. Control strategies remained central in his research, and in his
relentless experimentation with theorem provers. This was the reason why he preferred the
name automated reasoning over automated deduction, feeling that “reasoning” better captures
the mix of inference and search that constitutes theorem proving by machine. This was also a
motivation for the name of the Association for Automated Reasoning. When the International
Joint Conference on Automated Reasoning (IJCAR) conference series was being planned
around 2000, Larry was delighted that the new event would use the phrase “Automated
Reasoning.”

Larry Wos was also a pioneer in recognizing how crucial it was to start building equality
into resolution. To this end, he developed the concept of demodulation, a first attempt at mech-
anizing the replacement of equals by equals. Even more importantly, George A. Robinson
and Wos were the first to propose the paramodulation inference rule, marking the beginning
of most of the ensuing research on paramodulation and superposition.

Not only was Larry Wos a discoverer of strategies and inference rules, he was also excep-
tional in leading the theorem proving group at Argonne, including Larry J. Henschen of
Northwestern University, Ewing (Rusty) Lusk, the late William W. (Bill) McCune, Ross
Overbeek, Robert (Bob) Veroff of (later) the University of New Mexico, Steven K. Winker,
and in connecting with other scientists invited to Argonne, including Deepak Kapur, Hantao
Zhang, and Maria Paola Bonacina. Wos also collaborated with numerous mathematicians,
especially from the University of Chicago. He was fond of applying the Argonne provers,
mainly Bill McCune’s OTTER, to search for proofs of mathematical theorems, constantly
seeking shorter or more elegant proofs, as if he wanted to show that automated theorem
proving can display not only brute force but also insightfulness and beauty. Many of his
quests were reported in his books [82, 87, 93, 94], the latter two written with Gail W. Pieper,
coordinator of writing and editing at MCS. These books show how keen he was on scientific
writing, directed also to the non-specialists. He also maintained an online page! to share his
theorem proving experiments. Under Larry’s leadership, the Argonne group played a key
role in the establishment of the Conference on Automated Deduction (CADE), the Journal
of Automated Reasoning (JAR), and the Association for Automated Reasoning (AAR).

Conference on Automated Deduction is the oldest conference on automated reasoning.
Prior to the inception of CADE, papers on theorem proving and related topics could appear
at only theory or artificial intelligence conferences. CADE provided a dedicated venue for
presentation of research in this area. After a Symposium on Automatic Demonstration held
at Rocquencourt, France, in 1968, an IEEE Workshop on Automated Theorem Proving was
organized by Wos and Henschen at Argonne in 1975. According to Gérard Huet, use of
the term “Automated Deduction” for the event began in 1977, and indeed a Workshop on

! http://www.automatedreasoning.net.
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Automated Deduction met later that year in Cambridge, USA. The acronym “CADE” was
suggested by Wolfgang Bibel and used for the first time in 1980 for the 5th Conference on
Automated Deduction held in Les Arcs, France. (The prior events were retrospectively named
CADE when the history of the conference was reconstructed in 2012.) CADE returned to
Argonne in 1988, when CADE-9 was organized by Rusty Lusk and Ross Overbeek. It was
at CADE-9 that Bill McCune released the first publicly available version of OTTER. Larry
gave a memorable banquet speech at the Natural History Museum in Chicago, delving into
a comparison of theorem proving with gambling, which he was fond of.

The Journal of Automated Reasoning, founded in 1985 with Wos as editor-in-chief, and
Gail Pieper as managing editor, played the same role at the journal level as CADE did at the
conference level. Prior to the creation of the JAR, journal papers on automated reasoning
could be submitted to only theory, artificial intelligence, or symbolic computation journals.
The foundation of a dedicated journal witnessed and furthered the growth of the field. The
first issue of JAR in March 1985 included a foreword by Wos and an overview paper with
several co-authors [92].

The Association for Automated Reasoning was established in 1983, with Larry Wos as
president, Bill McCune as secretary, and Larry Henschen as treasurer. The first issue of the
AAR Newsletter appeared in March 1983, with Gail Pieper as technical editor. Larry was a
warm supporter of the AAR as a way of connecting people beyond conference attendance. He
collaborated enthusiastically with all AAR secretaries (after Bill: Bob Veroff, Maria Paola
Bonacina, Amy Felty, Wolfgang Ahrendt, Martin Giese, and currently Philipp Riimmer), and
AAR Newsletter editors (after Gail: Jasmin Blanchette, and currently Sophie Tourret), relent-
lessly contributing reports of theorem proving experiments and theorem proving challenges
to the newsletter.

Larry Wos was honored with the first Automated Theorem Proving Prize of the American
Mathematical Society (with Steve Winker) in 1982 and with a liber amicorum in 1997 [75].
Wos won the first Herbrand Award in 1992, in recognition of his research and his role as
a founder of automated reasoning. His acceptance speech in the CADE-11 proceedings is
still inspiring today [83]. The Herbrand Award to Bill McCune in 2000 sealed the pioneering
season when Argonne was a beacon for theorem proving, a season that would not have
been possible without Larry Wos’ leadership. He will be remembered by many in automated
reasoning and beyond.

2 The Inference Rules

by Maria Paola Bonacina

Larry Wos’ research program was centered on the design of inference rules and control
strategies, the two components of a theorem proving strategy, and their refinement through
experiments. In Wos’ work, the inspiration for new approaches came from a mix of theoretical
quests and experimental trials. This style of conducting research emerges vividly from the
written records of Wos’ greatest inventions that are surveyed in this section: the set-of-
support strategy for resolution theorem proving [95], the unit-resulting resolution refinement
of resolution [96], the demodulation inference rule for equational replacement [96], and the
paramodulation inference rule for equality reasoning [60]. This section is subdivided into
four subsections, each devoted to one of these major contributions to the foundations of
automated theorem proving.
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Precisely because in Wos’ research the conception of new ideas was constantly interleaved
with their experimental evaluation with theorem provers, it is important to mention the sys-
tems that Wos used and contributed to, before delving into his theoretical work. Wos used
several theorem provers based on Robinson’s resolution inference rule [61], contributing to
their development (see [43] for a detailed account). The first one was P1, written by Wos
with Dan Carson: Five variants of P1, called PG1-5, were used in the experiments described
in Wos’ seminal papers on the set of support strategy [95] and unit-resulting resolution [96].

The second prover, called RW1 from the initials of George A. Robinson and Wos, offered
the first implementation of Wos’ own inference rules, demodulation [96] and paramodulation
[60]. Wos’ collaboration with Ross Overbeek led to a third system named WOS1 [54],
which implemented also hyperresolution [62], and formed the basis for the NIUTP1-7 series
of Argonne provers. With this series the Argonne group pioneered the notion of building
theorem provers from a toolkit of subroutines, leading to the development of the LMA library.
Subsequently Wos used ITP [44], built from the LMA library, and AURA [68], which was a
substantial step forward largely driven by Wos himself. The system that Wos used the most
is undoubtedly Bill McCune’s OTTER [49, 52], which remained Larry’s favorite even after
Bill had built the equational prover EQP [47, 48] from the Otter Parts Store library, which
was LMA’s successor, and later PROVERY [46].

2.1 Resolution with Set of Support

A main motivation for the set-of-support strategy was the idea that a theorem proving strategy
should minimize irrelevant inferences, that is, those that appear in the derivation but not in the
proof [95]. The derivation is the sequence of all inferences performed by the strategy during
the search, whereas the proof is the resolution proof tree with the empty clause [J at the root
and the input clauses at the leaves. The idea was that a way to reduce irrelevant inferences is to
make the strategy sensitive to the goal [95], where the goal is the negation of the conjecture ¢
to be proved from a set H of assumptions. Since resolution works refutationally with clauses,
the formulae in H and —¢ are transformed into clausal form. The resulting set of clauses is
the input to the theorem prover, which searches for a contradiction. At this point, however,
the distinction between clauses that come from the assumptions and the clauses that come
from the goal is lost. The set-of-support strategy addresses this by partitioning the input set
of clauses into two sets A and SOS, where A contains the clauses in the clausal form of H
and SOS contains the clauses in the clausal form of —¢. The set SOS is the set of support,
and the clauses in the clausal form of —¢ are called goal clauses.

The key element in the set-of-support strategy came from Larry Wos’ keen interest in
the application of automated theorem proving to mathematics. If H is the axiomatization of
a mathematical theory, it is known that H is consistent, and so is A, as transformation to
clausal form preserves satisfiability. Wos’ insight was that there is little point in generating
resolvents from clauses in A, because that will not lead to a contradiction. Therefore, after
a preprocessing step in which all factors of clauses in A are added to A, the set-of-support
strategy applies resolution with the restriction that at least one of the two parents is in SOS.
In other words, resolution steps where both parents are in A are forbidden. All generated
resolvents are added to SOS, so that the SOS is expanded and A remains fixed. Clauses in
SOS are said to be supported, and a resolution inference is supported if at least one parent is.
The set-of-support strategy is goal-sensitive, in the sense that all clauses added to SOS have
at least one goal clause as an ancestor. The set-of-support strategy inspired the definition
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of goal-sensitive strategies [58]: A theorem proving strategy is goal-sensitive if it generates
only clauses connected via inferences to goal clauses.

Wos proved that the set-of-support strategy preserves the refutational completeness of
resolution and also suggested two incomplete refinements. The first one forbids generating
a clause if the depth of its resolution proof tree is higher than a given bound. The second
one forbids generating a clause if the number of its literals is higher than a given bound
[95]. Indeed, Wos knew all too well the difficulty of simultaneously achieving completeness
and efficiency in automated theorem proving. Throughout his amazingly long activity as
an experimenter with OTTER, he was interested in trying incomplete strategies. Proving the
refutational completeness of an inference system is indispensable, but it is only a beginning.
Incomplete strategies can enable the theorem prover to prove more theorems, and can be a
starting point for developing new complete strategies that are more efficient.

The impact of the set-of-support strategy has been vast and long-lasting. The given-
clause algorithm, also known as the closure algorithm, was originally designed as a way to
implement the set-of-support strategy in several Argonne provers, and then evolved into the
central algorithm of automated theorem provers (e.g., OTTER, E [65], SPASS [79], VAMPIRE
[42], WALDMEISTER [35], PROVERY, and ZIPPERPOSITION [27]), and as such it is still being
investigated, e.g., [34, 66].

Resolution with set of support inspired semantic resolution [67], where A is the set of
clauses satisfied by a fixed guiding interpretation. Semantic resolution is a hyperinference
rule, as it combines multiple resolution inferences into one without generating intermediate
resolvents, in order to generate only resolvents that are false in the guiding interpretation.
Semantic resolution generalizes hyperresolution [62], where the guiding interpretation is
either all positive (all positive literals are satisfied) or all negative (all negative literals are
satisfied). The set-of-support strategy opened the way to goal-sensitive strategies, semanti-
cally guided strategies, and supported strategies with different definitions of set of support
(see, e.g., [18, 20, 58] for surveys and [24, 25] for recent developments).

2.2 A Practical Hyperinference Rule: Unit-Resulting Resolution

When discussing features of inference rules Larry Wos mentioned generality—the use of
most general unifiers as in resolution, immediacy—avoiding the generation of intermediate
clauses, and convergence—preventing the generation of consequences of intermediate clauses
[60]. While hyperresolution has these properties, and resolution with set of support is goal-
sensitive, Wos considered these refinements of resolution still not powerful enough to conquer
many interesting theorem proving problems [96].

A well-known disadvantage of (binary) resolution is that a resolvent inherits all the literals
of its parents except the two literals resolved upon. Inferred clauses grow longer and longer,
and hence more expensive to process. The only exception to this shortcoming, which was
later studied as duplication by combination [58], is represented by unit resolution, which
originated in the Davis—Putnam procedure [28]. In unit resolution one of the two parents is
a unit clause (a clause made of a single literal), and the resolvent is one literal shorter than
its non-unit parent.

Wos proposed a unit-preference strategy [89], where unit resolution steps have priority
over other resolution steps, a very natural choice also when executing inferences manually.
Also, Wos understood that it would be beneficial to extend as much as possible the unit
sections of a derivation, as he called the series of unit resolution steps [96]. This requires in
turn the availability of unit clauses. Thus, Wos devised unit-resulting (UR) resolution [45,
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96] as a hyperinference rule designed to produce unit clauses. Given a nucleus clause with
k + 1 literals, where k > 1, and k unit satellite clauses, if the k literals of the satellites
simultaneously unify with k literals of opposite sign in the nucleus, UR resolution generates
the unit resolvent obtained by performing these resolution steps as one. If the nucleus is
allowed to have only k literals, UR resolution can establish a contradiction.?

While semantic resolution performs hyperinferences in order to get a resolvent that is false
in the guiding interpretation, and in hyperresolution the guiding interpretation is based on
syntax (the sign of literals), UR resolution is an outright syntactic hyperinference rule, as the
feature that a resolvent must have is purely syntactic, having only one literal. UR resolution
represents well the style of Wos’ research, his interest in what is practical, besides being
refutationally complete. Indeed, UR resolution is not refutationally complete on its own, but
in practice it is a useful addition to a refutationally complete inference system (e.g., [71]).

2.3 AFirst Foray into Equational Reasoning: Demodulation

Many theorem proving problems involve equality, and this is especially true for problems in
mathematics, which was Larry Wos’ favorite domain of application. A fundamental meta-
theorem in mathematics known as Birkhoff’s theorem says that replacing equals by equals
is complete for equational reasoning. In other words, given a set of equations £ and an
equational conjecture s ~~ ¢, where ~~ is equality and all variables are implicitly universally
quantified, s 2~ ¢ is a theorem of E if and only if it is possible to transform s into ¢, or ¢ into
s, by applying the equations in E as replacement rules. However, Birkhoff’s theorem does
not provide a mechanical procedure because it requires that the equations can be applied in
either direction, which means that a mechanical procedure would loop. The quest to automate
Birkhoff’s theorem is one of the most fascinating stories in automated theorem proving. Wos
broke new ground in this pursuit with the demodulation inference rule [96].

Wos was not specifically interested in purely equational problems as described above.
His objective was to introduce equational replacement in the more general setting of clausal
theorem proving by resolution. Given an equality unit clause | >~ r, and a clause C with
a subterm ¢, denoted C[z], such that / matches ¢ (i.e., t = lo for a substitution o), the
new clause C[ro] obtained by replacing ¢ with ro is an immediate modulant of C. A k-
modulant, for k > 0, is the outcome of k such replacement steps, and a modulant is a
k-modulant for some k. The non-termination of replacing equals by equals in a mechanical
rendering of Birkhoff’s theorem arises also in the context of demodulation: A clause can have
infinitely many modulants in general. However, for a fixed k, there are only finitely many
k-modulants. Thus, Wos defined k-modulation as the generation of a resolvent of parents Cy,
and Dy, where Cy and Dy are k-modulants of clauses C and D. In order to capture equational
replacement independent of resolution, and without the parameter k, he defined demodulation
as replacement by a modulant, where each immediate modulant has strictly fewer symbols
than its predecessor, and the final modulant has no immediate modulant with fewer symbols.

In theorem proving, the signature (the set of predicate, function, and constant symbols)
is finite, but an infinite supply of variable symbols is assumed to be available. Every clause
has its own variables and every clause has infinitely many variants (clauses differing only by
a renaming of variables). Thus, there are infinitely many clauses with the same number of
symbols. It follows that demodulation in its original definition cannot be considered, strictly
speaking, a well-founded replacement rule.

2 According to [16], the concept of UR resolution appeared independently in the NEU strategy [74], in the
same year as [96].
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Clearly, Wos was interested in a practical inference rule: A clause to be demodulated can
be considered a ground clause, since a matching substitution and not a unifier is applied. A
ground clause can be measured by its size (the number of occurrences of predicate, function,
and constant symbols), and the sizes of ground clauses can thus be compared. Nevertheless,
the size ordering does not allow the prover to apply demodulation when the two sides of
the applied equation have the same number of symbols, because such an application does
not decrease size. Furthermore, the size ordering may not allow the system to demodulate
in the desired direction. For example, equations used to define a function symbol are meant
to be applied so as to unfold the definition by replacing a term with a term of usually larger
size, and demodulation driven by symbol count cannot do that. Thus, the problem of well-
founded demodulation remained open. Moreover, well-founded demodulation alone cannot
implement Birkhoff’s theorem, because once the application of equations in E is restricted
in order to be well-founded, it is necessary to complete the set of equations E by generating
equations from equations in order to be able to prove any equational conjecture. Both these
issues were solved by the Knuth—Bendix completion procedure [39, 41] for rewrite rules
(equations that can be oriented by a well-founded ordering), and the unfailing or ordered
completion procedure for equations [3-5, 37]. The fundamental ingredient of completion is
a well-founded ordering on terms that is used to orient demodulation, called simplification
or rewriting, and to define superposition, the more general inference rule that generates new
equations from existing equations.

Independently of completion, and in the more general setting of clausal theorem proving
by resolution, Wos approached the problem of designing a more general inference rule that
would use equations to generate clauses from clauses: the paramodulation inference rule.

2.4 The True Beginning of Equational Reasoning: Paramodulation

Since resolution is refutationally complete for first-order logic, if the theorem proving prob-
lem involves equality, then the axioms of equality can be added to the input set: reflexivity,
symmetry, transitivity, and substitutivity axioms for every function and predicate symbol in
the signature of the problem. Unfortunately, these equality axioms are so general that their
presence causes resolution to generate so many clauses that any resolution-based strategy
becomes too inefficient to be practical in most cases. In order to address this problem, Larry
Wos proposed paramodulation [60] as a generalization of resolution where equality is built-
in: Given a clause [ ~ r v C where one of the literals is an equation /[ ~ r, and a clause
DJt] with a subterm ¢ such that / and ¢ unify with most general unifier o, paramodulation
generates the paramodulant (C v D[r])o. The clause/ >~ r v C and the literal / =~ r are called
the clause and literal paramodulated from, whereas the clause D and the literal containing ¢
are called the clause and the literal paramodulated into.

The appearance of paramodulation was nothing short of revolutionary. However, the proof
of refutational completeness required paramodulation into variable terms, and also augment-
ing the input set with the reflexivity axiom (x =~ x) and functionally reflexive axioms (the
instances of reflexivity of the form f(x) >~ f(x), for all function symbols f in the signature of
the input clause set). Wos and Robinson conjectured that both requirements could be dropped,
a conjecture that became known as the Wos—Robinson conjecture. Since a variable unifies
with any term, paramodulation into variables makes the inference rule exceedingly prolific,
as do the functionally reflexive axioms. The presence of these axioms meant that equality was
still only partially built into the inference system. Several researchers endeavored for years
to settle the Wos—Robinson conjecture and the related problem of merging resolution and
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paramodulation on the one hand, with completion by superposition and simplification on the
other, to obtain refutationally complete inference systems for first-order logic with equality
[26, 36, 38, 56, 63, 64]. The resulting inference systems combine resolution, paramodula-
tion, and superposition, with well-founded demodulation and subsumption—subsumption is
another inference rule that Wos deemed fundamental [91].

These inference systems have been called completion-based, rewrite-based, saturation-
based, or ordering-based, given the key role played by well-founded orderings on terms,
literals, and clauses [7, 18, 19, 53, 57]. They were implemented first in OTTER and then in
most subsequent theorem provers for first-order logic with equality, up to those that represent
the current state of the art (e.g., E, SPASS, VAMPIRE, WALDMEISTER, and ZIPPERPOSITION).
These inference systems specialize to unfailing completion in the purely equational case [6,
22, 64]. The growth of the inference system beyond resolution contributed to the evolution
of the given-clause algorithm from an implementation of the set of support strategy into a
general algorithm for implementing multiple strategies. Indeed, the set of support strategy
is not complete in general in the presence of equality, unless the complement of the set of
support is saturated with respect to the inference system in a preprocessing phase [6], which
defeats the spirit of the strategy.

As additional evidence of the amazing impact of the theorem proving approach that Wos
pioneered with paramodulation and demodulation, it suffices to mention that these inference
systems yield decision procedures (e.g., [2, 31, 33]), get integrated with other reasoning
paradigms (e.g., [23, 29, 59]), form the basis of approaches to parallel theorem proving
(e.g., [17, 21] and [19] for a recent survey), and are generalized to higher-order logic as in
lambda-superposition [11, 12, 77, 78] and combinatory superposition [13—15].

3 The Applications

by Michael Kinyon

This section discusses some of the applications of automated reasoning that Larry Wos
worked on. The presentation gives a representative sample of his many interests, in topical
order, rather than an exhaustive survey in chronological order. Particular attention is paid to
Wos’ ongoing interest in proof simplification.

3.1 Logic

Much of Larry Wos’ direct work in the application of automated reasoning (especially with
OTTER) was within the realm of logic. This subsection gives an overview of his and his
collaborators’ work.

Starting in the area of propositional calculus, Wos showed that for Meredith’s single
axiom there is a proof (in fact several) of Lukasiewicz’s three-axiom system that uses only
condensed detachment [88]. Meredith’s original 38-step proof uses condensed detachment but
also uses substitution and (regular) detachment. Wos originally found a 41-step proof using
only condensed detachment by checking Meredith’s proof and then went on to find “fully
automated” proofs (meaning independent of other proofs, particularly Meredith’s). A notable
observation was that blocking double negation from occurring led to more efficient searches.
At about the same time Fitelson and Wos were able to find, among other results, condensed
detachment proofs that Lukasiewicz’s 23-symbol single axiom axiomatizes propositional
calculus [32, 90]. (Alluding to the discussion in Sect. 3.3, some of this work is devoted to
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consideration of how to find simple proofs.) Later, Beeson, Veroff, and Wos returned their
attention to the goal of blocking double negations and looked for conditions guaranteeing
the existence of double-negation-free proofs when the conclusion to be proved is also free
of double negations. They found conditions that address this in general, and then focused on
the Lukasiewicz three-axiom system as one whose use for theorems with double-negation-
free conclusions guarantees the existence of a double-negation-free proof [8]. In the broader
context of Boolean algebra, McCune, Veroff, Fitelson, Harris, Feist, and Wos found shortest
single axioms, including identities of length 22 in terms of conjunction and negation, and
identities of length 15 in terms of the Sheffer stroke [50].

Turning to classical equivalential calculus (the calculus of equivalence relations), Wos,
Winker, Veroff, Smith, and Henschen showed that four of seven candidate shortest single
axioms do not have sufficient strength to serve as single axioms [100]. Later, Wos, Ulrich,
and Fitelson settled in the affirmative the open question of whether the formula XCB =
e(x,e(e(e(x,y), e(z,y)), z)) is a single axiom under the inference rules of detachment and
substitution [98, 99]. This was the only remaining unresolved case in the list of shortest
possible axioms.

In combinatory logic, Wos used a unique strategy, which he dubbed the kernel strategy, to
solve several open problems regarding whether or not certain combinators have fixed point
properties [84]. In the same paper, he posed many problems which remain open.

In the area of non-classical logics, Ernst, Fitelson, Harris, and Wos found a concise three-
clause axiomatization of the implicational fragment RM_, of the Dunn—McCall system
RM, a cousin of relevance logic. Ernst, Fitelson, Harris, and Wos also found several shortest
possible axiomatizations for the strict implicational fragments of the modal logics §4 and S5
[30].

3.2 Tarskian Geometry

Tarskian geometry is a single-sorted axiom system that deals with only congruence and
betweenness relations [9]. This is in contrast to Hilbert-style axiom systems that are less
economical. Tarskian geometry is of more interest in metamathematical or formal (especially
automated) investigations. Michael Beeson and Larry Wos used OTTER to prove theorems in
Tarskian geometry. The papers were not the first to apply automated reasoning to Tarskian
geometry, but of particular note were their solutions to four challenge problems to prove the
following properties without any parallel axiom or line—circle continuity: Every line segment
has a midpoint; every segment is the base of some isosceles triangle; the outer Pasch axiom
(assuming inner Pasch as an axiom); and the first outer connectivity property of betweenness.
In addition, Beeson and Wos found OTTER proofs of all of Hilbert’s axioms starting from
Tarski’s axioms [10].

3.3 Proof Simplification

Anyone who encountered Larry Wos in a professional context very quickly learned of his
long-standing interest in finding elegant and simple proofs. There are two likely reasons for
this interest. First, Wos was a mathematician before he began his seminal work in automated
reasoning. The culture of mathematics, especially pure mathematics of the sort in which he
originally did research, has always placed a high aesthetic value on elegant proofs. A well-
known example of this aesthetic was expressed by the late Paul ErdGs, who always valued
what he called “proofs from the Book,” meaning the Book in which God kept the best proof of
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every theorem [1]. (Erdss, incidentally, doubted God’s existence but believed in the existence
of the Book.) Although Wos apparently never expressed his views on elegant proofs quite
so colorfully, he was certainly steeped in the same mathematical milieu. Second, as noted
in [40], an automated theorem prover will report the first proof it finds, but such a proof is
rarely optimal or elegant by any measure. These two observations, Wos’ background as a
mathematician and the standard behavior of automated theorem provers, suggest why Wos
maintained an interest in finding elegant and simple proofs.

The quest for elegant proofs leads to the question of how to measure the simplicity of
a proof (generated by an automated theorem prover). The measure that Wos used most
often was the number of inference steps: Shorter proofs are simpler. There are a few tacit
assumptions being made here when comparing proofs for relative simplicity. First, the axioms
of the proved theorems are presumed to be the same. Second, the rules of inference are
assumed to be fixed. The latter point also means, for example, that it does not make sense to
compare a proof using hyperresolution with a proof that replaces each hyperresolution step
with multiple binary resolution steps. As another possible measure, forward proofs might be
considered to be simpler than proofs that contain steps reasoning backwards from the denial
of the conjecture. It is certainly conceivable that proofs that mix forward and backward
reasoning could be shorter than strictly forward proofs, and thus this prescription reveals
that sometimes other aesthetic considerations can override the desire for short proofs. Note
that strictly forward and mixed proofs are never compared, since the latter usually include
inference rules such as UR resolution that are not allowed in the former. Third, no secondary
inferences, rewriting in particular, are allowed in a simple proof. This tacit rule mostly applies
to problems with equality. In OTTER/PROVERDY jargon, back demodulation must be turned off
so that rewrites have to be replaced with “top-level” paramodulations. This rule may seem
somewhat arbitrarily restrictive, and it is generally true that a proof with rewrites can have
a more structured appearance than a proof without rewrites. However, it is almost always
the case that proofs with rewrites are longer than similar proofs where all inferences are
primary. Thus the restriction is somewhat natural if the primary measure of simplicity is proof
length.

None of this is to suggest that Wos was not aware of the difficulty of coming up with
a robust measure of the simplicity of a proof. An exploration of other possible factors was
discussed in his collaboration with Riidiger Thiele [73, 97]. The following is a summary
of a similar discussion in [40]: If a proof is visualized as a directed graph with clauses as
vertices and an edge connects clause A to clause B if A is an immediate parent of the second,
then the complexity of that graph is an interesting measure of proof simplicity. One would
intuitively expect a proof with fewer edges emanating from the axioms to be simpler than
a proof with more such edges. Experimentally, this measure of simplicity does seem to be
rather well correlated with proof length, because when the proof clauses are arranged in a
sequence, fewer paths emanating from the axioms generally means there are fewer inference
steps.

Other measures of proof simplicity could be based on clause size, for example, the maxi-
mum or average clause size. This measure can, however, conflict with proof length. Wos did
many experiments in which he used OTTER to find shorter proofs of the Robbins problem
originally solved by McCune. The clauses in the shorter proofs are very large (according to a
talk given by Wos at the 2004 Argonne Workshop on Automated Deduction and Mathemat-
ics). Thus, there is a simplicity trade-off: Is a shorter proof in which the clauses themselves
are more complex really a simpler proof? Wos was certainly aware of this issue and others
like it, but was just as aware that the overall problem of determining criteria for simplicity
and how such criteria interact with each other requires much more investigation.
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One of OTTER’s “fringe features,” ancestor subsumption, seems to have been implemented
by McCune in response to Wos’ desire to search for short proofs (cf. [93], p. 299). Clause A
ancestor subsumes clause B if either (1) A properly subsumes B in the usual sense, or (2) A
and B are variants and the derivation length of A is shorter than that of B. There seems to be
little to no evidence that ancestor subsumption helps in basic proof search. It does, however,
help quite a bit in searching for short proofs.

It is probably fair to say that Wos’ interests in proof simplification have not generally been
shared by many in the automated reasoning community. The reasons for this are quite prac-
tical: Developing automated theorem provers that can find proofs faster and more efficiently
seems to yield a better return on invested time than developing provers that can find elegant
proofs (e.g., the annual CADE ATP system competition does not have an award for shortest
or simplest proofs).

Wos’ interest in proof simplification seems to have been partially historically justified for
him by similar interests among earlier logicians, such as Meredith and Prior. Wos found even
more historical justification in the well-known cancelled 24th Problem of David Hilbert. This
led to Wos’ collaboration with Riidiger Thiele, mentioned above. In 2000 Thiele discovered
from Hilbert’s unpublished notebooks that he had planned to include a 24th problem in
addition to the famous 23 problems that he discussed in his Paris lecture of 1900. The lecture
was already long, and apparently Hilbert was unable to formulate the problem quite to his
liking, so he decided to omit it. The wording of the cancelled problem exactly matches Wos’
interests [72]: “Criteria of simplicity, or proof of the greatest simplicity of certain proofs.
Develop a theory of the method of proof in mathematics in general. Under a given set of
conditions there can be but one simplest proof.”

3.4 Pure Proofs

As part of his general interest in the elegance of proofs, which was mostly expressed in terms
of proof simplification, Larry Wos also worked on other possible ways that elegance could
be expressed. For instance, Wos was very interested in the notion of what he called a “pure”
proof [85, 86]. This specifically arises when proving a theorem of the following form:

Theorem 1 Assume [various hypotheses]. Then, the following are equivalent.

1. Statement 1
2. Statement 2
3. Statement 3
4. etc.

In practice it might be proved, for examples, that Statements 1 and 2 are equivalent, that
together they imply Statement 3, and so on, perhaps via a very tortured path, eventually
coming back to some Statement implying Statement 1 (or 2). To Wos, a pure proof of one of
the implications, say Statement 2 implies Statement 3, is one that does not prove any other
Statement along the way. The challenge in automated theorem proving is to steer the prover
in such a way that in the course of proving an implication between Statements it does not
prove one of the other Statements.

Wos discussed the specific example of the thirteen shortest single axioms for equivalential
calculus, subject to condensed detachment being used as the sole rule of inference [85]. A
single application of condensed detachment to the (shortest single) axiom known as P4 with
itself yields the (shortest single) axiom P35, and two applications of condensed detachment
beginning with P35 yields P4. This means that starting with P4 cannot yield a pure proof
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of any of the axioms other than P5 (because one application of condensed detachment must
yield P5). Thus, a derivation of P5 must be present in the proofs of all the other axioms.

Wos also considered pure proofs for the four Moufang identities from loop theory [86].
Any one of the identities can be used to define the variety of Moufang loops; that is, the
identities are all equivalent. With four identities, this means there are 12 pure proofs to seek
out, and Wos found them all with OTTER. See also Veroff’s solution of Wos’ pure proof
challenge [76].

It is interesting to note that Wos’ dissertation advisor, Reinhold Baer, had a strong prefer-
ence for “the following are equivalent” types of theorems; they can be found throughout his
work. It is amusing to speculate that Wos might have inherited some of his interest in such
theorems from his advisor.

3.5 Miscellaneous

This subsection collects some of Larry Wos’ “one-shot” work that doesn’t seem to fit in any
of the other subsections.

e In[81], Winker, Wos, and Lusk settled an open problem first proposed by Kaplansky in the
theory of semigroups: Does there exist a finite semigroup (a set with an associative binary
operation) with an antiautomorphism (a permutation f such that f(xy) = f(y) f(x) for
all x, y) but no involutions (antiautomorphisms satisfying f2 = id)? What made the
problem particularly challenging was not the prescription of the given antiautomorphism
of order higher than 2, but rather specifying the conditions that guarantee that there are
no involutions at all. The unnamed Argonne ATP system used in the paper did not solve
the problem directly, but rather assisted in the generation of models that eventually led
to a “by hand” solution.

e In [69], Smith and Wos solved some problems in the theory of Jordan rings. The math-
ematician who proposed the problems to them thought that automated reasoning would
be helpful, but amusingly, it turned out that the solved problems were handled simply by
some clever algorithms and intense computation. See Wos’ reminiscence on pp. 395-396
of [93].

e In [80], Winker and Wos found models and counterexamples to conjectures regarding
the independence of axioms in ternary Boolean algebras, which are essentially Boolean
algebras axiomatized by a single ternary operation. Their approach used then existing
automated deduction tools and an iterative procedure to add properties to a potential
model until it was completed.

e In[55], Parrello, Kabat, and Wos studied the job-shop scheduling problem for production
of cars. The problem is known to be NP-complete, so rather than seek optimal solutions
the authors used the ITP system to study “good” sequences of cars, as measured by
economic considerations.

e In [51], McCune and Wos studied a known theorem in combinatorial logic: The strong
fixed point property is satisfied in a system that contains the B and W combina-
tors. They used the colorful formulation due to R.M. Smullyan [70]: A sage exists
in a forest that contains both a bluebird and a warbler. One sage was known to exist
already; McCune and Wos found four more with the assistance of ITP and some of its
extensions.
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4 The Persona

by Michael Beeson
with contributions from Jim Boyle, Branden Fitelson, Deepak Kapur, Ranganathan Padman-
abhan, Gail W. Pieper, and Brian Smith

Larry knew a lot of people. He did not make much distinction between personal and
scientific relations; he treated everyone as a whole person. He could entertain a table (or two)
at dinner, a scientific lecture audience, or his bowling companions. He used the telephone a
lot, carrying on both scientific and personal conversations with great intensity. He was never
in a hurry to finish these conversations. He was always in a hurry to make progress on the
next proof. I sent Larry a challenge problem in October 2000. I did not know him then, so
I was surprised to get a phone call. These phone calls went on for the next twenty years.
When we were working on a project together, they were often daily. This was the way Larry
worked. Listen, for example, to Branden Fitelson’s story:

I was a graduate student at UW-Madison, and (through Ken Kunen — who also sadly
passed recently) I heard about Otter. I used it to solve a historical problem in sentential
logic (the dependence of one of Frege’s Begriffsschrift axioms for sentential logic,
which was first pointed out by Lukasiewicz). I cold-emailed Larry with my solution
of the problem. He immediately replied with his phone number. We talked more than
three hours that first day, and we had many, many long phone conversations regularly
for the next eight years or so. He was so encouraging and energetic. We published
several papers on open problems in sentential logics during those years. I will cherish
those memories. Larry was one of a kind.

Larry did not like to waste time. He would start talking as soon as I picked up the phone—
no wasting time with “Hello, this is Larry.” He said that if I identified myself I would be
insulting his ability to recognize voices. If my wife picked up the phone, he would say,
“Is he there?” On the other hand, he was always willing to spend time on personal issues.
But he would never discuss politics or the news: “why should I waste my time thinking
about something I can’t do anything about?” He also wasn’t much interested in discussing
theoretical aspects of automated reasoning, even though he had invented several fundamental
methods. If you wanted to get his attention, you had to send him an OTTER input file! Nothing
else would work. Send him a file that should get a proof, but didn’t; or better yet, one that
did get a proof, but should get a shorter proof. You would hear from him very soon.

Another person with whom Larry worked was “RP,” that is, Ranganathan Padmanabhan.
Here is his story of his work with Larry:

Thanks to the suggestions of Dr. Stanley Burris (University of Waterloo) and Dr. David
Kelly (University of Manitoba), I wrote my first e-mail to Larry Wos in 1993, proposing
some problems of equational nature. I first met Larry in 1993 during an Argonne
Workshop. After that, I visited Argonne almost every summer. These workshops were
very informal. Each participant would describe the problem he or she was currently
working on, and others participated in the discussion. I was perhaps the only non-
computer scientist in the group. In the beginning, I never actually used Otter. Using
all sorts of mathematical tools, I manufactured several theorems of first-order logic
relevant to my research (lattices, quasigroups, group theory, geometry) and passed on
these theorems to Bill (McCune) during these workshops and subsequently through
emails. It was Bill (and later Bob Veroff with Prover9) who fine-tuned the various
settings, proved the theorems and emailed me back the proofs in the form I liked. This
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went on for some three years. All my conjectures turned out to be true. Towards the
end of one such workshop, Larry exclaimed with a gleaming smile, “I know how RP
gets these conjectures. He already has proofs using some kind of maximal principle,
Zorn’s Lemma, axiom of choice or some such fancy second order tool and he wants to
get a real down-to-earth equational proof, am I right, RP?”. Well, he was 100 percent
right. Larry had a clear perception of the subtle distinction between a first-order proof
and a second-order proof and what kind of hypotheses were ideal candidates for Otter
or Prover9. On several occasions, Larry would “elegantize” the equational proofs by
simplifying or reducing the length of the proof etc. My monograph with McCune and
subsequent papers with Bill and Bob Veroff may be described as corollaries to our
interactions and discussions with Larry Wos.

Larry always liked Indian food, especially when we went together for lunch or dinner
during the Argonne workshops. His favorite choice would be Saag Paneer, a vegetarian
dish. Was it because of his epicurean taste or was it because of his innate desire to
accommodate my food habits?

I can testify that Larry liked Indian food even when RP was not there. In April 2004, his
wife Nancy died, and I offered to fly out to Chicago and keep him company for a few days. He
accepted that offer, and I cooked several good Indian meals in his kitchen. During that visit,
I prodded Larry repeatedly to get out of the house and go for a walk. Reluctantly he did so,
but he took his revenge on me. He managed to time his conversation on the elevator so that as
we passed through the apartment house lobby (with several others and the doorman present)
he could make a loud reference to my “criminal past” and my upcoming appointment with
my parole officer! He was so amused at my supposed discomfiture. When I congratulated
him on his timing, he was amused and said he had tried to make it appear an accident. On
that walk, I told him, “Larry, life is like white-water rafting: sometimes you have to paddle
like crazy, but other times, you should just take it easy and float downstream.” “This is one
of those times,” I said. I will never forget his reply: “Michael, I've been paddling as hard as
I can all my life, and I'm not about to stop now!”. This was very true; over the years, I heard
how Larry had struggled to overcome his lack of vision, something he only talked about after
knowing me very well.

In the days before I knew him Larry had played a lot of poker, sometimes for very large
stakes. He played regularly with some rather shady characters. He described these games for
me in some detail. He taught me that poker is a mental game, it’s about understanding how the
other players think, how they make decisions. Of course you had to master the probabilities,
but that was child’s play compared to the real game, which was all psychological. Although
Larry could not see, he was very good at interpreting tones of voice, small sounds of clothing
rustling, etc. Sometimes his fellow players would insist on writing down their bets, and
having someone else read them, because “Wos gets too much information” if they speak.
These people grew to respect Larry. He told me, “If you ever need someone bumped off, or
just kneecapped, I can help you with that.” By the time he said that to me, I had realized that
Wos loved to say things that were just at the borderline of truth—if I couldn’t decide if what
he said was true or just fiction, that was what he was aiming for.

Poker was not the only thing on which Wos gambled. He bet on sports (at least baseball
and football) and on horse races. For example, in November 2006, he asked me to help him
find streaming audio for the Breeder’s Cup race, on which he “had some bets.” He would
typically bet on the “spread” rather than just the raw win-or-loss outcome of games, and
bookies would call him sometimes to help estimate the spread, unless of course, that was just
something he told me to see if I would believe it or not.
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When it came time to write up some of our work for publication, I found that Larry had
some fixed ideas about style. For example, it had to be “There exists” and never just “There
is.” He was also very particular about the correct use of “which” and “that.” He was a very
careful proofreader. His favorite story about editing was one in which Tarski had quotation
marks inside the period at the end of a sentence, throughout his paper, and the editor changed
them, citing numerous authorities. Tarski changed them all back, telling the editor, “I am
Tarski!”. Tarski was Larry’s ideal in regard to editors. The only person whose writing advice
he would accept was Gail Pieper. Here is her story:

Larry and I were colleagues and friends for over 40 years. When I first was introduced
to him as the Mathematics and Computer Science Division editor, we started discussing
a paper of his I had just looked at. I suggested that he change the em dash to a simple
comma, maintaining in my most “professional” voice that the em dash should be
reserved for emphasis. “Exactly!” he replied. (I lost that round.) But Larry did respect
style and grammar and word choice, and he would look carefully at each of my editing
comments. One day I remember he called me and groaned, “Do you know how many
changes you are suggesting I consider? One hundred and seventy!”. “Exactly!” Ireplied.
(I won that round.) Counting needed changes was typical of Larry’s interest in numbers
and perhaps explains his many decades of research focusing on finding shorter proofs.
He also liked challenges, and he frequently included one or more challenge problems
in his “President’s Column” in the AAR Newsletter. I once took advantage of these
two interests when he called in delight one day to tell me he had reduced a proof of
136 steps to 103 (I am not sure of the exact number). My response was to point out
that the number 100 would be much more satisfying. He agreed, and a few days later I
received another call. He had succeeded, and we both shared in his success in meeting
my challenge.

Larry could not see. Of course that was a central fact in his life experience, but he hated
to be characterized by that limitation. The word “blind” was to him like the “N-word” is to
those with dark skin. It took time (on my part) and effort (on his part) for me to understand
the discrimination that the unsighted (his preferred word) face. Here is what his long-time
colleague (since 1974-1975) at Argonne National Laboratory, Brian Smith, has to say about
how Larry dealt with his lack of vision:

Working with Larry was a challenging but most enjoyable experience. Although he was
blind, Larry never let you mention that about himself. He would use words like “look”
and “see” that surprised you when he uttered them. On the other hand, you would be
writing something on the blackboard to explain something, and he would correct what
you had written as if he could see it. He would walk the halls of our office and turn at
the correct places to get to a meeting or a seminar in the building without assistance.
The only time he would accept assistance was to walk outside to the cafeteria roughly
a quarter of a mile from our offices. But he was always quick to tell you about a curb
or obstruction as if instead he was leading you rather than the other way around.

The only context in which Larry ever used the word “blind” was in the phrase “blind
bowling.” I was astonished to learn that there is such a sport, but he set aside one night a
week for it and was proud that he was the best in the league. Brian Smith has a story about
that:

One of the most enjoyable experiences I had was to have him invite me to be on his
bowling team of blind bowlers. It was a blind bowling league in which they would
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request a sighted person to join the team to write down the scores and in addition tell
them what pins were left standing after they bowled the first ball. They bowled by
using a portable guide rail that the blind bowlers would hold onto with their left hand
while bowling the ball with their right hand. Larry’s ten pin bowling average was in
the mid 140s if I recall correctly, but most other blind bowlers would bowl on average
in the 120s. So I was there to keep score and call the standing pins after the first ball. I
would announce 8 pins down on the first ball with pins 1 and 2 left standing and then
on the bench behind me I would hear the correction that only 7 pins were down and
pin 5 was also back there, still standing. If I said mistakenly the 1 and 2 pin was still
standing, I would hear the correction that it was the 1 and 3 pin. And of course he was
always right. He could tell from the sound of the ball hitting the pins what was likely
left standing, and he was always right. And of course that experience convinced him
I was more blind than he was and he would always challenge me playfully about my
eyesight.

In his professional work at the laboratory, Larry had to find a way to interface with a
computer; when he first started, the usual way was via paper tape! Brian Smith describes
what happened:

In the late 1960s the engineers at Argonne modified a paper tape writer so that it
embossed the tape rather than punched holes in the paper tape. The tape was wide
enough to have up to 8 lumps embossed across the tape, instead of the usual 8 holes.
Wos learned the tape code. This is how he would read computer output, and how he
would read programs he wrote. Later in the 1980s, the lab bought a Braille printer that
would print output for him. He would carry rolls of paper tape around with him in his
pocket, and walk the halls of building reading the tapes by rubbing his fingers across
the tape.

By the time I stayed in his apartment in 2004, he had a teletype with Braille printer in
his bedroom. The lights were never turned on, unless I turned them on; I watched in awe as
Larry sat in the dark, running OTTER on the lab’s computers.

Jim Boyle was another colleague of Larry at Argonne, who knew him even before Brian
Smith did. Here is part of his story about working with Larry, starting from his first day at
Argonne in 1967. Jim wrote it in the form of a “letter to Larry”:

I was given an office one down the hall from yours, and I was duly ensconced in it
with the door closed, trying to work. I remember hearing loud talk and laughter in the
hallway outside my door and wondering how I could get any thinking done while that
was going on. Finally, I stepped out into the hall to see if I could tone it down, and
there you were, talking and joking with another member of the Division. Before I could
finish saying something (I should say, complaining) about the noise, you had included
me in the conversation and were telling a story that left me in stitches! A bit later I
went into your office, and I found you, sitting at a teletype machine, complete with
a paper tape reader and punch attached. Soon the machine began to chatter, spewing
both paper and tape, and I watched you grab the end of the tape and run your fingers
over it as it came out of the punch. I asked what you were doing, and you told me you
were reading it, reading the output from the latest run of your program.

Larry loved to play with people, telling them things just to see how they would react.
Eventually, I learned to play this game too, reacting in unexpected ways, or telling him
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things “on the edge of believability.” Here is one of Jim Boyle’s favorite stories illustrating
how Larry did things like this:

We all knew Larry as Lawrence T. Wos, but when I asked what the ‘T stood for,
he answered with this story, about playing poker with a group of friends when he
was a student at the University of Chicago. One of the players was Bernie, who was
eighteen — younger than the other players and a tad naive. At some point, the game
broke for dinner, and Bernie sat down next to Larry. After a bit, he asked, “Hey, Larry,
I hear your middle initial is “T’, what does that stand for?”. “Just “T’, Bernie, it just
stands for ‘“T””. “Awww, ¢’mon Larry, it must stand for something!”. “No, Bernie, it’s
just “T°”. Not one to take a hint, Bernie began to bounce in his chair, and repeated,
“Please tell me what it stands for!”. After Bernie had demanded this several times,
Larry finally said, with a small smile, “Well, you know my mother is a Latin scholar,
and she chose a Latin word for my middle name. But, it’s embarrassing — I never tell
anyone what it is”. Bernie continued to wheedle, ‘“Please, pretty please, Larry, tell me
what it is!”. Finally, Larry said, “ALL RIGHT! She named me Lawrence Terraponesta
Wos”. Amidst general laughter at the table, Bernie exclaimed, “Terraponesta! That is
embarrassing, is that REALLY your middle name? I don’t think I believe that”. To
which Larry replied, “Well, then, I bet you five dollars that it is Terraponesta”. “You
want me to bet five dollars that you don’t know your own middle name, to bet that it
ISN’T Terraponesta? You must be crazy!”. “Well, you said you didn’t believe it — put
your money where your mouth is!”. “No, man, I’m not gonna waste five dollars!”. At
this point, Bernie’s brother Allen, who was 26, an ex-Marine, and worldly wise, said,
“BET HIM, BERNIE! BET HIM! If you don’t, you’ll come back to the room to find
that I've locked you out”. Finally, Bernie said despondently, “OK, I bet five dollars that
your middle name isn’t Terraponesta”. At which point, Larry handed him a five-dollar
bill!

For the record, Larry’s middle name was “Thomas.”

Here are some memories of Larry by Deepak Kapur:

I first met Wos at CADE at NYU in New York city in 1982 where I was essentially
ignored. My second encounter was in 1987/88, when Hantao Zhang and I got invited
to Argonne National Lab by Overbeek and Lusk, after they heard that we had been able
to prove many ring identities fast using associative-commutative (AC) Knuth-Bendix
completion procedure implemented in our Rewrite Rule Laboratory (RRL). I recall
being taken to a Thai restaurant for lunch by Overbeek, one of Wos’ favorite places
in the neighborhood where Wos lived in Chicago. Larry did not remember meeting
me in NYC, but soon started mimicking my Indian accent despite Overbeek politely
suggesting that he should not do so given that he had just met me. Wos asked me
to explain what we had done in RRL and immediately challenged me to prove the
Robbins algebra problem, which was open at that time. Wos was skeptical about using
Knuth-Bendix over paramodulation and demodulation, but immediately grasped the
power of the use of AC unification. This visit led McCune to integrate AC unification in
his theorem prover EQP, leading to settling the long standing conjecture that Robbins’
algebras are indeed Boolean.

Wos was the key note speaker of CADE-11 in Saratoga Springs in 1992, where
he also got the first Herbrand award. When he arrived at the Rensselaer/Albany train
station, he asked me to take his wife and him to the front of the train to feel its engine as
he was very fond of hearing sounds generated by rail engines. My family invited him
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to our home for dinner where he met my then 4-year old daughter. She was amazed to
learn that a blind person could be such an accomplished scientist.

In 1993 Wos started contemplating to step down from the editor-in-chief of JAR. He
called one night and told me he had a proposition that I would not and could not refuse:
“How would you like to be the next editor-in-chief of JAR?”. He graciously agreed to
mentor me, which meant calls late nights and over the weekends. Whenever he called,
he never bothered to find out whether I was busy or doing anything else, and instead
just dived into whatever issue he wanted to talk about. When I decided to become the
chair of the CS department at the University of New Mexico in late 1998, Wos told
me that my career as an automated reasoning researcher was over. However, he still
insisted on me continuing being the editor-in-chief of JAR. Our interactions became
less frequent even though I would occasionally get late night and weekend calls, and
the conversation would start with whether I was still interested in theorem proving and
whether I was doing research. Sadly, I did not get a chance to visit Argonne for over
the last 20 years, consequently missed my interaction with Wos.

Larry was a faithful and generous person; he helped various people that he encountered
in the course of life, for example various unsighted persons whom he advised or helped
financially. If you were Larry’s friend, you could count on him absolutely; he would be there.
Larry had strong opinions about people; some of them earned his respect, and others his
contempt. Of course, those with whom he worked were in the first group. All the people that
I know who worked with him agree that he made them feel good about working with him.
As Jim Boyle put it, he “had a talent for identifying the individual strengths of the people
with whom he worked. He said it was his way of getting what he needed from each of us, but
it made us feel enabled and competent.” He was quick to praise and very slow to criticize.
We will always remember what it was like in the days when we could pick up the phone and
hear Larry begin to speak. Let this paper record that we return the respect that Larry paid to
us all.

5 Conclusion

by Geoff Sutcliffe

Larry Wos’ interests in automated reasoning were broad and influential: Larry valued and
developed underlying theory, but he did not stop there. Larry pushed the theory into effective
system implementations, but he did not stop there. Larry used the implementations in a range
of applications, but he did not stop there. Larry inspired many people to join his efforts,
through publications and conversations, thus contributing to the development of the thriving
automated reasoning community that we have today.

This paper has surveyed the highlights of Larry Wos’ deep contributions to the discipline
of automated reasoning:

the how - his inference rules;
the what - his applications;
and the style - his persona.

Each section has been appropriately and adequately laudatory, so that more is unnecessary.
Let it simply be said, he touched the heart of automated reasoning. Larry Wos died on August
20, 2020, in Chicago, USA.
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