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The free energy principle (FEP) is a formulation of the adaptive, belief-driven be-
haviour of self-organizing systems that gained prominence in the early 2000s as a unified
model of the brain [1,2]. Since then, the theory has been applied to a wide range of biotic
phenomena, extending from single cells and flora [3,4], the emergence of life and evolu-
tionary dynamics [5,6], and to the biosphere itself [7]. For our part, we have previously
proposed that the FEP can be integrated with Tinbergen’s seminal four questions in biology
to furnish a multiscale ontology of living systems [8]. We have also explored more specific
applications, e.g., to the evolution and development of human phenotypes [9–11], socio-
cultural cognition, behaviour, and learning [12,13], as well as the dynamic construction of
environmental niches by their denizens [14,15].

Despite such contributions, the capacity of the FEP to extend beyond the human
brain and behaviour, and to explain living systems more generally, has only begun to be
explored. This begs the following questions: Can the FEP be applied to any organism?
Does it allow us to explain the dynamics of all living systems, including large-scale social
behaviour? Does the FEP provide a formal, empirically tractable theory of any complex
adaptive system, living or not? With such questions in mind, the aim of this Special Issue
was to showcase the breadth of the FEP as a unified theory of complex adaptive systems,
biological or otherwise. Instead of concentrating on the human brain and behaviour, we
welcomed contributions that applied the FEP to other complex adaptive systems, with the
hope of exemplifying the extent of its explanatory scope.

For the uninitiated, it is worth briefly outlining what the FEP is. Variational free energy
refers to an information theoretic quantity that places an upper limit on the entropy of
a system’s observations, relative to a generative model instantiated by an agent. (In this
context, entropy is defined as the time-average of ‘surprise’ or the negative log probability
of the agent’s sensory data.) Generative models harness probabilistic mappings from
hidden causes in the environment to observed consequences (i.e., sensory data), and state
transitions inherent to the environment [2]. Under the FEP, an organism is modelled as
implicitly ‘expecting’ to find itself within a limited range of phenotypic states; as such,
deviations from these states elicit a type of ‘phenotypic surprise’ (i.e., the deviation between
actual and phenotypically preferred states). Consequently, organisms remain alive by acting
in ways that minimize this type of surprise (e.g., a fish avoiding the ‘state’ of being out of
water). In other words, and more heuristically, free energy scores the discrepancy between
desired and sensed data; and the FEP states that the imperative of all self-organizing
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systems is to keep this discrepancy at bay by bringing about preferred observations via
action (see Figure 1).

 

Figure 1. The free energy principle. (A) Schematic of the quantities that characterise free energy,
including a system’s internal states, μ (e.g., a brain), and quantities that describe the system’s
exchanges with the environment; specifically, its sensory input, s = g(η,a) + ω, and actions, a, which
alter the ways in which the system samples its environment. Environmental states are further defined
by equations of motion,

.
η = f(η,a) + ω, which describe the dynamics of (hidden) states extraneous

to the system, η, whereas ω refers to random fluctuations. Under this scheme, internal states and
action operate synergistically to reduce free energy, which reflects a function of sensory input and
the probabilistic representation (variational density), q(η:μ), that internal states encode. Note that
external and internal states are statistically separated by a Markov blanket, which possesses both
‘sensory’ and ‘active’ states. Internal states are influenced by, but cannot affect, sensory states, whereas
external states are influenced by, but cannot affect, active states, creating a conditional independence
between the system and its environment. (B) Alternative equations that describe the minimisation
of free energy. With respect to action, free energy can only be suppressed by the system’s selective
sampling of (predicted) sensory input, which increases the accuracy of its predictions. On the other
hand, optimising internal states minimises divergence by making the representation an approximate
conditional density on the hidden causes of sensory input. This optimisation reduces the free
energy bound on surprise, which means that action allows the system to avoid surprising sensations.
Reproduced from [8].

There are two main ways for a self-organizing system to minimize free energy. The
first is by changing its perception of the world. Previously, this has been explored through
reference to human neural processing. The FEP appeals to a view of the brain as a hierarchi-
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cal “inference machine”, which instantiates a hierarchy of hypotheses about the world (i.e.,
a generative model) that enables an organism to minimize free energy (and therefore keep
entropic dissipation at bay, at least locally) by reducing discrepancies between incoming
sensory inputs and top-down predictions (i.e., prediction errors) [2]. Neurobiologically
xpectations about sensory data are thought to be encoded by deep pyramidal cells (i.e., rep-
resentation units) at every level of the cortical hierarchy, which carry predictions downward
to suppress errors at the level below, whereas prediction errors themselves are encoded
by superficial pyramidal cells and are carried forward to revise expectations at the level
above [16]. The relative influence of ascending (error) and descending (representation)
signals is weighted by their inverse variance or precision (e.g., a high precision on ascending
error signals lowers confidence in descending predictions), which is mediated by neuro-
modulation and reflected psychologically by attentional selection and sensory attenuation.
In short, the recursive neural dynamics described here enable us to minimise free energy
(resp. prediction error) by updating our internal models (i.e., perception).

Second, an organism can reduce surprise directly by acting upon the world in order
to fulfill its expectations and generate unsurprising sensations. This process of ‘active
inference’ describes how an organism reduces free energy through self-fulfilling cycles
of action and perception [17]. Active inference models implement action selection as the
minimization of expected free energy, which is the free energy expected under beliefs about
possible courses of action, or policies. By selecting actions that are expected to minimize
free energy, the organism can maintain itself within preferred, phenotypically unsurprising
states. Thus, survival mandates that an organism must not only reduce free energy from
moment to moment; it must also reduce the expected free energy associated with the future
outcomes of action [18,19].

Having briefly outlined the rudiments of the FEP, let us turn briefly to complex adap-
tive systems (CAS). This concept is synonymous with complexity science and has its roots
in evolutionary systems theory, which assumes a dynamic, inextricable relationship be-
tween generalised selection and self-organization [11]. Broadly speaking, a CAS refers
to any multi-component, self-organising system that adapts to it environment through
an autonomous process of selection, which recruits the outcomes of localised interac-
tions between its components to select a subset of those components for replication and
enhancement [20]. Holland [21] describes four key features of CAS: they consist of large
numbers of components that interact by sending and receiving signals (i.e., parallelism); the
actions of their components depend upon the signals they receive (i.e., conditional action);
groups of rules can form subroutines that can be combined to deal with environmental
novelties (i.e., modularity); and the components of the system change over time to adapt
to the environment and improve performance (i.e., adaptation). Applications of the CAS
framework have proliferated across the physical, human and computer sciences, but there
is not the scope to survey this literature here. However, to pre-empt the papers to follow, we
would note that this framework has already been applied to precisely the same systems that
are the foci of our contributors–ranging from metabolic and cellular processes, e.g., [22–26];
to the brain and social processes, e.g., [26–30]; and to artificial intelligence and robotics,
e.g., [31–33]. The articles presented in our Special Issue build upon such literature by
illustrating how the FEP can afford fresh insights into the dynamics of CAS.

Three of the contributions to our Special Issue leverage the FEP to cast new light
on processes intrinsic to biological agents. In Cancer Niches and their Kikuchi Free Energy,
Sajid, Convertino et al. [34] examine cancer morphogenetic fields as undesirable stable
attractors in the complex dynamics of homeostasis, self-renewal and differentiation, which
contributes to their deviation from regular autopoietic homeostasis (the internal molec-
ular dynamics that regulate the production and regeneration of a system’s components).
Sajid, Convertino et al. offer a computational model in silico to study communication and
information processing at a population level of cancer cell networks within their environ-
ment in vivo. By deploying the Kikuchi free energy approximation, which is a generali-
sation of the Bethe free energy for computing beliefs over large sets of cell clusters, they
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account for higher-order interactions and phase transitions between clusters of healthy
and oncogenic cells. Here, cancer niche construction can be construed as a Bayes-optimal
process for the transmission of information across different levels of cellular networks due
to its tendency to minimize the overall Kikuchi free energy over the whole system. Their
findings suggest that three distinct cancer trajectories–namely, proliferation (local growth),
metastasis and apoptosis–can emerge from the natural evolution of the state function
(i.e., free energy) in biological systems. These findings have important implications for our
understanding and study of cancer cell growth and apoptosis.

Next, Parr describes how biochemical networks in adaptive biological systems can be
recast in terms of an inferential message passing scheme that involves the gradient descent
on variational free energy towards the least surprising states, based on the organism’s
implicit (generative) model of these states. In Message Passing and Metabolism [35], he
points out that the biochemical regulation of metabolic processes relies on sparse interac-
tions (message-passing) between coupled reactions, with enzymes creating conditional
dependencies between reactants. He then extrapolates the law of mass action (the rate of
chemical reaction and the concentrations of reactants involved in this process) and the
Michaelis–Menten kinetics (which approximates the dynamics of irreversible enzymatic reac-
tions) from the FEP. Assuming the existence of a causal structure in biochemical (metabolic)
networks, one can build the sparse message passing scheme to capture the independence
of substrates and products, conditioned upon the enzyme and enzyme-substrate complex
within such networks. The temporal evolution of the categorical probability of each state
within this system can be described by a chemical master equation that takes into account
sparse network interactions. Parr describes how the steady state distribution of these
dynamics can be recast as a generative model, which suggests that the biochemistry that
underlies metabolism follows an inferential message-passing scheme that seeks to minimise
free energy. An important extension of Parr’s model is that metabolic disorder can emerge
when an enzymatic disconnection by thiamine depletion interrupts message passing and
incites aberrant prior beliefs, which gives rise to false (biochemical) inference.

The third contribution follows more traditional applications of the FEP by account-
ing for conscious, first-person experience. In The Radically Embodied Conscious Cybernetic
Bayesian Brain, Safron [36] proposes models of embodied conscious agency based on the
FEP, extending the Integrated World Modelling Theory of consciousness proposed else-
where [37] to explicitly account for aspects of intentional actions and agentic experiences.
According to the radically embodied account on offer, what we call attention and imagi-
nation emerge from the (sometimes liminal) activity of multimodal, action-oriented body
maps and representations, realized as neural attractors in the form of ‘embodied self-
models’ (ESMs), which conform to the FEP as cybernetic controllers. When functioning
online, ESMs allow for overt interactions with affordances, or structured possibilities for
environmental interactions. However, Safron suggests subthreshold activations of such
‘quasi-homuncular’ ESMs also underwrite our (affordance-structured) covert abilities to
imagine and pursue courses of action, as well as our ability to intentionally deploy at-
tentional resources. Thus, even seemingly abstract representational capacities may be
grounded in twin capacities for embodied action and counterfactual explorations of the
world. Safron then applies this radically embodied perspective to core aspects of conscious
experience. He attempts to chart a middle way between perspectives in the representa-
tion wars in cognitive science, describing brains as hybrid machine learning architectures
capable of supporting both symbolic and sub-symbolic processes for 4E agents (where
cognition is thought to be embodied, embedded, enacted and extended). Safron’s perspective is
ecumenical, deploying information-theoretic constructs and representationalist concepts
that would be rejected by hard-line proponents of both 4E cognition and more Cartesian
(representationalist) approaches. For example, to account for information flow in mam-
malian brains, Safron deploys constructs that are typically rejected by 4E theorists, such as
Cartesian theatres and quasi-homunculi. However, he does so from a radically embodied
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perspective, suggesting that such a “strange inversion of reasoning” follows from principles
of cognitive development and computational neuroscience.

Unlike the authors above, Goekoop and de Kleijn look beyond the phenotype to
consider how the FEP might apply to groups. In Permutation Entropy as a Universal Disorder
Criterion [38], they argue that living systems can be described as hierarchical problem-
solving machines that embody predictive models of their econiches, called a goal hierarchy,
which incorporates a set of lower-order econiches (goals) and corresponding subniches
(subgoals) that the system needs to pursue in order to achieve the global econiche (goal)
represented at the top of the hierarchy. Using this scheme to frame the rest of their argument,
they concentrate on stress responses in organisms, dyads and collectives. Equating stress
with free energy or ‘prediction error’, and stress responses with ‘action’, they suggest that
as free energy increases, there is a progressive collapse of (allostatic) hierarchical control,
eventually resulting in disordered states characterised by behavioural shifts from long-
term goal-directed behaviour (e.g., reproductive success) towards short-term goals and
habitual behaviours concentrated on self-preservation (e.g., survival). After introducing
permutation entropy as a universal measure of disordered states across such systems, they
briefly describe how their model can be used to explain disorder at an individual level,
before progressing to the transmission of disorder through interpersonal interactions, and
concluding with a brief discussion of population-level dynamics.

The idea that the FEP can be extended to social systems is also taken up by Kaufmann
and colleagues. In An Active Inference Model of Collective Intelligence [39], the authors
propose an active inference model of alignment, describing the manner in which within-
scale local interactions (e.g., individual agents’ behaviors) can align with cross-scale global
phenomena (e.g., collective behavior) in multi-scale systems. In so doing, they offer a
principled, agent-based model that has the potential to function as a workbench to simulate
collective intelligence as an emergent phenomenon, across many scales. Although one
obvious target for this modelling approach would be human behavior as an emergent
phenomenon that ties physiological, cognitive and cultural dynamics, nothing, in principle,
limits the application of Kaufmann and colleagues’ model to human phenomena.

In another paper that illustrates the broad scope of multiscale thinking under active
inference, Jesse Hoey, in Equality and Freedom as Uncertainty in Groups [40], shows how
agents attempting to align with other group members leads to a quasi-equilibrium, or
“sweet spot”, at which the group free energy is minimal and the agent’s predictive capacity
of higher order parameters, such as those attributed to the group, matches the group’s
capacity to predict an agent’s behavior. Hoey further discusses two intriguing trade-offs.
Higher agent model complexity leads to lower individual learning capacity with respect to
the complexity of the group, resulting in agents who are hobbled in the pursuit of their own
ends, but in a group that is more diverse, innovative, and open to change. On the other
hand, lower agent model complexity allows the expression of individual preference towards
the group, but the group becomes more homogeneous, secure, and closed, as otherwise the
pro-social behaviours of individual agents would be hampered. Hoey suggests that such
emergent social dynamics provides insights into concepts such as freedom and equality in
society, which correspond to changes in model uncertainties and complexities. Oscillation
between radical freedom, where no cooperation is possible, and radical equality, where no
discovery is possible, is an emergent phenomenon characteristic of Western society; akin to
what Karl Marx called historical materialism, which according to many is the main driver
of history itself. Could Hoey′s findings initiate research on an active inference model of
history as an emergent phenomenon of human societies?

So far, we have considered a range of applications of the FEP to living systems.
However, active inference–the process theory derived from the FEP–is increasingly being
applied to machine intelligence in practical settings. Use cases in robotics provide an
exciting opportunity to test the applicability of active inference to implement sensory
processes and motor control in real time. In their review for our Special Issue, How
Active Inference Could Help Revolutionise Robotics, Da Costa and colleagues [41] examine the
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usefulness of active inference for several core problems in robotics, such as state estimation
in artificial perception, motor control, learning, safety and explainability. They argue
that active inference may help advance robotics due to several of its core features: it
enables explainable artificial intelligence in a manner that operates in situations involving
uncertainty, volatility, and noise. This is especially relevant for human-centric applications,
such as human–robot interaction and healthcare.

In closing, it is worth recognising that the majority of submissions presented herein
focus chiefly on human systems, despite our call for more wide-ranging applications. Nev-
ertheless, it should be clear that the authors’ proposals can be readily extended to other com-
plex adaptive systems, including biological dynamics intrinsic to other lifeforms [34–36],
collective, group-level behaviour [39,40], and even non-living systems [41]. Taken together,
we hope that the collection of papers presented in our Special Issue motivate others to
consider how the FEP might be gainfully applied to their own systems of interest, living
or otherwise.
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Abstract: Biological forms depend on a progressive specialization of pluripotent stem cells. The
differentiation of these cells in their spatial and functional environment defines the organism itself;
however, cellular mutations may disrupt the mutual balance between a cell and its niche, where
cell proliferation and specialization are released from their autopoietic homeostasis. This induces
the construction of cancer niches and maintains their survival. In this paper, we characterise cancer
niche construction as a direct consequence of interactions between clusters of cancer and healthy
cells. Explicitly, we evaluate these higher-order interactions between niches of cancer and healthy
cells using Kikuchi approximations to the free energy. Kikuchi’s free energy is measured in terms
of changes to the sum of energies of baseline clusters of cells (or nodes) minus the energies of
overcounted cluster intersections (and interactions of interactions, etc.). We posit that these changes
in energy node clusters correspond to a long-term reduction in the complexity of the system conducive
to cancer niche survival. We validate this formulation through numerical simulations of apoptosis,
local cancer growth, and metastasis, and highlight its implications for a computational understanding
of the etiopathology of cancer.

Keywords: cancer niches; free energy; Kikuchi approximations; apoptosis; metastasis; cluster varia-
tion method

1. Introduction

The human body develops via the progressive specialisation of pluripotent stem cells,
niche construction, and organ development (i.e., morphogenesis). Understanding these
processes is not only fundamental to understanding how multicellular organisms come to
be, but also has important implications for aberrant events. Cellular de-differentiation can
cause (and be a consequence of) disruption of the mutual balance between cells and their
niche, where cell proliferation and genetic regulation are released from their autopoietic
homeostasis. The disruption of this balance and the creation of new niches drives cancer
cell growth and sustains their survival. The concept of a stem cell niche [1,2] identifies
the “whole” of the wholeness of the microenvironment in which stem cells differentiate,
grow, and survive, and the humoral, paracrine, physical, metabolic, neuronal, structural
properties with which the cell exchanges information. These specialised microenviron-
ments are found in adult organisms and their homeostatic disruption may facilitate the
development of cancer colonies through an interaction between cells and their niches [3].
In this paper, we pursue the notion that cancer niche construction requires individual
cells with oncogenic potential to interact in subpopulations (i.e., clusters) of healthy and
cancerous cells to reach a particular attractor state.

Briefly, cancer cell niche construction results from a maladaptive degeneration of
the complex dynamic homeostasis that undergirds the balanced survival, renewal, and
repair of mature organs. This homeostasis is replaced by a new niche that is beneficial to
cancer growth, without which oncogenic cells might not be able to escape the physiological
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mechanisms of control and elimination of the degenerated cells [4]. We acknowledge the
phenotypical differences between cancer cells and cancer stem cells, but for simplicity,
we operationalise all cell types as simply cancer cells. Note, that cancer stem cells are a
small subpopulation of cancer cells with capability of self-renewal, differentiation, and
tumorigenesis [4,5].

To become carcinogenic, cells acquire some key properties that free them from their
physiological life cycle. The main properties are: (i) self-sufficiency in growth signals;
(ii) insensitivity to anti-growth signals; (iii) tissue invasions and metastasis; (iv) limitless
reproductive potential; (v) angiogenesis; and (vi) avoiding apoptosis [6]. It may not be
necessary for a cell to acquire all these properties to become a cancer cell, since different
combinations of these properties are sufficient for inducing oncogenesis. For example, only
some cancers have metastatic properties, namely the ability to leave the tissue of origin,
move to another location and colonise another organ. The presence of metastatic sites
determines the progression of cancer, staging, and patient prognosis. Fortunately, healthy
organisms can fight oncogenesis via different mechanisms of self-preservation. Among
these, apoptosis (i.e., programmed death) is crucial. This is a controlled mechanism of cell
death that intervenes in normal organ repair, growth, renewal, as well as in inflammation
and cancer.

For a computational understanding of cancer niche construction, a 2D Ising model
has been used to evaluate phase transitions between cancerous and healthy cells [7–9]. For
example, [10] used the Ising Hamiltonian to model metastasis, where the updates in the
energy function were modelled using mean-field approximations, i.e., only considering
average interactions. This factorised approach is consistent with other applications of the
Ising model for simulating cancer progression [7–9]; however, cell niches are the result
of numerous mechanisms, both at the cellular and population level. The single cells are
involved in the construction and maintenance of the niche and they adapt via genetic,
epigenetic, metabolic, structural, internal, and external signalling mechanisms. More
recently, theoretical work has underlined the fundamental role of population dynamic and
mutual information exchange in guiding the fate of local subpopulations of cells and the
niche as a whole [11–13] via cell-to-cell, cell-to-niche, and niche-to-cell information flow.

Consequently, our work builds upon previous computational approaches by (i) casting
cancer niche construction as a direct consequence of interactions between clusters of cancer
and healthy cells, and (ii) using a Kikuchi Hamiltonian as a way to account for higher-order
interactions when evaluating the state functions of such systems [14–19]. This allows us to
move away from thinking about cells in isolation and towards accounting for interactions
within cancer niches. Briefly, Kikuchi formulation approximates the free energy as a sum
of local free energies of a cluster of cells (or nodes) in the system. In doing so, it provides
a way to define a local population (or base cluster) which includes all the interactions
between the cells.

In what follows, we simulate three cancer trajectories to provide proof of the principle
of a computational formulation for oncogenic etiopathology. For this, we simulate a
2D Ising model for evaluating how cancer trajectories unfold using Kikuchi free energy
approximation. Explicitly, we manipulate four (hyper)parameters, namely an interaction
parameter that regulates the type of cell interaction, a tolerance parameter that determines
the acceptance level of cancerous cells, a growth parameter that regulates the number of cell
states switched during a single trial, and a noise parameter that influences the transition
dynamics. We describe the technical details in Section 3.

First, we simulate local cancer growth within the tissue of origin by allowing pairwise
interactions between cancerous and healthy cells (i.e., a high interaction parameter value).
This allows us to reproduce the homeostatic shift in a healthy organ that results from the
acquired oncogenic properties of single cells within it, but it is crucially sustained and
enabled by the broader dynamic at the sub-population level. Secondly, we model the metas-
tasis where cells exit their primary site and invade secondary locations. Here, cells have to
prepare for the new environment before arrival in the metastatic site. Without a favourable
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environment, the cells would not be able to colonise the new organ. We treat this cancer
spread as an embedded mechanism in the niche construction process. This is achieved
by allowing pairwise interactions between/across cancerous and healthy cells (i.e., low
positive interaction parameter value), alongside a restricted capacity to grow outside the
initial cancer site (i.e., decaying noise parameter). Finally, we consider apoptosis, namely
the programmed death of the cancer cells. In our simulations, we assume that the cancer
cells do not acquire the ability to escape apoptosis, and the physiological mechanisms of
control activate to eliminate the pathological cells (via a low tolerance threshold).

The remainder of the paper is organised as follows. In Section 2, we briefly review the
notion of free energies, specifically their relevance in evaluating systems under thermody-
namic equilibrium. We then describe and provide simple examples for the use of Kikuchi
approximations in evaluating a system state function. Equipped with this, Section 3 de-
scribes the system used to simulate cancer niche construction, and the parameters required
to simulate cancer progression. Section 4 details the simulation results for the three cancer
trajectories. We conclude by highlighting the implications for specific etiopathology, and
potential future directions.

2. Free Energies

In this section, we review the notion of free energy and its relevance for modelling
cancer niche construction. For this, we follow the formulation introduced in [20]. Briefly,
free energy is the state function of a (random dynamical) system that possesses a steady-
state or pullback attractor. Its value is determined by the current state of the system. The
free energy can be used to describe the spatiotemporal evolution of a system as it converges
to an equilibrium or nonequilibrium steady state, e.g., a particular tissue population in the
human body or the body itself. The distinction between nonequilibrium and equilibrium
steady state rests upon the presence of solenoidal or divergence free flow. In the absence of
solenoidal dynamics, the flow of systemic states is entirely dissipative, and the steady state
is at (thermodynamic) equilibrium.

To make this concrete, we introduce a closed 2D system (e.g., an Ising model) with a
set of N discrete random variables, {X1, X2, X3, . . . , XN} arranged in a square grid graph
(Figure 1). Each random variable, Xi, has a possible realisation xi. Here, we cast these reali-
sations as distinct cell states in the body, or a particular tissue population, that can be either
healthy or cancerous. The overall system state is denoted by the vector x = {x1, x2, . . . , xN},
with the corresponding energy of the system given by its Hamiltonian, H(x). For compu-
tational ease, we deal with an effective Hamiltonian to represent the system in a reduced
space through nonlinear averaging of the true Hamiltonian. Consequently, this only de-
scribes a part of the eigenvalue spectrum of the true Hamiltonian. This formulation is in
contrast to the molecular Hamiltonian where the Hamiltonian is decomposed into two or
more separable parts (i.e., nuclei and electrons), and their interactions. For our purposes,
this separation could involve the inclusion of additional random variables (that represent
external states or distinct internal states) (z) with a Hamiltonian of the following form:
H = H1(x) + H2(z). Practically, decompositions of the Hamiltonian of this sort are poten-
tially important because they could naturally account for local interactions; however, their
inclusion would not speak to the long-range interactions that are the current focus.

At steady state, the probability of finding the system in this state is given by Boltz-
mann’s law, which can be expressed as [21]:

P(x)=
1
Z

e−βH(x)

ln P(x)= −βH(x)− ln Z

Z� ∑
x∈M

e−βH(x)

(1)

where β is the inverse temperature or precision that shapes the probability density of
the distribution, Z is the partition function, and M is the set of all possible states of the
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system. For our purpose, we make simplifying assumptions about our system. and set
β = 1. Briefly, we assume that the joint probability distribution describes some nonphysical
system. This allows us to view Boltzmann’s law as a way of defining the energy of the
system where is simply an arbitrary unit that scales the energy measure [20].

Figure 1. Schematic illustration of the 2D system with a set of N discrete random variables where N = 1282. Here, the
circles denote the variable node for each variable (xi), squares denote the factor nodes (ϕa), and edges connect the variable
node i to the factor a.

The partition function, Z, is closely related to Helmholtz free energy, FH [20,22,23]:

FH= − ln Z

= ln P(x) + H(x)
(2)

This quantity can be approximated using variational calculus [24], which allows an
otherwise intractable FH to be approximated. This requires the introduction of a variational
distribution, Q(x), assuming ∑

x∈M
Q(x) = 1 and 0 ≤ Q(x) ≤ 1; ∀x, and the corresponding

variational (or Gibbs) free energy, FV [20]:

FV≡ U(Q)︸ ︷︷ ︸
Internal energy

− S(Q)︸ ︷︷ ︸
Entropy

= ∑
x∈M

Q(x)H(x)−
[
− ∑

x∈M
Q(x) ln Q(x)

]
= ∑

x∈M
Q(x)[ln Q(x)− ln P(x)] + FH

= DKL[Q(x)||P(x)]︸ ︷︷ ︸
Complexity

+ FH

(3)
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where H(x) = − ln P(x) + FH , and DKL is the Kullback–Leibler divergence. We know that
DKL[Q(x)||P(x)] ≥ 0 [25], hence FV is an upper bound on the FH :

FV ≥ FH (4)

Thus, it follows that by minimising FV with respect to Q(x), we can get a good
approximation of FH and recover p(x); however, as N → c, c 	 1 , this also becomes
intractable. Therefore, a practical solution is to consider the upper bound FH by minimising
FV with respect to a restricted class of variational distributions Q(x). A standard restriction
over the variational distribution follows from the mean-field approach, i.e., an absence of
interactions [26–28]:

QMF(x)=
N

∏
i=1

Qi(xi) ⇒

FMF= UMF(Q)− SMF(Q)

= −∑
a

∑
xa

ln ϕa(xa) ∏
i∈N(a)

Qi(xi) +
N

∑
i=1

∑
xi

Qi(xi) ln Qi(xi)

H(x)= −∑
a

ln ϕa(xa)

(5)

where the Hamiltonian is defined as the sum of its factors, ϕa, under a factor graph
probability distribution function (Figure 1). Conversely, we could consider more compli-
cated factorisations, like structure mean-field approaches [29], Bethe free energy [15,30],
or Kikuchi free energy approximations or a cluster variational method [16,17], which
can provide more accurate approximations. Interestingly, the Kikuchi free energy is a
generalisation of the Bethe free energy, using higher-order approximations [17].

Kikuchi Free Energy

In this work, we use Kikuchi approximation to evaluate the free energy of the sys-
tem [15–17,20,31]. This allows us to account for higher-order interactions between variable
nodes, mimicking the type of interactions present during cell niche construction. Practically,
this characterises the system evolution in terms of interactions between neighbours of
cancerous and health nodes, up to size d. This is calculated as changes to the sum of the
energies of baseline clusters of variable nodes, minus the overcounted interactions (and
interactions of interactions). The premise is that in accounting for higher-order interac-
tions within clusters, we can get a better evaluation of the systems overall state function
(i.e., free energy).

Formally, the Kikuchi free energy FK is:

FK = ∑
r∈R

crFr (6)

where:
Fr= Ur(Q)− Sr(Q)

= ∑
xr

Qr(xr)Hr(xr) + ∑
xr

Qr(xr) ln Qr(xr)

Hr(xr)= − ∑
a∈Ar

ln ϕa(xa).

cr= 1 − ∑
s∈super(r)

cs

(7)

where r denotes a region, i.e., the set of variable nodes within a cluster of size d, and
R a finite set of all possible regions. Additionally, cr is the overcounting number of
regions, and super(r) is the set of all super-regions of r. This follows from how FK is
approximated. Generally, for each factor node within a cluster we need to include all
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adjacent variables nodes and sum the computed free energy; however, this process results
in repeated counting of the interactions between sets within a cluster. Therefore, we need
to subtract the free energy of interactions and interactions of interactions.

Figure 2 shows an example Kikuchi approximation using part of the system defined
in Figure 1 for two different cluster sizes (2,3). To evaluate the Bethe approximation
(i.e., d = 2) we use pairwise clusters. The Bethe entropy would then be the sum of all
entropies in the pairwise cluster, subtracting the overcounted cluster interactions [15]:

Sd=2(x) = S(x1,2) + S(x2,3) + S(x129,130) + S(x130,131)
+S(x1,129) + S(x2,130) + S(x3,131)
−S(x1)− S(x129)− S(x3)− S(x131)
−2S(x2)− 2S(x130)

S = −∑
xi

Q(xi) ln Q(xi)

(8)

where x1 appears in two clusters, {x1,2}, {x1,129}, i.e., its entropy was overcounted only
once and we subtract it once. Conversely, x2 appears in three clusters, {x1,2}, {x2,3}, {x2,130},
and this mean that its entropy was overcounted twice, and we subtract it twice.

Figure 2. Example of Kikuchi free energy with two different cluster sizes. Panel A is for d = 2 or
Bethe approximation and panel B is for d = 3.

We could approximate FK differently by using a cluster size of 3:

Sd=3(x)= S(x129,1,2) + S(x129,130,2) + S(x130,2,3) + S(x130,131,3)

−S(x2,129)− S(x3,130)− S(x2,130)
(9)

Here, x129 and x2 appear together in two separate clusters {x129,1,2}, {x130,129,2}, so
their entropy is subtracted. Similar logic follows for (x130, x3) and (x130, x2).
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We can define the Kikuchi Hamiltonian based on similar intuition. Accordingly, the
Hamiltonian for Figure 2B, found using Equation (7), is the following:

Hd=3(x)= H(x129,1,2) + H(x129,130,2) + H(x130,2,3) + H(x130,131,3)

−H(x2,129)− H(x3,130)− H(x2,130)
(10)

Generally, the approximation accuracy is improved when we consider larger cluster
sizes, which is in contrast to mean-field formulation. Explicitly, for d = N, the Kikuchi
approximation for the entropy becomes exact [32]; however, by working with clusters, we
cannot define an overall variational distribution, Q(x), that is consistent with Qr(xr) and
are unable to obtain an upper bound for FH [33].

3. Constructing Cancer Niches using Kikuchi Free Energy

In this section, we introduce the model used for simulating cancer niches using
Kikuchi free energy approximation. For this, we work with the system briefly introduced
in Section 2 (Figure 1). Explicitly, this is a 2D Ising model with N = 1282 discrete variables,
{X1, X2, X3 . . . , XN}, and is arranged in a grid structure. These variables, Xi, represent
individual cells in a particular tissue population, and each variable can be in one of two
states xi ∈ {0, 1}. Here, 0 denotes a healthy state, i.e., xo

i , and 1 denotes a cancerous state
i.e., x1

i . We factorise the 2D system as follows:

P(x) = ∑
s∈{0,1}

(
∑

i,j∈N
P(xs

i,j
, xs

i,j+1
, xs

i−1,j
, xs

i−1,j+i
)

)
(11)

where i, j denote the position on the grid (row, column) and s represents the particular
variable realisation. This factorisation is a simplified characterisation of sub-populations of
cells interacting during cancer niche construction. It is a simple characterisation because
it corresponds to interactions of size 4. A different factorization of the system could have
been chosen that might require a different higher-order Kikuchi approximation. Technically,
even this simple construction leads to non-unique factorisation because of boundary effects.
Consequently, to approximate the free energy of this factorised system we need to account
for higher-order interactions whilst accounting for overlapping interactions. Specifically,
we specify a Kikuchi Hamiltonian to evaluate the energy exchange in these interacting
nodes. Practically, this is achieved by using the Kikuchi formulation introduced in for
d = 3 [14,16] or B3 using [16]’s notation. This is appropriate because B3 with a base cluster
as an angle of size 3 gives the same results when using a base cluster of size 4 but with a
square [16]:

FV= UK(Q)− SK(Q) + λ1

⎛⎝1 + ∑
s1,s2,s3∈{0,1}

∑
i,j

H(xs1
i,j

, xs2
i−1,j−1

, xs3
i−1,j+i

)

⎞⎠
+4λ2

(
Q(x0

i,j
, x1

i−1,j−1
, x0

i−1,j+i
) + Q(x1

i,j
, x1

i−1,j−1
, x0

i−1,j+i
) + Q(x0

i,j
, x1

i−1,j−1
, x1

i−1,j+i
)

−Q(x0
i,j

, x0
i−1,j−1

, x1
i−1,j+i

)− Q(x1
i,j

, x0
i−1,j−1

, x0
i−1,j+i

)− Q(x1
i,j

, x0
i−1,j−1

, x1
i−1,j+i

)

) (12)

U(Q) = U0︸︷︷︸
=0

+ ε IN(Q)︸ ︷︷ ︸
Interaction

(13)

See Kikuchi and Brush (1976) Table II and IV for graphical representations. Additionally,
the Appendix A presents the exact Kikuchi free energy approximation (Equations (A1)–(A3)).
Here, λ1, λ2 are the Lagrangian multipliers necessary to satisfy the normalisation condition:

1 = ∑
s1∈{0,1}

Q(xs1) = ∑
s1,s2,s3∈{0,1}

∑
i,j

Q(xs1
i,j

, xs2
i−1,j−1

, xs3
i−1,j+i

) (14)

ε IN is the interaction parameter, and U0 is the activation energy. Following [14,16],
we set the activation energy to 0 and quantify the interaction energy using pairwise
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interactions (Equation (A2)). Consequently, this particular interaction parameter allows
us to accommodate the type of interactions the system evinces. Intuitively, increasing
the interaction energy encourages interactions across healthy and cancerous pairs, whilst
lower interaction energy encourages interactions within healthy or cancerous pairs [14,18].
Perturbing this interaction energy has a direct impact on the overall free energy of the
system. In doing so, we have a way to evaluate the free energy of the system for a given
trial. Now, we formalise a setting for how particular realisations evolve (i.e., transition
from one state to another) under this system. At each trial, J variables may update their
current state from either cancer to healthy or healthy to cancer state. This determines the
growth rate hyperparameter i.e., α =

[
J
N

]
× 100. The variables transition to the other state

(i.e., either healthy or cancerous, given the previous state) determined by the probability ρ:

v ∼ p(vt) = ρvt(1 − ρ)vt

xj,t ∼
{

xj,t = xst
j̃\j∈R,t

if vt > nt,

xst �=st−1
j∈N,t if vt ≤ nt,

(15)

where vt denotes an auxiliary Bernoulli random variable indicating whether the variable xj

is in the same cluster, R, as xj̃ at trial t, and nt is the noise hyperparameter. The variables j̃
are identified based on the tolerance, tol, threshold:

xj̃ ∼
{

1 if tol > 0.5
0 if tol ≤ 0.5

(16)

The tolerance hyperparameter controls the maximum proportion of cancerous states
allowed in the system. In our deterministic formulation, these state updates are retained if
they minimise the overall Kikuchi free energy of the system. See the Appendix B for the
pseudocode (Figure A1).

3.1. Simulations

Using the above formulation, we simulated three cancer trajectories: local growth,
metastasis, and apoptosis. The initialisation of the system is dependent on the simulation,
and the specific parameterisations for each simulation are presented in Table 1.

Table 1. Parameterisation of the simulations. The interaction parameter regulates the type of cell
interaction. The tolerance parameter determines the acceptance level of cancerous cells. The growth
hyperparameter controls the number of cell states allowed to switch during a single trial. The noise
hyperparameter influences the transition dynamics. These parameters determine the evolution of the
system to a steady state according to Equation (14).

Tolerance, tol Interaction, εIN Growth Rate *, α Noise, nt

Local Growth 0.60000 2.77259 0.00610 0.25/0.00
Metastasis 0.60000 1.88001 0.00061% → 0.00610% 0.30 → 0.25
Apoptosis 0.00001 −1.42670 0.00610% 0.25

3.1.1. Local Growth

First, we modelled growth within the tissue of origin. This speaks to a modification
of healthy cells within the original site, i.e., the healthy nodes now become cancerous.
Simulating localised cancer cell growth is a core step to elucidating how cancer growth
in a healthy organ can be the result of an energy-efficient process in terms of population
dynamics although being pathological for the organism as a whole. To simulate this,
we specified a high tolerance for cancerous nodes, along with a high energy interaction
parameter (Table 1) that constrains the specification of xj to variables in the existing
cancerous cluster. Here, the positive interaction parameter induces a reduction in overall
free energy when cancerous cells interact with other cancerous cells.
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For this cancer niche, we initialised the system with a single cancerous cell. Using this,
we simulated two distinct patterns: dispersive and localised. The dispersive simulation
emulates instances where growth is spread out throughout the tissue population. As a
result, the noise hyperparameter was set to 0.25. Conversely, the localised simulation
emulates instances where growth is restricted to a small region of the tissue population.
For this, we set the noise hyperparameter to 0.

3.1.2. Metastasis

We next modelled metastasis. Understanding metastatic spread is a fundamental
priority in cancer research and treatment. With this simulation, we attempted to recreate in
silico metastatic progression where the metastatic invasion of a distant organ is enabled by
the re-creation of a new niche, without which the cells (although able to migrate) would
not survive. Generally, the development of a metastasis occurs in several steps which
can develop in a different order over time, including the creation of a premetastatic niche
(induced by a distant tumour), mesenchymal transition (EMT) of the original mass (which
provides invasive properties), degradation of basement membranes and remodelling of the
extracellular matrix (ECM), invasion of the surrounding tissue, angiogenesis, intravasa-
tion, arrest of the tumour cells in a capillary bed, extravasation, and the development of
macrometastasis [34].

Intuitively, metastasis is the movement of cancer cells from a primary site, (e.g., the
original skin tissue of growth) to a secondary location (e.g., lymph nodes). Here, we
initialised a small region of the system as the primary site (Figure 3C, grey square), with the
remaining grid representing the secondary location. We used a decaying noise hyperparam-
eter to model the transition dynamics alongside an increasing growth rate. This allowed us
to emulate the movement of cancerous cells from the primary site to the secondary location,
via the bloodstream. Additionally, setting the interaction parameter value to 1.88 allowed
us to strike a balance between having both (i) pairwise interactions across cancerous and
healthy cells and (ii) pairwise interactions between cancerous and healthy cells within the
cluster. This created a system with cancer cells in regions outside the primary site that
could support the recreation of a new cancer niche.

3.1.3. Apoptosis

We then modelled apoptosis. This is a controlled mechanism of cell death that inter-
venes in normal organ repair, growth, and renewal, as well as in inflammation and cancer.
It can result from three pathways (extrinsic, intrinsic, and perforine/granzyme). In cancer
proliferation, the intrinsic pathway is impaired and cancer cells can escape their death [35].
Here, we aimed to show how the organisms self-preservation mechanisms could be prop-
erly activated against the oncogenic cells. Accordingly, we did not expect cancer growth
and expected the new niche to be unable to stabilise at a new homeostatic equilibrium.

During this process, the tissue population would normally go through several stages:
(i) healthy cells becoming cancerous; (ii) cancerous cells dying; and (iii) remaining healthy
cells multiplying and repairing the organ. From our perspective, this simply ensures switch-
ing off existing cancerous cells in the population and replacing them with healthy cells.

We were interested in evaluating how the size of the cancer niche impacted apoptosis.
Accordingly, we initialised two distinct grids. One had a small cancerous cluster of 41 nodes
(or 0.25% of the population), and the other had a larger cluster of 172 nodes (or 1% of the
population). For both, we set the tolerance hyperparameter to 10−5 and the interaction
parameter to −1.426 to simulate two instances of apoptosis. Here, having a negative
interaction parameter induces a reduction in the overall Kikuchi free energy when more
cancer cells interact with healthy cells.

Each parameterisation was simulated across 100 trials with ρ = 0.2 and the other
parameters were kept consistent.
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Figure 3. Simulating cancer niches. The figures are pictorial representations of the cancer niches
in different trials during simulation. Each row denotes a different simulation: local growth (A,B),
metastasis (C), and apoptosis (D,E). For row C, the grey square represents the original site location.

4. Results

The results from the simulations, for each cancer niche, are shown in Figures 3 and 4.
For the local growth simulation, the construction of the cancer niche was entirely consistent
with our expectations. That is, from a single cancerous cell we could observe cancer
development. Specifically, by setting a high interaction and tolerance parameter, the
cancer was able to survive in healthy tissue. In other words, the overall free energy of the
system was minimised by allowing for interactions across cancerous and healthy cells that
lead to an oncogenic environment (i.e., the topology of our system) (Figure 4). The free
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energy results measured using Kikuchi and mean-field approximation presented similar
path trajectories.

Figure 4. Free energy as a function of time. The graphic plots the free energies for each cancer niche simulation. Each row
denotes a different simulation: local growth (A,B), metastasis (C), and apoptosis (D,E). For each plot, the Y-axis reports
the free energy in natural units [36] and the x-axis as the trial. The first panel reports the Kikuchi free energy (blue dots),
interaction energy (red line), and entropy (blue line). The second panel reports the mean-field free energy (blue dots).

The metastasis simulation illustrates (i) the movement of cancerous cells away from
the original site and (ii) the ability to sustain the ensuing changes in cell nodes outside the
original nodes. (Figure 3). This is a direct result of the interaction parameter value, that
allowed for across/between interactions of cancerous and healthy cells. Thus, any changes
to the overall system, distal to the original site, were maintained because they minimised
the overall Kikuchi free energy of the system. As in the local growth simulation, we see
that both Kikuchi free energy and mean-field free energy approximations follow a similar
trend (Figure 4); however, the Kikuchi free energy gradient was steeper over time.
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For the apoptosis simulation, the system was unable to maintain the existing cancer
niche and/or create a new cancer niche. This is reflected by the gradual decline in the
overall number of cancerous cells. It is a direct result of reducing the tolerance threshold to
0.00001, where the system now updates the state of cancerous cells to healthy (i.e., a process
of renewal and repair). Moreover, the negative interaction parameter value effectuates
an overall minimisation of the Kikuchi free energy as the number of interactions between
healthy and healthy cells increases. Ultimately, this leads to an apoptotic fate for cancer
cells (Figure 4). Interestingly, although we observed a drop in the Kikuchi free energy (as
expected), the mean-field free energy for this system increased over time.

5. Discussion

Organ development and cellular differentiation, de-differentiation, and niche home-
ostasis arise from a complex interaction between both deterministic and stochastic mecha-
nisms [13]. In these processes, the spatial aspects are as important as the temporal ones,
and steady system states are found when the free energy of spatiotemporal dynamics reach
minima. In this context, the geometry of the cell’s population presents a role that goes
beyond the mere effect on mechanics forces [37–40].

The original approach to investigate cellular population dynamics has mainly been
deterministic, i.e., a stable genetic code defines cell fate as a programmed hierarchical
process. More recently, research has shown how another group of mechanisms based
on stochastic self-organisation plays a complementary role in morphogenesis (i.e., organ
development) and cell development [41]. Under this perspective, genetic factors would
interact with self-organisation mechanisms to balance the growth of an organism and the
organisation of cellular assemblies in direct connection with environmental factors. The
specific shapes and functions of cells are associated with physical constraints that, although
not being genetically encoded, determine the spatial and functional organisation of organs
and tissues and further recursively modulate the genetic expression. These physical factors
are mechanical, chemical, and geometrical, as well as use-related stressors. Here, the
distance or contiguity between cells allows for a spatial-dependent gradient of information
such that the regulatory signals created by one cell reach neighbouring cells and regulate
the surrounding environment depending on the geography of their position. Therefore,
deterministic, stochastic, local, and population factors cooperate during self-organisation,
which moves towards a reduction of the overall free energy of the system and stabilisation
around the steady states.

Our approach, using Kikuchi free energy, endorses this perspective, namely, that
regulatory signals created by cells can affect neighbour cells and influence the surrounding
cluster. This induces the creation of new homeostasis in the tissue population (or the
body) as a new equilibrium is reached. This stipulates that cancer niche construction is
not destructive in physical terms but speaks to the natural evolution of the state function
of the system. We have observed changes across our three cancer trajectory simulations.
Here, cancer niche construction (or a topographic change to the system) persists because
it minimises the overall Kikuchi free energy of the system. This has been shown during
metastasis and local growth as nodes change from a healthy to a cancerous state here.
Similarly, through apoptosis, a new minimum is reached as the system topology shifts
from cancerous to an overall healthy state. The new homeostasis is a consequence of the
changes in the interaction and tolerance parameters, that influence the overall Kikuchi free
energy estimation and regulate the niche construction.

These parameters allow for changes at both the sub-population (or cluster) level and
the overall system. Specifically, under this formulation, the overall system state is regulated
by the tolerance level that determines the threshold for having cancerous cells. In our
simulations, this meant that a system with high tolerance would permit an increased
number of cancer nodes that are conducive to the proliferation and growth of cancer
niches. Conversely, low tolerance meant that the system could not maintain the existing
cancer niche and/or create a new cancer niche. Additionally, the interaction parameter
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regulates the types of interactions that would minimise the overall Kikuchi free energy.
High interaction parameter values allowed for healthy pairwise interactions for cancer in
clusters that are favourable for constructing a new niche. A low interaction parameter value
shifted the system state towards either healthy or cancerous by preferring either healthy–
healthy or cancer–cancer cell interactions. We postulate that these particular parameters
can refer to the biochemical elements in the body which induce cancer formation, growth,
and metastasis, as well as the activations of mechanisms of defence.

Our work provides cancer system biology research with a quantitative formulation of
evaluating cancer niches that speaks to the recent change of perspective in the field. The
role of population dynamics and cancer niches has been proven to be at the core of cancer
growth. Our model includes these elements and illustrates their importance in evaluating
cancer trajectories. Consequently, this approach has promising future directions for the
field of computational biology and can help our understanding of how niches and cells
and how possible therapies interact and interfere with each other. Similar mathematical
approaches could be considered to test and validate the hypothesis, as well as to predict
the possible development of a cancer mass depending on the degree of development and
growth within its niche. Although our model is just a reductive simplification of the
complex process of carcinogenesis, it demonstrates how Kikuchi free energy is a valuable
tool for system biology studies.

5.1. Other Computational Approaches

The authors of [42] characterised cancer niche concentration as a (stochastic) transition
of a healthy system to a distinct oncogenic steady state, e.g., proliferation or apoptosis.
They hypothesised that this transition is a direct consequence of the nonlinear dynamic
interactions amongst molecular/cellular pathways and modules, e.g., E2F [43], which
constitutes an endogenous network. They introduced nonlinear stochastic differential
equations (a generalised form of the Langevin equations) in [44–46] to elucidate the specific
interactions and nodes that undergird these transitions. See [47] for a review of this ap-
proach. This approach is conceptually consistent with a continuous state-space formulation
in the current work, albeit introducing stochastic dynamics. Conversely, our approach
considers a simplified setting with a discrete-state space formulation with a minimum
set of assumptions about the types of nodes and how they interact. Our focus places an
endogenous set of agents, as defined by [42], in the setting of cellular population dynamics.
This casts the construction of cancer niches in terms of interactions between neighbouring
cells and how they influence the cluster using Kikuchi free energy. Interestingly, [47]
proposed that free energy can be used to evaluate such noisy systems.

Our approach is complementary to the 2D stochastic cellular automation model pro-
posed in [48] with three states: proliferative, dead (‘vacant’), or quiescent. They proposed
distinct (deterministic) transitions between each state with three hyperparameters govern-
ing the system dynamics (regrowth ability, death rate, and cell cycle arrest). Using Monte
Carlo simulations and mean-field phase transition equations, they suggested that the col-
lapse of homeostasis at the multicellular level may be underwritten by non-equilibrium
processes; however, their model did not consider long-range intercellular interactions
using Kikuchi free energy. Future work could look to incorporate the dynamic transi-
tions introduced in [48] and update rules to model particular cancer niches using Kikuchi
free energy.

5.2. Limitations

There are several limitations with our formulation of cancer niche construction as a
consequence of the 2D Ising model used to describe our system. The model restricts the
simulations to a closed grid that is unable to interact with the “outside” or be affected
by external forces [49]. Nonetheless, this is sufficient for the purposes of understanding
how the internal dynamics of a tissue population induce cancer niches. Moreover, our
work provides a first step in going beyond a (factorised) mean-field approach to evaluating
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cancer proliferation and growth [7–10]. A second limitation arises from the deterministic
formulation of the transition dynamics. As mentioned above, the self-organisation of cancer
niches is a direct consequence of deterministic and stochastic processes that influence the
appropriate environment for the growth and maintenance of oncogenic cells. An enactive
formulation has been explored in [50] which casts self-organisation as an active inference
process where morphogenesis is simply a result of variational free-energy minimization
(i.e., of the sort that has been used to explain action and perception in neuroscience [51,52])
and morphogenesis in cellular biology [53].

A key difference between applications of the free energy principle to pattern for-
mation [50] and the treatment in this paper rests upon the nature of the free energy. In
applying the free energy principle, the variational free energy pertains to (Bayesian) beliefs
parameterised by some (e.g., internal) states about other (e.g., external) states. In contrast,
the application of free energy in this paper is directly attributable to the probability of states.
This means the free energy principle treats cancer as a process of inference, e.g., a kind
of delusion [54], whereas the current treatment treats carcinogenesis as a thermodynamic
process (where, under certain conditions, one implies the other); however, future work
could look to use Kikuchi free energy under a generalised belief propagation scheme [20]
for modelling cancer niches while incorporating (i) external states and (ii) equipping cells
with agency by conditioning state transitions on some active states.

Another limitation is a result of the simple generative model, i.e., our discrete random
variables can be realised as either cancerous or healthy. Thus, when modelling metastasis,
we are unable to model intermediate changes in the cell type (or different realisation of the
random variables) as they move from the primary to the metastatic site. Future work could
look to expand the model formulation beyond the 2D Ising model to account for these
different states as particular cancer niches develop. This would give us a more realistic
grounding in the transition dynamics that go beyond being simply healthy to cancerous or
cancerous to healthy.

6. Conclusions

In this work, we illustrate that cancer niche construction is a direct consequence
of interactions between clusters of modified cancerous cells using Kikuchi free energy
approximation. We show that for certain cancer trajectories, Kikuchi free energy is a
more accurate measure of evaluating system topology when compared to a mean-field
approximation. Consequently, our work provides proof for the principle of using higher-
order free energy approximations that can be more appropriate when evaluating cancer
niche construction. Future work should extend the system formulation beyond a 2D Ising
construct to evaluate the underlying differences in free energy approximations.
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Appendix A

Exact Formulation for the Kikuchi Free Energy

We use the Kikuchi free energy formulation introduced in [16]:

FV= UK(Q)− SK(Q) + λ1
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where the following may be represented using Equation (1.3) in [16]:
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Appendix B

Pseudocode for simulating our system.

Figure A1. Pseudocode.
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Abstract: Active inference is an increasingly prominent paradigm in theoretical biology. It frames
the dynamics of living systems as if they were solving an inference problem. This rests upon
their flow towards some (non-equilibrium) steady state—or equivalently, their maximisation of
the Bayesian model evidence for an implicit probabilistic model. For many models, these self-
evidencing dynamics manifest as messages passed among elements of a system. Such messages
resemble synaptic communication at a neuronal network level but could also apply to other network
structures. This paper attempts to apply the same formulation to biochemical networks. The chemical
computation that occurs in regulation of metabolism relies upon sparse interactions between coupled
reactions, where enzymes induce conditional dependencies between reactants. We will see that
these reactions may be viewed as the movement of probability mass between alternative categorical
states. When framed in this way, the master equations describing such systems can be reformulated
in terms of their steady-state distribution. This distribution plays the role of a generative model,
affording an inferential interpretation of the underlying biochemistry. Finally, we see that—in analogy
with computational neurology and psychiatry—metabolic disorders may be characterized as false
inference under aberrant prior beliefs.

Keywords: message passing; metabolism; Bayesian; stochastic; non-equilibrium; master equations

1. Introduction

Common to many stochastic systems in biology is a sparse network structure [1–4]. In
the nervous system, this manifests as many neurons that each synapse with a small subset
of the total number [5]. In biochemistry, similar network structures exist, in which each
chemical species reacts with a small number of other chemicals—facilitated by specific
enzymes [6]. In both settings, the ensuing dynamics have parallels with techniques applied
in the setting of probabilistic inference, where the sparsity is built into a (generative)
statistical model that expresses how observable data are caused by latent or hidden states.
Inversion of the model, to establish the most plausible causes for our observations, appeals
to the conditional dependencies (and independencies) between its constituent hidden
variables [7,8]. This has the appearance of message passing between nodes in a network of
variables, with messages passed between nodes representing variables that conditionally
depend upon one another [9].

The homology between inferential message passing and sparse dynamical systems
is central to active inference—a theoretical framework applied primarily in the neuro-
sciences [10]. Active inference applies to stochastic dynamical systems whose behaviour
can be framed as optimisation of an implicit model that explains the inputs to that system.
More specifically, it treats the dynamics of a system as a gradient flow on a marginal
likelihood (a.k.a., model evidence), that is the minimum of a free energy functional [11].
The internal dynamics of a system are then seen as minimising free energy to find the
marginal likelihood, which itself is maximized through acting to change external processes
so that the system inputs become more probable [12].

In the brain sciences, active inference offers a principled approach that underwrites
theoretical accounts of neuronal networks as performing Bayesian inference [13,14]. How-
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ever, the same mathematics is also applicable to other biotic systems—as has been shown
in the context of self-organisation and morphogenesis [15]—and even to non-biological
systems [16]. This paper attempts to find out how far we can take this approach in the
biochemical domain. This means an account of metabolic principles in terms of generative
models, their constituent conditional dependencies, and the resulting probabilistic dynamics.

Part of the motivation for focusing on metabolism is that it calls for a slightly different
formulation of stochastic dynamics to the Fokker–Planck formalisms [17] usually encoun-
tered in active inference [18]. As chemical species are categorical entities (e.g., glucose
or fructose), discrete probability distributions, as opposed to continuous densities, are
most appropriate in expressing our beliefs about chemical reactions. Systems of chemical
reactions then offer useful concrete examples of a slightly different form of stochastic
dynamics to those explored using Fokker–Planck equations. However, despite attempting
to establish a construct validity in relation to metabolism, the primary focus of this paper is
not biochemical. It is on the applicability of probabilistic dynamics, of the sort employed
in active inference, to systems that are not made up of neuronal networks. Specifically,
it is on the emergence of networks in stochastic dynamical systems, under a particular
generative model, and upon the interpretation of the network dynamics as inferential
message passing.

The argument of this paper can be overviewed as follows. Given an interpretation of
a steady state as a generative model, the behaviour of stochastic systems that tend towards
that distribution can be interpreted as inference. When such systems are formulated in
terms of master equations, they have the appearance of gradient flows on a free energy
functional—the same functional used to score approximate Bayesian inference schemes.
In practice, we may be interested in high-dimensional systems, for which the distribution
can be factorized into a set of lower-dimensional systems. In this setting, a mean-field
approximation can be applied such that we only need work with these lower-dimensional
marginal distributions. When the implicit generative model is sufficiently sparse, steady
state can be achieved through dynamics that involve sparse coupling between the marginal
distributions—analogous to inferential message passing schemes in machine learning.
Under certain assumptions, these probabilistic dynamics have the appearance of chemical
kinetics, licensing an interpretation of some chemical reactions—including biological,
enzymatic, reactions—as if the chemical species were engaged in a form of (active) inference
about one another. An implication of this interpretation is that metabolic pathologies can
be framed in terms of the implicit generative model (i.e., steady state) they appear to
be solving.

The main sections of this paper are organized as follows. Section 2 outlines probabilis-
tic dynamics of a categorical sort, and the relationship between these dynamics and the
notion of a generative model. This includes the use of mean-field assumptions and the
construction of dynamical systems with a particular steady state in mind. Section 3 applies
these ideas in the setting of biochemistry, relating the probability of being in each configura-
tion to the concentrations of the associated chemicals. Here, under certain assumptions, we
see the emergence of the law of mass action, and the Michaelis–Menten equation—standard
results from biochemistry. Section 4 offers an example of a biochemical network, based
on the kinetics developed in the previous sections. This paper then concludes with a
discussion of the relationship between message passing of the sort found in biochemical
and neurobiological systems.

2. Probabilistic Dynamics

2.1. Free Energy and Generative Models

Bayesian inference depends upon an important quantity known as a marginal likeli-
hood. This tells us how probable the data we have observed are, given our model for how
those data are generated. As such, it can be thought of as the evidence afforded to a model
by those data [19]. For stochastic dynamical systems that have a (possibly non-equilibrium)
steady state, the partition function at this steady state can be interpreted as if it were a
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marginal likelihood [12]. This lets us think of such systems as ‘self-evidencing’ [20], in the
sense that they tend over time towards a high probability of occupancy for regions of space
with a high marginal likelihood, and low probability of occupancy for regions with a low
marginal likelihood.

The term ‘marginal’ refers to the summation, or integration, of a joint probability
distribution with respect to some of its arguments, such that only a subset of these ar-
guments remains in the resulting marginal distribution. In Bayesian statistics, we are
normally interested in finding the marginal likelihood, under some model, of data (y).
This is a common measure of the evidence the data affords to the model. However, the
model includes those variables (x) that conspire to generate those data. These are variously
referred to as hidden or latent states. It is these states that must be marginalized out from a
joint distribution.

Variational inference reframes this summation (or integration) problem as an optimi-
sation problem [8,21], in which we must optimize an objective functional (function of a
function) whose minimum corresponds to the marginal likelihood. This functional is the
variational free energy, defined as follows:

F[y, P(x, τ|y)]� EP(x,τ|y)[ln P(x, τ|y)− ln P(x, y, ∞)]

ln P(y, ∞)= − min
P(x,τ|y)

F[y, P(x, τ|y)]

P(x, ∞|y)= argmin
P(x,τ|y)

F[y, P(x, τ|y)]
. (1)

The notation P(x,τ) should be read as the probability that a random variable X takes
a value x at time τ, consistent with conventions in stochastic thermodynamics [22]. The
symbol E means the expectation, or average, under the subscripted probability distribution.
Equation (1) says that, if free energy is minimized with respect to a time-dependent
probability density, then self-evidencing can proceed through minimisation of free energy
with respect to y. In neurobiology, minimisation of an upper bound on negative log model
evidence is associated with synaptic communication [10]. This neural activity ultimately
results in muscle contraction, which causes changes in y [23,24].

An important perspective that arises from Equation (1), and from an appeal to free
energy minimisation, is the association between a steady-state distribution and a generative
model. The generative model can be written in terms of prior and likelihood distributions
whose associated posterior and model evidence (marginal likelihood) are the minimizer of
and minimum of the free energy, respectively:

P(x, y, ∞) = P(y, ∞|x)︸ ︷︷ ︸
Likelihood

P(x, ∞)︸ ︷︷ ︸
Prior

= P(x, ∞|y)︸ ︷︷ ︸
Posterior

P(y, ∞)︸ ︷︷ ︸
Model evidence

. (2)

The key insight from Equation (2) is that, when free energy changes such that it comes
to equal the negative log model evidence, the requisite evolution of the time-dependent
conditional distribution tends towards a posterior probability. The implication is that when
we interpret the partition function (i.e., marginal) of the steady-state distribution as if it
were model evidence, the process by which the system tends towards its steady state over
time has an interpretation as Bayesian inference.

2.2. Master Equations

This paper’s focus is upon probabilistic dynamics of a categorical sort. This deviates
from recent accounts [12,18,25] of Bayesian mechanics in terms of Fokker–Planck equations,
which describe the temporal evolution of probability density functions. However, master
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equations [26,27] afford an analogous expression for the dynamics of categorical probability
distributions. The form of these equations can be motivated via a Taylor series expansion:

P(x, τ)= EP(z,t)[P(x, τ|z, t)]

P(x, τ|z, t)= P(x, t|z, t)︸ ︷︷ ︸
δxz

+ ∂tP(x, t|z, t)Δτ + O(Δτ2)

Δτ= τ − t

. (3)

Equation (3) uses the Kronecker delta function. This expresses the fact that, given
X = z at time t, the probability that it is equal to x at time t is one when x is equal to z, and
is zero otherwise. Substituting the Taylor series expansion of the second line into the first
line gives us:

P(x, τ) = P(x, t) +EP(z,t)[∂tP(x, t|z, t)]Δτ + O(Δτ2)

⇒
∂τ P(x = i, τ) = ∑j LijP(z = j, τ)

Lij � ∂τ P(x = i, τ
∣∣∣z = j, τ)

. (4)

The transition rate matrix L determines the rate at which probability mass moves from
one compartment to another. The dynamics of a time-dependent distribution are as follows.
Assuming that it is a categorical distribution, whose sufficient statistics comprise a vector
of probabilities p:

P(x, τ)= Cat(p(τ))
∂τp(τ)= Lp(τ)

. (5)

The elements of p are the probabilities of the alternative states x may assume and must
sum to one. Now that we have an expression for a time-dependent probability distribution,
how do we link this back to the steady state of the free energy minimum from Equation (1)?
One answer to this question comes from recent work that formulates the dynamics of a
master equation in terms of a potential function that plays the role of a steady state [28].
This involves the following decomposition of the transition rate matrix:

∂τp(τ)= (Q − Γ)Λp(τ)

Γ� −1
2

(
A + AT

)
Q� 1

2

(
A − AT

)
A� LΛ−1

Λ� diag(p(∞))−1

. (6)

The steady-state distribution p(∞) is given by the (normalized) right singular vector of
L whose singular value is zero. This follows directly from a singular value decomposition
of Equation (5). Equation (6) decomposes the transition rate matrix into two parts, the
first with a skew-symmetric matrix Q and the second with a symmetric matrix Γ. This
construction resembles the Helmholtz decomposition sometimes applied to continuous
dynamical systems [29]—where the flow is decomposed into a solenoidal (conservative)
and a dissipative component.

We can relate Equation (6) directly to the minimisation of free energy in Equation (1)
when p is a distribution conditioned upon some input variable y. This rests upon a local
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linear approximation to the gradient of the free energy. Using the notation of Equation (6),
free energy and its gradient are:

F(p(τ)) = p(τ) · (ln p(τ)− ln p(∞)) + z(∞)

z(∞) � ln P(y, ∞)
∇p(τ)F(p(τ)) = ln p(τ)− ln p(∞) + 1

= 1 + ln Λp(τ)
≈ Λp(τ)
⇒

∂τp(τ) ≈ (Q − Γ)∇p(τ)F(p(τ))

. (7)

The approximate equality in the fifth line follows from a Taylor series expansion
(around Λp(τ) = 1) of the logarithm in the previous line, truncated after the linear term.
This tells us that Equation (6) is, at least locally, a gradient descent on free energy aug-
mented with a solenoidal flow orthogonal to the free energy gradients. Figure 1 illustrates
this using a randomly generated transition rate matrix for a system with three possible
states. The steady state was identified from the right singular vectors of this matrix, facili-
tating computation of the free energy. Starting from different locations in the free energy
landscape, we see that the combination of the solenoidal and dissipative flows is consistent
with a gradient descent on the free energy landscape. The dissipative flow has a similar ap-
pearance, while the solenoidal trajectories travel along the free energy gradients, eventually
leaving the simplex (violating the conservation of probability).

Figure 1. Solenoidal and dissipative dynamics in categorical systems. This figure provides a numeri-
cal example of a (three-dimensional) system consistent with Equation (5), and its decomposition as
in Equation (6), starting from a series of random initial states. Each trajectory is shown in white. In
addition, it illustrates the free energy landscape (in 2 dimensions) to demonstrate the interpretation
given in Equation (7). On the left, we see the combination of the dissipative and solenoidal flows
that tend towards the free energy minimum. In the centre, the dissipative part of the flow has been
suppressed, leading to trajectories around the free energy contours. Such trajectories conserve free
energy (but not probability) so do not find its minimum. On the right, the purely dissipative trajecto-
ries find the free energy minimum, but take subtly different paths compared to those supplemented
with the solenoidal flow.

2.3. Mean-Field Models

The above establishes that probabilistic dynamics under a master equation can be
formulated in terms of a gradient descent on variational free energy. However, these
dynamics appear limited by their linearity. As nonlinear dynamical systems are ubiquitous
in biology, it is reasonable to ask what relevance Equation (5) has for living systems. The
answer is that, when x can be factorized, Equation (5) deals with the evolution of a joint
probability distribution. Linear dynamics here do not preclude non-linear dynamics of the
associated marginal distributions that deal with each factor of x individually. This section
unpacks how non-linear behaviour emerges from Equation (5) when we adopt a mean-field
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assumption. A mean-field assumption [30–32] factorizes a probability distribution into a
set of marginal probabilities (Q):

Q(x1, . . . , xN , τ) = ∏i Q(xi, τ)
⇒

∂τQ(xi, τ) ≈ E∏k Q(xk ,τ)[∂τ P(xi, τ|x1, . . . , xN , τ)]
. (8)

Equation (8) depends upon the same steps as Equations (3) and (4). It effectively
decomposes the dynamics of the joint probability into those of a set of linked compartmental
systems. Rewriting this in the form of Equation (5) gives:

∂τqi
j(τ) = ∑klmn... Li

jklmn...q
1
k(τ), . . . , qN

s (τ)

Q(xi, τ) = Cat
(
qi(τ)

) . (9)

This formulation allows for dynamical interactions between the marginal distributions.
Equation (9) can be re-written, using a Kronecker tensor product, to illustrate the savings
associated with a mean-field approximation. Here, we see that, although we retain the
same number of columns as in our original transition rate matrix, the number of rows
reduces to the sum of the lengths of the marginal vectors.

q(τ) = q1(τ)⊗ q2(τ)⊗ q3(τ)⊗ · · ·

Li =

⎡⎢⎣ Li
111... Li

121... · · ·
Li

211... Li
221...

...
. . .

Li
112... Li

122... · · ·
Li

212... Li
222...

...
. . .

⎤⎥⎦
∂τqi(τ) = Liq(τ)

. (10)

This formulation is useful, as we can use it to engineer an L that would lead to a
desired steady state. We can do this by defining L in terms of the components of its singular
value decomposition. This involves setting one of the right singular vectors equal to the
desired steady state, and setting the associated singular value to zero:

Li = ASiVi

Si =

⎡⎢⎣ 0 0 · · ·
0 λi

...
. . .

⎤⎥⎦, Vi =

⎡⎢⎣ p(∞)T

vi

...

⎤⎥⎦
A =

[
1 a · · · ]

. (11)

In what follows, we will assume we are dealing with binary probabilities, such that
qi(τ) is a two-dimensional vector for all i. To simplify things, we only concern ourselves
with the second column of A and second row of V:

Li = λiavi. (12)

It is worth noting that this choice can result in there being more than one fixed point.
However, some of these will be inconsistent with the simplex that defines allowable proba-
bility distributions and can be safely ignored. Others impose limits on the initial conditions
of a dynamical system for which Equation (12) is valid. The terms from Equation (12) can
be parameterized as follows:
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a=
[

1 −1
]T

vip(∞)= 0

vi= βi

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[
1 1

]⊗ [
1 1

]⊗ [
1 1

] · · ·[
1 0

]⊗ [
1 1

]⊗ [
1 1

] · · ·[
1 1

]⊗ [
1 0

]⊗ [
1 1

] · · ·[
1 0

]⊗ [
1 0

]⊗ [
1 1

] · · ·
...[

1 0
]⊗ [

1 0
]⊗ [

1 0
] · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

Here, the a vector is assumed to be the same for all factors of the probability dis-
tribution. It ensures any change in probability for one of the binary states is combined
with an equal and opposite change in probability for the other state. In other words, it
ensures the columns of the transition rate matrix sum to zero, consistent with conservation
of probability. The v (row) vector is parameterized in terms of a weighted sum of row
vectors, each of returns a different marginal when multiplied with p or q. This leads to the
following expression for the transition probabilities:

Liq(τ) = λia
(

βi
1 + βi

2q1
1(τ) + βi

3q2
1(τ) + βi

4q1
1(τ)q

2
1(τ) + . . .

)
. (14)

There may be multiple combinations of the β coefficients that satisfy the condition that
p(∞) is orthogonal to vT. The next subsection offers one way in which we can constrain
these, based upon the notion of a Markov blanket [33].

2.4. Graphical Models and Message Passing

It need not be the case that all variables in a generative model depend upon all others.
Before moving to a chemical interpretation of the probabilistic dynamics outlined above,
it is worth touching upon their interpretation as message passing when the underlying
model is sufficiently sparse. For this, we need the concept of a Markov blanket [33]. A
Markov blanket for xi is the set of variables that render all other variables conditionally
independent of xi. For example, if the Markov blanket of xi is xj at steady state, the
following relationship holds:

(xi⊥{xk : k �= i, k �= j})∣∣xj
⇒ P(xi, ∞|{xk : k �= i}) = P

(
xi, ∞

∣∣xj
) . (15)

The implication is that any marginals corresponding to variables outside of the Markov
blanket, under the steady-state distribution, add no additional information as to the steady
state for the variable inside the blanket. As such, we can set the β coefficients from
Equation (14) to zero for all terms except those exclusively comprising variables in the
Markov blanket. Figure 2 shows an example of a generative model, expressed as a normal
factor graph [34], that illustrates an interpretation of the associated dynamics as message
passing among the posterior marginals.

To summarize, so far, the dynamics of a categorical probability distribution can be for-
mulated in terms of a master equation. The steady state of these dynamics is interpretable
as the minimizer of a free energy functional of the sort used in variational Bayesian infer-
ence. Locally, the dynamics of a master equation can be formulated as a gradient descent
on the same variational free energy. Crucially, free energy is a functional of a generative
model. Starting from this model, we can construct master equations that lead to steady
states consistent with that model. One way of doing this is to specify the components of a
singular value decomposition of a probability transition matrix such that the singular value,
corresponding to the right singular vector parallel to the steady state, is zero. For systems
with many components, it is often more efficient to deal with a mean-field approximation
of the dynamics. This lets us formulate the dynamics of marginal distributions for each
variable without reference to the probability of variables outside of the Markov blanket of
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those variables. The next section highlights the points of contact between these mean-field
dynamics and established concepts in biochemistry. These include the law of mass action,
reaction networks, and Michaelis–Menten enzyme kinetics.

Figure 2. Sparse models and messages. This figure illustrates a generative model using normal
(Forney) factor graph. Here, we have 8 different variables. The y variables are indicated by the
small squares at the bottom of the factor graph. Dependencies between variables, represented on
the edges of the graph, are indicated by the square factor nodes. The Markov blanket of a variable
is determined by identifying those variables that share a factor (i.e., any edges connected to the
associated square nodes). Not every variable is conditionally dependent upon every other; implying
this generative model has a degree of sparsity. This lets us simplify the mean-field dynamics such
that the rate of change of each marginal distribution depends only upon its Markov blanket. The
result has the appearance of message passing, as indicated by the arrows. Each arrow represents a
message coming from a factor. Where they meet, they each contribute to the local steady state.

3. Biochemical Networks

3.1. The Law of Mass Action

This section starts by relating the mean-field dynamics of the previous section to
the law of mass action, which specifies the relationship between the rate of a chemical
reaction and the concentrations of the chemical species involved in that reaction [35–37]. A
reversible chemical reaction is expressed as follows:

∑
i

σiSi � ∑
i

ρiSi. (16)

Here, S stands in for the different chemical species (indexed by the subscript), and σ
and ρ for the stoichiometric coefficients (i.e., the number of molecules of S used up by, or
produced by, a single reaction taking place, respectively). The symbol between substrates
and products indicates a reversible transition between the substrates and products.

Our challenge is to express Equation (16) in terms of the joint distribution of chemical
species at steady state (i.e., a generative model), and then to find an appropriate master
equation to describe the route to this steady state. The following shows the form of a steady
state for a system with two substrates and two products:
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P(S1 ⊗ S2, ∞)= Cat

⎛⎜⎜⎝
⎡⎢⎢⎣

α
0
0

1 − α

⎤⎥⎥⎦
⎞⎟⎟⎠

P(S3 ⊗ S4, ∞|S2)= Cat

⎛⎜⎜⎝
⎡⎢⎢⎣

0
0
0
1

1
0
0
0

⎤⎥⎥⎦
⎞⎟⎟⎠

. (17)

Intuitively, the first probability distribution tells us that the only plausible config-
urations of the two substrate molecules are both present and both absent. The second
distribution says that, if the second (and therefore the first) substrates are present, the
products are both absent. However, if the substrates are absent, the products are present.
As all variables of Equation (17) are conditionally dependent upon all other variables, the
resulting master equations must depend upon the marginals for all variables. In selecting
v, we can group these depending upon which side of the reaction they occupy:

vi = β
[

1 1
]⊗ [

1 1
]⊗ [

1 0
]⊗ [

1 0
]

−[
1 0

]⊗ [
1 0

]⊗ [
1 1

]⊗ [
1 1

]
β �

(
α

1−α

)
⇒⎡⎢⎢⎣

∂τq1
1(τ)

∂τq2
1(τ)

∂τq3
1(τ)

∂τq4
1(τ)

⎤⎥⎥⎦ = λ

⎡⎢⎢⎣
βq3

1(τ)q
4
1(τ)− q1

1(τ)q
2
1(τ)

βq3
1(τ)q

4
1(τ)− q1

1(τ)q
2
1(τ)

q1
1(τ)q

2
1(τ)− βq3

1(τ)q
4
1(τ)

q1
1(τ)q

2
1(τ)− βq3

1(τ)q
4
1(τ)

⎤⎥⎥⎦
. (18)

The final line follows from the previous lines via Equation (12). The probabilities
that the chemical species is absent (subscript 2) have been omitted as they are simply the
complement of the probabilities that they are present (subscript 1). Note that the marginals
(at steady state) that result from these dynamics are not consistent with the marginals of the
generative model. This is due to the violation of the mean-field assumption. We can correct
for the discrepancy by raising the numerator of β to a power of the number of substrates,
and the denominator to the power of the number of reactants. This correction is obtained
by setting Equation (14) to zero when the marginals are consistent with those at steady
state and solving for the β coefficients. In addition, these kinetics conserve the summed
probability of species being present (i.e., they conserve mass) so cannot achieve the steady
state from Equation (17) unless the initial conditions include a summed probability of
presence of 1.

By interpreting the probabilities as the proportion of the maximum number (N)
of molecules of each species, and dividing these by the volume (V) in which they are
distributed, Equation (18) can be rewritten in terms of chemical concentrations (u):⎡⎢⎢⎣

∂τu1(τ)
∂τu2(τ)
∂τu3(τ)
∂τu4(τ)

⎤⎥⎥⎦=
⎡⎢⎢⎣

κ2u3(τ)u4(τ)− κ1u1(τ)u2(τ)
κ2u3(τ)u4(τ)− κ1u1(τ)u2(τ)
κ1u1(τ)u2(τ)− κ2u3(τ)u4(τ)
κ1u1(τ)u2(τ)− κ2u3(τ)u4(τ)

⎤⎥⎥⎦
ui(τ)� V−1Nqi

1(τ)

κ1� λN−1V

κ2� λβN−1V

β=
α2

(1 − α)2

. (19)
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Equation (19) uses the ‘corrected’ β coefficient. A simulation of this reaction is shown
in Figure 3, represented both in terms of the evolution of probability and as chemical
concentrations. Note the gradual transition from substrates to products, under a generative
model in which the latter are more probable. The free energy of this reaction can be seen to
monotonically decrease, highlighting the consistency with the dynamics of Equation (7)
despite the mean-field assumptions.

Figure 3. A chemical reaction. This figure illustrates the solution to the generative model outlined
in Equation (17), under the dynamics given in Equation (20). The upper-left plot shows the rate
of change of the substrates and products. The two substrates have equal concentrations to one
another, as do the two products. Under this model, with α = 1

4 , the substrates are converted into
products until the substrates are at a quarter of their maximum concentration, with the remainder
converted to the products. The same information is presented in probabilistic form in the lower right.
Here, black indicates a probability of 1, white of 0, and intermediate shades represent intermediate
probabilities. The plot of free energy over time shows that, despite the mean-field approximation
and the constraints applied to the transition rate matrix, the reaction still evolves towards a free
energy minimum—as in Figure 1. Note that, in the absence of an external input to this system, the
free energy reduces to a Kullback–Leibler divergence between the current state and the steady state.

In chemical systems, the rate of change of some reactants can depend non-linearly
on the concentration of those reactants. We can take a step towards this relationship as
follows. If we then stipulate that two (or more) of the chemical species are the same, we
can re-express this, with suitable modification of the constants, as:

2S1� S3 + S4

u1(τ) ∝ q1
1(τ) + q2

1(τ)
q1

1(0) = q2
1(0)

}
⇒⎡⎣ ∂τu1(τ)

∂τu3(τ)
∂τu4(τ)

⎤⎦=
⎡⎢⎣ 2κ2u3(τ)u4(τ)− 2κ1u1(τ)

2

κ1u1(τ)
2 − κ2u3(τ)u4(τ)

κ1u1(τ)
2 − κ2u3(τ)u4(τ)

⎤⎥⎦
. (20)
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This brings an autocatalytic element to the reaction, allowing the substrate to catalyse
its own conversion to the reaction products. Generalising the above, we can express the
law of mass action [35–37] for the generic reaction in Equation (16) as:

∂τui(τ) = (ρi − σi)

(
κ1∏

j
uj(τ)

σj − κ2∏
j

uj(τ)
ρj

)
. (21)

This subsection started with from the mean-field master equation developed in
Section 2 and illustrated how, under certain conditions, the law of mass action for chemical
systems can be obtained. This application of a master equation to chemical dynamics
should not be confused with the chemical master equation, detailed in Appendix A [38].
The key steps were (i) the specification of a generative model for which the marginal
probabilities that each chemical species is present sum to one and (ii) the choice of right
singular vector, orthogonal to the resulting joint distribution, for the transition rate matrix.

3.2. Reaction Networks

In the previous two subsections, all chemical species were assumed to participate in
a single reaction. Here, we extend this, such that we can see how the message passing
from Figure 3 appears in a network of chemical reactions. To do this, we need to be able
to construct a generative model, as we did above, that accounts for multiple chemical
reactions. Figure 4 illustrates an example of a generative model, and associated master
equation, that accounts for a system of two (reversible) reactions. The associated reaction
constants are given, as functions of the parameters of the generative model, in Table 1. As
above, these are obtained by solving for the coefficients of Equation (14) when at steady
state. This serves to illustrate two things. First, the methods outlined in the previous section
are equally applicable to systems of multiple reactions. Second, when multiple reactions
are in play, the generative model can be formulated such that chemical species that do
not participate in the same reaction can be treated as being conditionally independent of
one another. This induces the sparsity that makes inferential message passing possible. A
generic expression of a reaction system obeying the law of mass action is as follows:

∂τui(τ)= ∑
j

Ωijrj(u(τ))

rj(u(τ))= κj∏
i

ui(τ)
σi

. (22)

The stoichiometry matrix Ω indicates the difference between ρ and σ for each chemical
species for each reaction. The r vector function returns all the reaction rates (treating
forwards and backwards reactions as separate reactions). Equation (21) is then a special case
of Equation (22) when there are only two reactions. Equation (22) provides a clear depiction
of message passing in which each element of r is a message, with the stoichiometry
matrix determining where those messages are sent. Figure 4 demonstrates the relationship
between this message passing and the graphical formulation of chemical reaction systems.
Via this graphical notation, Equation (22) has many special cases throughout biology [37,39],
some examples of which are outlined in Appendix B. However, for systems with many
components, it can be very high-dimensional. The next subsection details one way in
which the dimensionality of metabolic networks can be reduced, through an appeal to a
separation of time scales.

37



Entropy 2021, 23, 606

Figure 4. Reaction networks. This schematic illustrates the factor graph associated with a system
comprising a pair of coupled reversible reactions (i.e., four reactions in total). The factors are specified
in the blue panel. These are chosen to enforce conservation of mass, in the sense that the marginal of
S1 or of S2 plus the marginal of S3 plus the marginal of S4 or of S5 is one.

Table 1. Rate constants for the reaction network in Figure 4. This table specifies the κ parameters from
Figure 4 as functions of the α parameters of the associated generative model and a free parameter z.

Rate Constant Function of α

κ1 λN−1Vzα−2
1 α−1

2 (α2 − α1)
κ2 λz
κ3 λ(1 − z)
κ4 λN−1V(1 − z)α−2

1 α2(1 − α2)
−2(α2 − α1)

3.3. Enzymes

So far, everything that has been said could apply to any chemical reaction system.
However, the introduction of enzymes brings us into the domain of the life sciences. Just as
we can group elements on the same side of a reaction to account for autocatalytic dynamics,
we can group elements on opposite sides of the reaction to account for catalytic activity.
Enzymes are biological catalysts that combine with substrates to form an enzyme–substrate
complex, modify the substrate and dissociate from the resulting product. As such, they
appear on both sides of the overall reaction.

More formally, an enzymatic reaction has a stoichiometry matrix of the form:

Ω =

⎡⎢⎢⎣
−1
−1

1
0

1
1

−1
0

0
1

−1
1

0
−1

1
−1

⎤⎥⎥⎦
⇒ SS + SE � SC � SP + SE

. (23)
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The rows of Ω are the substrate, enzyme, enzyme–substrate complex, and product.
These are shown in the reaction system using the subscripts S, E, C, and P, respectively. We
can express a generative model for this reaction system as follows:

P(SC ⊗ SE)= Cat

⎛⎜⎜⎝
⎡⎢⎢⎣

0
α1

1 − α1
0

⎤⎥⎥⎦
⎞⎟⎟⎠

P(SS|SC ⊗ SE)= Cat
([

0
1

α2
1 − α2

0
1

α2
1 − α2

])
P(SP|SC ⊗ SE)= Cat

([
0
1

1 − α2
α2

0
1

1 − α2
α2

])
. (24)

The first term gives the proportion of enzyme we expect to be in complex form versus
being free to engage with the substrate or product. The probability of being in both states
simultaneously, and of being in neither of the two states, is zero. When the complex is
present, the substrate and product are both absent. When the enzyme is present, the
substrate is present with some probability, and the product is present with the complement
of that probability. As before, a chemical reaction network can be constructed based
upon the conditional independencies of the associated model, i.e., the independence of
substrate and product conditioned upon the enzyme and complex, which satisfies the
sparse message passing of Equation (23). The requisite rate constants (corrected for the
mean-field assumption) are shown in Table 2.

Table 2. Rate constants for an enzymatic reaction. This table specifies the κ parameters from
Equation (24) as a function of the α parameters of Equation (23) and a free parameter z.

Rate Constant Function of α

κ1 λN−1V(z − α1z + c)α−2
1 α−1

2
κ2 λz
κ3 λ(1 − z)
κ4 λN−1V((1 − z)(1 − α1)− c)α−2

1 (1 − α2)
−1

In constructing these messages, we relax the assumption that the steady state is at
equilibrium. This means that detailed balance can be violated and involves using a non-
zero β1 from Equation (14) in some of the terms, such that there is constant production
of, and removal of, certain chemical species from the system. Specifically, we will assume
production of the substrate and removal of the product at equal rate (c). A consequence of
this is that reactions generating products must be faster than reactions using up product
in order for steady state to be maintained. The plots on the left of Figure 5 illustrate the
resulting dynamics. Note the initial decrease in substrate and enzyme concentration as
they combine to form the complex, followed by the slow rise in product concentration.

In metabolic reaction systems, there are many reactions catalysed by enzymes. In
this setting, it is useful to be able to reduce the number of elements of the system to a
manageable dimension through omitting the explicit representation of enzymes. A common
approach to this is to use Michaelis–Menten kinetics [40]. This depends upon a separation
of timescales. The two timescales in question are illustrated in Figure 5 through the rapid
conversion of substrate to complex, and the slower generation of product. Combination of
substrate and enzyme, and dissociation of complex to substrate and enzyme are both faster
than dissociation of complex to product and enzyme. When this is true, a quasi-equilibrium
approximation may be adopted. This means that the rates of the reactions involving the
substrate are assumed to be much faster than those involving the product:
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∂τuP= r(u)− c

κ4uPuE � κ3uC
κ1uSuE 	 κ3uC

κ2uC 	 κ3uC

⎫⎬⎭⇒ r(u) ≈ vmax

(
uS

κm + uS

)
vmax� κ1κ3(uE + uC)

κm�
κ2

κ1

c≤ (1 − z)(1 − α1)

. (25)

Figure 5. Enzymes, Markov blankets, and chemical inference. This figure illustrates several points.
The plots on the left use the same formats as in Figure 3 to show the evolution of the reaction in terms
of concentration and probability. The plots on the right exploit the Markov blanket structure implicit
in an enzymatic reaction to show the evolution of the ‘beliefs’ implicitly encoded by the expected
value of the substrate about the product, and vice versa. The upper-right plot shows these beliefs,
defined as q̃1

1 = α2 − q2
1 and q̃2

1 = α2 − q1
1, which converge towards q1

1 and q2
1, respectively as the

steady state is attained. The implicit generative models are shown in the free energy plot, with the
enzyme playing the role of the data being predicted. The free energy of each decreases as the beliefs
converge upon the posterior probabilities of substrate and product given enzyme.

Equation (25) specifies the quasi-equilibrium assumption [41], and the resulting
Michaelis–Menten form for the reaction function r. The final line follows from the condi-
tion that the rate constants be non-negative. The rate constants, in terms of the generative
model, are given in Table 2. This lets us consider what the assumptions underneath the
Michaelis–Menten equation mean in relation to the underlying generative model. First,
the assumption that the reaction generating the product from the complex is much faster
than the reverse reaction implies α1 approaches its lower limit. When interpreted from the
perspective of the generative model, this makes intuitive sense, as the implication is that
given sufficient time, most of the enzyme will be in the non-complex form. Second, the
assumption that the forwards and backwards reactions between substrate and complex
are faster than the reaction generating the product implies the z parameter must be close
to one.
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Equation (25) simplifies a system comprising four chemical species into a single
non-linear rate function that depends only upon the substrate. Practically, this means
Michaelis–Menten kinetics can be used to omit explicit representation of enzymes from a
reaction system. This lets us replace the reaction function (r) from Equation (21) with that
from Equation (24), significantly reducing the dimensionality of the resulting system. This
formulation is the starting point for methods for further dimensionality reduction of high-
dimensional metabolic networks [42]. For instance, the extreme pathway method [43,44]
defines extreme pathways as the set of r (normalized by vmax for the rate limiting reaction
in the pathway) for which Ωr returns a vector of zeros. By taking the singular value
decomposition of the matrix of extreme pathway vectors, the left singular vectors can
be used to describe ‘eigenpathways.’ By omitting eigenpathways with sufficiently small
singular values, a simpler representation of the network may be obtained.

This subsection brought the concept of an enzyme into the chemical kinetics of the
previous sections and demonstrated how an appeal to separable timescales results in a
simpler, lower-dimensional, representation of an enzymatic system. The associated rate
function that resulted from this emphasizes the emergence of nonlinear phenomena at
slower scales of a multicomponent system.

3.4. Enzymatic Inference

The enzymatic system of the previous subsection is useful in unpacking an active in-
ferential interpretation of chemical kinetics. The plots on the right of Figure 5 are key to this
perspective. The upper-right plot illustrates a function of the substrate concentration that
converges to the product concentration, and a function of the product concentration that
converges to the substrate concentration. There is a sense in which we could interpret this
as the substrate, on average, representing beliefs about the product and vice versa [15,25].
The plots of variational free energy (averaged under the enzyme and complex probabil-
ities) decrease over time. The implication is that the models determining the evolution
of the substrate and product, both of which predict the enzymatic state, become better
explanations for these data (on average) over time.

Although the interactions between the substrate and enzyme are bidirectional, the
influence of the enzyme on the product is unidirectional. This is a consequence of the
steady state being non-equilibrium. This highlights that there are two ways of optimising
free energy. The first is to do as the distributions encoded by the product, and to change
beliefs to better explain the data at hand. The second is to do as the substrate does, through
changing the data (i.e., enzyme concentration) such that the explanation fits. Note the
initial increase in free energy for the model optimized by the product concentration, as the
enzyme concentration changes. This is then suppressed, much like a prediction error in
neurobiology [45–49], as the product updates its implicit beliefs.

While it might seem a bit strange to formulate the dynamics of one component of a
system in relation to a functional of beliefs about other components, this move is central
to the Markovian monism that underwrites active inference [50]. It is this that offers us a
formal analogy with theoretical neurobiology, and the action-perception loops [51] found
in the nervous system. The distinction between active (e.g., muscular) and sensory (e.g.,
retinal) limbs of these loops derives from the same non-equilibrium property, breaking
the symmetry of message passing, such that beliefs can directly influence active but not
sensory states. Whether something is active or sensory depends upon the perspective
that we take, with enzymes being sensory from the perspective of beliefs encoded by the
product, and active from the perspective of beliefs encoded by the substrate.

4. Metabolism

In this section, we briefly consider a (fictional) biochemical network that exploits
the formulation above. A generative model for the network is illustrated in the upper
left of Figure 6. The pink arrows supplement this model with the directional influences
assumed at the lowest levels of the model. The lowest level of the model reflects the
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‘active’ and ‘sensory’ interactions with another system that is not explicitly modelled here.
All reactions are enzymatic, but with explicit treatment of the enzymes omitted via the
Michaelis–Menten formulation. As such, the factors corresponding to the enzymes in the
model are absorbed into the factors relating the concentrations of reactants. On finding
the kinetics consistent with this steady state, the result is the reaction system shown in the
upper right of Figure 6.

 

Figure 6. Metabolic networks and their pathologies. This figure shows the conditional dependencies
in a generative model in the upper left, highlighting the directional influences at the lowest level of
the model with pink arrows. These ensure S3 is a sensory state, while S5 and S7 are active states. In
the upper right is the chemical message passing that solves this model. The two plots in the lower
part of the figure illustrate the relative probability of the marginal probabilities (or concentrations) of
each chemical species. The spatial configuration matches that of the network in the upper right. The
sizes of the circles indicate the relative concentrations once steady state has been attained. The plots
on the left and right show the steady states before and after introduction of a lesion that disconnects
the reaction from S1 to S4. Here, we see a redistribution of the probability mass, resulting in an
alternative (possibly pathological) steady state.

The plots of the steady state shown in the lower part of Figure 6 use the same layout
as the reaction network, but show the marginals (i.e., concentrations) of each species once
it reaches steady state. The larger the circle, the greater the concentration. The initial
conditions involve zero concentration for all species, so their concentrations can only
increase when they receive messages from S3, via the other reactants.

The lower-left plot shows successful convergence to the non-equilibrium steady state
determined by the generative model. The structure of this steady state resembles the
architectures found in metabolic networks in the sense that an external system supplies
some chemical (S3) which is converted through a series of reactions into other chemical
species (S5 and S7) that participate in other reactions external to the system. The glycolysis
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pathway is one example, in which glucose is provided to the system to be converted to
acetyl CoA (taken up by the citric acid cycle) or to lactate (taken up by the Cori cycle) [52].

The lower-right plot in Figure 6 shows the steady state obtained when a lesion is intro-
duced into the message passing, through setting vmax to zero for the reaction converting S1
to S4. Recall that vmax is a function of the reaction constants which themselves are functions
of the parameters of the generative model. For example, when α1 approaches its upper
limit, the enzyme spends little of its time in complex form, so cannot catalyse the reaction.
This effectively induces a disconnection, precluding conversion of S1 to S4. The reason
for inducing this lesion is to illustrate the diaschisis that results. A diaschisis is a concept
from neurobiology [53–55]. It refers to the consequences of a localized lesion for distant
parts of a network. Just as lesions to one neural system can have wide reaching functional
consequences throughout the brain, the consequences of the localized lesion in Figure 6
can be seen throughout the reaction network. In addition to the loss of S4 and S5, there
is a compensatory increase in S2 and S6. This ensures a steady state is attained, as the
loss of output from S5 is offset by increased output from S7. However, it is not the same
steady state as in the pre-lesioned network. A conclusion we can draw from this is that,
as in neurobiology [56], a disconnection can be framed as a change to the parameters of
a generative model representing the steady state. The distributed message passing that
maintains steady state allows for the effects of the disconnection to propagate throughout
the network.

One example (of many) of a disorder in which a new steady state is attained following
an enzymatic disconnection is due to thiamine deficiency (a.k.a., Beriberi) [57]. Thiamine is
a B vitamin that facilitates the action of several important enzymes, including pyruvate
dehydrogenase, which converts pyruvate to acetyl CoA. An alternative fate for pyruvate
is conversion to lactate [52]. If we were to associate S3 with glucose, S1 with pyruvate,
S6 with lactate, and S4 with acetyl CoA, we could interpret the lesion in Figure 6 as result-
ing from thiamine deficiency. The resulting accumulation of lactate is consistent with the
local increases in this toxic metabolite observed in neural tissue following thiamine deple-
tion [58]. This may be one aspect of the pathophysiology of Wernicke’s encephalopathy
and Korsakov’s psychosis [59]. These are forms of ‘dry’ beriberi with profound neurolog-
ical and psychiatric consequences. While associating this with the lesion in Figure 6 is
overly simplistic, it serves to illustrate the way in which the somewhat abstract formula-
tions above could be applied to specific metabolic systems, their disconnections, and the
resulting diaschisis.

5. Discussion

This paper has sought to apply the probabilistic dynamics that underwrite active
inferential approaches to neurobiology to biochemical networks. This started from the
expression of a categorical system in terms of a master equation and the interpretation of
this equation in terms of flows on a free energy functional. As free energy is a functional of
a generative model, this meant the dynamics acquired an interpretation as inference, in
the sense of approximating a marginal likelihood. In what followed, the dimensionality of
the representation afforded by the master equation was reduced, first through an appeal
to a mean-field assumption. The interactions between different factors were simplified by
noting that only those variables in the Markov blanket of a given state are necessary to find
the appropriate steady-state distribution.

The sparse message passing that resulted from this—reminiscent of the approach used
in variational message passing [7]—reduces to the law of mass action under certain assump-
tions. This lets us treat simple chemical reactions as if they were optimising a generative
model. By introducing enzymatic reactions, and working with a non-equilibrium steady
state, a further reduction in dimensionality is afforded by Michaelis–Menten kinetics. This
emphasizes the emergence of increasingly nonlinear dynamics at higher spatiotemporal
scales—something that has been observed in a range of network systems [60,61]. In ad-
dition, the combination of the Markov blanket inherent in an enzymatic reaction and the
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asymmetric message passing in a non-equilibrium system offered an opportunity to frame
different parts of the system as optimising beliefs about other parts of the system. This
minimisation of free energy through action and ‘perception’ is known as active inference
in neuroscience.

Finally, a simple metabolic network was constructed that exploited the reduced ex-
pression of enzymatic dynamics, and which utilized the asymmetric message passing
associated with active inference. Just as models of inference in the nervous system can be
used to simulate pathology through disconnection [62–64], this metabolic network was
lesioned to illustrate that disconnections, whether axonal or enzymatic, can result in a
diaschisis, i.e., distributed changes in distant parts of the network. Crucially, the system still
attains steady state following a lesion. It is just a different steady state. This offers a point
of connection with approaches in computational neurology [65] and psychiatry [66,67],
motivated by the complete class theorems [68,69], which treat pathology as optimally
attaining a suboptimal steady state [70]. This perspective places the burden of explanation
for pathological behaviour on the prior probabilities associated with the steady state (i.e., it
asks ‘what would I have to believe for that behaviour to appear optimal?’). The advantage
of this approach is that it provides a common formal language (prior probabilities) in which
a range of conditions—from psychosis to visual neglect—can be articulated. The example
in Figure 6 suggests metabolic disorders may be amenable to the same treatment.

There are several directions in which the ideas presented in this paper could be
pursued. Broadly, these include (i) generalising the dynamics beyond Michaelis–Menten
kinetics to include more complex reaction functions, (ii) identifying the generative models
of real reaction systems, and (iii) moving beyond metabolic systems to other forms of
biological dynamics. Taking these in turn, the Michaelis–Menten formulation can be
generalized for molecules (e.g., enzymes) with more than one binding site. This means that
there is more than one enzyme–substrate complex state, and a set of reactions allowing
transitions between these. One of the most prominent examples is the binding of oxygen to
haemoglobin, a protein with four binding sites. The haemoglobin dissociation curve has a
sigmoidal form [71], offering an alternative reaction function to the saturating Michaelis–
Menten reaction function. More generally, the Hill equation [72] can be obtained using an
analogous derivation to the Michaelis–Menten equation and has the latter as a special case.

Identifying generative models in biological chemical networks may be as simple as
finding the steady state. However, the perspective offered in Section 3.4 adds an important
twist to this. The generative model should express beliefs about something external to the
network. To understand the problem a given network is solving, we need to be able to
express a model of the inputs to that network. An active inference account of glycolysis
would have to start from a generative model of the factors outside of the glycolytic pathway
that explain glucose availability. Treating the constituents of the glycolysis pathway as
expressing beliefs about the things causing glucose availability, we would hope to find
the message passing among elements of the pathway emerge from minimising the free
energy of their associated beliefs. Similar approaches have been adopted in neural systems,
demonstrating that it is possible to identify implicit probabilistic beliefs about variables in
a generative model in networks of in vitro neurons [73]. While outside the scope of this
paper, many of these models call for caching of past observations. As highlighted by one
of the reviewers, such models need to incorporate forgetting to ensure steady state and
preclude convergence to a narrow distribution [74,75].

The above emphasizes what may be the most important practical implication of this
paper for metabolic network analysis. Given the scale of such networks in biotic systems,
and their interaction with chemical systems in the wider environment, most analyses are
restricted to a small part of an open system. In most interesting cases, the kinetics within
that system will change when those outside that system change. For instance, the behaviour
of a glycolytic network will vary when the rate of lipolysis increases or decreases. This
suggests that it should be possible to formulate and test hypotheses of a novel kind. In place
of questions about alternative kinetics that could be in play, the inferential perspective
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lets us ask about the problem a biochemical system is solving, with reference to the
probable states of external systems. Practically, this means we can borrow from the (‘meta-
Bayesian’ [69]) methods developed in fields such as computational psychiatry—designed to
ask questions about the problems the brain is solving—and formalize alternative functional
hypotheses about the problem a metabolic network is solving.

There are many biological applications of categorical probabilistic dynamics—sometimes
referred to as compartmental models. For instance, in epidemiology [76,77] the movement
of people between susceptible, exposed, immune, and recovered compartments mimics
the exchanges between different chemical species. Similar mean-field dynamics can be
found in neurobiology [78], immunology [79,80], ecology [81], and pharmacokinetics [82].
In addition, they are common outside of biology, in fields such as economics [83] and
climate science [84]. In principle, a similar treatment could be applied to such systems,
interpreting the interactions between compartments as inferential message passing given a
generative model.

6. Conclusions

This paper sought to illustrate some points of contact between active inference, a well-
established framework in theoretical neurobiology, and the techniques used in modelling
biochemical networks. Specifically, the focus was on the relationship between generative
models, their associated inferential message passing, and the sparse network interactions
in metabolic systems. Under certain assumptions, the master equation describing the
evolution of a categorical probability distribution has the same form as the law of mass
action, from which standard biochemical results may be derived. This enables construction
of a biochemical network, whose rate constants are functions of an underlying generative
model. The kinds of pathology affecting this network can be formulated in terms of
aberrant prior beliefs, as in computational neurology and psychiatry, and manifest as
disconnections whose consequences propagate throughout the network.
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Appendix A

This appendix highlights the point of connection between the formalism advanced
here and the chemical master equation [38]. The chemical master equation deals with a
joint probability distribution over the number of molecules of each species. This can be
expressed in terms of a vector p whose elements are the probabilities of each possible
configuration of N particles. Assuming a ‘one-hot’ vector variable x whose elements
represent every possible configuration of the N particles among the available chemical
species, a reaction k is formulated as a discrete jump of the form:

x(τ + Δτ) = ξkx(τ). (A1)

In Equation (A1), ξk is a square matrix, with a single one in each column and zeros
elsewhere. Expressing Equation (A1) in the form of a master equation, we have:
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∂τp(τ) = Lp(τ)
Lzx = ∑k∈K γk(x), K = {k : z = ξkx}
Lxx = −∑k γk(x)

⇒ ∂τpx(τ) = ∑k

(
γk(ξ

−1
k x)p

ξ−1
k x(τ)− γk(x)px(τ)

) . (A2)

The first line here is the master equation from Equation (5). The definition of the
transition rate matrix says that if there exists a reaction that leads to a move between two
configurations, there is a nonzero transition rate, specific to that reaction. The transition rate
along the diagonal is negative and includes the sum of all rates of transitions from this state.
For transitions for which there is no associated reaction, the rate is zero. The final line is the
resulting chemical master equation. A common alternative, but equivalent, expression of
this is formulated such that x has elements representing each chemical species, where each
element takes the value of the number of molecules of that species in the configuration
represented by x.

An excellent example of the application of the chemical master equation, highly
relevant to the treatment in this paper, is given in [85]. Focusing on monomolecular
reaction systems, the authors detail the relationship between steady state (i.e., the implicit
generative model) and the associated reaction kinetics. Their results highlight the way
in which a steady state can be determined from the kinetics. This complements the
approach pursued here, in which the kinetics, under certain assumptions, emerge from the
steady state.

In practice, the chemical master equation is often approximated by a lower dimen-
sional system [86], that is easier to solve, often through focusing on the marginals, taking
limits and re-expressing as a Fokker–Planck equation. The key difference between the
chemical master equation and the approach pursued in the main text is that the former
treats the number of particles (and implicitly the concentrations) as stochastic variables.
In contrast, the approach in the main text assumes the concentrations are simply scaled
probabilities, which then evolve deterministically. When dealing in small numbers of
molecules, the chemical master equation is considerably more accurate.

Appendix B

This appendix provides two examples of systems outside of biochemistry that can be
subject to the same analysis. By formulating a reaction system based upon a model of the
conditional dependencies between parts of a population experiencing an epidemic, we can
formulate an SEIR model, of the sort used in epidemiology for communicable diseases.
Similarly, we can formulate a model of predator-prey interactions, using the Lotka–Volterra
equations, using the same formalism.

Starting with an SEIR model [77], the idea is to express the proportion of a population
occupying the susceptible (S), exposed (E), infected (I), and recovered (R) compartments.
Susceptible people become exposed on interaction with an infected individual, and then
transition from exposed to infected as the incubation period expires. The infected popula-
tion gradually transition to the recovered state where, from which they gradually become
susceptible again. The associated reaction system is as follows:

S + I → E + I
E → I
I → R
R → S

Ω =

⎡⎢⎢⎣
−1

1
0
0

0
−1

1
0

0
0

−1
1

1
0
0

−1

⎤⎥⎥⎦ r(u) =

⎡⎢⎢⎣
κ1uSuI
κ2uE
κ3uI
κ4uR

⎤⎥⎥⎦ . (A3)

Equation (A3) expresses the system as if it were a chemical reaction, interpretable via
the law of mass action in terms of the stoichiometry matrix and a reaction function. As
before, these specify the message passing and the messages, respectively. The steady state
to which the system tends is determined by the κ terms (and vice versa). This makes the
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difference between a transient epidemic that decays to (nearly) zero prevalence over time,
or an endemic steady state with a persistently high infection level.

The SEIR system is relatively simple, in the sense that the stoichiometric matrix
includes only zeros and ones. In contrast, the generalized Lotka–Volterra system [81] has a
more complicated stoichiometry:

P → ρPP
P + H → ρH H

H →
H + C → ρCC

C →

Ω =

⎡⎣ ρP − 1
0
0

−1
ρH − 1

0

0
−1

0

0
−1

ρC − 1

0
0

−1

⎤⎦ r(u) =

⎡⎢⎢⎢⎢⎣
κ1uP
κ2uPuH
κ3uH
κ4uHuC
κ5uC

⎤⎥⎥⎥⎥⎦ . (A4)

Equation (A4) deals with a system comprising a plant population (P), a herbivore
population (H), and a carnivore population (C). As plants reproduce, they increase in num-
ber. However, they are kept in check by the herbivorous creatures, who increase their own
population on encountering plants, while causing a decrease in the plant population. The
herbivore population declines through carnivore-dependent and independent processes.
The interaction between carnivores and herbivores mimics that between herbivores and
plants. Again, this can be expressed, via the law of mass action, in terms of a series of
messages (r) and a scheme determining where those messages are sent (Ω).

Interestingly, both biological systems are not at equilibrium, in the sense that the
individual reactions are not reversible. This preserves the active and sensory distinction
found in neurobiology. The purpose of this appendix is to highlight the expression of these
systems in terms of messages passed between nodes of a network. Given the relationship
between these expressions and the steady state dynamics outlined in the main text, a
possible direction for future research is the formulation of such systems in terms of the
generative models their constituents are implicitly solving.
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Abstract: Drawing from both enactivist and cognitivist perspectives on mind, I propose that ex-
plaining teleological phenomena may require reappraising both “Cartesian theaters” and mental
homunculi in terms of embodied self-models (ESMs), understood as body maps with agentic proper-
ties, functioning as predictive-memory systems and cybernetic controllers. Quasi-homuncular ESMs
are suggested to constitute a major organizing principle for neural architectures due to their initial
and ongoing significance for solutions to inference problems in cognitive (and affective) development.
Embodied experiences provide foundational lessons in learning curriculums in which agents explore
increasingly challenging problem spaces, so answering an unresolved question in Bayesian cognitive
science: what are biologically plausible mechanisms for equipping learners with sufficiently powerful
inductive biases to adequately constrain inference spaces? Drawing on models from neurophysiol-
ogy, psychology, and developmental robotics, I describe how embodiment provides fundamental
sources of empirical priors (as reliably learnable posterior expectations). If ESMs play this kind of
foundational role in cognitive development, then bidirectional linkages will be found between all sen-
sory modalities and frontal-parietal control hierarchies, so infusing all senses with somatic-motoric
properties, thereby structuring all perception by relevant affordances, so solving frame problems
for embodied agents. Drawing upon the Free Energy Principle and Active Inference framework,
I describe a particular mechanism for intentional action selection via consciously imagined (and
explicitly represented) goal realization, where contrasts between desired and present states influence
ongoing policy selection via predictive coding mechanisms and backward-chained imaginings (as
self-realizing predictions). This embodied developmental legacy suggests a mechanism by which
imaginings can be intentionally shaped by (internalized) partially-expressed motor acts, so providing
means of agentic control for attention, working memory, imagination, and behavior. I further describe
the nature(s) of mental causation and self-control, and also provide an account of readiness potentials
in Libet paradigms wherein conscious intentions shape causal streams leading to enaction. Finally, I
provide neurophenomenological handlings of prototypical qualia including pleasure, pain, and desire
in terms of self-annihilating free energy gradients via quasi-synesthetic interoceptive active inference.
In brief, this manuscript is intended to illustrate how radically embodied minds may create founda-
tions for intelligence (as capacity for learning and inference), consciousness (as somatically-grounded
self-world modeling), and will (as deployment of predictive models for enacting valued goals).
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1. Introduction

1.1. Descartes’ Errors and Insights

“Any time a theory builder proposes to call any event, state, structure, etc., in a system
(say the brain of an organism) a signal or message or command or otherwise endows
it with content, he takes out a loan of intelligence. He implicitly posits along with his
signals, messages, or commands, something that can serve a signal reader, message-
understander, or commander, else his ‘signals’ will be for naught, will decay unreceived,
uncomprehended. This loan must be repaid eventually finding and analyzing away
these readers or comprehenders; for, failing this, the theory will have among its elements
unanalyzed man-analogues endowed with enough intelligence to read the signals, etc., and
thus the theory will postpone answering the major question: what makes for intelligence?”

—Daniel Dennett [1]

From the traditional perspective of cognitive science, minds are understood as an-
alyzable on multiple levels [2], where functional (or computational) properties can be
considered separately from their specific algorithmic realizations, which can further be
considered separately from particular implementational details. This multilevel approach
allows progress to be made on studying mental functions without requiring understanding
of underlying neurobiological processes, so allowing cognitive science to proceed without
being held back by our limited understanding of nervous systems. Alternatively, com-
bining different levels of analysis can provide constraints over plausible hypotheses, so
affording inferential synergy.

Another perspective is provided by “4-E” cognition [3–5], in which minds are con-
ceptualized as inherently embodied, embedded, extended, and enactive. From this point
of view, understanding cognition requires considering how intelligent systems depend
on bodily control processes. 4-E cognitive science further emphasizes how embedding
within particular environments both enables and constrains functioning, where functional
properties of mind extend into a world/niche that is modified/constructed via value-
driven actions. More radical versions of this embodied-enactivist perspective tend to reject
computational framings from traditional cognitive science, eschewing explicit models and
representations in favor of dynamic environmental couplings. More traditional “cogni-
tivists”, in contrast, tend to dismiss embodied cognition as a research program whose
promise is limited by rejecting computational principles connecting brains and minds.
From this point of view, embodied cognitive science is sometimes dismissed as a collection
of interesting mind-body correlations, but which may be conceptually shallow in lacking
precise operationalization.

While these perspectives often seem irreconcilable, there is near-universal agree-
ment that cognitive science needs to divorce itself from the last vestiges of Cartesian
thinking [6–12]. The only point of disagreement seems to be which aspects of Cartesian
thinking are most egregiously mistaken. The charges are as follows:

1. The mind-body problem: Separating bodies and minds as distinct orders of being.
2. The theater fallacy: Describing perception in terms of the re-presentation of sensations

to inner experiencers.
3. The homunculus fallacy: Failing to realize the inadequacy of inner experiencers as ex-

planations, since these would require further experiencers to explain their experiences,
resulting in infinite regress.

Many argue that the primary goal of cognitive science should be explaining away this
naïve folk psychology in terms of non-mental computational and mechanistic
processes [13,14]. Enactivists further (and differently) argue that cognitive science will
only be thoroughly cleansed of its Cartesian origins once we eliminate concepts such as
representation from our explanatory frameworks [3]. Yet the overwhelming consensus is
clear: the mind sciences must rid themselves of the legacy of Descartes’ errors. The ghost
must be exorcised from the machine.
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Below I suggest this consensus may be mistaken along important dimensions, and
propose ways in which each of these supposed errors point to invaluable perspectives.
In brief:

1. Minds are thoroughly embodied, embedded, enacted, and extended, but there are
functionally important aspects of mind (e.g., integrative processes supporting con-
sciousness) that do not extend into bodies, nor even throughout the entire brain.

2. The brain not only infers mental spaces, but it populates these spaces with representa-
tions of sensations and actions, so providing bases for causal reasoning and planning
via mental simulations.

3. Not only are experiences re-presented to inner experiencers, but these experiencers
take the form of embodied person-models with degrees of agency, and even more,
these quasi-homunculi form necessary scaffolding for nearly all aspects of mind.

In what follows, I intend to justify these claims and show how attention, imagination,
and goal-oriented behavior may be explained using a Bayesian computational framework
for understanding action, perception, and consciousness. My ultimate goal is illustrating
how understanding the nature(s) of embodiment may allow for bridges between computa-
tional and enactivist perspectives on minds, so affording a grounding for unification in
cognitive science.

1.2. Radically Embodied Minds

“Now what are space and time? Are they actual entities? Are they only determinations
or also relations of things, but still such as would belong to them even if they were not
intuited? Or are they such that they belong only to the form of intuition, and therefore
to the subjective constitution of our mind, without which these predicates could not
be ascribed to any things at all?... Concepts without intuitions are empty, intuitions
without concepts are blind . . . By synthesis, in its most general sense, I understand the
act of putting different representations together, and of grasping what is manifold in
them in one knowledge . . . The mind could never think its identity in the manifoldness
of its representations . . . if it did not have before its eyes the identity of its act, whereby it
subordinates all . . . to a transcendental unity . . . This thoroughgoing synthetic unity
of perceptions is the form of experience; it is nothing less than the synthetic unity of
appearances in accordance with concepts.”

—Immanuel Kant [15]

“We shall never get beyond the representation, i.e. the phenomenon. We shall therefore
remain at the outside of things; we shall never be able to penetrate into their inner nature,
and investigate what they are in themselves... So far I agree with Kant. But now, as
the counterpoise to this truth, I have stressed that other truth that we are not merely
the knowing subject, but that we ourselves are also among those realities or entities we
require to know, that we ourselves are the thing-in-itself. Consequently, a way from
within stands open to us as to that real inner nature of things to which we cannot
penetrate from without. It is, so to speak, a subterranean passage, a secret alliance, which,
as if by treachery, places us all at once in the fortress that could not be taken by attack
from without.”

—Arthur Schopenhauer [16]

Natural selection may have necessarily relied on general-purpose learning mecha-
nisms for designing organisms capable of adaptively navigating (and constructing) their
environments [17]. With respect to the importance of domain-general processes, Mount-
castle [18] suggested a common algorithm for hierarchical pattern abstraction upon dis-
covering the canonical layered-columnar organization of all neocortical tissue. Empirical
evidence increasingly supports this suggestion, with hierarchical “predictive coding” (or
predictive processing more generally) providing a unifying account of cortical function-
ing [19,20]. This dependence upon broadly applicable mechanisms may have been a matter
of necessity due to the limits of genetic specification. While complex structures can be

53



Entropy 2021, 23, 783

‘encoded’ by genomes, particular phenotypes are realized in an algorithmic fashion, similar
to how simple equations can generate highly complex fractal patterns [21,22]. For example,
kidneys are complex, but no single nephron is special a priori. Similarly, brains have
complex microstructure and macrostructure, but with few exceptions [23,24], no single
neuronal connection is special a priori; rather, most neural complexity arises through
experience-dependent self-organization. Further, much of the functional significance of
specific connections in complex neural networks may be inherently difficult to predict due
to the sensitivity of (chaotic) self-organizing systems to initial conditions [25,26]. Predicting
functional significances may be even more limited to the degree that ‘representational’
properties of networks are shaped by information that will only emerge through unique
developmental experiences.

In these ways, while some predictable features of brains may be subject to exten-
sive genetic canalization [27–29], evolution may have been unable to produce cognitive
adaptations relying on pre-specified complex representations. Yet, empirically, infants
seem to possess impressively rich knowledge of objects and processes [30,31]—though
developmental studies usually occur at several months post-birth, and even newborns
have prenatal learning experiences [32]. Even largely empiricist statistical learning models
from “Bayesian cognitive science” acknowledge the need for inborn inductive biases to
facilitate inference and learning [33–35]. However, if there are substantial limits to genetic
specification, how is this prior knowledge introduced?

I suggest the problems of under-constrained inference spaces are solved by remem-
bering that brains evolved and develop as control systems for bodies, the regulation of
which continues to be the primary task and central context of minds throughout life [36,37].
Bodies represent near-ideal initial systems for learning and inference, with this prototypical
object and causal system providing bases for further modeling. Several factors contribute
to the power of embodied learning [38,39]:

1. Constant availability for observation, even prenatally.
2. Multimodal sensory integration allowing for ambiguity reduction in one modality

based on information within other modalities (i.e., cross-modal priors).
3. Within-body interactions (e.g., thumb sucking; hand–hand interaction; skeletal force

transfer).
4. Action-driven perception (e.g., efference copies and corollary discharges as prior

expectations; hypothesis testing via motion and interaction).
5. Affective salience (e.g., body states influencing value signals, so directing attentional

and meta-plasticity factors).

Support for cross-modal synergy may be found in studies of adults learning motor se-
quences where performance is enhanced by combining multiple modalities [40–42]. Other
insights regarding the nature of embodied learning derive from studies of developmental
robotics and infant development [39,43], wherein morphological constraints and affor-
dances function as implicit inductive biases for accelerated learning. For example, the
limited range of motion of shoulder joints may increase tendencies for situating objects
(beginning with hands themselves) in locations where they can be more readily explored
with other sensor and effector systems [38].

By this account, complex minds necessarily require initial experiences of learning to
control bodies, with increasing levels of complexity achieved—over the course of evolution
and development—by expanding hierarchically-higher cortical areas [44]. This somatic
developmental legacy is consistent with accounts in which abstract symbolic thought
is grounded in mental simulation [45,46] and metaphorical extension from embodied
experiences [47,48]. Below I will further characterize these embodied foundations for
minds, suggesting that associative linkages to sensors and effectors generate body maps
at multiple levels of abstraction, ranging from 1st-person semi-transparent interfaces [49]
to 3rd-person body schemas capable of acting as self-reflexive intentional controllers (i.e.,
teleological agents).
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1.3. The Cybernetic Bayesian Brain

“Each movement we make by which we alter the appearance of objects should be thought
of as an experiment designed to test whether we have understood correctly the invariant
relations of the phenomena before us, that is, their existence in definite spatial relations.”

—Hermann Ludwig Ferdinand von Helmholtz [50]

[Note: While the following section might be technically challenging, the key takeaway
is that all cortex may operate according to a common algorithm of “free energy” minimization
via hierarchical predictive processing (HPP) (cf. predictive coding), in which prior expectations
generate top-down predictions of likely observations, and where discrepancies between
predictions and observations ascend to hierarchically higher levels as prediction errors.
Biasing the degree to which prediction errors are likely to be passed upwards is referred to
as precision weighting, which is understood as constituting attentional selection for Bayesian
inference via hierarchical predictive processing.]

As perceptual illusions demonstrate [51,52], information arriving at the senses is
inherently ambiguous, in that similar inputs could result from an unbounded number of
world states (e.g., is an object small and close, or large and distant?). The Bayesian brain
hypothesis states that perception can be understood as a kind of probabilistic inference, given
sensory observations and prior expectations from past experience [53]. These inferences
are hypothesized to be “Bayesian” in constituting a weighted combination of priors and
likelihood mappings between observations and their hidden (or latent) causes from world
states. Along these lines, the Free Energy Principle and Active Inference (FEP-AI) framework
offers a promising integrative perspective for describing both perception and action in terms
of probabilistic inference and prediction error minimization [54–56]. FEP-AI suggests that
hierarchically-organized nervous systems entail hierarchical generative models, wherein
perception (as inference) is constituted by probabilistic estimates (or predictions) of the
likely causes of sensory observations.

The FEP-AI framework is grounded in fundamental biophysical considerations [57,58],
as well as principles of cybernetics: the analysis of complex adaptive systems in terms of self-
regulation/governance with varying forms of feedback [59–61]. Persisting systems must regulate
both internal and external states to avoid entropic accumulation, which the “Good regulator
theorem” suggests requires some kind of (predictive) modeling in order to ensure adaptive
selection [36]. Prediction error—also referred to as “free energy”, or “surprisal”—can be min-
imized either by updating the implicit model of system-internal dynamics (i.e., perceptual
inference), or by modifying external dynamics to make sensory-input more closely match
predictions (hence, active inference). In this way, perception and action are both means of
maximizing model-evidence (by minimizing prediction error) for the implicit prediction of
system-preserving states, a process referred to as “self-evidencing” [62]. Intriguingly (and
perhaps strangely) [63,64], the general logic of this kind of analysis appears consistent with
pre-theoretic philosophical intuitions in which persisting systems are viewed as possessing
a kind of ‘will-to-exist’ [65,66], even if this apparent goal-directedness is actually illusory
(i.e., teleonomy, rather than actual teleology) [13]. While deflationary accounts of teleo-
logical phenomena emphasize continuity with teleonomical processes [14], the purpose of
this manuscript is to single out and explain not just the origins of goal-directedness, but to
make inroads into understanding uniquely human-like intentionality.

HPP provides a parsimonious account of how this Bayesian world-modeling may be
realized on algorithmic and implementational levels of analysis [19]. In HPP (Figure 1),
top-down (empirical) priors are passed downwards as predictions based on posterior
expectations (i.e., beliefs revised after making observations), which suppress bottom-up
prediction errors from being transmitted up cortical hierarchies. In this encoding scheme,
all observations take the form of prediction errors, indicating sensory inputs at the lowest
hierarchical levels, sensory expectations at somewhat higher levels, and beliefs of a more
folk psychological variety at even higher levels. [In these models, posterior expectations—
or more generally beliefs—are formally equivalent to empirical priors at intermediate levels
in the model; I will use (empirical) priors and posteriors interchangeably.] By only passing

55



Entropy 2021, 23, 783

prediction errors up cortical hierarchies, predictive coding automatically prioritizes novel
‘news-worthy’ information in the process of updating beliefs and subsequent predictions.
This recurrent message-passing is suggested to occur simultaneously in every part of
cortex, with hierarchical dynamics reflecting hierarchical world structure [67,68], including
events unfolding over multiple (hierarchically-nested) temporal scales [69–71]. In this way,
HPP generates a dynamic mapping between brain and world, mediated by (hierarchically-
organized) cycles of action-influenced perception. HPP further provides a mechanistic
process model for enaction in FEP-AI by providing means of altering world states to better
fit predictions via active inference [72]. This means that all neuronal dynamics and ensuing
action can be regarded as complying with the same imperative: namely, to minimize
prediction error (i.e., free energy, or “surprisal”).

Figure 1. A schematic of hierarchical predictive processing in the brain. Left panel: Observations from primary sensory
modalities (black arrows) indicate messages passed hierarchically upwards via superficial pyramidal neurons, communi-
cated via small synchronous complexes (i.e., neuronal ensembles) at gamma frequencies. Middle panel: Predictions from
hierarchically deeper areas of the brain (red arrows) suppress ascending observations, communicated via synchronous
complexes of varying sizes at alpha and beta frequencies; bottom-up observations (as prediction errors) are only passed
upwards when they fail to be anticipated by top-down predictions. Right panel: Attentional selection via strengthening of
prediction errors by expectations regarding value of information, communicated via cross-frequency phase coupling with
large synchronous complexes at theta frequencies. For all panels, darker arrows indicate degree of precision weighting
associated with entailed (implicit) probabilistic beliefs, so determining relative contributions to Bayesian inference/updating.
Please see previous work for more details on these hypothesized biocomputational principles [73,74].

According to HPP, brains function as both cybernetic controllers and memory sys-
tems [59–61], with experience-dependent expectations providing bases for control, which
in turn create new memories and predictions. This cybernetic perspective has been further
extended to interoceptive inference [61,75] in terms of homeostatic maintenance via pre-
dictive regulation (i.e., allostasis). In this account of emotional experience, affective states
arise from active inferential control of interoceptive and autonomic states under different
levels of uncertainty [75,76].
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Reliable inference must account for degrees of certainty associated with various beliefs,
which in HPP is described as “precision” (i.e., inverse variance) of probability distribu-
tions [77]. In HPP, ascending signals update descending posterior expectations proportional
to relative precisions of (empirical) prior predictions and sensory-grounded observations.
More precise prediction errors have greater influences in updating higher-level beliefs,
which can be thought of as selecting more reliable sources of ‘news’–as opposed to more
unreliable, or ‘fake’ news. Algorithmically, certainty-based biasing of prediction errors
realizes Bayesian inference as a precision-weighted sum of probabilities, so providing a
functional basis for attentional selection. Mechanistically (and potentially phenomenologi-
cally), this attentional selection involves modulation of excitation for particular neuronal
populations, so making entailed precision-weighted prediction errors more or less likely to
percolate into deeper portions of cortical hierarchies where this information may shape
larger-scale (potentially conscious) dynamics [73,74].

Precision weighting can have profound effects on relative influences of descending
predictions and ascending prediction errors. If bottom-up signals are given too much
precision, then excessive sensory prediction errors may access deeper portions of cortical
hierarchies, which could potentially result in the kinds of overly intense sensory reactions
often observed with autism [78–80]. Alternatively, if bottom-up signals are given too little
precision, then prediction errors may not result in belief updating, which if excessive,
could result in false-positive inferences, potentially including the kinds of delusions and
hallucinations observed with schizophrenia [81–83].

Between the basic idea of perception as inference and its cybernetic extensions to
active inference, the Bayesian brain is thoroughly embodied. This discussion goes further
in suggesting that action-oriented body maps form the core of Bayesian brains, structuring
inferential flows in ways that not only enhance control, but also allow minds to solve infer-
ential problems that have hitherto been assumed to require extensive innate knowledge.
As described above, bodies provide brains with learning opportunities in which hypothesis
spaces are fruitfully constrained, and so rendered tractable. In light of the adaptive signif-
icance of embodied learning, selective pressures are likely to shape bodies in ways that
brains readily infer and learn, so shaping further histories of selection. I further suggest
this more easily acquirable knowledge allows learners to handle increasingly challenging
problems (or lessons [84]) along zones of proximal development [85].

Neurodevelopmentally, this model can be considered broadly Piagetian [86], albeit
without intellectual commitments with respect to particular developmental stages. This
point of view is consistent with perspectives in which body-centric self-models are required
for successful structure learning in the process of developing reasonably accurate and useful
predictive models [75,87,88]. This proposal is also consistent with previous descriptions
of active inference [89], but suggesting a particular—and I suggest, necessary—means by
which generative models come to reflect world structure. That is, we may acquire many
foundational (empirical) priors from learning about bodies as more tractable causal (and
controllable) systems. Without this toehold/grip with respect to inferential bootstrapping,
it may be the case that neither Bayesian cognitive science nor Bayesian brains could explain
how biological learners handle under-constrained inference spaces.

The notion of embodiment as a source of foundational beliefs is increasingly recog-
nized in FEP-AI. Allen and Tsakiris [90] have compellingly proposed a “body as first prior”
model in which interoceptive inference provides a source of highly precise priors (or predic-
tions), so allowing overall active inferential belief dynamics to be dominated by organismic,
allostatic needs. In their account, interoception supplies fundamental priors in yet another
sense in playing central roles with respect to establishing models of body ownership and
(minimal) selfhood, both of which constitute necessary preconditions for learning about
other aspects of the world. The specific nature(s) of these embodied priors has been further
explored in terms of their shaping by developmentally early socioemotional coupling,
including with respect to perinatal and prenatal interactions with caregivers upon which
infants depend for life [87,91,92]. Below, I explore some of these ideas, as well as additional
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(complementary) ways in which embodiment may form necessary foundations in growing
minds, the extent of which may be difficult to overstate.

2. From Action to Attention and Back Again

While some of the content in these next sections may be challenging, the key messages
from these sections are as follows:

1. Much of conscious goal-oriented behavior may largely be realized via iterative com-
parisons between sensed and imagined states, with predictive processing mechanisms
automatically generating sensibly prioritized sub-goals based on prediction errors
from these contrasting operations.

2. Partially-expressed motor predictions—initially overtly expressed, and later internalized
—may provide a basis for all intentionally-directed attention, working memory, and
imagination.

3. These imaginings may provide a basis for conscious control of overt patterns of
enaction, including the pursuit of complex goals.

2.1. Actions from Imaginings

The goal of this manuscript is to illustrate the radically embodied foundations of
agency, ranging from basic motor control to complex planning. Towards this end, I propose
a model in which all conscious goal-directed behavior is realized with hierarchical pre-
dictive coding and iterated comparisons among perceptions of sensed and imagined (i.e.,
counterfactual) states [93]. Let us consider someone writing a manuscript at a computer
and discovering that they want tea, while also inferring that their cup is empty. These
experiences would likely include mental imagery or memories of drinking tea, accompa-
nied by feelings of thirst. However, such counterfactual beliefs (or predictions) would then
be contradicted by sensory evidence if tea is not presently being consumed. The contrast
between the counterfactual tea drinking and the observation of an empty cup would then
be likely to prime similar situations in the past (e.g., unresolved thirst or hunger). Those
situations will also be likely to be accompanied by relevant affordances [94–96] (e.g., tea-
making/acquiring actions) associated with minimizing those varieties of discrepancies
between preferred and present-estimated states. That is, memories and analogous imag-
inings are likely be dominated by actions whose relevance is determined based on past
similar situations [59,97].

These counterfactual imaginings will be likely to be centered on goal-specific discrep-
ancies, such as the fact that one may be sitting in front of a computer, rather than acquiring
the desired tea (Table 1; Figure 2). In this case, the most likely set of affordances to be
retrieved from memory would involve actions such as ambulating to the kitchen, where
the sink, stove, and tea kettle are located. However, our thirsty agent may find themselves
confronted with yet another set of discrepancies, such as the fact that sitting is not walking
to the kitchen. In this case, the next likely set of memory-affordances to be retrieved could
be those involving getting up, and perhaps shifting weight and pressing one’s feet into the
ground. At various points, these counterfactual plans may become sufficiently close to the
present state that they become actionable, and so contribute to ongoing action selection.
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Table 1. Example of goal-oriented behavior via iterated comparisons between imagined (dark grey) and estimated (light
grey) states.

Examples of Imaginative Policy Selection

Counterfactual Predictions Observations
Prediction-Errors and
Associated Memories

Types of Value

. . . Drinking tea Not drinking tea Body states associated with
drinking Pragmatic

Finding tea in cup Not seeing tea Surprise and reorienting Epistemic

Making tea Sitting at desk Location and object
affordances Pragmatic

Going to kitchen Sitting at desk Location and locomotion Pragmatic

Effort of standing Standing Motion and accompanying
visceral sensations Pragmatic

Drinking tea Not drinking tea (but closer) Body states associated with
drinking Pragmatic

Making tea Locomoting to kitchen Location and object
affordances Pragmatic

Holding tea bags Standing in kitchen Location, position, and object
affordances Pragmatic

Finding tea bags Scanning kitchen Surprise and re-orienting Epistemic

Drinking tea Not drinking tea (but closer) Body states associated with
drinking Pragmatic

Steeping tea Pouring water Location, position, and object
affordances Pragmatic . . .

. . . Drinking tea Holding hot cup Body position Pragmatic

Burning mouth Holding hot cup Body states associated body
damage Pragmatic

Sipping slowly Not burning mouth Body states associated with
drinking Pragmatic

Figure 2. Imaginings and perceptions associated with policy selection via backward chaining from goal states. Top panels
of each row illustrate the counterfactual predictions (grey) and observations (white) listed in Table 1. Bottom panels of each
row depict associated body positions. Note: This example lacks substantial metacognitive and reflexive processing, with
only a few panels depicting the agent imagining itself from an external viewpoint. To the extent that consciousness actually
models the actions associated with making tea (as opposed to mind-wandering), a more immediate and non-reflective mode
of cognition might be expected for this kind of relatively simple behavior. However, for more complex goals, we might
expect more elaborate imaginings involving objectified self-representations with varying levels of detail and abstraction.

Mechanistically speaking, this actionability of counterfactual imaginings may be real-
ized when neuronal ensembles associated with goal representations have relatively high
degrees of overlap with those associated with proximate sensorimotor contingencies. If
critical thresholds for motoric action selection are surpassed under such conditions of
convergent excitation between present-estimated and desired states, then neural activity
from imagined goals may become capable of functionally coupling with—or direction-

59



Entropy 2021, 23, 783

ally entraining (i.e., “enslaving”) [98]—an organism’s effector systems. These imagined
scenarios will also be continuously altered based on changing sensory evidence with
unfolding behavior. For example, the location of the tea kettle may come into view en
route to the kitchen, along with memories related to filling and emptying the kettle, so
adjusting expectations with respect to whether the kettle needs to be brought to the sink to
obtain water.

In FEP-AI [55], the sequences of actions (i.e., policies) we infer ourselves enacting
are dominated by our prior preferences and expected consequences of actions. Crucially
for adaptive behavior, this imperative to minimize prediction error (i.e., free energy) can
also be applied to expected prediction error (i.e., expected free energy), wherein we select
policies (potentially implicitly) anticipated to bring about preferred outcomes (e.g., having
a cup of tea) in the future. This expected free energy (i.e., cumulative, precision-weighted
prediction error) can be further decomposed based on relevance to either pragmatic or
epistemic value, where pragmatic affordance is defined in terms of prior preferences (i.e.,
drinking tea) and epistemic affordance entails opportunities for reducing uncertainty (e.g.,
locating teabags) [99].

To the extent that actions are highly rehearsed, minimal conscious visualization
may be required for goal attainment [43,100]. If tea is central to the lifeworld of our
agent [101,102], then the entire sequence could end up proceeding with only very brief
flashes of subjective awareness [103]. It is also notable that little awareness will likely
accompany the coordinated activity of specific muscles, for which effortless mastery will
be attained early in development. To the extent that goal-attainment involves novel
circumstances—e.g., learning how to prepare loose-leaf tea for the first time—consciousness
may play more of a central role in shaping behavior.

In this model of imaginative planning, activation of goal-related representations
produces prediction errors wherever there are discrepancies between anticipated goal states
and inferred present states. That is, goal-related representations act as predictions, and
discrepancies with estimated present states result in prediction errors within particular sub-
representations related to goal-attainment, generated at multiple hierarchical levels. When
goal-discrepancy prediction errors are passed up the cortical hierarchy, they may access
more richly connected networks, allowing for (potentially conscious) global availability of
information [104], and so become more effective at driving subsequent neuronal activity.
Given sufficient experience, goal-related representations with greater activity at the next
moment will likely correspond to neuronal ensembles that most reliably succeeded (and
so were reinforced) in minimizing those particular kinds of discrepancies in the past (i.e.,
relevant affordances).

By this account, comparisons between representations of goal states and present
states generate greater activity for goal-related representations with more prediction error,
often corresponding to the largest obstacles to goal attainment. These sources of maximal
prediction error from iterative contrasting may naturally suggest prioritization for selecting
appropriate sub-goals for overall goal-realization [105]. Sequential comparisons between
representations of sub-goals and estimated present states will likely activate relevant sub-
representations for additional obstacles, the overcoming of which becomes the next goal
state. This comparison process proceeds iteratively, with repeated discrete updating [106]
of imagined goals and estimated present states, so shaping neural dynamics (and entailed
streams of experience) in accordance with predicted value realization.

With experience and learning—including via imagined experiences [107]—this iter-
ative selection process is likely to become increasingly efficient. Considering that super-
ordinate and subordinate action sequences are themselves associatively linked, they will
provide mutual constraints as parallel comparisons continuously minimize overall predic-
tion errors on multiple levels of action hierarchies. Thus, similar cognitive processes may
be involved in selecting higher-level strategies for (potentially abstract) goal attainment,
as well as the conscious adjustment of lower-level sequences retrieved from memory for
intentional motor control. In terms of active inference, skillful motoric engagement is
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largely achieved through the ability of predicted actions to provide a source of “equilib-
rium points” [108], realized as neural systems dynamically self-organize via predictive
processing mechanisms [109]. The model presented here describes a particular (potentially
conscious) source of such high-level predictions as drivers of behavior. [Notably, the ex-
istence of separate dopamine value signals in the ventral tegmental area and substantia
nigra pars compacta [110]—along with differing temporal dynamics and credit assignment
challenges—suggest complexities requiring additional neurocomputational details in order
to adequately describe (hierarchical) neuronal activity selection.] The imagination-focused
account above describes the operation of intentional control processes to the (limited) de-
gree they are capable of influencing behavior. Often this intentional influence may ‘merely’
take the role of biasing competition and cooperation among unconscious habitual and
reflexive patterns.

By this account, to have a goal is to predict its realization, where initial predictions
generate further causal paths as means of bridging gaps between imagination and reality.
This kind of connection between imagination and action has precedents in ideomotor
theory [111–113], which has also been explored in active inferential terms with respect to at-
tentional biasing (i.e., precision weighting) [114]. Below I expand on this work in proposing
that all voluntary (and much involuntary) attention may be realized by partially-expressed
motor predictions as mental actions, so providing an agentic source for precision weighting
in governing inferential dynamics as a kind of covert motoric skill. [Please note that I do not
intend to suggest that most attention is consciously directed. Rather, much (and perhaps
most) top-down precision weighting might be automatically generated by interoceptive
salience maps, implemented by insular and cingulate cortical hierarchies [115].

2.2. Attention from Actions

“A good way to begin to consider the overall behavior of the cerebral cortex is to imagine
that the front of the brain is ‘looking at’ the sensory systems, most of which are at the back
of the brain. This division of labor does not lead to an infinite regress . . . The hypothesis
of the homunculus is very much out of fashion these days, but this is, after all, how
everyone thinks of themselves. It would be surprising if this overwhelming illusion did
not reflect in some way the general organization of the brain.”

—Francis Crick and Christoff Koch [6]

In this radically embodied account of attentional control, partially expressed motor
predictions realize all intentional directing of perception, including with respect to attention,
working memory, imagination, and action. This control is achieved by efferent copies from
action-related neuronal ensembles to associated perception-related neural populations,
with functional linkages established via past learning [116,117]. Developmentally—and
evolutionarily [118]—actions initially take the form of externally expressed behavior; with
respect to overt attention, effector systems orient sensors relative to the environment and so
change patterns of sensation. However, via either incomplete or inhibited expression, these
actions will also be expressed covertly in imagination as mental simulations with varying
degrees of detail and awareness. When these partially-expressed motor predictions for
overt attending are activated, connections to associated perceptual components can then
be used as bases for covert attending. With experience, adaptive control over overt and
covert expression will be learned, so allowing context-sensitive shifting between perception,
imagination, and action. Further degrees of control over perception and action can be
enabled by intentionally directing attention to contents of working memory (Figure 3),
including with respect to the imagination of counterfactual scenarios required for causal
reasoning and planning [119].
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Figure 3. Imaginative policy selection via a multilevel active inferential control hierarchy and associated neural systems.
Going from left to right, predictions are passed downwards as (empirical) prior expectations, and are updated into posterior
expectations (and subsequent priors) by sensory observations, which are then passed upwards as prediction errors. Upper-
level control processes (left action-perception cycle) involve more slowly-evolving attracting states, corresponding to
more coarse-grained, higher-level abstract modeling of organismic-scale causes, which may be associated with conscious
intentionality. Lower-level control processes (right action-perception cycle) involve more quickly-evolving attracting states,
allowing for rapid adjustment of action-perception cycles and fine-grained environmental coupling. While multiple factors
may point to the significance of a two-tier hierarchy, this distinction ought not be overstated, as integrating (potentially
conscious) processes may potentially attend to (or couple with) dynamics from either level. VMPFC = ventromedial
prefrontal cortex, ACC-INS = anterior cingulate cortex and insula, Amy = amygdala, NAc = nucleus accumbens, VTA
= ventral tegmental area, SMA = supplementary motor area, PCC = posterior cingulate cortex, SNc = substantia nigra
pars compacta.

This model represents a generalization of Vygotsky’s [120] hypothesis regarding the
development of thinking through the internalization of speech. By this account, first we
learn how to speak, then we learn how to prepare to speak without overt expression, and
then by learning how to internally speak to ourselves—imagining what we would have
heard if speech were externally expressed—we acquire capacities for symbolic thought.
Similarly, through the internalization of initially overt actions [121], all voluntary (and much
involuntary) cognition may develop as a control hierarchy grounded in controllable effector
systems. Indeed, I propose skeletal muscle is the sole foundation for all voluntary control
due to its unique ability to generate gross actions with real-time low-latency feedback.

To summarize, ontogenetically (and phylogenetically), information acquisition is
initially biased via overt action-perception. However, learners eventually acquire the ability
to perform actions covertly, and thereby utilize the associated perceptual components
of particular simulated actions as bases for covert processing (including counterfactual
imaginings). In all cases, actions have their origins in control hierarchies over sensorimotor
cortices—and associated striatal loops—whose dynamics are grounded in manipulating
skeletal muscles, along with associated sensations. In this way, partially-expressed motor
predictions can bias attention and working memory spatially (e.g., simulated saccades),
temporally (e.g., simulated rhythmic actions), or even based on semantic or object feature
information (e.g., simulated speech) (Table 2).
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Table 2. Kinds of attentional biasing via partially-expressed motor predictions.

A Taxonomy of Attending via Partially-Expressed Motor Commands

Kinds of Attention Relevant Actions

Spatial biasing

(a) Foveation
(b) Head or trunk turning/orienting
(c) Pointing
(d) Other directional gestures
(e) Locomotion

Feature and object focusing

(a) Speech or sound production (i.e., phonological loops)
(b) Actions related to particular morphological, locational, emotional, or affordance

characteristics (i.e., physically interacting-with or constructing)
(c) Patterns of motion typically associated with particular objects
(d) Physical sketching
(e) Physical interaction with or locomotion through some (potentially synesthetic)

memory-palace-like mapping

Following temporal patterns

(a) Rhythmic speech or sound production
(b) Rhythmic motions of gross musculature
(c) Rhythmic motions of sensory apparatuses (e.g. foveations, auricular constrictions,

etc.)

Duration-based attending

(a) Extended production and tracking of accumulation of simulated rhythms (i.e., inner
clocks)

(b) Enacting events/processes with temporal extent without being clearly rhythmic
(c) Mapping time onto a spatial reference frame (i.e., spatialization of time)

2.3. Imaginings from Attention

This account is consistent with premotor [122] and biased competition [123] theories
of attention. However, I further suggest partially-expressed motor predictions are the only
means by which content is voluntarily generated in working memory (Figure 3), whether
based on attending to perceptual traces of recent sensations, or generating counterfac-
tual perceptual experiences decoupled from actual sensory stimulation (i.e., imagination).
While this proposal may seem excessively radical in the extent to which embodiment is
emphasized, convergent support can be found in substantial evidence implicating the
“formation of internal motor traces” in working memory [124]. Further evidence may be
obtained in attentional selection being enhanced when neuronal oscillations from frontal
eye fields entrain sensory cortices [125], as well as from visual attention and working mem-
ory heavily depending on frontal-parietal networks [126,127] (which are here interpreted
as upper levels of action-perception hierarchies). With respect to embodied sources of
top-down attention, striatum and midbrain value signals (e.g., dopamine) likely play key
roles [128], both influencing moment-to-moment pattern selection, and also allowing future
planning to be influenced by histories of reinforcement and punishment. To the extent
that learning effectively aligns these patterns with agentic goals, mental content—and the
resultant influences on action selection—can be understood as involving intentionality.

Imagined goals may be generated and contrasted with estimated states (whether
imagined or observed) on timescales of approximately 200–300 msec [129–132], poten-
tially implemented by activation/stabilization of neocortical ensembles via cross-frequency
phase coupling with hippocampal theta rhythms (Figure 4) [133,134]. The iterative genera-
tion of new (posterior) goal-relevant imaginings—may take significantly longer, potentially
depending in complex ways in which processes are contrasted. If this process requires
stabilization of novel combinations of cortical ensembles by the hippocampal complex, then
this may help to explain why medial temporal lobe damage is associated with impaired
counterfactual processing [135,136], which here forms the basis of intentional action selec-
tion via iterative contrasting and predictive processing. A prediction of these models is that
hippocampal damage may be associated with disrupted goal-pursuit in dementia—above
and beyond the problem of task-forgetting—for which additional anecdotal evidence can
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be found with the case of the neurological patient “HM” [137]. The central role of the hip-
pocampus for orchestrating goal-oriented behavior is further suggested by its involvement
in “vicarious trial-and-error” behavior [138], as well as by the centrality of theta rhythms
for intentional control [126,131,139,140]. Additional supporting evidence can be found in
hippocampally-mediated orchestration of counterfactual inferences in other domains, rang-
ing from predictive information over likely trajectories for locomoting rodents [141,142] to
the simulation of alternative perspectives by imagining humans [143,144].

Figure 4. Reprinted with permission from Safron, 2020b. Hippocampally-orchestrated imaginative planning and action selection
via generalized navigation. Action sequences from Figure 2 are depicted with respect to relevant neural processes. The
hippocampal system provides (a) organization of cortical attracting states into value-canalized spatiotemporal trajectories,
(b) stabilization of ensembles via theta-mediated cross-frequency phase coupling, and (c) goal-oriented cognition and
behavior via contrasting (not depicted) sensed and imagined states. Hippocampal trajectories are shaped according
to whichever paths are expected to result in more positively valanced outcomes (cf. reward prediction errors). The
expected value associated with navigating to different portions of (potentially abstract) space is informed via coupling
with similarly spatiotemporally-organized value representations (red shaded hexagons) in vmPFC and associated systems.
As chained patterns of activity progress across hippocampal place fields (red hexagons with variable degrees of shading),
theta-synchronized frontal ensembles (yellow shading spreading towards the front of the brain) help to generate (via cross-
frequency phase coupling) ensembles for directing attention, working memory, and overt enaction. Sensory updating of
posterior cortices occurs at alpha frequencies (blue shading), so providing a basis for conscious perception and imagination.
With respect to these integrated estimates of sensory states, hippocampal coupling at theta frequencies (yellow shading
spreading towards the back of the brain) provides a basis for (a) episodic memory and replay, (b) novel imaginings,
and (c) adjustment of neuronal activity selection via orchestrated contrasting between cortical ensembles. Abbreviations:
nAC = nucleus accumbens; vmPFC = ventromedial prefrontal cortex; dmPFC = dorsomedial prefrontal cortex; SMA =
supplementary motor area; Pre-SMA = presupplementary motor area; SEF = supplementary eye fields; PCC = posterior
cingulate cortex; PMCs = posterior medial cortices; IPL = inferior parietal lobule.

These proposals expand on previous descriptions of motor control via predictive
processing [114] by emphasizing the role of consciously-experienced body maps as a source
of intentionally-directed attention (i.e., precision weighting), imagination, and action.
However, if voluntary action is a function of attention, and if attention is achieved by
simulated actions and partially-expressed motor predictions, then what allows voluntary
actions to develop in the first place? This potential explanatory regress is prevented by
the (potentially surprising) ease of controlling cleverly ‘designed’ body plans, particularly
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when such morphologies are constrained to adaptive areas of state space [38,110]. For
example, much of locomotion emerges from relatively controllable pendulum dynamics,
and brainstem and spinal pattern generators further help produce coherently timed force
vectors and locomotory modes [145]. To provide another example, limited range of motion
for shoulder, arm, and finger joints promote effective engagement and exploration of the
world via grasping (e.g., gripping made easier by fingers not bending backwards) and
manipulation within likely fields of view (e.g., arms being more likely to place objects
in front of facial sensors). Such near-optimal grips may be further facilitated by the
functional resemblance between finger pads and deformable soft robotics manipulators,
where degrees of force provide adaptively adjustable contact surfaces, so simplifying
control via offloading to morphological ‘computation’ [146]. By this account, not only do
well-designed body plans automatically contribute to adaptive behavior [147], but such
embodied intelligence provides foundations and scaffolding for all cognitive (and affective)
development. These favorable learning conditions are further enhanced via supervision by
other more experienced humans (including nurturing parents) in the context of human-
engineered environments [92,148,149]. In these ways, we automatically find ourselves
in capable bodies in the midst of value-laden goal-oriented activities [100], where these
grips on the world eventually allow us to construct coherent world models and conscious
intentionality.

3. Grounding Intentionality in Virtual Intrabody Interactions and Self-Annihilating
Free Energy Gradients

“We have to reject the age-old assumptions that put the body in the world and the seer
in the body, or, conversely, the world and the body in the seer as in a box. Where are we
to put the limit between the body and the world, since the world is flesh? Where in the
body are we to put the seer, since evidently there is in the body only "shadows stuffed
with organs," that is, more of the visible? The world seen is not "in" my body, and my
body is not "in" the visible world ultimately: as flesh applied to a flesh, the world neither
surrounds it nor is surrounded by it. A participation in and kinship with the visible, the
vision neither envelops it nor is enveloped by it definitively. The superficial pellicle of the
visible is only for my vision and for my body. But the depth beneath this surface contains
my body and hence contains my vision. My body as a visible thing is contained within
the full spectacle. But my seeing body subtends this visible body, and all the visibles with
it. There is reciprocal insertion and intertwining of one in the other...”.

—Maurice Merleau-Ponty [150]

This proposal is radically embodied in claiming to provide an exhaustive account of
intentional control via internalized action patterns. Partially-expressed motor predictions
are suggested to be the only means of volitional control over attention, working memory,
and imagination, whether such influences are based on attending to a perceptual trace
of recent sensations, or through generating novel counterfactual perceptual experiences
via associated fictive actions. Representations selected by these partially-expressed motor
predictions function as particularly robust predictions in active inference—perhaps particu-
larly if made conscious [73]—so providing powerful means of voluntarily shaping thought
and behavior.

In this active inferential view, intentions represent a functional intersection of beliefs
and desires, where desires are understood as a species of counterfactual beliefs, so generating
prediction errors (or free energy gradients) to be minimized through enaction. As will be
discussed in greater detail below, emotions and feelings may be fruitfully conceptualized as
the active and perceptual components of action-perception cycles over organismic modes.
In this view, desires may be conceptualized as both emotions as driving active inference and
also feelings as updating perceptual models [151]. As described above, the imagination of
counterfactual desired world states will produce goal-relevant prediction errors, which are
minimized either via updating predictions (desire as feeling), or by updating world states
(desire as emotion).
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Given that sources of value associated with desires are rooted in homeostatic im-
peratives, these affectively-laden prediction errors will center on interoceptive modali-
ties [152,153] (Figure 5). As compellingly described by Seth et al. [154] with respect to the
insular inferential hierarchy, this predominantly interoceptive free energy may be allostati-
cally minimized via modulating neuroendocrine and autonomic functions. Alternatively,
these primarily interoceptive free energy gradients (here understood as desires) could be
minimized through the more indirect strategy of generating counterfactual predictions
regarding the exteroceptive and proprioceptive consequences of action [75]. If counter-
factual proprioceptive poses are stably held in mind, they may eventually result in the
driving of motor pools as neural systems self-organize to minimize prediction error via
overt enaction [72,109,155]. From this perspective, all actions are ultimately understood as
a kind of extended allostasis in constituting predictive homeostatic life-management [156].

Figure 5. Interacting modalities in the context of imaginative planning and policy selection. This sequence of frames depicts
interactions between modalities as agents select actions in order to achieve the goal of having tea (see Figures 2 and 4). Each
row depicts a different aspect of experience, all of which interact in the context of goal-oriented cognition and behavior.
Imagining and Perceiving (1st and 2nd rows) correspond to the current content of visuospatial awareness, likely mediated
by hierarchies centered on posterior medial cortices. Whether this workspace is occupied by perceiving or imagining
would respectively be a function of either stronger interactions with hierarchically lower cortical areas, or more stimulus-
decoupled default mode processing (so affording counterfactual percepts). Body map (3rd row) corresponds to experienced
proprioceptive pose, likely mediated by a hierarchy centered on inferolateral parietal cortices. Differential shading and size
of body parts indicate differential attentional focus and modeling properties associated with affordance-related salience
with respect to ongoing goal pursuit. Desire (4th row) corresponds to affective body experiences, likely also mediated by
inferolateral parietal networks, but also involving interactions with insula and cingulate cortices. Differential red and blue
shading respectively indicate positive and negative valence associated with different body parts, including with respect to
interoceptive estimates of semi-localized aspects of the internal milieu. Taken together, rows 1 and 2 could be considered
as constituting the “mind’s eye” (or “Cartesian theater”), and rows 3 and 4 as the “lived body.” Through their coupling,
these networks and associated phenomena may (potentially exhaustively) constitute physical substrates of consciousness as
integrative workspace for agent-based modeling and control.
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The degree to which desires drive overt action selection via proprioceptive predictions
will largely depend on differential precision weighting allocated to various portions of
cortical hierarchies (Figures 1 and 3). With respect to the insula, precision weighting could
allow prediction errors to reach hierarchically higher (i.e., more anatomically anterior)
levels [154], where interoceptive information may have more opportunities to influence
predictions for exteroceptive and proprioceptive hierarchies, and thereby drive action.
Whether overall prediction error (i.e., free energy) is minimized by updating internal
models (i.e., perceptual inference) or updating world states (i.e., active inference) will
depend on attenuating precision at primary modalities [72,157], so protecting goal-related
predictions from disruption (or updating) by discrepancies with present sensory data. For
example, decreased precision on lower levels of interoceptive hierarchies could promote
interoceptive active inference via autonomic functions (i.e., desire as unconscious emotion),
since reduced gain on interoceptive sensations will allow associated representations to be
more updatable via predictive coding mechanisms. Increased precision on middle levels of
the interoceptive hierarchy, in contrast, would promote interoceptive information reaching
the anterior insula and attaining more global availability (i.e., desire as conscious feeling). If
these consciously-felt interoceptive states generate robust predictions for other modalities,
and if sensory evidence does not have excess precision, then free energy will flow up
interoceptive and into exteroceptive and proprioceptive hierarchies, thereby driving action
to minimize overall prediction error (i.e., free energy). In these ways, desire (as free energy
gradient) may be viewed as a force [158] that flows across multimodal body maps, which
may result in overt enaction if these cascading predictions are sufficiently robust to result
in minimizing prediction error via spinal motor pools and associated muscular effectors.
Computationally speaking, these information flows would be constituted by patterns of
precision weighting, either selecting specific predictions for enaction (e.g., relevant affor-
dances for minimizing particular kinds of interoceptive prediction errors), or as hyperpriors
influencing policy selection thresholds (e.g., modulating neuromodulatory systems).

This account of driving large-scale neuronal activity selection by visceral desires is
consistent with interoceptive inferences being uniquely capable of enslaving cortex due to
the highly stable (and so precise) nature of those predictions [90], which may have further
entraining power via the high centrality of these subnetworks. These models are supported
by numerous studies in which insula-cingulate connectivity is shown to be central for
motivated cognition and behavior [159–162]. Further indirect supporting evidence may
be found in voluntary actions being more frequently initiated during exhalations, where
associated neural dynamics (i.e., readiness potentials) exhibit modulation by respiratory
cycles [163]. Perhaps the most compelling evidence for these models of viscerally-driven
action may be found in work by Zhou et al. [164], wherein organismic saliency models
constituted the highest level of hierarchical control among resting state networks.

Much interoceptively-influenced biasing of attention and action selection may be
unconscious. However, when these viscerally-grounded [130] prediction errors reach levels
of cortical hierarchies where we become aware of them, then we can further attend to these
sensations using efference copies (as predictions, or Bayesian priors) from exteroceptive
and proprioceptive modalities. For example, we can (either overtly or imaginatively)
visually scan through maps of the body and its interior, so modeling interoceptive contents
by means other than the sensory channels that directly transmit this information from the
internal milieu. This intentional attending to interoceptive states could then allow us to
modulate the degree to which consciousness and action is influenced by feelings of desire.
Theoretically, this mechanism could also provide enactive models of mindfulness practices
such as “body scanning” or meditation on the breath [165–167].

This account of emotional regulation from directed attention to interoceptive states
can also apply to attention to exteroceptive and proprioceptive modalities. Partially-
expressed motor predictions may bias activity in these body representations (e.g., simu-
lated foveations on hands), so influencing which actions are likely to be selected next (e.g.,
hands grasping in particular ways). While subject to multiple interpretations, some evi-
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dence for this model may be found in precision-estimation being influenced via functional
interactions between theta power from frontal midline structures and beta power from
frontal-parietal networks [127], which here may be (speculatively) interpreted as respec-
tively indicating fictitious foveations interacting with other aspects of action-oriented body
maps (Table 2). To the extent that partially-expressed actions provide bases for top-down
attention, we may intentionally influence attention by attending to action-oriented body
maps, so driving further patterns of attending and intending. Is there really room for
intentionality in this cascade of converging cross-modal predictions? The answer to this
question will depend on how we define intention, which here represents any instance of
conscious desires being able to influence neuronal activity selection. Human-like inten-
tionally can further be said to arise when these processes are driven by goals involving
narrative self-models and associated concepts, as will be described in greater detail below.

4. The Emergence of Conscious Teleological Agents

[Note: In what follows, the word consciousness is used in multiple senses, sometimes
involving basic subjective experience, and other times involving conscious access with
respect to the knowledge, manipulability, and reportability of experiences [168]. Unless
otherwise specified, these discussions can be considered to refer to both senses of con-
sciousness. For a more thorough discussion of the physical and computational substrates
of phenomenal consciousness, please see Integrated World Modeling Theory [73,74].]

4.1. Generalized Dynamic Cores

“What is the first and most fundamental thing a new-born infant has to do? If one
subscribes to the free energy principle, the only thing it has to do is to resolve uncertainty
about causes of its exteroceptive, proprioceptive and interoceptive sensations... It is at
this point the importance of selfhood emerges – in the sense that the best explanation
for the sensations of a sentient creature, immersed in an environment, must entail the
distinction between self (creature) and non-self (environment). It follows that the first
job of structure learning is to distinguish between the causes of sensations that can be
attributed to self and those that cannot . . . The question posed here is whether a concept or
experience of minimal selfhood rests upon selecting (i.e. learning) models that distinguish
self from non-self or does it require models that accommodate a partition of agency into
self, other, and everything else.”

—Karl Friston [88]

“[We] localize awareness of awareness and dream lucidity to the executive functions
of the frontal cortex. We hypothesize that activation of this region is critical to self-
consciousness — and repudiate any suggestion that ‘there is a little man seated in our
frontal cortex’ or that ‘it all comes together’ there. We insist only that without frontal
lobe activation the brain is not fully conscious. In summary, we could say, perhaps
provocatively, that (self-) consciousness is like a theatre in that one watches something
like a play, whenever the frontal lobe is activated. In waking, the ‘play’ includes the
outside world. In lucid dreaming the ‘play’ is entirely internal. In both states, the ‘play’
is a model, hence virtual. But it is always physical and is always brain-based.”

—Allan Hobson and Karl Friston [11]

The cybernetic Bayesian brain has also been extended to phenomenology, suggesting
possible explanations for qualitative aspects of experience ranging from the sense of agency
to synesthetic percepts. A felt sense of “presence” (or subjective realness) is suggested to
correspond to the successful predictive suppression of informative interoceptive signals
evoked by autonomic and motor actions, producing a sense of agency in association with
self-generated action [154]. Histories of self-generated actions allow for the “mastery
of sensorimotor contingencies” [169], with the extent and variety of evoked affordance-
related predictive abilities (i.e., “counterfactual richness”) determining degrees of presence
associated with various aspects of experience [61].
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Speculatively, counterfactual richness could contribute to perceptual presence via
micro-imaginings that may be barely accessible to conscious awareness. That is, perception
may always involve associated affordance relations, but where such imaginings may not be
consciously accessible due to their fleeting nature (e.g., a single integrative alpha complex
over posterior modalities failing to be more broadly integrated into a coherent causal
unfolding). Yet, such simulated affordances may nonetheless contribute to attentional
selection of different aspects of percepts and their multimodal associations (e.g., likely
interoceptive consequences), so generating a penumbra of possibility accompanied by a
particular sense of meaningfulness. This model of phenomenality without accessibility may be
crucially important for understanding multiple aspects of agency, in which consciously
experienced isolated qualia may potentially have strong impacts on minds in providing
surprisingly rich sources of “unconscious” processing.

Alternatively, part of the reason that counterfactual richness is associated with per-
ceptual presence may be because these (non-actual) affordance-related predictions fail to
suppress bottom-up sensations. Imagined sensorimotor contingencies would generate
prediction errors where they fail to align with actual sensory observations, which would
influence conscious experiences if they reach hierarchically higher levels of cortex with rich-
club connectivity [104,170]. These subnetworks are notable in having both high centrality
and high reciprocal (or re-entrant) connectivity, which have been suggested to support “dy-
namic cores” of mutually-sustaining activation patterns [6,171], so implementing “global
workspaces” [172] capable of both integrating and differentiating [173] multiple aspects of
phenomena with sufficient spatiotemporal and causal organization for coherent conscious
modeling [15,73,74].

While the account of conscious agency presented here is radically embodied, it parts
ways with more radically enactivist “extended mind” interpretations of predictive pro-
cessing [174]. According to radical enactivist interpretations of active inference, subjective
experience is the entailment of an implicit model represented by the entire system of hier-
archical relations within an organism’s brain, body, and environment. However, I have
suggested that processes only contribute to consciousness to the degree they couple with
dynamic cores of neural activity on timescales at which information is integrated into
particular large-scale meta-stable states [73,74], with coherence enhanced by mechanisms
for stabilizing and coordinating synchronous activity [175,176]. While minds are certainly
extended [177,178], consciousness may be a more spatiotemporally limited phenomenon.

Dynamic cores of consciousness may play another central role in Bayesian brains as
sources of robust and (meta-)stable predictions. Conscious driving of neural dynamics
allows for several properties that would not be possible without centralized control pro-
cesses. To the degree widespread availability of information—often taking the form of
embodied simulation—allows for coupling with linguistic production systems and their
combinatorial and recursive generative potential, this would vastly increase the stability,
complexity, and flexibility of active inference. To the degree these expanded abilities allow
for inferring temporally-extended events, they may provide bases for constructing abstract
self-models and a new kind of symbolic order [13,179]. Under this regime of conscious
symbolism, a new kind of dynamic core becomes possible as world models with extended
causal unfoldings and structuring by abstract knowledge. Such generalized dynamic cores
would be constituted by systems of mutually sustaining predictions, whose robustness
would increase when intersecting predictions provide synergistically greater inferential
power when combined (e.g., converging lines of evidence).

I propose embodied self-models (ESMs) as constituting self-sustaining robust inferential
cores at multiple levels. At lower levels of abstraction, minimal ESMs [180] correspond to
body maps organized according to 1st-person perspectival reference frames. At higher lev-
els of abstraction, more elaborate ESMs correspond to 3rd-person perspective body maps
and schemas. These 1st- and 3rd-person perspectival ESMs both develop in inter-subjective
social contexts, potentially via the internalization of 2nd-person perspectives [181] and
mirroring with (and by) others [182,183]. Essential aspects of core selfhood—with both
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embodied and symbolic objectified characteristics—may involve a kind of internal ‘mir-
roring’ of 1st- with 3rd-person ESMs, so establishing linkages of effective connectivity for
advanced self-modeling (Cf. mirror self-recognition as test of sentience) and self-control.
Through experience, these various ESMs become associatively linked to each other as a
control heterarchy governed by diverse modes of selfhood at varying levels of abstraction.

Neural populations capable of realizing these various self-processes will also develop
reciprocal connections with inferior frontal and temporal hierarchies over phonological
action-perception cycles, grounded in respective outputs to the vocal apparatus and inputs
to hearing. These functional linkages would provide bases for semantic understanding
based on syntactic grammar, which may allow for thought as inner-speech as previously
described. From this radically embodied perspective, linguistic thought is a kind of
motor skill, which partially renders declarative knowledge as a special case of procedural
memory. These symbolic capacities afford more complex modes of organization, where
ESMs take the form of narrative-enhanced selves [111,156] with nearly unbounded semiotic
potential [184–186], including multilevel interpersonal coupling [187,188], participatory
sense making and shared intentionality [189,190], and structuring experience by abstract
meanings [121,148,191].

I suggest we may interpret “dynamic cores” game-theoretically [192], and extend this
concept to emergent patterns structuring minds across all levels. Under the Free Energy
Principle, all persisting forms necessarily minimize prediction error, and as patterns vie for
promoting their existence, these interactions would constitute a kind of game with both
cooperative and competitive characteristics. A ‘core’ would be established whenever a set
of predictions becomes sufficiently stable such that it is capable of functioning as a kind of
dominant paradigm [193] in belief space. This core property could be obtained because of
a kind of faithful correspondence between model and world, or simply because it arises
early in development and so structures subsequent modeling (whether accurate or not).
Embodied selfhood is a good candidate for a generalized core in providing parsimonious
modeling of correlated activity between heterogeneous sensations, whether interoceptive,
proprioceptive, or exteroceptive [75]. I suggest ESMs provide such powerful explanations
for experience that they form a necessary scaffolding for all other aspects of mind, with
different aspects of selfhood being understood as kinds of extended embodiment [194–197],
ranging from material possessions [198] to social roles, and other more abstract senses
of self and ownership [111]. From this view, psychological development would be re-
framed in terms of preserving and adapting various core patterns—in neo-Piagetian terms,
assimilation and accommodation—so allowing minds to bootstrap themselves towards
increasingly rarefied states of complexity.

Among these developmental milestones, perhaps the most significant major transition
is acquiring capacities for self-awareness [199]. As suggested above with respect to the
potential importance of mirroring, such self-models may develop via the internalization
of social interactions involving various forms of intersubjective inference. While the
richness of selfhood ought not be reduced to any given mechanism, focusing on action-
perception cycles illuminates ways that various neural systems may contribute to the
construction (and control) of different objectified self-representations. Given sufficient
experience, imagined actions from 1st-person reference frames will be accompanied by
auto-associative linkages to perceptions of similar actions from other points of view. These
various viewpoints become ‘encoded’ by ventral visual stream neuronal ensembles, which
can become consciously accessible via posterior medial cortices [73,74]. Conscious 3rd-
person self-representations afford additional forms of modeling/control and navigation of
complex contingencies, such as imagining multistep plans, potentially accompanied by
visualizations of moving through spatialized time. [Speculatively, this sort of perspectival
cross-mapping may have been facilitated by the evolutionary elaboration of white matter
tracts connecting dorsal and ventral cortical hierarchies [200,201].

Objectified selfhood represents a major transition in evolution, indicating a movement
from 1st-to 2nd-order cybernetics, wherein agents become capable of using processes of
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self-regulation to recursively model themselves as goal-seeking self-regulating feedback
systems [202]. Thus, a radically embodied perspective may help us to understand not
only the micromechanics of intentional goal-oriented behavior, but also the nature of self-
consciousness and potentially uniquely human forms of agency. This constructed selfhood
with metacognitive capacities via mental actions also suggests ways that compromised
mechanisms of agency would contribute to varying forms of maladaptive functioning and
psychopathology [203]. This constructed selfhood also suggests means by which patholog-
ical self-processes could be updated, potentially via the intentionally-directed attention
towards somatic states described above as a proto-model of meditative practices [166,167].

4.2. Embodied Self-Models (ESMs) as Cores of Consciousness
4.2.1. The Origins of ESMs

To summarize, ESMs may form foundational cores and scaffolding for numerous and
varied mental processes, ranging from the handling of under-constrained inference spaces
to the intentional control of attention, imagination, and action. ESMs are both body maps
and cybernetic control hierarchies, constituted by action-perception cycles grounded in
skeletal muscle and associated perceptual efferents (Figure 6). As described above, the
centrality of ESMs is expected based on early experiences [84,204] in which bodies provide
learning curriculums wherein possibilities are fruitfully constrained [38], so allowing
organisms to bootstrap their ways toward handling increasingly challenging modeling
spaces within zones of proximal development [120]. With respect to the challenge of
constructing robust causal world models—both enabling and possibly entailing conscious
experiences [73,74]—the combinatorics of unconstrained inference spaces may only be
surmountable via the inductive biases afforded by embodied learning. This fundamentally
somatic developmental legacy suggests a radical perspective in which ESMs form a semi-
centralized scaffolding for all intentional (and many unintentional) mental processes,
grounding abstract symbolic thought in mental simulation and metaphorical extension
from initial embodied experiences [47,48].

Figure 6. Depiction of the human brain in terms of entailed aspects of experience (i.e., phenomenology), as well as
computational (or functional), algorithmic, and implementational levels of analysis [2,74]. A phenomenological level is
specified to provide mappings between consciousness and these complementary/supervenient levels of analysis. Modal
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depictions connotate the radically embodied nature of mind, but not all images are meant to indicate conscious experiences.
Phenomenal consciousness may solely be generated by hierarchies centered on posterior medial cortex, supramarginal gyrus,
and angular gyrus as respective visuospatial (cf. consciousness as projective geometric modeling) [181,205], somatic (cf.
grounded cognition and intermediate level theory) [3,206,207], and intentional/attentional phenomenology (cf. Attention
Schema Theory) [118]. Computationally, various brain functions are identified according to particular modal aspects,
either with respect to generating perception (both unconscious and conscious) or action (both unconscious and potentially
conscious, via posterior generative models). [Note: Action selection can also occur via affordance competition in posterior
cortices [94], and frontal generative models could be interpreted as a kind of forward-looking (unconscious) perception,
made conscious as imaginings via parameterizing the inversion of posterior generative models.] On the algorithmic level,
these functions are mapped onto variants of machine learning architectures—e.g., autoencoders and generative adversarial
networks, graph neural networks (GNNs), recurrent reservoirs and liquid state machines—organized according to potential
realization by neural systems. GNN-structured latent spaces are suggested as a potentially important architectural
principle [208], largely due to efficiency for emulating physical processes [209–211]. Hexagonally-organized grid graph
GNNs are depicted in posterior medial cortices as contributing to quasi-Cartesian spatial modeling (and potentially
experience) [212,213], as well as in dorsomedial, and ventromedial prefrontal cortices for agentic control. Neuroimaging
evidence suggests these grids may be dynamically coupled in various ways [214], contributing to higher-order cognition
as a kind of navigation/search process through generalized space [215–217]. A further GNN is speculatively adduced to
reside in supramarginal gyrus as a mesh grid placed on top of a transformed representation of the primary sensorimotor
homunculus (cf. body image/schema for the sake of efficient motor control/inference). This quasi-homuncular GNN
may have some scaled correspondence to embodiment as felt from within, potentially morphed/re-represented to better
correspond with externally viewed embodiments (potentially both resulting from and enabling “mirroring” with other
agents for coordination and inference) [39]. Speculatively, this partial translation into a quasi-Cartesian reference frame may
provide more effective couplings (or information-sharing) with semi-topographically organized representations in posterior
medial cortices. Angular gyrus is depicted as containing a ring-shaped GNN to reflect a further level of abstraction and
hierarchical control over action-oriented body schemas—which may potentially mediate coherent functional couplings
between the “lived body” and the “mind’s eye”—functionally entailing vectors/tensors over attentional (and potentially
intentional) processes [218]. [Note: The language of predictive processing provides bridges between implementational and
computational (and also phenomenological) levels, but descriptions such as vector fields and attracting manifolds could
have alternatively been used to remain agnostic as to which implicit algorithms might be entailed by physical dynamics.]
On the implementational level, biological realizations of algorithmic processes are depicted as corresponding to flows of
activity and interactions between neuronal populations, canalized by the formation of metastable synchronous complexes
(i.e., “self-organizing harmonic modes” [73]). [Note: The other models discussed in this manuscript do not depend on the
accuracy of these putative mappings, nor the hypothesized mechanisms of centralized homunculi and “Cartesian theaters”
with semi-topographic correspondences with phenomenology.].

As described above, ESMs provide means by which action selection can be influenced
via iterated comparisons of sensed and imagined sensorimotor states, with much complex
planning achieved through backward chaining from goals, implemented via predictive
coding mechanisms. Intentions (as self-annihilating free energy gradients) are proposed to
function as systemic causes over neural dynamics, arising through interactions between
beliefs and desires as counterfactual predominantly-interoceptive beliefs. Additionally,
neuronal ensembles underlying ESMs—and the intermediate level representations they
support [3,206,207]—may be positioned as centrally located, richly connected nodes in
generative neural networks. On account of embodiment being functionally linked to
most causes of sensory observations, coherent organization between ESM nodes would
contribute to small-world connectivity, so enhancing message-passing potential, so en-
hancing capacity for informational integration. Thus, in addition to constituting the
core of most mental processes, ESMs would be at the center of dynamic cores of neu-
ral activity [73,74,219], generating high degrees of integrated information [173,220] and
instantiating communication backbones for global workspaces [221,222].

With respect to this hypothesis of workspace dynamics via ESMs, it is notable that
periods of high and low modularity most strongly vary based on degrees of activity within
sensorimotor and visual networks [223], potentially suggesting pivotal roles for these
systems with respect to large-scale cognitive cycles [224]. Sensorimotor networks constitute
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the most extensive resting state component, involving 27% of overall grey matter [225].
Even more, these somatic networks establish a core of functional connectivity [226], with
high degrees of overlap and coupled activity with other functional networks, including the
default mode network, thus potentially linking conscious workspace dynamics to selfhood
on multiple levels [227–230].

4.2.2. Phenomenal Binding via ESMs

High degrees of mutual information across ESMs may enhance capacities for self-
organized synchrony and inferential stability [204]. Indeed, the early emergence (with
respect to both ontogeny and phylogeny) of body-centered neural responses suggests they
may be foundational for extra-bodily forms of perceptual inference [91,231]. In terms of
developmental primacy, studies of zebra fish demonstrate that spinal motor-neurons begin
a stereotyped process of establishing global synchronization dynamics, beginning with
the reliable enabling of increasing degrees of synchronous local activity [232], followed
by larger-scale integration (or self-organization) into well-defined oscillatory modes as
critical thresholds are surpassed [233]. High degrees of integrative capacity via body
maps may potentially help to explain the remarkable capacities of nervous systems to
reconfigure themselves for both good (e.g., recovery after injury) and ill (e.g., phantom
limb syndrome) [194,234,235].

Theoretically, ESMs may transfer some of their synchronous (and inferential) stability
to non-body representations (e.g., external objects) when functionally coupled. This cou-
pling could be realized by the driving of simulated (and sometimes overtly enacted) actions
by reactive dispositions and perceived affordances [94,95]. Affordance relations must have
physical bases in neuronal ensembles—even if highly dynamic and context-sensitive—
constituted by representations of action-perception cycles, grounded in bodily effectors and
sensors. If non-body representations are auto-associatively linked to ESMs via affordance
relations [71], then synchronous dynamics within ESMs could transitively entrain neural
ensembles for non-body representations, so increasing their perceptual stability. With
relation to perceptual binding, specific affordances could contribute to specific patterns
of synchrony, so instantiating specific networks of integration, which in some instances
may entail phenomenal experience and potentially conscious access. [Note: The other
models discussed in this manuscript do not depend on the accuracy of this hypothesis of
phenomenal binding via ESMs.]

Mechanistically, traveling waves [236–238] from ESMs could form major points of
nucleation for the formation of large-scale meta-stable rhythmic attractors [229,239–242].
Such self-organizing harmonic modes likely have multiple functional significances within
nervous systems [73,74], including the ability to coordinate large-scale patterns of brain
activity. This model of resonant binding via simulated embodied engagements further
suggests that partially-expressed motor predictions with specific affordance linkages could
be used for attentional selection over particular objects. From this point of view, enactivist
discussion of “optimal grips” [89] may potentially indicate a foundational mechanism
by which conscious access is realized via fictitious motor commands. Consistent with
linguistic use, there may be a surprisingly (or perhaps intuitively) meaningful sense in
which we “hold” objects in mind with attention (as partially-expressed motor predictions),
potentially providing a neurocomputational understanding for the word “concept” in
terms of its etymological origins (i.e., “to grasp”).

ESMs are proposed to form cores of consciousness as dominant sources of integrated
effective connectivity across the entire brain, facilitating coherent perception and action.
ESM-grounded consciousness would not only imbue all percepts with the affordance
potential of sensorimotor contingencies [169], but also the previously discussed sense of
“presence” as perceptual depth from counterfactual richness [154,243], so illuminating
fundamental aspects of phenomenology. If this model of virtual enactive binding and
manipulation of percepts is accurate, then we may possess yet another account of the roles
of frontal lobes with respect to global workspace dynamics and higher-order conscious-
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ness. While posterior cortices may generate conscious experiences of space [73,74,212],
frontal cortices may provide bases for cognitive ‘work’ in the form of the stabilization and
manipulation of percepts within these mental spaces (Figure 6).

This radically embodied view has received some support from findings in which
motor information heavily influences neural signaling in almost every modality [244–246].
Notably, parietal cortex provides sources of both high-level body representations as well
as spatial awareness, with damage not only resulting in anosognosia and alien limb
syndromes, but also hemi-spatial neglect [218]. There is also a counter-intuitive finding in
which the spatial extent of neglect symptoms are extended via providing a reach-extending
tool for the hand corresponding to the affected side of space [195,247]. Speculatively,
affordance-based bindings via ESMs may potentially provide a partial explanation for
this surprising phenomenon, in that neglect symptoms could result from coupling with
ESMs whose coherent (synchronous and inferential) dynamics have been compromised.
Resonant coupling between percepts and ESMs may also help explain how external objects
—potentially including other agents [248]—may become incorporated into body maps [249],
with synchronous motions helping to establish expansion/binding. These fundamentally-
embodied bases for phenomenality could also be (indirectly) evidenced by impaired
memory with out-of-body states [250], and superior memory accompanying 1st-person
points of view [251].

Recent work from Graziano and colleagues may provide support for this model of per-
ceptual binding via ESM-based affordances. In Attention Schema Theory (AST) [118,252],
conscious awareness is thought to correspond to reduced-dimensionality schematic model-
ing of attention, providing an informational object that is simpler to predict and control,
relative to that which is modeled. The sketch-like nature of attention schemas makes them
unamenable for clear introspection, so contributing to an anomalous inference wherein
awareness is implicitly (and sometimes explicitly) viewed as a fluid-like physical substance
that comes out of a person’s eyes and reaches out into the world, so contributing to the
“extramission myth of visual perception.” Researchers from Graziano’s lab [253] found
evidence for an intriguing phenomenon in which seeing another person’s gaze appeared to
result in inferences of force-transfer towards an unstable object. This finding is consistent
with the ESM-based model of perceptual binding described above, although variations on
the experiment might provide an opportunity to uniquely test the hypotheses proposed
here. According to the “eye beams” model of AST, implicit forces associated with gaze
should always be a push—due to the implicit anomalous inference that awareness is like a
fluid that can be emitted—causing the object to be more likely to fall away from observers.
However, according to the model of phenomenal binding via ESMs, the force would either
push or pull, depending on associated affordances, and possibly affective states.

In AST, conscious awareness is suggested to be the phenomenal entailment of at-
tention schemas and the representations they bias. In the radically-embodied view de-
scribed here, attention schemas would represent upper levels of control hierarchies over
action-oriented 1st-person body schemas [118], or ESMs as action-perception hierarchies
distributed across frontal and parietal cortices (Figure 6). The neuropsychological literature
provides some support for this idea, with frontal and parietal lesions both contribut-
ing to neglect symptoms [254]. The centrality of the temporoparietal junction (TPJ) for
conscious awareness in AST [218] points to possible functional overlaps between net-
works establishing embodied selfhood and conscious awareness. Notably, TPJ disruptions
can result in perceptual anomalies such as out-of-body experiences and body-transfer
illusions [255,256]. Associations between mental state inference [257] and overlapping rep-
resentations for self and other in the TPJ (and dorsomedial PFC) provides further support
for social bootstrapping of objectified selfhood described above. High-level action-oriented
body maps may be indispensable for attempting to infer mental states and intentions,
whether through “mirroring” or perspective-taking via attention schemas shared between
self and others [118,121,190,258–260]. Thus, conscious access might not only depend on
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radically embodied minds, but may also fundamentally involve intersubjective model-
ing [187,188,261].

4.2.3. Varieties of ESMs

“We suggest that a useful conceptual space for a notion of the homunculus may be located
at the nexus between those many parallel processes that the brain is constantly engaged
in, and the input from other people, of top-top interactions. In this understanding, the
role of a putative homunculus becomes one of a dual gatekeeper: On one hand, between
those many parallel processes and the attended few, on the other hand be-tween one mind
and another... [T]he feeling of control and consistency may indeed seem illusionary from
an outside perspective. However, from the inside perspective of the individual, it appears
to be a very important anchor point both for action and perception. If we did not have
the experience of this inner homunculus that is in control of our actions, our sense of self
would dissolve into the culture that surrounds us.”

—Andreas Roepstorff and Chris Frith [12]

In this account, ESMs function as sources of maximal model evidence in FEP-AI [75],
complexes of integrated information [173,220], and backbones for global workspaces [129].
This view of consciousness and agency centered on ESMs is consistent with both the infor-
mation closure [262] and intermediate-level [207] theories of consciousness. Intermediate
levels of abstraction afford embodied simulation [3,206,263], wherein action-perception
cycles enable cybernetic sense-making and grounded cognition. Indeed, cybernetic ground-
ing via ESMs could partially help in explaining why consciousness may arise “only at the
personal level” [264].

ESMs are composed of multilayer control hierarchies at varying levels of abstraction,
ranging from 1st-person interfaces, i.e., the “lived body” [43,181], to 3rd-person body
schemas capable of acting as symbolic and self-reflexive intentional controllers. The sin-
gular embodied self and models of selfhood as a “center of narrative gravity” [228,265]
imply multiple roles for unified embodied representations as high-level control processes,
organized according to multiple perspectival reference frames. The complexity and speci-
ficity of these models of self and world are greatly expanded by the combinatorial and
recursive properties of language [156,179], including temporal extension and stabilization
via organization into diachronic narratives [184]. While consciousness may not depend
on language for its realization, linguistic capacities may have profound impacts on the
evolution and development of conscious awareness, selfhood, and agency.

Multilevel integration via selfhood may represent a necessary condition for perceptual
coherence by providing binding from core embodiment. Similarly, in line with renormal-
ization group theory and the enslaving principle of synergetics [266,267], the ability of
self-processes to stably persist through time provides reduced-dimensionality attracting
center manifolds capable of bringing order to—or generating selective pressures over—
faster dynamics at lower levels of organization. A slower, larger, and more centrally
positioned set of dynamics has asymmetric potential to entrain (or enslave) faster and more
fleeting processes, which will be relatively less likely to generate cohesive influences due to
their transient character. Self-processes can be viewed as sources of highly coherent meso-
and macro-scale vectors—or effective field theories [268]—over biophysical dynamics, al-
lowing systems to explore state spaces in ways that would be unlikely without centralized
integrative structures.

Selves provide spatial and temporal structure for complex sequences at multiple
levels of abstraction, including symbolically. Such abstract integrative structures are
referred to as “narratives” [184,269,270], for which it is no coincidence that such modes
of organization facilitate learning, and where the act of telling and listening to stories is
a human universal [271,272]. In terms of control systems, narratives allow for coherent
stabilization of evolving conceptual structures in ways that provide multilevel syntax, so
affording planning on multiple temporal and spatial scales. Narratives with multiscale
organization provide one of the best ways to model and control such extended processes,
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including with respect to the narrativizing processes that both help to generate and are
governed by self-models. In these ways, agentic selfhood is a story that becomes (more or
less) true with the telling/enacting.

At their most basic, selves are constituted by models of embodiment and embedding
within the external environment. At their most complex and abstract [273]—returning to
the evolutionary game-theoretic considerations described above with respect to generalized
dynamic cores—selves are patterns with which agent-like-systems are most consistently
identified, where agentic systems are construed according to a kind of projected revisionist
victor’s history [14,265,274], wherein victors are constituted by dominating coalitions of
patterns, bound together by evolving interactions between habits, narratives, and specific
niches constructed by agents. Inter-temporally coherent belief-desire coalitions more
consistently achieve higher value [275,276], and so tend to be reinforced, and so tend
to dominate persona evolution [60]. Shared narratives co-evolving with these pattern
coalitions [271,277,278] are shaped by repeated games both within [279–281] and between
individuals [121,269,282]. Although self-processes may become extremely complex (and
abstract) in these ways, in all cases such generative models both originate from and must
continually deal with the constraints and affordances of their radically embodied nature.

4.3. Free Energy; Will Power; Free Will

The self-sustaining stability and predictive power of multilevel dynamic cores consti-
tute free energy reservoirs [73,283], capable of enslaving hierarchically lower levels, and so
driving overall systems towards novel (and surprising) regions of state space predicted
in imagination. By this predictive processing model, will power is proportional to the
strength with which an agent predict/imagine actions for desired states in the face of
obstacles to goal attainment. The embodied attention mechanisms described above pro-
vide organism-centered (and potentially more intuitively controllable) means of boosting
the predictive power of specific representations. These distributed high-level controllers
necessarily grow from histories of predictive homeostatic regulation (i.e., allostasis via
active interoception), largely centered around control hierarchies spanning insular and
cingulate cortices [284,285], which influence neuromodulatory value signals through direct
and indirect connections to hypothalamic and brainstem nuclei [286,287].

The radically embodied proposal presented here is that all self-control processes have
their origins in controlling skeletal muscle, both via multilevel shared mechanisms, as
well as via metaphorical extension from experiences with movement [288]. To the extent
these regulating dynamics depend on particular neuroanatomical hubs, conscious willing
constitutes a limited resource to the degree that sustained activity results in degradation
of efficient predictions. This is consistent with rest periods being required to avoid “ego
depletion” [289], possibly via mechanisms involving slow wave activity and synaptic
downscaling within these hubs [290–293]. Based on the models described above, these
executive resources would heavily depend on networks utilized for simulating actions of
varying degrees of complexity, with fictitious foveations and virtual motoric manipula-
tions likely being especially impactful (Table 2). Dorsomedial and dorsolateral prefrontal
cortices provide higher-order control over frontal eye fields and pre-supplementary mo-
tor areas [74] (Figure 6), which have both been associated with attention and working
memory [125,294,295]. Strong evidence for these models would be obtained if executive
failure (and recovery) were reliably indexed by local increases (and subsequent decreases
with rest) in slow oscillations, as well as if stimulation [296] applied to these areas—or
perhaps other integrative networks [297]—was found to increase self-control and promote
repletion during rest intervals.

However, even without exhausting limited (but flexible) neural resources, sustained
willing may be preemptively curtailed based on explicit and implicit predictive models of
ongoing dynamics [298]. In the context of goal-pursuit, emotional states reflect a balance
between inferred benefits and costs associated with various goals [162], including estimates
of opportunity costs, which have both direct and indirect effects on motivating/energizing
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(or inhibiting) behavior. These proactive regulatory mechanisms largely stem from insular
and cingulate cortices acting as predictive homeostatic (i.e., allostatic) control systems, as
well as from additional converging inputs to neuromodulatory processes (e.g., dopaminer-
gic nuclei of the brainstem), so influencing thresholds for neuronal activity cascades and
subsequent overt actions.

Other self-control limitations may be difficult to describe in terms of specific neural sys-
tems, but may instead emerge from heterogeneous predictions regarding value attainment
associated with goal-pursuit. For example, it may be the case that self-processes become
more causally efficacious in minds to the extent that they are predicted to be causally effi-
cacious in the world. In these ways, there could potentially be bidirectional relationships
between willpower, situation-specific self-efficacy, and even global self-esteem.

A radically embodied cybernetic Bayesian brain suggests multiple mechanisms by
which we can be said to have (within limits) the “varieties of free will worth having” [299].
While debates regarding the ontological status of free will may not be definitively resolved
in this manuscript, we have shown that intentions—as conjoined beliefs and desires—can
function causally in their ability to act as coherently stable predictions. To the extent these
predictions can be maintained in the face of discrepant observations, these sources of
control energy will drive overall dynamics. Thus, conscious mental states are not only “real
patterns” [300] because of their significance for experiencing subjects, but also because
consciously ‘held’ intentions may meaningfully contribute to cognitive (and potentially
thermodynamic) work cycles [13,73,301,302].

4.4. Mental Causation

This mental causation could be similarly described in the language of generalized
Darwinism [279], with preferences functioning causally within minds in the same ways that
selective pressures [303–306] are causal within evolutionary systems [17]. More enduring
preferences can be viewed as ultimate-level causes that select for the development of
context-specific proximate-level choices [307]. We may further think of motor control via
hierarchical predictive processing in terms of a hierarchy of selection processes. In this
view of action selection as a kind of natural selection, hierarchically lower levels provide
specific adaptations for realizing hierarchically-higher selective pressures, the totality of
which constitute the overall direction of ‘will’ in any given moment. On longer timescales,
histories of experience change beliefs and desires, so providing another way in which
preferences act as (recursively self-modifying) causes for minds as multilevel evolutionary
systems.

Intriguingly, the concept of ‘pressure’ and the ability of free energy gradients to drive
work may be isomorphic when considered in the contexts of Bayesian model selection,
natural selection, and thermodynamics [308–310]. Although post hoc confabulation oc-
curs [311,312], in many cases the driving of behavior via intentions may be viewed as
(formally) similar to the powering of engines via controlled explosions. Further, in the
gauge-theoretic framing of the Free Energy Principle [158], precision weighting is formally
understood as a kind of (symmetry-preserving) force in precisely the same sense as gravity
is a force resulting from the deformation of spacetime. Therefore, desires and willpower
may be forces in every meaningful sense of the words ‘power’ and ‘force.’

Can things as seemingly ephemeral and abstract as beliefs and desires have causal
powers in the same senses as in physics? Perhaps this is just an exercise in semantic games,
playing with metaphors and words to avoid the obvious and inevitable conclusion: the only
real causation is physical, and any other sense of cause is mere expediency, representing an
approximate attempt at explaining and predicting events whose underlying reality is too
complexly determined and difficult for us to measure and understand. Perhaps. Yet it is
also the case that ‘causes,’ ‘powers,’ and ‘forces’ are themselves just words, or metaphors,
or models for the phenomena they attempt to represent in compressed form, and where
they would lack explanatory or predictive utility without dimensionality-reducing ap-
proximations [48,59]. Occasionally we need to remember that the meanings of words are
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determined by our interacting minds, wherein they are always (without exceptions) mere
expediencies—even if this expedience also affords the evolution of civilizations and the
technologies upon which we depend for life [271]. The word ‘cause’ is mostly lacking in
physics, as most physicists have no need of singling out specific things in order to explain
or predict particular events [268]. Master equations of dynamics may be specified such as
Hamiltonians and Lagrangians, from which system-evolution flows deterministically, but
the notion of causation is not found in such descriptions. The absence of causal notions in
physics makes sense in light of physical laws being symmetric with respect to time, and
where time may be an emergent local description, rather than a fundamental principle
of the universe [313]. Even ‘force’ has been deflated in fundamental physics, and instead
replaced with “fictitious force” in conceptualizations such as the gauge constructions un-
derlying relativity and other field theories [158]. On account of the conceptual elegance of
these theories, many physicists no longer talk about “fictitious” forces, since it could be
argued that there are no other kinds.

Perhaps even more fundamentally [314], if we trace the genealogy of these concepts,
and so understand the radically somatic origins of minds, then we might discover our
notions of cause and force were initially derived via metaphorical extension from embodied
experiences of volitional control [16,48,59,288]. This is not to say that it is permissible to
commit a genealogical fallacy and reduce the realities of these concepts to their beginnings.
Formal accounts of causation have been provided in terms of operations over graphical
models involving manipulations of dependencies via counterfactual interventions [119].
However, such handlings require commitment to a given ontology (i.e., carving up a
domain into particular kinds), and do not support reducing processes to more fine-grained
dynamics where higher-level properties are undefined. Even if temporality is found to be
fundamental (rather than emergent) in ways that afford causal modeling over some ‘true
atomism,’ reductive explanations would still not be of an eliminative variety. Eliminative
perspectives on emergent phenomena (such as intentionality) may be literally meaningless
and nonsensical, in that they violate the rules of logical reasoning whereby sense-making
is made possible.

Alternatively framed, intentions (as conjoined beliefs and desires) could be viewed
as kinds of “effective field theories” over psychodynamics and behavior [268], affording
maximally powerful ways of explaining and predicting events whose underlying statistics
afford (and demand) coarse-graining [315] in ways that give rise to new ontologies. In
these ways, beliefs and desires are as real as any-‘thing’ [64], even if there is a wider (but
nonetheless constrained) range of plausibly useful interpretations, relative to ‘things’ like
particles. However, a proper understanding of the formal properties underlying these more
rarefied emergent phenomena—as generalized evolution [308,309]—may be shared among
all similarly configured physical systems. Therefore, our intentions really are sources of
cause, power, and force in every meaningful sense of these words. Our intentions are real
patterns [300], and so are we.

5. Neurophenomenology of Agency

5.1. Implications for Theories of Consciousness: Somatically-Grounded World Models, Experiential
Richness, and Grand Illusions

“For my part, when I enter most intimately into what I call myself, I always stumble on
some particular perception or other, of heat or cold, light or shade, love or hatred, pain
or pleasure. I never can catch myself at any time without a perception, and never can
observe any thing but the perception. When my perceptions are remov’d for any time, as
by sound sleep; so long am I insensible of myself, and may truly be said not to exist. And
were all my perceptions remov’d by death, and cou’d I neither think, nor feel, nor see, nor
love, nor hate after the dissolution of my body, I shou’d be entirely annihilated, nor do
I conceive what is farther requisite to make me a perfect non-entity... But setting aside
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some metaphysicians of this kind, I may venture to affirm of the rest of mankind, that
they are nothing but a bundle or collection of different perceptions, which succeed each
other with an inconceivable rapidity, and are in a perpetual flux and movement.”

—David Hume [316]

As described in previous work [73,74], consciousness can be understood as the capac-
ity of minds to support global workspaces [317], defined by dynamic cores of competing
and cooperating patterns [171,219], which depend on—but are not identical to—a system’s
integrated information [173,220]. However, the deeply embodied perspective described
here suggests that for systems to be conscious, integrated information must apply to
representations with experience-grounded meanings. These representations need not be
explicitly defined symbols, but their semiotic content could be entailed in a cybernetic
manner via the coordination of action-perception cycles. A neuronal complex could have
an arbitrarily high amount of integrated information, but it may not be conscious un-
less it also refers to patterns external to the system. Capacity for consciousness may be
proportional to (but not necessarily defined by) integrated information from dynamics
with representational content. One of the primary adaptive advantages of consciousness
may be enabling representations—computationally realized a balance of integrated and
differentiated dynamics—that evolve on timescales roughly proportional to events in the
world that systems attempt to control, so enabling cybernetically-grounded meaning mak-
ing. [For perceiving dynamics on spatiotemporal scales where more direct coupling is
infeasible, we may require (embodied) metaphor, such as may be used in the spatialization
of time [318,319].] By this view, informational objects in “qualia-space” [320] would have
phenomenal content by virtue of being isomorphic with probability distributions of gener-
ative models over bodily sensoriums for systems that evolve-develop through interactions
with environments in which they are embedded. Thus, a radically embodied perspective
may be essential for explaining the circumstances in which integrated information does or
does not imply conscious experience.

The models presented here are also consistent with Higher-Order-Thought [321]
theories emphasizing the importance of the frontal lobes in conscious awareness and
intentionality, whose functional connectivity with parietal (and temporal) regions may
be crucial for stabilizing representational content [6,11]. Anterior portions of prefrontal
cortex may be particularly pivotal/central in establishing small-world connectivity for the
entire brain [170], so affording large-scale (flexible) availability of information. While this
area may be particularly well-connected across primate species [322], this connectomic hub
may have been uniquely expanded in humans relative to non-human primates [179,323].
However, a radically embodied perspective suggests that prefrontal hubs may not merely
establish global connectivity. Rather, these systems may specifically function as upper
levels of hierarchies shaping dynamics via simulated actions and partially-expressed
motor predictions (Figure 6), so providing a basis for intentional control. In this way, the
frontal lobes as subserving “executive functions” may be something more than a ‘mere’
metaphor, but may also be an apt description of a quasi-homuncular hierarchical control
architecture centered on body-centric agency. We may even want to go as far as recasting
the notion of “access consciousness” [168] to depend on the kinds of fictitious mental
acts described above for realizing meta-cognition and conceptual thought, understood as
abstract motor skills, potentially involving resonant phenomenal binding via embodied
self-models (ESMs).

As described in previous work [73,74], not only may there be something of a Cartesian
theater, but percepts may be re(-)presented on/in this virtual reality screen
(Figures 2 and 4–6). Further, as described above, quasi-homuncular ESMs (as multimodal
action-oriented body maps) would introspect the contents of these spaces with partially-
expressed motor predictions, with simulated foveations—and other fictitious actions
(Table 2)—providing sources of both (a) attentional “spotlights,” and (b) coherent vec-
tors for intention and action. However, what is the extent of this unified field of experience?
Do we actually fill in a full and rich simulated environment, or is this subjective experience
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some kind of “grand illusion”, where in fact we only fill in local aspects of the environment
in an ad hoc fashion [8,324–326]? Rather than filling in a complete sensorium all at once,
might we instead generate percepts reflecting the sensory acuity accompanying our actual
sensorimotor engagements, which may be surprisingly limited (e.g., proportional to the
narrow field of view afforded by the focal region of the retina)?

Phenomena such as invisible ocular blind spots suggest some perceptual filling occurs,
and which is something the brain’s generative models may be well suited to provide [73,74].
However, the extent of this pattern completion remains unclear, and may be surprisingly
sparse. For example, to what extent does the “visuospatial sketchpad” model of working
memory actually involve a kind of internal sketching, potentially even involving the
internalization of actual experiences with drawing [327]?

Indirect evidence for low-dimensional inner-sketching may be found in work in which
similarities were observed between models of internal visual percepts and behavioral line
drawings [328]. The authors note that such images can be traced back to Paleolithic hunters
40,000 years ago (with possibly earlier origins), suggesting that line drawings not only
represent effective means of conveying meanings, but may also reveal functional principles
of the visual system. While this particular study focused on predicting responses in the
ventral stream, patterns of neural activity in the posterior medial cortex may be particularly
important in having strong correspondences with visual consciousness (Figure 6). That is,
feature hierarchies of the ventral stream may help to coordinate evolving spatiotemporal
manifolds in posterior medial cortices as consciously accessible 2D sketchpads. Some
support for this model is provided by a study in which attention and working memory
indicated 2D mappings of the visual field [329]. Connections between this midline structure
and upper levels of other sensory hierarchies further allow for the (partial) filling-in of
multimodal somatosensory states, so providing bases for not just a Cartesian theater,
but fully immersive virtual reality [49]. Even more, connections between these various
modalities of experience with the hippocampal-entorhinal system could allow this somatic
pattern completion to evolve according to trajectories through physical and abstract spaces,
so providing a basis for episodic memory, novel imaginings, and planning (Figures 3 and 4).
With respect to the filling-in process, the specific contents of consciousness may depend on
the specific degree to which representations from various sensory hierarchies are capable
of coupling with large-scale meta-stable synchronous complexes on their temporal and
spatial scales of formation [73,74].

While conscious experience may be “flat” [330] in terms of being of surprisingly low
dimensionality, the functioning of consciousness within overall mental systems may also be
deep. The multiply-determined contextual significances of reduced-dimensional process-
ing is potentially reflected in nearly all languages converging on a common information
transmission rate of ~39 bits/second [331]. Theoretically, the limited dimensionality of con-
scious processing may be a primary reason for this communicative bottleneck. However,
the generative potential of consciousness and expressive power of language (with its “infi-
nite use of finite means”) may nonetheless afford supra-astronomical semiotic capacities.
Even if integrative dynamic cores and global workspaces have extremely limited capacities,
they may nonetheless possess depth and powerful combinatorics via spanning levels both
within and across hierarchically-organized systems, so constituting multiscale functional
heterarchies. The temporally-extended nature of conscious processes [332,333] affords
numerous and varied opportunities for shaping by complex unconscious dynamics, many
of which can be given coherent organization by diverse—but capable of being integrated,
to varying degrees—self- and world-modeling on multiple levels, whose richness is greatly
expanded by narrative organization in the ways described above [184].

While some of the richness of consciousness may represent a “grand illusion”, in
many ways this supposedly illusory phenomenon may function as if a rich and full field
were always present by filling in details on an as-needed basis. Given this availability
of relevant information, in addition to having many of the “varieties of free will worth
wanting” [299], we have many of the varieties of conscious experience worth wanting as
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well. Consciousness would only appear to be “flat” if we fail to consider its nature(s) as
a temporally-extended unfolding of generative processes [73,74,334]. Thus, the illusory
nature of rich consciousness may itself be something of an illusion due to trying to model
inherently time-dependent processes from an atemporal perspective, which would be
prima facie inadequate for evaluating relevant phenomena. [Note: Deflations of deflation-
ary accounts of selfhood may be arrived at in a similar fashion, including with respect to
Buddhistic/Humean reductions of selfhood to non-self elements.]

5.2. Conscious and Unconscious Cores and Workspaces; Physical Substrates of Agency

Although a detailed handling is beyond the scope of the present discussion, a variety
of methods may be useful for estimating subnetworks (e.g., giant components) contribut-
ing to consciousness [335–337], and perhaps agency. One intriguing study used k-core
decomposition to track transitions from conscious to unconscious subliminal perceptual
states [338]. Surprisingly, the most connected kernel and inner core of the conscious state
remained functionally active when the brain transitioned to the subliminal-state. Not
only may activity within the inner-most connectivity core of the brain be unconscious,
but conscious access was lost by inactivating peripheral shells, potentially suggesting the
importance of sensorimotor information for enabling coherent experience. These findings
suggest that accessible consciousness might not be generated in the inner-most core, but
at intermediate levels of hierarchical organization and abstraction [207,262], potentially
involving the kinds of fictitious action-perception cycles described above with respect to
meta-cognition and self-consciousness.

These findings could also potentially illuminate otherwise mysterious phenomena,
including things like intuitive cognition [339], “tip-of-the tongue” effects, and even the
roles of spontaneity in agency [314,340]. Some aspects of intuition and semi-conscious
percepts may correspond to attractor dynamics accumulating in an (unconscious) inner-
most core and outer shells and bypassing intermediate levels. Alternatively, in line with
the “isolated qualia” model described above, information may be capable of driving action
selection and conscious imaginings from networks supporting (consciously experienceable)
embodied simulations—potentially the 1st shell out from the inner core—but without
sufficient robustness to be stably introspectable.

While agency might typically depend on predictability for the sake of controllability,
there may be ways in which overall control is enhanced by limitations of self-prediction:

• Avoiding excessive exploitation (at the expense of exploration) in action selection
(broadly construed to include mental acts with respect to attention and working
memory).

• A process for generating novel possibilities as a source of counterfactuals for causal
reasoning and planning.

• Game theoretic considerations such as undermining the ability of rival agents to plan
agonistic strategies, potentially even including “adversarial attacks” from the agent
itself.

In these ways, somewhat paradoxically, agency may sometimes be enhanced by
limiting the scope of intentional control.

Relatedly, intriguing work in artificial intelligence models the frontal pole as a recur-
rent neural network whose capacity for chaotic bifurcation enables flexible action selection
and predictive learning [341,342]. Recurrent computational reservoirs have high potential
for informational density due to the combinatorics of re-entrant connections, but more
overtly hierarchical architectures have the advantages of discrete compositionality (so
affording precise control) and robustness-via-modularity (so affording separable opti-
mization). Cortical systems may leverage both of these capacities by placing a recurrent
bifurcating nexus on top of a hierarchy of action-perception cycles with more linear dynam-
ics [43] (Figure 6). The capacity of recurrent systems to exert recursive causal influences
on themselves makes them chaotic systems with sensitivity to initial conditions. In these
ways, upper regions of cortical control hierarchies may be occupied by processes that are
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inherently inaccessible to conscious modeling. Notably, these deepest portions of cortex are
also newest with respect to both evolution and development [179], and have many of the
properties we normally associate with personhood [143], including individuality [343,344],
spontaneity, and autonomy [345].

If these models regarding the neural substrates of consciousness are accurate, then
they may also help contextualize findings where agency appears to be missing. The Libet ex-
periment [346] provides a particularly notable example of a supposed demonstration of non-
agency, as the subjective experience of deciding to move was observed to emerge after pre-
dictive neural activity. Potential limitations of the paradigm notwithstanding [299,347,348],
the question arises as to how conscious mental states could be causal, given that we expect
causes to precede effects. Theoretically, reports regarding decisions to act occurring after
predictive neural signals could be partially accounted for by effective connectivity between
preparatory motor activity and largely unconscious inner cores.

If actions may be ‘decided’ by processes outside of conscious awareness, then is
our sense of free will another grand illusion? Perhaps in some cases, but probably often
not with respect to the “varieties of free will worth wanting” [299], as much meaningful
executive control does not involve the generation of motor deployment events based
on capricious whims. Such spontaneous acts might primarily be governed by stochastic
activity within hierarchically lower levels, closer to primary modalities that have less access
to richly connected networks where large-scale (consciously accessible and controllable)
coordinated activity would tend to center [203]. Most actions do not occur as one-off
events, but unfold within contexts involving conscious imagining and planning (Table 1,
Figure 2), which can substantially drive overall neural dynamics. Similarly to the previously
discussed case of the apparent flatness of consciousness and the supposed insubstantiality
of selfhood, we may find ourselves denying the existence of “real patterns” [300] based on
investigations that were ill-equipped to capture the relevant phenomena. In some senses
we might identify agency (and personhood) with overall systems with both conscious and
unconscious components. Such systems (and persons) may not be strongly shaped by
consciousness in any given moment, yet could be significantly consciously shaped over
time. Agency may be like the relationship between conductor and an orchestra, where
conductors are neither omnipotent nor mere epiphenomena. Or to use the metaphor of
the elephant and its rider: elephants with and without riders are very different “beast
machines” [349].

5.3. Readiness Potentials and the Willingness to Act

Alternative explanations for Libet phenomena may be found in the Free Energy
Principle and Active Inference (FEP-AI) framework [55], wherein brains are understood
as cybernetic control systems that predictively model the world [59–61]. As previously
described, within FEP-AI, support is accumulating for an associated process theory of
hierarchical predictive processing (HPP) as a unified principle governing neural function-
ing [20,148,350]. In HPP, all brain areas generate top-down predictions over bottom-up
inputs, where information is only passed upwards (as prediction error) if it fails to be pre-
dictively inhibited. Support for this common cortical algorithm is evidenced by theoretical
considerations (e.g., efficiency), and is consistent with common architectural principles
reflected throughout cortex [18]. HPP suggests both perception and action are inherently
interrelated and fundamentally similar: perception minimizes prediction error via updat-
ing internal models, and action realizes this objective by updating world states to better
match predictions. Action selection is understood as the (complementary) inverse of per-
ception: perceptual hierarchies are updated via ascending prediction errors, and action
hierarchies are updated via descending predictions [351]. Particular actions are selected as
more complex/abstract predictions from higher areas cause cascades of more fine-grained
lower-level predictions, ultimately driving motion via spinal motor pools and associated
reflex arcs with skeletal muscles [72].
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HPP (and FEP-AI more generally) may represent a “Rosetta stone” for neuroscience [71],
allowing new interpretations of previously ambiguous phenomena, potentially including
the nature of readiness potentials (RPs) associated with seemingly voluntary movement
decisions [352]. This multilevel modeling framework could prove invaluable for investi-
gating the functional significances of RPs and associated waveforms [353]. FEP-AI would
understand these slowly-building potentials as evidence accumulation with respect to
predictive models, accompanied by non-linear phase transitions in large-scale updating of
implicit (and sometimes explicit) Bayesian beliefs over proprioceptive poses [73,74,106,334].
Through HPP mechanisms, these discretely updated predictions would constitute kinds of
self-fulfilling prophecies when passed down cortical hierarchies with sufficient power to
drive overt enaction.

I suggest RPs—as motor predictions—are biophysically realized via accumulation
of recurrent neural activity in frontal-parietal action-oriented proprioceptive body maps
(Figures 6–8), coupling with cingulate-insula salience networks, with patterns of enaction
released when critical thresholds are surpassed in control hubs (e.g., pre-supplementary
motor area) [354]. This threshold-crossing could be understood as an “ignition event” as
described by global workspace theories [73,74,227,334], so constituting one (of multiple)
means by which consciousness enters causal streams to leading to action. These periods
of non-linear increases in activity may also correspond to periods where action-oriented
body maps possess the highest degrees of integrated information, whose estimation could
potentially correlate with measured strength of will [73]. Conscious intentions (as conjoined
beliefs-desires) would contribute to ramping activity via the kinds of affectively-driven
mental simulations described above [355,356] (Figure 5). This hypothesis of imaginative
planning contributing to RPs is consistent with observed patterns of dopaminergic dis-
charges, and also decreasing variance (and larger magnitude waveforms) leading up to
volitional actions, indicative of value-based control processes [357,358].

Neurophenomenologically (Figures 7 and 8), the feeling of “urge” preceding ac-
tion corresponds to (non-linear) positive feedback interactions between frontal action
hierarchies [351], posterior body-space-affordance hierarchies [94], and insulo-cingular
(interoceptively-grounded) salience hierarchies [162] (Figure 6). These feelings are more
than mere epiphenomena, influencing attentional selection for affective states, thereby mod-
ulating effective connectivity between these control hierarchies [154,160] (Figure 5). The
stream of consciousness would further contribute to action selection via the counterfactual
processing (e.g., simulated movements) and imaginative planning enabled by the hip-
pocampal system [139,214,216,359] (Figure 4), including with respect to “Type 1” planned
or “Type 2” capricious RPs [360]. These systems also contribute to imagining/predicting
the consequences of more complex (and potentially meaningful) decisions [348], which
would involve greater hierarchical depth and multiple realizability via particular actions
from a “contrastive causation” perspective [361]. At these higher levels of abstraction, max-
imal explanatory power would be found in terms of more coarse-grained descriptions such
as personhood and self-consciousness [162,207,264,315], so providing further neurocompu-
tational grounding for agency. Finally, the “isolated qualia” model described above could
also be relevant for explaining gaps between estimated ‘decision’ times and measured RPs,
in that capricious actions will be more likely to be associated with quale-states that are
difficult to take up into coherently introspectable streams of experience, yet nonetheless
involve meaningful driving of dynamics by person-relevant values.
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(a) 

 
(b) 

Figure 7. (a) Experience deciding to stand in order to make tea (see Table 1 and Figures 2, 4 and 5).
The individual alternates between (1) perceiving sitting with an empty cup, and (2) imagining actions
related to achieving the desired goal of obtaining tea. As the individual imagines (or rehearses) possi-
ble actions, feelings of urge accumulate across multimodal body maps, which peak accompanying the
overt enaction of standing. (b) Experience deciding to move one’s hand in a Libet paradigm. The indi-
vidual alternates between (1) perceiving one’s hand and the clock and (2) imagining button-pressing.
As possible actions are imagined/rehearsed, feelings of “urge” accumulate across multimodal body
maps, which peak accompanying the overt action of button-pressing.
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(a) 

(b) 

Figure 8. Readiness potential reflecting the accumulation of urge from simulated actions. (a) Neural
processes accompanying decision to stand (see Figure 7a). (b) Neural processes accompanying
decision to press a button in a Libet-type paradigm (see Figure 7b). Imaginative simulations (alpha
oscillations, blue shading) are hippocampally orchestrated (Figure 4) via theta oscillations (yellow
shading) and cross-frequency phased coupled nested gamma. Potential actions are selected based
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on estimation of their relative expected value, with contrasting realized by coupled maps/graphs
of the hippocampal system and vmPFC, with estimation and selection particularly influenced by
the NAc and associated cortical systems. Lightly colored red hexagons indicate potential trajectories
through (generalized) space, and dark red hexagons indicate chosen directions (either in imagination
or reality). Imaginings cause increasing expectation (beta oscillations, red shading) for the value of po-
tential actions, with corresponding accumulation of recurrent activity in body maps resulting in overt
enaction once critical thresholds are surpassed. Abbreviations: Nac = nucleus accumbens; vmPFC
= ventromedial prefrontal cortex; dmPFC = dorsomedial prefrontal cortex; SMA = supplementary
motor area; Pre-SMA = presupplementary motor area; SEF = supplementary eye fields.

5.4. Qualia Explained?

Above we have considered prototypical qualitative aspects of experience, including
pleasure, pain, and desire. Each of these “qualia” can be extremely rich in terms of their par-
ticular characteristics, underlying mechanisms, and functionalities, and the ways these vary
across contexts. In what follows, I adopt a neurophenomenological approach [4,362–364] in
beginning to explore how principles and mechanisms from FEP-AI can be used to cast light
on how these aspects of our existence can be so fundamental, yet remain so mysterious.

5.4.1. Emotions and Feelings

In attempting to analyze the nature of emotional experience, perhaps some of the continu-
ing mystery is due to a lack of agreement on terminology. Damasio et al. [63,156,285,365], ar-
gue emotions can be ascribed to the value-oriented behavior of all living organisms, includ-
ing single-celled organisms such as bacteria. However, Damasio reserves the word “feeling”
for the conscious re-representation of emotions. Feldman-Barrett and LeDoux [179,284], in
contrast, object to this more inclusive conceptualization of emotion, arguing instead that
emotional language should be reserved for consciously-experienced affective states that
are expressed and constructed through interpretive processes. LeDoux has even gone as
far as to claim that emotions only arose via cultural evolution after the advent of language.

There are clear merits to both points of view. While less inclusive conceptualizations
may avoid some confusions, they also miss opportunities to identify ways in which value
and integrated informational dynamics are essential to all life [366,367]. I propose adopting
an intermediate position, viewing emotions and feelings as respective action and perception
components of action-perception cycles over large-scale changes in organismic modes. Rel-
evant macroscale dynamics include diverse phenomena ranging from autonomic functions,
to musculoskeletal body modifications [368], to nervous system alterations via neuromod-
ulatory systems and effective connectivity from neural areas with high effective centrality
(e.g., the amygdala complex). In addition to this cybernetic formulation of emotions as a
kind of action, and feelings as a kind of perception, we may add an additional distinction
as to the extent to which we are conscious of expressed emotions and sensed feelings.
While potentially counter-intuitive, from this more inclusive point of view we may have
both conscious and unconscious emotions, as well as conscious and unconscious feelings.
This use of terminology would support many of the rationales for the positions described
above, as well as many folk intuitions as expressed in normal linguistic use. If useful for
communicative clarity and ethical considerations, additional distinctions can be made as
to whether consciousness involves basic phenomenal awareness or is of a more complex
access or autonoetic variety.

LeDoux [179,369] has argued that animals without complex language cannot be
said to possess emotions, but merely have functional activity within “survival circuits”.
These claims are justified by language providing necessary syntactic structures for the
construction of complex extended self-models; or as LeDoux states: “No self, no fear.” This
emphasis on the foundational importance of selfhood for conscious experience is largely
compatible with the view presented here, and elsewhere [91]. Without extended self-
processes, emotions and feelings will be qualitatively different than the kinds of emotions
and feelings constructed by humans governed by (and governing) a symbolic order of
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being. However, within this cybernetic formulation, functional activity of “survival circuits”
could contribute to the generation of emotions as large-scale organismic modes, yet still
not be consciously expressed or felt.

Hence, all evolved cybernetic systems could be said to have emotions and feelings, but
only systems capable of coherent integrative world modeling would consciously experience
those affects [73,74]. These conscious systems likely include all mammals and birds, and
possibly reptiles or fish if pallial tissue [370,371] is sufficiently elaborated to model system-
world states with spatial, temporal, and causal coherence. Thus, we may take a middle way
between the perspectives described above in viewing emotions and feelings as ubiquitous
features of life, while simultaneously recognizing qualitative differences that emerge when
these phenomena are associated with various kinds of consciousness. Both more and less
inclusive conceptual stances are reasonable, but with respect to qualitatively different kinds
of affective phenomena.

5.4.2. What Is Value? Reward Prediction Errors and Self-Annihilating Free
Energy Gradients

In FEP-AI, all living systems can be described as obeying a single objective of self-
model-evidence maximization and prediction error minimization [372]. In this framework,
organisms begin development by implicitly predicting the rectification of homeostatic (and
later reproductive) prediction errors, so forming a foundation out of which all subsequent
models grow. With experience, these modeling efforts come to apply to the modeling
processes themselves and the experiences they generate, including models of what is
likely to cause changes in prediction error. In this way, we come to predict ourselves
minimizing prediction errors and experiencing associated mental states, including with
respect to emotions and feelings. Through this associative chaining of memories from
early organismic experiences, biological agents begin life being reinforced/punished as
they continually attempt to engage in predictive homeostatic rectification (i.e., allostasis).
However, organisms progressively learn sensorimotor contingencies for making these
reward-related stimuli more/less likely to be available. Mechanistically, representations
detecting these contingencies are themselves connected to midbrain value signals—e.g.,
orbitofrontal cortex � accumbens shell � ventral tegmental area � dopamine [110]—so
allowing cortical models to drive reinforcement/punishment and shape adaptive policies
for enaction.

This account has parallels with work on meta-reinforcement learning [342], where
systems are initially given primary reward functions from which more capable secondary
reward functions may be acquired from experience. From an FEP-AI perspective, these
secondary predictions would constitute higher-order beliefs about likely patterns of pre-
diction error minimization. According to candidate trace models [373], dopamine is likely
to strengthen whatever predictions were most likely to contribute to its release by being
most active leading up to phasic increases, so providing a partial solution to the credit
assignment problem. If phasic dopamine increases are proportional to the rate of change
of prediction error rectification [76,374–377], then the more quickly something minimizes
prediction error, the more it will come to be predicted.

In these ways, organisms come to predict states of initial increases in prediction
error, so that these free energy gradients (experienced as desire, or “wanting”) may be
destroyed through enaction (experienced as pleasure, or “liking”) [378,379]. The creation
and destruction of these gradients of anticipatory and consummatory reward will then
stimulate dopamine release proportional to magnitudes of free energy minimization, as well
as temporal intervals over which prediction errors are reduced [380]. These experiences,
in turn, update beliefs and desires, whose counterfactual nature provide further sources
of free energy to motivate future behavior. These mechanisms will shape organisms to
predict themselves not only in homeostatic and reproductive states, but also diverging from
these desirable modes of being, to the degree that such discrepancies between goals and
actualities are anticipated to be manageable. Thus, through experience, we come to predict
ourselves encountering initially negatively valanced states, which may become positively
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valanced when we annihilate these free energy gradients through either imagined or overt
enaction, so establishing new goals/gradients to pursue/destroy in the future.

5.4.3. Curiosity and Play/Joy

This prediction of prediction error minimization creates an interesting setup in which
organisms end up being surprised when they do not find themselves riding down steep
enough gradients of prediction error [76,374]. This is exactly what evolution would
‘want’ [17,381], since there is no limit to how evolutionarily fit an organism can be, and so
organisms ought to always seek opportunities for realizing value in new ways. Driving
of dopamine release by reward prediction errors may provide one means of realizing this
evolutionary imperative for expansion in seeking opportunities for value realization. If
the mechanisms underlying reinforcement and behavioral disinhibition are only activated
for unexpectedly good outcomes, then organisms will always find themselves seeking to
explore the limits of what they can attain. This exploratory impulse will be even stronger
if accompanied by opportunities for refining models and satisfying curiosity-based de-
sires, so realizing the intrinsic value of learning in addition to the extrinsic value of utility
maximization [382–386].

Boredom, in contrast, represents a punishing process that functions in an inverse
fashion to curiosity (and play). One mechanism for implementing this negative incentive
could be found in predictive coding in terms of habituation. If organisms come to near-
perfectly predict rewards—or consider associated stimuli to be not worth attending to—
then this familiarity will result in prediction errors only being generated at lower levels
of cortical hierarchies, which lack access to richly connected networks enabling conscious
awareness [73]. Prediction errors failing to reach deeper levels will result in reduced
recognition of features associated with those potential rewards. Both with respect to
implicit predictions and explicit expectations, previously rewarding events that do not fully
register will be experienced as disappointing in contrast to expected value [387,388], so
resulting in stimulus-devaluation and reduced probabilities for selecting associated policies.
Almost paradoxically, by becoming less (pleasantly) surprised by (or more familiar with)
rewarding stimuli, organisms end up becoming more (unpleasantly) surprised relative to
anticipated rewards, since predicted rewards never manifest in experience. Some evidence
for this model can be found in over-rehearsed pleasurable acts being overly automatic,
habitual, and progressively losing their hedonic tone. Between these twin masters of
curiosity and boredom, agents are shaped to always expand their repertoire of policies for
value realization, with growth continuing to the extent that these efforts are expected to
result in increasingly desirable outcomes [386].

Under FEP-AI, we ought to expect living organisms—by virtue of being successful
at existing—to be equipped with (or constituted by) system-defining prior expectations
(or preferences) in which they are optimizing models of themselves doing the kinds of
things which would be required for survival, including foraging for information. These
modeling imperatives require organisms to enact system-world configurations dependent
on policies with consequences in the future, and to also depend on policies not yet de-
ployed [389]. This means successfully persisting adaptive systems must not only minimize
free energy, but also expected free energy in (definitionally counterfactual) futures. A
successful active inferential agent will expect itself to be maximizing information gain (i.e.,
precision-weighted prediction errors), while also avoiding the accumulation of cybernetic
entropy [59–61,390,391] with respect to existential threats to the system. Within FEP-AI,
this dilemma of balancing stability/plasticity tradeoffs is (boundedly optimally) resolved
by gradient descent over a singular objective functional of expected free energy.

The maximal rate of reduction in overall expected free energy will be found in sit-
uations where agents are able to simultaneously balance imperatives for maximizing
the intrinsic value of information/exploration with the extrinsic value of realizing pre-
ferred world states. This situation may be referred to as play, or “PLAY” [386,392,393]
—potentially subjectively accompanied by “flow” states [394]—which, in maximizing re-
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ward, represents attracting states for organisms that places them precisely where they
ought to be to maximize learning and evolutionary fitness [395]. The balanced conditions
of play attract agents to a zone of proximal development [396]—or “edge of the adjacent
possible” [397,398], and also the “edge of chaos” [239]—where learning rate is optimal,
creating neither overly nor underly challenging conditions for promoting increasingly
skillful engagement with the world [399,400].

These considerations help explain why we would not expect agents to minimize
surprise by sequestering themselves in low-complexity environments. This is an a priori
unlikely outcome, since such conditions would increase prediction errors from homeostatic
regulatory nuclei and systems with which they (allostatically) couple. Further, such agents
would both experience boredom and deprivation with respect to curiosity and play. Al-
though we should also keep in mind that this supposed “Dark Room problem” [401] may
not be completely solved by active inferential systems, as people often do seek out reduced
complexity environments, whether due to the kinds of pathological beliefs associated
with anxiety and depression [363,402], or by getting stuck at local maxima of excessive
exploitation relative to exploration in model optimization.

5.4.4. Synesthetic Affects

In the account described above, all affect is ultimately associatively linked to the
rectification of either homeostatic or reproductive error signals, for which interoceptive
consequences may be some of the most reliable sources of information [75]. However, these
signals from the body’s internal milieu have poor spatial localizability and controllability. If
spatiotemporal and causal contextualization are necessary for enabling coherent experience,
then these constraints on sense-making could result in interoceptive information being
attributed to non-interoceptive sources. The best available inference regarding these
visceral (and vital) signals may be that they are both caused by and also inextricably part
of the conditions with which they are associated. Theoretically, this could cause much
of interoception to have a quasi-synesthetic quality, wherein poorly localizable signals
become intimately entangled with (or ‘infused’ into) more easily modeled proprioceptive
and exteroceptive phenomena (Figure 5). For example, we may both feel our body from
within, while also projecting these feelings onto and into associated objects.

While it may seem odd to describe feelings as a kind of synesthesia, all perception may
have at least some degree of synesthetic phenomenology by virtue of involving cross-modal
blending [403–407]. Analogous (and likely overlapping) phenomena would include “oral
referral” in which primarily olfactory percepts are mapped onto taste sensations [408].
Theoretically, synesthetic affects may provide a partial account of referred pain phenomena,
in which damage to body parts are mistakenly attributed to another location [152,409]. To
go out on a further speculative limb, the phenomenology of color perception may often be
synesthetic in this way, with prototypical qualia such as the “redness of red” having its
particular ‘textures’ due to interoceptive cross-mappings.

This synesthetic-affects hypothesis may have further support from descriptions of plea-
sure as a kind of “gloss” applied to objects of hedonic experience [378]. If accurate, this
model could also explain part of why emotional experiences often have an ineffable quality
when reported. That is, affects may heavily depend on information that is difficult to
explicitly model, and for which modeling efforts usually involve a kind of anomalous
inference that are personal feelings are inextricably—and essentially [410]—part of the
conditions that evoke them.

Synesthetic affects may not only explain some of the ways that our feelings ‘color’
the world—for both good and ill—but also the phenomenology of will with respect to
both motivation and effort (Figures 5–8). In this view, the feeling of willing corresponds
to a hybrid percept in which interoceptive states are mapped onto the effector systems by
which intentions are realized. Thus, in addition to helping to explain otherwise mysterious
aspects of experience, these synesthesia-like processes would also have extensive functional
consequences. Perhaps most fundamentally, this kind of synesthetic phenomenology may
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help to establish senses of body ownership and minimal (embodied) selfhood upon which
most aspects of mind ultimately depend. One line of evidence provided in support of
these models is findings using augmented reality, in which superimposing interoceptive
cardiac signals enhanced susceptibility to “rubber hand illusions” [411]. Intriguingly, such
anomalous inferences are also moderated by tendencies for experiencing mirror-touch
synesthesia and kinesthetic mirror illusions [197,412].

Predictive coding accounts of emotional active inference have been proposed in which
prediction errors from interoceptive states can be minimized through either (a) changing
autonomic conditions, or (b) changing related world states via mobilization of propriocep-
tive effector systems [75,413]. If synesthetic phenomenology increases the extent to which
interoceptive states are tightly coupled with actions and perceived outcomes, then this
conjunction would help establish affordance-informed salience mappings over perceptual
contents, so facilitating action selection and planning [414]. As described above with
respect to free energy flows across multimodal body maps and the generation of readiness
potentials (Figures 5–8), these tight perceptual couplings could strengthen patterns of
effective connectivity between interoceptive and proprioceptive modalities. Such linkages
would be more than mere epiphenomena, but would enable greater control energy from
networks whose dynamics are ultimately grounded in evolutionary fitness and experiential
histories with organismic value.

The subjective sense of presence [243] for affective phenomena may substantially
depend on relatively tight associations between emotions and outcomes, so contributing to
synesthetic mappings between feelings and inferred causes. If these links are disconnected
—e.g., via insensitivity to interoceptive sensations or inabilities to imagine the realization
of valued goals—synesthetic infusions of interoceptive value into other percepts would
be compromised. In terms of consequences for normative functioning, severing synes-
thetic bridges to interoception could be involved in clinical conditions like anhedonia,
alexithymia, the negative symptoms of schizophrenia, and even Cotard’s syndrome and
Capgras illusions [154].

5.4.5. The Computational Neurophenomenology of Desires/Pains as Free Energy
Gradients That Become Pleasure through Self-Annihilation

Dopaminergic neuromodulation is commonly understood as indicating desire-related
states [415,416], and also plays important roles in FEP-AI [417–419]. Dopamine modulates
activity for representations of value-relevant stimuli, including actions associated with real-
izing valued goals. While dopaminergic functionality is complex [420], elevated signaling
levels may be interpreted as indicating confidence that current policies/capabilities are
likely to realize desired outcomes with respect to sensed or imagined stimuli. Relevant
stimulus-features include both external reward cues as well as multimodal representations
of activities involved in seeking valued goals, including avoiding undesirable outcomes.

In the predictive processing accounts of goal-oriented behavior described above, when
an agent predicts itself obtaining value, but has not yet realized these desired outcomes,
generated prediction errors correspond to discrepancies between representations for goal
attainment, relative to estimated present or imagined likely states. These discrepancies
are suggested to derive from iterative contrasting of desired and estimated likely states,
occurring at theta frequencies orchestrated by hippocampal-prefrontal coupling [139,142]
(Figure 4). As these comparison operations proceed, discrepant features generate increased
activity as prediction errors, so drawing attention to and seeding imaginings with the most
important features that need to be handled either by updating internal models or changing
the world [105].

Much of the phenomenology of desire may represent the prediction of value-attainment,
activating associated somatic and interoceptive concomitants of consummation, which are
subjectively (and synesthetically) felt in body maps in places most associated with value
realization (Figure 5). If these sensations are accompanied by temporary net decreases in
predicting homeostatic or reproductive value-realization [76,374]—potentially mediated
by opioid signaling [379,421]—overall unpleasant interoceptive inference may accompany
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these perceptions. In this way, the feeling of desire would be experienced as a kind of pain,
with its particular characteristics depending on unique learning histories. However, painful
desire can be transformed into pleasurable anticipation if we find ourselves predicting
overall increases in value, so creating pleasurable contrasts with the discomfort of wanting.
If the visceral concomitants of affective experiences become entangled with exteroceptive
and proprioceptive percepts in the quasi-synesthetic fashion described above, then pleasure
and pain (including desire) would be generated as interoceptive modes becoming infused
into other modalities in particular ways based on historical associations.

To use a musical metaphor, in experiences of pain and unfulfilled desire, the overall
melody is played in a more minor, or entropic [390,391] key/timbre. Alternatively, in
experiences of pleasure and fulfilled desire—potentially including virtual fulfillment (i.e.,
pleasurable anticipation)—affective orchestras play melodies with greater consonance. One
could view such soundtracks to the (fully immersive virtual reality) movies of experience
as separate streams of information that help contextualize what is being seen on ‘screens’
over which we see stories unfold (Figure 6). However, it may be closer to experience to say
that this metaphorical music enters into what we see and feel, imbuing (or synesthetically
coloring) it with meanings. Indeed, we may be able to find most of the principles of
affective phenomena to be well-reflected in our experiences of music [16,385,422], where
we play with building and releasing tension, enjoying the rise and fall of more and less
consonant (or less and more dissonant) melodies. In musical pleasure, we explore harmony
and the contrast of disharmony, eventually expecting to return home to the wholeness of
the tonic, but with abilities of our “experiencing selves” [423–425] to find satisfaction in the
moment not necessarily being the reasons that our “remembering selves” find ourselves
attracted to particular songs.

The affective melodies played by neural orchestras will be dominated by interoceptive
modalities, the most ancient—both developmentally and evolutionarily speaking—and
reliable indicators of homeostatic and reproductive potential [63,130,285,426,427]. Do we
have relaxed and dynamic cardiac rhythms? Is our breathing easy or forced? Do we feel
warm—but not too hot—or cold? Are our bowels irritated or copacetic? Do we feel full or
empty inside? Do we feel like our body is whole and strong, ours to command where we
will, if we wanted it? Or do we feel damaged and weak? This interoceptive information
speaks to foundations of life and the cores of value out of which persons may grow.

5.4.6. Desiring to Desire; Transforming Pain into Pleasure, and Back Again

How can we reconcile the experience of desire as a species of pain in light of the fact
that we often desire to desire? While desiring may sometimes be desirable, it is not a
pleasant thing to be in a state of unsatisfied hunger or thirst without believing this situation
to be manageable. To be hungry or thirsty without cessation is to predict moving away
from homeostasis and survival. Unless an organism can be confident that it will eventually
rectify this situation, failing to satisfy such desires would indicate an existential threat to
the system. Thus, we would expect desire unsatisfied to be experienced as a kind of pain.
However, the pain of desire can then be transformed into pleasure—and back again (and
so on)—by consummation, or the vivid imagination of attainment.

Can an agent ever come out ahead with this back and forth between pleasure and pain,
either with respect its experiencing or remembering selves [424]? How can motivation be
maintained if all pleasures will eventually be transformed back into kinds of pain through
their absence? In addition to low-level mechanisms such as opioid signaling resulting in
concomitant dopamine release [421], additional asymmetries between pleasurable and
painful experiences may be found in predictive coding mechanisms. That is, more change-
able patterns will be more likely to violate expectations—by virtue of being difficult to
precisely track—and so experiencing/remembering will likely be dominated by transi-
tions between pleasure and pain, especially if accompanied by precipitous or punctuated
alterations [76,248,374,380,428]. If seeking without finding results in relatively gradual
accumulation of desire, and if consummation tends to rectify situations more rapidly, then
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experience and memory for successfully enacted goals will have an overall pleasurable
(and reinforcing) quality. Additionally, by virtue of being substantially generated by an
agent’s own (potentially intentional) actions, the greater predictability of consummatory
acts might allow attentional resources to be marshalled in ways that allow for more ex-
tended conscious processing of pleasurable experiences. Finally, some symmetry breaking
with respect to pain and pleasure may come from the motoric nature of attention described
above, in that the experience of attending to pleasurable experiences will be more likely to
be reinforcing both in the (extended) moment as well as across time. [Note: The condition-
ing of top-down attention also suggests that some quasi-psychodynamic phenomena are
to be expected as almost inevitable consequences of the laws of learning.] However, this
pleasure is not something that natural selection ‘wanted’ us to have and hold onto, but to
be continually “SEEKING” [392], thereby maximizing fitness.

5.4.7. Why Conscious Feelings?

Consciously-experienced feelings may provide unified attractors for coordinating
global organismic states [130,285]. While emotional shaping may occur without conscious-
ness, these affects may be more likely to entrain the overall system when integrated into
coherent fields of experience. Even if these feelings take the form of “isolated qualia”
without conscious access (as described above), these self-stabilizing cores may still provide
sources of greatly elevated control energy. However, this entraining power would be even
greater when made consciously accessible in ways that afford planning and continuous
adjustments of actions based on organismic value. This mapping of hedonic states onto
consciously introspectable models of enaction also provides a partial means of handling
the credit assignment problem, via conjoining value and actions in both experience and
memory. If affects took place “in the dark” without feeling like anything, they would be
unable to strongly influence events, nor be coherently integrated into explicit modeling and
planning, including plans involving pursuing those feelings as ends in and of themselves,
such as in the domains of play and art.

5.5. Facing up to the Meta-Problem of Consciousness

The hard problem of consciousness asks, how can it be that there is “something that
it is like” to be a physical system [429,430]? The “meta-problem” of consciousness refers
to the (potentially more tractable) challenge of addressing why opinions and intuitions
vary greatly with respect to what could meaningfully answer this question [431]. As
suggested elsewhere [73], one potential solution to the meta-problem may derive from
the unavailability of bridging principles, which would cause prospects for explaining
consciousness to seem either impossible (perhaps even in principle), or merely (extremely)
difficult. An additional solution to the meta-problem may be found in the nature of
explanations for various qualia: while perhaps intuitive after consideration, at first glance
some of the models proposed above seem to directly contradict experience, such as desire
constituting a species of pain, and vice versa [152]. Other explanations of aspects of
experience may not necessarily contradict intuitions, yet may nonetheless seem irreducibly
strange and so prima facie implausible, such as the model of synesthetic affects described
above. However, if it is indeed the case that some of the most fundamental and familiar
aspects of experience are difficult to recognize upon close inspection, then this is itself
something in need of explanation.

Much of this seeming paradox of the unrecognizability of the most fundamental and
familiar could be resolved if such aspects of experience are likely to become “phenomenally
transparent” [49,432], and so resistant to introspection. Neurocomputationally, the contents
of perception in any given moment are likely entailed by synchronous beta complexes with
particular zones of integration [73,74], but with these local inferences requiring further
integration into larger (alpha- and theta-synchronized) complexes for phenomenal and
access consciousness. Such broader integration may not end up occurring if predictive
coding mechanisms are so successful that they are capable of “explaining away” aspects
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of experience before they can be consciously registered. That is, iterative Bayesian model
selection unfolds over multiple (potentially nested) levels of hierarchical depth, and so if
explaining away observations is largely successful via smaller beta complexes closer to the
modalities, that information would never reach more richly connected cores/subnetworks
enabling coherent world modeling and experienceable perception. Alternatively, such
information could give rise to experience in the form of “isolated qualia,” yet fail to achieve
conscious accessibility due to the transient nature of these quale states. In these ways, that
which is most fundamental and familiar would almost inevitably become nearly invisible
to introspective access.

The meta-problem may be as conceptually rich as the Hard problem itself. Further
promising approaches may involve paradoxes from functional “Strange loops” and self-
reference [433], computational limits of recursion [434], and seeming paradoxes deriving
from mechanisms by which egocentric perspective is established [181]. Finally, some
solutions may be sociological in nature, potentially reflecting a legacy of “physics envy” in
the mind sciences [435]. Not only have we lacked bridging principles and understanding
of embodiment as the core of selfhood and experience, but scientific practice both implicitly
and explicitly denigrated subjectivity after the decline of introspectionism and rise of
behaviorism. Given this taboo on subjectivity—i.e., the very thing we would hope to
explain with respect to consciousness—why should we have been surprised if we lacked
satisfying understanding of the nature(s) of experience? Finally, some of the (Hard) problem
may derive from frames in cognitive science that rendered all Cartesian framings of
mental functioning taboo. That is, if quasi-Cartesian intuitions were actually semi-faithful
representations of the nature(s) of mind and brain, then why should we be surprised if
our scholarship—and its denigration of folk psychology [436]—failed to provide satisfying
accounts of the nature(s) of our conscious agency?

6. Conclusions

“The intentionality of all such talk of signals and commands reminds us that rationality
is being taken for granted, and in this way shows us where a theory is incomplete. It is
this feature that, to my mind, puts a premium on the yet unfinished task of devising a
rigorous definition of intentionality, for if we can lay claim to a purely formal criterion of
intentional discourse, we will have what amounts to a medium of exchange for assessing
theories of behavior. Intentionality abstracts from the inessential details of the various
forms intelligence-loans can take (e.g., signal-readers, volition-emitters, librarians in
the corridors of memory, egos and superegos) and serves as a reliable means of detecting
exactly where a theory is in the red relative to the task of explaining intelligence; wherever
a theory relies on a formulation bearing the logical marks of intentionality, there a little
man is concealed.”

—Daniel Dennett [1]

These explorations have attempted to repay as many “intelligence loans” as possible
by creating an embodied backing for intentionality, so providing a common currency for
understanding cognition. I have suggested that consciousness is generated from dynamic
predictive cores, centered on embodied self-models, functioning as cybernetic controllers
for agents embedded in environments within which they seek valued goals. To realize these
values, agents engage in imaginative planning in which they chain inferences from desired
outcomes back to present-estimated states, with enaction realized via multilevel action-
oriented body maps. For these quasi-homunculi, intentional control is driven by beliefs and
desires, understood as free energy gradients, which are annihilated when prediction errors
are minimized through skillful enaction, so establishing new goals to pursue in the future.
Through a variety of simulated actions, embodied self-models both influence and are
influenced by high-level representations from interoceptive and exteroceptive inferential
hierarchies, so providing bases for various forms of conscious access, metacognition, and
self-knowledge. This deeply embodied architecture provides enactive bases for most
mental operations discussed in cognitive science, including means by which conscious
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mental states can causally influence attention, working memory, imagination, and action.
In these ways and more, understanding the radically embodied foundations of conscious
minds may vindicate much of folk psychological and traditional conceptions of selves
containing both multiplicity and unity, and of will defined by both constraints and freedom.
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Abstract: What do bacteria, cells, organs, people, and social communities have in common? At first
sight, perhaps not much. They involve totally different agents and scale levels of observation. On
second thought, however, perhaps they share everything. A growing body of literature suggests
that living systems at different scale levels of observation follow the same architectural principles
and process information in similar ways. Moreover, such systems appear to respond in similar ways
to rising levels of stress, especially when stress levels approach near-lethal levels. To explain such
communalities, we argue that all organisms (including humans) can be modeled as hierarchical
Bayesian controls systems that are governed by the same biophysical principles. Such systems show
generic changes when taxed beyond their ability to correct for environmental disturbances. Without
exception, stressed organisms show rising levels of ‘disorder’ (randomness, unpredictability) in
internal message passing and overt behavior. We argue that such changes can be explained by a
collapse of allostatic (high-level integrative) control, which normally synchronizes activity of the
various components of a living system to produce order. The selective overload and cascading
failure of highly connected (hub) nodes flattens hierarchical control, producing maladaptive behavior.
Thus, we present a theory according to which organic concepts such as stress, a loss of control,
disorder, disease, and death can be operationalized in biophysical terms that apply to all scale levels
of organization. Given the presumed universality of this mechanism, ‘losing control’ appears to
involve the same process anywhere, whether involving bacteria succumbing to an antibiotic agent,
people suffering from physical or mental disorders, or social systems slipping into warfare. On a
practical note, measures of disorder may serve as early warning signs of system failure even when
catastrophic failure is still some distance away.

Keywords: permutation entropy; disorder; stress; allostatic (hub) overload; cascading failure; disease;
hierarchical control systems; active inference; free energy principle; critical slowing down

1. A Short History on Stress Tolerance Studies in Different Organisms

For a long time, it was believed that different organisms respond in different ways
to environmental challenges. This assumption is understandable, since stress responses
in bacteria, fish, birds, or mammals involve totally different genetic and neural pathways.
When ignoring the details of a particular stress response and observing the whole of system
dynamics at a slightly more abstract level, however, such differences disappear. No matter
what type of organism is studied, its response to unfavorable environmental conditions is
essentially the same: the various components that constitute the organism (such as genes,
proteins, metabolites, neurons, or brain regions) increasingly synchronize their responses
and assume a larger number of different values [1,2]. In other words, the strength of
correlations between system components increases, as so does the variance. Meanwhile,
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system components remain within the same state for longer periods of time, causing
the values of these components to correlate more strongly with their previous values
(‘autocorrelations’). This happens up to a discrete point, after which synchronization
decreases but variance remains high. Such ‘tipping points’ usually correspond to the
onset of disease or the death of the organism (Figure 1). This peculiar phenomenon has
been rediscovered many times since the 1980s. Examples include an impressive range of
organisms and types of stressors, from bacteria succumbing to antibiotic stressors and
plants fighting conditions of severe drought to insects, reptiles, birds, and mammals that
struggle under all sorts of unfavorable conditions [1]. In humans, the same dynamics
can be observed in cardiac muscle cells prior to myocardial infarction, asthmatic attacks
in patients with obstructive pulmonary disease, and neuronal activity prior to cardiac
arrhythmias and epileptic seizures [2]. In addition to physical disorders, similar changes
have been observed in self-reported mental states of patients with different forms of acute
mental illness, such as major depression, bipolar disorders, or psychosis [3–5]. This generic
response to environmental challenges seems to be independent of the spatial scale level of
observation. It has been observed to govern the dynamics of molecules, genes, different
cell types, tissues, organs and whole organisms, food webs, stock markets, and entire
ecosystems [2]. Typically, just before the tipping point occurs, the system becomes slow to
recover from environmental perturbations, which is why this phenomenon is sometimes
referred to as ‘critical slowing down’ (CSD) [6,7]. CSD has been confirmed in different fields
of science, although knowledge of this phenomenon still seems to be largely restricted
to the physical rather than biological sciences [8,9]. There may be several factors that
contribute to CSD, but a generic mechanism that underlies CSD at multiple scale levels so
far remains elusive. Critical slowing down may be due to a gradual increase in the number
and strength of recurrent connections between system components (e.g., computers, genes,
neurons, or people) [10]. Such components continuously enforce each other’s activity, for
which reason it will take longer for the system to quiet down after initial perturbation
(‘hysteresis’ or slowing down: this would explain the increase in autocorrelations). A
gradual increase in the number and strength of local connections decreases the number
of network clusters (communities of connected nodes) until, at some discrete point, only
a few additional connections are required to link all network clusters together into one
giant connected component [11]. At that point, only a small increase in local connectivity is
sufficient to produce an abrupt change in global network activity: a phase transition [12].
Despite such valuable insights, however, it has so far remained unclear what causes the
connectivity and variance of system components to increase prior to a tipping point or to
decrease after the tipping point has been reached.

Figure 1. Universal changes in signal transduction of living systems under rising levels of stress. Just
before living systems undergo a sudden phase transition (a tipping point, e.g., disease or death), they show
characteristic changes in internal signal transduction that may serve as early warning signs for system failure.
As can be observed from this schematic figure, (auto)correlations between system components increase prior to
the tipping point and decrease afterward, whereas variance increases and remains high (after [13]). A generic
cause of such changes has so far remained unclear. In this paper, we argue that these changes are incorporated
by a single variable (permutation entropy, see below), which may provide insights into a universal mechanism
that underlies critical transitions in living systems.
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Rising levels of stress do not only cause universal changes in internal signal transduc-
tion of living systems. The content of their behavior also changes in an apparently universal
way. When stress levels approach near-lethal levels, organisms shift their behavior from
so called ‘slow’ to ‘fast’ behavioral policies [14]. This means they are less prone to spend-
ing time and energy on caring for each other and future generations (e.g., reproduction
and parental investment). Instead, they become more focused on energy economy and
self-preservation (e.g., aggression and maternal cannibalism). Behavior also shifts from
long-term strategies (e.g., storing food, stacking fat) toward more short-term strategies
(e.g., eating food, burning fat). Physiologically, such changes coincide with a shift back
from more sophisticated, ‘goal-directed’ forms of behavior (such as navigating mazes in
order to locate a food source) to relatively simple, habitual forms behavior (such as feeding,
fighting, or fleeing) [15,16]. In other words, the organism’s behavior becomes more focused
on managing basic challenges that are currently at hand, rather than considering complex
and possibly long-term scenarios. Such changes have previously been explained by a need
of organisms to redistribute scarce amounts of energy and resources to their most primary
processes [17,18]. In this view, organisms can be modeled as regulatory systems with a
hierarchical structure, in which higher and lower systems work together to produce stabil-
ity [19]. When a lower-level system fails to stabilize the organism, a higher-level system will
take over to nonetheless secure stability. The lower regulatory levels are called ‘homeostatic’
systems, since they are concerned with the relatively simple task of maintaining some state
of the system within some narrowly defined limits (e.g., raising insulin or glucagon levels
to keep glucose levels within certain limits). Higher-level systems are called ‘allostatic’
systems, since they are concerned with maintaining “stability through change” [19]. This
usually involves more elaborate forms of behavior that will secure stability via a detour
(e.g., navigating a complex environment to locate a food source, the ingestion of which
will eventually raise glucose levels) [20]. To explain the observed changes in behavioral
policies of organisms under stress, it has been proposed that stress induces an ‘allostatic
overload’, i.e., a failure of higher-level (allostatic) systems that require a lot of energy to
secure stability, leaving the more energy-efficient lower-level (homeostatic) systems to fend
for themselves. Although this sounds intuitively appealing, the mechanism behind allo-
static overload, as well as the way in which this mechanism relates to the observed changes
in behavioral policies, has so far remained unclear. In this paper, we offer an explanation
of these changes that has its footings in first principles in biophysics and control theory.
Below, we first discuss the common stress response in somewhat more detail. After that,
we discuss a consensus view on the structure and function of living systems that results
from the integration of network theory, systems biology, and the free energy principle [21].
Departing from this framework, we then propose a generic mechanism that explains the
characteristic changes in signal transduction and overt behavior of living systems under
high levels of stress.

2. Disorder as a Common Response of Organisms to High Levels of Stress

In a seminal study, Zhu et al. showed that bacteria of different species respond in a
similar fashion to antibiotic stressors [22]. Although bacterial stress responses include many
different genetic pathways that depend on the type of stressor and the bacterial species
involved, a generic stress response could nonetheless be observed when considering the
whole system dynamics (i.e., when observing the whole gene transcription activity as mea-
sured in terms of differential mRNA expression in time). When antibiotic concentrations
approach near-lethal levels, this causes a decrease in the number of statistical dependencies
that normally exist between the genes of bacteria (correlations decrease, but variance re-
mains high). This loss of coherence in gene expression was observed to increase the amount
of randomness of the timeseries that describe differential gene expression in time. Such
‘disorder’ can be expressed in terms of a statistical quantity called permutation entropy,
which is a measure of the amount of randomness that can be observed in the covariance
patterns the describe the relationships between the various components of a system (Box 1).
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Zhu et al. noted that the observed rise in disorder scores resulted from large-amplitude
changes that were produced by independently responding genes, and that this indepen-
dence may result from of a loss of regulatory connections that normally synchronize gene
activity to produce order (Figure 2) [22]. As it turns out, permutation entropy levels in the
timeseries of bacterial gene expression predict bacterial fitness (defined as the growth and
survival rates of bacteria). Such predictions can be made with superior accuracy when
compared to standard techniques that rely on the expression profiles of specific genetic
pathways. This allows doctors to select antibiotics that are effective in treating certain types
of bacterial infections, even when the specific genetic pathways involved in a particular
bacterial stress response are not fully known.

 

Figure 2. Increased disorder (permutation entropy) may be due to a loss of regulatory connections.
The emergence of disorder in timeseries may be due to the loss of regulatory connections that normally
synchronize system components (e.g., genes, neurons) to produce order. In this figure, G is a regulatory (hub)
node with many connections that synchronize the timeseries of node A–F. The loss of regulatory connections
may cause nodes A–F to show autonomous (unsynchronized and, hence, disordered) behavior. The reason for
this loss of regulatory connections has so far remained unclear.
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Box 1. Permutation entropy explained.

Permutation entropy is a measure of the amount of disorder, unpredictability, randomness,
or information content of a timeseries [23]. In calculating this measure, the values of successive
timepoints are examined for predictable patterns by ordering them in partitions of prespecified
length n (e.g., in case n = 3, the timeseries (1 9 3 5 2 7) will yield the partitions [1 9 3], [9 3 5], [3 5 2],
etc.). The values of each partition are then placed in ascending order (e.g., for [1 9 3], the ascending
order is [1 3 9]), and each value of the ordered partition is then assigned the logical code [0 1 2],
depending on its position in the ascending sequence (e.g., 1 = 0, 3 = 1, 9 = 2). The full timeseries
is then recoded according to this code table (e.g., the partition [1 9 3] is recoded into [0 2 1], [9 3
5] is recoded into [2 0 1], [3 5 2] is recoded into [1 2 0], etc.). Such logical reorderings of numbers
are called permutations. The relative frequency p(π) of all n! permutations π of order n is then
calculated, which expresses the probability of occurrence of some permutation with respect to all
others in the timeseries. The permutation entropy is then calculated, which is a measure of the
amount of patternlessness or randomness in the timeseries. This is done as follows:

H(n) = −∑ p(π)ln p(π),

where the sum is run across all n! permutations π of order n. From this formula, it can be seen that
H(n) lies in between 0 and 1, with the value 0 indicating a completely logically ordered timeseries
of either ascending or descending values and the value 1 meaning complete randomness.

The calculation of permutation entropy scores requires only few parameters and can be done
quickly. A single score can be calculated for a single timeseries or set of timeseries at once, enabling
a study of global signal intensity changes within organisms (e.g., differential mRNA expression
in time, or activity changes in brain regions), as well as their overt behavior as a function of stress
levels [22]. To study a set of timeseries at once, PE can be expressed as the natural logarithm of a
glasso-regularized empirical correlation matrix M, which contains the partial correlation coefficients
of all statistical relationship between the components of a system [22]. PE is then expressed
as follows:

H = ln
∣∣Mρ

∣∣,
where || denotes the regularization, and ρ signifies the regularization strength. Crucially, permu-
tation entropy can be calculated not only for timeseries, but also for a single timepoint (stp), in
which case the cross-sectional (snapshot) level of disorder of the system can be expressed as a single
value [22,24].

Hstp = ln
(

σ2
)

,

where σ2 denotes the variance of the distribution across all measured variables.
The traditional PE measure as explained above does not take the amplitude (or weight) of

signal changes into account. Additionally, it is insensitive to signal changes at different temporal
scale levels (i.e., high- versus low-frequency components) and highly sensitive to differences in the
length of a timeseries and noise artefacts. For this reason, several refinements have been proposed
of the original PE measure, which involve calculating weighted PE scores that are compared to
white noise (pure randomness) across multiple (coarse grained) temporal scale levels. This refined
multiscale reverse weighted (RMSRW) permutation entropy measure can handle noisy timeseries of
different lengths, as well as signal changes at different scale levels [25]. By incorporating amplitude,
variance, and temporal autocorrelations into a single value, RMSRW-PE covers all aspects that are
considered typical hallmarks of critical slowing down (CSD). This means that living systems become
increasingly ‘disordered’ prior to their failure, which we argue results from a loss of integrative
regulatory connections that normally synchronize system components to produce order (see text).
Throughout the rest of this paper, we use the terms PE and ‘disorder’ interchangeably as a more
parsimonious term to refer to signal changes in stressed systems prior to their collapse.

Since (weighted) permutation entropy is a measure of global system dynamics,
it incorporates the previously observed changes in correlation strength, variance, and
(auto)correlations that are considered typical hallmarks of critical slowing down (Box 1).
The permutation entropy measure appears to have comparable usability to the traditional
measures of CSD. For instance, rising levels of permutation entropy are observed in living
systems across all scale levels of biological organization, from genes and individual cells to
tissues, organs, organisms, and social communities [26]: the death of a single bacterium
follows the same dynamics as the collapse of a multicellular organism, populations of
organisms, or entire ecosystems [27]. The increase in disorder levels affects both internal
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signal transduction and the outwardly observable behavior of organisms. For instance,
fruit flies show erratic flying patterns when air pollution levels are high [28]. Water fleas,
mussels, fish, dolphins, and whales show increasingly disordered swimming patterns when
water quality deteriorates [29–31]. Human locomotion patterns show signs of increased
randomness when stressed [32]. Like traditional measures of CSD, permutation entropy is
able to predict the onset of tipping points in living systems, which signal the sudden onset
of disease (or death). For example, bacteria succumbing to an antibiotic stressor, plants
dying from a lengthy drought, or the bleaching of coral in deteriorating environments are
typically discrete events that can be predicted by elevated levels of PE. Such findings have
inspired ideas to use permutation entropy as part of an early warning system to monitor
plant and animal welfare [29–31,33]. In humans, early warning signs of system failure
typically precede the (sudden) onset of physical or mental illness [3–5,26]. Such knowledge
is gradually making its way to medical practice. Permutation entropy levels can predict
the onset of blood infections [34] and the spread of infectious disease throughout human
populations [35]. In cardiology, neurology, and psychiatry, early warning signs for epileptic
seizures, cardiac arrhythmias, and major depressive or psychotic disorders may allow
for timely countermeasures [5,26]. Such observations underscore the practical value of
‘disorder’ as an early warning sign and warrants a further look into optimal descriptors of
this phenomenon, as well as its possible causes.

The idea that permutation entropy can be used as a single parsimonious measure of
signal changes in struggling systems has practical consequences in the sense that it reduces
the complexity of calculations. More importantly, however, this conceptual step may help to
gain a better understanding of the possible mechanisms that underlie CSD. On the one hand,
the presence of generic early warning signs in struggling systems may just be a coincidence,
with many different causes of disorder loading onto a single quantity (permutation entropy)
that is so generic that it fails to say anything useful about living systems. On the other hand,
such similarities may suggest a common biophysical principle that underlies disorder at
different scale levels of organization [27,36]. Below, we argue for the latter position by
showing that similar biophysical rules govern the structure and function of living systems
at different scale levels of organization. We show that living systems are hierarchically
organized network structures in which highly connective components (hubs) maintain
high-level allostatic control. We then show that stress can be equated to variational free
energy under the free-energy principle [37,38] and that high levels of stress (free energy)
specifically cause the most connective nodes in a network (hubs) to overload and fail,
since these are the first to reach their limits of free-energy dissipation. Since hubs keep the
various components of a system together and synchronized (like horse cart drivers keeping
a team of horses in check), the failure of such structures produces desynchronization and
disorder, including the generic early warning signs as described above. We argue that a
loss of (allostatic) control by key connective structures is not necessarily restricted to living
systems, but may reflect a universal feature of open dissipative systems that are loaded up
with free energy beyond their capacity to dissipate it back to the environment. We conclude
by showing how the proposed disorder concept may apply to disease processes in general
and to the human situation in particular.

3. Organisms as Control Systems

Woodlice keep on running around erratically until the air that surrounds them ap-
proaches a humidity level near 100%. Only then do they truly come to rest, which is why we
find these creatures in all sorts of nooks and crannies. Woodlice do not know exactly where
to find a nice and wet place in which they can safely retreat from the dangers of desiccation:
they just keep on running around until they stumble across a suitable spot, after which the
‘running faucet’ is screwed shut. This mechanism has much in common with the way in
which a central heating system works. Such systems have thermostats that indicate the
desired temperature (e.g., 22 ◦C, a ‘setpoint’), sensors that indicate the actual temperature
(e.g., 18 ◦C) and heating elements that produce heat. The difference (4 ◦C) between the
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desired and the actual temperature is sent to the heater that heats up the environment until
room temperature reaches the preset value. At that very moment, the difference (‘error’) is
zero, and the heater shuts down. All organisms, including humans, turn out to follow this
same principle: we are ‘control systems’ that try to minimize the difference between our
‘setpoints’ and the actual state of the environment [39]. It is just that our setpoints are more
elaborate and describe several more desirable states than just ambient temperature (e.g.,
partners, jobs, and social positions). Together, the total collection of our setpoints describes
our preferential ‘econiches’: spots on the planet and in our society where we like to be and
where we will eventually end up provided these niches are encoded correctly and the right
actions are performed in order to reach these places (Figure 3).

Figure 3. Organisms as control systems. In a very simple model, organisms can be seen as controls
systems with an input (I), throughput (T, reference value), and output compartment that interacts with the
environment (context, C). The difference between the input (e.g., temperature) and reference value (e.g., the
thermostat) is called the ‘error’, which is transferred onto the output module to generate an action that changes
the environment. This in turn changes the input to the organism, and the cycle repeats. Thus, organisms
iteratively seek out (or create) environments that fit their reference values. Complex (sets of) reference values
are called ‘world models’. These encode a complex set of environmental circumstances representing an optimal
econiche (see text).

4. Active Inference

In reality, things are a bit more complicated: our thermostats do not merely indicate
which states we like to experience. They indicate which states we expect to occur at some
point in the future. That means they encode predictions, or predictive models of our
environment. This still resembles a thermostat in some way, since one may wonder
whether such devices actually indicate what temperature we like, or whether the preset
value of 22 ◦C actually represents a prediction of what room temperature will be, provided
the system will keep on running indefinitely. In fact, all setpoints can be construed as
predictions, and many setpoints together as predictive models of our inner and outer
worlds or preferential niches. Such multifaceted models are called ‘world models’ [40]. The
difference between the world that we perceive and our predictive models of that world is
called a ‘prediction error’ [41,42]. This is a measure that indicates how ‘surprising’ a certain
observation or outcome is, given that outcomes may deviate from predictions. For instance,
a frog that is suddenly thrown into a pool of hot water will show a lot of prediction error.
Such error provides an estimate of the degree to which its predictive models deviate from
the way it perceives the world. In living systems, prediction errors trigger actions that are
aimed at reducing the prediction error itself (e.g., the frog will start a struggle to escape its
unpleasant surroundings and return to safer grounds). This happens because such actions
change the external world (e.g., ambient temperature drops when the frog moves out of the
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pool), which in turn changes the organism’s perception of that world, which then reduces
or increases prediction errors that induce actions, after which the cycle repeats (Figure 3).
Action is, therefore, a way to vary prediction errors and test the ‘fitness’ of a world model.

It turns out that prediction errors are not only used to induce action (as in central
heating systems), but also to adjust the models (thermostat settings) themselves: a process
called ‘belief updating’. This involves a process where the ‘weights’ of the connections
between the various elements that constitute the predictive system are altered as a function
of prediction error [43]. Thus, belief updating is a form of learning or adaptation, which
allows organisms to meet environmental conditions halfway. For instance, the same frog
will show less prediction error and remain exactly where it is when put in a pool of cool
water that is gradually warmed to unpleasant levels, since it now has the time to adjust its
predictive models. The iterative loop of trial (action) and learning from prediction error
(belief updating) is called ‘active inference’ [42,44]. This is a process by which organisms are
actively foraging their environments for novel experiences that may be counterfactual to
(or falsify) their conjectures of the world, after which the most unrefuted model is selected
as the most plausible explanation of the observed events [37]. This is sometimes compared
to organisms as little scientists [45], although active inference more generally refers to a
circular process of inference (niche modeling) and action (niche exploration and active
niche construction) [46,47].

In a seminal paper, Karl Friston used insights from Bayesian information theory to
show that prediction error (under some circumstances) is equal to the mean amount of
‘variational free energy’ across time of a living system, such as a cell or a brain [48]. This
means that when organisms try to iteratively reduce their prediction errors through active
inference, they are actually trying to reduce their free-energy levels across longer timespans.
In this respect, they are not much different from crystals in which ions arrange themselves
into highly ordered patterns, despite the fact that all objects in this universe need to obey
the second law of thermodynamics (which states that they must seek a state of maximum
disorder, i.e., high entropy). For quite some time, it was thought that crystals violated
the second law of thermodynamics, until it was discovered that crystallization produces
heat that dissipates into the environment, producing a global increase in entropy (and
free energy) levels [49]. Additionally, the ordering of ions into neatly arranged lattices in
many cases allows water molecules to move more freely through the system, which adds
to the global amount of disorder (and free energy) of the universe. Thus, scholars realized
that objects may arrange themselves locally into more ordered (low-entropy) states as long
as this allows for a global increase in entropy and free energy. Despite the necessity that
everything in nature eventually needs to revert to a state of high disorder, living systems
have found a way in which they can maintain their circumscribed form and stable state
(i.e., order) at least for some period of time, by having found the most efficient way of
losing (dissipating) their free energy to the environment, which is to reduce prediction
error [37,50,51]. Similarly, an organism can be compared to a ping-pong ball that rolls into
a pit in order to keep its potential (free) energy as low as possible: that ball simply has no
choice, since it needs to obey the second law of thermodynamics, which states that any
object may seek a local state of low free energy and entropy (the bottom of the pit) as long
as this leads to a global increase in entropy levels of the universe (in this case, the act of
rolling into the pit increases the global freedom of the individual molecules of the ball
in the form of heat, which subsequently dissipates into the environment [52]). In living
systems, the basin of the pit corresponds to a state of low entropy (prediction error or
variational free energy) that is called ‘homeostasis’ [37]. Active inference can, therefore,
be seen as a walk across a free-energy landscape, in which organisms actively try to roll
into pits of low variational free energy that represent high levels of niche model ‘fitness’
(homeostasis) (Figure 4). In most cases, such low-energy states correspond to organisms
occupying their locally optimal econiches. The whole process of seeking stability through
change thus follows from the basic laws of thermodynamics [51]. Friston has found a series
of equations with which to describe this process that do not only apply to life in general,
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but to all objects in this universe that are required to dissipate their free-energy levels as
efficiently as possible [53]: a true ‘Theory of Every Thing’ [54]. In a way, this theory says
something we already knew for quite some time: by actively searching for optimal niches
(minimizing prediction error), living systems can reach homeostasis (a stable state of low
mean variational free energy) and survive (remain intact). The novelty is that we now have
mathematical equations with which to describe this process, which may apply to any object
in this universe.

Figure 4. Active inference pictured as organisms exploring a free-energy (model fitness) landscape.
In biology, organisms are said to be involved in niche exploration and active niche construction to occupy
econiches that optimize their chances of survival and reproduction (niche exploitation). Active inference
theory can be seen as a way to describe this process in biophysical terms. According to this theory, organisms
use action to change their environments (e.g., digging in or building a shelter), which in turn alters their
perception of the world (e.g., a rise in humidity levels). This altered perception produces a different fit with
the organism’s predictive models of the world (alters prediction error), which can be expressed as a change
in the theoretical quantity of (variational) free energy. According to the free-energy principle, action (niche
exploration and construction) and belief updating (model adjustment) serve to minimize mean variational
free energy (produce high average model fitness), allowing organisms to find a low-energy stable state that
corresponds to the concept of ‘homeostasis’ in biology. Approaching or occupying optimal econiches, therefore,
ensures thermodynamic stability (survival). In this respect, organisms that seek optimal econiches are like
ping-pong balls that actively try to roll into pits that correspond to the lowest possible levels of free energy
across time (this is called a ‘gradient descent’ on a free-energy plot [55]). In this figure, the vertical axis
represents the free energy levels of some organism (prediction error, negative model fitness). The horizontal
axes represent environmental conditions (i.e., econiches), which are limited to only two conditions in this
example, since we have difficulty imagining organisms navigating multidimensional state spaces (i.e., complex
econiches). The various peaks and valleys together form an energy ‘landscape’ (although ‘seascape’ might be
more appropriate, since environmental conditions change continuously). Valleys in this seascape represent
areas with relatively low (variational) free-energy levels, which correspond to more optimal environmental
niches. Active inference is a process by which organisms are continuously improving their internal map of the
sea (inference) by actively exploring its surface (niche exploration) and making some ripples of their own (niche
construction) to eventually make for the shallowest waters (econiches) where they can remain intact (survive)
and reproduce (exploit their niche). In evolutionary biology, similar diagrams are used in which the vertical
axis represents ‘reproductive fitness’, which is often defined in terms of the (relative) number of offspring or
copies of some gene. In contrast, local or ‘instantaneous fitness’ (prediction error) may be a more proximal
measure of biological fitness than gene frequencies or the number of offspring, since the latter measures are
counted post hoc. The two can easily be converted into each other, e.g., by defining reproductive fitness as the
integral of local model fitness (prediction error, homeostasis) across all econiches encountered by the organism
and its offspring across some period of time (e.g., the lifespan).
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5. Organisms as Hierarchical Bayesian Control Systems

In a recent paper [21], we proposed a consensus view on the ‘plumbing’ that makes
active inference possible. The approach taken involves combining current knowledge on
the structure of living systems with recent insights into their function. First, we show
that all living systems follow the same architectural principles, i.e., they are small world
network systems with a nested modular structure [56]. These are networks in which most
elements (nodes) have few connections, but some have many. These highly connected
units (hubs) ensure that the network as a whole has a small average ‘pathlength’, which
is the average distance between any two nodes in the network when moving along the
shortest paths. This causes signal transmission across small world networks to be highly
efficient even in very large networks (e.g., in social networks, only six degrees of separation
lie in between any two people on this world, making it ‘a small world after all’). Hubs
contract parts of the network into so-called communities or clusters [57]. Such clusters
may themselves serve as nodes at a higher spatial scale level of observation and so on. For
example, organelles form cells that are a part of larger modules (tissues), which in turn are
a part of supermodules (organs), etcetera, until one reaches the level of the organism itself.
Thus, a hierarchy of part–whole relationships is formed (a ‘mereology’), in which one scale
level of biological organization cannot exist without the other (e.g., [58]). The topological
structure of such networks is the same across scale levels, which is why such networks
are called scale-invariant or ‘scale-free’ [59,60]. We then show that all organisms appear to
follow the same principles of network function (internal signal transduction, dynamics).
This involves a combination of hierarchical message passing and predictive coding that has
seen diverse representations and for which a consensus view has been proposed by Karl
Friston [61,62]. In this view, all living systems are involved in some form of hierarchical
Bayesian inference, i.e., modeling the latent (hidden) common causes behind observed
events in their inner and outer worlds and updating these models using new evidence. In
order to accomplish this, organisms have nodes that function either as prior (prediction)
units or as prediction error units (Figure 5). Whereas prior units encode some predictive
model of the world, prediction error units encode the difference between the model and
newly obtained evidence. Such evidence initially enters at the bottom of the hierarchy in
the form of excitatory input from the senses (bottom left in Figure 5). These input signals
update the values of prior units, which in turn suppress the activity of prediction error
units at the same hierarchical level by means of inhibitory connections. These prediction
error units then try to update the values of prior units by means of excitatory connections,
producing circularly causal dynamics (within-level oscillations). Since the suppression
of prediction error by (updated) priors is rarely complete, a residual prediction error is
produced that projects upward in the hierarchy to update the values of prior units at
a higher level within the hierarchy. These units in turn project backward to suppress
the same lower-level prediction error units by means of inhibitory connections, again
producing circularly causal dynamics (between-level oscillations). Thus, each hierarchical
level is involved in suppressing prediction error within that same level, as well as at a
lower level. As observed above, the process of updating the values of priors by means
of prediction errors is called ‘(Bayesian) belief updating’. The suppression of prediction
errors by updated predictions is often referred to as ‘evidence’ that is ‘explained away’
by hierarchical Bayesian ‘beliefs’ [42]. Typically, prediction errors are fed forward until
they are suppressed by a model of sufficient hierarchical depth, which is the model that
best ‘explains the observed evidence’. Note that only prediction errors are carried forward
through the hierarchy and not the original input from the senses. Quite fundamentally,
this means that organisms have no direct access to the external world, from which they are
separated by a barrier. What they perceive is a hierarchical model of the world that best
explains the observed evidence, rather than a direct representation of the world [51,63].

The above dynamics is thought to underlie hierarchical Bayesian inference in living
systems [61–63]. When applying this principle to scale-free network structures, one can
see that the process of generating and updating Bayesian beliefs occurs at all spatial scale
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levels of organization within the nested modular hierarchy. Each scale level has an ‘input
part’ (a collection of prediction error units) that connects to a higher-level ‘throughput part’
(a smaller number of priors that try to suppress prediction error), after which the residual
error is fed back down the hierarchy to an ‘output part’ (a larger number of prediction
error units), to produce output sequences. Crucially, the various priors and prediction error
units in this configuration may involve network nodes or clusters, depending on the spatial
scale level of observation. Thus, a self-similar (scale free/fractal-like) network structure is
obtained in which the same input–throughput–output motif (a ‘feed-forward loop’ [64])
can be observed at each spatial scale level of observation: from the smallest scale of only
three nodes (e.g., a neural circuit within the visual cortex) to a global ‘hierarchical Bayesian
control system’ comprising the global compartments of perception, goal setting, and action
control, which constitutes the organism (Figure 5). At each level of observation, prediction
errors converge while ascending in the input hierarchy and diverge while descending in
the output hierarchy, giving the structure the overall shape of a dual hierarchical (nested
modular) ‘bowtie’ network structure [60,65]. Note that predictions converge while ascend-
ing in the output hierarchy and diverge while descending in the input hierarchy, to form
a global counterflow. Information flows can take shortcuts via skip-connections that run
between input and output hierarchies at comparable levels within the hierarchy, effectively
causing the bowtie structure to fold back onto itself (Figure 5).

In forming hierarchical Bayesian models, organisms need to solve the binding prob-
lem [66], i.e., they need to figure out whether a set of events that occur simultaneously
share a single common cause that should be encoded by a single variable (e.g., by a single
network node or cluster), or whether these events represent separate causes that should be
encoded separately (e.g., by separate nodes or clusters). In solving the binding problem,
an important role is played by highly connected elements in these networks (so-called
‘hubs’). A hub can be pictured as a horse cart driver that needs to keep a team of horses in
check, while using the reins to appreciate the general state of the team of horses as a whole
(another example would be a middle manager that tries to get a sense of the general state of
a team of employees). Every single horse keeps in touch with a part of the external world,
but the driver itself tries to form a picture of the whole situation. This driver can in turn
be seen as a horse that, together with other drivers, is kept in check by yet other drivers
(directors), etc. The highest drivers (CEOs) thus try to get a sense of the global state of most
horses in the hierarchy, through which they encode the most contextually integrated model
of the experienced world, but only in a very compact and abstract sense. Similarly, living
systems contain hub structures that converge onto hubs to form a nested modular network
structure (a pyramidal shape), which encodes an increasingly integrated model of the world
(Figure 5). Such nested modular collections of hubs are called ‘rich clubs’, since they are
‘rich in connections’ [67,68]. In Figure 5, a hierarchy of priors (black nodes) can be discerned
that starts with the simplest of setpoints at the base of the hierarchy, to eventually involve
only a few hub clusters at the top. Each subsequent level within this hierarchy encodes the
hidden common causes behind a multitude of subordinate events using an increasingly
small number of independent variables (degrees of freedom). Such integration takes place
across multiple contextual cues in space (e.g., multiple horses influence the hub-driver at
the same time), as well as time (e.g., the same horses show faster and slower dynamics,
which are encoded vertically in the hierarchy) [69,70]. In other words, each subsequent
level in the hierarchy encodes increasingly long-term predictions of increasingly complex
econiches in an increasingly abstract and parsimonious way. Organisms, therefore, try to
model their inner and outer environments using a shrinking number of variables but with
minimal loss of information, meaning that some form of compression takes place while
moving upward in the hierarchy [71]. In mathematical terms, information is funneled
through an increasingly low-dimensional manifold (which has been compared to Occam’s
razor) [72]. The apex of the pyramid shown in Figure 5 (the ‘knot’ of the bowtie), therefore,
serves as an ‘information bottleneck’ structure [73] that encodes econiches at the highest
level of ‘sophistication’ that an organism can achieve [65,74,75]. The term sophistication

119



Entropy 2021, 23, 1701

is used on purpose here, since it has been proposed to refer to predictive models that
are models of other models (i.e. recursive beliefs: having beliefs about beliefs) [75]. In
nested modular network systems such as Figure 5, higher hierarchical levels integrate
across a range of lower levels (by means of hub nodes). Such integration takes place across
multiple contextual cues in space, as well as time, causing higher-level models to encode
increasingly long-term predictions of increasingly complex econiches in increasingly parsi-
monious (and abstract) ways. In other words, information bottleneck structures are used
by living systems to build hierarchical Bayesian models using a minimum number of
parameters (i.e., while minimizing model complexity costs). For this reason, we prefer
not to call higher-level models more ‘complex’, since that term is reserved for models
with many parameters. Higher levels do convey more long-term, abstract, and symbolic
representations (i.e., a joint probability distribution over a set of prior probabilities under a
hierarchical model [76]). This causes higher hierarchical levels to be relatively disconnected
from events at lower levels, i.e., they encode models that model latent causal structure
behind lower-level events with some degree of autonomy and creativity. Such ‘hierarchical
generative models’ are able to escape the limitations of scarce and noisy data samples
and nonetheless reach high levels of predictive accuracy, e.g., [77]. In living systems, the
highest hierarchical levels encode contextually rich econiches that are to be explored or
rather avoided in the near or further future [40]. Another way to refer to such hierarchical
predictive models of econiches is a ‘goal hierarchy’ [20,78]. Goal hierarchies encode the
logical set of econiches (goals) and corresponding subniches (subgoals) that the organism
needs to pursue in order to reach the global econiche (goal) encoded at the top of the
hierarchy [72].

As mentioned, prediction errors with respect to goal hierarchies serve not only to
update these hierarchies and produce optimally informed models of the world, but also to
inspire action [37,42,51]. Hierarchical Bayesian control systems are dual-aspect hierarchies
in which the input hierarchy continuously supplies the output hierarchy with residual
prediction error to coordinate behavior. When a simple goal state at some hierarchical
level of inference and corresponding policy is insufficient to explain the evidence, the
residual error is passed onto a higher level within the goal hierarchy, where a more
sophisticated world model (goal state) tries to suppress prediction error. Any residual
error then crosses over to corresponding levels of the output hierarchy to produce action
sequences of corresponding levels of sophistication. Thus, a hierarchy of red hub nodes
can be observed in Figure 5 that encodes a hierarchy of evidence, which is contrasted with
the hierarchy of priors within the goal hierarchy to produce prediction errors at matching
hierarchical levels that are fed into the output hierarchy to induce behavioral responses of
corresponding levels of sophistication. Such output then serves to change the environment
and produce a different niche model fit [37,42,51]. A common example is walking: this
(habitual) motor pattern can in itself be sufficient to solve the problem of getting to a food
source without much effort. When the terrain becomes rough, however, the organism may
encounter obstacles that lie between itself and its goal (the food source). Such encounters
produce prediction errors, which ascend in the hierarchy until they are suppressed by
a sufficiently sophisticated model of the econiche (goal state). Prediction errors relative
to this goal state then induce behavioral policies at a higher level of sophistication. For
instance, the organism will now reorient itself (sample the environment to infer a model that
encodes a richer environmental context) and plan a detour. Thus, goals and corresponding
subgoals are pursued in a logical order by means of matching action sequences until the
organism reaches its preferential global econiche [79]. Organisms can, therefore, be seen as
hierarchical problem-solving machines that infer ever more sophisticated goal states and
corresponding action–perception sequences until prediction errors are suppressed and the
problem is solved. Since the level of sophistication of each behavioral response matches the
sophistication of its corresponding goal state, which in turn matches the organism’s optimal
perceptive model of the world, organisms automatically produce ‘adaptive’ behavior that
is flexibly tuned to fit the level of complexity of their actual environments [21,80].
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Interestingly, the output hierarchy is also involved in some form of inference [80,81].
In output hierarchies, the sensory states of output organs (such as muscles or endocrine
glands) are used to model the actual actions that are taking place, whereas prediction errors
with respect to such models are used as output signals to these organs to make on-the-fly
corrections (Figure 5). Thus, hierarchical Bayesian control systems have input hierarchies
that try to figure out “what the world is doing” (perception), output hierarchies that try to
infer “what the organism is doing” (action control), and throughput hierarchies that try to
infer “what the organisms should be doing” (goal setting) [21]. These domains enter in a
closed (feedforward-feedback) loop with the environment to allow for active inference.

 

Figure 5. Consensus network structure that is proposed to support the process of active inference in all living systems. Organ-
isms can be conceived of as dual hierarchical Bayesian control systems that consist of an input hierarchy (left side), throughput hierarchy
(top of the pyramidical structure), and output hierarchy (right side). Hierarchical message passing through these structures is thought
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to underlie hierarchical Bayesian inference in living systems. (Panel A). The structure shown in this figure integrates current ideas on
hierarchical predictive coding [61,62] with key findings from network science [56,59] and systems biology [60,65]. (Panel B). This
panel shows a cutout of the structure shown in panel A for closer inspection. Black nodes: priors (setpoints or predictions), red nodes:
prediction error units. Blue arrows: inhibitory predictions, red arrows: excitatory prediction errors. Hierarchy of black nodes: a goal
hierarchy (encoding world models). Hierarchy of red nodes: a hierarchy of evidence. At the base of the input hierarchy, input is compared
to predictions (priors), and the residual error is projected upward in the hierarchy, where it is compared to higher-level priors (world
models), and the process repeats. Prediction errors at some level of organization are used to both update priors (‘belief updating’) and
inspire action. Predictions suppress prediction errors (‘explain away the evidence’). Note that prediction errors are escalated upward in
the input hierarchy to update the goal hierarchy and downward in the output hierarchy to inspire action (panel A, top image, large red
arrows). Predictions follow the opposite path to form a global counterstream, i.e., they are escalated upward in the output hierarchy and
downward in the input hierarchy (not shown, but see panel B, small blue arrows). The entire structure has an information bottleneck
or ‘bowtie’ structure, in which information (prediction errors and predictions) reaches maximum compression within the throughput
hierarchy and is less compressed in input and output hierarchies (panel A). Note that local flows of prediction errors and predictions
may deviate from the global flows (left to right, or right to left), i.e., counterflows may exist locally. Skip connections (horizontal red
lines) allow for shortcuts between input and output hierarchies e.g., corticocortical connections), causing the bowtie to fold back onto
itself (panel A, lower part).

6. How Information Processing in Living Systems Corresponds to Behavior

In order to understand how stress alters the behavior of organisms in a universal
way, we need to understand how message passing at different levels within hierarchical
Bayesian control systems correspond to different forms of behavior. In this view, the
lowest levels within such systems produce basic stimulus–response patterns called reflexes
(e.g., sweating or salivation or spinal reflexes such as locomotion). In control theory, low-
level reflex arcs such as these are said to produce ‘homeostatic’ reflexes, i.e., the closest
regulators of a low-energy stable state (homeostasis) [19]. When moving upward in the
regulatory hierarchy, more sophisticated action–perception cycles are formed that consists
of combinations of basic reflexes, e.g., fighting, fleeing, freezing, feeding, reproducing,
resting, digesting, self-repairing, and (parental) caring in response to typical cues. Such
complex reflexes are called instinct patterns in evolutionary psychology [82]. When moving
further upward in the regulatory hierarchy, more sophisticated policies are formed, which
are called ‘habits’ [83]. These are automated responses to typical stimuli that consists of a
combination of reflexes and instinct patterns in response to more complex perceptual cues
(e.g., taking a morning stroll involves combination of reflexes and instinct patterns such
as walking, resting, and digesting). Lastly, the highest levels of the regulatory hierarchy
produce ‘goal-directed’ behavior, which involves nonautomatic (i.e., effortful) actions based
on explicit and often long-term predictions of the consequences (perceptual outcomes)
of actions [84]. Such predictions take the form of ‘simulations’ of what might happen
if some action is taken. The predicted outcome of certain actions is then a prerequisite
for such actions to be selected as the policies that are most likely to suppress prediction
errors across trials [20,80]. In control theory, goal-directed behavior is considered a form of
‘allostatic’ behavior, i.e., behavior that is produced by hierarchically higher regulators that
are superposed onto lower-level regulators in order to secure stability by means of more
sophisticated responses when lower levels and less sophisticated forms of behavior fail to
do so (i.e., “stability through change”) [19].

Together, these different forms of behavior develop over the course of many iterations
of trial and learning from prediction error (active inference). In this context, learning refers
to a process of Bayesian belief updating, where prior expectations are updated in response
to novel evidence (prediction error). Such updating involves a change in the efficiency (or
complete rewiring) of the connections between priors, which corresponds to the actual
learning process [43]. Belief updating may occur at any level within the hierarchy of priors
shown in Figure 5. At the lowest (reflexive) levels of the hierarchy, belief updating produces
a form of associative (stimulus–stimulus) learning that is called ‘Pavlovian learning’ (classic
conditioning). During Pavlovian learning, organisms gradually associate one (familiar)
stimulus with a new one and produce the same behavior to either of these stimuli (e.g.,
dogs learn to associate the ringing of a bell with food, causing anticipatory salivation).
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Belief updating at ‘intermediate’ and ‘higher’ levels within the hierarchy of priors is
referred to as ‘habit learning’ and ‘goal-directed learning’, respectively. Pavlovian learning
and habit learning have been observed in a wide variety of species, including bacteria.
Although goal-directed learning is usually associated with ‘higher’ species, many aspects
of behavior in ‘lower’ species (including bacteria) resemble goal-directed behavior [84].
This means that similar forms of learning and behavior are present to different degrees
in different species, depending on the sophistication of their goal hierarchies. Similarly,
within-species individual differences in inferential abilities and behavior are thought to be
due to differences in the outgrowth (maturation) of goal hierarchies during the lifetime of
the organism. The next paragraph examines what types of world models are encoded at the
top of goal hierarchies and to what kind of behavior they give rise. After that, we examine
how changes in hierarchical Bayesian control systems correspond to shifts in behavioral
policies under rising levels of stress.

Organisms are known to construct at least two distinct types of world (econiche)
models at the top of their goal hierarchies: models of their external environments and
models of their internal environments [85]. Such models inspire behavior that purports
some sense of agency, i.e., the ability to distinguish between events that are generated by
the organism itself versus events that have their origin outside of the organism [86,87]. The
former include signals that arise within the body of the organism, as well as signals out
of the body that have been produced by the organism itself, such as sounds or vibrations
due to its own movement [86]. Basic forms of self (versus non-self) encoding have been
observed even at the level of bacteria and may take more elaborate forms in higher mam-
mals [88]. Such models increase in contextual richness when they gain in complexity and
hierarchical depth, which appears to underlie the distinction between ‘higher’ and ‘lower’
species [37,51]. Self-models may include any form of self-representation, such as a body
image and a psychological self-image [89]. Such models encode self-referential (personal)
goals that the organisms would like to occupy or sample. Prediction errors with respect to
such global goals inspire behavior that is aimed at achieving these goals through a logical
series of subgoals and corresponding behavioral policies [72]. For instance, the global
goal of catching food requires the global policy of hunting, which consists of subpolicies
such as hiding, freezing, fighting, and eating. Reaching such goals involves the mastery of
personal skills that vary from hunting and gathering and building nests to finding shelter
and mastering survival skills (or occupational skills in humans). The growing mastery
of such skills is referred to as self-actualization or the development of agency [87,90–93].
Especially in higher social mammals, models of the external world include social models
(‘theories of mind’) [92,94]. Such models try to infer the hidden common causes behind
multiple signals in the external world that are produced by other organisms, i.e., the inten-
tions and motives of friends, rivals, mates, or kin [92]. Prediction errors relative to such
models inspire behavior that is aimed at achieving personal or interpersonal (social) goals
by taking these motives into account. Such actions may involve e.g., offensive or defensive
actions, courtship rituals, parental investment, or nursing behavior. The increasing mas-
tery of social skills is called social learning [95]. Note that even some forms of antisocial
behavior (e.g., deceit or fraud) require the presence of social models, since such behavior
requires some degree of knowledge of the intentions of others, which is used to one’s
own advantage. Regardless of the type of species, self-models and social models involve
more integrative (goal-directed) forms of inference that occur at higher levels within a goal
hierarchy (see previous section and Figure 5). In our recent paper [21], we showed that
external (social) models are likely to form the top of the input hierarchy, since these are
involved in inferring ‘what the outside world is doing’. Following the same line of rea-
soning, internal (self) models are thought form the top of the output hierarchy, since these
are involved in inferring ‘what the organism is doing’. These assumptions are confirmed
in the human brain [21], but require confirmation in other species. Since the timescale of
events is encoded vertically in hierarchical networks [69,70], the vertical outgrowth of self
and social models allows organisms to incorporate increasingly long-term predictions with
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respect to increasingly abstract personal or interpersonal goals. For instance, self-models
and social models in higher primates have reached a level of sophistication that allows
them to imagine and work toward complex social positions across many years of time.

For a long time, it was thought that organisms only construct these two global models,
i.e., internal (self) models and external (social) models. In our recent paper [21], we demon-
strated that the principle of hierarchical Bayesian inference logically (and necessarily)
dictates that there must exist a third, highest level of inference, whose job it is to infer the
hidden common causes behind events that involve both the internal and the external world
of the organism, across multiple context factors in both space and time. In short, there
must be an overarching model that integrates across self and social models to encode a
commonly held world model (a common econiche) (Figure 6). Prediction errors relative to
such models inspire actions that are aimed at affecting this common econiche rather than
the local, internal, or external (social) niches of the organism itself. Although in theory,
knowledge of a ‘common ground’ can be used solely to the advantage of an individual or-
ganism or local group, such knowledge is unlikely to produce strictly selfish policies since
any type of behavior that favors a global goal (i.e., promotes global stability) eventually
also favors individual organisms and local groups (i.e., promote local stability). Especially
in higher social species, the vertical outgrowth of overarching models allows organisms
to produce increasingly sophisticated models of common econiches across increasingly
lengthy periods of time. Prediction errors relative to such models inspire behavior that
is aimed at promoting long-term collective stability, such as an equal sharing of energy
and resources across multiple stakeholders (e.g., collaboration, food sharing, and other
forms of distributive justice), resolving conflict situations (e.g., mediation or arbitration),
or holding each other responsible when goals are violated that apply to all members of
the community (punishment for norm violation and other forms of justice). Normative or
law-abiding behavior of this kind (including altruistic behavior) has been observed in some
form or another in a wide range of organisms, from unicellular organisms and inverte-
brates to higher vertebrates and mammals [96–100]. Whereas a clear self–other dichotomy
seems to mark the distinction between kinship selection (i.e., the favoring of kin over
others, nepotism) and reciprocal altruism (i.e., investing in unknown individuals) [101],
the hierarchical expansion of overarching world models seems to soften the self–other
dichotomy by pushing behavior toward an increasingly inclusive (social) space and toward
ever larger (transgenerational) timescales, i.e., devoting time and energy to improve the
stability of unknown future individuals and species [102–107]. Such overarching world
models allow organisms to escape the polarization or nepotism that is inherent to local
self-referential or interpersonal goals by appealing to commonly held niche models that are
invariant across generations. Especially in social organisms where regulatory hierarchies
have reached high levels of sophistication, such shared setpoints may take the form of
community norms or values [106–110]. Such goals promote social cohesion between large
numbers of individuals across substantial individual differences and substantial spatial
and temporal boundaries [111]. Even the ability to see all of life as connected under such
common laws and insights (which includes religious insights and corresponding feelings)
may be caused by this highest level of inference (e.g., [112]). In this respect, it is interesting
to note that ‘religare’ originally means ‘to reconnect’ in Latin (across individual differences
and timeframes, under a common highest law), that Catholicism means ‘(moving) toward
a whole’, Islam means ‘order/peace through submission (to a higher law)’, and ‘hierarchy’
refers to ‘holy ordination’ in ancient Greek. In short, organisms are likely to be engaged in
a highest level of inference at the top of their goal hierarchies, which tries to infer what the
organism “should be doing”. Such overarching (normative) world models are not restricted
to higher organisms, although organisms with more sophisticated goal hierarchies do tend
to show more sophisticated forms of behavior (see previous section for a definition).
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Figure 6. The putative positions of different world models in living systems.

7. Disorder: A Collapse of Hierarchical Control

We now turn to the point of explaining the apparently universal stress response of
organisms in terms of the actions of hierarchical Bayesian control systems, as laid down
in the previous sections. To summarize, this generic response is composed of the fol-
lowing elements: as a first rule, rising levels of stress produce characteristic changes in
internal message passing of living systems. These involve an increase in the strength
of (auto)correlations and variance observed between the various components of a liv-
ing system. This happens up to a discrete ‘tipping point’ (or bifurcation), after which
(auto)correlations drop but variance remains high. Such changes are captured by a single
variable of permutation entropy, which shows that the dynamics of signal transduction
within organisms turns increasingly disorderly until a tipping point is reached (Figure 1).
Such changes coincide with the phenomenon of critical slowing down (CSD): a delayed
recovery after perturbation of the system. When systems move beyond the tipping point,
correlations decrease but variance and entropy levels remain high until the system fails
completely. As a second rule, the timeseries of overt behavior of organisms follows the
same pattern as internal signal transduction: disorder levels gradually rise until a tipping
point is reached. Thirdly, rising levels of stress change the content of an organism’s behav-
ior in an apparently universal way: low levels of stress induce routine (reflexive or habitual)
behavioral policies, whereas moderately high levels cause organisms to show more sophis-
ticated (goal-directed) forms of behavior. When exposed to extreme (near-lethal) levels
of stress, behavior shifts from ‘slow’ to ‘fast’ behavioral policies [14], i.e., organisms shift
their focus from a long-term commitment to fellow organisms and reproductive activity to
behavior that is focused largely on the preservation of self and/or kin. This corresponds to
a shift back from goal-directed to habitual forms of behavior. Lastly, when living systems
remain challenged after having passed the tipping point, they willfully disintegrate (i.e.,
lose their independence from the environment). The state of the system will now linearly
follow that of the environment, amounting to a loss of homeostasis (i.e., an unstable, high
entropy state). Such tipping points usually correspond to malfunction, disease, or the death
of a system.

The sum of these observations can be explained by looking at the actions of hierarchical
Bayesian controls systems, as shown in Figure 5. We argue that ‘prediction error’ can be
read as ‘stress’ and ‘action’ can be read as the ‘stress response’, such that the theory of active
inference can be applied to stress research [21]. In this view, any change in environmental
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conditions may alter an organism’s perception of the world, which produces a different
fit with the organism’s predictive models of the world (goal states). This prediction
error (‘stress’) is used to adjust the predictive model (i.e., belief updating, learning) and
converted into action (a stress response). Hence, when we feel stressed, we actually
perceive the mental and bodily changes that constitute a stress response to a prediction
error. Incidentally, this means that stress can be reduced in two fundamentally different
ways: either by performing an action or by changing expectations or beliefs. This view
has been highly influential in the psychological literature and is applied worldwide, for
instance, during cognitive behavioral therapy (CBT) [113,114].

As mentioned in Section 5, the ascent of prediction error in goal hierarchies adds
levels to a hierarchical model of the world up to a level of sophistication that sufficiently
explains the observed effects. Prediction errors relative to this model are then used to
inspire behavior of corresponding levels of sophistication, starting from simple, low-level
reflexive (e.g., walking) or instinctive forms of behavior (e.g., foraging) to habitual (e.g.,
take a morning stroll) and goal-directed forms of behavior (e.g., finding the shortest route
to a food source in a complex environment). When prediction error (stress) ascends
in information bottleneck structures such as Figure 5, this causes an increasingly large
number of lower-level systems (horses) to be ‘enslaved’ by an increasingly small number
of high-level hub regions (drivers). Rising levels of prediction error, therefore, initially
increase the amount of centrally coherent governance (top-down hierarchical control),
causing the subordinate systems to become increasingly synchronized (coherent). Thus,
we propose that the observed increase in correlations between the various components
of systems that are stressed in the mild-to-moderate range is due to an increase in central
governance exerted by high-level hub structures (Figure 5). Similarly, we propose that
the observed increase in the total variance of such systems may be due to the recruitment
of increasing numbers of subordinate systems. This is because each of these subsystem
produces its own within-level and between-level oscillations between prediction and
prediction error units, which correspond to unique amplitudes and variances (frequencies).
Since the increased involvement of hub structures raises the connectivity between system
components, the number of recurrent connections between such components is also likely
to rise. Subsystems will, therefore, increasingly reinforce each other’s activity through
circularly causal connections to the point where it takes longer for stressed systems to
recover from initial perturbation. This may explain the phenomenon of hysteresis or
‘slowing down’, as quantified by rising autocorrelations (see Section 1). Together, these
changes are likely to affect the permutation entropy of the system (Box 1). On the one hand,
the increase in central integrative governance exerted by hub structures synchronizes signal
transduction between lower-level (subordinate) domains, which imposes some degree of
order and decreases the permutation entropy of the system. On the other hand, however,
every level that is added to a hierarchical model increases the number of microstates (and
microvariances) required to describe the total state and evolution of the system. Since the
amount of information required to describe the total state and evolution of a system is equal
to its (weighted) permutation entropy [23], the recruitment of additional systems will raise
entropy scores. Thus, an equilibrium will ensue between ‘order through synchronization’
by hub units and ‘disorder through recruitment of additional subsystems’. This balance
may at times favor either order or disorder at different trajectories within the mild-to-
moderate range, but empirical studies show that rising levels of stress eventually cause a
net rise in permutation entropy levels (see Section 1).

Although organisms can recruit ever higher (allostatic) levels of control to enhance the
sophistication of their (stress) responses, this cannot go on indefinitely. Since any hierarchy
is finite, there must be some limit to the modeling and problem-solving capabilities of an
organism, i.e., some prediction errors cannot be suppressed even by the most sophisticated
models an organism can produce. Such models are encoded at the top of the goal hierarchy
(the knot of a bowtie), which contains some of the most central hub structures of the
system. When prediction errors reach the top of a goal hierarchy, these high-level hub
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structures are continuously triggered by prediction errors (stimuli) that originate from any
direction within the network structure. In order to respond to such excessive stimulation,
hubs require more metabolic energy than they have access to. When energy demand
exceeds energy supply, this causes hub units to congest and shut down: a phenomenon
called ‘hub overload and failure’ [115]. This can be compared to a high-level horse cart
driver that is overpowered by the sheer number of horses that need to be restrained. In
biophysical terms, hub units reach the limits of their capacity to dissipate energy back into
the environment. Studies show that the most connected nodes in a network (hubs) are
most sensitive to such overload [116]. This means that high levels of stress cause a selective
targeting of hub structures in living systems. Although small world network systems are
known to be robust to random attacks of nodes and links, they are very sensitive to targeted
attacks of hub nodes [117]. Since hub nodes maintain the global connectivity of living
network systems, the selective targeting of such units will cause such systems to fall apart
in a top-down fashion, as a function of node degree: the loss of only a few high-level
hubs will cause information flows to be relayed to hub structures in subordinate parts
of the network, which may subsequently get overloaded, etc., until the system is only
capable of low-level performance (Figure 7). Cascading failures such as these have been
described in power grids, transportation networks, and stock markets [118,119], as well as
in biological systems [51,52] and social networks [120,121]. Since the most sophisticated
models are produced at the top of a goal hierarchy, the top-down collapse of a regulatory
hierarchy forces organisms to move from allostatic (more sophisticated and goal-directed)
to homeostatic (less sophisticated and habitual) levels of control. To our knowledge, this
is the first mechanistic account of the phenomenon of ‘allostatic overload’, which can be
read as a process theory for shifts in behavioral policies toward ‘survival mode’ under
severe levels of stress (e.g., [18]). It is important to note that this loss of hubs is initially of a
functional nature, i.e., they become unresponsive to stimulation, but retain their structural
connections, causing a loss of functional but not structural connectivity. When hub overload
persists (i.e., when stress is chronic), hubs may become permanently unresponsive, causing
a loss of structural connectivity and permanent damage to system integrity [122].

Cascading failures typically involve the occurrence of tipping points [123]. The
abruptness of the change seems to be due to the fact that, at some critical point, only a
small change (e.g., the overload of a single hub node) may be sufficient to cause a chain
reaction that leads to the collapse of a large part of a hierarchy [118,119]. The collapse of
goal hierarchies will leave subordinate structures of the network without central guidance,
causing the balance between functional integration (order) and segregation (disorder) of
states to tip over toward desynchronization and ‘disorder’ (e.g., the horses will panic and
start running wild when the driver falls away) (Figures 2 and 8). This may explain the
sudden rise in permutation entropy that is universally observed in the timeseries of severely
struggling systems. Hub overload and cascading failure may similarly explain the decrease
in number and strength of correlations between system components in terms of the loss of
central integrative connections (reins) maintained by hubs. In contrast, variance remains
high since lower-level systems are no longer coupled and suppressed by higher-level
priors, yet they are continuously excited by incoming prediction error. This overexcitation
of subordinate systems is called ‘disinhibition’ in the psychological sciences [124]. The
massive involvement of independently responding and disinhibited microstates is likely to
make an important contribution to rising permutation entropy scores (see Section 1) [22].

Since failing systems are characterized by low levels of (auto)correlations and high lev-
els of variance, this means that the amplitude-to-error (signal-to-noise) ratio of the system
decreases. In active inference theory, the signal-to-noise ratio is called the ‘precision’ of the
signal (i.e., a quantity that expresses the level of confidence that the information conferred
by the signal is correct). Thus, allostatic overload is a process where model complexity costs
are reduced at the expense of long-term precision (see [125] for a mathematical descrip-
tion of this tradeoff). This makes sense from an evolutionary perspective, where stressed
organisms may become quick to respond but less precise in their actions, as long as this
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saves energy and resources. An advantage of this mechanism is that organisms will have
to spend less time and energy on the integration of large amounts of complex information
(i.e., a reduction in model complexity costs). Prediction errors can now pass from input
to output areas across skip-connections while avoiding much processing in higher-level
throughput areas (goal hierarchies) (Figure 7). This allows organisms to respond more
quickly and strongly to certain situations (disinhibition), providing them with just the edge
needed to escape from a dire situation. As a disadvantage, however, goal hierarchies may
become so shallow and noisy (i.e., unsophisticated and imprecise) that the corresponding
behavioral policies will lack hierarchical correspondence with the environment and fail
to suppress prediction errors in an effective way. In other words, overly flattened goal
hierarchies will produce ‘maladaptive’ behavior. Such inefficient problem solving will
cause the system to require more time to quiet down after initial perturbation, which adds
to the phenomenon of (critical) slowing down. In addition to changes in internal message
passing (such as circular causal loops between system components that keep re-exciting
the system as discussed above), critical slowing down can, therefore, be explained by an
insufficient suppression of prediction error through maladaptive action.

In summary, we expect that low-to-moderate levels of stress produce a net shift of
the balance between functional segregation and integration of message passing in living
systems in favor of functional integration by hub structures, corresponding to a gradual
rise in (auto)correlations, variance, and permutation entropy scores. When stress levels
increase further, a tipping point is reached at which central coherence by hub structures is
suddenly lost, causing a steep rise in permutation entropy scores. These conclusions are in
line with experimental data that show how changes in network topology may contribute to
the formation of tipping points [10]. Our model seems to explain several generic changes in
internal message passing of living systems under rising levels of stress. The next paragraph
focuses on changes in the overt behavior of struggling organisms.

Figure 7. The top-down collapse of a goal hierarchy under severe levels of stress. The vertical escalation
of free energy (model error) in bowtie network structures causes hub structures within the top of the hierarchical
pyramid (the knot of the folded bowtie) to overload and fail as a function of node degree (the number of
connections per node). Since such hubs maintain global (functional) connectivity within the network structure,
their failure causes a top-down collapse or ‘flattening’ of hierarchical structure (i.e., a loss of nested modularity).
Prediction errors (large red arrows) and predictions (not shown) then seek the shortest path from input to
output (or vice versa) via horizontal skip connections, effectively ‘bypassing’ integrative processing at higher
(allostatic) areas within the hierarchy, to produce less well-informed (homeostatic) forms of behavior. This is a
biophysical model of ‘allostatic overload’, which is a dominant theory that explains physiological changes and
shifts in behavioral policies in organisms under extremely stressful conditions. See text for further details.
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Figure 8. Explaining disorder and tipping points in stressed systems. The balance between order and
disorder of a system is at last partially controlled by the coupling of subsystems by central connectors (hub
units). Disorder (including disease) may result from a loss of centralized and integrative coupling that is
caused by a top-down collapse of hierarchical control systems, due to hub overload and failure. This causes
a loss of coherence and increased variance at lower levels within the hierarchy that translate into increased
levels of permutation entropy scores (see text). Organisms self-organize toward a dynamic state in between
complete order (i.e., perfect synchrony of timeseries A–F; upper picture) and complete disorder (i.e., perfect
randomness of timeseries A–F; lower picture). This equilibrium state is called self-organized criticality (SOC;
‘the edge of chaos’; middle picture). A loss of higher (integrative) hierarchical levels of control may shift this
equilibrium toward the disordered side of the spectrum. Although stress levels may rise gradually, the loss
of high-level central control by a cascading failure of high-level hubs structures is a discrete process, causing
discrete transitions from order to disorder. A stress-induced loss of hub structures may, therefore, explain
sudden phase transitions that mark the onset of physical or mental dysfunction, disease, or death. See text for
further details.

As observed, the various form of behavior that are produced by an organism reflect
the level of sophistication of its internal states. Changes that affect internal message passing
of stressed organisms will, therefore, produce behavioral changes that can be observed
externally. To explain the shift away from slow to fast behavioral policies in stressed
organisms, we propose that the top-down collapse of goal hierarchies causes organisms
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to shift from high-level goal-directed (allostatic) to lower-level habitual or even reflexive
(homeostatic) forms of behavior (see Section 5). Since high-level goal states are responsible
for factoring in all kinds of context factors in both space and time (past, current, and future
scenarios of increasing complexity), the collapse of such models will cause organisms to
pursue less sophisticated and more short-term goals: a ‘decontextualization’ of behavior
(see Section 6). Since the top of the goal hierarchy encodes world models at the highest
levels of sophistication (i.e., contextual integration in both space and time), this may explain
why long-term and socially inclusive (normative) goals are often the first to go. Organisms
will instead move toward more short-term and socially selective forms of behavior, which
may include a shift from transgenerational and reciprocal altruism toward kinship selection
(‘nepotism’) and self-preservation, potentially at the cost of other organisms and kin (e.g.,
maternal cannibalism in rodents). In the words of Brecht, ‘Zuerst kommt das Fressen, dann
kommt die Moral’ (fodder comes first, then comes morality). The collapse of normative goal
states may sharpen the self–other dichotomy, which may manifest as increased ingroup–
outgroup behavior (polarization). When stress persists, external (social) and internal (self)
models may be next to collapse. When external models disintegrate, individuals will make
less sophisticated models of the goals or intentions of others, for which reason behavior
will appear to become increasingly asocial in nature. This means that even some forms of
antisocial behavior (e.g., deceit) are likely to diminish, since these require some insight into
the motives and intentions of others (see below). Behavioral signs of collapsing social goal
hierarchies may include lesser amounts of (long term) kinship-promoting activities such
as parental or grandparental investment. With the possible exception of (grand)parents
that sacrifice themselves for their offspring and admirable individual differences, it can be
stated that severe and prolonged stress levels will generally cause organisms to economize
on long-term and socially inclusive policies to focus on self-preservation, to the point where
even self-preservation is at stake. When internal (self) models disintegrate, this causes
fragmented and aimless behavior. Together, such changes may translate into rising levels
of permutation entropy in behavioral timeseries, including constituent elements such as
decreased (auto)correlations and high levels of variance (see below). When goal hierarchies
collapse further, the decoupling between system components may become so severe that
the system as a whole disintegrates. The internal state of a system will then linearly follow
that of its environment (i.e., a complete loss of homeostasis), which usually corresponds to
disease or the death of the system. In short, the overload and cascading failure of central
integrative control may explain several of the generic behavioral features of living systems
under rising levels of stress.

8. Permutation Entropy as a Universal Disorder Criterion

In the previous section, we showed that living systems can be modeled as hierarchical
Bayesian control systems in which central integrative (allostatic) control falls apart in a top-
down manner as a result of rising levels of stress, which can be defined as prediction error
or variational free energy. Given the multitude of observations that similar behavior can
be observed in nonliving systems, one may wonder whether more general laws exist that
underlie such changes in living and nonliving systems. In this paper, we argue for the latter
position by showing that living systems are a special class of open dissipative systems, for
which general rules apply. Open dissipative systems are collections of coupled nodes that
receive a constant flux of energy or matter from their surroundings, which they need to get
rid of (dissipate) in the most efficient way possible [126]. Experimental studies and in vivo
experiments have shown that the most efficient way in which networks can dissipate energy
back into their environments is when their nodes organize themselves into nested modular
(hierarchical) structures [127] and start to oscillate [116]. Apparently, the short pathlength
and nested modular structure of small world networks (e.g., living systems) result from
the necessity to dissipate energy back into the environment as efficiently as possible. The
same can be said for the emergence of oscillations, e.g., in gene activity, insulin secretion,
neuronal firing rates, or social rhythms. The simple necessity for efficient energy dissipation
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apparently causes the spontaneous emergence of ordered patterns in both structure and
function of coupled systems: a phenomenon called ‘self-organization’ [11,128,129]. As
observed in Section 3, the local emergence of ordered patterns (e.g., crystals) is allowed
as long as this leads to a global increase in the entropy of the universe. Similarly, living
systems have found a way to temporarily maintain their local form and order, by being
able to dissipate energy as efficiently as possible back into the environment (which is to
reduce variational free energy). This means that living systems will lose their internal
coherence and fall apart when free energy (stress) is not dissipated quickly enough into the
environment. We argue that this is essentially what happens in any system that is loaded
up with free energy (stress) beyond its capacity to dissipate it back to the environment: the
accumulation of such energy will cause a disintegration of system components and system
failure (i.e., malfunction and death), causing a rise in permutation entropy scores. This is
explained further below.

In lifeless open dissipative systems, the flow of energy through a system is mediated
by its components that engage in some form of coupling. For instance, granular media such
as water molecules, snowflakes, grains of sand, or pieces of the Earth’s crust act as coupled
components that distribute chemical or mechanical energy across a network of similar
components [49]. As observed, the simple need for optimal energy dissipation causes such
systems to self-organize toward a network structure with an optimal level of (nested) mod-
ularity [49]. Such structural characteristics are in turn thought to influence the dynamics of
such systems, producing a dynamic interplay between the structure and function of the
system [130]. Since the various scale levels of a nested modular network system correspond
to different levels of segregation and integration of energy flows [127], this means that open
dissipative systems automatically arrive at an optimal balance between the integration and
segregation of energy flows. Whereas functional integration corresponds to some degree
of predictability through synchronization (order), functional segregation corresponds to a
state of relative randomness through desynchronization (chaos). Thus, systems of coupled
oscillators self-organize toward an equilibrium state in between order and chaos that is
called ‘self-organized criticality’ (SOC) [131]. This ‘edge of chaos’ [132,133] is a special place
where the level of coupling between system components is such that energy flows are able
to propagate through the network with enough freedom to cause ‘cascades’ of node activity
of some size and duration before dying out; too much coupling will cause such cascades to
die out quickly (when coupling is inhibitive) or rather produce massive synchronization
(when excitatory); both phenomena involve a state of high predictability or ‘order’. Too
little coupling, on the other hand, will cause a lack of synchronization and ‘disorder’.
Studies show that the transitional zone between ordered and disordered states of network
systems is a discrete one, i.e., such zones are referred to as ‘phase transitions’ or ‘tipping
points’ (‘bifurcations’, ‘catastrophes’, ‘percolation points’, or ‘regime shifts’) [123]. Tipping
points describe a situation where only a small amount of energy is sufficient to push a
system from one global (integrated, ordered) state into another (segregated, disordered)
state [123]. Examples of such states in nonliving systems are melting or boiling points,
where, e.g., ice represents a highly ordered state with strong connections between water
molecules and only a small increase in temperature is sufficient to cause a cascading failure
of hydrogen bonds (i.e., melting), allowing all water molecules to move around more freely
as water. The exact origins of tipping points are still unknown, but network topology
appears to be an important factor [10,130]. In systems of coupled oscillators, the flow
of energy may arrange system components in such a way that it will arrive at a point
where only a few central nodes are responsible for connecting all of the system’s nodes
into one giant ‘connected component’ [11]. The removal of only a few of such nodes due
to energy overload may then trigger a cascading failure [119], causing the system to lose
global connectivity and move from a state of relative order to a state of relative disorder.
Such transitions may occur in any (randomly wired) open dissipative network system,
but are especially prevalent in nonrandomly wired (‘nonegalitarian’) systems where a few
key connectors (hubs) are responsible for maintaining global connectivity [134] (Figure 8).
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Since living systems in most cases tend to be of the nested modular and nonegalitarian
type [135], this may explain why critical phenomena are frequently observed in struggling
organisms. We believe that the nonegalitarian nature of living systems has been insuffi-
ciently incorporated in today’s models of tipping points or critical slowing down, and that
doing this may significantly improve those models.

In living systems, information processing takes the form of hierarchical Bayesian
inference, which can be equated to free-energy dissipation in nested modular systems
(a gradient descent on free energy, see above). The need for efficient energy dissipation
(information processing) will cause living systems to automatically tune toward a level
of nested modularity and corresponding equilibrium between integration (order) and
segregation (chaos) that allows for optimal message passing. This means that the edge of
chaos is a place where conditions for hierarchical Bayesian inference are optimal: too much
coupling (functional integration, order) will interfere with the articulation of hidden causal
factors (and, hence, model formation), but so does too little coupling (functional segregation,
disorder). Instead, organisms automatically produce world models of optimal hierarchical
depth (sophistication, see above). A simple need to get rid of an excess of free energy will
cause living systems to automatically tune toward a point where information processing
is optimal and (consequently) where the stress adaptation mechanism of organisms can
operate most effectively. In other words, the basic laws of thermodynamics appear to cause
living systems to automatically produce adaptive behavior in response to environmental
fluctuations, to the best of their abilities. Of course, this is only true up to a certain (tipping)
point. When the influx of free energy (stress) exceeds the dissipation capacity of the
organism, a point will be reached where only a few key connectors are responsible for
maintaining global network connectivity. At that point, even a small increase in free-energy
levels (stress) will cause such structures to shut down, triggering a cascade that causes to
the system to fall apart into disconnected components. This pushes system dynamics over
the edge of chaos, toward disorder and system failure (Figure 8). The overflattening of a
goal hierarchy therefore produces Bayesian models of suboptimal sophistication that cause
the organisms to show maladaptive behavior (i.e., dysfunction or disease; see below).

This concludes our discussion of the emergence of disorder in living systems under
conditions of severe stress. We showed that severe stress can be defined as an influx of (free)
energy beyond the capacities of open systems to dissipate energy back to the environment.
This causes a selective targeting of hub structures that maintain a nested modular hierarchy.
The subsequent collapse of hierarchical structure involves a transition from a relatively or-
dered (synchronized, integrated, adaptive) state to a relatively disordered (desynchronized,
segregated, maladaptive) state. The top-down collapse of goal hierarchies in living systems
appears to be a special case of cascading failure in open dissipative systems that overload
with free energy. Losing control and the sudden emergence of disorder may, therefore, be a
universal feature of any open system that disintegrates as a result of a free-energy overload.
As a result, permutation entropy (or any other suitable measure of disorder for that matter)
may serve as a universal disorder criterion.

9. Disorder as a Universal Measure of Disease

In living systems, the term ‘disorder’ is often used as a way to describe dysfunction
or disease of such systems. Whereas the Anglo-Saxon scientific literature often speaks
of ‘disorder’, Dutch and German literature tends to use words such as ‘disturbance’ or
‘dysregulation’ when referring to dysfunction or disease. Such use of words speaks to a
general intuition that disease and other forms of maladaptive behavior somehow involve
a problem of control and a loss of ‘order’. In the previous section, we showed that the
emergence of disorder may be a generic feature of open dissipative systems that overload
with free energy and reflect a loss of central integrative governance [27,36]. The ubiquitous
presence of rising disorder levels, tipping points, and other critical phenomena in living
systems under difficult conditions suggests that many forms of malfunction and disease
involve a generic mechanism (see Section 1). We therefore propose that any physical,
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mental, or social disorder eventually involves a loss of integrative control due to an excess
of free energy (stress, prediction error). The ensuing overflattening of goal hierarchies
then causes suboptimal inference and maladaptive behavior (see above). The cascading
failure of hub structures is a key element in our theory and is increasingly being recognized
as an important factor in the emergence of physical and mental disorders. Examples
involve a cascading failure of hub genes in metabolic disease [136] and cancers [137], hub
cells in diabetes mellitus [116], and hub brain regions in neurological disease [115] and
mental disorders [138]. Studies have shown that similar processes govern the collapse
of social hierarchies and the emergence of social disorder in animal and human societies
(see below). Nevertheless, this theory remains to be tested by systematically examining
(permutation) entropy scores and other hallmarks of critical slowing down as a function of
the hierarchical depth of goal hierarchies in a diverse range of living systems under severe
levels of stress. Due to the ethical difficulties of such studies, a valuable approach is to test
these assumptions in silico, by systematically examining changes in signal transduction and
overt behavior of hierarchical Bayesian control systems, e.g., using hierarchical machine
learning techniques. In our recent paper, we made several recommendations for such
studies [21].

Although disordered states tend to be undesirable in organisms, this does not mean
that order is always good and disorder is always bad. As stated above, signal transduction
in organisms is normally poised on the edge between order and disorder, reflecting optimal
information processing. Some level of chaos (disorder) is, therefore, required for organisms
to respond in a lively and creative fashion to environmental challenges [133]. Overly
ordered states may on the other hand produce malfunction, e.g., when overly controlling
hierarchies exert too much influence over hierarchical message passing at lower hierarchical
systems and cause inflexible states of low adaptability. Eventually, however, any problem in
the balance between order and disorder is likely to produce high levels of prediction error
that cause organisms to ‘lose control’ and system dynamics to tilt heavily toward ‘disorder’.

Since prediction error (stress) can be defined as the difference between a prediction
and an actual perception, it is fundamentally a relative measure. This means that the cause
of stress may lie either with the individual, since it expresses some rare or extreme setpoints
(encoding rare or extreme niches that are difficult to occupy), or with the environment,
which may itself be so rare or extreme that that it does not fit otherwise frequently expressed
setpoints. In both cases, stress may increase to such levels as to cause goal hierarchies to
collapse and disorder to emerge. For example, thermophilic or acidophilic bacteria may
thrive in hot-water springs or extremely acid conditions, but fail to thrive under more
common conditions that would otherwise be considered favorable for most organisms.
Conversely, most organisms that encode quite common environmental niches as world
models will express high levels of prediction error in response to evolutionary ‘unfamiliar’
stressors such as toxins or ultrahigh temperatures. This shows that the concepts of stress
and disorder that we propose are fundamentally relative: one set of priors (thermostats,
goals, world models) may cause an individual to have a nice fit with its current environment
and remain stable, whereas the same set of priors may produce stress and disorder in some
other niche. The relativity of stress and disorder, however, does not detract from the
objectivity with which their presence can be established.

Since a loss of integrative control may explain the emergence of disorder across
scale levels, we will now examine how it applies to the specifically human perspective,
by discussing how stress may produce disorder at intraindividual, interpersonal, and
population levels. These scale levels are the main focus of psychiatry as a medical discipline,
with its traditional focus on biological, psychological, and social determinants of mental
illness [139]. This represents a novel approach, and the examples that are given can be read
as avenues for further research.
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10. The Human Perspective: Disorder at the Individual Level

Just like woodlice, humans can be modeled as hierarchical Bayesian control systems
with goal hierarchies that encode the econiches they wish to explore. The major difference
is that human world models are more sophisticated, which allows them to encode complex
econiches at high levels of parsimony and abstraction (see above). Since humans are a
highly social species, their goal hierarchies often encode social goals (e.g., partners, jobs,
and social positions), and stress often involves social stress (e.g., not finding a suitable
partner or job, or not reaching some social position in time). Where people fail in the
pursuit of such goals, stress and disorder may emerge.

Within the field of psychiatry, is has been known for some time that there are at
least two distinct types of mental disorders. One involves episodic disorders, which
represent a temporary decline in mental abilities with respect to a previously attained
level of functioning (e.g., panic attacks, major depression, or psychotic episodes). Such
disorders typically emerge and resolve at relatively discrete moments (e.g., within hours
or days), indicating the presence of tipping points [4,5]. Another type of psychiatric
problems involves trait disorders, in which patients exhibit a series of stable mental traits
that together increase the risk of episodic disorders across longer timeframes (e.g., avoidant,
dependent, or borderline personality profiles). With respect to acute or episodic disorders,
is has been proposed that such disorders represent various forms of ‘false inference’,
i.e., a suboptimal balance between top-down predictions and bottom-up belief updating
by prediction errors [140]. Interestingly, this overall balance between predictions and
prediction errors is controlled by the ‘precision’ of such signals, i.e., their signal-to-noise
ratio, which expresses the overall level of ‘confidence’ that the information conveyed
by the signal is correct (see above). On the one hand, such problems of inference may
involve the emergence of ‘hyperprecise priors’, which are models that are overly dominant
in suppressing prediction errors and leave little room for alternative explanations of
the observed events (this could explain the occurrence of e.g., hallucinations, delusions,
phobias, and other anxiety disorders). On the other hand, prediction errors may become
overly precise, signaling high confidence that some signal carries consistent uncertainty
and leaving little room for systems to converge upon a suitable explanation of observed
events (this may explain, e.g., feelings of dissatisfaction, emptiness, pathological doubt,
and obsessive–compulsive behavior) [140]. Note that the same mental problems can be
explained by presuming hypoprecise priors and hyperprecise prediction errors: all such
variants are likely to exist in the form of (epi)genetic variations in neurotransmission
and cytoarchitecture, which may explain different subtypes of mental disorders [141]. As
observed, high levels of stress cause a net decrease in precision levels in living systems,
which may modulate the precision balance and cause suboptimal inference. In the human
brain, the precision of signals is controlled by neuromodulatory neurotransmitters such
as serotonin, noradrenaline, dopamine, and acetylcholine [140]. Most neurotropic drugs
that are used in psychiatry modulate the release of such neurotransmitters, which may be
beneficial in correcting the precision balance and reducing symptoms [142].

A problem of the precision balance provides a likely explanation for various forms of
psychopathology, but does not in itself explain the episodic versus chronic nature of such
phenomena [21]. We, therefore, propose that episodic disorders result from a (temporary)
collapse of goal hierarchies in response to stress, whereas trait disorders result from a
failure of such hierarchies to develop normally. In episodic disorders, a cascading failure of
a goal hierarchy may reduce integrative control until the system passes the edge of chaos,
producing tipping points and disorder. This can be compared to a cascading failure of
a multilevel thermostat which then gives off the wrong values, causing problems with
heating the house (producing maladaptive behavior). In trait disorders, on the other hand,
people may inherit or acquire a set of priors (thermostat settings) that encode a predilection
for certain (social) econiches. When such prior settings do not match the actual state of
the environment, prediction error (stress) and disorder may emerge. For example, people
may differ with respect to their desire to explore new surroundings or to avoid negative
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outcomes. When the environment matches such predilections (e.g., the adrenaline seeker at
the edge of the Grand Canyon, or the couch potato in front of the TV), prediction error and
‘stress’ are minimal, and disorder is some distance away. When the opposite is true (i.e.,
the adrenaline seeker sitting on a couch and the couch potato living on the edge), fitness is
poor, and disorder may emerge. People with extreme prior settings (‘temperaments’) can
in this respect be compared to extremophile bacteria that thrive in extreme environments
but not in others or to central heating systems with high thermostat values. Such systems
perform well in hot climates but overheat and break down in colder climates, since they
are unable to reach some extremely high goal temperature. The more rare or extreme
such prior settings are, the more difficult it will be for an individual to find econiches
that are equally rare or extreme. Niche exploration may, therefore, take a long time and,
consequently, chronic prediction error will occur (i.e., chronic stress). This increases the
chances of collapsing goal hierarchies and episodic disorders.

Fortunately, people do not simply inherit a fixed set of priors which they have to deal
with throughout the rest of their lives. The innate set of priors is tuned by a continuous
process of belief updating, which allows them to meet environmental conditions halfway.
Moreover, people may gain additional (allostatic) levels of control over their innate priors
through the vertical outgrowth of their goal hierarchies. This involves the addition of
hierarchical layers to a hierarchical control system over the course of individual develop-
ment [143]. Belief updating within these successive hierarchical layers globally corresponds
to Pavlovian, habit- and goal-directed learning [20]. Thus, people ‘grow’ a set of world
models that encode increasingly sophisticated (social) econiches, which globally involve
internal (self), external (social), and crosscutting (normative) models. Together, such high-
level models may be referred to as ‘character’, and the combination of temperament and
character maturation is called ‘personality development’ [144,145]. Character development
may allow people to find a suitable (social) niche after all, even when their innate set of
priors (temperament) is rare or otherwise extreme. When character development fails for
any particular reason, this results in less sophisticated world models that will cause people
to seek out suboptimal (social) econiches (i.e., show maladaptive behavior). Such shallow
world models are more likely to collapse during stress and reach a hierarchical depth below
which the system tips toward an undercontrolled state of disorder. This would be a testable
model of the emergence of episodic disorders or ‘crises’ in patients with traits disorders
such as ADHD, autism spectrum, or personality disorders.

The specific phenomenology that ensues in various mental disorders can be further
explained by observing the general architecture of hierarchical Bayesian control systems
(Figures 5 and 6). Depending on the location and depth of the collapse of such structures
under stress, different symptoms may be produced [21,140,146]. Since stress preferentially
affects the integrative top of a goal hierarchy, a top-down collapse from goal-directed to
habitual, instinctual, or even reflexive behavior may generally be observed in episodic
disorders (Section 6). This may explain why a decline in self-functioning, interpersonal
functioning, and/or normative functioning (a collapse of high-level goal-directed functions)
is a common hallmark in different forms of mental illness, whether involving episodic or
trait disorders (Figure 7, Section 7) [147,148]. Since the functional integration of special-
ized brain regions is important for maintaining a sense of awareness and proper cogni-
tion [149,150], the functional segregation produced by collapsing hierarchies may explain
a loss of awareness with respect to self-referential, social, or transpersonal goals. When
internal (self)models become less sophisticated or precise, people report difficulties ex-
periencing a coherent sense of self. Depending on the depth of such a deficit, this may
involve symptoms that vary from a lack of agency or autonomy to a sense of depersonal-
ization, disintegration, or dissociative disorder [151–153]. When external (social) models
are involved, people may become unaware of the needs and intentions of others (have
difficulty mentalizing). This may cause frequent misunderstandings, inspire paranoid
interpretations of events, or prevent individuals from experiencing a sense of communion
(i.e., showing interest in others, caring for and trusting other people). When crosscutting
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(normative) models are involved, people may show a reduced ability to feel connected
across larger individual differences and timeframes (generations) or have the experience
that life lacks inherent meaning: a state that is called ‘demoralization’. Demoralization
appears to be present in nearly all forms of mental illness and is arguably the most im-
portant reason for people to seek treatment [154]. This could be explained by the fact that
stress causes the highest regions of a goal hierarchy to collapse first, which we propose
harbors a crosscutting (normative) hierarchy that is responsible for generating our ‘highest
goals’. A collapse of such high-level structures may then produce problems further down
the hierarchy. For instance, a failure or disinhibition of input (perceptive) hierarchies may
produce hallucinations and other perceptual distortions, and a disinhibition of affective
hierarchies may produce anxiety or mood disorders, whereas, when output (action control)
hierarchies are involved, this may produce problems with executive functions (e.g., a loss
of praxis and disorders of motor or endocrine planning).

To summarize, a hierarchical taxonomy of psychiatric disorders can be drafted that
can be linked to suboptimal inference at different scale levels and locations within a
hierarchical Bayesian control system. This idea relates strongly to one of the leading
alternatives to the traditional (categorical) taxonomy of psychopathology as formulated
in the Diagnostic and Statistical Manual for Mental Disorders (DSM-5): the hierarchical
taxonomy of psychopathology (HiToP) [155]. The firm rooting of active inference in
neuroscience and biology holds promise for integrating another alternative classification
system (RDoc) into clinical practice, which puts more emphasis on the neurobiological
underpinnings of psychiatric disorders [156]. According to DSM-5, a set of mental states
and traits qualifies as a disorder if a certain set of mental states interferes ‘in a significant
way’ with everyday personal functioning (e.g., maintaining relationships, managing a job,
or performing activities of daily living). This introduces a degree of subjectivity to the
definition of ‘disorder’ that is quite valuable, since objective measures may ignore aspects of
subjective experience that may be crucial for determining the level of personal suffering. On
the other hand, such subjectivity makes it difficult to quantify and compare mental states.
We, therefore, propose to use permutation entropy as an objective disorder criterion, which
can be used to link ‘disorder’ at different levels of biological organization to subjective
experience and personal suffering. This may include the calculation of permutation entropy
scores at level genetic, neurophysiological, psychometric, social, or demographic scales in
order to quantify disorder at various levels (see Section 1).

At this point, it is important to note that disorder cannot always be measured within
the individual itself, but rather within the environment that surrounds the individual: so-
called ‘internalizing individuals’ have a tendency to model the hidden cause of experienced
prediction errors within themselves and to engage in self-corrective activity in order to
solve such errors (e.g., through a revision of their assumptions or by acting in response to
the presumed internal deficit) [157]. In such a case, any stress or disorder is more likely
to accumulate within the individual itself and take the form of a psychiatric disorder. In
contrast, externalizing people tend to project the hidden cause of experienced errors outside
of themselves and to reduce prediction errors by performing actions that are aimed at
correcting the presumed external problem (with relatively little belief updating of their self-
models). In that case, stress and disorder are more likely to accumulate in the environment
rather than in the individual itself [157]. Our model, therefore, shows that people may still
‘have a problem’ even if they themselves do not show any signs of stress or disorder, since
they induce a lot of disorder in their environments. This departs from the current disorder
criterion as formulated in the DSM-5, which states that, in order to qualify as a disorder,
a mental phenotype must occur “within an individual” and cause “clinically significant
distress or disability” [158]. A more relative definition of mental disorder would, therefore,
include ‘stable people’ that always sleep well but meanwhile produce unsophisticated
models and corresponding actions that leave their environments in a state of complete
uproar. This example illustrates the fact that the maladaptive behavior of one individual
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may pass on to other individuals, corresponding to a scale transition. This is discussed in
the next section.

11. The Human Perspective: Disorder at the Interpersonal Level

Recent studies have shown that the free-energy principle can be used to model in-
formation transfer in social networks of animals and humans (i.e., communication pat-
terns) [159,160]. A model has been proposed in which one individual monitors the behav-
ioral output of another in order to infer the hidden common causes behind the observed
behavior (i.e., its meaning or intentions). In order to read their mutual intentions, organ-
isms must synchronize their responses, which in this view defines a social tie. Predicting
the intentions behind another person’s behavior becomes increasingly difficult when the
observed behavior becomes increasingly unpredictable. This may happen when a subject’s
world model flattens to the point where the corresponding behavior of the individual
loses its hierarchical correspondence with the actual state of the world. Such ‘maladaptive
behavior’ is marked by high levels of permutation entropy (disinformation, low levels of
predictability, see Section 1). This can be the case, e.g., in psychiatric patients with affective
or psychotic disorders, in which the connection between the outside world and observed
behavior does not seem to make sense (i.e., is unpredictable). When the behavioral output
of some individual is sufficiently unpredictable (maladaptive), this may raise prediction
error (stress) levels in another individual to the point where it causes the goal hierarchy
of this new individual to collapse and the individual to show unpredictable (maladap-
tive) behavior of his own. Such ‘disorder’ may consequently be conveyed upon yet other
individuals or feed back to the first individual to form a closed loop. Thus, disorder
(disinformation) may spread through social networks (Figure 9). In an extreme example,
individual 1 may be highly annoyed by the loud music produced by individual 2 (their
stressed-out neighbor). This raises stress levels to the point where it causes a collapse of
hierarchical control in individual 1, who is subsequently unable to factor in the needs of
individual 2 (e.g., pay them a visit when they need help). Based on their decontextualized
models, individual 1 then decides to make some noise of their own, keeping individual 2
(and perhaps some others) awake and removing any residual levels of control that individ-
ual 2 might have. Individual 2 then gets back at individual 1, etc. Thus, people may hold
each other captive in complex webs of underregulated reflex arcs that are self-sustaining
and difficult to extinguish, since they are insufficiently suppressed by more sophisticated
(contextualized and socially inclusive) world models (Figure 9A). This can be compared to
a neurological clonus, which is a disinhibited reflex that sustains itself by means of its own
motor response, which serves as a trigger for a novel response. Such pathological reflexes
are caused by the disappearance of higher-order regulatory functions (e.g., by a tumor or
an infarction) that normally suppress the primary reflex arc. Similarly, the ‘social clonus’
may cause strong loops in social relationships (such as intense interpersonal conflict or
symbiotic relationships) due to a lack of top-down regulatory constraint. Indeed, several
studies have shown that emotional states such as (un)happiness and loneliness or mental
illness such as major depression may spread through social networks in ways that are
analogous to infectious disease, although a general mechanism for such ‘social contagion’
seems to be lacking [161]. The free-energy principle may explain such effects in terms
of the spread of (dis)information through social networks in the context of insufficient
hierarchical control.
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Figure 9. The spread of disorder through social networks as a function of hierarchical control. Disorder may spread through
social networks as a function of the amount of hierarchical control. Two special cases of mutually reinforcing social interactions are shown.
(Panel A) The social clonus. This is a self-propagating (circularly causal) action–perception cycle between people (or communities of
people) that is caused by a loss (or lack) of central integrative processing, e.g., during episodic disorders or in personality disorders.
The unpredictable responses (maladaptive behavior) produced by individual/population 1 serve as input to individual/population 2
that similarly lacks the ability to view such behavior in a broader context. This results in a maladaptive response that feeds back to
individual 1, which raises stress and disorder levels within individual 1, and the cycle repeats. Social clonuses may generalize to larger
social communities via collateral connections, producing disorder at a population level. Ln|M| = whole system permutation entropy.
(Panel B) Improving hierarchical control (e.g., by recovering from an episodic disorder or promoting the outgrowth of sophisticated goal
hierarchies (personality development)) puts an intrinsic break on the spread of maladaptive behavior (disorder) though social networks.
See text for details.

The above is an extreme example of how a collapse of goal hierarchies may cause
disorder or disinformation to spread through social networks (either in tight social loops
or in wider social communities). A more delicate transmission of disinformation may take
place in less extreme situations, e.g., when goal hierarchies are only mildly underdeveloped,
as in personality disorders or intellectual deficits. Such ‘shallow’ world models may
produce subtle forms of maladaptive behavior, which may only slightly raise disorder
(disinformation) levels in other individuals, causing social networks to become slightly
noisier. In short, the transmission of disorder (unpredictability) through social networks,
as well as the emergence of vicious cycles between people, is a function of the hierarchical
depth of all goal hierarchies that lie along the traveled path. A natural resistance to such
spread would, therefore, be to encourage individuals to develop mature and contextually
rich goal hierarchies (i.e., by recovering from acute mental illness, or through education
or psychotherapy; Figure 9B). The fact that people form social ties that are based on the
predictability of their responses highlights the importance of a shared normative set in
the form of an overarching predictive model, which promotes social connectivity across
large individual differences by emphasizing communalities between people [106,107,159].
Without such high-level constraint, self-propagating patterns of disorder may eventually
generalize to population levels, where large groups of individuals enter into a collective
state of disorder (e.g., lingering conflicts or war). This is discussed in the next section.
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12. The Human Perspective: Disorder at a Population Level

By now, many studies have shown that the ‘scale-free’ principles of network archi-
tecture and function that govern living systems at different scale levels of organization
also apply to social networks. Scientists have long been fascinated by the small world
structure of social networks that allow any two persons on this earth to be connected
through an average of only six degrees of separation [162]. Just like living systems at
smaller spatial scales, social communities are held together by a limited number of hub
individuals such as kings and queens, presidents, CEOs, pop idols, influencers, news
readers, professors, schoolteachers, and social workers. Large social networks consistently
show a nested modular (hierarchical) information bottleneck structure, just like network
systems at a molecular and cellular levels [163,164]. This suggests that some parts of social
networks are dedicated to input (perception), throughput (goal setting), and output (action)
of whatever messages are passed between individuals. Social networks also display dy-
namic phenomena that resemble features of hierarchical message passing in living systems,
such as oscillations, bursts, and tipping points that define the spread of infections, mass
psychosis, mass hysteria, or riots [161,165–167]. Such processes are increasingly studied
from a biophysical perspective, sparking the existence of a new field called computational
sociology [168–170]. The many parallels that exist between signal transduction within
single organisms and information transfer within social networks have led scholars to
reserve the term ‘superorganism’ for some of these collectives (such as ant and termite
colonies, beehives, and communities of blind mole rats). Although humans generally show
a larger level of individual autonomy than the individual agents of a superorganism, it has
been argued that human collectives can flexibly behave as superorganisms under certain
conditions (e.g., [171]).

Despite such findings, however, the question remains whether the analogy with
multicellular organisms ends here, or whether social systems are indeed involved in some
form of active hierarchical Bayesian inference. In order to answer such questions, future
studies may want to examine whether a division of labor exists between individuals that
act primarily as priors (e.g., issuing hypotheses) and those that act as prediction error units
(issuing deviations from these hypotheses). For instance, scientists or defense lawyers may
be engaged in circularly causal dynamics of hypothesis generation and falsification. When
compared to other living systems, however, human individuals are more likely able to
flexibly shift their social roles as priors or prediction error units depending on the topic
discussed. At a larger spatial scale level, the bowtie structure of social networks suggests
a global division of labor across collective perception, goal setting, and action control. It
may, therefore, be worthwhile to study the distribution of social roles and professions
across these global domains of the social network. For instance, global perception may be
shaped by journalists, scientists, and other influencers that feed the collective with novel
information and facts (input). Collective goal setting may involve a legislative power that
processes such information at a more abstract level to draft new laws (i.e., a hierarchy
of priors). These are then criticized and updated by a house of representatives (i.e., a
hierarchy of prediction errors), after which a judiciary power applies these updated laws
to issue out policies (action control). The executive branch (output) then enforces these
laws onto the environment (e.g., soldiers and police). In this model, the departments of
internal and external affairs are involved in generating self-models and social models at
the level of nation states, whereas crosscutting (or normative) models may be formed by
some philosophical or religious institute of power.

Studies show that social networks may display cascading failures of social hierarchies
in response to high levels of interpersonal traffic (e.g., a collapse of the social chain of
command) [120,121,165]. In stressful situations, a mild flatting of a social hierarchy may
be an adaptive response of social systems in times of crisis. This may speed up response
times of collective decision making by bypassing elaborate processing at the top of social
hierarchies (e.g., throughout history, a ‘strong man’ was appointed in times of crisis to force
certain decisions through parliament). However, an overflattening of a social hierarchy
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may produce a state of disinhibited disorder within its lower ranks [120,121,165]. At a
higher-scale level of social organization, a collapse of integrative government may cause
the functional segregation of social communities and individuals, leading to increased
polarization and interpersonal conflict [172]. This corresponds to a state of suboptimal
inference of collective goal states and the production of maladaptive behavior at group
level. As anywhere else in living nature, such changes should translate into rising levels of
permutation entropy in hierarchical message passing (e.g., Twitter messages or other social
media). We, therefore, argue that ‘losing control’ is basically the same process anywhere,
whether involving bacteria succumbing to antibiotics, people developing physical or mental
disorders, or social systems slipping into civil war. Permutation entropy may be a universal
way to quantify disorder in timeseries at each of these scale levels of biological organization
and to take the necessary precautions.

13. Conclusions

We reviewed the concept of permutation entropy as a universal disorder criterion.
The allostatic overload and cascading failure of living systems and the emergence of
disorder in response to stress appears to be a special case of the functional or structural
disintegration of open dissipative systems as a universal response to a free energy overload.
When confirmed in experimental studies, physical, mental, and social disorders can be
described, predicted, and understood using the same mathematical language. This unifying
principle may help to promote collaboration amongst a diverse range of disciplines and
urge scientists to push forward a common research agenda that may speed up discoveries
in all relevant fields.
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Abstract: Collective intelligence, an emergent phenomenon in which a composite system of multiple
interacting agents performs at levels greater than the sum of its parts, has long compelled research
efforts in social and behavioral sciences. To date, however, formal models of collective intelligence
have lacked a plausible mathematical description of the relationship between local-scale interac-
tions between autonomous sub-system components (individuals) and global-scale behavior of the
composite system (the collective). In this paper we use the Active Inference Formulation (AIF), a
framework for explaining the behavior of any non-equilibrium steady state system at any scale, to
posit a minimal agent-based model that simulates the relationship between local individual-level
interaction and collective intelligence. We explore the effects of providing baseline AIF agents (Model
1) with specific cognitive capabilities: Theory of Mind (Model 2), Goal Alignment (Model 3), and
Theory of Mind with Goal Alignment (Model 4). These stepwise transitions in sophistication of
cognitive ability are motivated by the types of advancements plausibly required for an AIF agent to
persist and flourish in an environment populated by other highly autonomous AIF agents, and have
also recently been shown to map naturally to canonical steps in human cognitive ability. Illustrative
results show that stepwise cognitive transitions increase system performance by providing comple-
mentary mechanisms for alignment between agents’ local and global optima. Alignment emerges
endogenously from the dynamics of interacting AIF agents themselves, rather than being imposed
exogenously by incentives to agents’ behaviors (contra existing computational models of collective
intelligence) or top-down priors for collective behavior (contra existing multiscale simulations of
AIF). These results shed light on the types of generic information-theoretic patterns conducive to
collective intelligence in human and other complex adaptive systems.

Keywords: collective intelligence; free energy principle; active inference; agent-based model; complex
adaptive systems; multiscale systems; computational model

1. Introduction

Human collectives are examples of a specific subclass of complex adaptive system,
the sub-system components of which—individual humans—are themselves highly au-
tonomous complex adaptive systems. Consider that, subjectively, we perceive ourselves
to be autonomous individuals at the same time that we actively participate in collectives.
Families, organizations, sports teams, and polities exert agency over our individual be-
havior [1,2] and are even capable, under certain conditions, of intelligence that cannot be
explained by aggregation of individual intelligence [3,4]. To date, however, formal models
of collective intelligence have lacked a plausible mathematical description of the functional
relationship between individual and collective behavior.

In this paper, we use the Active Inference Framework (AIF) to develop a clearer un-
derstanding of the relationship between patterns of individual interaction and collective
intelligence in systems composed of highly autonomous subsystems, or “agents”. We

Entropy 2021, 23, 830. https://doi.org/10.3390/e23070830 https://www.mdpi.com/journal/entropy147



Entropy 2021, 23, 830

adopt a definition of collective intelligence established within organizational psychology,
as groups of individuals capable of acting collectively in ways that seem intelligent and
that cannot be explained by individual intelligence [5] (p.3). As we outline below, collective
intelligence can be operationalized under AIF as a composite system’s ability to minimize
free energy or perform approximate Bayesian inference at the collective level. To demon-
strate the formal relationship between local-scale agent interaction and collective behavior,
we develop a computational model that simulates the behavior of two autonomous agents
in state space. In contrast to typical agent-based models, in which agents behave according
to more rudimentary decision-making algorithms (e.g., from game theory; see [6]), we
model our agents as self-organizing systems whose actions are themselves dictated by the
directive of free energy minimization relative to the “local” degrees of freedom accessible
to them, including those that specify their embedding in the larger system [7–9]. We
demonstrate that AIF may be particularly useful for elucidating mechanisms and dynamics
of systems composed of highly autonomous interacting agents, of which human collectives
are a prominent instance. But the universality of our formal computational approach makes
our model relevant to collective intelligence in any composite system.

1.1. Motivation: The “Missing Link” between Individual-Level and System-Level Accounts of
Human Collective Intelligence

Existing formal accounts of collective intelligence are predicated on composite systems
whose sub-system components are subject to vastly fewer degrees of freedom than individ-
uals in human collectives. Unlike ants in a colony or neurons in a brain, which appear to
rely on comparatively rudimentary autoregulatory mechanisms to sustain participation
in collective ensembles [10,11], human agents participate in collectives by leveraging an
array of phylogenetic (evolutionarily) and ontogenetic (developmental) mechanisms and
socio-culturally constructed regularities or affordances (e.g., language) [12–14]. Human
agents’ cognitive abilities and sociocultural niches create avenues for active participation
in functional collective behavior (e.g., the pursuit of shared goals), as well as avenues to
shirk global constraints in the pursuit of local (individual) goals. Mathematical models for
collective intelligence of this subclass of system must not only seek to account for richer
complexity of agent behavior at each scale of the system (particularly at the individual
level), but also the relationship between local scale interaction between individual agents
and global scale behavior of the collective.

Existing research of human collective intelligence is limited precisely by a lack of
alignment between these two scales of analysis. On the one hand, accounts of local-scale
interactions from behavioral science and psychology tend to construe individual humans
as goal-directed individuals endowed with discrete cognitive mechanisms (specifically
social perceptiveness or Theory of Mind and shared intentionality; see [15,16]) that allow
individuals to establish and maintain adaptive connections with other individuals in
service of shared goals [3–5,17–19] (Riedl and colleagues [19] report a recent analysis
of 1356 groups that found social perceptiveness and group interaction processes to be
strong predictors of collective intelligence measured by a psychometric test.). Researchers
conjecture that these mechanisms allow collectives to derive and utilize more performance-
relevant information from the environment than could be derived by an aggregation
of the same individuals acting without such connections (for example, by facilitating
an adaptive, system-wide balance between cognitive efficiency and diversity; see [4]).
Empirical substantiation of such claims has proven difficult, however. Most investigations
rely heavily on laboratory-derived summaries or “snapshots” of individual and collective
behavior that flatten the complexity of local scale interactions [20] and make it difficult to
examine causal relationships between individual scale mechanisms and collective behavior
as they typically unfold in real world settings [21,22].

Accounts of global-scale (collective) behavior, by contrast, tend to adopt system-based
(rather than agent-based) perspectives that render collectives as random dynamical systems
in phase space, or equivalent formulations [23–26]. Only rarely deployed to assess the
construct of human collective intelligence specifically (e.g., [27]), these approaches have
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been fruitful for identifying gross properties of phase-space dynamics (such as synchrony,
metastability, or symmetry breaking) that correlate with collective intelligence or collective
performance, more generally construed [28–32]. However, on their own, such analyses
are limited in their ability to generate testable predictions for multiscale behavior, such
as how global-scale dynamics (rendered in phase-space) translate to specific local-scale
interactions between individuals (in state-space), or how local-scale interactions between
individuals translate to evolution and change in collective global-scale dynamics [26].

In sum, the substantive differences between these two analytical perspectives (individ-
ual and collective) on collective intelligence in human systems make it difficult to develop
a formal description of how local-scale interactions between autonomous individual agents
relate to global-scale collective behavior and vice versa. Most urgent for the development
of a formal model of collective intelligence in this subclass of system, therefore, is a com-
mon mathematical framework capable of operating between individual-level cognitive
mechanisms and system-level dynamics of the collective [4].

1.2. The Free Energy Principle and an Active Inference Formulation of Collective Intelligence

FEP has recently emerged as a candidate for this type of common mathematical
framework for multiscale behavioral processes [33–35]. FEP is a mathematical formulation
of how adaptive systems resist a natural tendency to disorder [33,36]. FEP states that any
non-equilibrium steady state system self organizes as such by minimizing variational free
energy in its exchanges with the environment [37]. The key trick of FEP is that the principle
of free energy minimization can be neatly translated into an agent-based process theory,
AIF, of approximate Bayesian inference [38] and applied to any self-organizing biological
system at any scale [39]. The upshot is that, in theory, any AIF agent at one spatio-temporal
scale could be simultaneously composed of nested AIF agents at the scale below, and a
constituent of a larger AIF agent at the scale above it [40–42]. In effect, AIF allows you to
pick a composite system or agent A that you want to understand, and it will be generally
true both that: A is an approximate, global minimizer of free energy at the scale at which
that agent reliably persists; and A is composed of subsystems {A_i} that are approximate,
local minimizers of free energy (which is composed of the remainder of A). Thus, under
AIF, collective intelligence can conceivably be modelled as a case of individual AIF agents
that interact within—or indeed, interact to produce—a superordinate AIF agent at the scale
of the collective [9,43]. In this way, AIF provides a framework within which a multiscale
model of collective intelligence could be developed. The aim of this paper is to propose a
provisional AIF model of collective intelligence that can depict the relationship between
local-scale interactions and collective behavior.

An AIF model of collective intelligence begins with the depiction of a minimal AIF
agent. Specifically, an AIF agent denotes any set of states enclosed by a “Markov blanket”—
a statistical partition between a system’s internal states and external states [44]—that infers
beliefs about the causes of (hidden) external states by developing a probabilistic generative
model of external states [37]. A Markov blanket is composed of sensory states and active
states that mediate the relationship between a system’s internal states and external states:
external states (ψ) act on sensory states (s), which influence, but are not influenced by
internal states (b). Internal states couple back through active states (a), which influence but
are not influenced by external states. Through conjugated repertoires of perception and
action, the agent embodies and refines (learns) a generative model of its environment [45]
and the environment embodies and refines its model of the agent (akin to a circular process
of environmental niche construction; see [12]).

Having established the notion of an AIF agent, the next step in developing an AIF
model of collective intelligence is to consider the existence of multiple nested AIF agents
across individual and collective scales of organization. Existing multiscale treatments
of AIF provide a clear account of “downward reaching” causation, whereby superordi-
nate AIF agents like brains or multicellular organisms systematically determine [46] the
behavior of subordinate AIF agents (neurons or cells), limiting their behavioral degrees
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of freedom [9,40,47,48]. Consistent with this account of downward-reaching causation,
existing toy models that simulate the emergence of collective behavior under AIF do so
by simply using the statistical constraints from one scale to drive behavior at another,
e.g., by explicitly endowing AIF agents with a genetic prior for functional specialization
within a superordinate system [9] or by constructing a scenario in which the emergence of
a superordinate agent at the global scale is predestined by limiting an agent’s model of the
environment to sensory evidence generated by a counterpart agent [7,8].

While perhaps useful for depicting the behavior of cells within multicellular organ-
isms [9] or exact behavioral synchronization between two or more agents [7,8], these
existing AIF models are less well-suited to explain collective intelligence in human systems,
for two reasons. First, humans are relatively autonomous individual agents whose statisti-
cal boundaries for self-evidencing appear to be transient, distributed, and multiple [49–52].
Therefore, human collective intelligence cannot be explained simply by the way in which
global-level system regularities constrain individual interaction from the “top-down”.
Second, the behavior of the collective in these toy models reflects the instructions or con-
straints supplied exogenously by the “designer” of the system, not a causal consequence
of individual agents’ autonomous problem-solving enabled by AIF. In this sense, extant
models of AIF for collectives bear a closer resemblance to Searle’s [53] “Chinese Room
Argument” than to what we would recognize as emergent collective intelligence.

In sum, currently missing from AIF models of composite systems are specifications
for how a system’s emergent global-level cognitive capabilities causally relate to individual
agents’ emergent cognitive capabilities, and how local-scale interactions between individual
AIF agents give rise, endogenously, to a superordinate AIF agent that exhibits (collective)
intelligence [43]. Specifically, existing approaches lack a description of the key cognitive
mechanisms of AIF agents that might provide a functional “missing link” for collective
intelligence. In this paper, we initiate this line of inquiry by exploring whether some basic
information-theoretic capabilities of individual AIF agents, motivated by analogies with
human social capabilities, create opportunities for collective intelligence at the global scale.

1.3. Our Approach

To operationalize AIF in a way that is useful for investigating this question, we begin
by examining what minimal features of autonomous individual AIF agents are required
to achieve collective intelligence, operationalized as active inference at the level of the
global-scale system. We conjecture that very generic information theoretic patterns of an
environment in which individual AIF agents exploit other AIF agents as affordances of free
energy minimization should support the emergence of collective intelligence. Importantly,
we expect that these patterns emerge under very general assumptions and from the dynam-
ics of AIF itself—without the need for exogenously imposed fitness or incentive structures
on local-scale behavior, contra extant computational models of collective intelligence (that
rely on cost or utility functions; e.g., [54,55]) or other common approaches to reinforcement
learning (that rely on exogenous parameters of the Bellman equation; see [56,57]).

To justify our modelling approach, we draw upon recent research that systematically
maps the complex adaptive learning process of AIF agents to empirical social scientific
evidence for cognitive mechanisms that support adaptive human social behavior. In line
with this research, we posit a series of stepwise progressions or “hops” in the individual
cognitive ability of any AIF agent in an environment populated by other self-similar
AIF agents. These hops represent evolutionarily plausible “adaptive priors” [42] (p.109)
that would likely guide action-perception cycles of AIF agents in a collective toward
unsurprising states:

• Baseline AIF—AIF agents, to persist as such, will minimize immediate free energy
by accurately sensing and acting on salient affordances of the environment. This will
require a general ability for “perceptiveness” of the (physical) environment.

• Folk Psychology—AIF agents in an environment populated by other AIF agents
would fare better by minimizing free energy not only relative to their physical en-
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vironment, but also to the “social environment” composed of their peers [13]. The
most parsimonious way for AIF agents to derive information from other agents would
be to (i) assume that other agents are self-similar, or are “creatures like me” [58],
and (ii) differentiate other-generated information by calculating how it diverges from
self-generated information (akin to a process of “alterity” or self-other distinction).
This ability aligns with the notion of a “folk psychological theory of society”, in which
humans deploy a combination of phylogenetic and ontogenetic modules to process
social information [59,60].

• Theory of Mind—AIF agents that develop “social perceptiveness” or an ability to
accurately infer beliefs and intentions of other agents will likely outperform agents
with less social perceptiveness. Social perceptiveness, also commonly known in cogni-
tive psychology as “Theory of Mind”, would minimally require cognitive architecture
for encoding the internal belief states of other agents as a source of self-inference (for
game-theoretical simulations of this proposal, see [61,62]). As discussed above, exper-
imental evidence suggests that social perceptiveness or Theory of Mind (measured
using the “Reading the Mind in the Eyes” test; see [63]) is a significant predictor of
human collective intelligence in a range of in-person and on-line collaborative tasks [4].

• Goal Alignment—It is possible to imagine scenarios in which the effectiveness of
Theory of Mind would be limited, such as situations of high informational uncertainty
(in which other agents hold multiple or unclear goals), or in environments populated
by more agents than would be computationally tractable for a single AIF agent to
actively theorize [64]. AIF agents capable of transitioning from merely encoding
internal belief states of other AIF agents to recognizing shared goals and actively
aligning goals with other AIF agents would likely enjoy considerable coordination
benefits and (computational) efficiencies [16,65] that would also likely translate to
collective-level performance [55,66].

• Shared Norms—Acquisition of capacities to engage directly with the reified signal of
sharedness (a.k.a., “norms”) between agents as a stand-in for (or in addition to) bottom-
up discovery of mutually viable shared goals would also likely confer efficiencies to
individuals and collectives [12]. Humans appear unique in their ability to leverage
densely packaged socio-cultural installed affordances to cue regimes of perception
and action that establish and stabilize adaptive collective behavior without the need
for energetically expensive parsing of bottom-up sensory signals (a process recently
described as “Thinking through Other Minds”; see [14]).

The clear resonance between generic information-theoretic patterns of basic AIF agents
and empirical evidence of human social behavior is remarkable, and gives credence to
the extension of seemingly human-specific notions such as “alterity”, “shared goals”,
“alignment”, “intention”, and “meaning” to a wider spectrum of bio-cognitive agents [67].
In effect, the universality of FEP—a principle that can be applied to any biological sys-
tem at any scale—makes it possible to strip-down the complex and emergent behavioral
phenomenon of collective intelligence to basic operating mechanisms, and to clearly in-
spect how local-scale capabilities of individual AIF agents might enable global-scale state
optimization of a composite system.

In the following section we use AIF to model the relationship between a selection
of these hops in cognitive ability and collective intelligence. We construct a simple 1D
search task based on [68], in which two AIF agents interact as they pursue individual
and shared goals. We endow AIF agents with two key cognitive abilities—Theory of
Mind and Goal Alignment—and vary these abilities systematically in four simulations that
follow a 2 × 2 (Theory of Mind × Goal Alignment) progression: Model 1 (Baseline AIF,
no social interaction), Model 2 (Theory of Mind without Goal Alignment), Model 3 (Goal
Alignment without Theory of Mind), and Model 4 (Theory of Mind with Goal Alignment).
We use a measure of free energy to operationalize performance at the local (individual) and
global (collective) scales of the system [69]. While our goals in this paper are exploratory
(these models and simulations are designed to be generative, not to test hypotheses), we
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do generally expect that increases in sophistication of cognitive abilities at the level of
individual agents will correspond with an increase in local- and global-scale performance.
Indeed, illustrative results of model simulations (Section 3) show that each hop in cognitive
ability improves global system performance, particularly in cases of alignment between
local and global optima.

2. Materials and Methods

2.1. Paradigm and Set-Up

Our AIF model builds upon the work of McGregor and colleagues, who develop
a minimal AIF agent that behaves in a discrete one-dimensional time world [68]. In
this set-up, a single agent senses a chemical concentration in the environment and acts
on the environment by moving one of two ways until it arrives at its desired state, the
position in which it believes the chemical concentration to be highest, denoting a food
source. We adapt this paradigm by modelling two AIF agents (Agent A and Agent B)
that occupy the same world and interact according to parameters described below (see
Figure 1). The McGregor et al. paradigm and AIF model is attractive for its computational
implementability and tractability as a simple AIF agent with minimum viable complexity. It
is also accessible and reproducible; whereas most existing agent-based implementations of
AIF are implemented in MATLAB, using the SPM codebase (e.g., [57]), an implementation
of the McGregor et al. AIF model is widely available in the open-source programming
language Python, using only standard open source numerical computing libraries [70]. For
a comprehensive mathematical guide to FEP and a simple agent-based model implementing
perception and action under AIF, see [36].

Figure 1. A minimal collective system of two AIF agents (adapted from McGregor et al.). We
implement two agents (Agent A and Agent B) that have one common target position (Shared Target)
and one individual target position (A’s Target; B’s Target). All targets are encoded with equal
desirability. This figure is notional: our simulation environment contains 60 cells instead of the
12 depicted here. Note: we randomize the location of the shared target while preserving relative
distances to unshared targets to ensure that the agents’ behavior is not an artefact of its location in
the sensory environment.

We extend the work of McGregor and colleagues to allow for interactions not only
between an agent and the “physical” environment, but also between an agent and its
“social” environment (i.e., its partner). Accordingly, we make minor simplifications to
the McGregor et al. model that are intended to reduce the number of independent pa-
rameters and make interpretation of phenomena more straightforward (alterations to the
McGregor et al. model are noted throughout).

2.2. Conceptual Outline of AIF Model

Our model consists of two agents. Descriptively, one can think of these as simple
automata, each inhabiting a discrete “cell” in a one-dimensional circular environment
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where there are predefined targets (food sources). As agents aren’t endowed with a frame
of reference, an agent’s main cognitive challenge is to situate itself in the environment (i.e.,
to infer its own position). Both agents have the following capabilities:

• Physical capabilities:

• “Chemical sensors” able to pick up a 1-bit chemical signal from the food source
at each time step;

• “Actuators” that allow agents to “move” one cell at each time step;
• “Position and motion sensors” that allow agents to detect each other’s position

and motion.

• Cognitive capabilities:

• Beliefs about their own current position; we construe this as a “self-actualization
loop” or Sense->Understand->Act cycle: (1) sense environment; (2) optimize
belief distribution relative to sensory inputs (by minimizing free energy given
by an adequate generative model); and (3) act to reduce FE relative to desired
beliefs, under the same generative model.

• Desires (also described as “desired beliefs”) about their own position relative to
their prescribed target positions;

• Ability to select the actions that will best “satisfy” their desires;
• “Theory of Mind”: they possess beliefs about their partner’s position, knowledge

of their partner’s desires, and therefore, the ability to imagine the actions that
their partners are expected to take. We implement this as a “partner-actualization
loop” that is formally identical to the self-actualization loop above;

• “Goal Alignment”: the ability to alter their own desires to make them more
compatible with their partner’s.

2.3. Model Preliminaries

Throughout, we use the following shorthand:

• qsuperscript � so f tmax
(
bsuperscript) for any superscript index, where so f tmax(b)i �

ebi−max(b)

Σ ebi−max(b) . This converts a belief represented as a vector in R
N to the equivalent

probability distribution over [0..N-1]; the max(b) offset is for numerical stability. We
choose to convert back by bi = ln qi − ln (max(q)), to enforce bi ≤ 0.

• Beliefs are also implicitly constrained to bi ≥ −10, for numerical stability. This means
bi ∈ B = [−10, 0].

• ϕ � ψpartner when necessary, to disambiguate between it and ψown.
• (v+x)i � vi+x to denote shifting a vector.
• Θα(q) � α q + 1−α

N to denote “re-ranging” a probability distribution, squishing its
range from [0,1] to [ 1−α

N , α + 1−α
N ].

• All arithmetic in the space of positions (ψ or Δ) and actions (a) is considered to be
mod N.

2.4. State Space

These capabilities are implemented as follows. Each agent Ai is represented by a tuple
Ai = (ψi, si, bi, ai). In what follows we’ll omit the indices except where there is a relevant
difference between agents. These tuples form the relevant state space (see Figure 2):

• ψ ∈ [0..N-1] is the agent’s external state, its position in a circular environment with
period N. Crucially, the agent doesn’t have direct access to its external state, but only to
limited information about the environment afforded through the sensory state below.

• s = (sown ∈ {0, 1}, Δ ∈ [0..N-1], app ∈ {−1, 0, 1}) is the agent’s sensory state. sown is a
one-bit sensory input from the environment; Δ is the perceived difference between the
agent’s own position and its partner’s; app is the partner’s last action.

• b = (bown ∈ BN, b*own ∈ BN, bpartner ∈ BN, b*partner ∈ BN) is the agent’s internal or
“belief” state. bown and b*own are, respectively, its actual and desired beliefs about
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its own position; equivalently, bpartner and b*partner are its actual and desired beliefs
about its partner’s position.

• a = (aown ∈ {−1, 0, 1}, apartner ∈ {−1, 0, 1}) is the partner’s action state: aown is its own
action; apartner is the action it expects from the partner.

Figure 2. AIF agent based on McGregor et al. [68]. A Markov blanket defines conditional indepen-
dencies between a set of internal belief states (b) and a set of environment states (ψ) with target
encoding or “desires” (b*).

2.5. Agent Evolution

These states evolve according to a discrete-time free energy minimization procedure,
extended from McGregor et al. (Figure 3). At each time step, each agent selects the action
that will minimize the free energy relative to its target encoding (achieved by explicit
computation of F for each of the 3 possible actions), and then updates its beliefs to best
match the current sensory state (achieved by gradient descent on b’).

2.6. Sensory Model

Let us recapitulate McGregor et al’s definition of the free energy for a single-agent model:

F
(
b′, b, s, a

)
= DKL

(
q(ψ′|b′) ‖ p(ψ′, s|b, a)) (1)

where q(b) = softmax(b) is the “variational (probability) density” encoded by b, and p(ψ′, s|b,
a) is the “generative (probability) density” representing the agent’s mental model of the
world [37]. DKL is the Kullback–Leibler (KL) divergence or relative entropy between the
variational and generative densities [71].

To respect the causal relationships prescribed by the Markov blanket (see Figure 2),
the generative density may be decomposed as:

p(ψ′, s|b, a) = P(ψ′|s, b, a,ψ)•P(s|b, a,ψ)•P(ψ|b, a) (2)

where the three terms within the summation are arbitrary functions of their variables. In
the single-agent model, where the only source of information is the environment, we follow
McGregor’s model, in a slightly simplified form:

1. P(ψ′ | s, b, a, ψ) = δ(ψ′, ψ + a): the agent’s actions are always assumed to have the
intended effect, δ being the discrete Kronecker delta.

2. P(s | ψ) = ks(1 − k)1−s e−ω |ψ−ψmid |: the agent assumes the probability of s = 1 (sen-
soria triggered) is higher for regions near the “center” of the environment. This is
identical to the real “physical” probability of chemical signals, meaning the agent’s
generative distribution is correct.

3. P(ψ | b, a) = q(b), in agreement with the definition of b as encoding the belief
distribution over ψ.
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Figure 3. Pseudo code for agent evolution (adapted from [68]). Note that the loop is run for both agents in lockstep, but
each agent selects actions and optimizes beliefs individually.

From list item 1 directly above, this generative density can also be read as a simple
Bayesian updating plus a change of indexes to reflect the effects of the action: p(ψ′, s|b, a) =
P(s|ψ′ − a) P(ψ′ − a|b) or even more simply, pposterior

ψ′ = ps
ψ′−a pprior

ψ′−a.
In our model, both agents implement their own copies of the generative density above

(we leave it to the reader to add “�own” indices where appropriate). The parameter k, de-
noting the maximum sensory probability, is assumed agent-specific; we naturally identify it
with an agent’s “perceptiveness”. ω and ψ0, on the other hand, are environmental parameters.

2.7. Partner Model

In addition to the sensory model, we will define a new generative density imple-
menting the agent’s inference of its partner’s behavior, or “Theory of Mind” (ToM; see
Figure 6b). An agent with a sensory and partner model will adopt the following form:

p(φ′, Δ, app|b, a) = P(φ′|apartner,φ)•P(Δ|b,φ)•P(app|b, apartner,φ)•P(φ|b) (3)

The first three terms on the right-hand side correspond to mechanistic models of the
evolution of the variables φ’, Δ, app, whereas the last one, P(φ|b) = qpartner

φ , defines the
“prior” and is analogous to q(b) in the sensory model. To fully specify this density, we
define these models as follows:

1. P(φ′|apartner, φ) = δ
(
φ′, φ+ apartner) describes the expected results of the partner’s

observed action upon its inferred position. The Kronecker delta implies that the
partner’s actions are always effective, matching item #1 from Section 2.6.

2. P(Δ|b, φ) = P(ψ = φ+ Δ|b,φ) = qown
φ+Δ : the agent (correctly) believes that Δ is a

deterministic function of the two positions, and therefore the probability of observing
a given Δ, given the partner’s position φ, is equal to the probability the agent ascribes
to itself being in the corresponding position ψ = φ+ Δ.
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3. P(app|b, apartner,φ) = P(apartner|φ− app, b∗partner) : the agent determines its belief
in the partner’s previous action by “backtracking” to its previous state φ− app, and
leveraging the following model of the partner’s next action:

P(apartner = 0|φ, b∗partner) = ξ 1
max(q∗partner)

q∗partner
φ

P(apartner = ±| φ, b∗partner) =
{

1 − P(apartner = 0|φ, b∗partner)
} 1

p∗partner
φ−1 +p∗partner

φ+1
q∗partner
φ−apartner

(4)

This equation seems complex but its output and mechanical interpretation are quite
simple (see Figure 4). To justify it, note that the agent must produce probabilities of the
partner’s actions without knowing their actual internal states at that time, but only their
targets q∗partner. To do so, the agent assumes that the partner will act mechanistically
according to those desires, i.e., the higher a partner’s desire for its current location, the
more likely it is to stay put. To eliminate spurious dependence on absolute values of
q∗partner, we set P

(
apartner = 0

)
to be proportional to q∗partner/max

(
q∗partner). The constant

of proportionality ξ corresponds to the maximum probability of the partner standing still,
when q∗partner achieves its global maxima. This leaves the remaining probability mass to
be allocated across the other actions (±1), which we do by assuming the probability of
moving in a given direction is proportional to the desires in the adjacent locations. For the
purpose of this study, ξ is held constant at 0.9.

Figure 4. Illustrative plot of P(apartner|φ, b∗partner) for each possible value of apartner and φ, when
q∗partner follows a normal distribution centered on φ = 15. At the valleys where q∗partner is lowest
and its gradient is small, the partner doesn’t quite have strong incentives to go in any particular
direction, and so is assigned roughly equal probabilities for the three actions. At the slopes, the action
corresponding to the upward slope is more strongly expected. At peak q∗partner, P

(
apartner = 0

)
= ξ

and the probabilities of the two other actions are equal.

The combination of these three models results in a generative density has the same
form as the original generative density from the baseline sensory model, pposterior

φ′ =

pΔ,app

φ′−apartner pprior
φ′−apartner . This is consistent with our modeling decision to make the “other-

evidencing loop” functionally identical to the “self-actualization loop”, as discussed above
(Section 2.2).

As before, each agent implements its own copy of the partner model. ξ is assumed
equal for both agents; they have the same capability to interpret the partner’s actions.

2.8. Agent-Level Free Energy

We are finally ready to define the free energy for our individual-level model. For
each agent:

F = DKL

(
q′ own ‖ pown Θα

(
ppartner
+Δ′

))
+ DKL

(
q′ partner ‖ ppartner Θα2

(
pown
−Δ′

))
(5)
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where:

1. pown
ψ′ = P(sown | ψ′ − aown) qown

ψ′−aown is the sensory model (outlined above in Section 2.6).

2. ppartner
φ′ = qown

φ′−apartner+Δ P(apartner | φ′ − apartner − app, b�partner) qpartner
φ′−apartner is the part-

ner model (outlined above in Section 2.7).
3. The “reranging” function, Θα, serves to moderate the influence of the partner model

on the agent’s own beliefs, and vice-versa. α is an agent-specific parameter, which, as
we will see in Section 2.9, is identified with each agent’s degree of “alterity”.

4. The right-hand side of each KL divergence (i.e., the products of generative densities)
is implicitly constrained to

[
e−10, 1

]
, to ensure the resulting beliefs remain within

their range B. This is interpreted as preventing overconfidence and is implemented
as a simple maximum.

We interpret Equation (4) as follows: The agent’s sensory and partner models jointly
constrain its beliefs both about its own position and its partner’s position. Thus, at each
step, the agent: (a) refines its beliefs about both positions, in order to best fit the evidence
provided by all of its inputs (i.e., its “chemical” sensor for the physical environment and
“position and motion” sensor for its partner); and (b) selects the “best” next pair of actions
(for self and partner), i.e., that which minimizes the “difference” (the KL divergence)
between its present beliefs and the desired beliefs (For reasons of numerical stability, we
follow McGregor et al. in implementing (b) before (a): The agent chooses the next actions
based on current beliefs, then updates beliefs for the next time-step, based on the expected
effects of those actions [68] (pp. 6–7)).

2.9. Theory of Mind

In this section we motivate the parameterization of an agent’s Theory of Mind ability
with α, or simply, its degree of alterity.

Note that when considered as a discrete-time dynamical system evolution, the pro-
cess of refining beliefs about own and partner positions in the environment (step (a) in
Section 2.8 above) potentially involves multiple recursive dependencies: the updated varia-
tional densities q′ own and q′ partner both depend on the previous qown (via both pown and
ppartner), as well as on the previous qpartner (via ppartner). This is by design: the dependen-
cies ensure that q′ own and q′ partner are consistent with each other, as well as with their
counterparts across time steps. However, too much of a good thing can be a problem. If
left unconstrained, q′ own and q′ partner can easily evolve towards spurious fixed points
(Kronecker deltas), which can be interpreted as overfitting on prematurely established
priors (In this case, it could be possible to observe scenarios such as “the blind leading
the blind” in which a weak agent fixates on the movement trajectory of a strong agent
who is overconfident about its final destination.). On the other hand, if q′ own were to
depend only on qown, it would eliminate the spurious fixed points: without the crossed
dependence, the first term of the partner model (Section 2.7) only has fixed points at
(q′ own = δ(ψ′, argmax(q� own)), aown = 0), meaning that the agent has achieved a local
desire optimum. Effectively, this “shuts down” the agent’s ability to use the partner’s infor-
mation to shape its own beliefs, or its theory of mind, making it equivalent to MacGregor’s
original model.

Thus, there would appear to be no universal “best” value for an agent’s Theory of
Mind; an appropriate level of Theory of Mind would depend on a trade-off between the
risk of overfitting and that of discarding valid evidence from the partner. The appropriate
level of Theory of Mind would also depend on the agent’s other capabilities (in this case,
its perceptiveness, k).

This motivates the operationalization of α as a parameter for the intensity to which
Theory of Mind shapes the agent’s beliefs. α can be understood simply as an agent’s degree
of alterity, or propensity to see the “other” as an agent like itself. In simulations with values
of α close to 0, we expect the partner’s behavior to be dominated by its own “chemical”
sensory input. Increasing α, we expect to see an agent’s behavior being more heavily
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influenced by inputs from its partner, driving qown to become sharper as soon as qpartner

does so. Past a certain threshold, this could spill over into premature overfitting.
Finally, note the α2 in the second term of agent-level free energy (Equation (4)). This

represents the notion that the agent is using “second-order theory of mind” or thinking
about what its partner might be thinking about it (First-order ToM involves thinking about
what some-one else is thinking or feeling; second-order ToM involves thinking about what
someone is thinking or feeling about what someone else is thinking or feeling [72]). Here,
pown comes in as “my model of my partner’s model of my behavior”. It seems appropriate
for the agent to believe the partner to possess the same level of alterity as itself; we then
represent this as applying the rearranging function (the “squishing” of the probability
distribution) twice, Θα • Θα = Θα2 .

2.10. Goal Alignment

In this section we motivate the parameterization of the degree of goal alignment
between agents.

Recall that b� own is an arbitrary (exogenous) real vector; the implied desire distribution
can have multiple maxima, leading to a generally challenging optimization task for the
agent. Theory of Mind can help, but it can also make matters worse: if b� partner also has
multiple peaks, the partner’s behavior can easily become ambiguous, i.e., it could appear
coherent with multiple distinct positions. This ambiguity can easily lead the agent astray.

This problem is reduced if the agents can align goals with each other, that is, avoid
pursuing targets that are not shared between them. We implement this as:

b� own ← b� shared + (1 − γ)b� own
private (6)

b� partner ← b� shared + (1 − γ)b� partner
private (7)

where γ is a parameter representing the degree of alignment between this specific agent
pair, and we assume each agent has knowledge of what goals are shared vs private to itself
or its partner. That is, with γ = 0, the agent is equally interested in its private goals and
in the shared ones (and assumes the same for the partner); with γ = 0, the agent is solely
interested in the shared goals (and assumes the same for the partner).

This operation may seem quite artificial, especially as it implies a “leap of faith” on
the part of the agent to effectively change its expectations about the partner’s behavior
(Equation (6)). However, if we accept this assumption, we see that the task is made easier:
in the general case, alignment reduces the agent-specific goal ambiguity, leading to better
ability to focus and less positional ambiguity coming from the partner. Of course, one
can construct examples where alignment does not help or even hurts; for instance, if both
agents share all of their peaks, alignment not only will not help reduce ambiguity, but it
can make the peaks sharper and hard to find. And as we will see, in the context of the
system-level model, alignment becomes a natural capability.

In the present paper, for simplicity, we assume agents’ shared goals are assigned
exogenously. In light of the system-level model (Section 2.11), however, it is easy to see
that such shared goals have a natural connection with the global optimum states. In this
context, one can expect shared goals to emerge endogenously from the agents’ interaction
with their social environment over the “long run”. This will be explored in future work.

2.11. System-Level Free Energy

Up until now, we have restricted ourselves to discussing our model at the level of
individual agents and their local-scale interactions. We now take a higher vantage point
and consider the implications of these local-scale interactions for global-scale system
performance. We posit an ensemble of M identical copies of the two-agent subsystem
above (i.e., 2M), each in its own independent environment, also assumed to be identical
except for the position of the food source (see Figure 5).
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(a) (b) 

Figure 5. (a) M identical copies of the two-agent subsystem. (b) The M two-agent systems as internal states of a larger
system, interacting with a global environment through the food sources (reinterpreted as sensory states) and some active
mechanism (the dotted arrow lines for aΣ denote that this active mechanism is not defined in this paper).

From this vantage point, each of the 2M agents is now a “point particle”, described
only by its position ψi. The tuple bΣ =

(
ψi

)
i∈[1..2M] is then the set of internal states of the

system as a whole.
We will now assume that this set of internal states interacts with a global environment

ψΣ ∈ [0..N − 1]. We reinterpret the “food sources” as sensory states: sΣ =
(
ψi

)
i∈[1..2M],

where each ψi
0 is assumed to correlate with ψΣ through some sensory mechanism. We

further assume the system is capable to act back on the environment through some active
mechanism aΣ. This provides us with a complete system-level Markov blanket (Figure 5b),
for which we can define a system-level free energy as

FΣ = DKL(qempirical(ψΣ′ |bΣ′
) ‖ pΣ(ψΣ′

, sΣ|aΣ, bΣ)) (8)

where qempirical(ψΣ|bΣ) = 1
2M #

{
ψi|ψi = ψΣ

}
, the system’s “variational density”, is simply

the empirical distribution of the various agents’ positions.
In this paper, we will not cover the “active” part of active inference at the global

level—namely, the system action aΣ remains undefined. We will instead consider a single
system-level inference step, corresponding to fixed values of ψΣ, sΣ. As we can see from the
formulation above, this corresponds to optimizing ψi given ψi

0—that is, to the aggregate
behavior of the 2M agents’ over an entire run of the model at the individual level.

This in turn motivates defining the system’s generative density as pΣ(ψΣ′
, sΣ|aΣ, bΣ) ∝

exp
{
−kΣ

(
ψi −ψi

0

)2
}

: given a set of internal states (agent positions), the system “expects”

it to have been produced by the agents moving towards the corresponding sensory states
(food source). Thus, to the extent that the agents perform their local active inference tasks
well, the system performs approximate Bayesian inference over this generative density,
and we can evaluate the degree to which this inference is effective, by evaluating whether,
and how quickly, FΣ is minimized. We return to the topic of system-level (active) inference
in the discussion.
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2.12. Simulations

We have thus defined this system at two altitudes, enabling us to perform simulations
at the agent level and analyze their implied performance at the system level (as measured
by system-level free energy). We can now use this framework to analyze the extent to which
the two novel agent-level cognitive capabilities we introduced (“Theory of Mind” and
“Goal Alignment”) increase the system’s ability to perform approximate inference at local
and global scales. To explore the effects of agent-level cognitive capabilities on collective
performance, we create four experimental conditions according to a 2 × 2 (Theory of Mind
× Goal Alignment) matrix: Model 1 (Baseline), Model 2 (Theory of Mind), Model 3 (Goal
Alignment), and Model 4 (Theory of Mind and Goal Alignment; see Table 1).

Table 1. 2 × 2 (Theory of Mind × Goal Alignment) permutations of our model.

-Theory of Mind +Theory of Mind

-Goal Alignment Model 1 (Baseline) Model 2 (Theory of Mind, No
Goal Alignment)

+Goal Alignment
Model 3 (Goal Alignment,

No ToM)
Model 4 (Theory of Mind ×

Goal Alignment)

Throughout, we use the same two agents, Agent A and Agent B. To establish mean-
ingful variation in agent performance at the individual-scale, we parameterize an agent’s
perceptiveness to the physical environment (i.e., to the reliability of the information derived
from its “chemical sensors”), by assigning one agent with “strong” perceptiveness (Agent
A—Strong;) and the other agent with “weak” perceptiveness (Agent B—Weak).

We assign each agent with two targets, one shared (Shared Target) and one unshared
(individual target or Target A and Target B). Accordingly, we assume each agent’s desire
distributions have both a shared peak (corresponding to a Shared Target) and an unshared
peak (corresponding to Target A or Target B). Throughout, we measure both the collective
performance (system-level free energy), as well as individual performance (distance from
their closest target). In addition, we also capture their end-state desire distribution.

We implement simulations in Python (V3.7) using Google Colab (V1.0.0). As noted
above, our implementation draws upon and extends an existing AIF model implementation
developed in Python (V2.7) by van Shaik [70]. To ensure that the agent behavior is not an
artefact of their specific location in the environment, we run 180 runs for each simulation
for each experimental condition by randomizing their starting locations throughout the
environment. The environment size was held constant at 60 cells. To ensure that the agent
behavior is not an artefact of initial conditions, we perform 180 runs for each simulation for
each experimental condition by uniformly distributing their starting locations throughout
the environment (three times per location), while preserving the distance between starting
locations and target. This uniform distribution of initial conditions across the environment
also corresponds to the “worst-case scenario” in terms of system-level specification of
sensory inputs for a two-agent system, discussed in Section 2.11.

2.13. Model Parameters

Our four models were created by setting physical perceptiveness for the strong and
weak agent and varying their ability to exhibit social perceptiveness and align goals. The
parameter settings are summarized at the individual agent level as follows (see Figure 6
and Table 2):

• Model 1 contains a self-actualization loop driven by physical perceptiveness. Physical
perceptiveness (individual skill parameter; range [0.01, 0.99]) is varied such that Agent
A is endowed with strong perceptiveness (0.99) and Agent B is endowed with weak
perceptiveness (0.05).

• Model 2 is made up of a self-actualization loop and a partner-actualization loop (in-
stantiating ToM). The other-actualization loop is implemented by setting the value
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of alterity (ToM or social perceptiveness parameter; range [0.01, 0.99]) as 0.20 for the
weak agent and 0 for the strong agent. This parameterization helps the weak agent
use social information to navigate the physical environment. These two loops imple-
ment a single (non-separable) free energy functional: The weak agent’s inferences
from their stronger partner’s behavior serve to refine its beliefs about its position in
the environment.

• Model 3 entails a self-actualization loop (but no partner-actualization loop) as well as
enforces the pursuit of a common goal (set alignment = 1) by fully suppressing their
unshared goals (alignment parameter; range [0,1]). In this simplified implementation,
we assume that goal alignment is a relational/dyadic property such that both partners
exhibit the same level of alignment towards each other. This is akin to partners fully
exploring each other’s targets and agreeing to pursue their common goal. Setting
alignment lower than 1 will increase the relative weighting of unshared goals and
cause them to compete with their shared goals.

• Model 4 includes both cognitive features: self- and partner-actualization loops for
the weak agent (instantiating ToM; alterity = 0.2) and complete goal alignment be-
tween agents.

(a)  

 

(b)  

 

Figure 6. Cont.
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(c)  

(d)  

 

Figure 6. Models. (a) Model 1—Baseline with no direct interaction between agents; (b) Model 2—introduces “Theory of
Mind” or a partner actualization loop; (c) Model 3—introduces Goal Alignment (b*SHARED); (d) Model 4—complete model
with Theory of Mind with Goal Alignment.

Table 2. Parameterization of agent abilities Models 1–4.

Model 1
Baseline

Model 2
Theory of Mind

Model 3
Goal Alignment

Model 4
ToM x Goal Alignment

Parameter Agent A Agent B Agent A Agent B Agent A Agent B Agent A Agent B

Physical
perceptiveness

(0.01, 0.99)
0.99 0.05 0.99 0.05 0.99 0.05 0.99 0.05

Alterity, α
(0.01, 0.99) 0.00 0.00 0.00 0.20 * 0.00 0.00 0.00 0.20 *

Goal Alignment,
γ (0, 1) 0 0 0 0 1 1 1 1

* Alternative results for simulations with alterity set at α = 0.5 exhibit a similar pattern of results for Model 2 and Model 4.

3. Results

3.1. Illustration of Agent-Level Behavior

In Figure 7, we show typical results from a single run of a single two-agent subsystem
(Model 4: ToM with Goal Alignment) to illustrate qualitatively how the two cognitive
capabilities introduced enable agent-level performance. In this example, Goal Alignment
enters the picture at the outset; although each agent has two targets, they both only ever
pursue their shared target.

162



Entropy 2021, 23, 830

 

Figure 7. Results from a single run of Model 4 over 200 epochs. Agents’ Shared Target position is set at location 15. Actual
agent positions are illustrated as single dots for each epoch on the top graph, colored white when s = 1 and gray when s = 0.
The background of the top graphs plots the agents’ belief distribution of their own position, from dark blue (0) to bright
yellow (1). The bottom graphs plot the agents’ belief distribution of their partner’s position, on the same scale.

The evolution of the two agents’ behavior and beliefs over this run demonstrates the
key features of interplay between sensory and partner inputs, and how ToM moderates
the influence of partner inputs on an agent’s behavior. Using its high perceptiveness, A
identifies its own position around epoch 25–50, and quickly thereafter, directs itself towards
the food position and remains stable there (top left). Meanwhile, for most of the run, B
has no strong sense of its own position, and therefore its movement is highly random and
undirected; at around epoch 150, it finally starts exhibiting a sharper (light blue) belief
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and converging to the target (top right). This is the same moment when B is finally able to
disambiguate A’s behavior (from green to yellow), which, via ToM, enables B’s belief to
become sharper (bottom right). Meanwhile, A can’t make sense of B’s random actions: the
partner distribution it infers is unstable. But because A has ToM = 0, it doesn’t take any of
these misleading cues into account when deciding its own beliefs (bottom left).

3.2. Simulation Results

Model 1 lends face validity to the two-agent simulation setup. Figure 8 (Row 1,
Model 1) demonstrates that, on average, the strong agent (endowed with high physical
perceptiveness) converges to an end-state belief faster more accurately (closer to one of their
individual targets) than the weak agent with severely diminished physical perceptiveness.
This difference in individual performance can be attributed to the stark difference in agents’
ability to form strong beliefs about the location of their target (see Figure 8: Row 2, Model 1).
Agents show no clear preference for either shared or unshared targets (Figure 8: Row 3,
Model 1).

Figure 8. Simulation results of Agent A (strong; blue) and Agent B (weak; orange) in all four models. Row 1: Individual per-
formance as time taken to reach a target position. Row 2: End state belief distribution of target location (Shared Target = 30;
A’s Target = 15; B’s Target = 45). Row 3: Distribution of targets pursued in 180 runs.

In model 2, the weak agent possesses ‘Theory of Mind’. This allows it to infer infor-
mation about their own location in the environment by observing their partner’s actions.
This is evidenced by the emergence of two-sharp peaks in the weak agent’s end-state belief
distribution (Figure 8: Row 2, Model 2). Consequently, we see an improvement in the
weak agent’s individual performance (the agent converges faster on an end-state belief
faster than in Model 1). Collective performance (Figure 9: System’s free energy) does not
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appear to improve between Model 1 and Model 2. This may be because agents solely
focus on achieving their individual goals (and do not understand any distinction between
individual and system level goals). This is evidenced by the fact that of the 180 simulation
runs each of Model 1 and Model 2, both agents end up pursuing their shared and unshared
targets with roughly equal probability (Figure 8: Row 3, Model 1 and 2).

Figure 9. Actual system-level free energy FΣ under each of the four models. Lower free energy denotes higher system
performance. To the extent that the system is able to reduce its free energy over time (i.e., mimicking gradient descent on
FΣ), it can be interpreted as performing a single inference step of the active inference loop.

In Model 3, when both agents possess an ability for Goal Alignment, but the weak
agent does not have the benefit of Theory of Mind, we see that both agents are biased
towards pursuing the shared system goal (Figure 8: Row 3, Model 3). Accordingly, at
the system level we see naturally higher collective performance—Model 3 clearly has
lower system-level free energy compared to both Model 1 and Model 2 (see Figure 9). At
the individual-level, however, the weak agent performs worse on average than it did in
Model 2 and converges more slowly towards its goals (Figure 8: Row 1, Model 3). It appears
that Goal Alignment helps improve system performance by reducing the ambiguity of
multiple possible targets, but Goal Alignment does not help the weak agent compensate
for low physical perceptiveness.

Finally, as expected, in Model 4, which combines Theory of Mind and Goal Alignment,
we see a clear improvement in both individual and collective performance (Figure 8: Row 1,
Model 4 and Figure 9: Model 4, respectively). The combination of Theory of Mind (for the
weak agent) and Goal Alignment (for both agents) appears to enable the weak agent to
overcome its poor physical perceptiveness and converge on a single unambiguous end-
state belief. This achievement is illustrated by the sharp and overlapping single-peaked
end-state belief structure achieved by both agents in model 4 (Figure 8: Row 2, Model 4)
(We thank the anonymous reviewer for pushing us to consider the reasons why the end-
state belief distribution for the weak agent is more sharply peaked. We didn’t have any
a priori expectation for this particular pattern of result. Our best guess is that this is an
artefact of the weak agent iteratively engaging in ’Theory of Mind’ based-estimation of its
belief-distribution from the strong agent actions. From the perspective of the weak agent,
the strong agent quickly converges near the goal state and spends more time in the vicinity
of the peak. Thus, the weak agent is very likely to accrue higher levels of confidence within
this relatively narrow vicinity. On the other hand, the stronger agent has no ToM and is
only influenced by its direct perception of the environment.). This model suggests that
collective performance is highest when individual agents’ individual states align with the
global system state.
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4. Discussion

A formal understanding of collective intelligence in complex adaptive systems re-
quires a formal description, within a single multiscale framework, of how the behavior
of a composite system and its subsystem components co-inform each other to produce
behavior that cannot be explained at any single scale of analysis. In this paper we make
a contribution toward this type of formal grasp of collective intelligence, by using AIF to
posit a computational model that connects individual-level constraints and capabilities
of autonomous agents to collective-level behavior. Specifically, we provide an explicit,
fully specified two-scale system where free energy minimization occurs at both scales,
and where the aggregate behavior of agents at the faster/smaller scale can be rigorously
identified with the belief-optimization (a.k.a. “inference”) step at the slower/bigger scale.
We introduce social cognitive capabilities at the agent level (Theory of Mind and Goal
Alignment), which we implement directly through AIF. Further, illustrative results of this
novel approach suggest that such capabilities of individual agents are directly associated
with improvements in the system’s ability to perform approximate Bayesian inference or
minimize variational free energy. Significantly, improvements in global-scale inference are
greatest when local-scale performance optima of individuals align with the system’s global
expected state (e.g., Model 4). Crucially, all of this occurs “bottom-up”, in the sense that our
model does not provide exogenous constraints or incentives for agents to behave in any
specific way; the system-level inference emerges as a product of self-organizing AIF agents
endowed with simple social cognitive mechanisms. The operation of these mechanisms
improves agent-level outcomes by enhancing agents’ ability to minimize free energy in an
environment populated by other agents like it.

Of course, our account does not preclude or dismiss the operation of “top-down”
dynamics, or the use of exogenous incentives or constraints to engineer specific types
of individual and collective behavior. Rather, our approach provides a principled and
mechanistic account of bio-cognitive systems in which “bottom-up” and “top-down” mech-
anisms may meaningfully interplay to inform accounts of behavior such as collective
intelligence [4]. Our results suggest that models such as these may help establish a mecha-
nistic understanding of how collective intelligence evolves and operates in real-life systems,
and provides a plausible lower bound for the kind of agent-level cognitive capabilities that
are required to successfully implement collective intelligence in such systems.

4.1. We Demonstrate AIF as a Viable Mathematical Framework for Modelling Collective
Intelligence as a Multiscale Phenomenon

This work demonstrates the viability of AIF as a mathematical language that can
integrate across scales of a composite bio-cognitive system to predict behavior. Existing
multiscale formulations of AIF [39,40], while more immediately useful for understanding
the behavior of docile subsystem components like cells in a multicellular organism or
neurons in the brain, do not yet offer clear predictions about the behavior of collectives
composed of highly autonomous AIF agents that engage in reciprocal self-evidencing
with each other as well as with the physical (non-social) environment [43]. What’s more,
existing toy simulations of multiscale AIF engineer collective behavior as a predestination—
either as a prior in an agent’s generative model [9], or by default of an environment that
consists solely of other agents [7,8]. We build upon these accounts by using AIF to first
posit the minimal information-theoretical patterns (or “adaptive priors”; see [42]) that
would likely emerge at the level of the individual agent to allow that agent to persist
and flourish in an environment populated by other AIF agents [58]. We then examine
the relationship between these local-scale patterns and collective behavior as a process of
Bayesian inference across multiple scales. Our models show that collective intelligence can
emerge endogenously in a simple goal-directed task from interaction between agents en-
dowed with suitably sophisticated cognitive abilities (and without the need for exogenous
manipulation or incentivization).
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Key to our proposal is the suggestion that collective intelligence can be understood
as a dynamical process of (active) inference at the global-scale of a composite system. We
operationalize self-organization of the collective as a process of free energy minimization
or approximate Bayesian inference based on sensory (but not active) states (for a previ-
ous attempt to operationalize collective behavior as both active and sensory inference,
see [69]). In a series of four models, we demonstrate the responsiveness of this system-level
measure to learning effects over time; the progression of each Model exhibits a pattern
akin to a gradient descent on free energy, evoking the notion that a system that performs
(active) Bayesian inference. Further, stepwise increases in cognitive sophistication at the
individual level show a clear reduction in free energy, particularly between Model 1 (Base-
line) and Model 4 (Theory of Mind x Goal Alignment). These illustrative results suggest
a formal, causal link between behavioral processes across multiple scales of a complex
adaptive system.

Going further, we can imagine an extension of this model where the collective system
interacts with a non-trivial environment, but at a slower time scale, such that a complete
simulation run of all 2M agents corresponds to a single belief optimization step for the
whole system, after which it acts on the environment and receives sensory information
from it (manifested, for example, as changes in the agents’ food sources). In this extended
model (see Figure 10), and if the agent-specific parameters (alterity/Theory of Mind (α),
and Goal Alignment (γ)) could be made endogenous (either via selective mechanisms via
some other learning mechanisms; see [48,73]) we would expect to see the system finding
(non-zero) values of these parameters that optimize its free energy minimization. For
example, it is likely that a system would select for higher values of γ (Goal Alignment)
when both agents’ end-state beliefs and actual target locations mutually cohere, or higher
values of α for agents with weaker perceptiveness. Interestingly, this would show that
degrees of Theory of Mind and Goal Alignment are capabilities that would be selected
for or boosted at these longer time scales, providing empirical support for the heuristic
arguments made for their existence in our model and in human collective intelligence
research more generally [4].

4.2. AIF Sheds Light on Dynamical Operation of Mechanisms That Underwrite
Collective Intelligence

In this way, AIF offers a paradigm through which to move beyond the methodological
constraints associated with experimental analyses of the relationship between local interac-
tions and collective behavior [21]. Even our very rudimentary 2-Agent AIF model proposed
here offers insight into the dynamic operation and function of individual cognitive mech-
anisms for individual and collective level behavior. In distinct contrast to laboratory
paradigms that usually rely on low-dimensional behavioral “snapshots” or summaries of
behavior to verify linearly causal predictions about individual and collective phenomena,
our computational model can be used to explore the effects of fine-grained, agent- and
collective-level variations in cognitive ability on individual and collective behavior in
real time.

For example, by parameterizing key cognitive abilities (Theory of Mind and Goal
Alignment), our model shows that it is not necessarily a case of “more is better” when
it comes to cognitive mechanisms underlying adaptive social behavior and collective in-
telligence. If an agent’s level of social perceptiveness (Theory of Mind) were too low, it
is likely that agents would miss vital performance-relevant information about the envi-
ronment populated by other agents; if an agent’s Theory of Mind were too high, it may
instead over-index on partner belief states as an affordance for own beliefs (a scenario of
“blind leading the blind”). We show that canonical cognitive abilities such as Theory of
Mind and Goal Alignment can function across multiple scales to stabilize and reduce the
computational uncertainty of an environment made up of other AIF agents, but only when
these abilities are optimally tuned to a “goldilocks” level that is suitable to performance in
that specific environment.
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Figure 10. A notional complete two-scale model where agent-specific parameters are endogenized. This would entail
parameters of subsystem components (Theory of Mind and Goal Alignment of each 2-agent system) being jointly optimized
to inform a system action.

The essence of this proposal is captured by empirical research of attentional processes
of human agents that engage in sophisticated joint action [74,75]. For instance, athletes
in novice basketball teams are found to devote more attentional resources to tracking
and monitoring their own teammates, while expert teams spend less time attending to
each other and more time instead attending to the socio-technical task environment [76].
Viewed from the perspective of AIF, in both novice and expert teams alike, agents likely
differentially deploy physical and social perceptiveness at levels that make sense for
pursuing collective performance in a given situation; novices may stand to gain more from
attending to (and therefore learning from) their teammates (recall our Agent B in Model 2
who leverages Theory of Mind to overcome weak physical perceptiveness, for example);
while experts might stand to gain more from down-regulating social perceptiveness and
redirecting limited attentional resources to physical perception of the task or (adversarial)
social environment [77,78].

As evidence in organizational psychology and management suggests, (and outlined in
the introduction), it is likely that social perceptiveness may indeed be an important factor
(among many) that underwrites collective intelligence. But this may be especially the case in
the context of unacquainted teams of “WEIRD” experimental subjects [79] who coordinate
for a limited number of hours in a contrived laboratory setting [3]. If the experimental
task were to be translated to a real-world performance setting (e.g., one involving high-
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stakes or elite performance requirements), or if that same team of experimental subjects
were to persist over time beyond the lab in a randomly fluctuating environment, it is
conceivable that a premium for social perceptiveness may give way to demands for other
types of abilities needed to continue to gain performance-relevant information from the
task environment (e.g., through physical perceptiveness of the task environment). Viewed
from this perspective, the true “special sauce” of collective intelligence (and individual
intelligence, for that matter; see [80]) may turn out not to be one or other discrete or reified
individual or team level ability per se (e.g., social perceptiveness), but instead a collective
ability to nimbly adjust the volumes of multiple parameters to foster specific information-
theoretic patterns conducive to minimizing free energy across multiple scales and over
specific, performance-relevant time periods.

In this spirit, the computational approach we adopt here under AIF affords a dynam-
ical and situational perspective on team performance that may offer important insights
into long-standing and nascent hypotheses concerning the causal mechanisms of collective
intelligence. For instance, our model is well positioned to investigate the long-proposed
(but hitherto unsubstantiated) claim that successful team performance, and by extension,
collective intelligence, depends on balancing a tradeoff between cognitive diversity and
cognitive efficiency [4] (p. 421). Likewise, our approach could help elucidate mechanisms
and dynamics through which memory, attention, and reasoning capabilities become dis-
tributed through a collective, and the conditions in which these “transactive” processes [81]
facilitate emergence of intelligent behavior [77,82,83]. In either case, our model would
simply require specification with the appropriate individual-level cognitive abilities or
priors. For example, to better understand the causal relationship between transactive
knowledge systems and collective intelligence, our model could leverage recent empirical
research that observes a connection between individual agents’ metacognitive abilities
(e.g., perception of others’ skills, focus, and goals), the formation of transactive knowledge
systems, and a collective’s ability to adapt to a changing task environment [83]. On an
important and related note to these opportunities for future research, efforts to simulate
human collective intelligence should strive to develop models composed of two or more
agents to better mimic human-like coordination dynamics [50,84].

4.3. Increases in System Performance Correspond with Alignment between an Agent’s Local and
Global Optima

A key insight from our models, and worthy of further investigation, is that the greatest
improvement in collective intelligence (Model 4; measured by global-scale inference) occurs
when local-scale performance optima of individuals align with the system’s global expected
state. This effect can be understood as individuals jointly implementing approximate
Bayesian inference of the system’s expectations. In effect, our model suggests that multi-
scale alignment between lower- and higher-order states may contribute to the emergence
of collective intelligence.

Alignment between local and global states might sound like an obvious prerequisite
for collective intelligence, particularly for more docile AIF agents such as neurons or cells
(it is near impossible to imagine a scenario in which a neuron or cell could meaningfully
persist without being spatially aligned with a superordinate agent; see [9]). But our model
exemplifies a more subtle form of alignment, based on a loose coupling between scales
through a system’s generative model (Section 2.11), enabling the extension of this idea to
scenarios where the local and global optimizations may be taking place in arbitrarily distinct
and abstract state spaces [49,51]. By now it is well understood in brain and behavioral
sciences that coordinated human behavior relies for its stability and efficacy on an intricate
web of biologically evolved physiological and cognitive mechanisms [85,86], as well as
culturally evolved affordances of language, norms, and institutions [87]. But precisely how
these various mechanisms and affordances—particularly those that are separated across
scales—coordinate in real or evolutionary time to enable human collective phenomena
remains poorly understood [39,73,88].
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Computational models, such as the one we have presented here, that are capable
of formally representing multiscale alignment may help reorganize and clarify causal
relationships between the various hypothesized physiological, cognitive, and cultural
mechanisms hypothesized to underpin human collective behavior [14]. For example,
a computational model such as the one proposed here could conceivably be adapted
to help more systematically test the burgeoning hypothesis that coordination between
basal physiological, metabolic and homeostatic processes at one scale of organization and
linguistically mediated processes of interaction and exchange at another scale determine
fundamental dynamics of individual and collective behavior [88–90].

Future research should aspire to examine causal connections between a fuller range
of meaningful scales of behavior. In the case of human collectives, meaningful scales of
behavior could extend from the basal mechanisms of physiological energy, movement,
and emotional regulation on the micro scale [91,92], to linguistically- (and now digitally-)
mediated social informational systems at the meso scale [93] to global socio-ecological
systems at the macro scale [94–97]. As we have demonstrated here, the key requirement
for the development of such multiscale models under AIF is faithful construction of
the appropriate generative models at each scale. These models provide the mechanistic
“missing links” between AIF and the phenomena to be explained—a task that will require
tremendously innovative and intelligent collective behavior on the part of a diverse range
of agents.

The patterns that crop up again and again in successful space are there because they are
in fundamental accord with characteristics of the human creature. They allow him to
function as a human. They emphasize his essence—he is at once an individual and a
member of a group. They deny neither his individuality nor his inclination to bond into
teams. They let him be what he is.

- DeMarco and Lister [98] (1987, p.90)

Author Contributions: Conceptualization, R.K., J.T. and P.G.; methodology, R.K., P.G. and J.T.;
software, R.K. and P.G.; validation, R.K., P.G.; formal analysis, R.K.; investigation, R.K., P.G. and J.T.;
resources, R.K., J.T. and P.G.; data curation, P.G. and R.K.; writing—original draft preparation, J.T. &
R.K.; writing—review and editing, and J.T, R.K. and P.G.; visualization, P.G., R.K. and J.T. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Model code can be found and implemented via this link to Google
Colab: https://colab.research.google.com/drive/1CKdPTy8LD-Mpxc7kXy47m_fmCq44BT5u?usp=
sharing (accessed on 15 June 2021).

Acknowledgments: The authors acknowledge the thoughtful and constructive feedback from all
anonymous reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kelso, J.A.S. Dynamic Patterns: The Self-Organization of Brain and Behavior; MIT Press: Cambridge, MA, USA, 1995; ISBN 0262611317.
2. Riley, M.A.; Richardson, M.J.; Shockley, K.; Ramenzoni, V.C. Interpersonal synergies. Front. Psychol. 2011, 2, 38. [CrossRef]
3. Woolley, A.W.; Chabris, C.F.; Pentland, A.; Hashmi, N.; Malone, T.W. Evidence for a Collective Intelligence Factor in the

Performance of Human Groups. Science 2010, 330, 686. [CrossRef]
4. Woolley, A.W.; Aggarwal, I.; Malone, T.W. Collective Intelligence and Group Performance. Curr. Dir. Psychol. Sci. 2015, 24,

420–424. [CrossRef]
5. Malone, T.W.; Bernstein, M.S. Introduction. In Handbook of Collective Intelligence; MIT Press: Cambridge, MA, USA, 2015.
6. Bonabeau, E. Agent-based modeling: Methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. USA 2002, 99,

7280–7287. [CrossRef]
7. Friston, K.J.; Frith, C.D. A Duet for one. Conscious. Cogn. 2015, 36, 390–405. [CrossRef] [PubMed]
8. Friston, K.J.; Frith, C.D. Active inference, Communication and hermeneutics. Cortex 2015, 68, 129–143. [CrossRef] [PubMed]
9. Palacios, E.R.; Razi, A.; Parr, T.; Kirchhoff, M.D.; Friston, K. On Markov blankets and hierarchical self-organisation. J. Theor. Biol.

2020, 486, 110089. [CrossRef] [PubMed]

170



Entropy 2021, 23, 830

10. Pratt, S.C.; Mallon, E.B.; Sumpter, D.J.; Franks, N.R. Quorum sensing, recruitment, and collective decision-making during colony
emigration by the ant Leptothorax albipennis. Behav. Ecol. Sociobiol. 2002, 52, 117–127. [CrossRef]

11. Franks, N.R.; Dornhaus, A.; Fitzsimmons, J.P.; Stevens, M. Speed versus accuracy in collective decision making. Proc. R. Soc.
London. Ser. B Biol. Sci. 2003, 270, 2457–2463. [CrossRef] [PubMed]

12. Constant, A.; Ramstead, M.J.D.; Veissière, S.P.L.; Friston, K. Regimes of expectations: An active inference model of social
conformity and human decision making. Front. Psychol. 2019, 10. [CrossRef]

13. Ramstead, M.J.D.; Veissière, S.P.L.; Kirmayer, L.J. Cultural affordances: Scaffolding local worlds through shared intentionality
and regimes of attention. Front. Psychol. 2016, 7, 1–21. [CrossRef]

14. Veissière, S.P.L.; Constant, A.; Ramstead, M.J.D.; Friston, K.J.; Kirmayer, L.J. Thinking Through Other Minds: A Variational
Approach to Cognition and Culture. Behav. Brain Sci. 2019. [CrossRef]

15. Baron-Cohen, S.; Tager-Flusberg, H.; Cohen, D.J. Understanding other Minds: Perspectives from autism. In Most of the Chapters in
This Book Were Presented in Draft form at a Workshop in Seattle; Oxford University Press: Oxford, UK, 1994.

16. Tomasello, M.; Carpenter, M.; Call, J.; Behne, T.; Moll, H. Understanding and sharing intentions: The origins of cultural cognition.
Behav. Brain Sci. 2005, 28, 675–691, discussion 691–735. [CrossRef] [PubMed]

17. Chikersal, P.; Tomprou, M.; Kim, Y.J.; Woolley, A.W.; Dabbish, L. Deep structures of collaboration: Physiological correlates of
collective intelligence and group satisfaction. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative
Work and Social Computing, Portland, OR, USA, 25 February 2017; pp. 873–888. [CrossRef]

18. Engel, D.; Malone, T.W. Integrated information as a metric for group interaction. PLoS ONE 2018, 13, 1–19. [CrossRef] [PubMed]
19. Riedl, C.; Kim, Y.J.; Gupta, P.; Malone, T.W.; Woolley, A.W. Quantifying Collective Intelligence in Human Groups. Proc. Natl.

Acad. Sci. USA 2021, 118, e2005737118. [CrossRef] [PubMed]
20. Rozin, P. Social psychology and science: Some lessons from solomon asch. Personal. Soc. Psychol. Rev. 2001, 5, 2–14. [CrossRef]
21. Kozlowski, S.W.J.; Chao, G.T. Unpacking team process dynamics and emergent phenomena: Challenges, conceptual advances,

and innovative methods. Am. Psychol. 2018, 73, 576–592. [CrossRef] [PubMed]
22. O’Bryan, L.; Beier, M.; Salas, E. How approaches to animal swarm intelligence can improve the study of collective intelligence in

human teams. J. Intell. 2020, 8, 9. [CrossRef] [PubMed]
23. Richardson, M.J.; Schmidt, R.C.; Richardson, M.J. Dynamics of interpersonal coordination. Coord. Neural. Behav. Soc. Dyn. 2008,

281–308.
24. Kelso, J.A.S. Coordination dynamics. In Encyclopedia of Complexity and Systems Science; Springer: Berlin/Heidelberg, Germany,

2009; pp. 1537–1565.
25. Coey, C.A.; Varlet, M.; Richardson, M.J. Coordination dynamics in a socially situated nervous system. Front. Hum. Neurosci. 2012,

6, 164. [CrossRef] [PubMed]
26. Gorman, J.C.; Dunbar, T.A.; Grimm, D.; Gipson, C.L. Understanding and modeling teams as dynamical systems. Front. Psychol.

2017, 8, 1–18. [CrossRef]
27. Reinero, D.A.; Dikker, S.; Van Bavel, J.J. Inter-brain synchrony in teams predicts collective performance. Soc. Cogn. Affect. Neurosci.

2021, 16, 43–57. [CrossRef]
28. Gorman, J.C.; Amazeen, P.G.; Crites, M.J.; Gipson, C.L. Deviations from mirroring in interpersonal multifrequency coordination

when visual information is occluded. Exp. Brain Res. 2017, 235, 1209–1221. [CrossRef]
29. Wiltshire, T.J.; Butner, J.E.; Fiore, S.M. Problem-Solving Phase Transitions During Team Collaboration. Cogn. Sci. 2018, 42, 129–167.

[CrossRef]
30. Wiltshire, T.J.; Steffensen, S.V.; Fiore, S.M. Multiscale movement coordination dynamics in collaborative team problem solving.

Appl. Ergon. 2019, 79, 143–151. [CrossRef]
31. Zhang, M.; Kelso, J.A.S.; Tognoli, E. Critical diversity: Divided or united states of social coordination. PLoS ONE 2018, 13,

e0193843. [CrossRef]
32. Demir, M.; Mcneese, N.J.; Gorman, J.C.; Cooke, N.J.; Myers, C.; Grimm, D.A. Exploration of Team Trust and Interaction in

Human-Autonomy Teaming. IEEE Trans. Hum. Mach. Syst. 2017. [CrossRef]
33. Friston, K.J. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [CrossRef] [PubMed]
34. Friston, K.J. Life as we know it. J. R. Soc. Interface 2013, 10, 10. [CrossRef] [PubMed]
35. Friston, K.J. A free energy principle for a particular physics. arXiv 2019, arXiv:1906.10184.
36. Buckley, C.L.; Kim, C.S.; McGregor, S.; Seth, A.K. The free energy principle for action and perception: A mathematical review.

J. Math. Psychol. 2017, 81, 55–79. [CrossRef]
37. Friston, K.J.; Kilner, J.; Harrison, L. A free energy principle for the brain. J. Physiol. Paris 2006, 100, 70–87. [CrossRef]
38. Hohwy, J. The self-evidencing brain. Nous 2016, 50, 259–285. [CrossRef]
39. Ramstead, M.J.D.; Badcock, P.B.; Friston, K.J. Answering Schrödinger’s question: A free-energy formulation. Phys. Life Rev. 2018,

24, 1–16. [CrossRef]
40. Kirchhoff, M.D.; Parr, T.; Palacios, E.; Friston, K.; Kiverstein, J. The markov blankets of life: Autonomy, active inference and the

free energy principle. J. R. Soc. Interface 2018, 15. [CrossRef] [PubMed]
41. Hesp, C.; Ramstead, M.; Constant, A.; Badcock, P.; Kirchhoff, M.; Friston, K. A multi-scale view of the emergent complexity of life:

A free-energy proposal. In Evolution, Development and Complexity; Springer: Berlin/Heidelberg, Germany, 2019; pp. 195–227.

171



Entropy 2021, 23, 830

42. Badcock, P.B.; Friston, K.J.; Ramstead, M.J.D. The hierarchically mechanistic mind: A free-energy formulation of the human
psyche. Phys. Life Rev. 2019, 31, 104–121. [CrossRef]

43. Sims, M. How to count biological minds: Symbiosis, the free energy principle, and reciprocal multiscale integration. Synthese
2020. [CrossRef]

44. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Elsevier: Amsterdam, The Netherlands, 1988;
ISBN 0080514898.

45. Friston, K.J. What is optimal about motor control? Neuron 2011, 72, 488–498. [CrossRef]
46. Haken, H. Synergetics. In Self-Organizing Systems; Springer: Berlin/Heidelberg, Germany, 1987; pp. 417–434.
47. Kirchhoff, M.D.; Kiverstein, J. How to determine the boundaries of the mind: A Markov blanket proposal. Synthese 2019.

[CrossRef]
48. Ramstead, M.J.D.; Constant, A.; Badcock, P.B.; Friston, K.J. Variational ecology and the physics of sentient systems. Phys. Life Rev.

2019, 31, 188–205. [CrossRef]
49. Clark, A. How to Knit Your Own Markov Blanket: Resisting the Second Law with Metamorphic Minds. Philos. Predict. Coding

2017, 1–19. [CrossRef]
50. Zhang, M.; Beetle, C.; Kelso, J.A.S.; Tognoli, E. Connecting empirical phenomena and theoretical models of biological coordination

across scales. J. R. Soc. Interface 2018, 16, 20190360. [CrossRef]
51. Krakauer, D.; Bertschinger, N.; Olbrich, E.; Flack, J.C.; Ay, N. The information theory of individuality. Theory Biosci. 2020, 139,

209–223. [CrossRef] [PubMed]
52. Ramstead, M.J.D. Have we lost our minds? An approach to multiscale dynamics in the cognitive sciences. Ph.D.’s Thesis, McGill

University Libraries, Montréal, QC, Canada, 2019.
53. Searle, J.R. Minds and brains without programs. Mindwaves 1980, 3, 1–19.
54. Reia, S.M.; Amado, A.C.; Fontanari, J.F. Agent-based models of collective intelligence. Phys. Life Rev. 2019, 31, 320–331. [CrossRef]
55. Krafft, P.M. A Simple Computational Theory of General Collective Intelligence. Top. Cogn. Sci. 2019, 11, 374–392. [CrossRef]

[PubMed]
56. Friston, K.J.; Daunizeau, J.; Kiebel, S.J. Reinforcement learning or active inference? PLoS ONE 2009, 4. [CrossRef]
57. Sajid, N.; Ball, P.J.; Parr, T.; Friston, K.J. Active Inference: Demystified and Compared. Neural Comput. 2021, 44, 1–39. [CrossRef]
58. Vasil, J.; Badcock, P.B.; Constant, A.; Friston, K.; Ramstead, M.J.D. A World Unto Itself: Human Communication as Active

Inference. Front. Psychol. 2020, 11, 1–26. [CrossRef] [PubMed]
59. Hirschfeld, L.A. On a Folk Theory of Society: Children, Evolution, and Mental Representations of Social Groups. Personal. Soc.

Psychol. Rev. 2001, 5, 107–117. [CrossRef]
60. Sperber, D. Intuitive and reflective beliefs. Mind anguage 1997, 12, 67–83. [CrossRef]
61. Yoshida, W.; Dolan, R.J.; Friston, K.J. Game theory of mind. PLoS Comput. Biol. 2008, 4. [CrossRef]
62. Press, W.H.; Dyson, F.J. Iterated Prisoner’s Dilemma contains strategies that dominate any evolutionary opponent. Proc. Natl.

Acad. Sci. USA 2012, 109, 10409–10413. [CrossRef]
63. Baron-Cohen, S.; Wheelwright, S.; Hill, J.; Raste, Y.; Plumb, I. The “Reading the Mind in the Eyes” Test revised version: A study

with normal adults, and adults with Asperger syndrome or high-functioning autism. J. Child Psychol. Psychiatry Allied Discip.
2001, 42, 241–251. [CrossRef]

64. Dunbar, R.I.M. The Social Brain: Mind, Language, and Society in Evolutionary Perspective. Annu. Rev. Anthropol. 2003, 32,
163–181. [CrossRef]

65. Pesquita, A.; Whitwell, R.L.; Enns, J.T. Predictive joint-action model: A hierarchical predictive approach to human cooperation.
Psychol. Bull. 2017, 25, 1751–1769. [CrossRef]

66. Angus, S.D.; Newton, J. Emergence of Shared Intentionality Is Coupled to the Advance of Cumulative Culture. PLoS Comput. Biol.
2015, 11, 1–12. [CrossRef] [PubMed]

67. Fields, C.; Levin, M. How Do Living Systems Create Meaning? Philosophies 2020, 5, 36. [CrossRef]
68. McGregor, S.; Baltieri, M.; Buckley, C.L. A Minimal Active Inference Agent. arXiv 2015, arXiv:1503.04187.
69. Levchuk, G.; Pattipati, K.; Serfaty, D.; Fouse, A.; McCormack, R. Active Inference in Multi-Agent Systems: Context-Driven Collaboration

and Decentralized Purpose-Driven Team Adaptation; 2018 AAAI Spring Symposium Series; AAAI: Menlo Park, CA, USA, 2018; pp.
157–165.

70. van Schaik, A. Python Implementation of a Minimal Active Inference Agent. 2018. Available online: https://github.com/
vschaik/Active-Inference (accessed on 1 January 2021).

71. Friston, K. The free-energy principle: A rough guide to the brain? Trends Cogn. Sci. 2009, 13, 293–301. [CrossRef] [PubMed]
72. Westby, C.E. Social neuroscience and theory of mind. Folia Phoniatr. Logop. 2014, 66, 7–17. [CrossRef]
73. Badcock, P.B. Evolutionary systems theory: A unifying meta-theory of psychological science. Rev. Gen. Psychol. 2012, 16, 10–23.

[CrossRef]
74. Sebanz, N.; Bekkering, H.; Knoblich, G. Joint action: Bodies and minds moving together. Trends Cogn. Sci. 2006, 10, 70–76.

[CrossRef]
75. Vesper, C.; Abramova, E.; Bütepage, J.; Ciardo, F.; Crossey, B.; Effenberg, A.; Hristova, D.; Karlinsky, A.; McEllin, L.; Nijssen,

S.R.R.; et al. Joint Action: Mental Representations, Shared Information and General Mechanisms for Coordinating with Others.
Front. Psychol. 2017, 07, 1–7. [CrossRef] [PubMed]

172



Entropy 2021, 23, 830

76. Bourbousson, J.; R’Kiouak, M.; Eccles, D.W. The dynamics of team coordination: A social network analysis as a window to shared
awareness. Eur. J. Work Organ. Psychol. 2015, 24, 742–760. [CrossRef]

77. Bourbousson, J.; Fortes-Bourbousson, M. How do Co-agents Actively Regulate their Collective Behavior States? Front. Psychol.
2016, 7, 1732. [CrossRef] [PubMed]

78. R’Kiouak, M.; Saury, J.; Durand, M.; Bourbousson, J. Joint action of a pair of rowers in a race: Shared experiences of effectiveness
are shaped by interpersonal mechanical states. Front. Psychol. 2016, 7, 1–17. [CrossRef] [PubMed]

79. Henrich, J.; Heine, S.J.; Norenzayan, A. The weirdest people in the world? Behav. Brain Sci. 2010, 33, 61–83. [CrossRef]
80. Friston, K.; FitzGerald, T.; Rigoli, F.; Schwartenbeck, P.; O’Doherty, J.; Pezzulo, G. Active inference and learning.

Neurosci. Biobehav. Rev. 2016, 68, 862–879. [CrossRef]
81. Wegner, D.M. Transactive memory: A contemporary analysis of the group mind. In Theories of Group Behavior; Springer: Berlin,

Germany, 1987; pp. 185–208.
82. Semin, G.R.; Garrido, M.V. Socially Situated Cognition: Imagining New. In Theory and Explanation in Social Psychology; Guilford

Press: New York, NY, USA, 2015; Volume 36, pp. 774–777.
83. Gupta, P.; Woolley, A.W. The Emergence of Collective Intelligence Behavior. In Proceedings of the Paper presented at the 8th

ACM Collective Intelligence (CI) Conference, Virtual Event, Zurich, Switzerland, 18 June 2020.
84. Richardson, M.J.; Garcia, R.L.; Frank, T.D.; Gergor, M.; Marsh, K. Measuring group synchrony: A cluster-phase method for

analyzing multivariate movement time-series. Front. Physiol. 2012, 3, 405. [CrossRef]
85. Frith, U.; Frith, C.D. The social brain: Allowing humans to boldly go where no other species has been. Philos. Trans. R. Soc. B

Biol. Sci. 2010, 365, 165–176. [CrossRef]
86. Taylor, J.; Davis, A. Social Cohesion. In The International Encyclopedia of Anthropology; Wiley: Hoboken, NJ, USA, 2018; pp. 1–7.
87. Henrich, J. The Secret of our Success: How Culture Is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter;

Princeton University Press: Princeton, NJ, USA, 2015; ISBN 1400873290.
88. Taylor, J.; Cohen, E. Social bonding through joint action: When the team clicks. OSF Pre Print 2019. [CrossRef]
89. Barrett, L.F.; Simmons, W.K. Interoceptive predictions in the brain. Nat. Rev. Neurosci. 2015, 16, 419–429. [CrossRef] [PubMed]
90. Krahé, C.; Springer, A.; Weinman, J.A.; Fotopoulou, A. The social modulation of pain: Others as predictive signals of salience-A

systematic review. Front. Hum. Neurosci. 2013, 7, 386. [CrossRef]
91. Allen, M. Unravelling the Neurobiology of Interoceptive Inference. Trends Cogn. Sci. 2020, 24, 265–266. [CrossRef] [PubMed]
92. Barrett, L.F.; Quigley, K.S.; Hamilton, P. An active inference theory of allostasis and interoception in depression. Philos. Trans. R.

Soc. B 2016. [CrossRef]
93. Mesoudi, A. Cultural evolution: Integrating psychology, evolution and culture. Curr. Opin. Psychol. 2016, 7, 17–22. [CrossRef]
94. Doolittle, F.W.; Inkpen, A.S. Processes and patterns of interaction as units of selection: An introduction to ITSNTS thinking.

Proc. Natl. Acad. Sci. USA 2018, 115, 4006–4014. [CrossRef]
95. Kaufmann, R. Gaianomics, or the self-designing Earth. In The Great Redesign: Frameworks for the Future; Schrader, M., Martens, V.,

Eds.; Edition NFO; Next Factory Ottensen: Hamburg, Germany, 2020; ISBN 9783948580841.
96. Rubin, S.; Parr, T.; Da Costa, L.; Friston, K. Future climates: Markov blankets and active inference in the biosphere: Future

climates: Markov blankets and active inference in the biosphere. J. R. Soc. Interface 2020, 17, 13–16. [CrossRef]
97. Boik, J.C. Science-driven societal transformation, Part I: Worldview. Sustainability 2020, 12, 6881. [CrossRef]
98. Lister, T.R.; DeMarco, T. Peopleware: Productive Projects and Teams; Dorset House: New York, NY, USA, 1987; ISBN 0932633056.

173





entropy

Article

Equality and Freedom as Uncertainty in Groups

Jesse Hoey

Citation: Hoey, J. Equality and

Freedom as Uncertainty in Groups.

Entropy 2021, 23, 1384. https://

doi.org/10.3390/e23111384

Academic Editors: Paul Badcock,

Maxwell Ramstead, Zahra

Sheikhbahaee and Axel Constant

Received: 16 August 2021

Accepted: 18 October 2021

Published: 22 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

David R. Cheriton School of Computer Science, Univeristy of Waterloo, Waterloo, ON N2L 3G1, Canada;
jhoey@cs.uwaterloo.ca

Abstract: In this paper, I investigate a connection between a common characterisation of freedom
and how uncertainty is managed in a Bayesian hierarchical model. To do this, I consider a distributed
factorization of a group’s optimization of free energy, in which each agent is attempting to align
with the group and with its own model. I show how this can lead to equilibria for groups, defined
by the capacity of the model being used, essentially how many different datasets it can handle. In
particular, I show that there is a “sweet spot” in the capacity of a normal model in each agent’s
decentralized optimization, and that this “sweet spot” corresponds to minimal free energy for the
group. At the sweet spot, an agent can predict what the group will do and the group is not surprised
by the agent. However, there is an asymmetry. A higher capacity model for an agent makes it harder
for the individual to learn, as there are more parameters. Simultaneously, a higher capacity model
for the group, implemented as a higher capacity model for each member agent, makes it easier for
a group to integrate a new member. To optimize for a group of agents then requires one to make a
trade-off in capacity, as each individual agent seeks to decrease capacity, but there is pressure from
the group to increase capacity of all members. This pressure exists because as individual agent’s
capacities are reduced, so too are their abilities to model other agents, and thereby to establish
pro-social behavioural patterns. I then consider a basic two-level (dual process) Bayesian model
of social reasoning and a set of three parameters of capacity that are required to implement such a
model. Considering these three capacities as dependent elements in a free energy minimization for a
group leads to a “sweet surface” in a three-dimensional space defining the triplet of parameters that
each agent must use should they hope to minimize free energy as a group. Finally, I relate these three
parameters to three notions of freedom and equality in human social organization, and postulate a
correspondence between freedom and model capacity. That is, models with higher capacity, have
more freedom as they can interact with more datasets.

Keywords: free energy; uncertainty; POMDP; active inference; emotion; affect control theory; sociology

1. Introduction

My primary objective in this paper is to propose a computational model which may
give insights into the deep level of cooperation observed in human groups. While much
of economics and artificial intelligence have focussed on arbitrarily modifying a utility
function (e.g., with incentives for “fairness” [1], “influence” [2], “envy” [3], or “altru-
ism” [4,5]; see my review in [6]), this still requires an agent to solve an intractable social
coordination problem:

“[...] a rational-choice model of collective action, in which individuals calculate that they
will be better off cooperating with one another, vastly understates the degree of social
cooperation that exists in human societies and misunderstands the motives that underlie
it ([7], p. 439).

One possible explanation for how humans achieve this high level of cooperation is by
figuring out who predicts, explains and generates what in a group, or how the epistemic
labour is divided. While each individual can come up with some reasonable predictions,
many of these will have flaws that can be uncovered by an opposing viewpoint, or will be
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invalidated by data. However, each individual will be overtaxed if asked to come up with,
and compare, every possible solution. Therefore, the group will be more efficient if they
spread out, each member trying to push a different viewpoint. The more viewpoints, the
better. The search through epistemic space by the group to locate a position of minimal free
energy will be handled by fanning out, but not so far apart that they cease to be a coherent
group, as security is compromised. Intelligence, innovation, and learning therefore lie in
diversity [8].

In this paper, I propose a computational model of this cooperation mechanism based
on the management of uncertainty in a hierarchical Bayesian model. I show how agents
that manage their uncertainty in the same way will have a “sweet spot” at which they best
fit the group and the group best fits them. In order to make this more concrete, I use a two-
level Bayesian model in which the “higher” level in the model represents shared dynamic
models of state and action based on cognitive social emotions. These social emotional models are
based on processual symbolic interactionist ideas arising in sociology [9]. I argue that these
shared dynamics are useful to help a group of people find a free energy minimum, as they
would be expected to do under the free energy principle (FEP) [10]. At this minimum, they
are coordinated to the best degree possible: each individual fits the group and the group
fits each individual as well as possible given variations in a huge variety of attributes across
different group members. The inclusion of action (really, policy, or strategy) in these shared
dynamic models means that not only is this alignment across states of belief, but it is also
across intents, or what group members are planning to do in in the future. According to
FEP, at equilibrium, each agent suffers the least surprise in its social interactions with its
own group (which may have negative externality of an increase in free energy outside the
group). In order to keep the free energy of each individual and that of the entire group to a
minimum, a trade-off must be made, which is the primary subject of this paper.

I aim to show, in an upwards reduction, that a mathematical trade-off exists in the
structure of multi-agent system cooperative action problems. This trade-off is conjectured
in this paper to be externalized by people in their social econiches, in particular in their
beliefs about equality and freedom. I will start this by looking at a single-dimensional
space, and show that by factoring a free energy formulation of beliefs into two parts, an
information asymmetry arises between individual agents (who act as “principals” here)
and a group of agents (who act as “agent” here). The abstractions created in the mind,
such as the conscious experience of language, necessarily discard information. A family of
objects given a certain label must contain more information, or have higher capacity, than
any individual object in the family. This creates a tension between top-down prediction,
which is individually driven, and bottom up evidence, which is driven by a group. The
individual favours simple models, as they require less cognitive effort, but these come
with increased information hiding by the group. The group, on the other hand, favours
more complex models, as these are more flexible to changing inputs (they can model
more datasets). Therefore, a balance is sought in the complexity (or “capacity”) of the
model selected.

I also conjecture that diversity in a group can be translated into model capacity in each
agent’s mind because of the good regulator theorem: every operational system has to be a
model of its environment [11], which may be social (may include other agents). Thus, each
agent is both defined by, and defines, the group it interacts with. If agents are defined by
a group, yet agents must be diverse, this uncovers the trade-off. I make the simplifying
assumption in this paper of a single group, while in practice, people are simultaneously in
groups that span multiple scales of organization. Sitting with your friend in class is such a
situation, as you are in two groups: friends and classmates.

There are two ways of organizing a social group, and of organizing each agent’s model:
precise and homogeneous, or uncertain and diverse. These two ways lead to solutions
that are secure and static or insecure and innovative, respectively. Finally, I will claim
that these methods correspond to one possible definition of equality and freedom, also
respectively. They cannot be achieved at the same time, yet each has its advantages. The
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argument that the social structure is reflected in the human mind, and vice versa, lies at the
heart of this conjecture. Beyond the good regulator theorem, the “social construction of
reality” is precisely the idea that social structures (reality) are constructed in the mind, and
vice versa [12]. Diversity in a society for example, leads to more liberal political structures
emerging. It is precisely the increased uncertainty in each agent’s mind that leads to this
conclusion.

How will an agent choose between these two organizational methods? Being very
certain about things is good because it allows decisions to be made, as an agent’s certainty
in something needs to be raised above a threshold for action. Being uncertain about things
is also good because it allows an agent to be flexible towards changing situations and new
and different people. However, these extreme values are difficult to sustain a social order
over. The reason is that, in a state of perfect freedom, no cooperation is possible: there’s just
too much diversity. Similarly, a state of perfect equality will not succeed because everyone
has to be identical. In this case, while everyone is very secure, the system has become very
brittle to intrusions or exogenous changes, and remains stagnant (non-innovative).

I can plot a curve showing this trade-off by examining the free energy of the entire
group, which splits into two terms. Figure 1 shows these two terms on a graph of the
log(free energy) vs. this notion of equality and freedom I have explained in the previous
paragraph. That is, to the left are systems where all group members are similar, so each
individual has a minimal free energy (red curve), as it is really easy to predict everyone
else since they are identical to everyone else, but the group’s free energy (blue curve) is
maximal, because they are inflexible to exogenous events. To the right are systems where
all group members are diverse, which has minimal free energy for the group (blue curve),
because they can manipulate the division of epistemic labour, but maximal free energy
for the individual, because a more complex model is required. There is therefore a sweet
spot in the sum of these free energies (black curve), shown with a star in Figure 1, that
trades these two off optimally in the sense that each agent is able to accurately model the
group and the group is able to accurately model each agent. At this sweet spot, agent
and group share a model and are best able to predict and act cooperatively in the future
world. The group as a whole is functioning according to the free energy principle. Smaller
free energy configurations are better because they ensure there is less “surprise” for the
group and its members. It is nevertheless true that any particular group may look very
different to any other group, and so this sweet spot is only universal in an information
theoretic way. The precise circumstances surrounding any group may result in a different,
or non-decreasing, optimization.

This sweet spot is the configuration of both agent and group such that the free energy
of the group is minimized, and it arises from the group leveraging the second law of
thermodynamics for its own benefit by amassing orderly states (information) at the expense
of externalities [13]. In some sense, the group has transferred as much energy as possible
into maintaining a state of low entropy, that is, a state of as much order as is possible
given the various circumstances surrounding the group. The group and the individual are
aligned in this case, and the heightened collective consciousness, regardless of how it is
implemented, allows individuals to be more free to think, be and do [14].

In the next section, I derive the curves in Figure 1 for a one-dimensional parameter
space. I then generalize to three dimensions, by noting that three different (sets of) pa-
rameters are needed to implement a two-level (hierarchical or deep) Bayesian model. The
minimum free energy, however, requires the “participation” of all three sets as a change
by any one that increases free energy will have to be offset by a change in some other
set. Thus, in three dimensions, the “sweet spot” is really a “sweet surface.” The shape of
this surface can be derived based on further assumptions covered in Section 2.6. Then,
in Section 3, I discuss freedom and equality, and present a view of these quantities as
being three dimensional and ternary, derived from social and political theorizing. Finally,
in Section 4, I conjecture that the three dimensions of freedom and equality correspond
to three settings of parameters in a two-level Bayesian model embedded in a multi-agent
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system in which agents do not have to be decision theoretically rational, but do have the
capability to learn.

Figure 1. Free energy as a function of model capacity and/or freedom/equality. I plot the log(free
energy) for clarity only. An arbitrary scaling of log(free energy) can be assumed, so only relative size
matters. Lower free energy is a preferable situation, but the energy created by the group trying to
match the individual (blue line) is balanced by that created by the individual trying to match the
group (red line) to give an overall free energy which has a “sweet spot” (minimum) at �. The black
line shows the free energy if these are traded off equally. The dashed lines show the situation in
which the group is much less flexible because it is larger (N = 100 times larger than the N = 1 group).
Then, the “group” component of the free energy (individual stays fixed, group attempts to match,
blue dashed line) is much higher, since the group’s capacity is increased, and so plays a bigger role in
the resulting free energy (black dashed line), and shifts the “sweet spot” outwards towards more
freedom at ◦.

2. Free Energy

2.1. One-Dimensional Derivation

I now derive the curves in Figure 1 from free energy principles. I will start with the
free energy of the whole group of N agents. I will denote the ith agent’s parameters as θi and
the parameters of the whole group as θ ≡ {θ1, . . . , θN}. Thus, the task of the group at time
t, given data as observations (D = {o}t = {o1, o2, . . . , ot}), is to compute

P(θ|D,H) =
P(D|θ,H)P(θ|H)

P(D|H)
, (1)

where H is the hypothesis space (the modeling space as defined by a Bayesian hierarchical
model, for example). The graphical model for these agents is shown in Figure 2a, with
a single latent variable ZZZ for the entire group. The difficult part here is the evaluation of
P(D|H) since it involves a summation over all values of θ. Further, each of these terms
involves sums over the hidden variables ZZZ.
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Figure 2. Simplified factor graph (Bayesian network) representing (a) a group with latent variables
ZZZ; and (b) the group without agent i with state ZZZg, and one representing agent i with state ZZZi.

The variational free energy, F̃, can be written as

F̃ =
∫

dθQ(θ) log
Q(θ)

P(D, θ)
. (2)

When the approximating distribution Q is chosen such that F̃ is minimized, then the
minimum of this F̃ as θ is varied is obtained when θ is the parameters of the best predictor
function for this domain and agent combination [15]. The minimization process may be
approximated by choosing Q for some fixed (current best-guess) θ, and then optimizing
θ with respect to that “discovered” Q, and repeating this process until convergence to a
local minimum, as in the expectation-maximization algorithm. By choosing the Q function
appropriately, a minimization over model parameters is possible, and this minimization
will not leave the parameters any worse off as far as relationship (fit) with the data goes.
In many cases, Q may be determined from the data, but in some it may only be possible
over some parameterized subset of the space of Q. For example, Q can be factored into
parts corresponding to each parameter, and then each such factored Q can be minimized
analytically one at a time, while keeping the others constant.

In order to move beyond the group to each individual agent, I will split the group into
two parts. One singleton set contains the ith agent, with parameters θi and latent variables
ZZZi, and the other set contains N − 1 agents {1, . . . , N}\i, with parameters θg and latent
variables ZZZg. I will consider this second set of agents as a single agent in what follows, and
the network model looks as in Figure 2b. Equivalently, I assume each agent in the second
set (the group) to be identical and act simultaneously and equally. In what follows, I will
assume this group is homogeneous and undifferentiated in their overall parameter settings
(which means they still may be using heterogeneous models), such that the group can be
treated as an individual. At this point, I encourage the reader to think of this as a dyadic
interaction, but it can also be viewed as an agent-group interaction, or even a group-group
interaction. The role of this single “group” agent is, in fact, taken by a single individual
from the group at any one time, but the statistics of interaction of the agent in question
with the whole group is what matters. I am assuming here that this variation is sufficiently
small, but in real human groups, I imagine it will be quite large.

I will now assume that the variational distribution for the group, Q, from the per-
spective of any agent i, can be factored into a piece for the agent, Qi(θi) and a piece for
the group, Qg(θg), such that Q(θ) = Qi(θi)Qg(θg). As explained above, a variational
solution will normally require some kind of iterative updating scheme like the expectation-
maximization algorithm, which operates by optimising one parameter at a time, while
holding the others fixed. This kind of iterative solution is achieved by factorizing the group
into individuals optimizing their own Q functions, based on everyone else’s Q functions,
assuming they are fixed. For the entire group I am considering, I am assuming that each
agent can separately and independently minimize some part of the variational free energy.
However, the minimization is actually performed by the whole group at the same time.

If each agent attempts to perform this maximization separately, the resulting joint
effort will result in a group pressure on each individual that reciprocates the pressure of the

179



Entropy 2021, 23, 1384

individual on the group, although magnified by the concentration of it. What this implies
is that each agent in a group, in attempting to manage its social network, will tend towards
solutions that combine the agent’s own free energy, with the agent’s contribution to the
free energy of the groups in which it its nested (here I consider only one level of nesting).
This means I can write

F̃ =
∫

dθQi(θi)Qg(θg) log
Qi(θi)Qg(θg)

Pi(D|θi)Pg(D|θg)
. (3)

Consider D, the total data “generated” (including actions performed) by the agent
and group. I will break this into three non-overlapping sets, D ≡ {Do, Di, Dg}, where Di is
the data generated during the interaction by the agent, i, while Dg is the data generated
by the group, g, and Do is the data generated by both simultaneously (or neither). For
example, such data may be spoken/written language, or facial expressions and gestures,
some of which are normally only be jointly expressed (like sharing a hug). Such data may
also include physical artifacts in a shared space. The goal of the optimization is to get Di to
be interpretable by the group, to get Dg to be interpretable by the agent, and to get Do to
be interpretable by both.

The denominator in Equation (3) is P(D, θi, θg), but since Di is being generated by i,
and assuming D0 = ∅, and constant priors P(θi) and P(θg), this is Pi(DiDg|θi)Pg(DgDi|θg)
(it is a “noisy or” or “mixture of experts” model) where Pi and Pg are the probabilistic
models of the individual and of the group. Looking a little further, we note that the
optimization in Equation (3) will favor Pi and Pg distributions with larger capacity, but
that such a larger capacity Pi requires a more difficult optimization by i, but a simpler
optimization for the group g. To see why, consider this exemplar based solution. Consider
that for g to model what i does, it suffices to have one member of g who is very similar to i.
If using a Monte-Carlo (sample-based) solver, this model’s predictive samples would take
most of the weight in the posterior distribution. The more diverse group with have larger
capacity overall and will therefore be more likely to easily assimilate i. However, larger
capacity agents work in the opposite way. For i to model what g does, it requires i to have
a model for every member of g, or at least a sufficient abstraction (learned from) of all data
from all group members. Should i not be able to do this, his free energy will increase very
rapidly, as he struggles to figure out how everyone works. Individuals aim for the stability
of homogeneity, while the group aims for the disorder of innovation. It is this asymmetry
that is the primary focus of this paper. In the discussion, I will further elaborate on the
connections between this and social and political freedom.

Agent and group will both be updating their models, θi and θg, respectively, during
the interaction. I will therefore simplify by assuming that each agent generates “its” data,
then observes Di and Dg, and then generates the shared data D0. Then I can factor

Pi(D|θi) =
∫

θ′i
Pi(Do, Di, Dg, θ′i |θi)

=
∫

θ′i
Pi(Do|Di, Dg, θ′i , θi)Pi(θ

′
i |Dg, Di, θi)Pi(Di|Dg, θi)P(Dg|θi)

=
∫

θ′i
Pi(Do|θ′i)Pi(θ

′
i |Dg, Di, θi)Pi(Di|θi)Pi(Dg|θi), (4)

and

Pg(D|θg) =
∫

θ′g
Pg(Do, Di, Dg, θ′g|θg)

=
∫

θ′g
Pg(Do|θ′g)Pg(θ

′
g|Di, Dg, θg)Pg(Dg|θg)Pg(Di|θg), (5)

where I have assumed that Do is generated from updated models in agent θ′i and group
θ′g after seeing Di and Dg. Further, I have assumed each agent computes its own P(D|θ)
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without considering the other’s data. That is, Pi(Di|Dg, θi) = Pi(Di|θi) and Pg(Di|Dg, θg) =
Pg(Di|θg). Putting Equations (4) and (5) into (3), and rearranging terms, I obtain:

F̃ =
∫

Qi(θi)Qg(θg) log
Qi(θi)

Pi(Di|θi)
∫

θ′i
Pi(Do|θ′i)Pi(θ

′
i |Dg, Di, θi)

(6)

+
∫

Qi(θi)Qg(θg) log
Qg(θg)

Pi(Dg|θi)Pg(Di|θg)Pg(Dg|θg)
∫

θ′g Pg(Do|θ′g)Pg(θ′g|Di, Dg, θg)
.

Now I will evaluate this free energy at a fixed point where θ′g = θg and θ′i = θi, and
in the particular case where Do = ∅, ergo, the group and individual are at equilibrium
and do not jointly generate data. This means neither agent nor group changes parameters
based on the other’s data. However, at equilibrium, it allows me to compute the integrals
in closed form. Thus, in Equation (6), I can set Qg = Pg(Dg|θg) and set the integrals over θ′i
and θ′g in the denominators to identity (since one term picks out θ′ = θ, and the other is
P(Do = ∅|θ) = 1 they pick out the equilibrium point, which is the starting point).

With these assumptions in hand, I can rewrite Equation (6) as:

F̃ =
∫

θg
Qg(θg)

∫
θi

Qi(θi) log
Qi(θi)

Pi(Di|θi)

−
∫

θi

Qi(θi)
∫

θg
Qg(θg) log Pi(Dg|θi)Pg(Di|θg). (7)

The first term is the usual free energy for the agent, averaged over models of the group.
However, assuming the group is stationary, then the free energy of the agent then resolves
to its own free energy, which can be computed. The second term is the joint probability
that agent i will be able to generate data Di that are interpretable by the group, and that
the group will be able to generate data Dg that are interpretable by the agent. This is taken
in expectation over both models of agent and group parameters, Qi and Qg.

Note the symmetry in Equation (7), in which the dispersion of θi can be large if the
dispersion of θg is small, and vice-versa, but both cannot be large or small at the same time.
In fact, this symmetry is quite curious because it states that individuals operating in the
first regime will be well suited to interact with individuals operating in the second. That
is, although they are doing things differently, they in fact are complementary. There is a
trade-off between the capacity of these parameters with insufficient density if the two are
large, difficulty finding the other if the two are small, leaving the agents to find trade-offs
in the middle. The exact location of this trade-off is then something that must be negotiated.
It also determines the sets Do, Di, Dg defined above, since, e.g., if the dispersion of θg is
small, most of the data will be generated by the group, so Do = Dg. If the dispersion of θg
is large, the dispersion of θi is small, and so Do = Di.

Focusing on the second term in Equation (7) only, I can expand out the logarithm and
get two terms

−
∫

θi

Qi(θi)
∫

θg
Qg(θg) log Pi(Dg|θi)−

∫
θg

Qg(θg)
∫

θi

Qi(θi) log Pg(Di|θg),

which I can optimize separately. Holding the agent fixed at θ∗i and optimizing θg in the
first, and holding the group fixed at θ∗g and optimising θi in the second, then, this is

−
∫

θg
Qg(θg) log Pi(Dg|θ∗i )−

∫
θi

Qi(θi) log Pg(Di|θ∗g).
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Now, Dg = {dg0, dg1, . . . , dgN} and Di = {di0, di1, . . . , diN}, which means, assuming
all the data are independently and identically distributed given each model, we can write

−∑
j

[∫
θg

Qg(θg) log Pi(Dgj|θ∗i ) +
∫

θi

Qi(θi) log Pg(Dij|θ∗g)
]

.

I will assume that Qg is a “hat” function which has constant probability over [μ∗
g − σ∗

g , μ∗
g +

σ∗
g ] (so θ∗g = {μ∗

g, σ∗
g}). Similarly for Qi: replace all g subscripts with i. Next, I assume that

Pi and Pg are normal distributions with parameters θi = {μi, σi} and θg = {μg, σg}. The
assumption of normality for Pi and Pg is only to ease exposition here. In fact, these distri-
butions are more likely to be scalable, that is, operating similarly at very different scales
(non-Gaussian). With these assumptions in place, the integrals can be done analytically
to yield, for each data point, a contribution to the overall free energy of (note the extra
negative sign that came from the log(Normal) distributions):

(
μg + σg − μ∗

i
)3

3σ∗2
i

−
(
μg − σg − μ∗

i
)3

3σ∗2
i

+

(
μi + σi − μ∗

g

)3

3σ∗2
g

−
(

μi − σi − μ∗
g

)3

3σ∗2
g

. (8)

Assuming equilibrium, set arbitrarily at μ∗
g = 0 and σ∗

g = 1, I obtain two terms:[(
σg − μ∗

i
)3

3σ∗2
i

+

(
σg + μ∗

i
)3

3σ∗2
i

]
+

[
(μi + σi)

3

3
− (μi − σi)

3

3

]
. (9)

Now, I will assume at equilibrium that σ∗
i = σi and that μ∗

i = μi = 1.0. I deliberately
chooose μ∗

i �= μ∗
g because each individual is not necessarily at the group mean and I

select unity arbitrarily. Holding all other parameters fixed (so μg = μ∗
g and μi = μ∗

i ),
Equation (10) results.[

1
σ2

i

]
+

[
(1 + σi)

3

3
− (1 − σi)

3

3

]
=

[
1
σ2

i

]
+

[
2σi +

2σ3
i

3

]
. (10)

Equation (10) is plotted as a function of σi in Figure 1 (black solid line). Observe that
the two terms work in opposite directions, leading to a minimum shown as a � in Figure 1.
The first term is the negative log probability (free energy) that the group will align with
the agent at fixed θ∗i , which will be lower (more probable, lower free energy) if the agent is
more “flexible” (can show a face the group will like, blue line in Figure 1). The second is
the negative log probability the agent will align with the group, which will be lower if the
agent is more precisely defined (i.e., more “findable,” red line in Figure 1). Although in
this case it is simply because I assumed we were at equilibrium, it will in general be true
because the individuals are more homogeneous.

There are numerous assumptions and shortcuts in the above analysis, but my objective
was to derive a first approximation to the free energy of a group. The assumption that group
and agent are fixed are quite restrictive, and the analysis above simplifies the simultaneous
change of agent to group and from group to agent by using the symmetry of the problem.
This simplification allows me to hold one agent fixed and modulate the other (or hold
the group fixed and modulate the agent). Nevertheless, any more complex and reciprocal
change would be characterised by the same equations, except with perhaps a coordinate
change. Thus, I have proceeded with loss of generality only in the assumptions made (such
as Do = ∅), but relaxing these assumptions would generate multiple interesting avenues
for future work. Using non-Gaussian distributions may be informative.

Generality is also reduced by the fact that I left out external forces altogether. However,
such forces could be added to the equations above, and would share responsibility for D
(along with the agent and group). Adding such elements may skew the overall structures
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shown in Figure 1, but will not change the core ideas I am presenting. This does, however,
remain for a topic of future research.

2.2. Bigger or Smaller Groups

Now I remind you that the first term in Equations (9) and (10) in fact represents the
entire group of N − 1 individuals. Therefore, by weighting the two terms equally (black
line in Figure 1), I have made an implicit assumption that the group is fully connected, so
that there are N − 1 terms like the first in Equations (9) and (10), that is, the individual
interacts with everyone. This is not likely to be the case, however. What is more likely is
that the newcomer interacts with only a dozen colleagues and managers, so his influence on
the group is small. If we approximate this linearly and weight the first term in Equation (10)
arbitrarily by N = 100, then the dashed curves in Figure 1 result. The optimal configuration
of parameters for free energy minimizing agents has shifted rightwards, and more individual
flexibility is called for in order to integrate the individual into the group. Note that there
is an arbitrary scaling: N = 1 means the arbitrary scaling factor being applied to the
group/individual trade-off.

Nevertheless, the individual may have to change more than the group, as the weight
of the population is in their favour (he is outnumbered). However, if the individual’s
parameters are substantially mis-aligned in general with the group’s but aligned with
some sub-group’s parameters, then if the social network is constructed in such a way
that this individual is mostly interacting with the sub-group, then these models may be
strengthened within the sub-group. Should the group become large enough, or socially
organised enough, their skepticism may be able ”to offer a challenge to the upholders of the
‘official’ tradition” ([12], p.121). This challenge may be handled by merger into the main
institution (internalization by the sub-group of the primary group), which then enriches and
differentiates this tradition, or by segregation of the skeptics, a process of objectivation that
possibly includes dehumanization (change of their agreed upon assigned identity). Finally,
the sub-group may gain sufficient strength to form a political party and trigger change, in
which case the existing traditions are thrown away and replaced with the new ideology,
and the sub-group externalises to the group, society is produced by this sub-group, who
define the new reality [12]. The definition and recognition of official sub-groups may be
able to steer this process from an institutional perspective (see Section 3.1).

2.3. Flashlight Allegory

I will present this balance problem using an allegory of two boys searching for each
other in the dark with a flashlights, as shown in Figure 3. The flashlights have an adjustable
beam width, from narrow and far to wide and close. The boys get rewarded for how much
light the other records, or the density of light falling on him. One can see that for certain
settings of flashlight beams, the boys have no hope. If one sets his beam on small and far,
but the other does as well, they will have trouble finding each other. If both beams are
wide, they can easily find each other, but the density of both together is low. Thus, they
can either both use medium beams, or one can use a small beam and the other a large one.

In the flashlight allegory above, consider the targets for each boy (the other boy) are
like the social world, and the flashlight is the boy’s predictions of how the social world will
behave on a level of “meaning.” Thus, I am treating a group of agents as a single agent here,
to simplify the presentation. The size of the target is the diversity of the social world, and
represents the variance in expected behaviours. The size of the flashlight is the strength of
the abstract social model the agent is building (his prior model). Therefore, the “allowable”
settings are those that combine high diversity with strong abstract predictions and those
that combine low diversity with weak abstract predictions. These settings may both work
well in a network of agents with the same settings, but this does not mean that the agents
are homogeneous. While their parameter settings may be the same, the parameter settings
define the space of possible models and agent can take on, and are more of a measure of a
social group’s expansiveness. Granted, boys with wider flashlight beams will have settings
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that rely less on abstract meanings. Also, individuals may conflict when put in groups
with different settings, as the existing models will necessarily break down (and not match).
The process of learning the new “fit” will be one that may be individual dependent. Such
“spotlight” metaphors have been deeply explored in the context of psychological (usually
visual) attention [16].visual) attention [16].

Figure 3. Allegorical example to demonstrate the uncertainty matching principle. Boy A (he can be
A-narrow or A-wide) and boy B (B-narrow or B-wide) attempt to find each other’s flashlights and are
rewarded by the density of light falling on the other boy’s flashlight.

If we also take into account how many connections link up the group members (the
density of the network, or the effective group for any agent), then the group component
becomes dominant and larger, it being harder for the whole group to shift towards the
agent (blue dashed line in Figure 1), and the resulting free energy has a sweet spot that
has shifted rightwards, towards more freedom, shown in Figure 1 with ◦. Such a shift may
also be caused by the intensity of the relationship to the group. Those relations formed in
primary socialization, for example, may have much more intensity, and therefore a much
bigger effect, than those formed in secondary socialization ([12], p.152).

Work on latent structure learning of groups has shown that the assignment of a
person to a group can be highly context dependent, as well as being dependent on dyadic
similarity. That is, if Agent A meets Agent B, then how agent A categorizes agent B is
dependent on how similar B is to each of A’s prototypes of groups or identities (e.g., a
“doctor” is an identity, part of the group “doctors,” which is part of the group “medical
professionals,” etc.), but also whether or not agent C is present, and their similarity and
group behaviour with B [17]. If group similarity is higher, then the group becomes more
fixed in its relationship with the new agent, and the agent is more likely to assign other
agents to the new group than to some other, more loosely defined group. That is, the larger,
tighter groups will have more “gravity” pulling people towards them. Such groups are
mobilizations of people into political parties, institutions embedded in the social fabric of
the group and capable of swaying public policy.

Finally, the flashlight allegory ties back to the division of epistemic labour mentioned
in the introduction. If we replace one of the boys with a group of boys, then we can see
the value in this matching process. Each boy is simultaneously playing the same game,
alone, trying to “match” the other N − 1 boys. The places where their flashlights meet (the
rewards they receive for playing the game properly) are in the innovations illuminated
by their crossing beams. As the location from which the beam emanates in some degree
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represents which particular boy is standing there, the bigger the group, the broader the
range of beams. A broader beam is easier for the group to find, but harder to make bright
enough to solve the problem.

2.4. Two-Level Models

The one-dimensional analysis in the previous sections is somewhat simplistic, but I
can generalize to a two-level model fairly easily, which is what this section will discuss.
Generalizing beyond two levels, or beyond one group, requires further study. Throughout
this section, do not lose sight of the fact that all probability distributions I refer to define
the relative likelihoods of state and of actions/behaviours.

Multilevel systems are interesting because they are both neurologically plausible and
information theoretically rich. Each level in such a model has a certain degree of uncertainty
to it, where uncertainty is really a characterization of degree of belief, following a Bayesian
view that puts the existentialism of the world into the mind itself [18]. Further, there must
be uncertainty in the connection between the levels, which turns out to be important. That
is, once we propose two different functional “levels” of processing in the brain, they must
be combined in some way to produce, in the end, motor signals for purposeful action. The
way this combination happens can be more or less precise, that is, the levels depend more
or less on each other. I will call the three types of uncertainty denotative (objective model),
connotative (subjective model), and connective (objective-subjective connection model).
There is no constraint on what the model actually is, so long as it has a use for these three
types of uncertainty. Further, since there are actually approximately five levels in the brain,
I would expect at least nine types of uncertainty. I focus here on three primary ones as
exemplary, where denotative corresponds roughly to language, while connotative to social
emotions or sentiments.

This type of “dual-process” model is known to have parallels in human brain function
and behaviour. However, it considers the role of abstract (some of it emotional) reasoning
as a group-level process, and that of deliberative thought as an individual one. This
is contrary to many modern views of deliberation and rationality as a group process
(e.g., the “rational” economy), while emotion is individual and causes irrational behaviour.
I make a distinction between action and behaviour in that the first describes linguistic labels
(propositions) denoting actions, such as give something to, while the second describes the
affective meanings of an action, say very positive and a bit powerful in this case.

Although these ideas generalize to other models, if using a probabilistic, two-level
model, the state of the top level can be viewed as representing the parameters of the
predictive model the next level down. Observations are then represented by the state at
this next level down, and its dynamics are represented by the state one level up. Inference
in this model is both state estimation and learning of the parameters of the low-level model,
and is the definition of Bayesian machine learning. In what follows, I consider a particular
type of two-level Bayesian model in which the “high” level is a continuous state parameter
which is taken a priori to be the dynamics of sentiment as measured in population surveys,
and the “low” level represents the dynamics of the objective, outside world. Such a model is
restrictive, but gives me an easier way to relate to models of political freedom in Section 3.

2.5. Bayesact

BayesAct is a two-level model of human intelligence and affective reasoning (individ-
ual and social) that explicitly represents the three types of uncertainty in a simple and
measurable way by leveraging the machinery of affect control theory (ACT) [9,19–22].
ACT is a model of emotional coherence based on language that was founded on the con-
trol principle of Powers [23], which states something very reminiscent of the free energy
principle: that people try to minimise incongruencies by controlling their perceptions.
Heise transposed this to the sentiment space of Osgood et al. [24], imposed a denotative
structure from symbolic interactionism [25], and added affective dynamics [26]. ACT is
a computational model that has been used to predict classes of human behaviour in a
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variety of settings [27]. ACT maintains a deterministic and static denotative model as
an actor-behaviour-object-setting state (e.g., “doctor advises patient in clinic”), and an
associated deterministic, but dynamic, connotative model. This connotative model is a a
dynamical system in Osgood’s three-dimensional space of affective meaning: evaluation,
potency and activity. This dynamical system represents values, or evaluative knowledge,
which can be contrasted with declarative and procedural knowledge that are represented in
the denotative model.

BayesAct combines these mechanics with a formal decision theoretic model, a partially
observable Markov decision process, or POMDP [28,29], extensively used in operations
research [30]. A POMDP instantiates a temporal frame or structural representation [31]. Frames,
as schemas, are a classic structure used in early artificial intelligence (AI), Knowledge
Discovery and Data Mining (KDD), and Information Retrieval (IR) research that assigns a
label and interpretation to each object, fact, relation and event that constitute a particular
situation. Such structures are typically logical and discrete-valued to enable ease of use
in a computer program. For example, we might label the positions of pieces on a chess
board, or predictions about how a game will turn out given a sequence of moves, or the
bids in a negotiation. The inclusion of the connotative meanings of ACT means the model
must be augmented with labels for identities and behaviours corresponding to ACT’s
denotative model, but with added noise modelling. These labels can then be interpreted
as distributions in a sentiment space using a measured dictionary. This sentiment space
thus complements the denotative state I have been describing so far, with a connotative state
(which in fact is 18 dimensional). The model is fundamentally based on the symbolic
interactionist idea that symbols (language) provide order for “the subjective apprehension
of biographical experience” ([12], p.97). Symbols are then reified elements of exactly these
same subjective apprehensions.

Thus, learning and being become one single experience. The combination of symbolic
and affective interpretations is what enables generalization: once the symbol “doctor” is
assigned to someone, expectations for her behaviour become defined as generally as
possible with respect to her occupation. That is, I expect her to do something good and
powerful, but I am open to a range of actual objective actions that could be in play in the
current situation. For example, if the current situation is a court-room, I still expect her to
do something good, such as testify honestly, and powerful, such as speak authoritatively. If
she is coaching my son’s hockey team, I also expect her to be honest, fair and caring. If my
son’s hockey coach is a policewoman, I may expect a more authoritarian and disciplinarian
experience for my son. Note that both my assumptions may be wrong as this individual
may be enacting a completely different identity while coaching.

Frames form the foundation of much knowledge representation work in AI, but
have been efficiently implemented using Bayesian networks (BNs), which can be used
to compute a distribution over all possible worlds modeled by a particular frame [18].
This probabilistic model then rests on the structural ontology and temporal logics that
are proposed in the frame. Bayesian decision networks generalise the goals in frames as
preference functions that rank all possible outcomes using a numeric scale, e.g., a utility
function [32]. BayesAct complements this denotative model (the variance of which is called
invalidity), with the ACT-based connotative model (the variance of which is called coherence),
and a model of the relationship between them, the somatic transform (the variance of which
is called dependence) [6,33]. For example, in a government policy decision, the facts may
include the amount of money spent or saved, and long-term estimates from potentially
complex predictive models, and the utility is financial or based on some index of social
well-being. The denotative temporal dynamics may describe immediate and longer-term
effects, enabled by adding more latent state, and allow for the construction of a policy
that optimises over some definition of utility based on the same features. The denotative
temporal dynamics may also encode norms of behaviour that indicate the normative choices
to make for any given identity-behaviour combination (e.g., a “citizen” should not “free
ride” on other “citizens”).
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The connotative dynamics are ACT-based, and will encode the relative freedom trade-
offs for whatever group they are applied to. That is, for some particular configuration of
the denotative state, including a definition of identities, a connotative distribution results
that may be used to compute how emotionally coherent various behaviours are. This
connotative coherence is one of “feeling” or “intuition,” which may override any norms. I
will call such coherence “prescriptive” rather than “normative.” A striking example is a
trolley problem, in which it is logical to throw the switch on a runaway trolley so that it kills
only one person instead of five, a strong connotative prescription against “killing someone”
may take over for many people and prevent this logical strategy. Another example is an
ultimatum game, in which one player is given $10, and can give any amount he wishes
to the other player. While logically the proper amount to give is $0 (or 1¢ if the game
is repeated and the other player has a choice not to play), most humans will fork over
approximately 20% to 40% of the amount they are given, with the amount being culturally
dependent [34].

2.6. Three Types of Uncertainty

The two-level model discussed in the last section has three sets of parameters gov-
erning denotative, connective, and connotative elements. The three parameters are de-
noted δ, γ, and α, respectively. I therefore project the overall freedom-equality dimension
from Figure 1 into a three-dimensional space.

Equation (9) is the free energy for a one-dimensional parameter space, under certain
assumptions. In a three-dimensional space, we can imagine this free energy curve, as shown
in Figure 1, varies along any ray emanating from the origin, and that the minimum point
defines the surface of the “simplex,” which is therefore revealed to be more of a “dome”
shape (assuming radial symmetry). I therefore plot the simplex by seeking the minimum
free energy along each ray from the origin. Plotting this as a function of − log θ ∝ θ−1)
yields Figure 4a, with an interpolated, smoothed version in (c). Figure 4b,d are the same
plotting θ directly.

Since free energy increases with an increase in any parameter of the three, in order to
be at equilibrium, it must decrease in at least one of the other two. What this implies is that
the three-dimensional parameter space is in fact a two-dimensional surface of equilibrum,
at each point of which the free energy is at a minimum. I have imposed a restriction here
by assuming the decrease is the same; however, there may be some arbitrary scaling that
may arise due to the physical nature of our environment. I make a radial assumption
in Figure 4, which presents the information in three dimensions with as little added bias as
possible (simply what this theoretical model is telling us). However, because of the assumed
arbitrary (relative) scaling of parameter sets in the BayesAct model, viewing this surface as
a simplex as in Figure 5 is easier to relate to theorizing about human freedom and equality,
as in Section 3. The exact shape of this surface may not be as shown in Figure 4 or 5, but
recall that a social system becomes increasingly difficult to arrange as you move out along
any dimension of freedom, and thus the actual range of operation of these parameters is
likely to be relatively small, centered around a region in center of the minimum free energy
manifold.
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(a) (b)

(c) (d)

Figure 4. Views of the minimum free energy points along each ray from the origin. (a,c): Axes
are -log(parameters), but correspond in scale to coherence (− log(f̂f)), dependence (− log(γ)), and
validity (− log(δ)). I plotted the negative logarithm of each parameter, and colored the surface in
(c), for visibility only. (b,d): Axes are the raw variance parameters (so larger is more dispersed,
more freedom).

3. Freedom in Social Groups

While the model in the last section boils things down to three complementary sets
of parameters, the non-determinism in social groups may be substantially more com-
plex. However, as I will show in this section, they can also be boiled down to three
complementary sets of parameters. First, consider what we mean by uncertainty. Often,
non-determinism can be reduced to an estimate of how likely some outcome is to occur,
given some policy of action: this is the risk. Risk is an important concept, because if one
can define risk, and one has fixed preferences, then one can make a decision-theoretically
optimal decision about behaviours that lead to this risky outcome. That is, an agent can
rationally decide whether or not to do something, and be right about it, only when the
risk is something she can estimate. However, if she cannot estimate the risk (perhaps she
has never tried the behaviour so has no statistics to learn from about the likelihood of the
outcomes), then her estimate of risk itself is uncertain, and we label this type of “meta-”
uncertainty as “ambiguity,” or the “unknown unknown” [35]. The reason ambiguity is
important as a separate concept, is that it is a factor determining when people rely more on
social than individual learning, alongside problem difficulty and learning cost ([36], p. 64).

There are two main reasons why an agent would no longer be able to estimate risk
properly. The first is there may be some unknown (to the agent) factors that influence the
outcome. These factors might be discovered should the agent try the behaviour, which
it cannot do reliably without an estimate of risk. The second is the agent may lose the
capacity to model an environment that has become too complex. There is a third reason risk
may be hard to estimate, which is essentially the same as the first: the cost of a behaviour
may be too high. This implies the agent cannot do the action, and so leaves the outcomes
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unknown as in the first reason for ambiguity. These three reasons are both known to be
important in gauging if an agent will favour social learning (learning by imitating others,
for example) over individual learning (e.g., learning by evaluating outcomes decision
theoretically) ([36], p. 64). In either case, I will call the resulting environment invalid [37],
which is synonymous with ambiguous, but less ambiguous.k

3.1. Three Freedoms

Ambiguity is handled by people in three complementary ways, which correspond to
three things at play: the group, the individual, and the connection between the individual
and the group. Another way of saying this is the objective (external, the group) the subjec-
tive (internal, the self) and the connective (membership in the group). The representations
of the social context in an agent’s brain or mind pervades reason and thought, and the way
in which each agent in each context trades off the social and individual contexts will be
defined by, and will define, the social order and thus reality: “the relationship between the
individual and the objective social world is like an ongoing balancing act” ([12], p. 134). Therefore,
these three locusses of ambiguity management lead to three concepts of freedom, Republican,
Positive, and Negative which I now explore using the framework of Anderson [38].

Republican freedom means people are not subject to anyone’s unaccountable will, and
is also known as independence. As republican equality is increased, then everyone becomes
equivalent and dependent. Normally this is done by making all dependent on a sovereign
or a monarch, such that all independence is removed by subjugation to the monarch’s
unaccountable will. However, a smart and honest monarch gives his subjects lots of
opportunities (positive freedoms) and lets them have free choices (negative freedoms) but
can intervene at any time to impose an arbitrary will to ensure everyone is steering in the
same direction.

Positive freedom implies opportunity, implemented by slackening constraints at the
group level, meaning uncertainty must be managed at levels lower down (individual) and
higher up (at the corporate or government level). Positive equality means that opportunity
is more constrained. Positive equality is a place where everyone is exactly acting in the
same way and the world is predictable and valid [37]. Therefore, if you could maximise
positive equality, then everyone would act according to a single plan. One such plan
could be a rational plan. By defining what is good and what is bad, a rational decision
maker can be used to set policy. This definition also equates to the ontologies used to
classify people and groups, as those considered “bad”, e.g., those labeled “madmen and
children” ([39], p. 33) can be excluded in order to preserve rationality. The power to make
this definition may be abused by a despot for personal gain.

Negative freedom is defined by the freedom an agent has to choose its own actions,
from whatever choices it is given. So moving towards negative equality means removing
people’s abilities to choose their own actions. One way to do this is by defining affec-
tive identities, and then making more stringent requirements on how actions should be
coherent with these identities, as explored in Section 2.4. These culturally approved dy-
namics become institutionalised, and they remove negative freedom of individuals to
act in whatever way their will directs them. Thus, an increase in emotional coherence
between (seemingly self-imposed) actions and behaviours, in an emotionally stratified
society, leads to a reduction in the space of actions under consideration, accompanied by
a corresponding increase in negative equality in which actions are constrained by social
prescriptions. A state of “world closedness,” extracted from a state of “world openness,” is
a result ([12], p. 51). The classic imposition on negative freedom is private property. I can
wall off a piece of ground for myself, and I have increased my negative freedom on my
property. Although I still require the law, and an enforcement component of government
to ensure this freedom is upheld, I have decreased the negative freedom of 7 billion people
(realistically, only a few hundred co-citizens of my rural town), and therefore overall have
increased negative equality.
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Negative and positive freedom can be easily confused. The important difference is
in where this freedom lies. Positive freedom is a property of the group of agents. The
more open the group is to new ideas, for example, the more positive freedom it affords its
members. Negative freedom is a property of the individual. As individuals are mostly
constrained by the presence of others, negative freedom is decreased when positive freedom
is increased through diversity, for example. Although I have the positive freedom in my
country to stand outside and shout my opinions, I do not have the negative freedom to do
that as I would be ashamed that my neighbors may see me. As more diverse preferences
surround me, there are more of such things that will reduce my negative freedom further.

3.2. Social Capital

Defining “social capital” as the emotional bonds in a network of people [40], I find
that it can be implemented in two ways. First, by restricting republican freedom but
allowing negative and positive freedoms, one gets a tight-knit group of homogeneous,
intolerant individuals devoted to the group. Such a group is rich in “bonding social
capital” and have low tolerance, e.g., a “sectarian community” ([40], p. 355). Second, by
restricting negative freedom but allowing positive and republican freedoms, one gets a
highly diverse and tolerant group, but one that must be trusting of others. Such a group
is rich in “bridging social capital” and has high tolerance for out-group members, e.g., a
“civic community” ([40], p. 355). Putnam [40] also discusses two other forms of societies,
those with high tolerance but low social capital (of either sort) are “individualistic” (every
man for himself), and those with low tolerance and low social capital (“anarchic”). While
the individualistic case implies no positive freedom but complete negative and republican
freedom, the anarchic case implies complete freedom across the board, and is not workable
as a societal solution given even natural diversity due to statistical fluctuations. Fukuyama
has also written extensively on the idea of trust [41,42], which he equates with social
capital [40] and cultural values ([41], p. 110).

3.3. Ternary “Simplex”

Anderson [38] presents these three freedoms as both distinct (in that they can be
individually varied) and valuable (in that all are worth something). There is evidence
that they vary inversely with respect to each other (e.g., gains in republican freedom are
usually traded off against losses in negative freedom in a social democracy). If we make
one assumption that an increase in one such freedom means an increase in overall freedom,
then a group at an equilibrium of trading off freedom and equality would tend to increase
equality in response, to restore equilibrium. What dimension is increased would not matter,
but all cannot be increased (or decreased) at once. Thus, these three freedoms form a
ternary structure (in which only one can be maximal at a time), and so I postulate three
freedom-equality dimensions as shown in Figure 5, and so that it appears as a dashed
green line in Figure 5. Freedoms increase down each axis towards the freedom pole at the
origin (�) in Figure 5. Each type of equality (freedom) is increased by moving away from
(towards) the origin along the corresponding axis.
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republican equality

negative equality

positive equality

republican freedom

negative freedom positive freedom

equality
freedom

Figure 5. Simplex on the three dimensions of freedom and equality. Also shown are poles of perfect freedom � and perfect
equality •, The star is in the most central position possible for a social agreement on the management of uncertainty.

4. Discussion

Politics, from the laws themselves to the people who make them, enforce them, and
evaluate them, are based on some degree of balance between freedom and equality. As ([43],
p. 96) points out, “every system of law [has] two main objects, freedom and equality.” However,
there are many ways to balance these two elements. For example, one group may value
everyone’s freedom to act (e.g., to carry a gun), while another may value everyone’s
equality of action. One can easily see that one cannot be free and be equal in a society of
others. If everyone is free, then there will be inequality. If everyone is equal, then no one is
free. In the words of ([44], p. 171): “The liberty of some must depend on the restraint of others.”
Freedom and equality are heavily discussed in the literature, of which I will barely skim
the surface. My primary objective with this paper is to show that the different kinds of
freedoms enjoyed by people are related in a non-trivial way to some information theoretic
principles about the management of uncertainty.

I can represent this definition of freedom and equality on a single axis, as shown
in Figure 1. On this figure, a society could be set up anywhere along the line between
freedom and equality. However, using free energy principles on a one-dimensional model,
I can show that there is a “sweet spot” at which the group functions most efficiently. This
sweet spot, shown in Figure 1 with a �, is a minimum of free energy for the group, and is
defined by how uncertainty is managed in a group of agents (see Section 2). The natural
equilibrium of the group is when the group and its members are in harmony. Another
way to say this is that any group attempting to settle away from this sweet spot, will be
less efficient, and may be dominated by groups who are at their own sweet spot. Learning
where an agent should situate its own, internal model of the world is something non-self-
interested that an agent does, but it is something that benefits the group as a whole. Due
to a host of exogenous factors the group will be unlikely to be found at their “sweet spot,”
but rather would look like a small cloud in the three-dimensional space, with more density
somewhere along this simplex. To get a sense just how much variation is found in such
a cloud, one can consider how to implement collective intelligence through rewards, as
in [45], but seeing collective intelligence as a property of the group, not of the individual,
leads to a different interpretation in which the group prescription is the norm, and the
individual’s rational deliberations lead it astray.

I therefore conjecture that freedom is an estimate of the capacity of posterior belief
distributions in a hierarchical model which includes agent policies. Different types of
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freedom express themselves at different levels. Similarly, I define equality as the inverse of
this: an estimate of the precision of the same posterior belief distributions. Very precise
distributions require people to be less diverse, more similar, more equal. This conjecture
allows me to connect Figure 5, derived from social theory, to Figure 4, which is derived
here analytically from information theoretic principles, but could potentially be derived
from data by building artifacts that actually fit into and become members of a social group.

As a simple example, consider the diversity of a population. We can represent diversity
as a distribution over a range of human attributes, plotted along the x-axis in Figure 1
as model capacity. Higher capacity allows a wider range of attributes, leading to a more
diverse population with a lot of freedom. With reduced capacity (to the left) in Figure 1,
comes reduced diversity, so people are spread across a smaller number of attributes,
everybody is very much the same, and there is much more equality.

Those operating in the society of diversity are more often going to run into diverse
views of things, and therefore they will learn a more uncertain or “spread out” view of
their society. They will therefore be more free to choose their own actions as there will
be less constraint from the group level (as it is more spread out). Agents that live in the
homogeneous society are going to have very precise distributions over the other agents in
their group since everyone is similar. Actions are constrained, but equality and security are
guaranteed. Security is guaranteed because, if everyone is the same as you, then you can
be very certain about things, you are in a state of pure equality, and you get pure security
as a reward: you can predict what is going to happen next. If everyone is very different,
then you will be very uncertain about how people will act but you can be free to act in any
way you want because it will not stand out and people will know how to handle it.

Degrees of uncertainty are therefore intimately connected with freedom. What types of
freedom are associated with each of these three type of uncertainty? Denotative uncertainty
is the same as positive freedom, in that invalid environments are ones in which everyone
is doing different things, and so positive freedom is maximised. When all are “forced”
to behave in some way (e.g., rational), then positive equality is maximised (everyone is
following the same plan), but of course, positive freedom is minimised.

Connotative uncertainty is the same as negative freedom, as it releases people from
social norms and prescriptions that cause constraints on their actions. Note that I am
making this association primarily on the basis of using ACT as a model for the connotative
state. Seen from a strictly Bayesian model selection viewpoint, the connotative state is
the family of models that are being used to make predictions about the effects of action
on the world. Those using the same family of models, say Gaussian processes, will be
solving problems represented the same way (same perspectives [8]). They may be using
the same heuristics as well to solve their problems, at which point generating diverse
solutions will be difficult, and negative freedom is reduced. They may also be using
different heuristics, which gives them an advantage by allowing them to divide labour and
act cooperatively. Those working from different model families (different perspectives)
will find synchronization more difficult. However, they may also gain advantage from
their diversity due to the “diversity trumps ability theorem” [46], which leads to two
conclusions: “Diverse perspectives are more likely to lead to breakthroughs and to create
communication problems. Diverse heuristics are more likely to lead to smaller, more
iterative improvements” ([8], p. 239). In the first, putting together different models leads to
an increase in negative freedom, whereas in the second, shared model families lead to a
decrease in negative freedom, but may increase positive freedom.

Institutions, as a family of models, increase negative equality. An institution has
an organizational “culture” that increases social norms and prescriptions, and decreases
negative freedom. In my analysis above, I assume everything is in equilibrium, so that all
model families are the same. However, there is much to be gained from studying how this
system behaves out of equilibrium.

Finally, connective uncertainty is the same as republican freedom, as it releases people
from adherence to some externally defined reference point. A great deal of connective
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certainty requires a leader, who, since positive and negative freedoms are maximised in
this state, must be authoritarian. This leader must define what is “good” and “bad” for the
group to be cooperative, since everyone within the group has so much freedom to follow
their own definitions. Connotative certainty also requires a leader, but it can be defined as a
social contract, since this configuration requires people to give up their negative freedoms
to obtain this connotative security.

Therefore, the setting of parameters of uncertainty (variances) in a two-level Bayesian
model of each agent corresponds to the setting of political belief in the resulting group
and the placement on a three-dimensional simplex of freedoms. The primary insight
is that all such settings are equivalent in terms of their trade-offs between equality and
freedom in general, that is, along the dashed green axis in Figure 5, which is what we really
should care about. The precise way in which this balance is achieved matters less, and
conflicting mixtures of uncertainty management should be avoided. Narratives that can
give justifications for actions in line with one group or the other may be important to
guide marginalised groups towards fair solutions. Losses of republican freedom can be
compensated for by underlining the associated gains in positive freedom, for example.

As with the single-dimensional (linear) version in Section 2, there are numerous
different ways of achieving the same freedom-equality trade-off. The trade-off shown
in Figure 1 happens along all three freedom axes. In order to handle this, I assumed
that the trade-off in Figure 1 operates along any radial vector in this three-dimensional
space. Variations on this assumption may yield different results. The simplex gives us a
convenient way to discuss the manifold shown in Figure 4, so long as we remember that in
practice it has this particular scaling. Note that the minimum free energy goes to ∞ as any
parameter drops to zero, as Equation (9) blows up. It is therefore more difficult to plot the
simplex as a function of the inverses of the parameters (Figure 4a,b). Regardless of how we
talk about this space we have to end up on (or near to) this two-dimensional surface shown
outlined in blue in Figure 5. This surface is a simplex, and represents the “sweet surface”
of free energy. It may not actually be a plane, but rather a spherical shape or bowl shape,
see Section 2.6, but this planar approximation sweeps arbitrary scaling under the rug and
gives us a useful analytical tool.

The three freedoms that I have been describing can be related to the three different
ways of managing uncertainty in a two-level Bayesian model. More generally, I believe
these same three trade-offs in uncertainty will be happening across all levels of the brain,
and may be generalizable using the approach of Gilead et al. [47], in which each level
abstracts (is the “abstractrum”) from the level below (the complementary “concretum”,
which itself may be an “abstractum” of a further level). Such a hierarchy would vastly
increase the modelling capacity of each agent, and thus of the group. The parameter space
would, however, would have more dimensions, and so focussing on only two levels and
three dimensions may give us insights in the construction of such a more complex model,
while maintaining some explanatory validity.

5. Conclusions

In this paper, I have presented a highly abstracted model of a group optimization
of free energy. I have shown how, under certain assumptions, a group of agents jointly
minimizing free energy can be represented by a set of agents who learn from each other.
Such agents will tend towards models with similar levels of dispersion, which is related to
how much capacity for modelling the outside world they have. I further discuss a Bayesian
hierarchical model with a hybrid state space that I relate to sociological theorizing about
small group behaviours. I show how a trade-off in dispersion or capacity is present across
the levels in this model, and discuss how these trade-offs relate to common notions of
freedom in societies.

The model I am presenting is necessarily simplistic, and does not come close to
approaching the complete gamut of tools and techniques used by humans to coordinate
behaviour. In fact, one could view an entire society as a "cloud" of small distributions in
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this three-dimensional space, forming one large distribution. A cloud that is constantly
moving as situations change and agents interact with one another and learn. A society can
also likely be pulled forcefully into one or another configurations; however, their natural
tendencies might operate clandestinely to provide a countervailing force.

Nevertheless, I find it compelling that the properties of the parameter space of this
hierarchical Bayesian model seem to reflect some of the properties of people’s understand-
ing of freedom and uncertainty. This upwards reduction, if carried to its logical extreme,
leads to a somewhat different philosophical view that denies primacy of individual states,
or at least accords social states with equal status. In this view, everything is situational,
although part of the situation is the agent itself, including all its strategies, planning, and
decision making. However, these are not considered individual traits at all, but rather
social constructs that are learned and applied in a given situation. In this view, “personality”
is just a bag of tricks that a group has learned, and are not some inherent property of any
given person. This philosophical view denies the primacy and stability of “personality” as
a fixed and stable trait.

Individuals both try to make sense of the world they are in, and try to define it. They
are faced, however, with an information asymmetry (principal agent problem), in which
they cannot even represent, let alone understand, the complexity of their social groups.
Thus, individuals, as principals, are forced to offload some of that computation onto other
agents (as agents of the principal). The more they do this, the more similar to those other
agents they become, and the more homogeneous the society becomes. However, if they do
less of it, they become more independent, which the group favours as it leads to flexibility,
the ability to handle the unforeseen (the “Black Swans” [48]) and the ability to assimilate
new members. The derivation I have presented in this paper puts learning of “preferences”
(as predictive distributions) as central to the collective decision making process, and does
not assume individuals share predictive models (are all rational), violating two basic
assumptions of economic theory [49]. While the analysis was simplistic, any number of the
assumptions made could be lifted (such as radial symmetry) in order to see if and where
the connection breaks down. Using normally distributed models in BayesAct is restrictive
to allow for analysis, but I believe that using other distributions (e.g., with broader tails)
would yield similar results, and the three-way trade-off would still show through.

A number of directions are currently being pursued, mostly directed at explaining a
variety of so-called heuristics and biases in terms of this one unifying model. An initial paper
shows how dissonance and fairness may be related to socio-emotional reasoning [50]. Work
on confirmation and narrative biases is ongoing. Confirmation bias may function similarly
to narrative bias in that both have sharpened denotative models as a result of further
evidence (more other people opting for it, or more precise statements), and so these tend to
be rated as more likely. Non-normal probability models are also under consideration.
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Abstract: Recent advances in neuroscience have characterised brain function using mathematical
formalisms and first principles that may be usefully applied elsewhere. In this paper, we explain
how active inference—a well-known description of sentient behaviour from neuroscience—can be
exploited in robotics. In short, active inference leverages the processes thought to underwrite human
behaviour to build effective autonomous systems. These systems show state-of-the-art performance
in several robotics settings; we highlight these and explain how this framework may be used to
advance robotics.

Keywords: free energy; model-based control; adaptive robots; generative model; Bayesian inference;
filtering; neurotechnology

1. Active Inference

Active inference (AIF) is a unifying framework for describing and designing adaptive
systems [1–4]. AIF emerged in the late 2000s as a unified theory of brain function [5,6]
derived from statistical physics [2,7] and has since been used to simulate a wide range of
behaviours in neuroscience [1,8], machine learning [9–13] and robotics [14]. AIF is an inter-
esting framework for robotics because it unifies state-estimation, control and world model
learning as inference processes that are solved by optimising a single objective functional: a
free energy (also known as negative evidence lower bound), as used in variational Bayesian
inference [15]. Furthermore, it endows robots with adaptive capabilities central to real
world applications [14] (e.g., adaptation to internal and external parameter changes [16]).
Additionally, its strong neuroscience foundation reduces the gap between engineering and
the life sciences, thereby finessing human-centred robotic applications.

Although AIF has yet to be scaled—to tackle high dimensional problems—to the same
extent as established approaches, such as deep reinforcement learning [17,18], numerical
analyses generally show that active inference performs at least as well in simple environ-
ments [9,19–23], and better in environments featuring volatility, ambiguity and context
sensitivity [21,22]. In this paper, we consider how AIF’s features could help address key
technical challenges in robotics and discuss practical robotic applications. Our exposition
provides a broad perspective that suppresses mathematical details, which can be found in
the references herein [1–4,14,24,25].

In AIF, a generative model encodes an agent’s predictions (i.e., posterior beliefs), and
preferred state and observation trajectories (i.e., prior beliefs) [2]. Behaviour realises the
agent’s preferences by matching posterior with prior beliefs. Specifically, state-estimation,
control and learning are unified by minimising a free energy functional scoring the dis-
crepancy between current beliefs and prior preferences under the state-space model. For

Entropy 2022, 24, 361. https://doi.org/10.3390/e24030361 https://www.mdpi.com/journal/entropy197



Entropy 2022, 24, 361

continuous states, AIF filters incoming observations through variational inference in gen-
eralised coordinates of motion [26]. This enables flexible and scalable inference algorithms
and extends Kalman filters by accommodating non-linear, non-Markovian time-series [26–28].
AIF generalises discrete and continuous optimal control [29], and planning to partially
observed environments, similarly to model predictive control or control as inference [30,31].
However, a crucial difference is that the (expected) free energy optimised during planning
combines exploitative and explorative behaviour [32] in a Bayes optimal fashion [2,7].
The agent’s model—i.e., representations and goals—can then be learnt through few-shot
learning [21], structure learning, imitation learning, and evolutionary approaches [1,33–35].

2. Solutions to Technical Challenges in Robotics

Current AIF models can help address challenges that require online adaptation, ro-
bustness and explainability, and may bring new perspectives to the state-of-the-art in
estimation, control and planning—see Figure 1.

• Accurate and robust state tracking. Filtering schemes developed for neuroimaging
time-series [26] enable accurate state-tracking in highly complex and volatile en-
vironments [27,36]. This allows for continuous refinement of past, present, future
state-estimation and the estimated precision of sensors as new information arrives [37]
(c.f., Bayes optimal estimators of Kalman gain [38]). Moreover, AIF fuses multiple
sensory streams, by weighing incoming sensory information by their estimated preci-
sion [36,39]. This enables accurate and robust inferences.

• Adaptive model-based and shared control. Describing the agent’s behaviour with a
generative model—prescribing attracting states and trajectories—ensures robustness
and adaptivity in the presence of noise, external fluctuations, and parameter changes.
AIF humanoid robots [36] and industrial manipulators [40] show improved behaviour
in the presence of internal and external parameter changes [16] and shared compliance
control [41]. The robot’s autonomy—in shared control—can also be dynamically
tuned. In particular, the operator may be given high-level control and the robot
low-level control.

• Learning and grounding. AIF agents learn from sparse and noisy observations by
actively sampling informative data points, enabling few-shot learning. Learning latent
structure by optimising model evidence, subject to prior preferences in the genera-
tive model, leads to organising knowledge in hierarchical, sparsely interconnected
modular (i.e., factorised) representations with temporal depth, usually represented
with a graphical model [2]. This offers a promising pathway for biologically plausible
neurosymbolic technologies [42,43].

• Operational specification, safety and explainability. AIF behaviour is explainable
as a mixture of information and goal-seeking policies that are explicitly encoded (and
evaluated in terms of expected free energy) in the generative model as priors—which
can be specified by the user. Planning, which proceeds by generating counterfactual
actions and assessing their consequences [1], can be monitored online and control can
be returned to the user if necessary (i.e., policy switching). Moreover, the generative
model can be specified as a directed graph (i.e., a Bayesian network), which entails the
causal relationships between agent’s representations [44,45]. This affords an explicit
and transparent explanation of sentient behaviour.
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Figure 1. Active inference framework (AIF). AIF could engender important advances in estimation,
control, planning and learning in robotics with applications including social, industrial and collab-
orative robotics, body prosthetics and neurotechnology. (A) AIF explained: Blue circles indicate
observations while grey circles indicate random variables that need to be inferred. The black arrows
indicate causal relationships implicit in a graphical model (e.g., a Bayesian network). The blue arrows
indicate the process by which the agent infers future actions and observations. First, the agent infers
the current states from available observation modalities (Bayesian fusion). Then, the agent infers the
best available course of action by imagining the counterfactual consequences, in terms of future states
and observations. These inferential processes are solved by optimising an (expected) free energy
functional of beliefs about states and plausible action sequences. AIF generative models may be
hierarchical and encode agent’s representations at increasing levels of abstraction and temporal scales.
Perception minimises the discrepancy between predictions and input at all levels. The top layer
encodes the estimated (and preferred) states of the world—and the bottom layer encodes sensory
input. (B) Practical perspectives: AIF can provide context sensitivity, online adaptivity, accurate state
tracking, uncertainty resolution and shared control in a neurologically plausible fashion throughout
a wide range of applications.
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3. Practical Perspectives

Based on these properties, we envisage important applications of AIF in robotics.

• Context adaptive robots. AIF agents build generative (world) models by continuously
optimising free energy with regard to incoming data. This optimisation process
maximises model accuracy while minimising complexity, which enables generalisation
and context-adaptivity [36]. Contrariwise, robots that solely optimise accuracy risk
overfitting, which could lead to catastrophic outcomes when the context changes,
such as when performing assistive surgery on a new patient. The ability to generalise
and adapt is necessary for robotic skills such as scene understanding and adaptive
control and should facilitate robots to operate in volatile (e.g., social) environments
(e.g., hospitals) [36,46]. In industrial applications, this allows robots to operate freely
while adapting to real world conditions—once the designer has specified preferences
over the final outcome.

• Safer robots. AIF agents continuously resolve uncertainty by selecting informative ac-
tions that minimise risk [1], which is important for high-stakes, high-uncertainty tasks,
such as human-robot interaction [41]. Actions are selected to minimise expected free
energy, which minimises risk (expected cost) and ambiguity (expected inaccuracy) [1].
This allows for information seeking behaviour that is accompanied with an explicit
and quantifiable measure of risk. Additionally, when uncertain about current states of
affair, robots should automatically seek advice and guidance from the user, e.g., via
shared control.

• Social and collaborative robots. AIF robots model others’ intentions to predict others’
actions, such as movements [47], enabling intentional understanding [48]. This allows
robots to operate safely in social environments by constantly resolving uncertainty
about others’ intentions and implicit goals [42]. This embodiment [49] is crucial for
social robots, such as personal aides, auxiliary robot nurses and companions, e.g.,
assisting the disabled and elderly. In collaborative robotics, AIF allows for imitation
learning and intentional blending, whence robot goals and intentions can be guided
by the user before and during the task [41,50].

• Wearable devices. The belief updating process that underwrites AIF is energetically
efficient [51], which should aid the development of wearable devices with a degree of
autonomy, such as exoskeletons [52]. This follows as optimising model free energy
decreases the movement from prior to posterior, which corresponds to the computa-
tional (and hence energetic) cost of inference [1,2]. In addition, wearables directed by
human intention [53] should benefit from AIF’s intentional understanding [48], and
adaptive and shared control capabilities [41].

• Regulatory processes. Generative models with temporal depth induce allostatic
control, whence the robot acts on its environment to pre-empt homeostatic con-
trol [54,55]. This should benefit regulatory processes subject to strong external pertur-
bations [16,36], such as closed-loop medical applications such as artificial organs (e.g.,
the artificial pancreas).

• Neurotechnology. The neurological functional plausibility of specific AIF
algorithms [1,46,56] should facilitate integration with the nervous system. This
opens new opportunities for neurotechnology, BCI-enabled sensorimotor restora-
tion, perceptual body extension and brain or body enhancement using prosthetics
and implants [57]. Currently, AIF provides testable hypotheses for optimising neu-
ral excitatory-inhibitory balance using deep brain stimulation to alleviate functional
deficits induced by brain lesions [58]. Soon, monitoring of brain activity may predict
aberrant neural responses, such as seizures, and anticipate the required intervention.

4. Discussion

In this perspective, we explained how active inference—a framework for describ-
ing and designing adaptive systems originating in computational neuroscience—can be
exploited in robotics. In particular, we surveyed some key features of AIF that could
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provide solutions to current technical challenges in robotics, and how these could benefit
human-centred robotic applications in the short-term.

In brief, the theoretical foundations of AIF suggest the potential for important advances
in state-estimation, control, planning and learning that undergirds autonomous robots.
This suggests a promising avenue for endowing robots with online adaptive strategies
and context-sensitive and explainable decision-making. In turn, these advances could
have several applications in robotics, spanning context-adaptive, safe and social robots,
wearable devices, regulatory processes and neurotechnology. AIF brings several things
to the table in this setting. Perhaps the most important aspects are: (i) a commitment
to an explicit, explainable and interpretable world model—in the form of a forward or
generative model—that underwrites inference and learning, (ii) framing state estimation,
control and planning as different aspects of the same inverse or inference problem, whose
solution affords context sensitivity and robustness (iii) and, finally, supplying a tractable
objective function that subsumes different kinds of (Bayes) optimality: namely, an expected
free energy that subsumes Bayesian decision theory and Bayesian optimal design [2,32].
The latter brings with it a quintessentially belief-based specification of sentient behaviour
that can be read as equipping robots with the right kind of curiosity. These foundational
features of AIF are, we suppose, also found in human subjects, and therefore place AIF
robots in a potentially more empathetic relationship to their human operators. It will be
interesting to see whether—or how—these features are leveraged over the next few years.

In short, AIF is generally considered to endow robots and artificial agents with adap-
tive capabilities. While promising, the application is in its early days and much work
remains to be undertaken in order to resolve practical challenges and fulfil the framework’s
potential. Current endeavours include scaling AIF to handle high dimensional state-spaces
in a variety of applications [10,12,13,59], effectively learning the generative model from
data [2,34], and show its practicality in the real world, beyond the lab boundaries. While
significant engineering challenges remain, the state-of-the-art laboratory experiments show
AIF’s potential as a powerful method in robotics [14].
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