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Preface

In this work, we provide a general and unified setting for a systematic and in-depth
investigation of a broad variety of functions, including several special functions like
the Euler gamma function, the polygamma functions, the Barnes G-function, the
Hurwitz zeta function, and the generalized Stieltjes constants.

We know for instance that the gamma function

�(x) =
∫ ∞

0
tx−1 e−t dt

satisfies several fundamental properties and identities such as Bohr-Mollerup’s
characterization, Euler’s infinite product, Gauss’ multiplication formula, Stirling’s
formula, and Weierstrass’ infinite product. In this book, we show through a series
of new and elementary results that a large range of functions of mathematical
analysis satisfy analogues of several properties of the gamma function, including
those mentioned above.

The starting point of our theory is the remarkable characterization of the gamma
function on the open half-lineR+ = (0,∞) by Harald Bohr and Johannes Mollerup
[23]. It simply states that the log-gamma function f (x) = ln�(x) is the unique
convex solution vanishing at x = 1 to the equation

f (x + 1)− f (x) = ln x, x > 0.

This result can actually be slightly generalized as follows, where � denotes the
classical forward difference operator.

All eventually convex solutions to the equation �f (x) = ln x on R+ are of the form f (x) =
c + ln�(x), where c ∈ R.

(Here and throughout, a function is said to be eventually convex if it is convex in a
neighborhood of infinity.)

This characterization was later generalized to a wide class of functions by Wolf-
gang Krull [54] and then independently by Roger Webster [98]. They essentially

vii
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showed that for any eventually concave function g : R+ → R having the asymptotic
property that the sequence n �→ �g(n) converges to zero, there exists exactly one
(up to an additive constant) eventually convex solution f : R+ → R to the equation
�f = g. When g(x) = ln x, this latter result clearly reduces to the above Bohr-
Mollerup characterization of the gamma function.

Krull-Webster’s result constitutes an important contribution to the resolution
of the difference equation �f = g on the real half-line R+. Indeed, it provides
analogues of Bohr-Mollerup’s characterization for many functions, including the
gamma function, the digamma function, and the q-gamma functions. Nevertheless,
we can see that the asymptotic condition imposed on the function g remains rather
restrictive. For instance, it is not satisfied by the functions g(x) = x ln x and
g(x) = ln�(x). In fact, it is not even satisfied by the identity function g(x) = x.

In this book, we generalize Krull-Webster’s result by relaxing considerably the
asymptotic condition into requiring that the sequence n �→ �pg(n) converges
to zero for some nonnegative integer p. Each of the functions g(x) = x ln x,
g(x) = ln�(x), and g(x) = x clearly satisfies this new assumption for p = 2.
Moreover, in our generalization, the convexity and concavity properties used by
Krull andWebster are naturally replaced with their p-order versions. On this matter,
it is noteworthy that many of the familiar functions of real analysis are eventually
convex or concave of any order.

The solutions arising fromKrull-Webster’s characterization are called log�-type
functions. Those arising from our generalized version are called multiple log�-type
functions. As we demonstrate through this work, this latter class of functions is very
rich and includes a wide variety of special functions.

In the diagram opposite, we describe how our result generalizes to any nonneg-
ative integer p the special case when p = 1 obtained by Krull and Webster, who
both generalized Bohr-Mollerup’s theorem.

We also follow and generalize Webster’s approach and provide for multiple
log�-type functions analogues of Euler’s constant, Euler’s infinite product, Gauss’
limit, Gauss’ multiplication formula, Gautschi’s inequality, Legendre’s duplication
formula, Raabe’s formula, Stirling’s constant, Stirling’s formula, Wallis’s product
formula, Weierstrass’ infinite product, and Wendel’s inequality for the gamma
function. We also introduce and discuss analogues of Binet’s function, Burnside’s
formula, Euler’s reflection formula, Fontana-Mascheroni’s series, Gauss’ digamma
theorem, and Webster’s functional equation. Some additional properties of mul-
tiple log�-type functions are also provided and discussed, including asymptotic
equivalences, asymptotic expansion formulas, Taylor series expansion formulas, and
Gregory formula-based series representations.

Lastly, we apply our results thoroughly to several usual special functions,
including the gamma and digamma functions, the polygamma functions, the q-
gamma function, the Barnes G-function, the Hurwitz zeta function and its higher
order derivatives, and the generalized Stieltjes constants. We also briefly discuss
some further special functions such as the Gauss error function, the exponential
integral, the regularized incomplete gamma function, the multiple gamma functions,
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Higher order version of Krull-Webster’s theory

�f (x) = g(x)

g is eventually p-concave and �pg(n) → 0
f is eventually p-convex

Solutions: Multiple log �-type functions

↑

Krull-Webster’s theory

�f (x) = g(x)

g is eventually concave and �g(n)→ 0
f is eventually convex

Solutions: log �-type functions

↑

Bohr-Mollerup’s characterization

�f (x) = ln x

f is eventually convex

Solutions: f (x) = c + ln�(x)
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and the Bernoulli polynomials. All these examples illustrate how powerful is our
theory to produce formulas and identities almost mechanically.

For example, applying our results to the gamma function � : R+ → R+ itself,
we easily retrieve the following Gauss limit

�(x) = lim
n→∞

n! nx

x(x + 1) · · · (x + n)
, x > 0,

and the Weierstrass infinite product

�(x) = e−γ x

x

∞∏
k=1

e
x
k

1+ x
k

, x > 0,

where γ is the Euler constant. We also easily establish the double inequality

(
1+ 1

x

)− 1
2 ≤ �(x)√

2π xx− 1
2 e−x

≤
(
1+ 1

x

) 1
2

, x > 0,

from which we immediately derive the Stirling formula

�(x) ∼ √
2π xx− 1

2 e−x as x →∞.

To give another example, let us consider the restriction to R+ of the Barnes G-
function (see Barnes [14–16]). That is, the functionG : R+ → R+ whose logarithm
f (x) = lnG(x) is the unique 2-convex solution vanishing at x = 1 to the equation

f (x + 1)− f (x) = ln�(x), x > 0.

Thus defined, the function lnG(x) is a multiple log�-type function, and we can
therefore state the following analogue of Bohr-Mollerup’s characterization.

All eventually 2-convex solutions to the equation �f (x) = ln�(x) on R+ are of the form
f (x) = c + lnG(x), where c ∈ R.

Using our results, we can also easily show that the Barnes G-function satisfies the
following analogue of Gauss’ limit for the gamma function

G(x) = lim
n→∞

�(1)�(2) · · · �(n)

�(x)�(x + 1) · · · �(x + n)
n!x n(x

2), x > 0.

Moreover, it satisfies the following analogue of Weierstrass’ infinite product

G(x) = e(−γ−1)(x
2)

�(x)

∞∏
k=1

�(k)

�(x + k)
kxeψ1(k) (x

2), x > 0,
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where ψ1 is the trigamma function defined by the equation

ψ1(x) = D2 ln�(x) for x > 0.

We also establish the double inequality

(
1+ 1

x

)− 5
12 ≤ G(x) �(x)

1
2 A2 (2π)

1
4

x
1
12 eψ−2(x)+ 1

12

≤
(
1+ 1

x

) 5
12

, x > 0,

from which we immediately derive the following analogue of Stirling’s formula

G(x) ∼ A−2 (2π)−
1
4 x

1
12 �(x)−

1
2 eψ−2(x)+ 1

12 as x →∞,

where ψ−2 is the polygamma function defined by the equation

ψ−2(x) =
∫ x

0
ln�(t) dt for x > 0

and A is the Glaisher-Kinkelin constant defined by the equation

ζ ′(−1) = 1

12
− lnA.

In this work, we also derive many other properties of the Barnes G-function simply
as analogues of properties of the gamma function.

To sum up, in this book, we develop a far-reaching generalization of the Bohr-
Mollerup theorem, along lines initiated by Krull, Webster, and some others but
going considerably further than past work. In particular, we show using elementary
techniques that many classical properties of the gamma function have counterparts
for a very wide variety of functions.

In this regard, we observe what Emil Artin [11, p. vi] wrote in his outstanding
exposition of the gamma function:

“I feel that this monograph will help to show that the gamma function can be thought of as
one of the elementary functions, and that all of its basic properties can be established using
elementary methods of the calculus.”

In writing this book, our hope is to convince the reader that Artin’s statement applies
also to all the multiple log�-type functions.

Lastly, since Bohr-Mollerup’s theorem dates back to 1922, this work is also an
opportunity to mark the 100th anniversary of this remarkable result and to spark the
interest and enthusiasm of a large number of researchers in this theory.

Esch-sur-Alzette, Luxembourg Jean-Luc Marichal
Liège, Belgium Naïm Zenaïdi
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Chapter 1
Introduction

Let R+ denote the open half-line (0,∞) and let � denote the forward difference
operator on the space of functions from R+ to R. In this book, we are interested in
the classical difference equation �f = g on R+, which can be written explicitly as

f (x + 1)− f (x) = g(x), x > 0,

where g : R+ → R is a given function. This equation appears naturally in the theory
of the Euler gamma function, with f (x) = ln�(x) and g(x) = ln x, but also in
the study of many other special functions such as the Barnes G-function and the
Hurwitz zeta function (see Examples 1.6 and 1.7 below).

It is easily seen that, for any function g : R+ → R, the equation above
has infinitely many solutions, and each of them can be uniquely determined by
prescribing its values in the interval (0, 1]. Moreover, any two solutions always
differ by a 1-periodic function, i.e., a periodic function of period 1.

For certain functions g, however, special solutions can be determined by their
local properties or their asymptotic behaviors. On this issue, a seminal result is the
very nice characterization of the gamma function by Bohr and Mollerup [23]. We
recall this important result in the following theorem.

Theorem 1.1 (Bohr-Mollerup’s theorem) All log-convex solutions f : R+ →
R+ to the equation

f (x + 1) = x f (x), x > 0, (1.1)

are of the form f (x) = c �(x), where c > 0.

© The Author(s) 2022
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The additive, but equivalent, version of this result, obtained by taking the
logarithm of both sides of (1.1), can be stated as follows.

For g(x) = ln x, all convex solutions f : R+ → R to the difference equation �f = g are
of the form f (x) = c + ln�(x), where c ∈ R.

As we can see, this characterization enables one to single out the gamma function
as a kind of principal solution to its equation (Nörlund [82, Chapter 5] calls it the
“Hauptlösung”).

It is noteworthy that the proof of Bohr-Mollerup’s characterizationwas simplified
later by Artin [10] (see also Artin [11]) and, as observed by Webster [98], this
result has then become known also “as the Bohr-Mollerup-Artin Theorem, and was
adopted by Bourbaki [24] as the starting point for his exposition of the gamma
function.”

Remark 1.2 In their original result, Bohr and Mollerup actually considered the
additional assumption that f (1) = 1, thus leading to the gamma function as the
unique solution (see Artin [11, p. 14]). However, it is easy to see that Theorem 1.1
immediately follows from this original result (just replace f (x) with f (x)/f (1)). ♦

A remarkable generalization of Bohr-Mollerup’s theorem was provided by
Krull [54, 55] and then independently by Webster [97, 98]. Recall that a function
g : R+ → R is said to be eventually convex (resp. eventually concave) if it is convex
(resp. concave) in a neighborhood of infinity. Krull [54] essentially showed that for
any eventually concave function g : R+ → R having the asymptotic property that,
for each h > 0,

g(x + h)− g(x) → 0 as x →∞, (1.2)

there exists exactly one (up to an additive constant) eventually convex solution
f : R+ → R to the equation �f = g (and dually, if g is eventually convex, then f

is eventually concave). He also provided an explicit expression for this solution as a
pointwise limit of functions, namely

f (x) = f (1)+ lim
n→∞ f 1

n [g](x), x > 0,

where

f 1
n [g](x) = − g(x)+

n−1∑
k=1

(g(k)− g(x + k))+ x g(n). (1.3)

Much later, and independently, Webster [97, 98] established the multiplicative
version of Krull’s result.

We can actually show that this result still holds if we replace the asymptotic
condition (1.2) imposed on the function g with the slightly more general condition
that the sequence n �→ �g(n) converges to zero. However, although this result
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constitutes a very nice generalization of Bohr-Mollerup’s theorem, we note that the
latter asymptotic condition remains a rather restrictive assumption. For instance, it
is not satisfied by the functions g(x) = x ln x and g(x) = ln�(x).

In this work, we generalize Krull-Webster’s result above by relaxing the asymp-
totic condition on g into the much weaker requirement that the sequence n �→
�pg(n) converges to zero for some nonnegative integer p. More precisely, we show
that Krull-Webster’s result still holds if we assume this weaker condition, provided
that we replace the convexity and concavity properties with the p-convexity and
p-concavity properties (see Definition 2.2) and the function f 1

n [g] defined in (1.3)
with an appropriate version of it, which we now introduce.

Throughout this book, we let N denote the set of nonnegative integers and we let
N
∗ denote the set of strictly positive integers.

Definition 1.3 For any p ∈ N, any n ∈ N
∗, and any g : R+ → R, we define the

function f
p
n [g] : R+ → R by the equation

f
p
n [g](x) = − g(x)+

n−1∑
k=1

(g(k)− g(x + k))+
p∑

j=1

(
x
j

)
�j−1g(n). (1.4)

We now state our result in the following existence theorem. It actually constitutes
the p-order version of Krull-Webster’s result.

Theorem 1.4 (Existence) Let p ∈ N and suppose that the function g : R+ → R is
eventually p-convex or eventually p-concave and has the asymptotic property that
the sequence n �→ �pg(n) converges to zero. Then there exists a unique (up to an
additive constant) eventually p-convex or eventually p-concave solution f : R+ →
R to the difference equation �f = g. Moreover,

f (x) = f (1)+ lim
n→∞ f

p
n [g](x), x > 0, (1.5)

and f is p-convex (resp. p-concave) on any unbounded subinterval of R+ on which
g is p-concave (resp. p-convex).

Webster [98, Theorem 3.1] also established (in the multiplicative notation) a
uniqueness theorem, which does not require the function g to be eventually convex
or eventually concave. In the next theorem, we provide the p-order version of this
result.

Theorem 1.5 (Uniqueness) Let p ∈ N and let the function g : R+ → R have
the property that the sequence n �→ �pg(n) converges to zero. Suppose that
f : R+ → R is an eventually p-convex or eventually p-concave function satisfying
the difference equation �f = g. Then f is uniquely determined (up to an additive
constant) by g through the equation

f (x) = f (1)+ lim
n→∞ f

p
n [g](x), x > 0.
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We observe that Theorem 1.4 was first proved in the case when p = 0 by
John [49]. As mentioned above, it was also established in the case when p = 1
by Krull [54] and then by Webster [98]. More recently, the case when p = 2 was
investigated by Rassias and Trif [86], but the asymptotic condition they imposed
on the function g is much stronger than ours and hence it defines a very specific
subclass of functions. (We discuss Rassias and Trif’s result in Appendix B.) We
also observe that attempts to establish Theorem 1.4 for any value of p were
made by Kuczma [58, Theorem 1] (see also Kuczma [60, pp. 118–121]) and then
by Ardjomande [9]. However, the representation formulas they provide for the
solutions are rather intricate. Thus, to the best of our knowledge, both Theorems 1.4
and 1.5, as stated above in their full generality and simplicity, were previously
unknown.

For any solution f arising from Theorem 1.4 when p = 1, Webster [98] calls the
function exp◦f a �-type function. In fact, exp ◦f reduces to the gamma function
(i.e., f (x) = ln�(x)) when exp ◦g is the identity function (i.e., g(x) = ln x), which
simply means that the gamma function restricted to R+ is itself a �-type function.
In this particular case, the limit given in (1.5) reduces to the following Gauss well-
known limit for the gamma function (see Artin [11, p. 15])

�(x) = lim
n→∞

n! nx

x(x + 1) · · · (x + n)
, x > 0. (1.6)

Similarly, for any fixed p ∈ N and any solution f arising from Theorem 1.4,
we call the function exp◦f a �p-type function, and we naturally call the function
f a log�p-type function. When the value of p is not specified, we call these
functions multiple �-type function and multiple log�-type function, respectively.
This terminology will be introduced more formally and justified in Sect. 5.2.

Interestingly, Webster established for �-type functions analogues of Euler’s
constant, Gauss’ multiplication formula, Legendre’s duplication formula, Stirling’s
formula, and Weierstrass’ infinite product for the gamma function. In this work,
we also establish for multiple �-type functions and multiple log�-type functions
analogues of all the formulas above as well as analogues of Euler’s infinite product,
Gautschi’s inequality, Raabe’s formula, Stirling’s constant, Wallis’s product for-
mula, and Wendel’s inequality. We also introduce and discuss analogues of Binet’s
function, Burnside’s formula, Euler’s reflection formula, Fontana-Mascheroni’s
series, and Gauss’ digamma theorem. Thus, (to paraphrase Webster [98, p. 607])
for each multiple �-type function, it is no longer surprising for instance that “some
analogue of Legendre’s duplication formula must hold, almost rendering a formal
proof unnecessary!”

All these results, together with the uniqueness and existence theorems above,
show that the theory we develop in this book provides a very general and unified
framework to study the properties of a large variety of functions. Thus, for each of
these functions we can retrieve known formulas and sometimes establish new ones.
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At the risk of repeating a large part of our preface, we now present two
representative examples to illustrate the way our results can be applied to derive
formulas methodically.

Example 1.6 (The Barnes G-function, see Sect. 10.5) The restriction to R+ of the
Barnes G-function can be defined as the function G : R+ → R+ whose logarithm
f (x) = lnG(x) is the unique eventually 2-convex solution that vanishes at x = 1
to the equation

f (x + 1)− f (x) = ln�(x), x > 0.

Thus, our Theorems 1.4 and 1.5 apply with g(x) = ln�(x) and p = 2, which shows
that the function lnG(x) is a log�2-type function and hence that the function G(x)

is a �2-type function. In particular, formula (1.5) provides the following analogue
of Gauss’ limit for the gamma function

G(x) = lim
n→∞

�(1)�(2) · · · �(n)

�(x)�(x + 1) · · · �(x + n)
n!x n(x

2) .

Using some of our new results, we are also able to derive various unusual formulas
and properties. For instance, we have the following analogue of Euler’s infinite
product

G(x) = 1

�(x)

∞∏
k=1

�(k)

�(x + k)
kx(1+ 1/k)(

x
2)

and the following analogue of Weierstrass’ infinite product

G(x) = e(−γ−1)(x
2)

�(x)

∞∏
k=1

�(k)

�(x + k)
kxeψ ′(k) (x

2),

where γ is the Euler constant and ψ is the digamma function. We also have the
following analogue of Stirling’s formula

G(x) ∼ A−2 (2π)−
1
4 x

1
12 �(x)−

1
2 eψ−2(x)+ 1

12 as x →∞ ,

where ψ−2 is the polygamma function defined by the equation

ψ−2(x) =
∫ x

0
ln�(t) dt for x > 0 ,

and A is Glaisher-Kinkelin’s constant defined by the equation

ζ ′(−1) = 1

12
− lnA .
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(Here the map s �→ ζ ′(s) denotes the derivative of the Riemann zeta function.) We
can also easily derive the following analogue of Wendel’s double inequality

(
1+ a

x

)−∣∣∣(a−1
2 )
∣∣∣ ≤ G(x + a)

G(x) �(x)a x(a
2)
≤
(
1+ a

x

)∣∣∣(a−1
2 )
∣∣∣
,

which holds for any x > 0 and any a ≥ 0. As a corollary, this inequality
immediately provides the following asymptotic equivalence

G(x + a)

G(x)
∼ �(x)a x(a

2) as x →∞ ,

which reveals the asymptotic behavior of G(x + a)/G(x) for large values of x. ♦
Example 1.7 (The Hurwitz zeta function, see Sect. 10.6) Consider the Hurwitz zeta
function s �→ ζ(s, a), defined when �(a) > 0 as an analytic continuation to C \ {1}
of the series

∞∑
k=0

(a + k)−s , �(s) > 1 .

This function is known to satisfy the difference equation

ζ(s, a + 1)− ζ(s, a) = − a−s.

Thus, it is not difficult to see that, for any s ∈ R \ {1}, the restriction of the map
x �→ ζ(s, x) to R+ is a log�p(s)-type function, where

p(s) = max{0, �1− s�}.

Theorem 1.5 then tells us that all eventuallyp(s)-convex or eventuallyp(s)-concave
solutions fs : R+ → R to the difference equation

fs(x + 1)− fs(x) = − x−s

are of the form

fs(x) = cs + ζ(s, x),

where cs ∈ R. Moreover, equation (1.5) provides the following analogue of Gauss’
limit for the gamma function

ζ(s, x) = ζ(s)+ x−s + lim
n→∞

⎛
⎝n−1∑

k=1

(
(x + k)−s − k−s

)−
p(s)∑
j=1

(
x
j

)
�

j−1
n n−s

⎞
⎠ ,
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where s �→ ζ(s) = ζ(s, 1) is the Riemann zeta function. Some of our results also
enable us to derive the following analogues of Stirling’s formula

ζ(s, x)+ x1−s

1− s
−

p(s)∑
j=1

Gj �
j−1
x x−s → 0 as x →∞,

ζ(s, x)+ 1

1− s

p(s)∑
j=0

(1−s
j

) Bj

xs+j−1 → 0 as x →∞,

where Gn is the nth Gregory coefficient and Bn is the nth Bernoulli number. For
instance, setting s = − 3

2 in these asymptotic formulas, we obtain

ζ
(
− 3

2 , x
)
+ 2

5 x5/2 − 7
12 x3/2 + 1

12 (x + 1)3/2 → 0 as x →∞ ,

ζ
(
− 3

2 , x
)
+ 2

5 x5/2 − 1
2 x3/2 + 1

8 x1/2 → 0 as x →∞ .

Many more formulas and properties involving the Hurwitz zeta function will be
provided and discussed in Sect. 10.6. ♦

The two examples above illustrate the scope of our theory and the diversity of
our results. These examples and many others will be explored and discussed in the
last chapters of this book. However, in the first chapters we will almost always use
the basic function g(x) = ln x as the guiding example to illustrate our results.

Outline of the Book Let us now see how this book is organized. On the whole,
Chaps. 2 to 8 are devoted to the conceptual part: we develop our theory and
establish our results. Chapters 10 to 12 focus on applications to a large number of
functions, including several classical special functions. In between, Chap. 9 presents
an overview and a summary of our results. After reading this introduction, the reader
interested by such an overview can go immediately to Chap. 9.

In Chap. 2, we present some definitions and preliminary results on Newton
interpolation theory as well as on higher order convexity properties.

In Chap. 3, we establish Theorems 1.4 and 1.5 and provide conditions for the
sequence n �→ f

p
n [g](x) to converge uniformly on any bounded subset of R+. We

also examine the particular case when the sequence n �→ g(n) is summable, and we
provide historical remarks on some improvements of Krull-Webster’s theory.

In Chap. 4, we investigate the functions that satisfy the asymptotic condition
stated in Theorems 1.4 and 1.5. We also investigate those functions that are
eventually p-convex or eventually p-concave.

In Chap. 5, we introduce, investigate, and characterize the multiple log�-type
functions.

Chapter 6 is devoted to an asymptotic analysis of multiple log�-type functions.
More specifically, in that chapter we show how Euler’s constant, Stirling’s constant,
Stirling’s formula, and Wendel’s inequality for the gamma function can be gener-
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alized to the multiple �-type functions and multiple log�-type functions and we
introduce and discuss analogues of Binet’s function and Burnside’s formula. We
also show how the so-called Gregory summation formula, with an integral form of
the remainder, can be very easily derived in this setting.

In Chap. 7, we discuss conditions for the multiple log�-type functions to
be differentiable and establish several important properties of the higher order
derivatives of these functions.

In Chap. 8, we explore further properties of the multiple log�-type functions.
Specifically, we provide asymptotic expansions of these functions as well as
analogues of Euler’s infinite product, Fontana-Mascheroni’s series, Gauss’ multi-
plication formula, Gautschi’s inequality, Raabe’s formula,Wallis’s product formula,
andWeierstrass’ infinite product for the gamma function.We also discuss analogues
of Euler’s reflection formula and Gauss’ digamma theorem, and we define and solve
a generalized version of a functional equation proposed by Webster.

Chapter 9 is the transition from the theory to the applications. It provides a
catalogue of our most relevant results, which can be used as a checklist to investigate
the multiple log�-type functions. Chapter 9 is self-contained and can be read right
after this introduction.

In Chaps. 10 to 12, we apply our results to a number of multiple �-type functions
and multiple log�-type functions, some of which are well-known special functions
related to the gamma function.

In Chap. 13, we make some concluding remarks and propose a list of interesting
open questions.

Notation and Basic Definitions Throughout this book, we use the following
notation and definitions. Further definitions will be given in the subsequent chapters.

Unless indicated otherwise, the symbol I always denotes an arbitrary interval of
the real line whose interior is nonempty.

The symbol S represents eitherN orR. For any S ∈ {N,R}, the notation x →S ∞
means that x tends to infinity, assuming only values in S. We sometimes omit the
subscript S when no confusion may arise.

Two functions f : R+ → R and g : R+ → R such that f (x)/g(x) → 1 as
x →S ∞ are said to be asymptotically equivalent (over S). In this case, we write

f (x) ∼ g(x) as x →S ∞.

For any x ∈ R, we set

x+ = max{0, x}.

As usual, we also let �x� denote the floor of x, i.e., the greatest integer less than or
equal to x. Similarly, we let x� denote the ceiling of x, i.e., the smallest integer
greater than or equal to x. When no confusion may arise, we let {x} denote the
fractional part of x, i.e., {x} = x − �x�.
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For any x ∈ R and any k ∈ N, we set

xk = x(x − 1) · · · (x − k + 1) = �(x + 1)

�(x − k + 1)

and we let

εk(x) ∈ {−1, 0, 1}

denote the sign of xk .
For any k ∈ N and any nonempty open real interval I , we let Ck(I ) denote the

set of k times continuously differentiable functions on I , and we set Ck = Ck(R+).
We also introduce the intersection sets

C∞(I) =
⋂
k≥0

Ck(I ) and C∞ =
⋂
k≥0

Ck.

We let� andD denote the usual difference and derivative operators, respectively.
We sometimes add a subscript to specify the variable on which the operator acts,
e.g., writing �n and Dx .

Recall that the digamma function ψ is defined on R+ by the equation

ψ(x) = D ln�(x) for x > 0.

The polygamma functions ψν (ν ∈ Z) are defined on R+ as follows (see, e.g.,
Srivastava and Choi [93]). If ν ∈ N, then

ψν(x) = Dνψ(x) = ψ(ν)(x).

In particular, ψ0 = ψ is the digamma function. If ν ∈ Z \ N, then we introduce the
functions

ψ−1(x) = ln�(x)

and

ψν−1(x) =
∫ x

0
ψν(t) dt =

∫ x

0

(x − t)−ν−1

(−ν − 1)! ln�(t) dt.

Recall also that the harmonic number function x �→ Hx is defined on (−1,∞)

by the equation

Hx =
∞∑

k=1

(
1

k
− 1

x + k

)
for x > −1.
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Clearly, this function has the property that

�xHx = 1

x + 1
, x > −1.

Moreover, both functions Hx and ψ(x) are strongly related: we have

Hx−1 = ψ(x)+ γ , x > 0 ,

where γ is Euler’s constant (also called Euler-Mascheroni constant).
We end this first chapter by introducing some new concepts that will be very

useful in this book.

Definition 1.8 For any a > 0, any p ∈ N, and any g : R+ → R, we define the
function ρ

p
a [g] : [0,∞)→ R by the equation

ρ
p
a [g](x) = g(x + a)−

p−1∑
j=0

(
x
j

)
�jg(a) for x ≥ 0. (1.7)

Identity (1.7) clearly shows that the function ρ
p
a [g] is actually defined on the

open interval (−a,∞). However, in this work we will almost always consider it as
a function defined on the interval [0,∞). We also note that ρp

a [g](0) = 0.

Definition 1.9 For any p ∈ N and any S ∈ {N,R}, we let Rp
S denote the set of

functions g : R+ → R having the asymptotic property that, for each x > 0,

ρ
p
a [g](x) → 0 as a →S ∞.

We also let Dp

S denote the set of functions g : R+ → R having the asymptotic
property that

�pg(x) → 0 as x →S ∞.

We immediately observe that the inclusion Dp

S ⊂ Dp+1
S holds for every p ∈ N.

We will see in Sects. 3.1 and 4.1 that the inclusionRp

S ⊂ Rp+1
S also holds for every

p ∈ N.
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Chapter 2
Preliminaries

This chapter is devoted to some basic definitions and results that are needed in this
book. We essentially focus on the Newton interpolation theory and the higher order
convexity and concavity properties.

Recall that, unless indicated otherwise, the symbol I always denotes an arbitrary
real interval whose interior is nonempty.

2.1 Newton Interpolation Theory

In this first section, we recall some basic facts about Newton interpolation theory
and divided differences. We also establish a result on the derivatives of interpolating
polynomials. For background see, e.g., de Boor [32, Chapter 1], Gel’fond [39,
Chapter 1], Quarteroni et al.[85, Section 8.2.2], and Stoer and Bulirsch [94, Section
2.1.3].

Let n ∈ N and let x0, x1, . . . , xn be any (not necessarily distinct) points of I .
Let also f : I → R be so that Dmi−1f (xi) exists for i = 0, . . . , n, where mi is the
multiplicity of xi among the points x0, x1, . . . , xn.

We let

f [x0, x1, . . . , xn]

denote the divided difference of f at the points x0, x1, . . . , xn, and we let the map

x �→ Pn[f ](x0, x1, . . . , xn; x)
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denote the interpolating polynomial of f with nodes at x0, x1, . . . , xn, i.e., the
unique polynomial P satisfying the equations

DkP(xi) = Dkf (xi), 0 ≤ k ≤ mi − 1, i = 0, . . . , n.

This polynomial has degree at most n.
Recall that f [x0, x1, . . . , xn] is precisely the coefficient of xn in the interpolating

polynomial Pn[f ](x0, x1, . . . , xn; x). More precisely, the Newton interpolation
formula states that

Pn[f ](x0, x1, . . . , xn; x) =
n∑

k=0
f [x0, x1, . . . , xk]

k−1∏
i=0

(x − xi). (2.1)

Moreover, the corresponding interpolation error at any x ∈ I can take the following
form

f (x)− Pn[f ](x0, x1, . . . , xn; x) = f [x0, x1, . . . , xn, x]
n∏

i=0
(x − xi). (2.2)

Recall also that the map

(z0, z1, . . . , zn) �→ f [z0, z1, . . . , zn]

is symmetric, i.e., invariant under any permutation of its arguments. Moreover, the
divided differences of f can be computed via the following recurrence relation. For
any k ∈ {0, 1, . . . , n}, we have f [xk] = f (xk) and

f [x0, . . . , xk] =

⎧⎪⎨
⎪⎩

f [x1, . . . , xk] − f [x0, . . . , xk−1]
xk − x0

, if xk �= x0,

1

k! D
kf (x0) , if x0 = x1 = · · · = xk.

(2.3)

When the points x0, x1, . . . , xn are pairwise distinct, we also have the following
explicit expression

f [x0, x1, . . . , xn] =
n∑

k=0

f (xk)∏
j �=k(xk − xj )

. (2.4)

We now establish a proposition that shows how the derivative of an interpolating
polynomial of a differentiable function f is related to the derivative of f .
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Proposition 2.1 Suppose that I is an arbitrary nonempty open real interval. For
any n ∈ N

∗, any system x0 < x1 < · · · < xn of n + 1 points in I , and any
differentiable function f : I → R, there exist n points ξ0, . . . , ξn−1 in I such that,
for i = 0, . . . , n− 1, we have xi < ξi < xi+1 and

DxPn[f ](x0, . . . , xn; x)
∣∣
x=ξi

= f ′(ξi). (2.5)

Moreover, we have

DxPn[f ](x0, . . . , xn; x) = Pn−1[f ′](ξ0, . . . , ξn−1; x) (2.6)

and

n f [x0, . . . , xn] = f ′[ξ0, . . . , ξn−1]. (2.7)

Proof The function g : I → R defined by the equation

g(x) = Pn[f ](x0, . . . , xn; x)− f (x) for x ∈ I

vanishes at the n + 1 points x0, x1, . . . , xn. The first part of the proposition then
follows from applying Rolle’s theorem in each interval (xi, xi+1). Now, identity
(2.6) immediately follows from (2.5) and the very definition of the interpolating
polynomial. Identity (2.7) then follows by equating the coefficients of xn−1 in (2.6).

��

2.2 Higher Order Convexity and Concavity

Let us recall the definitions of p-convex and p-concave functions and present some
related results. For background see, e.g., Kuczma [58], Kuczma [61, Chapter 15],
Popoviciu [84], and Roberts and Varberg [87, pp. 237–240].

Definition 2.2 (p-Convexity and p-Concavity) A function f : I → R is said
to be convex of order p (resp. concave of order p) or simply p-convex (resp. p-
concave) for some integer p ≥ −1 if for any system x0 < x1 < · · · < xp+1 of
p + 2 points in I it holds that

f [x0, x1, . . . , xp+1] ≥ 0 (resp. f [x0, x1, . . . , xp+1] ≤ 0).

Thus defined, a function f : I → R is 1-convex if it is an ordinary convex
function; it is 0-convex if it is increasing (in the wide sense); it is (−1)-convex
if it is nonnegative.
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Let us now introduce a practical notation to denote the set of p-convex functions
and the set of p-concave functions.

Definition 2.3 Let p ≥ −1 be an integer.
• We let Kp

+(I) (resp. Kp
−(I)) denote the set of functions f : I → R that are p-

convex (resp. p-concave).
• We letKp

+ (resp.Kp
−) denote the set of functions f : R+ → R that are eventually

p-convex (resp. eventually p-concave), i.e., p-convex (resp. p-concave) in a
neighborhood of infinity.

We also set

Kp(I) = Kp
+(I) ∪Kp

−(I) and Kp = Kp
+ ∪Kp

−.

The following proposition shows that both sets Kp
+(I) and Kp

−(I) are convex
cones whose intersection is precisely the real linear space of all polynomials of
degree less than or equal to p. A similar description of the sets Kp

+ and Kp
− will be

given in Corollary 4.6.

Proposition 2.4 For any p ∈ N, the sets Kp
+(I) andKp

−(I) are convex cones. These
cones are opposite in the sense that f lies in Kp

+(I) if and only if −f lies in Kp
−(I).

Moreover, the intersection Kp
+(I)∩Kp

−(I) is the real linear space of all polynomials
of degree less than or equal to p.

Proof That the sets Kp
+(I) and Kp

−(I) are convex cones is trivial; indeed, if f1
and f2 lie in Kp

+(I) for instance, then so does c1f1 + c2f2 for any c1, c2 ≥ 0. By
definition of Kp

+(I) and Kp
−(I), these cones are clearly opposite. Now, let f lie in

Kp
+(I) ∩Kp

−(I) and let x0 < · · · < xp be p+ 1 points in I . By (2.2), for any x ∈ I

we must have

f (x)− Pp[f ](x0, x1, . . . , xp; x) = 0,

which shows that f is a polynomial of degree at most p. Conversely, using (2.2)
again, we can readily see that any such polynomial lies in Kp

+(I) ∩Kp
−(I). ��

We now present an important lemma. It is interesting in its own right and will
be very useful in the subsequent chapters. A variant of this result can be found in
Kuczma [61, Lemma 15.7.2].

Recall first that for any f : I → R, any p ∈ N, and any x ∈ I such that x+p ∈ I ,
we have

�pf (x) = p! f [x, x + 1, . . . , x + p]. (2.8)
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Lemma 2.5 Let p ∈ N and let Ip+1 denote the set of tuples of Ip+1 whose
components are pairwise distinct. A function f : I → R lies in Kp

+(I) (resp. Kp
−(I))

if and only if the restriction of the map

(z0, . . . , zp) �→ f [z0, . . . , zp]

to Ip+1 is increasing (resp. decreasing) in each place. In particular, if I is not upper
bounded, then for any function f lying in Kp

+(I) (resp. Kp
−(I)), the function �pf

is increasing (resp. decreasing) on I .

Proof Using the definition of p-convexity and the standard recurrence relation (2.3)
for divided differences, we can see that f lies in Kp

+(I) if and only if, for any
pairwise distinct x0, . . . , xp+1 ∈ I , we have

f [x1, x2 . . . , xp+1] − f [x0, x2 . . . , xp+1]
x1 − x0

≥ 0.

Equivalently, for any pairwise distinct x0, . . . , xp+1 ∈ I , we have

x1 > x0 ⇒ f [x1, x2 . . . , xp+1] − f [x0, x2 . . . , xp+1] ≥ 0.

The latter condition exactlymeans that the map defined in the statement is increasing
in the first place. Since this map is symmetric, it must be increasing in each place.
The second part of the lemma follows from (2.8). ��

We end this section with a second lemma, which provides some important
connections between higher order convexity and higher order differentiability. In
fact, these connections can be derived (sometimes tediously) from various results
given in the references mentioned in the beginning of this section, especially the
book by Kuczma [61, Chapter 15]. However, for the sake of self-containment we
provide a detailed proof in Appendix A.

Lemma 2.6 Let I be an nonempty open real interval and let p ∈ N. Then the
following assertions hold.

(a) We have Kp+1(I) ⊂ Cp(I).
(b) Assume that I is not upper bounded. If f ∈ Kp

+(I), then �jf ∈ Kp−j
+ (I) for

every j ∈ {0, . . . , p + 1}.
(c) If f ∈ Cj (I ) ∩Kp

+(I) for some j ∈ {0, . . . , p + 1}, then f (j) ∈ Kp−j
+ (I).

(d) If f ∈ C1(I) and f ′ ∈ Kp−1
+ (I), then f ∈ Kp

+(I).

Proof See Appendix A. ��
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2.3 A Key Lemma

Let p ∈ N, a > 0, and f : R+ → R. Combining Newton’s interpolation formula
(2.1) with identity (2.8), we can readily see that the unique interpolating polynomial
of f with nodes at the p points a, a + 1, . . . , a + p − 1 takes the form

Pp−1[f ](a, a + 1, . . . , a + p − 1; x) =
p−1∑
j=0

(
x−a
j

)
�jf (a). (2.9)

If p = 0, then this polynomial is naturally the zero polynomial, which is
assumed to have degree −1. Moreover, using (2.2) we can immediately see that
the corresponding interpolation error at any x > 0 is

f (x)−
p−1∑
j=0

(
x−a
j

)
�jf (a) = (x − a)p f [a, a + 1, . . . , a + p − 1, x]. (2.10)

Now, the right side of (2.10) is actually the remainder of the (p−1)th degree Newton
expansion of f (x) about x = a (see, e.g., Graham et al. [41, Section 5.3]). Note
also that formula (2.10) is a pure identity in the sense that it is valid without any
restriction on the form of f (x).

Using (2.9) and (2.10) we see that, for any a > 0, any x ≥ 0, any p ∈ N, and any
g : R+ → R, the quantity ρ

p
a [g](x) defined in (1.7) is precisely the interpolation

error at a + x when considering the interpolating polynomial of g with nodes at
a, a + 1, . . . , a + p − 1. We then immediately derive the following identities:

ρ
p
a [g](x) = g(a + x)− Pp−1[g](a, a + 1, . . . , a + p − 1; a + x) , (2.11)

ρ
p
a [g](x) = xp g[a, a + 1, . . . , a + p − 1, a + x] . (2.12)

We note that identity (2.12) also extends to the case when x ∈ {0, 1, . . . , p − 1},
even if g is not differentiable. Indeed, in this case we must have ρ

p
a [g](x) = 0 by

(2.11).
We now end this chapter with a key lemma that will be used repeatedly in this

book. Although this lemma is rather technical, it is at the root of various fundamental
convergence results of our theory. Recall first that, for any k ∈ N, the symbol εk(x)

stands for the sign of xk.

Lemma 2.7 Let p ∈ N, f ∈ Kp, and a > 0 be so that f is p-convex or p-concave
on [a,∞). Then, for any x ≥ 0, we have

0 ≤ ± εp+1(x) ρ
p+1
a [f ](x) ≤ ±

∣∣∣(x−1p

)∣∣∣ (�pf (a + x)−�pf (a)
)

≤ ±
∣∣∣(x−1p

)∣∣∣
x�−1∑
j=0

�p+1f (a + j),
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where ± stands for 1 or −1 according to whether f lies in Kp
+ or Kp

− . Moreover, if

x ∈ {0, 1, . . . , p} (i.e., εp+1(x) = 0), then ρ
p+1
a [f ](x) = 0.

Proof If x ∈ {0, 1, . . . , p}, then we have that ρ
p+1
a [f ](x) = 0 by (2.11), and then

the inequalities hold trivially. Let us now assume that x /∈ {0, 1, . . . , p}, which
means that εp+1(x) �= 0. Negating f if necessary, we may assume that it lies inKp

+.
By (2.12) we then have

εp+1(x) ρ
p+1
a [f ](x) = εp+1(x) xp+1 f [a, a + 1, . . . , a + p, a + x] ≥ 0.

Hence, using identities (2.3) and (2.8) and Lemma 2.5, we obtain

0 ≤ εp+1(x) ρ
p+1
a [f ](x)

= εp+1(x) xp+1 f [a, a + 1, . . . , a + p, a + x]
= εp+1(x) (x − 1)p (f [a + x, a + 1, . . . , a + p] − f [a, a + 1, . . . , a + p])
≤ εp+1(x)

(
x−1
p

)
(�pf (a + x)−�pf (a))

≤ εp+1(x)
(
x−1
p

)
(�pf (a + x�)−�pf (a)),

which proves the first two inequalities. The third one can be immediately proved
using a telescoping sum. ��
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Chapter 3
Uniqueness and Existence Results

In this chapter, we establish Theorems 1.4 and 1.5 and show that, under the
assumptions of these theorems, the sequence n �→ f

p
n [g] converges uniformly on

any bounded subset of R+. We also discuss the particular case where the sequence
n �→ g(n) is summable. Lastly, we provide historical notes on Krull-Webster’s
theory and some of its improvements.

Although their proofs are short and elementary, the main results given in this
chapter are of utmost importance. They constitute the fundamental cornerstone of
the whole theory developed in this book.

3.1 Main Results

We start this chapter by establishing a slightly improved version of our uniqueness
Theorem 1.5. We state this new version in Theorem 3.1 below and provide a very
short proof. Let us first note that any solution f : R+ → R to the equation �f = g

satisfies trivially the equations

f (n) = f (1)+
n−1∑
k=1

g(k), n ∈ N
∗; (3.1)

f (x + n) = f (x)+
n−1∑
k=0

g(x + k), n ∈ N. (3.2)

Moreover, using (1.4), (1.7), (3.1), and (3.2), we can easily derive the identity

f (x) = f (1)+ f
p
n [g](x)+ ρ

p+1
n [f ](x), n ∈ N

∗. (3.3)
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We also observe that the identity obtained by setting p = 0 in (3.3) can also be
derived by subtracting (3.2) from (3.1).

Theorem 3.1 (Uniqueness) Let p ∈ N and g ∈ Dp
S . Suppose that f : R+ → R is

a solution to the equation �f = g that lies in Kp. Then, the following assertions
hold.

(a) We have that f ∈ Rp+1
S .

(b) For each x > 0, the sequence n �→ f
p
n [g](x) converges and we have

f (x) = f (1)+ lim
n→∞ f

p
n [g](x) .

(c) The sequence n �→ f
p
n [g] converges uniformly on any bounded subset of R+

to f − f (1).

Proof We clearly have that f ∈ Dp+1
S . Assertion (a) then follows from Lemma 2.7

and the squeeze theorem. Assertion (b) follows from assertion (a) and identity (3.3).
Now, letE be any bounded subset ofR+. Using again identity (3.3) and Lemma 2.7,
for large integer n we obtain

sup
x∈E

∣∣f p
n [g](x)− f (x)+ f (1)

∣∣ = sup
x∈E

∣∣∣ρp+1
n [f ](x)

∣∣∣

≤ sup
x∈E

∣∣∣(x−1p

)∣∣∣
supE�−1∑

j=0

∣∣∣�p+1f (n+ j)

∣∣∣ .

This establishes assertion (c). ��
Example 3.2 Using Theorem 3.1 with g(x) = ln x and p = 1, we obtain that all
solutions f : R+ → R lying in K1 to the equation �f (x) = ln x are of the form
f (x) = c + ln�(x), where c ∈ R. We thus simply retrieve both Bohr-Mollerup’s
Theorem 1.1 and Gauss’ limit (1.6), as expected. We also observe that the set K1

cannot be replaced with K0 in this characterization. For example, the function

f (x) = ln�(x)+ ln(1+ 1
2 sin(2πx))

is also a solution lying in K0 to the equation �f (x) = ln x. ♦
Remark 3.3 We note that the assumption that lnf is convex in Bohr-Mollerup’s
Theorem 1.1 can be easily replaced with the fact that ln f lies in K1+ (without using
the uniqueness Theorem 3.1). Indeed, if ln f is convex on [n,∞) for some n ∈ N,
then using (3.2) we have that

ln f (x) = ln f (x + n)−
n−1∑
k=0

ln(x + k), x > 0,



3.1 Main Results 23

and hence ln f must be convex on R+ (as a finite sum of convex functions on R+).
We can also replace K1+ with K1; indeed, assuming that ln f lies in K1−, we would
obtain that � ln f (x) = ln x lies in K0− by Lemma 2.6(b), a contradiction. ♦
Remark 3.4 (A Proof of Bohr-Mollerup’s Theorem) We have seen in Example 3.2
how both Bohr-Mollerup’s theorem and Gauss’ limit can be retrieved using our
results. Let us now examine our proof in a self-contained way, using the needed
arguments only. Let f : R+ → R be an eventually convex solution to the equation
�f (x) = ln x. The nature of this equation shows that it is actually enough to assume
that x > 1 to find the form of f (x). For any n ∈ N

∗ and any x > 1, we then have

f (n) = f (1)+
n−1∑
k=1

ln k and f (x + n) = f (x)+
n−1∑
k=0

ln(x + k)

and hence also the identity

f (x) = f (1)+
(

n−1∑
k=1

ln k −
n−1∑
k=0

ln(x + k)+ x ln n

)
+ ρn(x),

where

ρn(x) = f (x + n)− f (n)− x ln n.

To conclude the proof, we only need to show that, for each x > 1, the sequence
n �→ ρn(x) converges to zero. Let n ∈ N

∗ be so that f is convex on [n,∞). Using
the convexity of f we then obtain the following two inequalities

f (n+ 1) ≤ (1− 1
x
) f (n)+ 1

x
f (x + n) ,

f (n+ x) ≤ 1
x

f (n+ 1)+ (1− 1
x
) f (x + n+ 1) .

Using these inequalities and the identity f (n+ 1)− f (n) = ln n, we obtain

0 ≤ ρn(x) = f (x + n)− f (n+ 1)− (x − 1) lnn

≤ (x − 1) (f (x + n+ 1)− f (x + n)− lnn) = (x − 1) ln(1+ x
n
).

The proof is now complete since the latter expression converges to zero as n →∞.
This shows to which extent the proofs of Bohr-Mollerup’s theorem and Gauss’ limit
can be short and elementary. Note that a variant of this proof can be derived from
the proof of Webster’s uniqueness theorem [98, Theorem 3.1]. ♦
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Now that we have established the uniqueness Theorem 3.1, let us prepare the
ground for the existence theorem. Using the definition of ρ

p
a [g](x) given in (1.7),

we can easily derive the following two identities

ρ
p
a [g](p) = �pg(a) ; (3.4)

ρ
p
a [g](x)− ρ

p+1
a [g](x) = (x

p

)
ρ

p
a [g](p) . (3.5)

These identities clearly show that the inclusions Rp

S ⊂ Dp

S and Rp

S ⊂ Rp+1
S hold

for any p ∈ N. We will see in Proposition 4.2 that these inclusions are actually
strict.

Now, the following straightforward identities will also be useful as we continue

f
p

n+1[g](x)− f
p
n [g](x) = −ρ

p+1
n [g](x) ; (3.6)

f
p
n [g](x + 1)− f

p
n [g](x) = g(x)− ρ

p
n [g](x) . (3.7)

For any integers 1 ≤ m ≤ n, from (3.6) we obtain

f
p
n [g](x) = f

p
m [g](x)−

n−1∑
k=m

ρ
p+1
k [g](x) , (3.8)

which shows that, for any x > 0, the convergence of the sequence n �→ f
p
n [g](x) is

equivalent to the summability of the sequence n �→ ρ
p+1
n [g](x).

We now establish a slightly improved version of our existence Theorem 1.4. We
first present a technical lemma, which follows straightforwardly from Lemma 2.7.

Lemma 3.5 Let p ∈ N, g ∈ Kp , and m ∈ N
∗ be so that g is p-convex or p-concave

on [m,∞). Then, for any x ≥ 0 and any integer n ≥ m, we have

∣∣∣∣∣
n−1∑
k=m

ρ
p+1
k [g](x)

∣∣∣∣∣ ≤
∣∣∣(x−1p

)∣∣∣
x�−1∑
j=0

|�pg(n+ j)−�pg(m+ j)|.

Proof For any fixed x ≥ 0, the sequence k �→ ρ
p+1
k [g](x) for k ≥ m does not

change in sign by Lemma 2.7 and hence we have

∣∣∣∣∣
n−1∑
k=m

ρ
p+1
k [g](x)

∣∣∣∣∣ =
n−1∑
k=m

∣∣∣ρp+1
k [g](x)

∣∣∣ ≤
∣∣∣(x−1p

)∣∣∣
x�−1∑
j=0

∣∣∣∣∣
n−1∑
k=m

�p+1g(k + j)

∣∣∣∣∣ ,

where the inner sum clearly telescopes to �pg(n+ j)−�pg(m+ j). ��
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Theorem 3.6 (Existence) Let p ∈ N and g ∈ Dp
S ∩Kp . The following assertions

hold.

(a) We have that g ∈ Rp

S .
(b) The sequence n �→ f

p
n [g](x) converges for every x > 0, and the function

f : R+ → R defined by

f (x) = lim
n→∞ f

p
n [g](x) , x > 0,

is a solution to the equation �f = g that is p-concave (resp. p-convex) on
any unbounded subinterval I of R+ on which g is p-convex (resp. p-concave).
Moreover, we have f (1) = 0 and

|f p
n [g](x)− f (x)| ≤ x�

∣∣∣(x−1p

)∣∣∣ ∣∣�pg(n)
∣∣ , x > 0, n ∈ I ∩N

∗.

If p ≥ 1, we also have the following tighter inequality

|f p
n [g](x)−f (x)| ≤

∣∣∣(x−1p

)∣∣∣
∣∣∣�p−1g(n+ x)−�p−1g(n)

∣∣∣ , x > 0, n ∈ I∩N∗.

(c) The sequence n �→ f
p
n [g] converges uniformly on any bounded subset of R+

to f .

Proof We have that g ∈ Dp

S ⊂ Dp+1
S . By Lemma 2.7, it follows immediately that g

lies inRp+1
S , and hence also inRp

S by (3.4) and (3.5). This establishes assertion (a).
Now, suppose for instance that g lies in Kp

+. Let I be any unbounded subinterval
of R+ on which g is p-convex and let m ∈ I ∩ N

∗. For any x > 0, the sequence
k �→ ρ

p+1
k [g](x) for k ≥ m does not change in sign by Lemma 2.7. Thus, since g

lies in Dp

N
, for any x > 0 the series

∞∑
k=m

ρ
p+1
k [g](x)

converges by Lemma 3.5. By (3.8) it follows that the sequence n �→ f
p
n [g](x)

converges. Denoting the limiting function by f , we necessarily have f (1) = 0.
Moreover, by (3.7) and assertion (a) we must have �f = g.

Since g is p-convex on I , for every n ∈ N
∗ the function f

p
n [g] is clearly p-

concave on I . (Note that the second sum in (1.4) is a polynomial of degree less than
or equal to p in x, hence by Proposition 2.4 it is both p-convex and p-concave.)
Since f is a pointwise limit of functions p-concave on I , it too is p-concave on I .
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The claimed inequalities then follow from identity (3.3), Lemma 2.7, and the
observation that the restriction of the sequence n �→ �pg(n) to I ∩ N

∗ increases to
zero by Lemma 2.5. Indeed, for any x > 0 and any n ∈ I ∩ N

∗, we then have

|f p
n [g](x)− f (x)| = |ρp+1

n [f ](x)| ≤
∣∣∣(x−1p

)∣∣∣ ∣∣�pf (n+ x)−�pf (n)
∣∣

≤
∣∣∣(x−1p

)∣∣∣
x�−1∑
j=0

|�pg(j + n)| ≤ x�
∣∣∣(x−1p

)∣∣∣ ∣∣�pg(n)
∣∣ .

This proves assertion (b). Assertion (c) immediately follows from the first inequality
of assertion (b). ��
Remark 3.7 We have shown in Theorems 3.1 and 3.6 that the sequence n �→ f

p
n [g]

converges uniformly on any bounded subset of R+. In fact, we have proved the
slightly more general property that the sequence n �→ ρ

p+1
n [f ] converges uniformly

on any bounded subset of [0,∞) to 0. ♦
Theorems 3.1 and 3.6 show that the assumption that g ∈ Dp

S ∩ Kp constitutes a
sufficient condition to ensure both the uniqueness (up to an additive constant) and
existence of solutions to the equation �f = g that lie in Kp . Nevertheless, we can
show that this condition is actually not quite necessary. We discuss and elaborate on
this natural question in Appendix C.

We now present an important property of the sequence n �→ f
p
n [g]. Considering

the straightforward identity

f
p+1
n [g](x)− f

p
n [g](x) = (

x
p+1
)
�pg(n),

we immediately see that if the sequence

n �→ f
p+1
n [g](x)− f

p
n [g](x)

approaches zero for some x ∈ R+ \ {0, 1, . . . , p}, then g must lie in Dp

N
. More

importantly, the identity above also shows that if g lies in Dp

N
and if the sequence

n �→ f
p
n [g](x) converges, then so does the sequence n �→ f

p+1
n [g](x) and both

sequences converge to the same limit. Since the inclusion Dp

N
⊂ Dp+1

N
holds for

any p ∈ N, we immediately obtain the following important proposition.

Proposition 3.8 Let p ∈ N. If g ∈ Dp

N
and if the sequence n �→ f

p
n [g](x)

converges, then for any integer q ≥ p the sequence

n �→ |f p
n [g](x)− f

q
n [g](x)|

converges to zero. Moreover, the convergence is uniform on any bounded subset of
R+.
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Let us end this section with the following observation about our uniqueness and
existence results. In Theorem 3.1, we have proved the uniqueness of the solution f

that lies in Kp by first proving that this solution necessarily lies inRp+1
S . Although

this latter asymptotic condition may seem a bit less natural than the assumption that
f lies in Kp , we could as well consider it as a sufficient condition to guarantee
uniqueness. A similar observation can be made for the existence Theorem 3.6. We
can therefore establish the following two alternative results.

Proposition 3.9 (Uniqueness) Let p ∈ N and let g : R+ → R. Suppose that
f : R+ → R is a solution to the equation �f = g that lies in Rp+1

N
. Then assertion

(b) of Theorem 3.1 holds, and hence f is unique (up to an additive constant).

Proof This follows immediately from identity (3.3). ��
Proposition 3.10 (Existence) Let p ∈ N and suppose that the function g : R+ →
R lies in Dp

N
and has the property that, for each x > 0, the sequence n �→

ρ
p+1
n [g](x) is summable. Then g lies in Rp

N
and there exists a unique (up to an

additive constant) solution f : R+ → R to the equation �f = g that lies in Rp+1
N

.

Proof Since the sequence n �→ ρ
p+1
n [g](x) is summable, by (3.8) the sequence

n �→ f
p
n [g](x) converges. Denoting the limiting function by f , we necessarily have

f (1) = 0. By (3.6), the function g necessarily lies in Rp+1
N

, and hence also in Rp

N

by (3.4) and (3.5). Thus, we must have �f = g by (3.7) and f lies in Rp+1
N

by
(3.3). ��
Example 3.11 Let us apply Proposition 3.9 to g(x) = ln x and p = 1. We then
obtain the following alternative characterization of the gamma function (in the
multiplicative notation).

If f : R+ → R+ is a solution to the equation f (x + 1) = x f (x) having the asymptotic
property that, for each x > 0,

f (x + n) ∼ nxf (n) as n→N ∞,

then f (x) = c �(x) for some c > 0.

It is easy to see that this characterization also holds on the whole complex domain
of the gamma function, namely C \ (−N). ♦

3.2 The Case when the Sequence g(n) Is Summable

Let D−1
N

be the set of functions g : R+ → R having the asymptotic property that
the series

∑∞
k=1 g(k) converges. We immediately observe that D−1

N
⊂ D0

N
. In this

context, our uniqueness and existence results can be complemented by the following
two theorems.
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Theorem 3.12 (Uniqueness) Let g ∈ D−1
N

and suppose that f : R+ → R is a
solution to the equation �f = g that lies in K0. Then, the following assertions
hold.

(a) f (x) has a finite limit as x →∞, denote it by f (∞).
(b) For each x > 0, the series

∑∞
k=0 g(x + k) converges and we have

f (x) = f (∞)−
∞∑

k=0
g(x + k) .

(c) The series x �→∑∞
k=0 g(x + k) converges uniformly on R+ to f (∞)− f .

Proof The sequence n �→ f (n) converges by (3.1). Assuming for instance that f

lies in K0+, for any x > 0 we obtain

f (�x� + n) ≤ f (x + n) ≤ f (x� + n) for large integer n.

Letting n →N ∞ in these inequalities and using the squeeze theorem, we get
assertion (a). Assertion (b) follows from assertion (a) and identity (3.2). Now, for
large integer n, by assertion (b) and identity (3.2) we have

sup
x∈R+

∣∣∣∣∣
∞∑

k=n

g(x + k)

∣∣∣∣∣ = sup
x∈R+

|f (x + n)− f (∞)| ≤ |f (n)− f (∞)|.

This proves assertion (c). ��
Theorem 3.13 (Existence) Let g ∈ D−1

N
∩K0. The following assertions hold.

(a) We have that g ∈ R0
N

.
(b) The series

∑∞
k=0 g(x + k) converges for every x > 0, and the function

f : R+ → R defined by

f (x) = −
∞∑

k=0
g(x + k) , x > 0, (3.9)

is a solution to the equation �f = g that is decreasing (resp. increasing) on
any unbounded subinterval I of R+ on which g is increasing (resp. decreasing).
Moreover, we have f (x)→ 0 as x →∞ and, for every n ∈ I ∩N

∗,
∣∣∣∣∣
∞∑

k=n

g(x + k)

∣∣∣∣∣ = |f (x + n)| ≤ |f (n)|, x > 0.

(c) The series x �→∑∞
k=0 g(x + k) converges uniformly on R+ to −f .
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Proof By Theorem 3.6, assertion (a) clearly holds (since g also lies in D0
N
) and,

for each x > 0, the series (3.9) converges and is a solution to the equation �f = g

that satisfies the claimed monotonicity properties. Theorem 3.12 then shows that the
function f vanishes at infinity. The rest of assertion (b) follows from (3.2). Assertion
(c) is then immediate. ��

Theorems 3.12 and 3.13 motivate the following definition.

Definition 3.14 For any S ∈ {N,R}, we let D−1S denote the set of functions
g : R+ → R having the asymptotic property that, for each x ∈ S, the series

∞∑
k=0

g(x + k)

converges and tends to zero as x →S ∞.

Clearly, this definition is consistent with our prior definition of D−1
N

and we can
immediately see that the inclusion D−1

R
⊂ D−1

N
holds. Moreover, by Theorem 3.13

we have that

D−1
R
∩K0 = D−1

N
∩K0. (3.10)

Example 3.15 (The Trigamma Function) The trigamma function ψ1 is defined on
R+ as the derivative ψ ′ of the digamma function. Hence, it has the property that

�ψ1(x) = D�ψ(x) = − 1/x2 for all x > 0.

Since the function ψ lies in D1
N
∩ K1−, one can show (see Proposition 4.12 in the

next chapter) that ψ1 lies in D0
N
∩K0−. Now, the function g(x) = −1/x2 clearly lies

in D−1
N
∩K0+ and hence also in D0

N
∩K0+. It also lies in D−1R

∩K0+ by (3.10). Thus,
by Theorems 3.6, 3.12, and 3.13, we see that the trigamma functionψ1 is the unique
decreasing solution f to the equation �f = g that vanishes at infinity. Moreover,
we have that

ψ1(x) =
∞∑

k=0

1

(x + k)2
and ψ1(1) =

∞∑
k=1

1

k2
= π2

6
.

Furthermore, the sequence of functions

n �→
n−1∑
k=0

1

(x + k)2
= ψ1(x)− ψ1(x + n)
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converges uniformly on R+ to the function ψ1(x), and Theorem 3.13 provides the
following inequalities

0 ≤ ψ1(x + n) =
∞∑

k=n

1

(x + k)2
≤ ψ1(n) , x > 0, n ∈ N

∗.

Finally, Theorem 3.6 provides the following additional inequalities

0 ≤ ψ1(n)− ψ1(x + n) ≤ x�
n2

, x > 0, n ∈ N
∗.

We will further investigate the trigamma function ψ1 as a special polygamma
function in Sect. 10.3. ♦

3.3 Historical Notes

Asmentioned in Chap. 1, the uniqueness and existence result in the case when p = 1
was established in the pioneering work of Krull [54, 55] and then independently by
Webster [97, 98] as a generalization of Bohr-Mollerup’s theorem. We observe that
it was also partially rediscovered by Dinghas [33]. In addition, we note that Krull’s
result was presented and somewhat revisited by Kuczma [56] (see also Kuczma [59]
and Kuczma [60, pp. 114–118]) as well as by Anastassiadis [7, pp. 69–73]. To
our knowledge, the only attempts to establish uniqueness and existence results for
any value of p were made by Kuczma [60, pp. 118–121] and Ardjomande [9].
Independently of these latter results, an investigation of the special case when
p = 2, illustrated by the Barnes G-function, was made by Rassias and Trif [86]
(see our Appendix B).

We also observe that Gronau andMatkowski [44, 45] improved the multiplicative
version of Krull’s result by replacing the log-convexity property with the much
weaker condition of geometrical convexity (see also Guan [46] for a recent
application of this result), thus providing another characterization of the gamma
function, which was later improved by Alzer and Matkowski [4] and Matkowski
[68, 69]. (For further characterizations of the gamma function and generalizations,
see also Anastassiadis [7] and Muldoon [79].)

Many other variants and improvements of Krull’s result can actually be found
in the literature. For instance, Anastassiadis [6] (see also Anastassiadis [7, p. 71])
generalized it by modifying the asymptotic condition. Rohde [88] also generalized
it by modifying the convexity property. Gronau [42] proposed a variant of Krull’s
result and applied it to characterize the Euler beta and gamma functions and study
certain spirals (see also Gronau [43]). Merkle and Ribeiro Merkle [71] proposed to
combine Krull’s approach with differentiation techniques to characterize the Barnes
G-function. Himmel and Matkowski [48] also proposed improvements of Krull’s
result to characterize the beta and gamma functions.
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Chapter 4
Interpretations of the Asymptotic
Conditions

In this chapter, we study some important properties of the sets Rp

S and Dp

S and
provide interpretations of the asymptotic condition that defines the set Rp

S .
We also investigate the sets Rp

S ∩ Kp and Dp

S ∩ Kp and show that they actually
coincide and are independent of S (and hence we can remove this subscript). We
also provide an interpretation of this common set Dp ∩ Kp and present some of its
properties that will be very useful in the next chapters. In particular, we show that
the intersection set Cp ∩Dp ∩Kp is precisely the set of functions g ∈ Cp for which
g(p) eventually increases or decreases to zero (see Theorem 4.14).

4.1 Some Properties of the Sets Rp

S and Dp

S

Although the definition of the set Rp
S seems rather technical (see Definition 1.9),

the following proposition shows that this set can be nicely characterized in terms of
interpolating polynomials. We omit the proof for it follows immediately from (2.11)
and (2.12).

Proposition 4.1 Let p ∈ N. A function g : R+ → R lies in Rp
S if and only if for

each x > 0 such that xp �= 0, we have that

g[a, a + 1, . . . , a + p − 1, a + x] → 0 as a →S ∞.

When S = R (resp. S = N), this latter condition means that g asymptotically
coincides with its interpolating polynomial whose nodes are any p points equally
spaced by 1 (resp. any p consecutive integers).

© The Author(s) 2022
J.-L. Marichal, N. Zenaïdi, A Generalization of Bohr-Mollerup’s Theorem
for Higher Order Convex Functions, Developments in Mathematics 70,
https://doi.org/10.1007/978-3-030-95088-0_4
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Interestingly, from (3.2) and (3.3) we can also immediately derive the following
alternative characterization of the setRp

N
. For any function f : R+ → R, we have

f ∈ R0
N
⇔ f (x) = −

∞∑
k=0

�f (x + k) , x > 0 ;

f ∈ Rp+1
N

⇔ f (x) = f (1)+ lim
n→∞ f

p
n [�f ](x) , x > 0 .

(Note that we have already used these equivalences in the proofs of the uniqueness
Theorems 3.1 and 3.12 and Proposition 3.9.)

We now present a proposition that reveals some interesting inclusions among
the sets Rp

S and Dp

S . In particular, it shows that just as the sets D0
S,D1

S,D2
S, . . .

are increasingly nested, so are the sets R0
S,R1

S,R2
S, . . ., and hence each of these

families defines a filtration.

Proposition 4.2 For any p ∈ N and any S ∈ {N,R}, the sets Rp

S and Dp

S are real
linear spaces that satisfy the identity

Rp

S = Rp+1
S ∩Dp

S (4.1)

and the strict inclusions

Rp

S � Rp+1
S and Dp

S � Dp+1
S .

When p ≥ 1 we also have

Rp

S � Dp

S .

Finally, when p = 0 we have

D0
R
= R0

R
� R0

N
� D0

N
.

Proof It is clear that the sets Rp

S and Dp

S are closed under linear combinations;
hence they are real linear spaces. Identity (4.1) then follows immediately from (3.4)
and (3.5). This identity also shows that Rp

S ⊂ Rp+1
S . As already observed, we also

haveDp
S ⊂ Dp+1

S trivially. Now, identity (2.11) shows that the polynomial function

x �→ xp lies inRp+1
S \Rp

S and we can easily see that it lies also in Dp+1
S \Dp

S . The
inclusion Rp

S ⊂ Dp
S follows from (4.1) and we can easily see that the 1-periodic

function x �→ sin(2πx) lies in Dp
S \ Rp

S for any p ∈ N
∗ as well as in D0

N
\ R0

N
.

Finally, let us now show thatR0
R
� R0

N
. Using bump functions for instance, we can

easily construct a smooth function f : R+ → R such that for any n ∈ N
∗, we have

f = 0 on the interval [n − 1, n − 1
n
] and f (n − 1

2n) = 1. Such a function clearly
lies inR0

N
. However, it does not vanish at infinity, i.e., it does not lie in R0

R
. ��
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We now present an important result that will be used repeatedly as we continue.
It actually follows from the second of the following straightforward identities

ρ
p

a+1[f ](x)− ρ
p
a [f ](x) = ρ

p
a [�f ](x) , (4.2)

ρ
p+1
a [f ](x + 1)− ρ

p+1
a [f ](x) = ρ

p
a [�f ](x) . (4.3)

Proposition 4.3 Let j, p ∈ N be such that j ≤ p. The following assertions hold.

(a) If f ∈ Rp

S , then �jf ∈ Rp−j

S .

(b) f ∈ Dp

S if and only if �jf ∈ Dp−j

S .

Proof If f lies in Rp+1
S , then �f lies in Rp

S by (4.3). On the other hand, it is clear

that f lies in Dp+1
S if and only if �f lies in Dp

S . ��
It is easy to see that a function f : R+ → R whose difference �f lies inRp

S for

some p ∈ N need not lie in Rp+1
S . For instance, the function f : R+ → R defined

by the equation f (x) = sin(2πx) for x > 0 does not lie in R1
S but its difference

�f = 0 lies in R0
S. However, we will see in Corollary 4.10 that, if f ∈ Kp−1, then

the implication in assertion (a) of Proposition 4.3 becomes an equivalence.

Remark 4.4 In view of Proposition 4.3(b), it is natural to wonder whether there
exists a set D of functions from R+ to R having the property that f ∈ D0

S if and
only if �f ∈ D. However, such a set does not exist. Indeed, identities (3.1) and
(3.2) show that if f lies in D0

S, then necessarily �f lies in D−1S . Conversely, for any
g ∈ D−1S , there are infinitely many functions f : R+ → R that satisfy �f = g but
that do not lie in D0

S. ♦
It is clear that, for any p ∈ N, if both functions h and g − h lie in the space

Rp
S , then so does the function g. For instance, if g : R+ → R has the asymptotic

property that

g(x)− P(x) → 0 as x →S ∞

for some polynomial P of degree less than or equal to p − 1, then g must lie in
Rp

S . Indeed, P clearly lies in Rp

S and we also have that g − P lies in R0
S (which is

included in Rp

S by Proposition 4.2). Thus, the space Rp

S contains not only every
polynomial of degree less than or equal to p − 1 but also every function that
behaves asymptotically like a polynomial of degree less than or equal to p − 1.
To give another illustration of the property above, we observe for instance that both
functions ln x and Hx − ln x (the latter tends to Euler’s constant γ as x →S ∞) lie
inR1

R
and hence so does the function Hx , which means that, for each a ≥ 0,

Hx+a −Hx → 0 as x →∞

(which, a priori, is a not completely trivial result).
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These examples illustrate the fact that the spaces

R∞S =
⋃
p≥0

Rp
S and D∞S =

⋃
p≥0

Dp
S

are very rich and contain a huge variety of functions, including not only all the
functions that have polynomial behaviors at infinity as discussed above, and in
particular all the rational functions, but also many other functions. We observe,
however, that they do not contain any strictly increasing exponential function. For
instance, if g(x) = 2x , then �pg(x) = 2x for any p ∈ N, and this function
does not vanish at infinity. Actually, such exponential functions grow asymptotically
much faster than polynomial functions and may remain eventually p-convex even
after adding nonconstant 1-periodic functions. For instance, both functions 2x and
2x + sin(2πx) are eventually p-convex for any p ∈ N.

Remark 4.5 Using (1.7) and (4.1), we also obtainRp
S = R∞S ∩Dp

S for any p ∈ N. ♦

4.2 The Intersection Sets Rp

S ∩ Kp and Dp

S ∩ Kp

Let us now consider the set Kp and its subsets Rp
S ∩ Kp and Dp

S ∩ Kp . As these
sets will be used repeatedly throughout this book, it is important to study their basic
properties. In this section, we present a number of results about these sets that will
be very useful in the subsequent chapters.

Let us first observe that the set Kp is not a linear space. For instance, using
Lemma 2.6 we can see that both functions

f (x) = xp+1 + sin x and g(x) = xp+1

lie in Kp but f − g does not. We also have that �f does not lie in Kp (because
Dp�f = �Dpf does not lie in K0), which shows that Kp is not closed under the
operator �.

The following corollary shows thatKp is actually the union of two convex cones.
This result is an immediate consequence of Proposition 2.4.

Corollary 4.6 For any p ∈ N, the sets Kp
+ and Kp

− are convex cones. These cones
are opposite in the sense that f lies in Kp

+ if and only if −f lies in Kp
−. Moreover,

the intersection Kp
+∩Kp

− is the real linear space of all the real functions on R+ that
are eventually polynomials of degree less than or equal to p.
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It is now clear that Dp
S ∩Kp is also the union of two opposite convex cones that

is not a linear space. For instance, both functions

f (x) = 2 ln x + sin x

x2 and g(x) = 2 ln x

lie in D1
S ∩K1 (use, e.g., Theorem 4.14(b) below) but f − g does not.

Now, the following proposition shows that, just as the sets C0, C1, C2, . . . are
decreasingly nested, so are the setsK−1,K0,K1, . . .. Thus, this latter family defines
a descending filtration and we can therefore introduce the intersection set

K∞ =
⋂
p≥0

Kp.

Proposition 4.7 For any integer p ≥ −1, we have Kp+1
� Kp.

Proof Let f lie in Kp+1 for some integer p ≥ −1. Suppose for instance that f lies
inKp+1

+ and let I be an unbounded subinterval ofR+ on which f is (p+1)-convex.
Let Ip+2 denote the set of tuples of Ip+2 whose components are pairwise distinct.
By Lemma 2.5, it follows that the restriction of the map

(z0, . . . , zp+1) �→ f [z0, . . . , zp+1]

to Ip+2 is increasing in each place. If f does not lie in Kp
−, then there are p + 2

points x0 < · · · < xp+1 in I such that f [x0, . . . , xp+1] > 0. But then, f is p-
convex on the interval (xp+1,∞), and hence it lies in Kp

+, which establishes the
inclusion. To see that the inclusion is strict, using Lemma 2.6 we just observe that
the function f : R+ → R defined by the equation

f (x) = xp+1 + sin x for x > 0

lies in Kp \Kp+1. ��
Interestingly, Proposition 4.7 shows that the assumption that g lies in Kp, which

occurs in many statements (e.g., in Theorem 3.6), can be given equivalently by the
condition that g lies in ∪q≥pKq .

We now present two useful propositions. The first one is very important: it shows
that the sets Rp

S ∩Kp and Dp

S ∩Kp coincide and are actually independent of S.

Proposition 4.8 For any p ∈ N, we have

Rp

R
∩Kp = Dp

R
∩Kp = Rp

N
∩Kp = Dp

N
∩Kp.

Proof We already know that Rp
S ⊂ Dp

S (cf. Proposition 4.2) and Dp

R
⊂ Dp

N
.

Moreover, we have that Dp

S ∩ Kp ⊂ Rp

S by Theorem 3.6. It remains to show that
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Dp

N
∩ Kp ⊂ Dp

R
. Let g lie in Dp

N
∩ Kp . Suppose for instance that g lies in Kp

+ and
let a > 0 be so that g is p-convex on [a,∞). By Lemma 2.5, �pg is increasing on
[a,∞). Thus, for any x ≥ a + 1, we have

�pg(�x�) ≤ �pg(x) ≤ �pg(x�).

Letting x →∞ and using the squeeze theorem, we obtain that g lies in Dp

R
. ��

Proposition 4.9 If f ∈ Kp for some p ∈ N, then the following assertions are
equivalent:

(i) f ∈ Rp+1
S , (ii) f ∈ Dp+1

S , (iii) �f ∈ Rp

S , (iv) �f ∈ Dp

S .

Proof By Proposition 4.2, we clearly have that (i) implies (ii) and that (iii) implies
(iv). By Proposition 4.3, we also have that (i) implies (iii) and that (ii) implies (iv).
Finally, by Theorem 3.1, we have that (iv) implies (i). ��

Combining Proposition 4.3 with Propositions 4.7 and 4.9, we immediately obtain
the following corollary, which naturally complements Proposition 4.3.

Corollary 4.10 Let j, p ∈ N be such that j ≤ p. If f ∈ Kp−1, then we have
f ∈ Rp

S if and only if �jf ∈ Rp−j

S .

Due to Proposition 4.8, we will henceforth write Dp ∩ Kp instead of Dp

S ∩ Kp .
In view of (3.10), we will also write D−1 ∩K0 instead of D−1S ∩K0.

Since the set Dp ∩Kp is clearly a central object of our theory (cf. our existence
Theorem 3.6), it is important to investigate its properties. In this respect, we have
the following two propositions.

Proposition 4.11 Let j, p ∈ N be such that j ≤ p. The following assertions
hold.

(a) If g ∈ Kp
+, then �jg ∈ Kp−j

+ . More precisely, for any unbounded open interval
I of R+, if g is p-convex on I , then �jg is (p − j)-convex on I .

(b) If g ∈ Dp ∩Kp
+, then �jg ∈ Dp−j ∩Kp−j

+ .

Proof This result immediately follows from Lemma 2.6(b) and Proposition 4.3. ��
Proposition 4.12 Let j, p ∈ N be such that j ≤ p and let g ∈ Cj . The following
assertions hold.

(a) g ∈ Kp
+ if and only if g(j) ∈ Kp−j

+ . More precisely, for any unbounded open
interval I of R+, we have that g is p-convex on I if and only if g(j) is (p− j)-
convex on I .

(b) g ∈ Dp ∩Kp
+ if and only if g(j) ∈ Dp−j ∩Kp−j

+ .

Proof Assertion (a) follows from assertions (c) and (d) of Lemma 2.6. To see that
assertion (b) holds, it is enough to show that, for any p ≥ 1, we have g ∈ Dp ∩Kp

+
if and only if g′ ∈ Dp−1 ∩Kp−1

+ .
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Suppose first that g lies in Dp ∩ Kp
+. Then g′ lies in Kp−1

+ by assertion (a).
Let x > 1 be so that g is p-convex on [x − 1,∞). Then �p−1g′ is increasing on
[x − 1,∞) by assertion (a) and Proposition 4.11(a). By the mean value theorem,
there exist ξ1x , ξ2x ∈ (0, 1) such that

�pg(x − 1) = �p−1g′(x − 1+ ξ1x ) ≤ �p−1g′(x)

≤ �p−1g′(x + ξ2x ) = �pg(x).

Letting x →∞, we see that g′ lies in Dp−1
R

by the squeeze theorem.

Conversely, suppose that g′ lies in Dp−1 ∩Kp−1
+ . Then g lies in Kp

+ by assertion
(a). Let x > 0 be so that g′ is (p− 1)-convex on [x,∞) and let t ∈ (x, x+ 1). Then
�p−1g′ is increasing on [x,∞) by Proposition 4.11(a), and hence we have

�p−1g′(x) ≤ �p−1g′(t) ≤ �p−1g′(x + 1).

Integrating on t ∈ (x, x + 1), we obtain

�p−1g′(x) ≤ �pg(x) ≤ �p−1g′(x + 1).

Letting x →∞, we see that g lies in Dp

R
. ��

Remark 4.13 If a function f : R+ → R is such that �f lies in Kp for some p ∈ N,
then f need not lie in Kp+1, even if �f lies in Dp ∩Kp . For instance, the function
f : R+ → R defined by the equation

f (x) = 1

2x

(
1+ 1

3
sin x

)
for x > 0

lies in K0− \K1. Indeed, 2xf ′(x) is 2π-periodic and negative while 2xf ′′(x) is 2π-
periodic and change in sign from x = π

6 to x = π . However, the function �f lies
in D0 ∩K0+ for 2x�f ′(x) is 2π-periodic and positive. This example shows that the
implications in Proposition 4.11 cannot be equivalences. ♦

If a function g : R+ → R lies in Dp ∩ Kp for some p ∈ N, then by
Proposition 4.11 the function �pg lies in D0∩K0, i.e., �pg eventually increases or
decreases to zero. However, a function g : R+ → R that satisfies this latter property
need not lie in Dp ∩ Kp, unless g lies in Kp or p = 0. The example introduced in
Remark 4.13 illustrates this phenomenon when p = 1. On the other hand, when g

lies in Cp, by Proposition 4.12 we have that g lies in Dp ∩ Kp if and only if g(p)

lies in D0 ∩K0.
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We gather these important observations in the following theorem.

Theorem 4.14 Let p ∈ N. The following assertions hold.

(a) Let g ∈ Kp
+ (resp. Kp

−). Then g lies in Dp ∩Kp
+ (resp. Dp ∩Kp

−) if and only if
�pg eventually increases (resp. decreases) to zero.

(b) Let g ∈ Cp. Then g lies in Dp∩Kp
+ (resp.Dp∩Kp

−) if and only if g(p) eventually
increases (resp. decreases) to zero.

Proof Assertion (a) immediately follows from Propositions 4.3 and 4.11. Assertion
(b) immediately follows from Proposition 4.12. ��
Remark 4.15 It is not difficult to see that the function g(x) = 1

x
sin x2 vanishes

at infinity while its derivative does not. Theorem 4.14(b) shows that if g lies in
Cq ∩ Dp ∩ Kq for some p, q ∈ N such that p ≤ q , then all the functions
g(p), g(p+1), . . . , g(q) vanish at infinity. ♦

Propositions 4.11 and 4.12 do not provide any information on the functions �g

and g′ when g lies in D0 ∩ K0 and C1 ∩ D0 ∩ K0, respectively. The following
proposition fills this gap under the additional assumptions that �g and g′ lie in K0,
respectively.

Proposition 4.16 The following assertions hold.

(a) If g lies in D0 ∩K0− and is such that �g lies in K0, then �g lies in D−1 ∩K0+.
(b) If g lies in C1 ∩ D0 ∩ K0− and is such that g′ lies in K0 (or equivalently, g lies

in K1), then g′ lies in C0 ∩D−1 ∩K0+.

Proof Let us first prove assertion (a). Since g is eventually decreasing, �g must
be eventually negative. But since �g also lies in D0 ∩ K0, it must be eventually
increasing to zero. On the other hand, since g lies in D0, �g must lie in D−1

N
. This

proves assertion (a).
Let us now prove assertion (b). Since g is eventually decreasing, g′ must be

eventually negative. Since g′ lies in K0 (and hence g lies in K1 by Lemma 2.6), we
have that g lies in D1 ∩ K1 (since D0

S ⊂ D1
S). Proposition 4.12 then tells us that g′

lies in D0 ∩K0, and hence it must be eventually increasing to zero.
It remains to show that g′ lies in D−1

N
. Let x > 1 be so that g is decreasing and

g′ is increasing on Ix = [x − 1,∞). By the mean value theorem, for any integer
k ≥ x there exist ξk ∈ (0, 1) such that

�g(k − 1) = g′(k − 1+ ξk) ≤ g′(k).

For any integers m,n such that x ≤ m ≤ n, we then have

g(n− 1)− g(m− 1) =
n−1∑
k=m

�g(k − 1) ≤
n−1∑
k=m

g′(k) ≤ 0.

Letting n →N ∞, we can see that g′ lies in D−1
N

. ��
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Remark 4.17 The assumption that �g lies in K0 cannot be ignored in Proposi-
tion 4.16(a). Indeed, take for instance the function g = �f , where f is the function
defined in Remark 4.13. We have seen that this function lies in D0 ∩ K0. However,
it is not difficult to see that �g does not lie in K0. Similarly, the assumption that g′
lies in K0 cannot be ignored in Proposition 4.16(b). Indeed, one can show that the
same function g has the property that g′ does not lie inK0. To give another example,
one can show that the function

g(x) = 1

x3 (x + sin x)

lies in D0 ∩K0 whereas its derivative g′ does not lie in K0. ♦
We also have the following two corollaries, in which the symbols R and D can

be used interchangeably.

Corollary 4.18 Let g lie in Kp
+ (resp. Kp

−) for some p ∈ N. Then g lies in Dp

S if
and only if there exists a solution f : R+ → R to the equation �f = g that lies in
Dp+1

S ∩Kp
− (resp. Dp+1

S ∩Kp
+).

Proof The D-version immediately follows from Theorem 3.6 and Proposi-
tion 4.3(b). TheR-version then follows from Proposition 4.9 and Proposition 4.3(a).

��
Corollary 4.19 For any p ∈ N, we have that

Dp ∩Kp
+ ⊂ Kp−1

− and Dp ∩Kp
− ⊂ Kp−1

+ .

More precisely, if g lies in Dp ∩ Kp and is p-convex (resp. p-concave) on an
unbounded interval of R+, then on this interval it is also (p − 1)-concave (resp.
(p − 1)-convex).

Proof Let g lie inDp∩Kp
+. Then the function f : R+ → R defined in the existence

Theorem 3.6 is p-concave on any unbounded subinterval of R+ on which g is p-
convex. By Lemma 2.6(b), the function g = �f is also (p − 1)-concave on this
interval. ��

We end this chapter by providing a characterization of the setRp ∩Kp = Dp ∩
Kp in terms of interpolating polynomials. We also give a corollary that will be very
useful in the subsequent chapters.

Proposition 4.20 Let g lie in Kp for some p ∈ N. Then we have that g lies in Dp

S
if and only if for any pairwise distinct x0, . . . , xp > 0, we have that

g[a + x0, . . . , a + xp] → 0 as a →S ∞.

This latter condition means that g asymptotically coincides with its interpolating
polynomial with any p nodes.
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Proof (Necessity) Suppose for instance that g lies in Dp ∩Kp
+. By Corollary 4.19,

it also lies inKp−1
− . Let x0, . . . , xp > 0 be any pairwise distinct points and let a > 0

be so that g is p-convex and (p − 1)-concave on [a,∞). Then the map

x �→ g[x + x0, . . . , x + xp]

is nonpositive on [a,∞) and, by Lemma 2.5, it is also increasing on [a,∞). By
(2.8), we then have

1

p! �
pg(a) = g[a, a + 1, . . . , a + p] ≤ g[a + p + x0, . . . , a + p + xp] ≤ 0,

where the left side increases to zero as a →S ∞.
(Sufficiency) This immediately follows from Propositions 4.1 and 4.8. ��

Corollary 4.21 Let g lie in Kp
+ (resp. Kp

−) for some p ∈ N, let a > 0 and b ≥ 0,
and let h : R+ → R be defined by the equation h(x) = g(ax+b) for x > 0. Then

(a) h lies in Kp
+ (resp. Kp

−);
(b) if g lies in Dp ∩Kp , then h lies in Dp ∩Kp

+ (resp. Dp ∩Kp
−).

Proof The result is trivial if p = 0. So let us assume that p ≥ 1 and for instance
that g is p-convex on [s,∞) for some s > 0. Using (2.4), we can easily show that
for any pairwise distinct points x0, . . . , xp > 0 we have

h[x0, . . . , xp] = ap g[ax0 + b, . . . , axp + b].

This immediately shows that h is p-convex on [ 1
a
(s−b),∞) and hence that assertion

(a) holds. Now, suppose that g lies in Dp ∩Kp
+. Then h lies in Kp

+ by assertion (a).
Moreover, for any pairwise distinct x0, . . . , xp > 0, by Proposition 4.20 we have
that

h[n+ x0, . . . , n+ xp] = ap g[an+ ax0 + b, . . . , an+ axp + b] → 0

as n →N ∞. Hence h also lies in Dp ∩ Kp
+ by Proposition 4.20. This establishes

assertion (b). ��



4.2 The Intersection Sets Rp

S ∩Kp and Dp

S ∩Kp 43

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 5
Multiple log �-Type Functions

In this chapter, we introduce and investigate the map, denote it by �, that carries
any function g lying in

⋃
p≥0

(Dp ∩Kp)

into the unique solution f to the equation �f = g that arises from the existence
Theorem 3.6. We call these solutions multiple log�-type functions and we investi-
gate certain of their properties. We also discuss the search for simple conditions
on the function g : R+ → R to ensure the existence of �g. Further important
properties of these functions, including counterparts of several classical properties
of the gamma function, will be investigated in the next three chapters.

The map � is actually a central concept of the theory developed here. Its
definition and properties seem to show that it is as fundamental as the basic
antiderivative operation. In the next chapter we show that both concepts actually
share many common features.

5.1 The Map � and Its Basic Properties

In this section, we introduce the map � and discuss some of its basic properties. We
begin with the following important definition.

Definition 5.1 (Asymptotic Degree) The asymptotic degree of a function
f : R+ → R, denoted degf , is defined by the equation

deg f = − 1+min{q ∈ N : f ∈ Dq

R
}.
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For instance, if f is a polynomial of degree p for some p ∈ N, then degf = p.
If f (x) = 0 or f (x) = 1

x
, or f (x) = ln(1 + 1

x
), then degf = −1. If f (x) = sin x

or f (x) = x + sin x, or f (x) = 2x , then degf = ∞.
It is easy to see that the identity

degf = 1+ deg�f

holds whenever deg f is a nonnegative integer. However, it is no longer true when
degf = −1. For instance, for the function f (x) = 0 or the function f (x) = 1

x
, we

have deg f = deg�f = −1. This shows that in general we have

(degf )+ = 1+ deg�f.

We are now ready to introduce the map �. Here and throughout, the symbols
dom(�) and ran(�) denote the domain and range of �, respectively.

Definition 5.2 (The Map �) We define the map � : dom(�) → ran(�), where

dom(�) =
⋃
p≥0

(Dp ∩Kp),

by the following condition: if g ∈ Dp ∩Kp for some p ∈ N, then

�g = lim
n→∞ f

p
n [g]. (5.1)

It is important to note that the map is well defined; indeed, if g lies in both sets
Dp ∩ Kp and Dq ∩Kq for some integers 0 ≤ p < q , then by Proposition 3.8 both
sequences n �→ f

p
n [g] and n �→ f

q
n [g] have the same limiting function. Thus, in

view of Proposition 4.7, we can see that condition (5.1) holds for p = 1+ deg g.
Thus defined, it is clear that the map � is one-to-one; indeed, if �g1 = �g2 for

some functions g1 and g2 lying in dom(�), then g1 = ��g1 = ��g2 = g2. This
map is even a bijection since we have restricted its codomain to its range. We then
have the following immediate result.

Proposition 5.3 The map � is a bijection and its inverse is the restriction of the
difference operator � to ran(�).

Just as the indefinite integral (or antiderivative) of a function g is the class of
functions whose derivative is g, the indefinite sum (or antidifference) of a function
g is the class of functions whose difference is g (see, e.g., Graham et al. [41, p. 48]).
Recall also that any two indefinite integrals of a function differ by a constant while
any two indefinite sums of a function differ by a 1-periodic function. The map �

now enables one to refine the definition of an indefinite sum as follows.

Definition 5.4 We say that the principal indefinite sum of a function g lying in
dom(�) is the class of functions c +�g, where c ∈ R.
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Example 5.5 (The Log-Gamma Function) If g(x) = ln x, then we have �g(x) =
ln�(x), and we simply write

� ln x = ln�(x), x > 0.

Thus, the principal indefinite sum of the function x �→ ln x is the class of functions
x �→ c + ln�(x), where c ∈ R. With some abuse of language, we can say that the
principal indefinite sum of the log function is the log-gamma function. ♦

Exactly as for the difference operator�, we will sometimes add a subscript to the
symbol � to specify the variable on which the map � acts. For instance, �x g(2x)

stands for the function obtained by applying � to the function x �→ g(2x) while
�g(2x) stands for the value of the function �g at 2x.

The following proposition provides some straightforward properties of the map
� that will be very useful as we continue.

Proposition 5.6 Let g lie in Dp ∩ Kp for some p ∈ N. The following assertions
hold.

(a) �g is the unique solution to the equation �f = g that lies in Kp and that
vanishes at 1.

(b) �g lies in Dp+1 ∩Kp = Rp+1 ∩Kp.
(c) �g satisfies the identities

�g(n) =
n−1∑
k=1

g(k) , n ∈ N
∗, (5.2)

�g(x + n) = �g(x)+
n−1∑
k=0

g(x + k) , n ∈ N, (5.3)

and

�g(x) = f
p
n [g](x)+ ρ

p+1
n [�g](x) , n ∈ N

∗. (5.4)

Proof Assertions (a) and (b) immediately follow from Theorems 3.1 and 3.6 and
Proposition 4.9. Identities (5.2)–(5.4) follow from (3.1)–(3.3). ��

Quite surprisingly, we observe that if g lies inDp∩Kp for some p ∈ N, then �g

need not lie inKp+1. The example given in Remark 4.13 illustrates this observation.
We also have that

deg�g = 1+ degg
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whenever deg�g is a nonnegative integer; but this property no longer holds if
deg�g = −1. For instance, considering the functions

g(x) = 2− x

x(x + 1)(x + 2)
and �g(x) = x − 1

x(x + 1)
,

we have degg = deg�g = −1. Thus, in general we have

(deg�g)+ = 1+ deg g.

We now give two important propositions, which were essentially proved by
Webster [98, Theorem 5.1] in the special case when p = 1.

Proposition 5.7 Let g1 and g2 lie in Dp ∩ Kp for some p ∈ N and let c1, c2 ∈ R.
If c1g1 + c2g2 lies in Dp ∩Kp, then

�(c1g1 + c2g2) = c1�g1 + c2�g2.

Proof It is clear that if g lies in Dp ∩Kp, then we have �cg = c�g for any c ∈ R.
Now, suppose that g1, g2, and g1 + g2 lie in Dp ∩Kp and let us show that

�(g1 + g2) = �g1 + �g2.

It is actually enough to consider the following two cases.

1. If both g1 and g2 lie inDp∩Kp
+ (resp.Dp∩Kp

−), then so does g1+g2. It follows
that the function f = �g1+�g2 is a solution to the equation �f = g1+g2 that
lies in Kp

− (resp. Kp
+) and satisfies f (1) = 0. By the uniqueness Theorem 3.1,

we must have �(g1 + g2) = f .
2. If both g1 + g2 and −g1 lie in Dp ∩ Kp

+ (resp. Dp ∩ Kp
−), then so does g2 (use

the first case) and we have

�g2 = �((g1 + g2)+ (−g1)) = �(g1 + g2)− �g1.

This completes the proof. ��
Proposition 5.8 Let g lie in Dp ∩Kp

+ (resp. Dp ∩Kp
−) for some p ∈ N, let a ≥ 0,

and let h : R+ → R be defined by the equation h(x) = g(x + a) for x > 0. Then h

lies in Dp ∩Kp
+ (resp. Dp ∩Kp

−) and

�h(x) = �x g(x + a) = �g(x + a)−�g(a + 1).

Proof Define a function f : R+ → R by the equation

f (x) = �g(x + a)−�g(a + 1)



5.1 The Map � and Its Basic Properties 49

for x > 0. By Corollary 4.21, f is a solution to the equation �f = h that lies in
Kp
− (resp. Kp

+) and satisfies f (1) = 0. Hence, �h = f , as required. ��
Example 5.9 (See Webster [98]) For any a > 0, consider the function ga : R+ → R

defined by

ga(x) = ln
x

x + a
= ln x − ln(x + a) for x > 0.

Then ga lies in D0 ∩ K0+ (and also in D1 ∩ K1−) and Propositions 5.7 and 5.8 show
that

�ga(x) = ln
�(x)�(a + 1)

�(x + a)
.

Also, since ga is concave on R+, we have that �ga is convex on R+. As Webster
[98, p. 615] observed, this is “a not completely trivial result, but one immediate from
the approach adopted here.” ♦
Example 5.10 (A Rational Function) The function

g(x) = x4 + 1

x3 + x
= x + 1

x
− 2x

x2 + 1

clearly lies in D2 ∩K2. Using Proposition 5.7, we then have

�g(x) = (
x
2

)+Hx−1 − 2�h(x),

where the function

h(x) = x

x2 + 1
= �

(
1

x + i

)

lies in D0 ∩K0. Now, recalling that �x
1
x
= Hx−1, it is not difficult to see that

�h(x) = c +�Hx+i−1

for some c ∈ R, where the function z �→ Hz on C \ (−N∗) satisfies the identity

Hz =
∞∑

k=1

(
1

k
− 1

z+ k

)
.
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Indeed, the function f : R+ → R defined by the equation

f (x) = �Hx+i−1 =
∞∑

k=1

(
1

k
− x + k − 1

(x + k − 1)2 + 1

)
, x > 0,

lies in K0 and satisfies �f = h. ♦
We also have the following surprising proposition, which says that if a function

g lies in Dp ∩Kp
− ∩Kq for some integers 0 ≤ p ≤ q , then it actually lies in

Kp
− ∩Kp+1

+ ∩Kp+2
− ∩Kp+3

+ ∩ · · · ∩Kq
± ,

where the subscripts alternate in sign. The same property holds for �g.

Proposition 5.11 Let g lie in Dp ∩ Kp
− ∩ Kp+1 for some p ∈ N. Then it lies in

Kp+1
+ and �g lies in Dp+1 ∩Kp

+ ∩Kp+1
− .

Proof Suppose that g lies in Kp+1
− . Since it also lies in Dp+1 ∩ Kp+1

− , by
Corollary 4.19 it must lie in Kp

+. By Corollary 4.6, g is eventually a polynomial
of degree less than or equal to p. But then, using Corollary 4.6 again, g lies in
Kp+1
+ . The result about �g is then trivial. ��

Example 5.12 Let us apply Proposition 5.11 to the function g(x) = ln x with p =
1. We then obtain that

g lies in D1 ∩K1− ∩K2+ ∩K3− ∩K4+ ∩ · · ·
while �g lies in D2 ∩K1+ ∩K2− ∩K3+ ∩K4− ∩ · · · ,

where �g(x) = ln�(x). Moreover, it is easy to see that g is 1-concave on R+,
2-convex on R+, and so on, and similarly for �g. ♦
Example 5.13 Applying Proposition 5.11 to the function g(x) = − 1

x
ln x with p =

0, we obtain that

g lies in D0 ∩K0+ ∩K1− ∩K2+ ∩K3− ∩ · · ·
while �g lies in D1 ∩K0− ∩K1+ ∩K2− ∩K3+ ∩ · · · ,

where �g(x) = γ1(x)− γ1 is a generalized Stieltjes constant (see Sect. 10.7). Now,
for every q ∈ N, we have g(q+1)(x) = 0 if and only if x = eHq+1 . Hence we can
easily see that g is q-convex or q-concave on the unbounded interval (eHq+1,∞). ♦
Remark 5.14 Although the asymptotic degree of a function (see Definition 5.1)
defines an important and useful concept, it is not always easy to compute. For



5.2 Multiple log�-Type Functions 51

instance, we can show after some calculus that, for any p ∈ N, the function
hp : R+ → R defined by the equation (see Sect. 11.3)

hp(x) = xp

ln(x + 1)
for x > 0

has the asymptotic degree deghp = p−1. Thus, it would be useful to have a simple
formula to compute easily the asymptotic degree of any function. On this matter, let
us consider the limiting value (when it exists)

ef = lim
x→∞ x

�f (x)

f (x)
,

which is inspired from the concept of the elasticity of a function f (see, e.g.,
Nievergelt [81]). Computing this limit for the function hp above for instance, we
easily obtain ehp = p. Interestingly, we can observe empirically that many functions
f lying in K0 satisfy the double inequality

�ef �+ ≤ 1+ degf ≤ �1+ ef �+.

It would then be useful to find necessary and sufficient conditions on the function f

for this double inequality to hold. ♦

5.2 Multiple log �-Type Functions

Barnes [14–16] introduced a sequence of functions �1, �2, . . ., called multiple
gamma functions, that generalize the Euler gamma function. The restrictions of
these functions to R+ are characterized by the equations

�p+1(x + 1) = �p+1(x)

�p(x)
,

�1(x) = �(x), �p(1) = 1, for x > 0 and p ∈ N
∗,

together with the convexity condition

(−1)p+1Dp+1 ln�p(x) ≥ 0, x > 0.

For more recent references, see, e.g., Adamchik [1, 2] and Srivastava and Choi [93].
Thus defined, this sequence of functions satisfies the conditions

ln�p+1(x) = −� ln�p(x) and deg(ln ◦�p) = p.
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Moreover, it can be naturally extended to the case when p = 0 by setting �0(x) =
1/x.

Now, these observations motivate the following definition.

Definition 5.15 Let p ∈ N.

• A �p-type function (resp. a log�p-type function) is a function of the form
exp ◦�g (resp. �g), where g lies in Dp ∩Kp with p = 1+ degg.

• A multiple �-type function (resp. multiple log�-type function) is a �p-type
function (resp. log�p-type function) for some p ∈ N.

When p ≥ 1, exp ◦�g reduces to the function �p when exp ◦g is precisely the
function 1/�p−1, which simply shows that the function �p restricted to R+ is itself
a �p-type function.

We also introduce the following notation. We let �p (resp. Log�p) denote the
set of �p-type functions (resp. log�p-type functions). Thus, by definition the set
ran(�) can be decomposed using the following disjoint union

ran(�) =
⋃
p≥0

ran(�|Dp∩Kp ) =
⋃
p≥0

Log�p .

Thus defined, the set of log�p-type functions can be characterized as follows.

Proposition 5.16 For any function f : R+ → R and any p ∈ N, the following
assertions are equivalent.

(i) f ∈ Log�p .
(ii) f (1) = 0, f ∈ Kp, �f ∈ Dp ∩Kp, and deg�f = p − 1.

(iii) f = ��f , �f ∈ Dp ∩Kp, and deg�f = p − 1.
(iv) f ∈ ran(�) and deg�f = p − 1.
(v) If p ≥ 1, then f ∈ ran(�) and degf = p . If p = 0, then f ∈ ran(�) and

degf ∈ {−1, 0}.
Proof The equivalence (i) ⇔ (ii) ⇔ (iii) is immediate by definition of �. The
implications (iii) ⇒ (iv) ⇒ (ii) are straightforward. Finally, the equivalence (iv)
⇔ (v) is trivial. ��

From Proposition 5.16 we immediately derive the following characterization of
the set ran(�) of all multiple log�-type functions.

Corollary 5.17 A function f : R+ → R lies in ran(�) if and only if there exists
p ∈ N such that f (1) = 0, f ∈ Kp, and �f ∈ Dp ∩Kp .
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5.3 Integration of Multiple log �-Type Functions

The uniform convergence of the sequence n �→ f
p
n [g] (cf. Theorem 3.6) shows that

the function �g is continuous whenever so is g. More generally, we also have the
following result.

Proposition 5.18 Let g lie in C0 ∩ Dp ∩ Kp for some p ∈ N. The following
assertions hold.

(a) �g lies in C0 ∩Dp+1 ∩Kp.
(b) �g is integrable at 0 if and only if so is g.
(c) Let n ∈ N

∗ be so that g is p-convex or p-concave on [n,∞) and let 0 ≤ a ≤ x.
The following inequality holds

∣∣∣∣
∫ x

a

(f
p
n [g](t)−�g(t)) dt

∣∣∣∣ ≤
∫ x

a

t�
∣∣∣(t−1p

)∣∣∣ dt
∣∣�pg(n)

∣∣ .

If p ≥ 1, we also have the following tighter inequality

∣∣∣∣
∫ x

a

(f
p
n [g](t)−�g(t)) dt

∣∣∣∣ ≤
∫ x

a

∣∣∣(t−1p

)∣∣∣
∣∣∣�p−1g(n+ t)−�p−1g(n)

∣∣∣ dt.

Moreover, the following assertions hold.

(c1) The sequence

n �→
∫ x

a

(
f

p
n [g](t)−�g(t)

)
dt

converges to zero.
(c2) The sequence

n �→
∫ x

a

(f
p
n [g](t)+ g(t)) dt

converges to

∫ x

a

(�g(t)+ g(t)) dt =
∫ x

a

�g(t + 1) dt.

(c3) For any m ∈ N
∗, the sequence

n �→
∫ x

a

(f
p
n [g](t)− f

p
m [g](t)) dt
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converges to

∫ x

a

(�g(t)− f
p
m [g](t)) dt.

Proof Assertion (a) follows from Proposition 5.6 and the uniform convergence of
the sequence n �→ f

p
n [g]. Assertion (b) follows from assertion (a) and the identity

�g(x + 1) − �g(x) = g(x). Now, for any n ∈ N
∗, since ρ

p+1
n [�g](0) = 0 by

(1.7), the function ρ
p+1
n [�g] is clearly integrable on (0, x) and hence on (a, x).

Using (5.4), it follows that the function f
p
n [g]−�g is also integrable on (a, x). The

inequalities of assertion (c) then follows from Theorem 3.6(b); and hence assertion
(c1) also holds. Assertion (c2) follows from assertion (c1) and the identity �g(x +
1)− �g(x) = g(x). Finally, using (3.8) we see that the function f

p
m [g] − f

p
n [g] is

integrable on (a, x) and hence assertion (c3) follows from assertion (c1). ��
Remark 5.19 Assertion (c) of Proposition 5.18 has been obtained by integrating the
function ρ

p+1
n [�g] on (a, x). The first inequality in assertion (c) then clearly shows

that the sequences of functions defined in assertions (c1)–(c3) converge uniformly
on any bounded subset of R+. Now, we also observe that the integral

∫ x

a

ρ
p+1
n [�g](t) dt

itself can be integrated on (a, x), and we can repeat this process as often as we wish.
After n integrations, we obtain

1

(n− 1)!
∫ x

a

(x − t)n−1 ρ
p+1
n [�g](t) dt,

and, proceeding as in Proposition 5.18, it is then clear that the following inequality
holds
∣∣∣∣
∫ x

a

(x − t)n−1 (f
p
n [g](t)−�g(t)) dt

∣∣∣∣ ≤
∫ x

a

(x−t)n−1 t�
∣∣∣(t−1p

)∣∣∣ dt
∣∣�pg(n)

∣∣ .

In particular, this inequality shows that the left-hand integral converges uniformly
on any bounded subset of R+ to zero. ♦

Let us end this section with the following important remark. In Proposition 5.18
we have assumed the continuity of function g to ensure that the integrals of
both functions g and �g be defined. Of course, we could somewhat generalize
our result by relaxing this continuity assumption into weaker properties such as
local integrability of both g and �g. However, for the sake of simplicity, in this
work we will always assume the continuity of any function whenever we need to
integrate it on a compact interval (see also Remark 9.1). In this case, continuity
can be regarded simply as a handy assumption to keep the results simple. We
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then encourage the interested reader to generalize those results by searching for
the weakest assumptions. This may sometimes lead to challenging but stimulating
problems.

5.4 The Quest for a Characterization of dom(�)

Recall that the map � is defined on the set

dom(�) =
⋃
p≥0

(Dp ∩Kp).

In this respect, it would be useful to have a very simple test to check whether a given
function g : R+ → R lies in this set. By Propositions 4.2 and 4.7, the condition that
g lies in D∞

N
∩K0 is clearly necessary. In the next proposition we show that, if g is

not eventually identically zero, then it must also satisfy the following property

lim sup
n→N∞

g(n+ 1)

g(n)
≤ 1. (5.5)

We first recall the following discrete version of L’Hospital’s rule, also called Stolz-
Cesàro theorem. For a recent reference see, e.g., Ash et al. [12].

Lemma 5.20 (Stolz-Cesàro Theorem) Let n �→ an and n �→ bn be two real
sequences. If the second sequence is strictly monotone and unbounded, then

lim inf
n→∞

an+1 − an

bn+1 − bn

≤ lim inf
n→∞

an

bn

≤ lim sup
n→∞

an

bn

≤ lim sup
n→∞

an+1 − an

bn+1 − bn

.

In particular, if

lim
n→∞

an+1 − an

bn+1 − bn

= �

for some � ∈ R, then

lim
n→∞

an

bn

= �.

Proposition 5.21 If g lies in dom(�) and is not eventually identically zero, then
condition (5.5) holds.

Proof Assume that g lies in Dp ∩ Kp for some p ∈ N. Of course we can assume
that p = 1 + degg. We can also assume that g is not eventually a polynomial; for
otherwise the condition (5.5) clearly holds. If p = 0, then the function x �→ |g(x)|
eventually decreases to zero and hence condition (5.5) holds. Now suppose that
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p ≥ 1. Then the function �pg lies in D0 ∩K0 and there are two exclusive cases to
consider.

(a) Suppose that the eventually monotone sequence n �→ �p−1g(n) is unbounded.
This sequence is actually eventually strictly monotone. Indeed, otherwise the
function �pg ∈ K0 would vanish in any unbounded interval of R+, and hence
would eventually be identically zero. Equivalently, g would eventually be a
polynomial of degree less than or equal to p − 1, a contradiction. Using the
Stolz-Cesàro theorem (see Lemma 5.20) and the fact that condition (5.5) holds
for �pg, we then obtain

lim sup
n→N∞

�p−1g(n+ 1)

�p−1g(n)
≤ lim sup

n→N∞
�pg(n+ 1)

�pg(n)
≤ 1.

Iterating this process, we see that condition (5.5) holds for g.
(b) Suppose that the sequence n �→ �p−1g(n) has a finite limit (which is

necessarily nonzero by minimality of p). If p = 1, then condition (5.5) holds
trivially. If p ≥ 2, then the eventually monotone sequence n �→ �p−2g(n) is
unbounded and we can show as in the previous case that it is actually eventually
strictly monotone. Using the Stolz-Cesàro theorem, we then obtain

lim sup
n→N∞

�p−2g(n + 1)

�p−2g(n)
≤ lim sup

n→N∞
�p−1g(n+ 1)

�p−1g(n)
= 1.

Iterating this process, we see that condition (5.5) holds.

This completes the proof. ��
Remark 5.22 We observe that the left side of (5.5) is not always a limit. For
instance, the function g : R+ → R defined by the equation

g(x) = 1

2x

(
1+ 1

3
sin x

)
for x > 0

lies in D0 ∩K0 (see Remark 4.13) but the function g(x + 1)/g(x) is a nonconstant
periodic function. The first example in Remark 6.21 also illustrates this behavior.

On the other hand, a function g ∈ K0 that satisfies condition (5.5) need not lie in
D∞

N
. For instance, for any q ∈ N the function

gq(x) = xq+1 + sin x

lies in Kq \Kq+1, and hence also in K0, and satisfies

lim
n→N∞

gq(n+ 1)

gq(n)
= 1.

However, it does not lie in D∞
N
. ♦
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We observe that condition (5.5) is very easy to check for many functions g lying
in K0. Thus, this condition provides a simple and useful test. In particular, when the
inequality in (5.5) is strict, the sequence n �→ g(n) is summable by the ratio test,
and hence g lies in D0 ∩K0. On the other hand, when the inequality is an equality,
it is not known whether this condition, together with the property that g lies in K0,
are also sufficient for g to lie in dom(�).

Now, it is easy to see that a function g : R+ → R lies in D∞
N

if and only if
there exists p ∈ N for which the sequence n �→ �pg(n) converges. In particular,
if we assume that g lies in K∞, then g does not lie in D∞

N
(and hence it does not

lie in dom(�)) if and only if for every p ∈ N the sequence n �→ �pg(n) tends to
infinity. On the other hand, we can observe empirically that condition (5.5) fails to
hold for many functions g lying in K∞ \ D∞

N
. Examples of such functions include

g(x) = 2x and g(x) = �(x). It seems then reasonable to think that this observation
follows from a general rule. We then formulate the following conjecture.

Conjecture 5.23 If a function g : R+ → R liesK∞ and is not eventually identically
zero, then it also lies in D∞

N
if and only if condition (5.5) holds.
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Chapter 6
Asymptotic Analysis

The asymptotic behavior of the gamma function for large values of its argument
can be summarized as follows: for any a ≥ 0, we have the following asymptotic
equivalences (see Titchmarsh [96, Section 1.87])

�(x + a) ∼ xa �(x) as x →∞ , (6.1)

�(x) ∼ √
2π e−xxx− 1

2 as x →∞ , (6.2)

�(x + 1) ∼ √
2πx e−xxx as x →∞ , (6.3)

where both formulas (6.2) and (6.3) are known by the name Stirling’s formula.
In this chapter, we investigate the asymptotic behaviors of the multiple log�-type

functions and provide analogues of the formulas above.
More specifically, for these functions we establish analogues of Wendel’s

inequality, Stirling’s formula, and Burnside’s formula for the gamma function. We
also introduce the concept of the asymptotic constant, an analogue of Stirling’s
constant, and an analogue of Binet’s function related to the log-gamma function,
and we show how all these generalized concepts can be used in the asymptotic
analysis of multiple log�-type functions. We also establish a general asymptotic
equivalence for these functions.

We revisit Gregory’s summation formula, with an integral form of the remainder,
and show how it can be derived very easily in this context. Using this formula,
we then introduce a generalization of Euler’s constant and provide a geometric
interpretation.
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6.1 Generalized Wendel’s Inequality

Recall that if a function g lies in Dp ∩ Kp for some p ∈ N, then the function �g

lies in Rp+1
R

by Proposition 5.6. At first glance, this observation may seem rather
unimportant. However, its explicit statement tells us that for any a ≥ 0 we have

ρ
p+1
x [�g](a)→ 0 as x →∞,

or equivalently,

�g(x + a)−�g(x)−
p∑

j=1

(
a
j

)
�j−1g(x) → 0 as x →∞ . (6.4)

This is actually a nice convergence result that reveals the asymptotic behavior of the
difference �g(x + a)− �g(x) for large values of x. The special case when p = 1
was established by Webster [98, Theorem 6.1].

When g(x) = ln x and p = 1, this result reduces to

ln�(x + a)− ln�(x)− a ln x → 0 as x →∞ ,

which is precisely the additive version of the asymptotic equivalence given in (6.1).
We thus observe that (6.4) immediately provides an analogue of the asymptotic
equivalence (6.1) for all the multiple log�-type functions.

Now, we observe that formula (6.1) was also established by Wendel [99], who
first provided a short and elegant proof of the following double inequality

(
1+ a

x

)a−1 ≤ �(x + a)

�(x) xa
≤ 1 , x > 0 , 0 ≤ a ≤ 1 , (6.5)

or equivalently, in the additive notation,

(a − 1) ln
(
1+ a

x

)
≤ ρ2

x [ln ◦�](a) ≤ 0 , x > 0 , 0 ≤ a ≤ 1 , (6.6)

where

ρ2
x [ln ◦�](a) = ln�(x + a)− ln�(x)− a ln x. (6.7)

We can readily see that this double inequality is actually a simple application
of Lemma 2.7 to the log-gamma function with p = 1. Its generalization to all
the multiple log�-type functions is then straightforward and we present it in the
following theorem. We call it the generalized Wendel inequality.
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Theorem 6.1 (Generalized Wendel’s Inequality) Let g lie in Dp ∩ Kp for some
p ∈ N and let ± stand for 1 or −1 according to whether g lies in Kp

+ or Kp
− . Let

also x > 0 be so that g is p-convex or p-concave on [x,∞) and let a ≥ 0. Then we
have

0 ≤ ± (−1) εp+1(a) ρ
p+1
x [�g](a) ≤ ±(−1)

∣∣∣(a−1p

)∣∣∣ (�p�g(x + a)−�p�g(x)
)

≤ ±(−1) a�
∣∣∣(a−1p

)∣∣∣�pg(x),

with equalities if a ∈ {0, 1, . . . , p}. In particular, ρ
p+1
x [�g](a) → 0 as x → ∞.

If p ≥ 1, we also have

0 ≤ ± (−1) εp(a) ρ
p
x [g](a) ≤ ±(−1)

∣∣∣(a−1p−1
)∣∣∣
(
�p−1g(x + a)−�p−1g(x)

)

≤ ±(−1) a�
∣∣∣(a−1p−1

)∣∣∣�pg(x),

with equalities if a ∈ {0, 1, . . . , p − 1}. In particular, ρ
p
x [g](a)→ 0 as x →∞.

Proof Negating g if necessary, we can assume that it is p-convex on [x,∞).
By the existence Theorem 3.6, the function �g is then p-concave on [x,∞). By
Lemma 2.5 and Proposition 4.11, the function�pg is negative and increases to zero
on [x,∞). Thus, for any a ≥ 0 we have

(−1)
a�−1∑
j=0

�pg(x + j) ≤ (−1) a��pg(x).

We then derive the first inequalities by applying Lemma 2.7 to f = �g. Suppose
now that p ≥ 1. By Corollary 4.19, we have that g is (p − 1)-concave on [x,∞).
We then derive the remaining inequalities by applying Lemma 2.7 to f = g. ��

A symmetrized version of the generalized Wendel inequality can be easily
obtained simply by taking the absolute value of each of its sides. This provides a
coarsened, but simplified form of the generalized Wendel inequality. For instance,
when g(x) = ln x and p = 1 we then obtain the following inequality

∣∣ ln�(x + a)− ln�(x)− a ln x
∣∣ ≤ |a − 1| ln

(
1+ a

x

)
, x > 0 , a ≥ 0 ,

(6.8)

that is, in the multiplicative notation,

(
1+ a

x

)−|a−1| ≤ �(x + a)

�(x) xa
≤
(
1+ a

x

)|a−1|
, x > 0 , a ≥ 0 . (6.9)
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We then have the following immediate corollary, which provides a symmetrized
version of the generalized Wendel inequality.

Corollary 6.2 Let g lie in Dp ∩Kp for some p ∈ N. Let also x > 0 be so that g is
p-convex or p-concave on [x,∞) and let a ≥ 0. Then we have

∣∣∣ρp+1
x [�g](a)

∣∣∣ ≤
∣∣∣(a−1p

)∣∣∣ ∣∣�p�g(x + a)−�p�g(x)
∣∣ ≤ a�

∣∣∣(a−1p

)∣∣∣ |�pg(x)|,

with equalities if a ∈ {0, 1, . . . , p}. In particular, ρ
p+1
x [�g](a) → 0 as x → ∞.

If p ≥ 1, we also have

∣∣ρp
x [g](a)

∣∣ ≤
∣∣∣(a−1p−1

)∣∣∣
∣∣∣�p−1g(x + a)−�p−1g(x)

∣∣∣ ≤ a�
∣∣∣(a−1p−1

)∣∣∣ |�pg(x)|,

with equalities if a ∈ {0, 1, . . . , p − 1}. In particular, ρ
p
x [g](a)→ 0 as x →∞.

Example 6.3 Applying Theorem 6.1 and Corollary 6.2 to the function g(x) = ln x,
for which we have p = 1 + degg = 1 and �g(x) = ln�(x), we immediately
retrieve the inequalities (6.5)–(6.9) and hence also the asymptotic equivalence (6.1).
Further inequalities can actually be obtained by considering higher values of p. For
instance, since g also lies in D2 ∩ K2, we can set p = 2 in Corollary 6.2 and we
then obtain the inequalities

(
1+ 1

x

)(a
2) (

1+ a

x

)−∣∣∣(a−1
2 )
∣∣∣ (

1+ a

x + 1

)∣∣∣(a−1
2 )
∣∣∣
≤ �(x + a)

�(x) xa

≤
(
1+ 1

x

)(a
2) (

1+ a

x

)∣∣∣(a−1
2 )
∣∣∣ (

1+ a

x + 1

)−∣∣∣(a−1
2 )
∣∣∣
.

Thus, we can see that the central function in these inequalities can always be
“sandwiched” by finite products of powers of rational functions. For further
inequalities involving this central function, see, e.g., Srivastava and Choi [93, pp.
106–107]. ♦
Discrete Version of the Generalized Wendel Inequality The restrictions to the
natural integers of the generalized Wendel inequality and its symmetrized form are
obtained by setting x = n ∈ N

∗ in the inequalities of Theorem6.1 and Corollary 6.2.
In view of identity (5.4), the symmetrized forms then reduce to those of the existence
Theorem 3.6.

For instance, when g(x) = ln x and p = 1, the symmetrized version of
generalized Wendel’s inequality is given in (6.8) while its discrete version can take
the form

| ln�(x)− f 1
n [ln](x)| ≤ |x − 1| ln

(
1+ x

n

)
, x > 0, n ∈ N

∗,
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where

f 1
n [ln](x) =

n−1∑
k=1

ln k −
n−1∑
k=0

ln(x + k)+ x ln n.

This latter inequality clearly generalizes Gauss’ limit (1.6), which simply expresses
that

ln�(x) = lim
n→∞ f 1

n [ln](x), x > 0.

6.2 The Asymptotic Constant

We now introduce a new important concept that will play a key role in our theory,
namely the asymptotic constant. This concept will actually be used intensively
throughout the rest of this book.

Definition 6.4 (Asymptotic Constant) The asymptotic constant associated with a
function g ∈ C0 ∩ dom(�) is the number

σ [g] =
∫ 1

0
�g(t + 1) dt =

∫ 1

0
(�g(t)+ g(t)) dt . (6.10)

Using Definition 6.4, we can readily see that the following identity holds for any
function g lying in C0 ∩ dom(�)

∫ x+1

x

�g(t) dt = σ [g] +
∫ x

1
g(t) dt, x > 0. (6.11)

Indeed, both sides are functions of x that have the same derivative and the same
value at x = 1.

Example 6.5 (Raabe’s Formula) Taking g(x) = ln x in (6.10), we obtain

σ [g] =
∫ 1

0
ln�(t + 1) dt = − 1+ 1

2
ln(2π) .

Combining this result with (6.11), we obtain the following more general identity

∫ x+1

x

ln�(t) dt = 1

2
ln(2π)+ x ln x − x , x > 0.
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This identity is known by the name Raabe’s formula (see, e.g., Cohen and Friedman
[30]). We will discuss this formula and investigate its analogues in Sect. 8.5. ♦

Identity (6.11) will also play a very important role in this work. In this respect, it
is clear that the integral

∫ x+1

x

�g(t) dt, x > 0, (6.12)

cancels out the cyclic variations of any 1-periodic additive component of �g in the
sense that the function

x �→
∫ x+1

x

ω(t) dt

is constant for any 1-periodic functionω : R+ → R. Thus, the integral (6.12) can be
interpreted as the trend of the function �g, just as a moving average enables one to
decompose a time series into its trend and its seasonal variation. In this light, identity
(6.11) simply tells us that the trend of the function�g is precisely the antiderivative
of g (up to an additive constant).

Let us end this section with the following two technical results related to the
asymptotic constant.

Proposition 6.6 Let g1 and g2 lie in Dp ∩ Kp for some p ∈ N and let c1, c2 ∈ R.
If c1g1 + c2g2 lies in Dp ∩Kp, then

σ [c1g1 + c2g2] = c1σ [g1] + c2σ [g2].

Moreover, we have σ [1] = 1
2 , where 1 : R+ → R is the constant function 1(x) = 1.

Proof The first part of the statement is an immediate consequence of Proposi-
tion 5.7. Now, we clearly have �1 = x − 1 and hence σ [1] = 1

2 . ��
Proposition 6.7 Let g lie in C0∩dom(�), let a ≥ 0, and let h : R+ → R be defined
by the equation h(x) = g(x + a) for x > 0. Then

σ [h] = σ [g] +
∫ a+1

1
g(t) dt −�g(a + 1).

Proof Using Proposition 5.8 we obtain

σ [h] =
∫ 1

0
�g(t + a + 1) dt −�g(a + 1) =

∫ a+2

a+1
�g(t) dt −�g(a + 1).

We then get the result using (6.11). ��
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6.3 Generalized Binet’s Function

The Binet function related to the log-gamma function is the function J : R+ → R

defined by the equation (see, e.g., Cuyt et al. [31, p. 224])

J (x) = ln�(x)− 1

2
ln(2π)+ x −

(
x − 1

2

)
ln x for x > 0. (6.13)

Using identity (6.7) and Raabe’s formula (see Example 6.5), we can easily provide
the following integral form of Binet’s function

J (x) = −
∫ 1

0
ρ2

x [ln ◦�](t) dt, x > 0.

This latter identity motivates the following definition, in which we introduce a
generalization of Binet’s function. Recall first that, for any q ∈ N and any x > 0,
the function t �→ ρ

q
x [g](t) is continuous whenever so is g. In this case, since it also

vanishes at t = 0, it must be integrable on (0, 1).

Definition 6.8 (Generalized Binet’s Function) For any g ∈ C0 and any q ∈ N,
we define the function J q[g] : R+ → R by the equation

J q [g](x) = −
∫ 1

0
ρ

q
x [g](t) dt for x > 0. (6.14)

We say that the function J q [g] is the generalized Binet function associated with the
function g and the parameter q .

Taking g = ln ◦� and q = 1 + deg g = 2 in identity (6.14), we thus simply
retrieve the Binet function J (x) = J 2[ln ◦�](x) related to the log-gamma function,
as defined in (6.13).

In the following two propositions, we collect a few immediate properties of the
generalized Binet function. To this end, recall first that, for any n ∈ N, the nth
Gregory coefficient (also called the nth Bernoulli number of the second kind) is the
number Gn defined by the equation (see, e.g., [20–22, 72])

Gn =
∫ 1

0

(
t
n

)
dt for n ≥ 0.

The first few values of Gn are: 1, 1
2 ,− 1

12 ,
1
24 ,− 19

720 , . . .. These numbers are
decreasing in absolute value and satisfy the equations

∞∑
n=1

|Gn| = 1 and Gn = (−1)n−1|Gn| for n ≥ 1. (6.15)
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Proposition 6.9 Let g ∈ C0 and q ∈ N. Then, for any x > 0, we have

J q [g](x) =
q−1∑
j=0

Gj�
jg(x)−

∫ x+1

x

g(t) dt . (6.16)

In particular,

�Jq[g] = J q [�g] and J q+1[g] − J q [g] = Gq �qg. (6.17)

Proof Identity (6.16) follows immediately from (1.7). The other two identities are
trivial. ��
Proposition 6.10 Let g lie in C0 ∩ dom(�) and let q ∈ N. Then, for any x > 0 and
any n ∈ N

∗, we have

J q+1[�g](x) = �g(x)− σ [g] −
∫ x

1
g(t) dt +

q∑
j=1

Gj�
j−1g(x) , (6.18)

J q+1[�g](n) =
∫ 1

0

(
f

q
n [g](t)− �g(t)

)
dt . (6.19)

In particular,

�Jq+1[�g] = J q+1[g] , J q+1[c+�g] = J q+1[�g], c ∈ R,

and

σ [g] = − J 1[�g](1).

Proof Identity (6.18) follows from (6.11) and (6.16). Identity (6.19) follows from
(5.4) and (6.14). The remaining identities are trivial. ��

As we will see in the rest of this book, many subsequent definitions and results
can be expressed in terms of the generalized Binet function.

6.4 Generalized Stirling’s Formula

Interestingly, the Binet function J (x) = J 2[� ln](x) defined in (6.13) clearly
satisfies the following identity (compare with Artin [11, p. 24])

�(x) = √
2π xx− 1

2 e−x+J (x)
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and hence Stirling’s formula (6.2) simply states that J (x) → 0 as x → ∞. This
observation seems to reveal a way to find a counterpart of Stirling’s formula for
any continuous multiple log�-type function. In fact, we only need to show that the
function Jp+1[�g] vanishes at infinity whenever g lies in C0∩Dp∩Kp for some p ∈
N. In the next theorem and its corollary, we establish this fact by simply integrating
each side of the generalized Wendel inequality and its symmetrized version on a ∈
(0, 1).

Let us first define the sequence n �→ Gn by the equations

Gn = 1−
n∑

j=1
|Gj | =

∞∑
j=n+1

|Gj | for n ∈ N.

In view of (6.15), we see that the sequence n �→ Gn decreases to zero. Its first
values are: 1, 1

2 ,
5
12 ,

3
8 ,

251
720 , . . .. Moreover, from the straightforward identity (see,

e.g., Graham et al. [41, p. 165])

(−1)n(t−1
n

) = 1−
n∑

j=1
(−1)j−1( t

j

)
,

we easily derive

∫ 1

0

∣∣∣(t−1n

)∣∣∣ dt = (−1)n
∫ 1

0

(
t−1
n

)
dt =

∣∣∣∣
∫ 1

0

(
t−1
n

)
dt

∣∣∣∣ = Gn . (6.20)

We now have the following two results, which immediately follow from Theo-
rem 6.1, Corollary 6.2, and identities (6.20).

Theorem 6.11 Let g lie in C0 ∩ Dp ∩ Kp for some p ∈ N and let ± stand for 1
or −1 according to whether g lies in Kp

+ or Kp
− . Let also x > 0 be so that g is

p-convex or p-concave on [x,∞). Then we have

0 ≤ ± (−1)p J p+1[�g](x) ≤ ± (−1)p+1
∫ 1

0

(
t−1
p

) (
�p�g(x + t)

−�p�g(x)
)
dt

≤ ± (−1) Gp �pg(x).

In particular, Jp+1[�g](x)→ 0 as x →∞. If p ≥ 1, we also have

0 ≤ ± (−1)p+1 Jp[g](x) ≤ ± (−1)p
∫ 1

0

(
t−1
p−1
) (

�p−1g(x + t)−�p−1g(x)
)

dt

≤ ± (−1) Gp−1 �pg(x).

In particular, Jp[g](x)→ 0 as x →∞.
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Corollary 6.12 Let g lie in C0 ∩ Dp ∩ Kp for some p ∈ N. Let also x > 0 be so
that g is p-convex or p-concave on [x,∞). Then we have

∣∣∣Jp+1[�g](x)

∣∣∣ ≤
∣∣∣∣
∫ 1

0

(
t−1
p

) (
�p�g(x + t)−�p�g(x)

)
dt

∣∣∣∣ ≤ Gp |�pg(x)|.

In particular, Jp+1[�g](x)→ 0 as x →∞. If p ≥ 1, we also have

∣∣Jp[g](x)
∣∣ ≤

∣∣∣∣
∫ 1

0

(
t−1
p−1
) (

�p−1g(x + t)−�p−1g(x)
)

dt

∣∣∣∣ ≤ Gp−1 |�pg(x)|.

In particular, Jp[g](x)→ 0 as x →∞.

Both Theorem 6.11 and Corollary 6.12 state that Jp+1[�g] vanishes at infinity
whenever g lies in C0 ∩ Dp ∩ Kp for some p ∈ N. This result is precisely the
analogue of Stirling’s formula for all the continuous multiple log�-type functions.
As it is one of the central results of our theory, we state it explicitly in the following
theorem. We call it the generalized Stirling formula. We also include the property
that Jp[g] vanishes at infinity.
Theorem 6.13 (Generalized Stirling’s Formula) Let g lie in C0 ∩ Dp ∩ Kp for
some p ∈ N. Then both functions Jp+1[�g] and Jp[g] vanish at infinity. More
precisely, we have

�g(x)−
∫ x

1
g(t) dt +

p∑
j=1

Gj�
j−1g(x) → σ [g] as x →∞ (6.21)

and

∫ x+1

x

g(t) dt −
p−1∑
j=0

Gj�
jg(x) → 0 as x →∞ . (6.22)

Proof By Theorem 6.11, the functions Jp+1[�g] and Jp[g] vanish at infinity when
p ≥ 0 and p ≥ 1, respectively. The function Jp[g] also vanishes at infinity when
p = 0; indeed, in this case |g(x)| eventually decreases to zero and we have

|J 0[g](x)| =
∣∣∣∣
∫ 1

0
g(x + t) dt

∣∣∣∣ ≤ |g(x)| → 0 as x →∞.

Formulas (6.21) and (6.22) then immediately follow from (6.16) and (6.18). ��
The generalized Stirling formula (6.21) is actually the highlight of this chapter.

It enables one to investigate the asymptotic behavior of the function �g for large
values of its argument. It also justifies the name “asymptotic constant” given to the
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quantity σ [g] introduced in Definition 6.4. Moreover, combining (6.4) with (6.21),
we immediately derive the asymptotic behavior of �g(x + a) for any a ≥ 0. We
also observe that alternative formulations of (6.21) in the case when p = 1 were
established by Krull [54, p. 368] and later by Webster [98, Theorem 6.3].

In the special case when g lies inD−1 ∩K0, the generalized Stirling formula and
the asymptotic constant take very special forms. We present them in the following
proposition.

Proposition 6.14 If g lies in D−1 ∩K0, then we have

�g(x) →
∞∑

k=1
g(k) as x →∞. (6.23)

If, in addition, we have g ∈ C0, then g is integrable at infinity and

σ [g] =
∞∑

k=1
g(k)−

∫ ∞

1
g(t) dt.

Proof By definition of the map �, we have

�g(x) =
∞∑

k=1
g(k)−

∞∑
k=0

g(x + k), x > 0.

where the second series tends to zero as x → ∞ by Theorem 3.13. The claimed
expression for σ [g] then immediately follows from formula (6.21). ��
Example 6.15 Let us apply our results to the concave function g(x) = ln x with
p = 1. Using (6.16) and (6.18), we first obtain

J 2[ln ◦�](x) = J (x) = ln�(x)− 1

2
ln(2π)+ x −

(
x − 1

2

)
ln x ,

J 1[ln](x) = 1− (x + 1) ln

(
1+ 1

x

)
.

Now, Theorem 6.11 provides the following inequalities for any x > 0

0 ≤ J (x) ≤ 1

2
(x + 1)2 ln

(
1+ 1

x

)
− x

2
− 3

4
≤ 1

2
ln

(
1+ 1

x

)
, (6.24)

0 ≤ − 1+ (x + 1) ln

(
1+ 1

x

)
≤ ln

(
1+ 1

x

)
.
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That is, in the multiplicative notation,

1 ≤ �(x)√
2π e−x xx− 1

2

≤ e−
x
2− 3

4

(
1+ 1

x

) 1
2 (x+1)2

≤
(
1+ 1

x

) 1
2

, (6.25)

(
1+ 1

x

)x

≤ e ≤
(
1+ 1

x

)x+1
.

Thus, we retrieve Stirling’s formula (6.2) and (6.3), together with the well-known
asymptotic equivalence (compare with Artin [11, p. 20])

(
1+ 1

x

)x

∼ e as x →∞.

It is actually quite remarkable that the first two inequalities in (6.24) and (6.25)
are precisely what we get when we “integrate” the additive version of the Wendel
inequality (6.5) on the unit interval (0, 1).

Now, the coarsened inequality

∣∣∣Jp+1[�g](x)

∣∣∣ ≤ Gp |�pg(x)|

given in Corollary 6.12 takes the following simple form (in the multiplicative
notation)

(
1+ 1

x

)− 1
2 ≤ �(x)√

2π e−x xx− 1
2

≤
(
1+ 1

x

) 1
2

.

Note that tighter inequalities can also be obtained by considering higher values of p

in Corollary 6.12. For instance, taking p = 2 we obtain

(
1+ 1

x

)− 3
4
(
1+ 2

x

) 5
12 ≤ �(x)√

2π e−x xx− 1
2

≤
(
1+ 1

x

) 11
12
(
1+ 2

x

)− 5
12

.

Taking p = 3 we obtain

(
1+ 1

x

)− 23
24
(
1+ 2

x

) 13
12
(
1+ 3

x

)− 3
8 ≤ �(x)√

2π e−x xx− 1
2

≤
(
1+ 1

x

) 31
24
(
1+ 2

x

)− 7
6
(
1+ 3

x

) 3
8

.
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Thus, we see that the central function in these inequalities can always be bracketed
by finite products of radical functions. ♦

In the last part of Example 6.15, we have illustrated the possibility of obtaining
closer bounds for the generalized Binet function Jp+1[� ln](x) by considering in
Corollary 6.12 any value of p that is higher than 1+degg. Actually, it is not difficult
to see that this feature applies to every continuous multiple log�-type function. We
discuss this topic in Appendix D and show that the inequalities actually get tighter
and tighter as p increases.

Remark 6.16 We observe that Theorem 6.11 together with the generalized Stirling
formula (Theorem 6.13) have been immediately obtained by “integrating” the
generalized Wendel inequality (Theorem 6.1) on the unit interval. In turn, the
generalizedWendel inequality is a straight application of Lemma 2.7 to the function
f = �g. These remarkable facts show the considerable importance of Lemma 2.7
in this theory: it was first crucial to derive our uniqueness and existence results,
and now it provides very nice counterparts of Wendel’s inequality and Stirling’s
formula, with short and elegant proofs. We will use Lemma 2.7 again in Sect. 6.7
for an in-depth investigation of Gregory’s summation formula. ♦
Improvements of Stirling’s Formula The following estimate of the gamma
function is due to Gosper [40]

�(x) ∼ √
2π e−x xx− 1

2

(
1+ 1

6x

) 1
2

as x →∞,

and is more accurate than Stirling’s formula. On the basis of this alternative
approximation, Mortici [76] provided the following narrow inequalities

(
1+ α

2x

) 1
2

<
�(x)√

2π e−x xx− 1
2

<

(
1+ β

2x

) 1
2

, for x ≥ 2,

where α = 1
3 and β = (391/30)1/3− 2 ≈ 0.353. We actually observe that the quest

for finer and finer bounds and approximations for the gamma function has gained an
increasing interest during this last decade (see [26, 28, 29, 36, 65, 75–78, 100, 101]
and the references therein). Some of these investigations could be generalized to
various multiple �-type functions. New results along this line would be welcome.

Webster’s Double Inequality We have seen that Theorems 6.1 and 6.11 provide
very useful bounds for both quantities ρ

p+1
x [�g](a) and Jp+1[�g](x). It is actually

possible to provide tighter bounds for these quantities using again the p-convexity
or p-concavity properties of the function g. For instance, one can show that if g lies
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in D1 ∩K1 and if x > 0 and a > 0 are so that g is concave on [x + a,∞), then the
following double inequality hold

�a�∑
k=0

g(x + k)+ ({a} − 1) g(x + a)− a g(x) ≤ ρ2
x [�g](a)

≤
�a�∑
k=0

g(x + k)− g(x + a)+ {a} g(x + �a� + 1)− a g(x). (6.26)

This inequality was actually provided by Webster [98, Eq. (6.4)] to establish the
limit (6.4) in the case when p = 1.

Now, assuming that g is continuous, we can integrate every expression in the
inequalities above on a ∈ (0, 1), and we then obtain the following bounds for
J 2[�g](x)

0 ≤ −J 2[g](x) ≤ J 2[�g](x)

≤ −J 2[g](x)−
∫ 1

0
t g(x + t) dt + 1

2
g(x + 1). (6.27)

For instance, for g(x) = ln x, we obtain (in the multiplication notation)

1 ≤ e−1
(
1+ 1

x

)x+ 1
2 ≤ �(x)√

2π e−x xx− 1
2

≤ e−
x
2− 3

4

(
1+ 1

x

) 1
2 (x+1)2

,

(6.28)

which provides a better lower bound in the inequalities (6.25).
In Appendix E, we discuss this interesting issue and provide a generalization

to multiple log�-type functions of the Webster double inequality (6.26) and its
“integrated” version (6.27).

Generalized Stirling’s Constant The number
√
2π arising in Stirling’s formula

(6.2) and Example 6.15 is called Stirling’s constant (see, e.g., Finch [37]). For
certain multiple �-type functions, analogues of Stirling’s constant can be easily
defined as follows.

Definition 6.17 (Generalized Stirling’s Constant) For any function g ∈ C0 ∩
dom(�) that is integrable at 0, we define the number

σ [g] = σ [g] −
∫ 1

0
g(t) dt =

∫ 1

0
�g(t) dt.

We say that the number exp(σ [g]) is the generalized Stirling constant associated
with g.
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When g is integrable at 0, the generalized Stirling constant exists and hence the
generalized Stirling formula (6.21) can take the following form

�g(x)−
∫ x

0
g(t) dt +

p∑
j=1

Gj�
j−1g(x) → σ [g] as x →∞ .

It is important to note that, contrary to the generalized Stirling constant, the
asymptotic constant σ [g] exists for any function g lying in C0 ∩ dom(�), even
if it is not integrable at 0. For instance, for the function g(x) = 1

x
, we have that σ [g]

is the Euler constant γ (see Example 8.19) while σ [g] does not exist.
This shows that the asymptotic constant is the “good” constant to consider in

this new theory. It actually enables us to derive for multiple log�-type functions
analogues of several properties of the gamma function. For instance, we have seen
that it was very useful to derive the generalized Stirling formula. To give a second
example, we will see in Sect. 8.6 that it also enables us to derive analogues of Gauss’
multiplication formula for the gamma function.

6.5 Analogue of Burnside’s Formula

Let us recall Burnside’s formula, which states that

�(x) ∼ √
2π

(
x − 1

2

e

)x− 1
2

as x →∞. (6.29)

This formula actually provides a much better approximation of the gamma function
than Stirling’s formula. It was first established by Burnside [27] (see also Mortici
[75]) and then rediscovered by Spouge [91]. In this section, we provide an analogue
of Burnside’s formula for any continuous �p-type function when p = 0 and p = 1,
and we note that such an analogue no longer exists when p ≥ 2.

Let us first state the following corollary, which particularizes the generalized
Stirling formula when the function g lies in C0 ∩ D0 ∩ K0. This corollary actually
follows immediately from (6.11) and (6.21).

Corollary 6.18 Let g lie in C0 ∩D0 ∩K0. Then

�g(x)−
∫ x+1

x

�g(t) dt → 0 as x →∞ .

Equivalently,

�g(x)−
∫ x

1
g(t) dt → σ [g] as x →∞ .



74 6 Asymptotic Analysis

Corollary 6.18 tells us that, when g lies in C0 ∩ D0 ∩ K0, the function �g(x)

coincides asymptotically with its trend (i.e., the integral (6.12)) and, in a sense,
behaves asymptotically like the antiderivative of function g.

It is natural to think that a more accurate trend of �g can be obtained by
considering the centered version of the integral (6.12), namely

∫ x+ 1
2

x− 1
2

�g(t) dt = σ [g] +
∫ x− 1

2

1
g(t) dt, x > 1

2 .

On this matter, in the following proposition we provide a double inequality that
shows that �g(x) coincides asymptotically with this latter trend whenever g lies in
C0 ∩D0 ∩K0 or in C0 ∩D1 ∩K1. However, it is not difficult to see that in general
this result no longer holds when g lies in C0∩D2∩K2. The logarithm of the Barnes
G-function (see Sect. 10.5) could serve as an example here.

Proposition 6.19 Let p ∈ {0, 1}, g ∈ C0 ∩ Dp ∩ Kp , and x > 0 be so that g is
p-convex or p-concave on [x,∞). Then

∣∣∣∣�g

(
x + 1

2

)
−
∫ x+1

x

�g(t) dt

∣∣∣∣ ≤
∣∣∣Jp+1[�g](x)

∣∣∣ ≤ Gp |�pg(x)|.

In particular,

�g(x)−
∫ x+ 1

2

x− 1
2

�g(t) dt → 0 as x →∞ ,

or equivalently,

�g(x)−
∫ x− 1

2

1
g(t) dt → σ [g] as x →∞ .

Proof Using Corollary 6.12, we see that it is enough to prove the first inequality.
Let

h(x) = �g

(
x + 1

2

)
−
∫ x+1

x

�g(t) dt.

Consider first the case when p = 0 and suppose for instance that g lies inK0+; hence
�g is decreasing on [x,∞). If h(x) ≥ 0, then we clearly have

|h(x)| = h(x) ≤ �g(x)−
∫ x+1

x

�g(t) dt = J 1[�g](x).
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If h(x) ≤ 0, then we have

|h(x)| =
∫ x+1

x

�g(t) dt − �g

(
x + 1

2

)
≤
∫ x+ 1

2

x

�g(t) dt − 1

2
�g

(
x + 1

2

)

and it is geometrically clear that the latter quantity is less than J 1[�g](x).
Suppose now that p = 1 and for instance that g lies in K1+; hence �g is concave

on [x,∞). Applying the Hermite-Hadamard inequality to �g on the interval [x, x+
1], we obtain that h(x) ≥ 0. Applying the trapezoidal rule to �g on the intervals
[x, x + 1

2 ] and [x + 1
2 , x + 1], we obtain the following inequality

h(x) ≤
∫ x+1

x

�g(t) dt − 1

2
�g(x + 1)− 1

2
�g(x),

where the right-hand quantity is exactly−J 2[�g](x). This completes the proof. ��
Applying Proposition 6.19 to the function g(x) = ln x with p = 1, we retrieve

Burnside’s formula (6.29). Thus, Proposition 6.19 gives an analogue of Burnside’s
formula for any continuous�p-type functionwhen p ∈ {0, 1}. It also shows that this
new formula provides a better approximation than the generalized Stirling formula
whenever g lies in C0 ∩Dp ∩Kp with p ∈ {0, 1}.

6.6 A General Asymptotic Equivalence

The following result provides a sufficient condition for a continuous multiple log�-
type function to be asymptotically equivalent to its (possibly shifted) trend.

Proposition 6.20 Let g lie in C0 ∩ dom(�) and let a ≥ 0 and c ∈ R. When c+�g

vanishes at infinity, we also assume that

c +�g(n+ 1) ∼ c +�g(n) as n→N ∞. (6.30)

Then we have

c +�g(x + a) ∼ c +
∫ x+1

x

�g(t) dt as x →∞. (6.31)

If g does not lie in D−1
N

, then we also have

�g(x + a) ∼ c +
∫ x

1
g(t) dt as x →∞.
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Proof Let us first prove that (6.30) holds for any g lying in C0 ∩ dom(�), even
if c + �g does not vanish at infinity. Of course, this result clearly holds if g is
eventually a polynomial (since so is �g in this case). Thus, we will now assume
that g is not eventually a polynomial.

Suppose first that p = 1 + deg g = 0. If g lies in D−1
N

, then (6.30) follows
immediately from (6.23). If g lies in D0

N
\ D−1

N
, then it is not integrable at infinity

by the integral test for convergence. By the generalized Stirling formula (6.21), it
follows that the eventually monotone sequence n �→ �g(n) is unbounded. This
sequence is actually eventually strictly monotone; indeed, otherwise the function
��g = g ∈ K0 would vanish in any unbounded interval of R+, and hence would
eventually be identically zero, a contradiction. We then obtain

c +�g(n+ 1)

c +�g(n)
= 1+ g(n)

c +�g(n)
→ 1 as n→N ∞,

and hence (6.30) holds whenever p = 0.
Suppose now that p = 1 + degg ≥ 1. In this case, we have that �pg lies in

D0 ∩K0. By the uniqueness Theorem 3.1, we also have

�p�g = cp +��pg

for some cp ∈ R, and it is clear (by minimality of p) that this latter function cannot
vanish at infinity. Moreover,we can show as above that the sequence n �→ ��pg(n)

is eventually strictly monotone. In view of the first case, we then have

�p�g(n+ 1)

�p�g(n)
= cp +��pg(n+ 1)

cp +��pg(n)
→ 1 as n →N ∞.

Let us now show that the sequence

n �→ c +�p−1�g(n+ 1)

c +�p−1�g(n)

exists for large values of n and converges to 1. By minimality of p, the function
�p−1�g lies in D2

N
\ D1

N
and hence the sequence n �→ �p−1�g(n) is unbounded.

Moreover, we can show as above that this sequence is eventually strictly monotone.
Hence, the sequence above eventually exists and, using the Stolz-Cesàro theorem
(see Lemma 5.20), we have that

lim
n→∞

c +�p−1�g(n+ 1)

c +�p−1�g(n)
= lim

n→∞
�p�g(n+ 1)

�p�g(n)
= 1.

Iterating this process, we finally see that condition (6.30) holds for any p ∈ N.
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We can now easily see that

c + �g(x + a) ∼ c +�g(x) as x →∞. (6.32)

Indeed, this result clearly holds if both x and a are integers. For instance we have

c +�g(n+ 2) ∼ c + �g(n+ 1) ∼ c +�g(n) as n →N ∞.

Otherwise, assuming for instance that �g is eventually increasing and nonnegative,
for sufficiently large x we have

c +�g(�x + a�)
c +�g(x�) ≤ c +�g(x + a)

c +�g(x)
≤ c +�g(x + a�)

c +�g(�x�) ,

and (6.32) then follows by the squeeze theorem.
Finally, assuming again that �g is eventually increasing and nonnegative, for

sufficiently large x we have

1 = c +�g(x)

c +�g(x)
≤ c + ∫ x+1

x
�g(t) dt

c +�g(x)
≤ c + �g(x + 1)

c +�g(x)

and, using again the squeeze theorem, we immediately obtain the first claimed
asymptotic equivalence.

Now, if g does not lie in D−1
N

, then �g(x) tends to infinity as x → ∞. Using
(6.11), we then have

c + ∫ x

1 g(t) dt

�g(x + a)
= c − σ [g]

�g(x + a)
+
∫ x+1
x �g(t) dt

�g(x + a)
→ 1 as x →∞ ,

which completes the proof. ��
Remark 6.21 Let us show that the assumption on the function c + �g cannot be
ignored in Proposition 6.20. Consider the functions f : R+ → R and g : R+ → R

defined by the equations

f (x) = x − 1

2x

(
1+ 1

4
sin x

)
and g(x) = �f (x) for x > 0.

It is clear that f lies in D0
N
and that g lies in D−1

N
. Moreover, it is not difficult to see

that the inequalities

−2x+2f ′(x) ≥ x and 2x+4g′(x) ≥ x
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eventually hold, which shows that both f and g lie inK0. By the uniqueness theorem
it follows that f = �g. However, we can readily see that the sequence

n �→ �g(n+ 1)

�g(n)

does not converge, which shows that (6.30) does not hold when c = 0. It is then
possible to show that the equivalence (6.31) does not hold either.

Now, to see that the last asymptotic equivalence in Proposition 6.20 need not
hold if g lies in D−1

N
, take for instance

g(x) = 2

(x + 1)(x + 2)
and �g(x) = x − 1

x + 1
.

We then have

lim
x→∞

c + ∫ x

1 g(t) dt

�g(x + a)
= c + ln

9

4
.

♦

6.7 The Gregory Summation Formula Revisited

Let g ∈ C0, q ∈ N, and let 1 ≤ m ≤ n be integers. Integrating both sides of identity
(3.8) on x ∈ (0, 1), we immediately obtain the following identity

∫ n

m

g(t) dt =
n−1∑
k=m

g(k)+
q∑

j=1
Gj(�

j−1g(n)−�j−1g(m))+R
q
m,n[g] , (6.33)

where

R
q
m,n[g] =

∫ 1

0

n−1∑
k=m

ρ
q+1
k [g](t) dt =

∫ 1

0
(f

q
m[g](t)− f

q
n [g](t)) dt. (6.34)

Identity (6.33) is nothing other than Gregory’s summation formula (see, e.g.,
[17, 50, 73]) with an integral form of the remainder. Note that, just like identity
(2.10), Eq. (6.33) is a pure identity in the sense that it holds without any restriction
on the form of g(x), except that here we asked g to be continuous.

Combining (6.14) with (6.34) we immediately see that this identity can be simply
written in terms of the generalized Binet function as

n−1∑
k=m

J q+1[g](k)+ R
q
m,n[g] = 0 . (6.35)
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Equivalently, if g lies in C0 ∩ dom(�g), using (6.19) and (6.34) we see that this
identity can also take the form

J q+1[�g](n)− J q+1[�g](m)+ R
q
m,n[g] = 0 . (6.36)

The next lemma, which is yet another straightforward consequence of
Lemma 2.7, provides an upper bound for |Rq

m,n[g]| when g is q-convex or q-
concave on [m,∞). Under this latter assumption, we can then use Gregory’s
formula (6.33) as a quadrature method for the numerical computation of the integral
of g over the interval [m,n).

Lemma 6.22 Let g lie in C0 ∩ Kq for some q ∈ N and let m ∈ N
∗ be so that g is

q-convex or q-concave on [m,∞). Then, for any integer n ≥ m, we have

|Rq
m,n[g]| ≤ Gq |�qg(n)−�qg(m)|. (6.37)

Proof This result is an immediate consequence of Lemma 2.7. Indeed, we can write

|Rq
m,n[g]| =

∣∣∣∣∣
n−1∑
k=m

∫ 1

0
ρ

q+1
k [g](t) dt

∣∣∣∣∣ ≤ Gq

∣∣∣∣∣
n−1∑
k=m

�q+1g(k)

∣∣∣∣∣ ,

where the latter sum clearly telescopes to �qg(n)−�qg(m). ��
Example 6.23 Let us compute numerically the integral

I =
∫ 2π

π

ln x dx = 4.809854526737 . . .

using Gregory’s summation formula (6.33) and the upper bound (6.37) of its
remainder. Using an appropriate linear change of variable, we obtain

I =
∫ n

1
g(t) dt, where g(t) = π

n− 1
ln

(
π

n− 1
(t − 1)+ π

)
.

Taking n = 20 and q = 10 for instance, we obtain

I ≈
19∑

k=1
g(k)+

10∑
j=1

Gj(�
j−1g(20)−�j−1g(1)) = 4.809854526746 . . .

and (6.37) gives |R10
1,20[g]| ≤ 5.9× 10−11. ♦

In the following result, we give sufficient conditions on the function g for the
sequence q �→ R

q
m,n[g] to converge to zero. Gregory’s formula (6.33) then takes a

special form.
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Proposition 6.24 Let g ∈ C0∩K∞, p ∈ N, and let 1 ≤ m ≤ n be integers. Suppose
that, for every integer q ≥ p, the function g is q-convex or q-concave on [m,∞).
Suppose also that the sequence q �→ �qg(n)−�qg(m) is bounded. Then we have

R
q
m,n[g] → 0 as q →N ∞,

or equivalently,

∫ n

m

g(t) dt =
n−1∑
k=m

g(k)+
∞∑

j=1
Gj(�

j−1g(n)−�j−1g(m)) .

If g lies in C0 ∩ dom(�g), then the latter identity also takes the form

�g(n)− �g(m) =
∫ n

m

g(t) dt −
∞∑

j=1
Gj(�

j−1g(n)−�j−1g(m)) .

Proof Under the assumptions of this proposition, the sequence q �→ R
q
m,n[g]

converges to zero by Lemma 6.22. (Recall that the sequence n �→ Gn converges
to zero.) The result then immediately follows from Gregory’s formula (6.33). The
last part then follows from identity (5.2). ��
Example 6.25 Taking g(x) = ln x and m = p = 1 in Proposition 6.24, we obtain
the following identity

ln n! = 1− n+
(

n+ 1

2

)
lnn+ 1

12
ln

(
n+ 1

2n

)
− 1

24
ln

(
4n(n+ 2)

3(n+ 1)2

)
+ · · ·

which holds for any n ∈ N
∗. ♦

A Geometric Interpretation of Gregory’s Formula For any g ∈ C0 and any
q ∈ N, we let P q [g] : [1,∞)→ R denote the piecewise polynomial functionwhose
restriction to any interval [k, k+ 1), with k ∈ N

∗, is the interpolating polynomial of
g with nodes at k, k + 1, . . . , k + q . That is,

P q [g](x) = Pq [g](k, k + 1, . . . , k + q; x), x ∈ [k, k + 1), (6.38)

or equivalently, using (2.9),

P q [g](x) = Pq [g](�x�, �x� + 1, . . . , �x� + q; x)

=
q∑

j=0

({x}
j

)
�jg(�x�) , x ≥ 1.
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In the following proposition, we provide an integral expression for the remainder
R

q
m,n[g] in terms of the function P q [g].

Proposition 6.26 For any g ∈ C0, any q ∈ N, and any integers 1 ≤ m ≤ n, we
have

R
q
m,n[g] =

∫ n

m

(g(t) − P q [g](t)) dt. (6.39)

Proof Using (2.11) and (6.14) we then obtain

−J q+1[g](k) =
∫ 1

0
ρ

q+1
k [g](t) dt =

∫ k+1

k

(g(t)− P q [g](t)) dt.

The result then follows from (6.35). ��
Proposition 6.26 immediately provides an interesting interpretation of Gregory’s

formula as a quadrature method. It actually shows that Gregory’s formula approx-
imates the integral of g over the interval [m,n) by replacing g with the piecewise
polynomial function Pq [g]. In particular, the remainder R

q
m,n[g] reduces to zero

whenever g is a polynomial of degree less than or equal to q .
We also observe that Gregory’s formula reduces to the “left” rectangle method

(left Riemann sum) when q = 0, and the trapezoidal rule when q = 1. However, it
does not reduce to Simpson’s rule when q = 2. In fact, Gregory’s formula does not
correspond to a Newton-Cotes quadrature rule when q ≥ 2.

Now, if g is q-convex or q-concave on [m,∞), then for any k ∈ {m,m +
1, . . . , n− 1} and any t ∈ [0, 1), using Lemma 2.7 and identity (2.11) we obtain

0 ≤ ± (−1)q ρ
q+1
k [g](t) = ± (−1)q (g(k + t)− P q [g](k + t)

)
,

where ± stands for 1 or −1 according to whether g is q-convex or q-concave on
[m,∞). This observation provides the following additional geometric interpreta-
tion. It shows that, on the interval [k, k + 1), the graph of g lies over or under that
of P q [g] according to whether ±(−1)q is 1 or −1. As an immediate consequence,
the quantity |J q+1[g](k)| is precisely the surface area between both graphs over the
interval [k, k + 1) while the remainder |Rq

m,n[g]| is the surface area between both
graphs over the interval [m,n).

Example 6.27 With the function g(x) = ln x and the parameter q = 1 we associate
the piecewise linear function

P 1[g](x) = ln�x� + (x − �x�) ln
(
1+ 1

�x�
)

.
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Since g is concave, for any integer n ≥ 1 the graph of g on [1, n) lies over (or
on) that of P 1[g], which is the polygonal line through the points (k, g(k)) for k =
1, . . . , n. The value (see (6.36))

R1
1,n[g] = J (1)− J (n) = − ln�(n)+

(
n− 1

2

)
lnn− n+ 1 ,

where J (x) is Binet’s function defined in (6.13), is then nothing other than the
remainder in the trapezoidal rule on [1, n) with the integer nodes 1, . . . , n. Geo-
metrically, it measures the surface area between the graph of g and the polygonal
line. ♦
Alternative Integral Form of the Remainder The following proposition yields
an alternative integral form of the remainder R

q
m,n[g] when g lies in Cq+1 for some

q ∈ N
∗. Consider first the (kernel) functionK

q
m,n : R+ → R defined by the equation

K
q
m,n(t) = 1

q! R
q
m,n[(·− t)

q
+] for t ∈ R+.

It is not difficult to show that this function lies in Cq−1 and has the compact support
[m,n+ q − 1].
Proposition 6.28 Suppose that g lies in Cq+1 for some q ∈ N

∗ and let 1 ≤ m ≤ n

be integers. Then we have

R
q
m,n[g] =

∫ n+q−1

m

K
q
m,n(t) Dq+1g(t) dt.

Proof By Taylor’s theorem, the following identity

g(x) = Pq(x)+
∫ n+q−1

m

(x − t)
q
+

q! Dq+1g(t) dt

holds on the interval [m,n+ q − 1] for some polynomial Pq of degree less than or
equal to q . The result then follows from the definition of the remainder R

q
m,n[g] and

the fact that Rq
m,n[Pq ] = 0. ��

Interestingly, if the functionK
q
m,n does not change in sign (and we conjecture that

(−1)q K
q
m,n is nonnegative), then by the mean value theorem for definite integrals

the remainder also takes the form

R
q
m,n[g] = Dq+1g(ξ)

∫ n+q−1

m

K
q
m,n(t) dt

for some ξ ∈ [m,n+ q − 1].
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Remark 6.29 We observe that Jordan [50, p. 285] claimed that

“ R
q
m,n[g] = Gq+1(n−m) �q+1g(ξ) ”

for some ξ ∈ (m, n). However, taking for instance g(x) = x2 and (q,m, n) =
(0, 1, 2), we can see that this form of the remainder is not correct. Nevertheless,
several examples suggest that Jordan’s statement could possibly be corrected by
assuming that ξ ∈ (m− 1, n− 1). This question thus remains open. ♦
General Gregory’s Formula and Euler-Maclaurin’s Formula The following
proposition provides Gregory’s formula in its general form using our integral
expression for the remainder.

Proposition 6.30 (General Form of Gregory’s Formula) Let a ∈ R, n, q ∈ N,
h > 0, and f ∈ C0([a,∞)). Then we have

1

h

∫ a+nh

a

f (t) dt =
n−1∑
k=0

f (a + kh)

+
q∑

j=1
Gj

(
(�

j−1
[h] f )(a + nh)− (�

j−1
[h] f )(a)

)
+ R

q
1,n+1[f h

a ] ,

where

R
q

1,n+1[f h
a ] =

∫ 1

0

n∑
k=1

ρ
q+1
k [f h

a ](t) dt and f h
a (x) = f (a + (x − 1)h).

Moreover, if f is q-convex or q-concave on [a,∞), then

|Rq

1,n+1[f h
a ]| ≤ Gq

∣∣∣(�q
[h]f )(a + nh)− (�

q
[h]f )(a)

∣∣∣ .
Here, �[h] denotes the forward difference operator with step h > 0.

Proof This formula can be obtained immediately from (6.33) and (6.34) replacing
n with n + 1 and then setting m = 1 and g(x) = f (a + (x − 1)h). The last part
follows from Lemma 6.22. ��

The general Gregory formula is often compared with the corresponding Euler-
Maclaurin summation formula. We will use the latter in Chap. 8, so we now state it
in its general form (for background see, e.g., Apostol [8], Gel’fond [39], Lampret
[62], Mariconda and Tonolo [67], and Srivastava and Choi [93]).
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Recall first that the Bernoulli numbers B0, B1, B2, . . . are defined implicitly by
the single equation (see, e.g., Gel’fond [39, Chapter 4] and Graham et al. [41,
p. 284])

m∑
j=0

(
m+1

j

)
Bj = 0m, m ∈ N . (6.40)

The first few values of Bn are: 1,− 1
2 ,

1
6 , 0,− 1

30 , 0, . . .. Recall also that, for any
n ∈ N, the nth degree Bernoulli polynomial Bn(x) is defined by the equation

Bn(x) =
n∑

k=0

(
n
k

)
Bn−k xk for x ∈ R.

Proposition 6.31 (Euler-Maclaurin’s Formula) Let N ∈ N
∗, f ∈ C1([a, b]),

and h = (b − a)/N , for some real numbers a < b. Then we have

h

N∑
k=0

f (a + kh) =
∫ b

a

f (x) dx + h

2
(f (a)+ f (b))

+ h2
∫ N

0
B1({t}) f ′(a + th) dt .

If, in addition, f ∈ C2q([a, b]) for some q ∈ N
∗, then

h

N∑
k=0

f (a + kh) =
∫ b

a

f (x) dx + h

2
(f (a)+ f (b))

+
q∑

j=1
h2j

B2j

(2j)!
(
f (2j−1)(b)− f (2j−1)(a)

)
+ R ,

where

R = − h2q+1
∫ N

0

B2q({t})
(2q)! f (2q)(a + th) dt

and

|R| ≤ h2q
|B2q |
(2q)!

∫ b

a

|f (2q)(x)| dx .

Here f ∈ Ck([a, b]) means that f ∈ Ck(I ) for some open interval I containing
[a, b].
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Remark 6.32 We observe (to paraphrase Jordan [50, p. 285]) that Euler-Maclaurin’s
formula is more advantageous than Gregory’s formula if we deal with functions
whose derivatives are less complicated than their differences. However, there are
functions for which Euler-Maclaurin’s formula leads to divergent series while the
corresponding Gregory’s formula-based series (see Proposition 6.24) are conver-
gent. For instance, this may be due to the fact that, for any x > 0, the sequence
n �→ Dn 1

x
is unbounded while the sequence n �→ �n 1

x
converges to zero. ♦

6.8 Generalized Euler’s Constant

In this section, we introduce and discuss an analogue of Euler’s constant for any
function g lying in C0 ∩ dom(�). We first consider a lemma.

Lemma 6.33 Let g lie in C0 ∩Dp ∩Kp for some p ∈ N and let m ∈ N
∗. Then the

sequence n �→ R
p
m,n[g] for n ≥ m converges. Denoting its limit by R

p
m,∞[g], we

have

R
p
m,∞[g] = Jp+1[�g](m).

Proof The proof is an immediate consequence of (6.36) and the generalized Stirling
formula (Theorem 6.13). ��

Under the assumptions of Lemma 6.33, using (6.34), (6.35), and (6.39) we
immediately obtain the following identities

R
p
m,∞[g] =

∞∑
k=m

∫ 1

0
ρ

p+1
k [g](t) dt =

∫ 1

0

∞∑
k=m

ρ
p+1
k [g](t) dt

=
∫ 1

0
(f

p
m [g](t)−�g(t)) dt

and

R
p
m,∞[g] = −

∞∑
k=m

Jp+1[g](k) =
∫ ∞

m

(g(t) − P p[g](t)) dt. (6.41)

Moreover, if g is p-convex or p-concave on [m,∞), the inequality (6.37) reduces
to

|Rp
m,∞[g]| = |Jp+1[�g](m)| ≤ Gp |�pg(m)| , (6.42)

which is also an immediate consequence of Corollary 6.12 (where a tighter
inequality is also provided when p ≥ 1).
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Let us now provide a geometric interpretation of the remainder R
p
m,∞[g] when

g is p-convex or p-concave on [m,∞). Suppose for instance that g is p-convex on
[m,∞). The interpretation of Gregory’s formula discussed in Sect. 6.7 shows that,
on the whole of the interval [m,∞), the graph of g lies over or under that of P p[g]
according to whether p is even or odd, and the remainder |Rp

m,∞[g]| is precisely
the surface area between both graphs. Interestingly, the fact that this surface area
converges to zero as m →N ∞ by (6.42) provides a direct interpretation of the
restriction of the generalized Stirling formula to integer values.

This interpretation is particularly visual when p = 0 or p = 1. Consider for
instance the case p = 1 and suppose that g is concave on [m,∞) (e.g., g(x) = ln x).
Then, the graph of g on [m,∞) lies over (or on) the polygonal line through the
points (k, g(k)) for all integers k ≥ m. The value |Rp

m,∞[g]| is then the surface area
between the graph of g and this polygonal line. It is also the absolute value of the
remainder in the trapezoidal rule on [m,∞).

We are now able to introduce an analogue of Euler’s constant for any function g

lying in C0 ∩ dom(�). We call it the generalized Euler constant.

Definition 6.34 (Generalized Euler’s Constant) The generalized Euler constant
associated with a function g ∈ C0 ∩ dom(�) is the number

γ [g] = − R
p

1,∞[g] = − Jp+1[�g](1) ,

where p = 1+ deg g.

For instance, if g lies in C0 ∩D0 ∩K0, then using (6.33) we obtain

γ [g] = lim
n→∞

(
n−1∑
k=1

g(k)−
∫ n

1
g(t) dt

)
(6.43)

=
∞∑

k=1

(
g(k)−

∫ k+1

k

g(t) dt

)
,

and this value represents the remainder in the “left” rectanglemethod on [1,∞)with
the integer nodes k = 1, 2, . . .. Similarly, if g lies in C0 ∩ D1 ∩ K1 and deg g = 0,
then we get

γ [g] = lim
n→∞

(
n−1∑
k=1

g(k)−
∫ n

1
g(t) dt + 1

2
g(n)− 1

2
g(1)

)
(6.44)

=
∞∑

k=1

(
g(k)−

∫ k+1

k

g(t) dt + 1

2
�g(k)

)
,

and this value represents the remainder in the trapezoidal rule on [1,∞) with the
integer nodes k = 1, 2, . . ..
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Thus defined, the number γ [g] generalizes to any function g lying in C0 ∩
dom(�) not only the classical Euler constant γ (obtained when g(x) = 1

x
) but

also the generalized Euler constant γ [g] associated with a positive and strictly
decreasing function g as defined in (6.43) (see, e.g., Apostol [8] and Finch [37,
Section 1.5.3]). Moreover, as we will see in Sect. 8.2, this number plays a central
role in the Weierstrassian form of �g (which also justifies the choice m = 1 in the
definition of γ [g]).

The definition of γ [g] does not require g to be p-convex or p-concave on [1,∞).
However, if this latter condition holds, then by (6.42) we have the inequality

|γ [g]| ≤ Gp |�pg(1)| (6.45)

and by Corollary 6.12 the following tighter inequality also holds when p ≥ 1

|γ [g]| ≤
∫ 1

0

∣∣∣(t−1p

)∣∣∣
∣∣∣�p−1g(t + 1)−�p−1g(1)

∣∣∣ dt. (6.46)

We also provide and discuss finer bounds for γ [g] in Appendix E (see Remark E.7).

Example 6.35 If g(x) = 1/x, then γ [g] reduces to Euler’s constant γ , as expected.
Indeed, in this case we obtain

γ [g] = − J 1[ψ](1) = γ.

Using (6.43), we then retrieve the well-known formula

γ = lim
n→∞

(
n∑

k=1

1

k
− lnn

)

and its classical geometric interpretation. If g(x) = ln x, then the associated
generalized Euler constant is

γ [g] = − J 2[ln ◦�](1) = − J (1) = − 1+ 1

2
ln(2π) ≈ − 0.081

and we can see that it coincides with the associated asymptotic constant σ [g] (see
Example 6.5). Moreover, using (6.44) we obtain the following formula

γ [g] = lim
n→∞

(
ln n! + n− 1−

(
n+ 1

2

)
lnn
)

.

The value |γ [g]| = −γ [g] can then be interpreted as the surface area between the
graph of g on the unbounded interval [1,∞) and the polygonal line through the
points (k, g(k)) for all integers k ≥ 1. Moreover, Eq. (6.46) provides the following
inequality

|γ [g]| ≤ ln 4− 5

4
≈ 0.14.

♦
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A Conversion Formula Between γ [g] and σ [g] The following proposition,
which immediately follows from (6.18) and the identity

γ [g] = − Jp+1[�g](1),

shows how the numbers γ [g] and σ [g] are related and provides an alternative way
to compute the value of γ [g].
Proposition 6.36 For any function g lying in C0 ∩ dom(�), we have

σ [g] = γ [g] +
p∑

j=1
Gj �j−1g(1),

where p = 1+ deg g.

An Integral Form of γ [g] The following proposition shows that the classical
integral representation of the Euler constant

γ =
∫ ∞

1

(
1

�t� −
1

t

)
dt

can be generalized to the constant γ [g] for any function g lying in C0 ∩ dom(�).

Proposition 6.37 For any g ∈ C0 ∩Dp ∩Kp, where p = 1+ deg g, we have

γ [g] =
∫ ∞

1

( p∑
j=0

Gj�
jg(�t�)− g(t)

)
dt.

In particular, when degg = −1, we have

γ [g] =
∫ ∞

1
(g(�t�)− g(t)) dt.

Proof Using (6.16) and (6.41), we obtain

γ [g] =
∞∑

k=1
Jp+1[g](k) =

∞∑
k=1

⎛
⎝

p∑
j=0

Gj �jg(k)−
∫ k+1

k

g(t) dt

⎞
⎠ ,

which immediately provides the claimed formula. ��
The Principal Indefinite Sum of the Generalized Binet Function If g lies in C0∩
Dp ∩Kp for some p ∈ N, then the function Jp+1[�g] lies in D0

R
by Theorem 6.13,

and hence so does

�Jp+1[�g] = Jp+1[g].
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If, in addition, Jp+1[�g] lies in K0, then by the uniqueness Theorem 3.1 we have
that

�Jp+1[g] = Jp+1[�g] − Jp+1[�g](1) .

Thus, if p = 1+ degg, then we obtain the identity

�Jp+1[g] = Jp+1[�g] + γ [g] . (6.47)

Now, suppose that we wish to show that a given function f : R+ → R satisfies
the equation f = Jp+1[�g] for some function g lying in C0 ∩ Dp ∩ Kp , with
p = 1+ degg. Using the uniqueness theorem with identity (6.47), we see that it is
then enough to show that �f = Jp+1[g], f (1) = −γ [g], and f ∈ K0.

Example 6.38 Let f : R+ → R be defined by the equation f (x) = ψ(x) − ln x

for x > 0. To see that f = J 1[ψ], it is enough to observe that f lies in K0, that
f (1) = −γ , and that

�f (x) = 1

x
− ln

(
1+ 1

x

)

is precisely the function J 1[g](x) when g(x) = 1/x. ♦
Example 6.39 Binet established the following integral representation (see, e.g.,
Sasvári [89])

J 2[ln ◦�](x) = J (x) =
∫ ∞

0

(
1

et − 1
− 1

t
+ 1

2

)
e−xt

t
dt.

Equation (6.47) then provides a possible (though not immediate) proof of this
identity. ♦
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Chapter 7
Derivatives of Multiple log �-Type
Functions

In this chapter, we discuss the higher order differentiability properties of �g when
g lies in Cr ∩ Dp ∩ Kmax{p,r} for any p, r ∈ N. In particular, we show the
fundamental fact that �g also lies in Cr and that the sequence n �→ Drf

p
n [g]

converges uniformly on any bounded subinterval of R+ to Dr�g.
We also show that the functions (�g)(r) and �g(r) differ by a constant and

we investigate some properties of these functions, including asymptotic behaviors
and an analogue of Euler’s series representation of the constant γ . We present and
discuss a procedure, that we call the “elevator” method, to compute �g by first
evaluating �g(r). Finally, we provide an alternative uniqueness result for higher
order differentiable solutions to the equation �f = g.

7.1 Differentiability of Multiple log �-Type Functions

In this first section we investigate the higher order differentiability of the function
�g when g is of class Cr for some r ∈ N. We start with the following preliminary,
but very important result.

Proposition 7.1 If g lies in Cr∩Dp∩Kmax{p,r} for some r, p ∈ N, then the function
�g lies in Cr ∩Dp+1 ∩Kmax{p,r}.

Proof If g lies in Cr ∩Dp ∩Kmax{p,r} for some r, p ∈ N, then clearly it also lies in
Cr ∩ Dmax{p,r} ∩ Kmax{p,r}. By Proposition 5.6, �g must lie in Dp+1 ∩ Kmax{p,r}.
Let us now show that it also lies in Cr .

We first observe that g(r) lies in C0 ∩ D(p−r)+ ∩ K(p−r)+ . This is clear if r ≤ p

by Proposition 4.12. If r > p, then we first see that g(p) lies in Cr−p ∩D0 ∩Kr−p,
and hence also in K0 ∩ K1. Using Proposition 4.16(b) repeatedly, we then see that
g(r) lies in C0 ∩D−1 ∩K0.

© The Author(s) 2022
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By Proposition 5.18, �g(r) must lie in C0 ∩D(p−r)++1 ∩K(p−r)+ . Hence, there
exists F ∈ Cr such that F (r) = �g(r). By Proposition 4.12, F must lie in Kmax{p,r}.
Now, we also have

Dr�F = �F(r) = ��g(r) = g(r),

which shows that �(F + P) = g for some polynomial P of degree at most r . By
Corollary 4.6 we have that F + P lies in Kmax{p,r}. But then, by the uniqueness
Theorem 3.1 we must have F + P = �g + c for some c ∈ R. Hence �g lies in
Cr . ��
Remark 7.2 If g lies in Cr∩Dp∩Kp for some integers 0 ≤ r < p, then the function
�g lies in Cr by Proposition 7.1. Interestingly, this result can also be established
very easily using the following argument. Let n ∈ N be so that �g is p-convex or
p-concave on In = (n,∞). By Lemma 2.6(a), the function �g lies in Cp−1(In) and
hence also in Cr (In). Using (5.3), we immediately obtain that �g lies in Cr . ♦

We now present the following important and very surprising result. It shows that
Proposition 7.1 no longer holds when r > p if we ask g to lie in Kp instead of
Kmax{p,r}. Since the proof is somewhat technical, we defer it to Appendix F.

Proposition 7.3 For every p ∈ N, there exists a function g lying in Cp+1∩Dp∩Kp

for which �g does not lie in Cp+1. Thus, the operator � does not always preserve
differentiability when the order of differentiability exceeds that of convexity.

Proof See Appendix F. ��
The next theorem is the central result of this section. In this theorem, we recall

the fundamental result given in Proposition 7.1 and we show that, under the same
assumptions, the sequence n �→ Drf

p
n [g] converges uniformly on any bounded

subinterval of R+ to Dr�g. We first consider a technical lemma.

Lemma 7.4 Let g lie in Cr ∩Dp ∩Kp for some integers 0 ≤ r ≤ p. Then, for any
n ∈ N the function ρ

p+1
n [�g] lies in Cr . Moreover, the sequence n �→ Drρ

p+1
n [�g]

converges uniformly on any bounded subset of R+ to zero.

Proof By Proposition 7.1, we have that �g lies in Cr . Using (1.7) it is then clear
that, for any n ∈ N, the function ρ

p+1
n [�g] lies in Cr .

Let us now show the second part of the lemma. Negating g if necessary,
we may assume that it lies in Kp

−. In this case, Dr�g must lie in Kp−r
+ by

Proposition 4.12. Let n ≥ p be an integer so that g is p-concave on [n,∞). Using
Proposition 2.1 repeatedly, we can see that there exist p − r + 1 pairwise distinct
points ξn

0 , . . . , ξn
p−r ∈ (0, p) such that

Dr
xPp[�g](n, . . . , n+ p; n+ x) = Pp−r [Dr�g](n+ ξn

0 , . . . , n+ ξn
p−r ; n+ x).
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Let us now fix x > 0. Using (2.11) and then (2.2) and (2.3), we obtain

Drρ
p+1
n [�g](x) = Dr�g[n+ ξn

0 , . . . , n+ ξn
p−r , n+ x]

p−r∏
i=0

(x − ξn
i )

= An

p−r∏
i=1

(x − ξn
i ),

if x �= ξn
i for i = 0, . . . , p − r , and Drρ

p+1
n [�g](x) = 0, otherwise, where

An = Dr�g[n+ ξn
1 , . . . , n+ ξn

p−r , n+ x] −Dr�g[n+ ξn
0 , . . . , n+ ξn

p−r ].

Now, on the one hand, we clearly have

p−r∏
i=1
|x − ξn

i | ≤ c
p−r
x .

where cx = max{p, x�}. On the other hand, using Lemma 2.5 (with the fact that
Dr�g lies in Kp−r

+ ) and then (2.8), we obtain

|An| ≤
∣∣Dr�g[n+ cx, . . . , n+ cx + p − r] −Dr�g[n− p + r, . . . , n]∣∣

= 1

(p − r)!
∣∣�p−rDr�g(n+ cx)−�p−rDr�g(n− p + r)

∣∣

= 1

(p − r)!
cx−1∑

j=−p+r

|�p−rDrg(n+ j)|.

Thus, for any bounded subinterval E of R+, we obtain the inequality

sup
x∈E

∣∣∣Drρ
p+1
n [�g](x)

∣∣∣ ≤ c
p−r
supE

(p − r)!
csupE−1∑
j=−p+r

|�p−rDrg(n+ j)|.

But the latter sum converges to zero as n →N ∞ since Drg lies in Dp−r ∩ Kp−r

by Proposition 4.12. This completes the proof of the lemma. ��
Theorem 7.5 (Higher Order Differentiability of Multiple log �-Type Func-
tions) Let g lie in Cr ∩Dp ∩Kmax{p,r} for some r, p ∈ N. The following assertions
hold.

(a) �g lies in Cr ∩Dp+1 ∩Kmax{p,r}.
(b) The sequence n �→ Drf

p
n [g] converges uniformly on any bounded subset of

R+ to Dr�g.
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Proof Assertion (a) immediately follows from Proposition 7.1. When r ≤ p,
assertion (b) immediately follows from Lemma 7.4 and identity (5.4). Let us now
assume that r > p. Using (5.4) and then (1.7) and (5.3) we obtain

Drf
p
n [g](x) = Dr�g(x)−Dr�g(x + n) = −

n−1∑
k=0

g(r)(x + k).

By Proposition 4.12, we have that g(p) lies in Cr−p ∩ D0 ∩ Kr−p, and hence also
in K0 ∩K1. Using Proposition 4.16(b) repeatedly, we then see that g(r) lies in C0 ∩
D−1 ∩K0. Thus, we can apply Theorem 3.12 to the function g(r), with f = Dr�g.
Since f lies in C0 ∩ D0 ∩ K0 by assertion (a) and Proposition 4.12, it follows from
Theorem 3.12 that the sequence n �→ Drf

p
n [g] converges uniformly on R+ to

f − f (∞) = f = Dr�g. ��
Example 7.6 The function g(x) = ln x clearly lies in C∞ ∩ D1 ∩ K∞. Using
Theorem 7.5, we now see that the function �g(x) = ln�(x) lies in C∞∩D2∩K∞.
Moreover, for any r ∈ N

∗, we have

ψr−1(x) = Dr ln�(x) = lim
n→∞Drf 1

n [ln](x)

= lim
n→∞

(
0r−1 lnn+ (−1)r(r − 1)!

n−1∑
k=0

1

(x + k)r

)
.

If r = 1, then we obtain

ψ(x) = lim
n→∞

(
ln n−

n−1∑
k=0

1

x + k

)
.

If r ≥ 2, then we get (compare with, e.g., Srivastava and Choi [93, p. 33])

ψr−1(x) = (−1)r(r − 1)! ζ(r, x),

where s �→ ζ(s, x) is the Hurwitz zeta function (see Example 1.7). ♦

7.2 Some Properties of the Derivatives

In this section, we investigate the functions (�g)(r) and �g(r) and some of their
properties. We also show how the asymptotic behaviors of these functions can be
analyzed from results of Chap. 6, including the generalized Stirling formula. Finally,
we provide a series representation of the asymptotic constant σ [g] as an analogue
of Euler’s series representation of γ .
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In the next proposition, we essentially establish the fact that the functions (�g)(r)

and �g(r) are equal up to an additive constant. This result will have several
important consequences in this and the next chapters.

Proposition 7.7 Let g lie in Cr ∩Dp ∩Kmax{p,r} for some p ∈ N and r ∈ N
∗. Then

g(r) lies in C0 ∩D(p−r)+ ∩K(p−r)+ . Moreover, for any x > 0 we have

(�g)(r)(x)−�g(r)(x) = (�g)(r)(1) = g(r−1)(1)− σ [g(r)] . (7.1)

If r > p, then

σ [g(r)] = g(r−1)(1)+
∞∑

k=1
g(r)(k).

Proof As already observed in the proof of Proposition 7.1, the first claim follows
from Propositions 4.12 and 4.16(b). Moreover, we have that �g lies in Cr ∩Dp+1 ∩
Kmax{p,r}. Let us now prove (7.1). By Proposition 4.12, the function ϕ1 = (�g)(r)

is a solution in K(p−r)+ to the equation �ϕ = g(r). By the existence Theorem 3.6,
the function ϕ2 = �g(r) is also a solution in K(p−r)+ . Thus, by the uniqueness
Theorem 3.1, we must have (�g)(r) − �g(r) = c for some c ∈ R, and hence we
also have (�g)(r)(1) = c.

Now, for any x > 0, using (6.11) we then get

g(r−1)(1)− σ [g(r)] = g(r−1)(x)−
∫ x+1

x

�g(r)(t) dt

= c + g(r−1)(x)−
∫ x+1

x

(�g)(r)(t) dt.

Evaluating the latter integral, we then obtain

g(r−1)(1)− σ [g(r)] = c+ g(r−1)(x)− (�g)(r−1)(x + 1)+ (�g)(r−1)(x)

= c+ g(r−1)(x)−�(�g)(r−1)(x)

= c+ g(r−1)(x)− (��g)(r−1)(x)

= c,

which proves (7.1). Finally, if r > p, then we have that g(r−1) lies in C1 ∩D0 ∩K1

and that g(r) lies in C0 ∩ D−1 ∩ K0 by Proposition 4.16(b). The last part of the
statement then follows from applying Proposition 6.14 to the function g(r). ��
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Example 7.8 The function g(x) = 1
x
lies in C∞ ∩ D0 ∩ K∞ and all its derivatives

lie in K0. By Theorem 7.5, the function

�g(x) =
∞∑

k=0

(
1

k + 1
− 1

x + k

)
= Hx−1 = ψ(x)+ γ

lies in C∞ ∩ D1 ∩ K∞. Moreover, the series can be differentiated term by term
infinitely many times and hence, for any r ∈ N

∗, we have

(�g)(r)(x) =
∞∑

k=0
(−1)r+1 r!

(x + k)r+1
= ψr(x).

By Proposition 7.7, we also have

σ [g(r)] = −(−1)r(r − 1)! + (−1)r r!
∞∑

k=1

1

kr+1

= (−1)r (r − 1)! (r ζ(r + 1)− 1) ,

where s �→ ζ(s) is the Riemann zeta function. ♦
In the next proposition we show the remarkable fact that the asymptotic

equivalence (6.31) still holds if we differentiate both sides.

Proposition 7.9 Let g lie in Cr ∩Dp ∩Kmax{p,r} for some p ∈ N and r ∈ N
∗, and

let a ≥ 0. When Dr�g vanishes at infinity, we also assume that

Dr�g(n+ 1) ∼ Dr�g(n) as n→N ∞.

Then we have

Dr�g(x + a) ∼ Dr
x

∫ x+1

x

�g(t) dt = g(r−1)(x) as x →∞.

Proof By Proposition 7.7, we have that g(r) lies in C0 ∩ D(p−r)+ ∩ K(p−r)+ .
Moreover, for any x > 0 we have

Dr�g(x + a) = c +�g(r)(x + a)
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and, using (6.11),

Dr
x

∫ x+1

x

�g(t) dt = g(r−1)(x) =
∫ x+1

x

(�g)(r)(t) dt

= c +
∫ x+1

x

�g(r)(t) dt,

where c = g(r−1)(1)− σ [g(r)]. The result then immediately follows from applying
Proposition 6.20 to the function g(r). ��
Example 7.10 Applying Proposition 7.9 to the function g(x) = ln x, for any a ≥ 0
we obtain the equivalences

ln�(x + a) ∼ x ln x , ψ(x + a) ∼ ln x as x →∞,

and for any ν ∈ N,

ψν+1(x + a) ∼ (−1)ν ν!
xν+1 as x →∞. ♦

In the next two propositions, we mainly investigate how the convergence results
in (6.4) and (6.21) are modified when the function g is replaced with one of its
higher order derivatives. The second proposition can be regarded as the “integrated”
version of the first one, and hence it naturally involves the generalized Binet
function.

Proposition 7.11 Let g lie in Cr ∩Dp ∩Kmax{p,r} for some p ∈ N and r ∈ N
∗, and

let a ≥ 0. The following assertions hold.

(a) g(r) lies in R(p−r)+
R

and both �g(r) and (�g)(r) lie in R(p−r)++1
R

.

(b) For any q ∈ N, the function x �→ ρ
q+1
x [�g](a) lies in Cr and we have

Dr
xρ

q+1
x [�g](a) = ρ

q+1
x [�g(r)](a).

(c) We have that ρ
(p−r)++1
x [�g(r)](a)→ 0 and Dr

xρ
p+1
x [�g](a)→ 0 as x →∞.

Proof By Proposition 7.7, the function g(r) lies in C0 ∩ D(p−r)+ ∩ K(p−r)+ . This
immediately proves assertion (a). Now, using (1.7) and then (7.1) we get

Dr
xρ

q+1
x [�g](a) = �g(r)(x + a)−�g(r)(x)−

q∑
j=1

(
a
j

)
�j−1g(r)(x)

= ρ
q+1
x [�g(r)](a),
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which proves assertion (b). Assertion (c) follows from assertions (a) and (b) and the
fact thatR(p−r)++1

R
⊂ Rp+1

R
. ��

Proposition 7.12 Let g lie in Cr ∩Dp ∩Kmax{p,r} for some p ∈ N and r ∈ N
∗. The

following assertions hold.

(a) For any q ∈ N, the function J q+1[�g] lies in Cr and we have

DrJ q+1[�g] = J q+1[�g(r)].

In particular, we have σ [g(r)] = −DrJ 1[�g](1).
(b) We have that J (p−r)++1[�g(r)](x)→ 0 and DrJp+1[�g](x)→ 0 as x →∞.

In particular, if r > p, then (�g)(r) → 0 as x →∞.
(c) We have

Dr
x

∫ 1

0
ρ

p+1
x [�g](t) dt =

∫ 1

0
Dr

xρ
p+1
x [�g](t) dt.

Proof Using (6.18) and (7.1), we get

DrJ q+1[�g](x) = �g(r)(x)− σ [g(r)] −
∫ x

1
g(r)(t) dt +

q∑
j=1

Gj �j−1g(r)(x)

= J q+1[�g(r)](x),

which proves assertion (a). Now, setting q = p in these equations we obtain

DrJp+1[�g](x) = J (p−r)++1[�g(r)](x)+
p∑

j=(p−r)++1
Gj �j−1g(r)(x).

Since g(r) lies in C0 ∩D(p−r)+ ∩K(p−r)+ , this latter expression vanishes at infinity.
This proves assertion (b). Finally, using Proposition 7.11 and assertion (a) we get

∫ 1

0
Dr

xρ
p+1
x [�g](t) dt =

∫ 1

0
ρ

p+1
x [�g(r)](t) dt = − Jp+1[�g(r)](x)

= −DrJp+1[�g](x) = Dr
x

∫ 1

0
ρ

p+1
x [�g](t) dt,

which proves assertion (c). ��
Assertion (c) of Proposition 7.11 reveals a very important fact. It shows that the

convergence result in (6.4) still holds if we replace g with g(r) and p with (p− r)+.
But it also says that this new result can also be obtained by differentiating r times
both sides of (6.4) and then removing the terms that vanish at infinity.
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Similarly, assertion (b) of Proposition 7.12 shows that this property also applies
to the generalized Stirling formula (6.21).

Example 7.13 The function g(x) = ln x lies in C∞ ∩ D1 ∩ K∞ and its derivative
g′(x) = 1

x
lies in C∞ ∩D0 ∩K∞. For any a ≥ 0, the limit in (6.4) reduces to

ln�(x + a)− ln�(x)− a ln x → 0 as x →∞.

If we replace g with g′ and set p = 0 in (6.4), we get

ψ(x + a)− ψ(x) → 0 as x →∞.

However, this latter limit can also be obtained by differentiating both sides of the
previous limit and then removing the term (− a

x
) that vanishes at infinity.

Now, applying the generalized Stirling formula (6.21) to the function g(x) =
ln x, we clearly retrieve the classical Stirling formula

ln�(x)− 1

2
ln(2π)+ x −

(
x − 1

2

)
ln x → 0 as x →∞.

Proceeding similarly as above, we then obtain

ψ(x)− ln x → 0 as x →∞,

which is actually the analogue of Stirling’s formula for the digamma function. ♦
Remark 7.14 To emphasize the similarities between Propositions 7.11 and 7.12, we
could for instance extend our formalism a bit further as follows. For any p ∈ N and
any S ∈ {N,R}, let J p

S denote the set of continuous functions g : R+ → R having
the asymptotic property that

Jp[g](t) → 0 as t →S ∞.

This new definition enables one to formalize some results more easily. For instance,
using (6.17) we clearly obtain that

J p

S ∩Dp

S = J p+1
S ∩Dp

S

and this identity could be used to establish assertion (b) of Proposition 7.12 from
assertion (a). To give another example, we can see that (6.22) actually means that

C0 ∩Dp ∩Kp ⊂ J p

R
.

Note also that the generalized Stirling formula simply states that �g lies in J p+1
R

whenever g lies in C0 ∩Dp ∩Kp. ♦
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Taylor Series Expansion of �g Suppose that g lies in C∞ ∩ Dp ∩ K∞ for some
p ∈ N. We know from Proposition 7.12 that

σ [g(k)] = −DkJ 1[�g](1), k ∈ N.

Thus, the exponential generating function (see, e.g., Graham et al. [41, Chapter 7])
for the sequence n �→ σ [g(n)] is defined by the equation

∞∑
k=1

σ [g(k)] xk

k! = −J 1[�g](x + 1) (7.2)

= σ [g] +
∫ x+1

1
g(t) dt −�g(x + 1).

Denoting this exponential generating function by egfσ [g](x), the previous equation
reduces to

egfσ [g](x) = − J 1[�g](x + 1) .

If the function J 1[�g] is real analytic at 1, then the series in (7.2) converges in some
neighborhood of x = 0. Similarly, if the function �g is real analytic at 1, then the
following Taylor series expansion

�g(x + 1) =
∞∑

k=1
(�g)(k)(1)

xk

k! (7.3)

holds in some neighborhood of x = 0, where the numbers (�g)(k)(1) for k ∈ N
∗

can also be computed through (7.1).

Example 7.15 Consider again the functions g(x) = ln x and �g(x) = ln�(x). We
know from Example 7.6 that

D ln�(1) = ψ(1) = lim
n→∞

(
ln n−

n∑
k=1

1

k

)
= − γ ,

and that for any integer k ≥ 2

Dk ln�(1) = ψk−1(1) = (−1)k (k − 1)! ζ(k).

We then obtain the following Taylor series expansion

ln�(x + 1) = − γ x +
∞∑

k=2
(−1)k ζ(k)

k
xk , |x| < 1.
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The values of the sequence n �→ σ [g(n)] can be obtained using (7.1) or (7.2). We
get

σ [g] = − 1+ 1

2
ln(2π), σ [g′] = γ,

and for any integer k ≥ 2

σ [g(k)] = (−1)k(k − 2)! (1− (k − 1)ζ(k)) . ♦

Analogues of Euler’s Series Representation of γ Integrating both sides of (7.3)
on (0, 1) (assuming that the series can be integrated term by term), we obtain the
identity

σ [g] =
∞∑

k=1
(�g)(k)(1)

1

(k + 1)! . (7.4)

Similarly, integrating both sides of (7.2) on (0, 1) (assuming again that the series
can be integrated term by term), we obtain the identity

∞∑
k=0

σ [g(k)] 1

(k + 1)! =
∫ 2

1
(2− t) g(t) dt. (7.5)

Taking for instance g(x) = 1
x
in (7.4), we immediately retrieve Euler’s series

representation of γ (see, e.g., Srivastava and Choi [93, p. 272])

γ =
∞∑

k=2
(−1)k ζ(k)

k
.

This formula can also be obtained taking g(x) = 1
x

in (7.5) and using the
straightforward identity

σ [g(k)] = (−1)kk!
(
ζ(k + 1)− 1

k

)
, k ∈ N

∗.

Considering different functions g(x) in (7.4) and (7.5) enables one to derive
various interesting identities. A few applications are given in the following example.

Example 7.16 Taking g(x) = ψ(x) in (7.5) and using the straightforward identity

σ [g(k)] = σ [ψk] = (−1)k−1(k − 1)(k − 1)! ζ(k) k ∈ N, k ≥ 2,
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we obtain

∞∑
k=2

(−1)k k − 1

k(k + 1)
ζ(k) = 2− ln(2π) .

Similarly, taking g(x) = ln x and then g(x) = ln�(x) in (7.4) and (7.5) we obtain
the identities

∞∑
k=2

(−1)k 1

k(k + 1)
ζ(k) = 1

2
γ − 1+ 1

2
ln(2π) ,

∞∑
k=2

(−1)k 1

(k + 1)(k + 2)
ζ(k) = 1

2
+ 1

6
γ − 2 lnA ,

∞∑
k=2

(−1)k k − 1

k(k + 1)(k + 2)
ζ(k) = 5

4
− 1

4
ln(2π)− 3 lnA ,

where A is Glaisher-Kinkelin’s constant; see also Srivastava and Choi [93, Section
3.4]. ♦

7.3 Finding Solutions from Derivatives

Given r ∈ N
∗ and a function g ∈ Cr , a solution f ∈ Cr to the equation �f = g

can sometimes be found more easily by first searching for an appropriate solution
ϕ ∈ C0 to the equation �ϕ = g(r) and then calculating f as an rth antiderivative of
ϕ.

Let us first examine a very simple example to illustrate to which extent this
approach can be easily and usefully applied.

Example 7.17 Let g : R+ → R be defined by the equation

g(x) =
∫ x

1
ln t dt for x > 0.

Suppose that we search for a simple expression for the indefinite sum �g. We can
apply Proposition 7.7 and observe that g′ lies in C∞ ∩ D1 ∩ K∞ and hence that g

lies in C∞ ∩D2 ∩K∞. Moreover, we have

(�g)′(x) = c +�g′(x) = c + ln�(x)
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for some c ∈ R. Thus, we obtain

�g(x) = c(x − 1)+
∫ x

1
ln�(t) dt.

To find the value of c, we then observe that

0 = g(1) = ��g(1) = c +
∫ 2

1
ln�(t) dt

and hence c = 1− 1
2 ln(2π) (see Example 6.5). Alternatively, this value can also be

obtained directly from (7.1); we have

c = g(1)− σ [g′] = − σ [g′] = 1− 1

2
ln(2π) .

Thus, this approach amounts to first searching for a simple expression for �g′, and
then computing �g using an antiderivative of �g′.

Finally, we get

�g(x) = − 1+
(
1− 1

2
ln(2π)

)
x + ψ−2(x),

where ψ−2 is the polygamma function ψ−2(x) = ∫ x

0 ln�(t) dt . ♦
The approach described in Example 7.17 is rather simple and can sometimes be

very efficient. We will refer to this technique as the elevator method. In very basic
terms, to find �g one proceeds as follows.

Step 1. We take the elevator, go down from the ground floor to the rth basement level,
and get the function �g(r) easily.

Step 2. We go back to the ground floor by converting the latter function into the function
sought �g using an rth antiderivative.

�f = g f = �g

↓ ↑
�ϕ = g(r) → ϕ = �g(r)

To our knowledge, this trick was investigated thoroughly by Krull [55] and then
by Dufresnoy and Pisot [34].

In the next theorem we provide a general result based on this idea. This result is
actually very general: it applies to any function g ∈ Cr , even if �g is not defined
(e.g., g(x) = 2x).
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We first observe that if ϕ ∈ C0 is a solution to the equation �ϕ = g(r), then the
map

x �→
∫ x+1

x

ϕ(t) dt − g(r−1)(x)

has a zero derivative and hence it is constant onR+. In particular, it has a finite right
limit at x = 0.

Theorem 7.18 (The Elevator Method) Let r ∈ N
∗, a > 0, g ∈ Cr , and let

ϕ : R+ → R be a continuous solution to the equation �ϕ = g(r). Then there exists
a solution f ∈ Cr to the equation �f = g such that f (r) = ϕ if and only if

∫ a+1

a

ϕ(t) dt = g(r−1)(a). (7.6)

If any of these equivalent conditions holds, then f is uniquely determined (up to an
additive constant) by

f (x) = f (a)+
r−1∑
k=1

ck
(x − a)k

k! +
∫ x

a

(x − t)r−1

(r − 1)! ϕ(t) dt, (7.7)

where, for k = 1, . . . , r − 1,

ck =
r−k−1∑
j=0

Bj

j !
(

g(j+k−1)(a)−
∫ a+1

a

(a + 1− t)r−j−k

(r − j − k)! ϕ(t) dt

)
. (7.8)

Proof Condition (7.6) is clearly necessary. Indeed, we have

∫ a+1

a

ϕ(t) dt = f (r−1)(a + 1)− f (r−1)(a) = g(r−1)(a).

Let us show that it is sufficient. Since ϕ is continuous, there exists f ∈ Cr such
that f (r) = ϕ. Taylor’s theorem then provides the expansion formula (7.7) with
arbitrary parameters ck = f (k)(a) for k = 1, . . . , r − 1. Now we need to determine
the parameters c1, . . . , ck for f to be a solution to the equation �f = g. To this
extent, we need the following claim.

Claim The function f satisfies the equation �f = g if and only if f (r) satisfies the
equation �f (r) = g(r) and �f (j)(a) = g(j)(a) for j = 0, . . . , r − 1.

Proof of the Claim The condition is clearly necessary. To see that it is sufficient,
we simply show by decreasing induction on j that �f (j) = g(j). Clearly, this is
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true for j = r . Suppose that it is true for some integer j satisfying 1 ≤ j ≤ r . For
any x > 0 we have

�f (j−1)(x)−�f (j−1)(a) =
∫ x

a

�f (j)(t) dt =
∫ x

a

g(j)(t) dt

= g(j−1)(x)− g(j−1)(a) = g(j−1)(x)−�f (j−1)(a),

which shows that the result still holds for j − 1. ��
By the claim, f satisfies the equation �f = g if and only if �f (j)(a) = g(j)(a)

for j = 0, . . . , r − 1. When j = r − 1, the latter condition is nothing other
than condition (7.6) and hence it is satisfied. Applying Taylor’s theorem to f (j),
we obtain

f (j)(a + 1)− f (j)(a) =
r−j−1∑
k=1

1

k! f
(j+k)(a)+

∫ a+1

a

(a + 1− t)r−j−1

(r − j − 1)! ϕ(t) dt ,

and hence we see that the remaining r − 1 conditions are

r−j−1∑
k=1

1

k! cj+k = dj , j = 0, . . . , r − 2,

where

dj = g(j)(a)−
∫ a+1

a

(a + 1− t)r−j−1

(r − j − 1)! ϕ(t) dt, j = 0, . . . , r − 2,

ck = f (k)(a), k = 1, . . . , r − 1.

It is not difficult to see that these r−1 conditions form a consistent triangular system
of r − 1 linear equations in the r − 1 unknowns c1, . . . , cr−1. This establishes the
uniqueness of f up to an additive constant.

Let us now show that formula (7.8) holds. For k = 1, . . . , r − 1, we have

r−k−1∑
j=0

Bj

j ! dj+k−1 =
r−k−1∑
j=0

Bj

j !
r−j−k∑

i=1

1

i! ci+j+k−1.

Replacing i with i − j − k + 1 and then permuting the resulting sums, the latter
expression reduces to

r−k−1∑
j=0

Bj

j !
r−1∑

i=j+k

1

(i − j − k + 1)! ci =
r−1∑
i=k

ci

(i − k + 1)!
i−k∑
j=0

(
i−k+1

j

)
Bj ,



106 7 Derivatives of Multiple log�-Type Functions

that is, using (6.40),

r−1∑
i=k

ci

(i − k + 1)! 0
i−k = ck .

This completes the proof of the theorem. ��
Adding an appropriate constant to ϕ if necessary in Theorem 7.18, we can always

assume that condition (7.6) holds. More precisely, the function ϕ� = ϕ + C, where

C = g(r−1)(a)−
∫ a+1

a

ϕ(t) dt,

satisfies

∫ a+1

a

ϕ�(t) dt = g(r−1)(a).

Example 7.19 Let us see how we can apply Theorem 7.18 to somewhat generalize
Example 7.17. Let g ∈ C0, let G ∈ C1 be defined by the equation

G(x) =
∫ x

1
g(t) dt for x > 0,

and let f ∈ C0 be any solution to the equation �f = g. To find a solution F to the
equation �F = G such that F ′ = f , we just need to apply Theorem 7.18 to the
function G with r = 1 and a = 1. Defining the function

f � = f −
∫ 2

1
f (t) dt ,

we then obtain that the function F ∈ C1 defined by the equation

F(x) =
∫ x

1
f �(t) dt =

∫ x

1
f (t) dt − (x − 1)

∫ 2

1
f (t) dt for x > 0,

is the unique (up to an additive constant) solution to the equation�F = G such that
F ′ = f . For similar results, see Krull [55, p. 254] and Kuczma [58, Section 2]. ♦

The next corollary particularizes the elevator method when the function g lies
in Cr ∩ Dp ∩ Kmax{p,r} for some p ∈ N and r ∈ N

∗. We omit the proof, since it
immediately follows from Theorem 7.5, Proposition 7.7, and Theorem 7.18.

Corollary 7.20 (The Elevator Method) Let g lie in Cr ∩Dp ∩Kmax{p,r} for some
p ∈ N and r ∈ N

∗. Then �g lies in Cr ∩Dp+1 ∩Kmax{p,r} and we have

(�g)(r) −�g(r) = g(r−1)(1)− σ [g(r)].
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(This latter value reduces to−∑∞
k=1 g(r)(k) if r > p.) Moreover, for any a > 0, we

have

�g = fa − fa(1),

where fa ∈ Cr is defined by

fa(x) =
r−1∑
k=1

ck(a)
(x − a)k

k! +
∫ x

a

(x − t)r−1

(r − 1)! (�g)(r)(t) dt

and, for k = 1, . . . , r − 1,

ck(a) =
r−k−1∑
j=0

Bj

j !
(

g(j+k−1)(a)−
∫ a+1

a

(a + 1− t)r−j−k

(r − j − k)! (�g)(r)(t) dt

)
.

Corollary 7.20 has an important practical value. It provides an explicit integral
expression for�g from an explicit expression for�g(r). Setting a = 1 in this result,
we simply obtain

�g(x) =
r−1∑
k=1

ck
(x − 1)k

k! +
∫ x

1

(x − t)r−1

(r − 1)! (�g)(r)(t) dt,

with, for k = 1, . . . , r − 1,

ck =
r−k−1∑
j=0

Bj

j !
(

g(j+k−1)(1)−
∫ 2

1

(2− t)r−j−k

(r − j − k)! (�g)(r)(t) dt

)
.

The following three examples illustrate the use of Corollary 7.20. In the first one,
we revisit Example 7.17.

Example 7.21 The function

g(x) =
∫ x

1
ln t dt

lies in C∞ ∩D2 ∩K∞. Choosing r = 1 and a = 1 in Corollary 7.20, we get

g′(x) = ln x ,

�g′(x) = ln�(x) ,

(�g)′(x) = ln�(x)+ 1− 1
2 ln(2π),
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and

�g(x) =
(
1− 1

2
ln(2π)

)
(x − 1)+

∫ x

1
ln�(t) dt. ♦

Example 7.22 The function

g(x) =
∫ x

0
(x − t) ln t dt

lies in C∞ ∩ D3 ∩ K∞. Choosing r = 2 and a = 0 (as a limiting value) in
Corollary 7.20, we get

g′′(x) = ln x ,

�g′′(x) = ln�(x) ,

(�g)′′(x) = ln�(x)− 1
2 ln(2π),

and

�g(x) = − (lnA) x − 1

4
ln(2π) x2 +

∫ x

0
(x − t) ln�(t) dt,

where A is Glaisher-Kinkelin’s constant and the integral is the polygamma function
ψ−3(x). (Here we use the identity ψ−3(1) = lnA+ 1

4 ln(2π).)
We can also investigate the asymptotic properties of �g using our results. For

instance, using the generalized Stirling formula (6.21), we also obtain the following
asymptotic behavior of �g

�g(x)+ 1

72
(22x3 − 27x2 + 9x)− 1

48
x2(8x − 15) ln x

− 1

12
(x + 1)2 ln(x + 1)+ 1

48
(x + 2)2 ln(x + 2) → ζ(3)

8π2 as x →∞. ♦

Example 7.23 The function g(x) = arctan(x) lies in C∞∩D1∩K∞. Choosing r =
1 and a = 0 (as a limiting value) in Corollary 7.20, we get (see also Example 5.10)

g′(x) = (x2 + 1)−1 = − �(x + i)−1,

�g′(x) = �ψ(1+ i)− �ψ(x + i),

(�g)′(x) = c − �ψ(x + i),

for some c ∈ R, and hence

�g(x) = c (x − 1)+ � ln�(1+ i)− � ln�(x + i).
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Applying the operator � to both sides of this identity and then setting x = 1, we
obtain c = π

2 . Thus, we have

�g(x) = π

2
(x − 1)+ � ln�(1 + i)− � ln�(x + i).

Some properties of �g can be investigated. For instance, using Corollary 6.12
together with the identity

∫ x

1
arctan(t) dt = x arctan(x)− 1

2
ln(x2 + 1)− π

4
+ 1

2
ln 2 ,

we obtain the inequality

∣∣∣∣�g(x)−
(

x − 1

2

)
arctan(x)+ 1

2
ln(x2 + 1)− 1+ π

4
− � ln�(1 + i)

∣∣∣∣
≤ 1

2
arctan

1

x2 + x + 1

and hence the left side approaches zero as x → ∞, which provides the asymptotic
behavior of the function �g for large values of its argument. ♦

7.4 An Alternative Uniqueness Result

The following theorem provides a uniqueness result for higher order differentiable
solutions to the equation �f = g. These solutions can be computed from their
derivatives using Theorem 7.18. We first state a surprising and useful fact.

Fact 7.24 A periodic function ω : R+ → R is constant if and only if it lies in K0.
In particular, if ϕ1, ϕ2 : R+ → R are two solutions to the equation �ϕ = g such
that ϕ1 − ϕ2 lies in K0, then ϕ1 − ϕ2 is constant.

Theorem 7.25 (Uniqueness) Let r ∈ N
∗ and g ∈ Cr , and assume that there exists

ϕ ∈ Cr such that �ϕ = g and ϕ(r) ∈ R0
N

. Then, the following assertions hold.

(a) For each x > 0, the series
∑∞

k=0 g(r)(x + k) converges and we have

ϕ(r)(x) = −
∞∑

k=0
g(r)(x + k) .

(b) For any f ∈ Cr ∩Kr−1 such that �f = g, we have f = c+ ϕ for some c ∈ R.

Proof Assertion (a) follows immediately from (3.2). Now, let f ∈ Cr ∩ Kr−1 be
such that �f = g. By Lemma 2.6(c), f (r) must lie in K−1. Setting ω = f − ϕ and
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using (3.2) again, we then obtain

ω(r)(x) = f (r)(x)− ϕ(r)(x) = lim
n→∞ f (r)(x + n),

which shows that ω(r) also lies inK−1. By Lemma 2.6(d),ω lies inKr−1 ⊂ K0 and,
since it is 1-periodic, it must be constant by Fact 7.24. This proves assertion (b). ��
Example 7.26 The assumptions of Theorem 7.25 hold if g(x) = ln x, ϕ(x) =
ln�(x), and r = 2. It then follows that all solutions to the equation �f = g that
lie in C2 ∩ K1 are of the form f (x) = c + ln�(x), where c ∈ R. We thus easily
retrieve Bohr-Mollerup’s theorem with the additional assumption that f lies in C2.
It is remarkable that this latter result can be obtained here from a very elementary
theorem that relies only on Lemma 2.6 and Fact 7.24. ♦
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Chapter 8
Further Results

As discussed in the first chapter, the main objective of our work is to generalize
Krull-Webster’s theory to multiple log�-type functions and explore the properties
of these functions that are analogues of classical properties of the gamma function.

In the previous chapters, we have presented and discussed several results related
to these functions, including their differentiation and integration properties as well
as important results on their asymptotic behaviors.

We are now in a position to explore further properties of multiple log�-type
functions. More precisely, in this chapter we provide for these functions analogues
of Euler’s infinite product, Euler’s reflection formula, Gauss’ multiplication for-
mula, Gautschi’s inequality, Raabe’s formula, Wallis’s product formula, Webster’s
functional equation, and Weierstrass’ infinite product for the gamma function.
We also discuss analogues of Fontana-Mascheroni’s series and Gauss’ digamma
theorem and provide a Gregory’s formula-based series representation, a general
asymptotic expansion formula, and a few related results.

8.1 Eulerian Form

Let g lie in Dp ∩ Kp for some p ∈ N. As we already observed in Chap. 1,
the representation of �g as the pointwise limit of the sequence n �→ f

p
n [g] is

the analogue of Gauss’ limit for the gamma function. Using identity (3.8), we
immediately see that this form of �g can be translated into a series, namely

�g(x) = f
p
1 [g](x)−

∞∑
k=1

ρ
p+1
k [g](x), x > 0. (8.1)
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It is a simple exercise to see that, when g(x) = ln x and p = 1, this latter formula
reduces to the following series representation of the log-gamma function

ln�(x) = − ln x −
∞∑

k=1

(
ln(x + k)− ln k − x ln

(
1+ 1

k

))
. (8.2)

Its multiplicative version is nothing other than the classical Eulerian form (or Euler’s
product form) of the gamma function (see, e.g., Srivastava and Choi [93, p. 3]). We
recall this form in the following proposition.

Proposition 8.1 (Eulerian Form of the Gamma Function) The following identity
holds

�(x) = 1

x

∞∏
k=1

(1+ 1/k)x

1+ x/k
, x > 0.

We thus see that, for any multiple log�-type function, the series representation
(8.1) is the analogue of the Eulerian form of the gamma function in the additive
notation. Moreover, we have shown in Theorem 7.5 that this series can be
differentiated term by term on R+. We have also shown in Proposition 5.18 that
this series can be integrated term by term on any bounded interval of [0,∞). Let us
state these important facts in the following theorem.

Theorem 8.2 (Eulerian Form) Let g lie in Dp ∩ Kp for some p ∈ N. The
following assertions hold.

(a) For any x > 0 we have

�g(x) = − g(x)+
p∑

j=1

(
x
j

)
�j−1g(1)−

∞∑
k=1

⎛
⎝g(x + k)−

p∑
j=0

(
x
j

)
�jg(k)

⎞
⎠

and the series converges uniformly on any bounded subset of [0,∞).
(b) If g lies in C0, then �g lies in C0 and the series above can be (repeatedly)

integrated term by term on any bounded interval of [0,∞).
(c) If g lies in Cr ∩ Kmax{p,r} for some r ∈ N, then �g lies in Cr and the series

above can be differentiated term by term up to r times.

Proof Assertion (a) follows from identity (3.8) and the existence Theorem 3.6
(see also Remark 3.7). Assertion (b) follows from Proposition 5.18, especially its
assertion (c2), and Remark 5.19. Assertion (c) follows from Theorem 7.5. ��
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Example 8.3 Let us apply Theorem 8.2 to g(x) = ln x and p = 1. We immediately
retrieve identity (8.2). Upon differentiation, we also obtain

ψ(x) = − 1

x
−

∞∑
k=1

(
1

x + k
− ln

(
1+ 1

k

))

and, for any r ∈ N
∗,

ψr(x) = (−1)r+1 r!
∞∑

k=0

1

(x + k)r+1
= (−1)r+1 r! ζ(r + 1, x).

Integrating on (0, x), we obtain

ψ−2(x) = x − x ln x −
∞∑

k=1

(
(x + k) ln

(
1+ x

k

)
− x − x2

2
ln

(
1+ 1

k

))
.

Integrating once more on (0, x), we obtain

ψ−3(x) = 1

4
x2(3− 2 ln x)

−
∞∑

k=1

(
1

2
(x + k)2 ln

(
1+ x

k

)
− k

2
x − 3

4
x2 − 1

6
x3 ln

(
1+ 1

k

))
.

We can actually integrate both sides on (0, x) repeatedly as we wish. ♦

8.2 Weierstrassian Form

In the following proposition, we recall an alternative infinite product representation
of the gamma function, which was proposed by Weierstrass. This representation
is usually called the Weierstrass factorization of the gamma function or the
Weierstrass canonical product form of the gamma function (see Artin [11, pp. 15–
16] and Srivastava and Choi [93, p. 1]).

Proposition 8.4 (Weierstrassian Form of the Gamma Function) The following
identity holds

�(x) = e−γ x

x

∞∏
k=1

e
x
k

1+ x
k

, x > 0. (8.3)
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We now show that this factorization can be generalized to any log�p-type
function that is of class Cp. This new result is presented in the following two
theorems, which deal with the cases p = 0 and p ≥ 1 separately. We observe
that the special case when p = 1 was previously established by John [49, Theorem
B’] and in the multiplicative notation by Webster [98, Theorem 7.1].

It is important to note that, just as in Theorem 8.2, the partial sums that define the
series of the theorems below are nothing other than the sequence n �→ f

p
n [g](x).

Thus, these series can be integrated and differentiated term by term.

Theorem 8.5 (Weierstrassian Form When deg g = −1) Let g lie in C0∩D0∩K0.
The following assertions hold.

(a) We have γ [g] = σ [g].
(b) For any x > 0 we have

�g(x) = σ [g] − g(x)−
∞∑

k=1

(
g(x + k)−

∫ k+1

k

g(t) dt

)

and the series converges uniformly on any bounded subset of [0,∞).
(c) The function �g lies in C0 and the series above can be (repeatedly) integrated

term by term on any bounded interval of [0,∞).
(d) If g lies in Cr ∩Kr for some r ∈ N, then �g lies in Cr and the series above can

be differentiated term by term up to r times.

Proof Assertion (a) follows from Proposition 6.36. Assertion (b) follows from
Theorem 8.2 and identity (6.43). Assertions (c) and (d) follow from Theorem 8.2.

��
To establish the second theorem (the case when deg g ≥ 0), we need the

following technical lemma.

Lemma 8.6 Let g lie in C1 ∩Dp ∩Kp for some p ∈ N
∗. Then

�g(x)−
p−2∑
j=0

Gj�
jg′(x) → 0 as x →∞.

If, in addition, g ∈ Cp−1, then

�p−1g(x)− g(p−1)(x) → 0 as x →∞.

Proof By Proposition 4.12, we have that g′ lies in C0 ∩ Dp−1 ∩ Kp−1. The first
convergence result then follows immediately from the application of (6.22) to g′.
That is,

Jp−1[g′](x) → 0 as x →∞.
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Let us now assume that g ∈ Cp−1. By Propositions 4.11 and 4.12, for every i ∈
{0, . . . , p − 2} the function

gi = �ig(p−2−i)

lies in C1 ∩D2 ∩K2 and hence, applying the first result to gi , we obtain that

�gi(x)− g′i (x) → 0 as x →∞.

Summing these limits for i = 0, . . . , p − 2, we obtain the claimed limit. ��
Theorem 8.7 (Weierstrassian Form When deg g ≥ 0) Let g lie in Cp∩Dp ∩Kp

with degg = p − 1 for some p ∈ N
∗. The following assertions hold.

(a) We have γ [g(p)] = σ [g(p)] = g(p−1)(1)− (�g)(p)(1).
(b) For any x > 0 we have

�g(x) =
p−1∑
j=1

(
x
j

)
�j−1g(1)+ (x

p

)
(�g)(p)(1)

−g(x)−
∞∑

k=1

⎛
⎝g(x + k)−

p−1∑
j=0

(
x
j

)
�jg(k)− (x

p

)
g(p)(k)

⎞
⎠

and the series converges uniformly on any bounded subset of [0,∞).
(c) The function �g lies in Cp and the series above can be (repeatedly) integrated

term by term on any bounded interval of [0,∞).
(d) If g lies in Cmax{p,r} ∩ Kmax{p,r} for some r ∈ N, then �g lies in Cmax{p,r} and

the series above can be differentiated term by term up to max{p, r} times.

Proof By Proposition 4.12, we have that g(p) lies in C0 ∩ D0 ∩ K0. Assertion (a)
then follows from Propositions 6.36 and 7.7. Now, using (6.43) we get

γ [g(p)] =
∞∑

k=1
(g(p)(k)−�g(p−1)(k)).

Using Theorem 8.2, we then obtain

�g(x) =
p−1∑
j=1

(
x
j

)
�j−1g(1)+ (x

p

) (
g(p−1)(1)− γ [g(p)]

)

−g(x)− lim
n→∞

n−1∑
k=1

⎛
⎝g(x + k)−

p−1∑
j=0

(
x
j

)
�jg(k)− (x

p

)
g(p)(k)

⎞
⎠

+ lim
n→∞

(
x
p

) (
�p−1g(n)− g(p−1)(n)

)
,
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where the latter limit is zero by Lemma 8.6. This proves assertion (b). Assertions
(c) and (d) follow from Theorem 8.2. ��
Example 8.8 Let us apply Theorem 8.7 to g(x) = ln x and p = 1. We immediately
get

ln�(x) = − γ x − ln x −
∞∑

k=1

(
ln(x + k)− ln k − x

k

)
,

which is the additive version of theWeierstrassian form (8.3) of the gamma function.
It is remarkable that we can now retrieve this formula in an effortless way. Upon
differentiation, we also obtain (see, e.g., Srivastava and Choi [93, p. 24])

ψ(x) = − γ − 1

x
−

∞∑
k=1

(
1

x + k
− 1

k

)
.

Integrating on (0, x), we obtain

ψ−2(x) = − γ
x2

2
+ x − x ln x −

∞∑
k=1

(
(x + k) ln

(
1+ x

k

)
− x − x2

2k

)
.

Integrating once more on (0, x), we obtain

ψ−3(x) = 1

12
x2(9− 2γ x − 6 ln x)

−
∞∑

k=1

(
1

2
(x + k)2 ln

(
1+ x

k

)
− k

2
x − 3

4
x2 − x3

6k

)
.

Just as in Example 8.3, we can integrate both sides on (0, x) repeatedly as we wish.
♦

Let us end this section with an aside about some potential consequences of the
technical Lemma 8.6.

Remark 8.9 If g lies in C1 ∩ Dp ∩ Kp for some p ∈ N
∗, then by Propositions 4.8

and 4.12 we have g′ ∈ Rp−1
R

. That is, for any a ≥ 0

g′(x + a)−
p−2∑
j=0

(
a
j

)
�jg′(x) → 0 as x →∞.
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Combining this result with the first part of Lemma 8.6, we can derive surprising
limits. For instance, we obtain for any p ∈ {1, 2, 3}

�g(x)− g′
(
x + 1

2

)
→ 0 as x →∞.

This latter limit has the following interpretation. The mean value theorem tells us
that �g(x) = g′(x + ξx) for some ξx ∈ (0, 1). The limit above then says that

g′(x + ξx)− g′(x + 1
2 ) → 0 as x →∞.

In particular, if g lies in C2 and for instance eventually satisfies g′′(x) ≥ c for some
c > 0, then

c

∣∣∣∣ξx − 1

2

∣∣∣∣ ≤
∣∣∣∣∣
∫ ξx

1
2

g′′(x + t) dt

∣∣∣∣∣
= |g′(x + ξx)− g′(x + 1

2 )| → 0 as x →∞,

which shows that ξx → 1
2 as x →∞. ♦

8.3 Gregory’s Formula-Based Series Representation

The following proposition provides series expressions for �g and σ [g] in terms of
Gregory’s coefficients (see also Proposition D.2 in Appendix D). This proposition
follows from the next lemma, which in turn immediately follows from Corol-
lary 6.12.

Lemma 8.10 Let g lie in C0 ∩ Dp ∩ Kq for some p, q ∈ N such that p ≤ q . Let
x > 0 be so that for k = p, . . . , q the function g is k-convex or k-concave on
[x,∞). Then we have

|J k+1[�g](x)| ≤ Gk |�kg(x)| , k = p, . . . , q.

Proposition 8.11 Let g lie in C0 ∩Dp ∩K∞ for some p ∈ N. Let x > 0 be so that
for every integer q ≥ p the function g is q-convex or q-concave on [x,∞). Suppose
also that the sequence q �→ �qg(x) is bounded. Then we have

J q+1[�g](x) → 0 as q →N ∞,
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that is,

�g(x) = σ [g] +
∫ x

1
g(t) dt −

∞∑
n=1

Gn �n−1g(x). (8.4)

In particular, if the assumptions above are satisfied for x = 1, then we have

σ [g] =
∞∑

n=1
Gn �n−1g(1). (8.5)

Proof This result is an immediate consequence of Lemma 8.10 and the fact that the
sequence n �→ Gn decreases to zero. Identity (8.4) then follows from (6.18). ��
Example 8.12 Applying Proposition 8.11 to the function g(x) = ln x with p = 1,
we obtain the following series representation of the log-gamma function for x > 0

ln�(x) = 1

2
ln(2π)− x + x ln x −

∞∑
n=0

Gn+1 �n ln x (8.6)

= 1

2
ln(2π)− x + x ln x −

∞∑
n=0

|Gn+1|
n∑

k=0
(−1)k(n

k

)
ln(x + k),

where we have used the classical identity (see, e.g., Graham et al. [41, p. 188])

�nf (x) =
n∑

k=0
(−1)n−k

(
n
k

)
f (x + k).

Equivalently, using the Binet function J (x), identity (8.6) can take the form

J (x) = −
∞∑

n=1
|Gn+1|

n∑
k=0

(−1)k(n
k

)
ln(x + k), x > 0,

where, for any n ∈ N
∗, the inner sum also reduces to the following integral (see,

e.g., [41, p. 192])

(−1)n�n ln x = −
∫ ∞

0

e−xt

t

(
1− e−t

)n
dt , n ∈ N

∗.

In particular,

|�n ln x| ≤
∫ ∞

0

e−xt

t

(
1− e−t

)
dt = � ln x = ln

(
1+ 1

x

)
.
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In the multiplicative notation, identity (8.6) takes the following form

�(x) = √2π e−x xx− 1
2

(
x + 1

x

) 1
12
(

(x + 2)x

(x + 1)2

)− 1
24

×
(

(x + 3)(x + 1)3

(x + 2)3x

) 19
720

. . . .

Further infinite product representations and approximations of the gamma function
can be found for instance in Feng and Wang [36]. ♦

8.4 Analogue of Fontana-Mascheroni’s Series

Interestingly, when g(x) = 1
x
and p = 0, identity (8.5) reduces to the well-known

formula

γ =
∞∑

n=1

|Gn|
n

,

where γ is Euler’s constant and the series is called Fontana-Mascheroni’s series
(see, e.g., Blagouchine [20, p. 379]). Thus, the series representation of the asymp-
totic constant σ [g] given in (8.5) provides the analogue of Fontana-Mascheroni’s
series for any function g satisfying the assumptions of Proposition 8.11.

Example 8.13 The analogue of Fontana-Mascheroni’s series for the function
g(x) = ln x can be obtained by setting x = 1 in (8.6). We obtain

∞∑
n=0

|Gn+1|
n∑

k=0
(−1)k(n

k

)
ln(k + 1) = − 1+ 1

2
ln(2π),

or equivalently (see Example 8.12),

∞∑
n=0

|Gn+1|
∫ ∞

0

e−t

t

(
1− e−t

)n
dt = 1− 1

2
ln(2π). ♦

The following proposition provides a way to construct a function g(x) that has a
prescribed associated asymptotic constant σ [g] given in the form (8.5).

Proposition 8.14 Suppose that the series

S =
∞∑

n=1
Gn sn
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converges for a given real sequence n �→ sn and let g : R+ → R be such that

g(n) =
n∑

k=1

(
n−1
k−1
)
sk , n ∈ N

∗. (8.7)

If g satisfies the assumptions of Proposition 8.11 with x = 1, then the following
assertions hold.

(a) S = σ [g].
(b) �g(n) =∑n−1

k=1
(
n−1
k

)
sk for any n ∈ N

∗.
(c) sn = �n−1g(1) = �n�g(1) for any n ∈ N

∗.

Proof Identity (8.7) can take the following alternative form

g(n+ 1) =
n∑

k=0

(
n
k

)
sk+1 , n ∈ N.

Using the classical inversion formula (Graham et al. [41, p. 192]), we then obtain

sn+1 =
n∑

k=0
(−1)n−k

(
n
k

)
g(k + 1) = �ng(1) , n ∈ N.

This establishes assertion (c) and then assertion (a) by Proposition 8.11. Assertion
(b) is straightforward using (5.2). ��
Example 8.15 Let us apply Proposition 8.14 to the series

S =
∞∑

n=1

|Gn|
n2

,

that is,

S =
∞∑

n=1
Gn sn with sn = (−1)n−1 1

n2
.

Let g : R+ → R be a function such that

g(n) =
n∑

k=1
(−1)k−1(n−1

k−1
) 1

k2
, n ∈ N

∗,

or equivalently (see Graham et al. [41, p. 281] or Merlini et al. [72, Lemma 4.1]),

g(n) = 1

n
Hn , n ∈ N

∗.
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We naturally take g(x) = 1
x

Hx , from which we can derive (see, e.g., Graham et al.
[41, p. 280])

�g(x) = π2

12
− 1

2
ψ1(x)+ 1

2
H 2

x−1 .

Thus, we have S = σ [g]. Combining this result with the definition of σ [g], we
derive the surprising identity (compare with Blagouchine and Coppo [22, pp. 469–
470])

∞∑
n=1

|Gn|
n2

= π2

12
− 1

2
+ 1

2

∫ 1

0
H 2

t dt .

Proceeding similarly, with a bit of computation one also finds

∞∑
n=1

|Gn|
n3

= 1

3
ζ(3)+ π2

12
γ − 5

12
+ 1

6

∫ 1

0
H 3

t dt .

Those formulas are worth comparing with the well-known identities (see Sect. 10.2)

∞∑
n=1

|Gn|
n

= γ =
∫ 1

0
Ht dt .

For similar formulas, see also Blagouchine and Coppo [22]. ♦
Example 8.16 Let us apply Proposition 8.14 to the series

S =
∞∑

n=1

|Gn|
n+ a

,

where a > 0. For this series, we can take

g(x) = B(x, a + 1) and �g(x) = 1

a
− B(x, a),

where (x, y) �→ B(x, y) is the beta function. We then derive the identity

∞∑
n=1

|Gn|
n+ a

= 1

a
−
∫ 1

0
B(x + 1, a) dx.
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Using the definition of the beta function as an integral, this identity also reads

∞∑
n=1

|Gn|
n+ a

= 1

a
+
∫ 1

0

xa

ln(1− x)
dx.

Setting a = 1
2 for instance, we obtain

∞∑
n=1

|Gn|
2n+ 1

= 1+ 1

2

∫ 1

0

√
x

ln(1− x)
dx.

We also observe that the decimal expansion of the latter integral is the sequence
A094691 in the OEIS [90]. ♦

8.5 Analogue of Raabe’s Formula

Recall that Raabe’s formula yields, for any x > 0, a simple explicit expression
for the integral of the log-gamma function over the interval (x, x + 1). We state
this result in the following proposition (see Example 6.5). For recent references on
Raabe’s formula, see, e.g., Cohen and Friedman [30, p. 366] and Srivastava and
Choi [93, p. 29].

Proposition 8.17 (Raabe’s Formula) The following identity holds

∫ x+1

x

ln�(t) dt = 1

2
ln(2π)+ x ln x − x , x > 0. (8.8)

Clearly, identities (6.10) and (6.11) provide the analogue of Raabe’s formula for
any continuousmultiple log�-type function�g. We recall this important and useful
formula in the next proposition.

Proposition 8.18 (Analogue of Raabe’s Formula) For any function g lying in
C0 ∩ dom(�), we have

∫ x+1

x

�g(t) dt = σ [g] +
∫ x

1
g(t) dt, x > 0, (8.9)

where σ [g] is the asymptotic constant associated with g and defined by the equation

σ [g] =
∫ 1

0
�g(t + 1) dt . (8.10)
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The challenging part in this context is to find a nice expression for σ [g]. For
instance, setting x = 1 in Raabe’s formula (8.8), we obtain the identity

σ [ln] =
∫ 1

0
ln�(t + 1) dt = − 1+ 1

2
ln(2π) .

However, in general such a closed-form expression for σ [g] is not easy to derive.
An expression for σ [g] as a limit can be obtained using Proposition 5.18(c2).

Specifically, if g lies in C0 ∩Dp ∩Kp for some p ∈ N, then we have

σ [g] = lim
n→∞

∫ 1

0
(f

p
n [g](t)+ g(t)) dt

= lim
n→∞

⎛
⎝n−1∑

k=1
g(k)−

∫ n

1
g(t) dt +

p∑
j=1

Gj�
j−1g(n)

⎞
⎠ , (8.11)

which is nothing other than the restriction of the generalized Stirling formula (6.21)
to the natural integers.

Series expressions for σ [g] can also be obtained by integrating on the interval
(0, 1) the series representations of �g + g given in Theorems 8.2 and 8.7. For
instance, we have

σ [g] =
p∑

j=1
Gj �j−1g(1)−

∞∑
k=1

⎛
⎝
∫ k+1

k

g(t) dt −
p∑

j=0
Gj �jg(k)

⎞
⎠ . (8.12)

Note also that, under certain assumptions, the latter series converges to zero as
p →N ∞. In this case, (8.12) reduces to the analogue of Fontana-Mascheroni’s
series; see Proposition 8.11.

Example 8.19 Applying (8.11) and (8.12) to g(x) = 1
x
and p = 0, we obtain

σ [g] = lim
n→∞

(
n∑

k=1

1

k
− lnn

)
=

∞∑
k=1

(
1

k
− ln

(
1+ 1

k

))
,

which is Euler’s constant γ . Identity (8.9) then immediately provides the following
analogue of Raabe’s formula

∫ x+1

x

ψ(t) dt = ln x , x > 0. ♦

The following proposition provides interesting identities that involve the
antiderivative of �g, where g is any function lying in C0 ∩ dom(�). It also yields a
formula for �G, where G is the antiderivative of g. This result is worth comparing
with Example 7.19.
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Proposition 8.20 Let g lie in C0∩Dp ∩Kp for some p ∈ N and define the function
G : R+ → R by the equation

G(x) =
∫ x

1
g(t) dt for x > 0.

Then G lies in C1 ∩Dp+1 ∩Kp+1. Moreover, for any x > 0 we have

�G(x) =
∫ x

1
�g(t) dt − σ [g] (x − 1)

and

�x

∫ x+1

x

�g(t) dt =
∫ x

1
�g(t) dt .

Proof We have thatG lies in C1∩Dp+1∩Kp+1 by Proposition 4.12.We then obtain

(�G)′ = �g − σ [g]

by Proposition 7.7. This establishes the first formula. Combining it with (8.9), we
obtain

�x

∫ x+1

x

�g(t) dt = σ [g] (x − 1)+�G(x) =
∫ x

1
�g(t) dt,

that is, the second formula. ��
Example 8.21 Apply Proposition 8.20 to the function g(x) = ln x with p = 1, we
obtain

�x

∫ x+1

x

ln�(t) dt =
∫ x

1
ln�(t) dt = ψ−2(x)− ψ−2(1).

Using Raabe’s formula (8.8) in the left-hand side, we finally obtain

1

2
ln(2π)(x − 1)+�x(x ln x)− (x2

) = ψ−2(x)− ψ−2(1),

fromwhich we immediately derive a closed-form expression for�x(x ln x); see also
Sect. 12.5. ♦

We now present a proposition, immediately followed by a corollary that provides
interesting characterizations of multiple �-type functions based on the analogue of
Raabe’s formula. Example 8.24 below illustrates this characterization in the special
case of the log-gamma function.
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Proposition 8.22 Let h lie in C1∩Dp+1∩Kp+1 for some p ∈ N and let f : R+ →
R be a function. Then f lies in C0 ∩Kp and satisfies the equation

∫ x+1

x

f (t) dt = h(x) , x > 0, (8.13)

if and only if f = (�h)′.

Proof The sufficiency is trivial. Let us prove the necessity. Differentiating both
sides of (8.13), we obtain �f = h′. Using the existence Theorem 3.6 and then
Proposition 7.7, we then see that f = c + (�h)′ for some c ∈ R. Using (8.13)
again, we then see that c must be 0. ��
Corollary 8.23 (A Characterization Result) Let g lie in C0 ∩ Dp ∩ Kp and let
f : R+ → R be a function. Then f lies in C0 ∩Kp and satisfies the equation

∫ x+1

x

f (t) dt = σ [g] +
∫ x

1
g(t) dt , x > 0,

if and only if f = �g.

Proof The sufficiency is trivial by (8.9). Let us prove the necessity. Define the
function h : R+ → R by the equation

h(x) = σ [g] +
∫ x

1
g(t) dt for x > 0.

Then, h clearly lies in C1 ∩ Dp+1 ∩ Kp+1. Using Proposition 8.22 and then
Proposition 8.20, we immediately obtain that f = (�h)′ = �g. ��
Example 8.24 Applying Corollary 8.23 to the function g(x) = ln x with p = 1, we
obtain the following alternative characterization of the gamma function. A function
f : R+ → R lies in C0 ∩K1 and satisfies the equation

∫ x+1

x

f (t) dt = 1

2
ln(2π)+ x ln x − x , x > 0,

if and only if f (x) = ln�(x). ♦

8.6 Analogue of Gauss’ Multiplication Formula

In the following proposition, we recall the Gauss multiplication formula for the
gamma function, also called Gauss’ multiplication theorem (see Artin [11, p. 24]).
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Proposition 8.25 (Gauss’ Multiplication Formula) For any integer m ≥ 1, we
have the following identity

m−1∏
j=0

�

(
x + j

m

)
= �(x)

mx− 1
2

(2π)
m−1
2 , x > 0. (8.14)

When m = 2, identity (8.14) reduces to Legendre’s duplication formula

�
(x

2

)
�

(
x + 1

2

)
= �(x)

2x−1
√

π , x > 0.

Remark 8.26 For any fixed m ≥ 2, the Gauss multiplication formula (8.14) enables
one to retrieve easily the value of the asymptotic constant associated with the
function g(x) = ln x. In particular, this value can be retrieved from Legendre’s
duplication formula. Indeed, taking the logarithm of both sides of (8.14) and then
integrating on x ∈ (0, 1), we obtain

m−1∑
j=0

∫ 1

0
ln�

(
x + j

m

)
dx = m− 1

2
ln(2π)+

∫ 1

0
ln�(x) dx.

Using the change of variable t = x+j
m

in the left-hand integral, we then obtain
almost immediately the following identity

∫ 1

0
ln�(t) dt = 1

2
ln(2π).

Combining this result with (8.9), we retrieve σ [ln] = −1+ 1
2 ln(2π). ♦

Webster [98, Theorem 5.2] showed how an analogue of Gauss’ multiplication
formula can be partially constructed for any �-type function. His proof is very short
and essentially relies on the uniqueness and existence theorems in the special case
when p = 1. We now show how Webster’s approach can be further extended to all
multiple �-type functions. As usual, we use the additive notation.

Theorem 8.27 (Analogue of Gauss’ Multiplication Formula) Let g lie in
dom(�) and let m ∈ N

∗. Define also the function gm : R+ → R by the equation

gm(x) = g
( x

m

)
for x > 0.

Then we have

m−1∑
j=0

�g

(
x + j

m

)
=

m∑
j=1

�g

(
j

m

)
+ �gm(x), x > 0, (8.15)
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and

�gm(m) =
m−1∑
j=1

g

(
j

m

)
.

Proof Let g lie in Dp ∩ Kp for some p ∈ N. Then gm also lies in Dp ∩ Kp by
Corollary 4.21. Now, we can readily check that the function f : R+ → R defined
by

f (x) =
m−1∑
j=0

�g

(
x + j

m

)
−

m∑
j=1

�g

(
j

m

)

is a solution to the equation �f = gm that lies in Kp and such that f (1) = 0. By
the uniqueness Theorem 3.1, it follows that f = �gm. This establishes (8.15). The
last identity follows immediately. ��

Theorem 8.27 actually provides a partial solution to the problem of finding the
analogue of Gauss’ multiplication formula. A more complete result would also
provide a closed-form expression for the right-hand side of identity (8.15).

Unfortunately, no general method to provide simple or compact expressions for
�gm seems to be known. However, such expressions can sometimes be found.

For instance, when g(x) = ln x, we obtain

gm(x) = ln x − lnm and �gm(x) = ln�(x)− (x − 1) lnm.

Substituting this latter expression in identity (8.15), we immediately obtain the
formula

m−1∑
j=0

ln�

(
x + j

m

)
=

m∑
j=1

ln�

(
j

m

)
+ ln�(x)− (x − 1) lnm , (8.16)

that is, in the multiplicative notation,

m−1∏
j=0

�

(
x + j

m

)
= �(x)

mx−1
m∏

j=1
�

(
j

m

)
, x > 0.

It remains to find a nice expression for the latter product, and more generally for
the right-hand sum of identity (8.15). On this issue, we have the following useful
result.
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Proposition 8.28 Let g lie in C0∩dom(�) and let m ∈ N
∗. Define also the function

gm : R+ → R by the equation gm(x) = g( x
m

) for x > 0. Then we have

m∑
j=1

�g

(
j

m

)
= m σ [g] −

∫ m+1

m

�gm(t) dt

= m σ [g] − σ [gm] −m

∫ 1

1/m

g(t) dt.

Proof The first identity can be proved simply by integrating both sides of (8.15) on
x ∈ (m,m + 1). Indeed, using the change of variable t = x+j

m
and identity (8.10),

the left-hand side reduces to

m

m−1∑
j=0

∫ 1+ j+1
m

1+ j
m

�g(t) dt = m

∫ 2

1
�g(t) dt = m σ [g].

The second identity then follows from a simple application of (8.9). ��
Example 8.29 Let us apply Proposition 8.28 to the function g(x) = ln x. We obtain

m∑
j=1

ln�

(
j

m

)
= − 1

2
lnm+ 1

2
(m− 1) ln(2π).

Substituting this expression in (8.16) and then translating the resulting formula into
the multiplicative notation, we retrieve Gauss’ multiplication formula (8.14). ♦

In the following proposition, we provide a convergence result for the function
defined in the left-hand side of (8.15), which does not require the computation of
�gm. This result simply reduces to the generalized Stirling formula when m = 1.

Proposition 8.30 Let g lie in C0∩Dp∩Kp for some p ∈ N and let m ∈ N
∗. Define

also the function gm : R+ → R by the equation gm(x) = g( x
m

) for x > 0. Then we
have

m−1∑
j=0

�g

(
x + j

m

)
−
∫ x

1
gm(t) dt +

p∑
j=1

Gj �j−1gm(x) → m σm[g]

as x →∞, where

σm[g] = σ [g] −
∫ 1

1/m

g(t) dt.
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Proof Theorem 8.27 and Proposition 8.28 provide the following identity

�gm(x)− σ [gm] =
m−1∑
j=0

�g

(
x + j

m

)
−m σm[g] x > 0.

The result is then an immediate application of the generalized Stirling formula
(Theorem 6.13) to the function �gm (recall that gm lies in C0 ∩Dp ∩Kp). ��

We end this section with three corollaries. Corollaries 8.31 and 8.32 yield
properties of the derivatives and antiderivatives of the function g in the context
of the analogue of Gauss’ multiplication formula. Corollary 8.33 shows how the
antiderivative of g can be expressed as a limit involving the function �gm.

Corollary 8.31 Let g lie in Cr ∩ Dp ∩ Kmax{p,r} for some p ∈ N and r ∈ N
∗. Let

also m ∈ N
∗ and define the function gm : R+ → R by the gm(x) = g( x

m
). Then

the equation obtained by replacing g with g(r) in (8.15) can also be obtained by
differentiating r times both sides of (8.15).

Proof Differentiating r times both sides of (8.15), multiplying through by mr , and
then using (7.1), we obtain

m−1∑
j=0

�g(r)

(
x + j

m

)
+m(�g)(r)(1) = mr �g(r)

m (x)+mr(�gm)(r)(1).

Setting x = 1, we then get

m∑
j=1

�g(r)

(
j

m

)
+m(�g)(r)(1) = mr(�gm)(r)(1).

Subtracting this latter equation from the former one, we finally get

m−1∑
j=0

�g(r)

(
x + j

m

)
=

m∑
j=1

�g(r)

(
j

m

)
+mr �g(r)

m (x),

which is precisely the equation obtained by replacing g with g(r) in (8.15). ��
Corollary 8.32 Let p ∈ N, m ∈ N

∗, c ∈ R, and g ∈ C0 ∩ Dp ∩ Kp. Define also
the functions G,gm,Gm : R+ → R by the equations

G(x) = c +
∫ x

1
g(t) dt, gm(x) = g

( x

m

)
, Gm(x) = G

( x

m

)
for x > 0.
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Then both functions G and Gm lie in C1 ∩Dp+1 ∩ Kp+1. Moreover, for any x > 0
we have

�Gm(x) = 1

m

∫ x

1
�gm(t) dt + (x − 1)

(
c − 1

m

∫ m+1

m

�gm(t) dt

)
.

Proof The first part follows immediately from Proposition 8.20 and Corollary 4.21.
Now, by definition of Gm we have

Gm(x) = c + 1

m

∫ x

m

gm(t) dt = c + 1

m

(∫ x

1
gm(t) dt −

∫ m

1
gm(t) dt

)
.

The claimed identity can then be established easily using Proposition 8.20 and then
applying identity (8.9). ��
Corollary 8.33 Let g lie in C0 ∩ dom(�). Define also the functions gm : R+ → R

(m ∈ N
∗) by the equation gm(x) = g( x

m
) for x > 0. Then we have

lim
m→∞

�gm(mx)− �gm(m)

m
=
∫ x

1
g(t) dt , x > 0.

Moreover, if g is integrable at 0, then

lim
m→∞

1

m
�gm(mx) =

∫ x

0
g(t) dt , x > 0.

Proof Replacing x with mx in (8.15) and dividing through by m, we obtain

1

m
�gm(mx) = 1

m

m−1∑
j=0

�g

(
x + j

m

)
− 1

m

m∑
j=1

�g

(
j

m

)
.

Letting m →N ∞ in this identity and using (8.9), we see that the first Riemann sum
on the right side converges to

∫ 1

0
�g(x + t) dt = σ [g] +

∫ x

1
g(t) dt

while the second one converges (if g is integrable at 0) to

∫ 1

0
�g(t) dt = σ [g] −

∫ 1

0
g(t) dt.

This establishes the corollary. ��
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8.7 Asymptotic Expansions and Related Results

In this section, we provide and investigate asymptotic expansions of (higher order
differentiable) multiple log�-type functions. We also establish and discuss some
important consequences of these expansions, including a variant of the generalized
Stirling formula and an extension of the so-called Liu formula to multiple log�-type
functions.

To begin with, let us first recall the asymptotic expansion of the log-gamma
function (see, e.g., Gel’fond [39, p. 342] and Srivastava and Choi [93, p. 7]).

Proposition 8.34 For any q ∈ N
∗, we have the following asymptotic expansion as

x →∞

ln�(x) = 1

2
ln(2π)− x +

(
x − 1

2

)
ln x +

q∑
k=1

Bk+1
k(k + 1) xk

+O
(
x−q−1) .

(8.17)

For instance, setting q = 4 in equation (8.17), we obtain

ln�(x) = 1

2
ln(2π)− x +

(
x − 1

2

)
ln x + 1

12x
− 1

360x3 +O
(
x−5
)

.

We now provide a generalization of this result to multiple log�-type functions.
Even more generally, in the next proposition we provide for any integer m ∈ N

∗ an
asymptotic expansion of the function

x �→ 1

m

m−1∑
j=0

�g

(
x + j

m

)
. (8.18)

Proposition 8.35

(a) Let g lie in C1 ∩ Dp ∩ Kmax{p,1} for some p ∈ N. Then, for any m ∈ N
∗ and

any x > 0, we have

1

m

m−1∑
j=0

�g

(
x + j

m

)
=
∫ x+1

x

�g(t) dt − 1

2m
g(x)+ Rm(x) ,

with

Rm(x) = 1

m

∫ 1

0
B1({mt}) (�g)′(x + t) dt
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and

|Rm(x)| ≤ 1

2m

∫ 1

0
|(�g)′(x + t)| dt .

For large x the latter integral reduces to |g(x)|.
(b) If g lie in C2q ∩ Dp ∩ Kmax{p,2q} for some p ∈ N and some q ∈ N

∗. Then, for
any m ∈ N

∗ and any x > 0, we have

1

m

m−1∑
j=0

�g

(
x + j

m

)
=
∫ x+1

x

�g(t) dt − 1

2m
g(x)

+
q∑

k=1

1

m2k

B2k

(2k)! g
(2k−1)(x)+ R

q
m(x) ,

with

R
q
m(x) = − 1

m2q

∫ 1

0

B2q({mt})
(2q)! (�g)(2q)(x + t) dt

and

|Rq
m(x)| ≤ 1

m2q

|B2q |
(2q)!

∫ 1

0
|(�g)(2q)(x + t)| dt .

For large x the latter integral reduces to |g(2q−1)(x)|.
Proof Let us prove assertion (b) first. The first part follows from a straightforward
application of Euler-Maclaurin’s formula (Proposition 6.31) to f = �g, with a =
x, b = x + 1, and N = m. Now, we see that the function (�g)(2q) lies in K(p−2q)+

by Proposition 4.12, and hence also inK−1 by Proposition 4.7. Thus, for sufficiently
large x we obtain

∫ 1

0
|(�g)(2q)(x + t)| dt =

∣∣∣∣
∫ 1

0
(�g)(2q)(x + t) dt

∣∣∣∣
=
∣∣∣(�g)(2q−1)(x + 1)− (�g)(2q−1)(x)

∣∣∣ .
By Proposition 7.7, the latter expression reduces to

∣∣∣�g(2q−1)(x + 1)−�g(2q−1)(x)

∣∣∣ = |g(2q−1)(x)| .
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Assertion (a) can be proved similarly. Here we observe that (�g)′ lies in K(p−1)+
and hence also in K−1. Thus, for sufficiently large x we obtain

∫ 1

0
|(�g)′(x + t)| dt =

∣∣∣∣
∫ 1

0
(�g)′(x + t) dt

∣∣∣∣ = |g(x)|.

This completes the proof. ��
Setting m = 1 in Proposition 8.35, we derive immediately an asymptotic

expansion of the function�g in terms of its trend and the higher order derivatives of
g. As this special case is very important for the applications, we state it in the next
proposition (in which we also use (8.9) to evaluate the integral of �g on (x, x+1)).

Proposition 8.36 The following assertions hold.

(a) Let g lie in C1 ∩Dp ∩Kmax{p,1} for some p ∈ N. Then, for any x > 0 we have

�g(x) = σ [g] +
∫ x

1
g(t) dt − 1

2
g(x)+ R1(x) ,

with

R1(x) =
∫ 1

0
B1(t) (�g)′(x + t) dt

and

|R1(x)| ≤ 1

2

∫ 1

0
|(�g)′(x + t)| dt .

For large x the latter integral reduces to |g(x)|.
(b) If g lie in C2q ∩ Dp ∩ Kmax{p,2q} for some p ∈ N and some q ∈ N

∗. Then, for
any x > 0 we have

�g(x) = σ [g] +
∫ x

1
g(t) dt − 1

2
g(x)+

q∑
k=1

B2k

(2k)! g
(2k−1)(x)+ R

q

1 (x) ,

(8.19)

with

R
q

1 (x) = −
∫ 1

0

B2q(t)

(2q)! (�g)(2q)(x + t) dt
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and

|Rq
1 (x)| ≤ |B2q |

(2q)!
∫ 1

0
|(�g)(2q)(x + t)| dt .

For large x the latter integral reduces to |g(2q−1)(x)|.
Example 8.37 Taking g(x) = ln x and p = 1 in (8.19), we retrieve immediately the
asymptotic expansion given in (8.17). The following equivalent, but more concise,
formulation of this expansion is given in terms of Binet’s function. For any q ∈ N

∗,
we have

J (x) =
q∑

k=1

Bk+1
k(k + 1) xk

+O
(
x−q−1) as x →∞. ♦

Remark 8.38 The following alternative asymptotic expansion of the Riemann sum
(8.18) can be immediately obtained using the general form of Gregory’s formula
(Proposition 6.30). If g lies in C0 ∩ Dp ∩ Kp for some p ∈ N and if it is q-convex
or q-concave on [x,∞) for every integer q ≥ p, then we have

∫ x+1

x

�g(t) dt = 1

m

m−1∑
j=0

�g

(
x + j

m

)
+ 1

m

q∑
k=1

Gk �k−1gm(mx)+ R,

where

|R| ≤ 1

m
Gq

∣∣�qgm(mx)
∣∣ and gm(x) = g

( x

m

)
.

(Compare with Proposition 8.30.) If we set m = 1 in this latter expansion, then we
immediately retrieve the inequality of Lemma 8.10 as well as the Gregory formula-
based series expression for �g given in (8.4). It is then important to note that the
asymptotic expansion (8.19) often leads to divergent series, contrary to its “cousin”
formula (8.4), as already observed in Remark 6.32. For instance, setting x = 1 in
(8.17) leads to a divergent series whereas setting x = 1 in the “cousin” formula (8.6)
leads to an analogue of Fontana-Mascheroni’s series. In this regard, we observe that
the Gregory coefficients have the asymptotic behavior

|Gn| ∼ 1

n(lnn)2
as n →∞ ,

while the Bernoulli numbers satisfy

|B2n| = 2(2n)!
(2π)2n

ζ(2n) ∼ 4
√

πn
( n

πe

)2n
as n→∞;

see, e.g., Graham et al. [41, p. 286]. ♦
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A Variant of the Generalized Stirling Formula Interestingly, from Proposi-
tion 8.35 we can easily derive the following variant of the generalized Stirling
formula.

Proposition 8.39 (A Variant of the Generalized Stirling Formula) Let g lie in
C2q ∩Dp ∩K2q for some q ∈ N

∗ ∪ { 12 } and some p ∈ N satisfying p ≤ 2q− 1. For
any m ∈ N

∗ we have

1

m

m−1∑
j=0

�g

(
x + j

m

)
−
∫ x

1
g(t) dt−

p∑
k=1

Bk

mkk! g
(k−1)(x) → σ [g] as x →∞.

In particular,

�g(x)−
∫ x

1
g(t) dt −

p∑
k=1

Bk

k! g(k−1)(x) → σ [g] as x →∞. (8.20)

Proof For every k ∈ {p, . . . , 2q} we clearly have that g lies in Dk ∩ Kk and
hence g(k) vanishes at infinity by Theorem 4.14(b). The result then follows from
Proposition 8.35. The particular case is obtained by setting m = 1. ��

It is clear that the convergence result (8.20) coincides with the generalized
Stirling formula (6.21) whenever p = 0 or p = 1. Thus, it does not bring anything
new in these cases.

Now, we observe that if g lies in Cmax{2q,r} ∩ Dp ∩ Kmax{2q,r} for some q ∈
N
∗ ∪ { 12 } and some p ∈ N satisfying p ≤ 2q − 1, then the convergence result in

(8.20) still holds if we replace g with g(r) and p with (p − r)+. Moreover, this
modified result can also be obtained by differentiating r times both sides of (8.20)
and then removing the terms that vanish at infinity. This important fact can be easily
proved similarly as for the generalized Stirling formula (see Proposition 7.12 and
the comment that follows it).

Remark 8.40 We now see that the generalized Stirling formula (6.21) could also
be established similarly as its variant (8.20), i.e., using the Gregory formula-based
asymptotic expansion of �g as discussed in Remark 8.38. However, formula (6.21)
is a very elementary consequence of Lemma 2.7, as commented in Remark 6.16. Its
proof is elementary, elegant, and leads to the whole Theorem 6.11, which is a strong
result that also provides inequalities. ♦

The restriction of the limit (8.20) to the natural integers provides the following
alternative formula to compute the asymptotic constant σ [g]. Under the assumptions
of Proposition 8.39, we have

σ [g] = lim
n→∞

(
n−1∑
k=1

g(k)−
∫ n

1
g(t) dt −

p∑
k=1

Bk

k! g(k−1)(n)

)
. (8.21)
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Analogue of Liu’s Formula Liu [64] (see also Mortici [75]) established the
following formula. For any n ∈ N

∗ we have

n! = �(n+ 1) = √
2πn

(n

e

)n

exp

(∫ ∞

n

1
2 − {t}

t
dt

)
.

This formula provides an exact (as opposed to asymptotic) expression for the gamma
function with an integer argument.

We now propose a generalization of this identity to multiple log�-type functions
with real arguments.We call it the generalized Liu formula. Recall first the following
Dirichlet test for convergence of improper integrals (see, e.g., Titchmarsh [96,
p. 21]).

Lemma 8.41 (Dirichlet’s Test) Let a ≥ 0 and let f : R+ → R be so that the
function x �→ ∫ x

a f (t) dt is bounded on [a,∞). Let also g lie in C1∩D0∩K0. Then
the improper integral

∫ ∞

a

f (t)g(t) dt

converges.

Proposition 8.42 (Generalized Liu’s Formula)

(a) If g lies in C2 ∩D1 ∩K2, then for any x > 0 we have

�g(x) = σ [g] +
∫ x

1
g(t) dt − 1

2
g(x)+

∫ ∞

0

(
1
2 − {t}

)
g′(x + t) dt .

(b) If g lies in C2q+1 ∩D2q ∩K2q+1 for some q ∈ N
∗, then for any x > 0 we have

�g(x) = σ [g] +
∫ x

1
g(t) dt − 1

2
g(x)+

q∑
k=1

B2k

(2k)! g
(2k−1)(x)

+
∫ ∞

0

B2q({t})
(2q)! g(2q)(x + t) dt.

Proof Let us prove assertion (b) first. We apply assertion (b) of Proposition 8.36 to
the function g with p = 2q . Thus, for any x > 0 and any n ∈ N we have

R
q

1 (x) =
∫ x+n+1

x+1
B2q({t − x})

(2q)! (�g)(2q)(t) dt

−
∫ x+n+1

x

B2q({t − x})
(2q)! (�g)(2q)(t) dt.
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By Proposition 7.7, we have

(�g)(2q)(t + 1)− (�g)(2q)(t) = g(2q)(t)

and hence we obtain

R
q
1 (x) = S

q
n (x)+ T

q
n (x),

where

S
q
n (x) =

∫ x+n

x

B2q({t − x})
(2q)! g(2q)(t) dt ,

T
q
n (x) = −

∫ x+n+1

x+n

B2q({t − x})
(2q)! (�g)(2q)(t) dt .

Now, we observe that the sequence n �→ S
q
n (x) converges by Dirichlet’s test (see

Lemma 8.41). Indeed, g(2q) lies in C1 ∩D0 ∩K0 by Proposition 4.12, and for every
u ≥ x we have that

∣∣∣∣
∫ u

x

B2q ({t − x})
(2q)! dt

∣∣∣∣ =
∣∣∣∣
∫ u−x

0

B2q({t})
(2q)! dt

∣∣∣∣

=
∣∣∣∣
∫ u−x

�u−x�
B2q({t})
(2q)! dt

∣∣∣∣ ≤ |B2q |
(2q)! ,

where we have used the well-known fact that the integral on (0, 1) of the Bernoulli
polynomial B2q is zero.

Let us now show that the sequence n �→ T
q
n (x) approaches zero as n → ∞.

Using integration by parts, we obtain

T
q
n (x) = −

∫ 1

0

B2q(t)

(2q)! (�g)(2q)(x + n+ t) dt

=
∫ 1

0

B2q+1(t)
(2q + 1)! (�g)(2q+1)(x + n+ t) dt.

Since (�g)(2q+1) lies in K−1, for large n we obtain

|T q
n (x)| ≤ |B2q+1|

(2q + 1)!
∣∣∣∣
∫ 1

0
(�g)(2q+1)(x + n+ t) dt

∣∣∣∣
= |B2q+1|

(2q + 1)!
∣∣∣g(2q)(x + n)

∣∣∣ ,

which approaches zero as n →∞ by Theorem 4.14(b). This proves assertion (b).
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Assertion (a) can be proved similarly by applying assertion (a) of Proposi-
tion 8.36 to function g with p = 1. For any x > 0 and any n ∈ N we have

R1(x) = Sn(x)+ Tn(x),

where

Sn(x) = −
∫ x+n

x

B1({t − x}) g′(t) dt ,

Tn(x) =
∫ x+n+1

x+n

B1({t − x}) (�g)′(t) dt .

We now see that the sequence n �→ Sn(x) converges by Dirichlet’s test.
Moreover, the sequence n �→ Tn(x) approaches zero as n → ∞. Indeed, using
integration by parts we obtain

Tn(x) =
∫ 1

0
B1(t) (�g)′(x + n+ t) dt

= B2

2
g′(x + n)−

∫ 1

0

B2(t)

2
(�g)′′(x + n+ t) dt,

and we conclude the proof as in assertion (b) since g′ lies in C1 ∩D0 ∩K0. ��
Example 8.43 Let us apply assertion (a) of Proposition 8.42 to g(x) = ln x. We
obtain

ln�(x) = 1

2
ln(2π)− x +

(
x − 1

2

)
ln x +

∫ ∞

0

1
2 − {t}
t + x

dt,

or equivalently,

J (x) = J 2[ln ◦�](x) =
∫ ∞

0

1
2 − {t}
t + x

dt,

which extends the original Liu formula to a real argument. ♦
Example 8.44 Applying assertion (a) of Proposition 8.42 to g(x) = 1

x
, we obtain

the following integral expression for the digamma function

ψ(x) = ln x − 1

2x
+
∫ ∞

0

{t} − 1
2

(t + x)2
dt.

This expression seems to be previously unknown. ♦
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Setting x = 1 in Proposition 8.42, we immediately derive an integral represen-
tation of the asymptotic constant σ [g]. We state this observation in the following
corollary.

Corollary 8.45

(a) If g lies in C2 ∩D1 ∩K2, then we have

σ [g] = 1

2
g(1)+

∫ ∞

1

(
{t} − 1

2

)
g′(t) dt .

(b) If g lies in C2q+1 ∩D2q ∩K2q+1 for some q ∈ N
∗, then we have

σ [g] = 1

2
g(1)−

q∑
k=1

B2k

(2k)! g
(2k−1)(1)−

∫ ∞

1

B2q ({t})
(2q)! g(2q)(t) dt.

Remark 8.46 Proposition 8.42 and Corollary 8.45 enable one to evaluate certain
improper integrals involving polynomial functions of the fractional part of the
integration variable. For example, to establish the identity

∫ ∞

1

{x} − 1
2

2x + 1
dx = − 3

4
+ 1

4
ln 2+ 1

2
ln 3

(Srivastava and Choi [93, p. 600, Problem 11]), we simply use assertion (a) of
Corollary 8.45 with g(x) = 1

2 ln(2x + 1). In this case, we have

�g(x) = 1

2
ln 2 (x − 1)+ 1

2
ln�

(
x + 1

2

)
− 1

2
ln�

(
3

2

)

and the integral is simply equal to σ [g] − 1
2g(1). ♦

Remark 8.47 In Proposition 8.42, we could substitute σ [g] from its expression
given in Corollary 8.45. But then, the restriction to the natural integers of the
resulting formulas will simply reduce to the application of Euler-Maclaurin’s
formula (Proposition 6.31) to g, with a = 1, b = n, h = 1, and N = n − 1.
♦

8.8 Analogue of Wallis’s Product Formula

In the following proposition, we recall one of the different versions of Wallis’s
product formula (see, e.g., Finch [37, p. 21]).
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Proposition 8.48 (Wallis’s Product Formula) The following limit holds

lim
n→∞

1 · 3 · · · (2n− 1)

2 · 4 · · · (2n)

√
n = 1√

π
. (8.22)

In the additive notation, identity (8.22) becomes

lim
n→∞

(
1

2
ln(πn)+

2n∑
k=1

(−1)k−1 ln k

)
= 0.

The following proposition gives an analogue of this latter formula for any
function g lying in C0 ∩ dom(�).

Proposition 8.49 Let g lie in C0 ∩ Dp ∩ Kp for some p ∈ N. Let g̃ : R+ → R be
the function defined by the equation g̃(x) = 2 g(2x) for x > 0. Let also h : N∗ → R

be the sequence defined by the equation

h(n) = σ [g̃] − σ [g] +
∫ 2

1
(g(2n+ t)− g(t)) dt

+
p∑

j=1
Gj

(
�j−1g(2n+ 1)−�j−1g̃(n+ 1)

)
for n ∈ N

∗.

Then we have

lim
n→∞

(
h(n)+

2n∑
k=1

(−1)k−1g(k)

)
= 0. (8.23)

Proof The function g̃ lies in C0 ∩ Dp ∩ Kp by Corollary 4.21. By (5.2), for any
n ∈ N

∗ we thus have

2n∑
k=1

(−1)k−1g(k) =
2n∑

k=1
g(k)−

n∑
k=1

g̃(k) = �g(2n+ 1)− �g̃(n+ 1).

Using the discrete version of the generalized Stirling formula (8.11), we get

σ [g] = lim
n→∞

⎛
⎝ 2n∑

k=1
g(k)−

∫ 2n+1

1
g(t) dt +

p∑
j=1

Gj �j−1g(2n+ 1)

⎞
⎠
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and

σ [g̃] = lim
n→∞

⎛
⎝ n∑

k=1
g̃(k)−

∫ n+1

1
g̃(t) dt +

p∑
j=1

Gj �j−1g̃(n+ 1)

⎞
⎠ .

This establishes the claimed formula. ��
Formula (8.23) actually holds for infinitely many sequences n �→ h(n). Indeed,

if it holds for a sequence h(n), then it also holds for instance for the sequence
h(n)+ n−q for any q ∈ N

∗. Thus, to obtain an elegant analogue of Wallis’s product
formula, it is advisable to choose h among the simplest functions. For instance,
we could consider the sequence obtained from the series expansion for h(n) about
infinity after removing all the summands that vanish at infinity.

Example 8.50 Let us apply Proposition 8.49 to g(x) = ln x with p = 1. We obtain

h(n) = 2n ln(2n+ 2)−
(
2n+ 1

2

)
ln(2n+ 1)+ ln(n+ 1)− 1+ 1

2
ln(2π)

= 1

2
ln(πn)+O

(
n−2
)

.

Replacing h(n) with 1
2 ln(πn) in (8.23) as recommended above, we retrieve the

original Wallis product formula (8.22). ♦
Example 8.51 Let us apply Proposition 8.49 to the harmonic number function
g(x) = Hx with p = 1. After a bit of calculus we get

h(n) = 1

2
H2n+1 + 1

2
ln 2+ ln(n+ 1)− ψ(2n+ 3)

= 1

2
(γ + lnn)+O

(
n−1
)

.

We then obtain the following analogue of Wallis’s product formula

lim
n→∞

(
− lnn+ 2

2n∑
k=1

(−1)kHk

)
= γ ,

which provides an alternative definition of Euler’s constant γ . ♦
Example 8.52 Let us apply Proposition 8.49 to the harmonic number function of
order 2

g(x) = H(2)
x = ζ(2)− ζ(2, x + 1)



142 8 Further Results

with p = 1. After some algebra we obtain the following analogue of Wallis’s
product formula

lim
n→∞

2n∑
k=1

(−1)kH (2)
k = π2

24
. ♦

Remark 8.53 Alternative sequences for h(n) may be considered in Proposi-
tion 8.49. For instance, if g lies in C0 ∩ Dp ∩ Kp for some p ∈ N, then it is
easy to see that

2n∑
k=1

(−1)k−1g(k) = −�g̃(n+ 1), n ∈ N
∗,

where g̃ : R+ → R is the function defined by the equation g̃(x) = �g(2x − 1) for
x > 0. Thus, assuming that g̃ lies in K0, identity (8.23) also holds for

h(n) = σ [g̃] +
∫ n+1

1
g̃(t) dt −

(p−1)+∑
j=1

Gj �j−1g̃(n+ 1).

Similarly, we can easily see that

2n∑
k=1

(−1)k−1g(k) = g(1)− g(2n)+�g̃(n), n ∈ N
∗,

where g̃ : R+ → R is the function defined by the equation g̃(x) = �g(2x) for
x > 0. Thus, assuming again that g̃ lies in K0, identity (8.23) also holds for

h(n) = g(2n)− g(1)− σ [g̃] −
∫ n

1
g̃(t) dt +

(p−1)+∑
j=1

Gj �j−1g̃(n).

It is clear that the most appropriate function h among these possibilities strongly
depends on the form of the function g. ♦
Remark 8.54 Using summation by parts with the classical indefinite sum operator
(see, e.g., Graham et al. [41, p. 55]), it is not difficult to show that

�xg(2x) = x g(2x)− g(2)−�x ((x + 1)(�g(2x)+�g(2x + 1)) (8.24)

(provided both sides exist). More generally, for any m ∈ N
∗, we can show that

�xg(mx) = x g(mx)− g(m)−
m−1∑
j=0

�x ((x + 1) �g(mx + j)) .
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For instance, using (8.24) we obtain

�xψ(2x) = x ψ(2x)− ψ(2)−�x

(
1+ 1

2x
+ 1

4(x + 1
2 )

)

= x ψ(2x)− ψ(1)− x − 1

2
(ψ(x)+ γ )− 1

4

(
ψ

(
x + 1

2

)
− ψ

(
3

2

))

= x ψ(2x)− 1

2
ψ(x)− x − 1

4
ψ

(
x + 1

2

)
+ 1

4
(2− 2 ln 2+ γ ) .

As this example demonstrates, formula (8.24) can sometimes be very useful in
Proposition 8.49 for the computation of σ [g̃]. ♦

8.9 Analogue of Euler’s Reflection Formula

Recall that the identity

�(z)�(1 − z) = π csc(πz) (8.25)

holds for any z ∈ C\Z. This identity, known by the name Euler’s reflection formula
(see, e.g., Artin [11, p. 26] and Srivastava and Choi [93, p. 3]), can be proved for
instance using the Weierstrassian form of the gamma function.

Motivated by this and similar examples, it is then natural to wonder if an analogue
of Euler’s reflection formula holds for any multiple log�-type function, at least on
R \ Z, or even on the interval (0, 1). However, this question seems rather difficult
and reflection formulas as beautiful as (8.25) are relatively exceptional.

Now, if we logarithmically differentiate both sides of (8.25), we obtain the
following reflection formula for the digamma function (see [93, p. 25])

ψ(x)− ψ(1− x) = − π cot(πx) . (8.26)

Using an appropriate integration, we also obtain the following reflection formula for
the Barnes G-function (see [93, p. 45])

lnG(1+ x)− lnG(1− x) = x ln(2π)−
∫ x

0
πt cot(πt) dt . (8.27)

These and other examples show that the reflection formulas usually share a
common pattern. Their right sides typically include 1-periodic functions or integrals
of 1-periodic functions while their left sides are of one the following forms

�g(x)±�g(1 − x) or �g(1+ x)±�g(1 − x)

for some appropriate functions g.
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In this section, we investigate this important topic in the light of our theory. To get
straight to the point, we have not found an analogue of Euler’s reflection formula that
is systematically applicable to any multiple log�-type function. We nevertheless
present a few interesting results that could hopefully be the starting point of a larger
theory.

First of all, due to the presence of the arguments x and 1 − x in most of the
reflection formulas, it is important to see how the domain of the functions considered
in this work can be extended to a larger set. Since many functions g involved in the
difference equation �f = g have singularities at 0 (e.g., g(x) = 1

x
), we suggest

extending the domain of all these functions to the set R \ {0}. Due to the nature of
the difference operator�, any solution f is then required to be defined onR\(−N).
The domains of many other associated functions and identities of this theory can be
extended likewise. For instance, for any p ∈ N and any n ∈ N

∗, the domain of
the function f

p
n [g] defined in (1.4) can be extended to R \ (−N). Similarly, for any

p ∈ N and any a ∈ R \ {0}, the domain of the function ρ
p
a [g] defined in (1.7) can

be extended to R \ {−a}.
We now have the following important result.

Lemma 8.55 Let g : R \ {0} → R be a function whose restriction g|R+ to R+ lies
in Dp∩Kp for some p ∈ N. Then, there exists a unique function f : R\ (−N)→ R

such that �f = g and f |R+ = �(g|R+). Moreover,

f (x) = lim
n→∞ f

p
n [g](x) , x ∈ R \ (−N).

Proof For any m ∈ N and any solution f : R \ (−N)→ R to the equation �f = g,
we must have

f (x −m) = f (x)−
m∑

k=1
g(x − k), x ∈ R+ \ N. (8.28)

This clearly establishes the first part of the lemma.
Let us now prove that for any x ∈ R+ \ N and any integers 0 ≤ m ≤ n we have

f
p
n [g](x)−

m∑
k=1

g(x − k) = f
p
n [g](x −m)−

m∑
k=1

ρ
p
n [g](x − k). (8.29)

On the one hand, for j = 1, . . . , p, we have

m∑
k=1

(
x−k
j−1
) =

m−1∑
k=0

(
k+x−m

j−1
) =

m∑
k=0

�k

(
k+x−m

j

) = (
x
j

)− (x−m
j

)
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and hence using (1.7) we obtain

m∑
k=1

ρ
p
n [g](x − k) =

m∑
k=1

g(x + n− k)−
p∑

j=1

((
x
j

)− (x−m
j

))
�j−1g(n) .

On the other hand, using this latter identity and subtracting the right side of (8.29)
from the left side, using (1.4) we obtain

n−1∑
k=0

(g(x −m+ k)− g(x + k))−
m∑

k=1
g(x − k)+

m∑
k=1

g(x + n− k),

which is identically zero. This establishes (8.29).
Let us now show that the sequence n �→ ρ

p
n [g](x − k) converges to zero for any

x ∈ R+\N and any k ∈ N. By (2.12) it is actually enough to show that the sequence

n �→ g[n, n + 1, . . . , n+ p − 1, n+ x − k]

converges to zero. However, by Lemma 2.5 this latter sequence can be sandwiched
between the sequences

n �→ g[n− k, n+ 1− k, . . . , n+ p − 1− k, n+ x − k]

and

n �→ g[n, n + 1, . . . , n+ p − 1, n+ x],

which both converge to zero by (2.12).
Finally, let f : R \ (−N) → R be the unique function defined in the first part of

this lemma. Using (8.28) and (8.29), since g lies in Dp ∩Kp we obtain

f (x −m) = �g(x)−
m∑

k=1
g(x − k) = lim

n→∞ f
p
n [g](x)−

m∑
k=1

g(x − k)

= lim
n→∞ f

p
n [g](x −m),

which establishes the second part of the lemma. ��
Lemma 8.55 shows that the domain of the function �g can be extended to R \

(−N) whenever g is defined on R \ {0}. We then use the same symbol �g for this
extended function. Moreover, in this case we have

�g(x) = lim
n→∞ f

p
n [g](x) , x ∈ R \ (−N)
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and the Eulerian form (8.1) of �g extends similarly. Actually, when g is a function
of a complex variable, Lemma 8.55 can be easily adapted to extend the function �g

to an appropriate complex domain.
Let us now establish reflection formulas on R \ Z for functions �g when the

restriction of g to R+ lies in D0 ∩ K0. The result is presented in the following two
propositions, which deal separately with the cases when g|R\Z is odd or even. The
proofs of these propositions are similar and we therefore omit the second one.

Proposition 8.56 Let g : R \ {0} → R be such that g|R+ lies in D0 ∩ K0 and let
ω : R \ Z→ R be the function defined by the equation

ω(x) = �g(x)−�g(1− x) for x ∈ R \ Z.

Then the following assertions are equivalent.

(i) The function g|R\Z is odd.
(ii) The function ω is 1-periodic.

(iii) We have that g|R\Z vanishes at −∞ and

ω(x) = lim
N→∞

∑
|k|≤N

g(x + k), x ∈ R \ Z.

Proof The equivalence (i)⇔ (ii) is trivial since �ω(x) = g(x) + g(−x). Let us
prove the implication (iii)⇒ (ii). We have

�ω(x) = lim
N→∞

∑
|k|≤N

(g(x + k + 1)− g(x + k))

= lim
N→∞(g(x +N + 1)− g(x −N)) = 0.

Finally, let us prove the implication (i)⇒ (iii). Using Lemma 8.55 we obtain

ω(x) =
∞∑

k=0
(g(x + k)+ g(x − k − 1))

= lim
N→∞

⎛
⎝−g(x −N − 1)+

∑
|k|≤N

g(x + k)

⎞
⎠ .

This completes the proof. ��
Proposition 8.57 Let g : R \ {0} → R be such that g|R+ lies in D0 ∩ K0 and let
ω : R \ Z→ R be the function defined by the equation

ω(x) = �g(x)+�g(1− x) for x ∈ R \ Z.
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Then the following assertions are equivalent.

(i) The function g|R\Z is even.
(ii) The function ω is 1-periodic.

(iii) We have that g|R\Z vanishes at −∞ and

ω(x) = − g(x)+ lim
N→∞

∑
1≤|k|≤N

(g(k)− g(x + k)), x ∈ R \ Z.

Example 8.58 (The Digamma Function) Consider the odd function g(x) = 1/x on
R \ {0} for which we have the identity �g(x) = ψ(x) + γ (see Sect. 10.2). This
identity actually holds not only onR+ but also onR\(−N) since by Lemma 8.55 the
digamma function ψ extends to this larger domain through the following Eulerian
form (see also Srivastava and Choi [93, p. 24])

ψ(x) = − γ − 1

x
+

∞∑
k=1

(
1

k
− 1

x + k

)
, x ∈ R \ (−N).

Now, using Proposition 8.56 we immediately obtain the identity

ψ(x)− ψ(1 − x) = lim
N→∞

∑
|k|≤N

1

x + k
, x ∈ R \ Z,

where the right-hand function is 1-periodic. Finally, it can be proved (see, e.g.,
Aigner and Ziegler [3, Chapter 26], Berndt [18, p. 4], and Graham et al. [41, Eq.
(6.88)]) that this function reduces to −π cot(πx). We then retrieve the reflection
formula (8.26) for the digamma function. ♦
Example 8.59 (A Variant of the Digamma Function) Consider the even function
g(x) = 1/|x| onR\{0}. Using Lemma 8.55, we then obtain the following expression
for �g on R \ (−N)

�g(x) =
∞∑

k=0

(
1

k + 1
− 1

|x + k|
)

,

or equivalently,

�g(x) =
∞∑

k=0

(
1

k + 1
− 1

x + k

)
+

∞∑
k=0

(
1

x + k
− 1

|x + k|
)

,
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where the first series reduces to ψ(x) + γ . If x > 0, then the second series is zero.
If x < 0, it reduces to

∞∑
k=0

min

{
2

x + k
, 0

}
=
�−x�∑
k=0

2

x + k
= 2

�−x�∑
k=0

�kψ(x + k)

= 2 (ψ(1− {−x})− ψ(x)).

Using Proposition 8.57, we then obtain that the function

�g(x)+�g(1− x) = − 1

|x| + lim
N→∞

∑
1≤|k|≤N

(
1

|k| −
1

|x + k|
)

, x ∈ R \Z,

is 1-periodic. Using the reflection formula for ψ , we also obtain

�g(x)+�g(1 − x) = ψ({x})+ ψ(1 − {x})+ 2γ

= 2ψ({x})+ π cot(πx)+ 2γ , x ∈ R \ Z,

which provides a closed expression for this periodic function. ♦
Example 8.60 Consider the function g : R→ R defined by the equation

g(x) = x + 1

x2 + 1
for x ∈ R.

We observe that both functions g(x) and g̃(x) = g(−x) have restrictions to R+ that
lie in D0 ∩ K0. However, the function g is neither even nor odd. Denoting its even
and odd parts by g+ and g−, respectively, we have

g+(x) = g(x)+ g(−x)

2
= 1

x2 + 1
;

g−(x) = g(x)− g(−x)

2
= x

x2 + 1
.

and we can derive a reflection formula for each of these functions.
Now, it is not difficult to see that (see Example 5.10)

�g+(x) = �(ψ(1+ i)− ψ(x + i)) ;
�g−(x) = �(−ψ(1+ i)+ ψ(x + i)) .

Using Propositions 8.56 and 8.57, we then see that both functions

�g+(x)+ �g+(1− x) and �g−(x)−�g−(1− x)
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are 1-periodic. Moreover, their sum �g(x) + �g̃(1 − x) is also 1-periodic.
Equivalently, the function

�(ψ(x + i)− ψ(1 − x + i))− �(ψ(x + i)+ ψ(1 − x + i))

is 1-periodic. However, we do not have a reflection formula for �g or �g̃. ♦
Although Propositions 8.56 and 8.57 constitute major steps in the investigation of

reflection formulas, they do not provide closed-form expressions for the 1-periodic
functions involved in these formulas. For instance, considering the reflection
formula for the digamma function (see Example 8.58), we see that Proposition 8.56
does not yield the right-hand side of identity (8.26). Moreover, it seems that such an
expression, obtained for example using Herglotz’s trick (see Aigner and Ziegler [3,
Chapter 26]), is very specific to the case when g(x) = 1/x. Now, finding a closed-
form expression in the general case remains a very interesting open problem: such
a result would provide an analogue of Euler’s reflection formula for a wide class
of functions. In this regard, we observe that Herglotz’s trick uses an analogue of
Legendre’s duplication formula in the additive notation. Thus, a suitable adaptation
of this trick could be helpful to tackle this problem.

Let us now investigate the more general case when the function g|R+ lies in
Dp ∩ Kp for some p ∈ N. We observe that some reflection formulas can be
obtained by integrating or differentiating both sides of a given reflection formula.
Thus, if g|R+ lies in C1 ∩ D1 ∩ K1 for instance, we know from Proposition 4.12
that g′|R+ lies in C0 ∩ D0 ∩ K0 and we may try to find a reflection formula for
�g′ using Propositions 8.56 and 8.57. Since �g′ and (�g)′ differ by a constant by
Proposition 7.7, a reflection formula for�g can then be obtained by integrating both
sides of the reflection formula for �g′. This approach is inspired from the elevator
method (as discussed in Sect. 7.3).

For instance, integrating both sides of (8.26) on ( 12 , x), where 1
2 < x < 1, we get

the identity

ln�(x)+ ln�(1 − x) = ln(π csc(πx)).

Thus, we retrieve Euler’s reflection formula on the interval ( 12 , x) and this formula
can be extended to the complex domainC\Z by analytic continuation. The identity
(8.27) can be obtained similarly, observing that

lnG(x + 1) = ln�(x)+ lnG(x).

Now, let g : R \ {0} → R be a function such that g|R+ lies in Dp ∩Kp for some
p ∈ N. Let also ω+[g] : R\Z→ R and ω−[g] : R\Z→ R be the functions defined
by the equation

ω±[g](x) = �g(x)±�g(1 − x) for x ∈ R \ Z.
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We then observe that

�ω±[g](x) = g(x)∓ g(−x), x ∈ R \ Z.

It follows that ω+ (resp. ω−) is 1-periodic if and only if g|R\Z is even (resp. odd).
The following proposition provides an explicit expression for the functionω±[g]

whenever it is 1-periodic. This expression is constructed from the very definition of
�g.

Proposition 8.61 Let g : R \ {0} → R be such that g|R+ lies in Dp ∩Kp for some
p ∈ N. Then the following assertions hold.

(a) If g|R\Z is odd, then the function ω−[g] is 1-periodic and is equal to

lim
n→∞

(
−

∑
|k|≤n−1

g(x + k)− g(x − n)+
p∑

j=1

((
x
j

)− (1−x
j

))
�j−1g(n)

)
.

(b) If g|R\Z is even, then the function ω+[g] is 1-periodic and is equal to

lim
n→∞

(
− g(x)+

∑
1≤|k|≤n−1

(g(k)− g(x + k))

− g(x − n)+
p∑

j=1

((
x
j

)+ (1−x
j

))
�j−1g(n)

)
.

Proof Let us prove assertion (a). That ω−[g] is 1-periodic is clear from the
discussion above. Now, using Lemma 8.55 we obtain

ω−[g](x) = lim
n→∞(f

p
n [g](x)+ f

p
n [g](1− x))

= lim
n→∞

⎛
⎝n−1∑

k=0
(g(1 − x + k)− g(x + k))+

p∑
j=1

((
x
j

)− (1−x
j

))
�j−1g(n)

⎞
⎠ .

This proves assertion (a). Assertion (b) can be established similarly. ��
Example 8.62 Consider the odd function g : R→ R defined by the equation

g(x) = x − x

x2 + 1
for x ∈ R.

The function g|R+ clearly lies in D2 ∩K2 and we have (see Example 5.10)

�g(x) = (x2
)−�(ψ(x + i)).
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By Proposition 8.61, the function

�g(x)−�g(1 − x) = �(ψ(1− x + i)− ψ(x + i))

is 1-periodic and is equal to the limit

lim
n→∞

⎛
⎝− ∑

|k|≤n−1
h(x + k)− h(x − n)+ (2x − 1)h(n)

⎞
⎠ ,

where h(x) = g(x)− x. ♦
Example 8.63 (Euler’s Reflection Formula) Consider the even function g : R \ {0}
defined by the equation g(x) = ln |x| for x ∈ R\ {0}. The function g|R+ clearly lies
in D1 ∩K1 and, since �x ln |�(x)| = ln |x| on R \ (−N), we must have

�g(x) = ln |�(x)| , x ∈ R \ (−N).

By Proposition 8.61, the function |�(x)�(1−x)| on R\Z is 1-periodic and is equal
to

lim
n→∞

∣∣∣∣∣∣
1

x

∏
1≤|k|≤n

k

x + k

∣∣∣∣∣∣ .

Euler’s reflection formula then shows that this limit is also |π csc(πx)|, as expected
(see Artin [11, p. 27]). ♦
Remark 8.64 We observe the following interesting link between the analogue of
Euler’s reflection formula and the logarithm of the generalized Stirling constant
(see Definition 6.17). Let g : R \ {0} → R be an even function such that g|R+ lies
in C0 ∩ dom(�). Assume also that g is integrable at 0. Then, we have

σ [g|R+] =
∫ 1

0
�g(t) dt = 1

2

∫ 1

0
(�g(t)+�g(1 − t))dt ,

that is,

σ [g|R+] =
1

2

∫ 1

0
ω+[g](t) dt.

For instance, for the function g(x) = ln |x| (see Example 8.63), we obtain

σ [g|R+] =
1

2

∫ 1

0
ln(π csc(πt)) dt

and it is not difficult to see that this expression reduces to 1
2 ln(2π). ♦
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8.10 Analogue of Gauss’ Digamma Theorem

The following formula, due to Gauss, enables one to compute the values of the
digamma function ψ for rational arguments. If a, b ∈ N

∗ with a < b, then we have

ψ
(a

b

)
= − γ − ln(2b)− π

2
cot

aπ

b
+ 2

�(b−1)/2�∑
j=1

cos
(
2jπ

a

b

)
ln

(
sin

jπ

b

)

(8.30)

(see, e.g., Knuth [53, p. 95] and Srivastava and Choi [93, p. 30]). This formula can
be extended to all integers a, b ∈ N

∗ by means of the difference equation ψ(x +
1)− ψ(x) = 1/x.

For instance, we have

ψ

(
3

4

)
= − γ + π

2
− 3 ln 2.

It is natural to wonder if an analogue of formula (8.30) holds for any multiple
log�-type function. Finding an analogue as beautiful as this formula seems to be
hard. However, we have the following partial result.

Proposition 8.65 Let g ∈ D0 ∩K0 and let a, b ∈ N
∗ with a < b. Then

�g
(a

b

)
= 1

b

b−1∑
j=0

(
1− ω

−aj
b

)
Sb

j [g],

where

ωb = e
2πi
b and Sb

j [g] =
∞∑

k=1
ω

jk
b g

(
k

b

)
.

Proof By definition of the map �, we have

�g
(a

b

)
= lim

n→∞

(
n−1∑
k=1

g

(
bk

b

)
−

n−1∑
k=0

g

(
bk + a

b

))

= lim
n→∞

bn−1∑
k=1

(ub(k)− ub(k − a)) g

(
k

b

)
,
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where ub(k) = 1, if b divides k, and ub(k) = 0, otherwise; that is,

ub(k) = 1

b

b−1∑
j=0

ω
jk
b .

This completes the proof. ��
Proposition 8.65 provides a first step in the search for an explicit expression for

�g(a
b
). Depending upon the function g, more computations may be necessary to

obtain a useful expression. In this respect, the derivation of formula (8.30) by means
of Proposition 8.65 can be found in Marichal [66, p. 13].

Example 8.66 Let us apply Proposition 8.65 to the function gs(x) = −x−s , where
s > 1. This function lies in D0 ∩ K0 and we have �gs(x) = ζ(s, x) − ζ(s); see
Example 1.7. Let a, b ∈ N

∗ with a < b. For j = 0, . . . , b − 1, we then have

Sb
j [gs] = − bs Lis(ω

j
b),

where

Lis(z) =
∞∑

k=1

zk

ks

is the polylogarithm function. Using Proposition 8.65, we then obtain

ζ
(
s,

a

b

)
= ζ(s)− bs−1

b−1∑
j=0

(
1− ω

−aj

b

)
Lis(ω

j

b)

= bs−1
b−1∑
j=0

ω
−aj
b Lis (ω

j
b).

The inverse conversion formula is simply given by

Lis(ω
j
b) = b−s

b∑
k=1

ω
jk
b ζ

(
s,

k

b

)
, j = 1, . . . , b − 1. ♦

8.11 Generalized Gautschi’s Inequality

Gautschi [38] showed that the following double inequality holds for any 0 ≤ a ≤ 1

e(a−1) ψ(x+1) ≤ �(x + a)

�(x + 1)
≤ xa−1, x > 0.
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As a consequence, since ψ(x) < ln x for any x > 0, he also obtained that

(x + 1)a−1 ≤ �(x + a)

�(x + 1)
≤ xa−1, x > 0,

which is also a straightforward consequence of theWendel inequality (6.5). We refer
to these inequalities as the Gautschi inequality.

We now provide an analogue of Gautschi’s inequality for certain multiple log�-
type functions and for any a ≥ 0. We call it the generalized Gautschi’s inequality.
As usual, we use the additive notation.

Proposition 8.67 (Generalized Gautschi’s Inequality) Suppose that g lie in C2 ∩
Dp ∩ Kmax{p,2} for some p ∈ N and let a ≥ 0 and x > 0 be so that �g is convex
on [x + �a�,∞). Then we have

(a − a�) g(x + a�) ≤ (a − a�) (�g)′(x + a�)
≤ �g(x + a)−�g(x + a�) ≤ (a − a�) g(x + �a�) .

(The inequalities are to be reversed if �g is concave on [x + �a�,∞).)

Proof We follow the same steps as in Gautschi’s proof. We can assume that k ≤
a < k + 1 for some fixed k ∈ N. Let x > 0 be fixed so that �g is convex on
[x + k,∞). Let also f : [k, k + 1) → R and ϕ : [k, k + 1) → R be the functions
defined by the equations

f (a) = 1

k + 1− a
(�g(x + a)− �g(x + k + 1))

and

ϕ(a) = (k + 1− a)2f ′(a)

for k ≤ a < k + 1. We then observe that

(k + 1− a) f ′(a) = f (a)+Da ((k + 1− a) f (a)) = f (a)+ (�g)′(x + a).

It then follows that

ϕ(a) = (k + 1− a) (f (a)+ (�g)′(x + a))

and

ϕ′(a) = (k + 1− a) (�g)′′(x + a).
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We also have

ϕ(k) = �g(x + k)−�g(x + k + 1)+ (�g)′(x + k)

= (�g)′(x + k)− g(x + k),

where

g(x + k) =
∫ 1

0
(�g)′(x + k + t) dt.

Since �g is convex on [x + k,∞), its derivative is increasing on [x + k,∞), and
hence we must have ϕ(k) ≤ 0 and ϕ′(a) ≥ 0. Since ϕ(k + 1) = 0, it follows that
the function ϕ is nonpositive and hence that the function f is decreasing. Using
L’Hospital’s rule and the fact that ϕ(k) ≤ 0, we then obtain the following chain of
inequalities

−g(x + k + 1) ≤ −(�g)′(x + k + 1)

≤ lim
a→k+1 f (a) ≤ f (a) ≤ f (k) = − g(x + k).

This proves the result. ��
Example 8.68 Applying Proposition 8.67 to g(x) = ln x and p = 1, we obtain for
any a ≥ 0 and any x > 0

(x + a�)a−a� ≤ e(a−a�) ψ(x+a�) ≤ �(x + a)

�(x + a�) ≤ (x + �a�)a−a� .

If we assume that 0 ≤ a ≤ 1, then we retrieve the original Gautschi inequality. ♦
Remark 8.69 If we wish to bracket the function �g(x + a) − �g(x + 1) in
Proposition 8.67, we can use the identity

�g(x + a�) = �g(x + 1)+
a�−1∑
k=1

g(x + k),

which immediately follows from (5.3). For instance, for g(x) = ln x we obtain the
double inequality

e(a−a�) ψ(x+a�)(x + a� − 1)a�−1 ≤ �(x + a)

�(x + 1)

≤ (x + �a�)a−a�(x + a� − 1)a�−1 .

which holds for any a ≥ 0 and any x > 0. ♦
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We end this section with the following corollary, which is obtained by integrating
on a ∈ (0, 1) the expressions in the generalized Gautschi inequality (Proposi-
tion 8.67).

Corollary 8.70 Suppose that g lie in C2 ∩Dp ∩Kmax{p,2} and let x > 0 be so that
�g is convex on [x,∞). Then we have

−1

2
g(x + 1) ≤ −1

2
(�g)′(x + 1)

≤
∫ x+1

x

�g(t) dt −�g(x + 1) ≤ − 1

2
g(x) .

(The inequalities are to be reversed if �g is concave on [x,∞).) In particular, the
following assertions hold.

(a) If �g is not eventually identically zero and if

lim
x→∞

g(x)

�g(x)
= 0, (8.31)

then

lim
x→∞

(�g)′(x)

�g(x)
= 0 and �g(x) ∼

∫ x+1

x

�g(t) dt as x →∞.

(b) If g is not eventually identically zero and if

lim
x→∞

g(x + 1)

g(x)
= 1,

then

lim
x→∞

(�g)′(x)

g(x)
= 1 and lim

x→∞

∫ x+1
x �g(t) dt −�g(x)

g(x)
= 1

2
.

Proof The inequalities are obtained by integrating on a ∈ (0, 1) the expressions
in the generalized Gautschi inequality. Let us now prove assertion (a); the second
one can be established similarly. If �g is not eventually identically zero, then it
eventually never vanishes since it lies in K0. If condition (8.31) holds, then we must
have

lim
x→∞

�g(x + 1)

�g(x)
= lim

x→∞

(
1+ g(x)

�g(x)

)
= 1 and lim

x→∞
g(x)

�g(x + 1)
= 0.

We then complete the proof by dividing all the expressions in the inequalities by
�g(x + 1) and letting x →∞. ��
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8.12 Generalized Webster’s Functional Equation

In the framework of �-type functions, Webster [98, Section 8] investigated the
multiplicative version of the functional equation

f (x)+ f (x + 1
2 ) = h(x), x > 0,

and, more generally, of the functional equation

m−1∑
j=0

f

(
x + j

m

)
= h(x), x > 0,

for anym ∈ N
∗, where h : R+ → R is a given function satisfying certain conditions.

In this section, we extend Webster’s result by considering and solving the more
general equation

m−1∑
j=0

f (x + a j) = h(x), x > 0, (8.32)

where a > 0 is also a given parameter. We call it the generalized Webster functional
equation. For instance, we can prove that the unique monotone solution f : R+ →
R to the equation

f (x)+ f (x + a) = 1

x

is given by

f (x) = 1

2a
ψ

(
x + a

2a

)
− 1

2a
ψ
( x

2a

)
.

Our general result is stated in the following theorem, a variant of which was
established by Webster [98, Theorem 8.1] in the special case when p = 1 and
a = 1

m
.

Theorem 8.71 (Generalized Webster’s Functional Equation) Let p ∈ N, m ∈
N
∗, a > 0, and h ∈ Dq ∩ Kq for some integer q ≥ p. Define also the function

ha : R+ → R by the equation

ha(x) = h(ax) for x > 0.
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If �ha lies in Dp ∩Kp
+ ∩Kq (resp. Dp ∩Kp

− ∩Kq ), then there is a unique solution
to equation (8.32) lying in Kp, namely

f (x) = �ham

(
x + a

am

)
−�ham

( x

am

)
.

Moreover, this solution lies in Kp
− (resp. Kp

+).

Proof Suppose for instance that �ha lies in Dp ∩ Kp
+ ∩ Kq and let gm

a : R+ → R

be defined by the equation gm
a (x) = �ha(mx) for x > 0. By Corollary 4.21, the

function gm
a lies in Dp ∩ Kp

+ ∩ Kq . Suppose that f : R+ → R is a solution to
equation (8.32). Then necessarily

gm
a (x) = h(amx + a)− h(amx) =

m−1∑
j=0

�jf (amx + aj) = �xf (amx).

If f lies in Kp, then by the uniqueness and existence theorems we have that

f (amx) = f (am)+�gm
a (x)

and f must lie in Kp
−. Since both gm

a and h lie in Dq ∩ Kq , by Propositions 5.7
and 5.8 we then have

f (amx) = f (am)+�xh(amx + a)−�h(amx)

= f (am)+�xham

(
x + 1

m

)
−�ham(x)

= c +�ham

(
x + 1

m

)
−�ham(x),

or equivalently,

f (x) = c +�ham

(
x + a

am

)
−�ham

( x

am

)
(8.33)

for some c ∈ R. But the function f specified by (8.33) satisfies (8.32) if and only if
c = 0; indeed, we then have

m−1∑
j=0

f (x + aj) = mc +
m−1∑
j=0

�j �ham

(
x + aj

am

)

= mc +��ham

( x

am

)
= mc + h(x).

This completes the proof. ��
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Example 8.72 Theorem 8.71 shows that the unique eventually monotone or even-
tually log-convex solution to the functional equation

f (x)f (x + a) xp = 1, x > 0, a > 0, p > 0,

is the function

f (x) =
(

�( x
2a )√

2a �(x+a
2a )

)p

.

This result was established by Thielman [95] (see also Anastassiadis [5]). The
special case when p = 1 was previously shown by Mayer [70]. ♦

Combining both Theorems 8.27 and 8.71, we can derive immediately the
following corollary, which in a sense provides yet another characterization of
multiple �-type functions. For a similar result on the gamma function, see Artin
[11, p. 35].

Corollary 8.73 Let p ∈ N, m ∈ N
∗, and g ∈ Dp ∩Kp+1. Define also the function

gm : R+ → R by the equation gm(x) = g( x
m

) for x > 0. Then the function f = �g

is the unique solution lying in Kp to the equation

m−1∑
j=0

f

(
x + j

m

)
=

m∑
j=1

�g

(
j

m

)
+�gm(x), x > 0.

Example 8.74 For any m ∈ N
∗ the gamma function is the unique log-convex

solution f : R+ → R+ to the equation

m−1∏
j=0

f

(
x + j

m

)
= �(x)

mx− 1
2

(2π)
m−1
2 , x > 0.

Equivalently, for any m ∈ N
∗ the gamma function is the unique log-convex solution

f : R+ → R+ to the equation

m−1∏
j=0

f

(
x + j

m

)
=

m−1∏
j=0

�

(
x + j

m

)
, x > 0. ♦
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Chapter 9
Summary of the Main Results

Now that we have collected a number of relevant results on multiple log�-
type functions, we naturally look forward to applying them on various examples,
including not only special functions related to the gamma function but also many
other useful functions of mathematical analysis. Such applications will be discussed
in the next three chapters. But first and foremost, it is time to take stock of the new
theory we have developed and summarize what we have found and learned thus far.

This chapter is devoted to a review of the most interesting and useful results that
we have established in the previous chapters. These results are presented here as a
step-by-step plan in order to perform a systematic and efficient investigation of the
multiple log�-type functions. We have tried to be as self-contained as possible, so
that the reader can skip Chaps. 2–8 and make direct use of the summary given in
this chapter.

Remark 9.1 At many places in this book (e.g., in Proposition 5.18), we have made
the assumption that the function g (resp. g(r) for some r ∈ N

∗) is continuous to
ensure the existence of certain integrals. Although we can often relax this condition
by simply requiring that g (resp. g(r)) is locally integrable, we have kept this
continuity assumption for simplicity and consistency with similar results where
higher order differentiability is assumed. ♦

9.1 Basic Definitions

Let us recall a few useful concepts introduced in the previous chapters. For any
p ∈ N and any S ∈ {N,R}, we let Dp

S denote the set of functions g : R+ → R

having the asymptotic property that

�pg(x) → 0 as x →S ∞.
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For any p ∈ N, we also let Cp denote the set of p times continuously differentiable
functions fromR+ to R and we letKp denote the set of functions fromR+ to R that
are eventually p-convex or eventually p-concave, that is, p-convex or p-concave
(see Definition 2.2) in a neighborhood of infinity. Recall also that the sets Dp

S ’s are
increasingly nested while the sets Cp’s and Kp’s are decreasingly nested, that is,

Dp

S ⊂ Dp+1
S , Kp+1 ⊂ Kp, and Cp+1 ⊂ Cp for any p ∈ N.

We have also proved in Proposition 4.8 that

Dp

N
∩Kp = Dp

R
∩Kp

and we denote this common intersection simply by Dp ∩Kp.
In Chap. 5, we have introduced the map � that carries any function g : R+ → R

lying in the set

dom(�) =
⋃
p≥0

(Dp ∩Kp)

into the unique solution f : R+ → R that arises from Theorem 1.4 and satisfies
f (1) = 0. That is,

�g(x) = lim
n→∞ f

p
n [g](x), x > 0.

The class of functions that are equal (up to an additive constant) to �g is called the
principal indefinite sum of g (see Definition 5.4 and Example 5.5). A function f

lying in the range of the map � is also called a multiple log�-type function.
In the previous chapters, we have established and discussed several properties

of the multiple log�-type functions, many of which are counterparts of classical
properties of the gamma function. For instance, we have proved that every multiple
log�-type function satisfies an analogue of Gauss’ multiplication formula for
the gamma function. In the rest of this chapter, we provide a summary of these
properties. The reader can use them for a systematic investigation of any multiple
log�-type function.

9.2 ID Card and Main Characterization

The first step in this investigation is to choose a function g ∈ Dp ∩ Kp (for some
p ∈ N) for which we wish to study its principal indefinite sum �g. For instance, if
we consider the function g(x) = x ln x, which lies in D2 ∩ K2, then the function
�g is the logarithm of the hyperfactorial function K(x) (see Sect. 12.5), that is

�g(x) = lnK(x) = (x − 1) ln�(x)− lnG(x),
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where G is the Barnes G-function. Our results will then enable us to study this
function through several of its properties.

Alternatively, we can start from a given function f ∈ Kp (for some p ∈ N)
that we wish to investigate and whose difference g = �f is a function that lies
in Dp ∩ Kp . For instance, we may want to investigate the nth degree Bernoulli
polynomial f (x) = Bn(x) by first observing that the function

g(x) = �f (x) = n xn−1

lies in Dn ∩Kn. We then have

�g(x) = Bn(x)− B1(1).

Remark 9.2 To investigate a function f : R+ → R through our results, it is not
enough to check that the difference g = �f lies in Dp ∩ Kp for some p ∈ N. We
also need to make sure that f also lies in Kp. For instance, both functions

f1(x) = x + sin(2πx) and f2(x) = x + θ3(πx, 1/2),

where θ3(u, q) is the Jacobi theta function defined by the equation

θ3(u, q) = 1+ 2
∞∑

n=1
qn2 cos(2nu),

have the same difference g = �f1 = �f2 = 1 in D1 ∩ K1 (and we have �g(x) =
x − 1). However, neither f1 nor f2 lies in K1. ♦
ID Card It is convenient to start our investigation of the function �g by collecting
some basic properties of the function g, thus establishing a kind of ID card for that
function.

Thus, we first consider a function g : R+ → R. We then determine its asymptotic
degree

degg = −1+min{q ∈ N : g ∈ Dq

R
}

= −1+min{q ∈ N : �qg(x)→ 0 as x →∞}.

If deg g = ∞ (e.g., when g(x) = 2x) or if g /∈ Kp for all p ≥ 1 + deg g (e.g.,
g(x) = x + 1

x
sin x), then the function �g does not exist and the investigation stops

here. Otherwise, the functions g and�g lie inDp∩Kp andDp+1∩Kp , respectively,
where p = 1+ deg g.
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If degg = −1, it is important to check whether g also lies in the set D−1
N

of
functions g : R+ → R for which the sequence n �→ g(n) is summable. In this case,
by Proposition 6.14 we have that

lim
x→∞�g(x) =

∞∑
k=1

g(k).

It is also useful to determine the integer r ∈ N, if any, for which g lies in Cr ∩
Kmax{p,r}. In this case, we know from Theorem 7.5 that �g lies also in this set.
Moreover, many functions of mathematical analysis lie in both

C∞ =
⋂
r≥0

Cr and K∞ =
⋂
p≥0

Kp.

If g lies in these sets, then we can write g ∈ C∞ ∩Dp ∩K∞.
It may be also useful to determine the domain on which g is p-convex or p-

concave. For instance, the function g(x) = 1
x
ln x is 0-concave on [e,∞), 1-convex

on [e3/2,∞), etc. (see Example 5.13).
Note that, at this stage, we may not yet have any simple expression for �g. Limit

and series representations will later emerge anyway from our investigation.

Analogue of Bohr-Mollerup’s Theorem The following characterization result
constitutes the analogue of Bohr-Mollerup’s theorem for the function �g and
follows immediately from the uniqueness Theorem 3.1.

If f : R+ → R is a solution to the equation �f = g, then it lies in Kp if and only if
f = c +�g for some c ∈ R.

This characterization sometimes enables one to establish alternative expressions for
the function �g. For instance, if g(x) = 1

x
, then we have

�g(x) = ψ(x)+ γ.

Using the characterization above, we can easily establish the following Gauss
representation (see, e.g., Srivastava and Choi [93, p. 26])

ψ(x)+ γ =
∫ ∞

0

e−t − e−xt

1− e−t
dt , x > 0.

Indeed, both sides of this identity vanish at x = 1 and are eventually increasing
solutions to the equation �f = g. Hence, by uniqueness they must coincide on R+.

Note also that, in addition to the analogue of Bohr-Mollerup’s theorem above,
we also have an alternative characterization of �g given in Proposition 3.9.
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9.3 Extended ID Card

We now complement the ID card of the function g by considering some additional
related constants and mappings. From now on, we assume that g is at least
continuous on R+. More precisely, we assume that

g ∈ Cr ∩Dp ∩Kmax{p,r}

for p = 1+ deg g and some r ∈ N.
Recall also that, for any n ∈ N, the symbols Gn and Bn denote the nth Gregory

coefficient and the nth Bernoulli number, respectively. We also let

Gn = 1−
n∑

j=1
|Gj |

and we let Bn(x) denote the nth degree Bernoulli polynomial (see Sects. 6.3, 6.4,
and 6.7).

Asymptotic Constant Recall that the asymptotic constant associated with g (see
(6.10)) is the number

σ [g] =
∫ 1

0
�g(t + 1) dt =

∫ 2

1
�g(t) dt.

If g is integrable at 0, we also define the generalized Stirling constant (see
Definition 6.17) as the number exp(σ [g]), where

σ [g] = σ [g] −
∫ 1

0
g(t) dt =

∫ 1

0
�g(t) dt.

Since this latter constant does not always exist (e.g., when g(x) = 1
x
), we do not

use it much in our investigation.
The asymptotic constant σ [g] has the following limit, series, and integral

representations (see identities (8.11), (8.12), (8.21), and Corollary 8.45).

(a) If g lies in C0 ∩Dp ∩Kp, then we have

σ [g] =
p∑

j=1
Gj �j−1g(1)−

∞∑
k=1

⎛
⎝
∫ k+1

k

g(t) dt −
p∑

j=0
Gj �jg(k)

⎞
⎠

and

σ [g] = lim
n→∞

⎛
⎝n−1∑

k=1
g(k)−

∫ n

1
g(t) dt +

p∑
j=1

Gj�
j−1g(n)

⎞
⎠ .
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(b) If g lies in C2q ∩Dp ∩K2q , where q ∈ N
∗ ∪ { 12 } and 0 ≤ p ≤ 2q − 1, then we

have

σ [g] = lim
n→∞

(
n−1∑
k=1

g(k)−
∫ n

1
g(t) dt −

p∑
k=1

Bk

k! g(k−1)(n)

)
.

(c) If g lies in C2 ∩D1 ∩K2, then we have

σ [g] = 1

2
g(1)+

∫ ∞

1

(
{t} − 1

2

)
g′(t) dt.

(d) If g lies in C2q+1 ∩Dp ∩K2q+1, then we have

σ [g] = 1

2
g(1)−

q∑
k=1

B2k

(2k)! g
(2k−1)(1)−

∫ ∞

1

B2q({t})
(2q)! g(2q)(t) dt.

We also know from Proposition 6.14 that if g lies in C0∩D−1∩K0 (hereD−1 stands
for D−1

N
), then g is integrable at infinity and

σ [g] =
∞∑

k=1
g(k)−

∫ ∞

1
g(t) dt.

Analogue of Raabe’s Formula The analogue of Raabe’s formula is simply the
identity (see (8.9))

∫ x+1

x

�g(t) dt = σ [g] +
∫ x

1
g(t) dt

and we know by Proposition 8.20 that any of these integrals lies in C0∩Dp+1∩Kp+1.
Recall also from Corollary 8.23 that a function f : R+ → R lies in C0 ∩Kp and

satisfies the equation

∫ x+1

x

f (t) dt = σ [g] +
∫ x

1
g(t) dt , x > 0,

if and only if f = �g. This provides an alternative characterization of �g.

Generalized Binet’s Function For any q ∈ N, the generalized Binet function
associated with g and q is the function J q [g] : R+ → R defined by the equation
(see (6.16))

J q [g](x) =
q−1∑
j=0

Gj�
jg(x)−

∫ x+1

x

g(t) dt for x > 0.
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In particular, we also have (see (6.18))

J q+1[�g](x) = �g(x)− σ [g] −
∫ x

1
g(t) dt +

q∑
j=1

Gj�
j−1g(x) .

Note that several objects and formulas of our theory can be usefully expressed in
terms of this latter function.

Generalized Euler’s Constant Recall that the generalized Euler constant associ-
ated with the function g is the number

γ [g] = − Jp+1[�g](1),

where p = 1+ deg g (see Definition 6.34).
Note that, contrary to the asymptotic constant σ [g], the generalized Euler

constant γ [g] is not invariant if we replace p with a higher value. Besides, by
definition of γ [g] both quantities are related through the following identity

σ [g] = γ [g] +
p∑

j=1
Gj �j−1g(1),

where p = 1 + degg (see Proposition 6.36). In particular, we have γ [g] = σ [g]
whenever degg = −1.

We also have the following integral representations

γ [g] =
∫ ∞

1

( p∑
j=0

Gj�
jg(�t�)− g(t)

)
dt

and

γ [g] =
∫ ∞

1

(
Pp[g](t)− g(t)

)
dt,

where

P p[g](x) =
p∑

j=0

({x}
j

)
�jg(�x�), x ≥ 1,

is the piecewise polynomial function whose restriction to any interval (k, k + 1),
with k ∈ N

∗, is the interpolating polynomial of g with nodes at k, k + 1, . . . , k + p

(see Proposition 6.37 and Eqs.. (6.38) and (6.41)).
If g is p-convex or p-concave on [1,∞), then the graph of g is always over or

always under that of P p[g] on [1,∞) and |γ [g]| is the surface area between both
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graphs. In this case, we also have (see (6.45) and (6.46))

|γ [g]| ≤ Gp |�pg(1)|

and, if p ≥ 1,

|γ [g]| ≤
∫ 1

0

∣∣∣(t−1p

)∣∣∣
∣∣∣�p−1g(t + 1)−�p−1g(1)

∣∣∣ dt.

9.4 Inequalities

Recall that, for any a > 0, the function ρ
p
a [g] : [0,∞) → R is defined by the

equation (see (1.7))

ρ
p
a [g](x) = g(x + a)−

p−1∑
j=0

(
x
j

)
�jg(a) for x > 0.

In particular, we have

ρ
p+1
a [�g](x) = �g(x + a)−�g(a)−

p∑
j=1

(
x
j

)
�j−1g(a) .

Generalized Wendel’s Inequality (Symmetrized Version) Let a ≥ 0 and let x >

0 be so that g is p-convex or p-concave on [x,∞). Then we have (see Corollary 6.2)

∣∣∣ρp+1
x [�g](a)

∣∣∣ ≤ a�
∣∣∣(a−1p

)∣∣∣ ∣∣�pg(x)
∣∣ .

If p ≥ 1, we also have the following tighter inequality

∣∣∣ρp+1
x [�g](a)

∣∣∣ ≤
∣∣∣(a−1p

)∣∣∣
∣∣∣�p−1g(x + a)−�p−1g(x)

∣∣∣ .

This latter inequality is referred to as the symmetrized version of the generalized
Wendel inequality (see Corollary 6.2). Both inequalities reduce to equalities when
a ∈ {0, 1, . . . , p}.

Now, for any n ∈ N
∗ we have (see (5.4))

ρ
p+1
n [�g](x) = �g(x)− f

p
n [g](x), x > 0.
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Using this identity, we immediately derive the following discrete version of the
inequalities above. If g is p-convex or p-concave on [n,∞), then

∣∣�g(x)− f
p
n [g](x)

∣∣ ≤ x�
∣∣∣(x−1p

)∣∣∣ ∣∣�pg(n)
∣∣ , x > 0,

and if p ≥ 1,

∣∣�g(x)− f
p
n [g](x)

∣∣ ≤
∣∣∣(x−1p

)∣∣∣
∣∣∣�p−1g(n+ x)−�p−1g(n)

∣∣∣ , x > 0.

If g lies in D−1
N

, then (see Proposition 6.14)

�g(x) → �g(∞) =
∞∑

k=1
g(k) as x →∞.

We then have the following additional inequality (see Theorem 3.13). If g is
increasing or decreasing on [n,∞), then

∣∣∣∣∣
∞∑

k=n

g(x + k)

∣∣∣∣∣ = |�g(x + n)−�g(∞)| ≤ |�g(n)−�g(∞)| , x > 0.

Generalized Stirling’s Formula-Based Inequality (Symmetrized Version) If
x > 0 is so that g is p-convex or p-concave on [x,∞), then we have the inequality
(see Corollary 6.12)

∣∣∣Jp+1[�g](x)

∣∣∣ ≤ Gp |�pg(x)|.

If p ≥ 1, we also have the following tighter inequality

∣∣∣Jp+1[�g](x)

∣∣∣ ≤
∣∣∣∣
∫ 1

0

(
t−1
p

)
(�p−1g(x + t)−�p−1g(x)) dt

∣∣∣∣ .

Moreover, if p = 0 or p = 1, then (see Proposition 6.19)

∣∣∣∣�g

(
x + 1

2

)
− σ [g] −

∫ x

1
g(t) dt

∣∣∣∣ ≤
∣∣∣Jp+1[�g](x)

∣∣∣ .
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Generalized Gautschi’s Inequality Suppose that g lies in C2 ∩ K2. Let a ≥ 0
and let x > 0 be so that �g is convex on [x + �a�,∞). Then we have (see
Proposition 8.67)

(a − a�) g(x + a�) ≤ (a − a�) (�g)′(x + a�)
≤ �g(x + a)−�g(x + a�) ≤ (a − a�) g(x + �a�).

(The inequalities are to be reversed if �g is concave on [x + �a�,∞).)

9.5 Asymptotic Analysis

In this section, we gather the main results related to the asymptotic behaviors of
multiple log�-type functions, including the generalized Stirling formula.

Generalized Wendel’s Inequality-Based Limit The following convergence result
immediately follows from the generalizedWendel inequality (see Theorem 6.1). For
any a ≥ 0, we have

ρ
p+1
x [�g](a) → 0 as x →∞ ,

or equivalently,

�g(x + a)−�g(x)−
p∑

j=1

(
a
j

)
�j−1g(x) → 0 as x →∞ .

This convergence result still holds if we differentiate r times the left-hand side.

Generalized Stirling’s Formula We have (see Theorem 6.13)

Jp+1[�g](x) → 0 as x →∞ ,

or equivalently,

�g(x)−
∫ x

1
g(t) dt +

p∑
j=1

Gj�
j−1g(x) → σ [g] as x →∞ .

If g lies in C2q ∩Dp ∩K2q , where q ∈ N
∗ ∪ { 12 } and 0 ≤ p ≤ 2q − 1, then we also

have (see Proposition 8.39)

�g(x)−
∫ x

1
g(t) dt −

p∑
k=1

Bk

k! g(k−1)(x) → σ [g] as x →∞.
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If p = 0 or p = 1, we also have the following analogue of Burnside’s formula,
which provides a better approximation than the generalized Stirling formula (see
Proposition 6.19)

�g(x)−
∫ x− 1

2

1
g(t) dt → σ [g] as x →∞ .

All the convergence results above still hold if we differentiate r times both sides. In
particular, the function DrJp+1[�g] vanishes at infinity.
Asymptotic Equivalences For any a ≥ 0 and any c ∈ R, we have (see
Proposition 6.20)

c +�g(x + a) ∼ c +
∫ x+1

x

�g(t) dt as x →∞

(under the assumption that c + �g(n + 1) ∼ c + �g(n) as n →N ∞ whenever
c +�g vanishes at infinity). If g does not lie in D−1

N
, then we also have

�g(x + a) ∼ c +
∫ x

1
g(t) dt as x →∞.

These equivalences still hold if we differentiate r times both sides; that is,

Dr�g(x + a) ∼ g(r−1)(x) as x →∞

(under the assumption that Dr�g(n+1) ∼ Dr�g(n) as n→N ∞ wheneverDr�g

vanishes at infinity).

Asymptotic Expansions We have the following asymptotic expansions (see
Proposition 8.36).

(a) If g lies in C1 ∩Dp ∩Kmax{p,1}, then for large x we have

�g(x) = σ [g] +
∫ x

1
g(t) dt − 1

2
g(x)+ R1(x) ,

where

|R1(x)| ≤ 1

2
|g(x)|.

(b) If g lies in C2q ∩Dp ∩Kmax{p,2q} for some q ∈ N
∗, then for large x we have

�g(x) = σ [g] +
∫ x

1
g(t) dt − 1

2
g(x)+

q∑
k=1

B2k

(2k)! g
(2k−1)(x)+ R

q

1 (x) ,
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where

|Rq

1 (x)| ≤ |B2q |
(2q)! |g

(2q−1)(x)| .

Asymptotic expansions of the more general function

x �→ 1

m

m−1∑
j=0

�g

(
x + j

m

)
,

for any m ∈ N
∗, are also provided in Proposition 8.35.

Generalized Liu’s Formula The following assertions hold (see Proposi-
tion 8.42).

(a) If g lies in C2 ∩D1 ∩K2, then we have

�g(x) = σ [g] +
∫ x

1
g(t) dt − 1

2
g(x)−

∫ ∞

0

(
{t} − 1

2

)
g′(x + t) dt .

(b) If g lies in C2q+1 ∩D2q ∩K2q+1 for some q ∈ N
∗, then we have

�g(x) = σ [g] +
∫ x

1
g(t) dt − 1

2
g(x)+

q∑
k=1

B2k

(2k)! g
(2k−1)(x)

+
∫ ∞

0

B2q({t})
(2q)! g(2q)(x + t) dt.

9.6 Limit, Series, and Integral Representations

We now recall the different representations of multiple log�-type functions that we
established in this work as well as the way we can generate further identities by
integration and differentiation.

Note that, in the special case when g lies in D−1
N

, both the Eulerian and
Weierstrassian forms coincide with the analogue of Gauss’ limit, i.e., we have

�g(x) =
∞∑

k=1
g(k)−

∞∑
k=0

g(x + k),

and the second series converges uniformly on R+ (and tends to zero as x →∞).
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Analogue of Gauss’ Limit By definition of �g, we have

�g(x) = lim
n→∞ f

p
n [g](x), x > 0.

This is precisely the analogue of Gauss’ limit for the gamma function. We have
also established that the sequence n �→ f

p
n [g] converges uniformly on any bounded

subset of R+ to �g (see our existence Theorem 3.6).
More generally, we have shown that the sequence n �→ Drf

p
n [g] converges

uniformly on any bounded subset of R+ to Dr�g (see Theorem 7.5). In particular,
both sides of the identity above can be differentiated r times (i.e., the limit and the
derivative operator commute).

Moreover, the function f
p
n [g](x)−�g(x) can be (repeatedly) integrated on any

bounded interval of [0,∞) and the integral converges to zero as n → ∞ (see
Proposition 5.18 and Remark 5.19).

Eulerian and Weierstrassian Forms We have the following Eulerian form (see
Theorem 8.2)

�g(x) = − g(x)+
p∑

j=1

(
x
j

)
�j−1g(1)−

∞∑
k=1

⎛
⎝g(x + k)−

p∑
j=0

(
x
j

)
�jg(k)

⎞
⎠ .

We also have the following Weierstrassian forms if g ∈ Cp (see Theorems 8.5
and 8.7).

(a) If p = 1+ deg g = 0, then

�g(x) = σ [g] − g(x)−
∞∑

k=1

(
g(x + k)−

∫ k+1

k

g(t) dt

)
.

(b) If p = 1+ deg g ≥ 1, then

�g(x) =
p−1∑
j=1

(
x
j

)
�j−1g(1)+ (x

p

)
(�g)(p)(1)

−g(x)−
∞∑

k=1

⎛
⎝g(x + k)−

p−1∑
j=0

(
x
j

)
�jg(k)− (x

p

)
g(p)(k)

⎞
⎠ ,

where (�g)(p)(1) = g(p−1)(1)− σ [g(p)].
Each of the series above converges uniformly on any bounded subset of [0,∞) and
can be repeatedly integrated term by term on any bounded interval of [0,∞). It can
also be differentiated term by term up to r times.
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Gregory’s Formula-Based Series Representation We also have the following
series representation (see Proposition 8.11). Suppose that g lies inK∞ and let x > 0
be so that for every integer q ≥ p the function g is q-convex or q-concave on
[x,∞). Suppose also that the sequence q �→ �qg(x) is bounded. Then we have

�g(x) = σ [g] +
∫ x

1
g(t) dt −

∞∑
n=1

Gn �n−1g(x).

Moreover, if these latter assumptions are satisfied for x = 1, then we also have the
following analogue of Fontana-Mascheroni’s series representation of γ

σ [g] =
∞∑

n=1
Gn �n−1g(1).

Integral Representation We have seen that an integral expression for �g can
sometimes be obtained by first finding an expression for �g(r) when r > 1. This is
the elevator method (see Corollary 7.20).

We have

(�g)(r) −�g(r) = g(r−1)(1)− σ [g(r)]

and, if r > p,

σ [g(r)] = g(r−1)(1)+
∞∑

k=1
g(r)(k).

Moreover, for any a > 0, we have

�g = fa − fa(1),

where fa ∈ Cr is defined by

fa(x) =
r−1∑
k=1

ck(a)
(x − a)k

k! +
∫ x

a

(x − t)r−1

(r − 1)! (�g)(r)(t) dt

and, for k = 1, . . . , r − 1,

ck(a) =
r−k−1∑
j=0

Bj

j !
(

g(j+k−1)(a)−
∫ a+1

a

(a + 1− t)r−j−k

(r − j − k)! (�g)(r)(t) dt

)
.
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9.7 Further Identities and Results

In this section, we collect the remaining identities and results that may be relevant
in our investigation of multiple log�-type functions.

Analogue of Gauss’ Multiplication Formula Let m ∈ N
∗ and define the function

gm : R+ → R by the equation gm(x) = g( x
m

) for x > 0. Then we have the
following analogue of Gauss’ multiplication formula (see Sect. 8.6)

m−1∑
j=0

�g

(
x + j

m

)
=

m∑
j=1

�g

(
j

m

)
+�gm(mx) , x > 0,

where

m∑
j=1

�g

(
j

m

)
= m σ [g] − σ [gm] −m

∫ 1

1/m

g(t) dt.

We also have

lim
m→∞

�gm(mx)−�gm(m)

m
=
∫ x

1
g(t) dt , x > 0,

and, if g is integrable at 0,

lim
m→∞

1

m
�gm(mx) =

∫ x

0
g(t) dt , x > 0.

A related asymptotic result is also given in Proposition 8.30.

Analogue of Wallis’s Product Formula We present here in a single statement the
analogue of Wallis’s product formula as given in Proposition 8.49 and Remark 8.53.

Let g̃1, g̃2, g̃3 : R+ → R be the functions defined respectively by the equations

g̃1(x) = �g(2x − 1), g̃2(x) = �g(2x), g̃3(x) = 2 g(2x), for x > 0.

We assume that g̃� lies in K0 for some � ∈ {1, 2, 3}.
Let also θ1, θ2, θ3 : N∗ → R be the sequences defined respectively by the

equations

θ1(n) = σ [g̃1] +
∫ n+1

1
g̃1(t) dt −

(p−1)+∑
j=1

Gj �j−1g̃1(n+ 1) ,

θ2(n) = g(2n)− g(1)− σ [g̃2] −
∫ n

1
g̃2(t) dt +

(p−1)+∑
j=1

Gj �j−1g̃2(n) ,
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θ3(n) = σ [g̃3] − σ [g] +
∫ 2

1
(g(2n+ t)− g(t)) dt

+
p∑

j=1
Gj

(
�j−1g(2n+ 1)−�j−1g̃3(n+ 1)

)
,

for n ∈ N
∗. Then we have

lim
n→∞

(
h(n)+

2n∑
k=1

(−1)k−1g(k)

)
= 0,

where h(n) is the function obtained from the series expansion for θ�(n) about
infinity after removing all the summands that vanish at infinity.

Restriction to the Natural Integers The restriction of �g to N
∗ is the sum

(5.2). This sum can be estimated, e.g., by means of an integral through Gregory’s
summation formula (6.33) with a bounded remainder (6.37). The representations of
�g given above can also lead to interesting identities when restricted to the natural
integers.

Analogue of Euler’s Series Representation of γ When g lies in C∞ ∩ K∞, the
following series (see (7.4))

σ [g] =
∞∑

k=1
(�g)(k)(1)

1

(k + 1)! ,

when it converges, provides an analogue of Euler’s series representation of γ . It is
obtained by integrating term by term the Taylor series expansion of�g(x+1) about
x = 0.

Generalized Webster’s Functional Equation This result can be found in Theo-
rem 8.71.

Analogues of Euler’s Reflection Formula and Gauss’ Digamma Theorem
These topics are discussed in Sects. 8.9 and 8.10.
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Chapter 10
Applications to Some Standard Special
Functions

We now apply our results to certain multiple �-type functions and multiple log�-
type functions that are known to be well-studied special functions, namely: the
gamma function, the digamma function, the polygamma functions, the q-gamma
function, the Barnes G-function, the Hurwitz zeta function and its higher order
derivatives, the generalized Stieltjes constants, and the Catalan number function. For
recent background on some of these functions, see, e.g., Srivastava and Choi [93].

Each of these examples is examined and studied systematically by following
the steps and results given in the previous chapter. When algebraic computations
become tedious, a computer algebra system can be of great assistance in executing
the details. Further examples will be discussed in the next two chapters.

In this chapter and the next, we occasionally address and solve some secondary
but interesting issues. They are then presented and numbered in a Project environ-
ment.

Most of the applications we consider in this work illustrate how powerful is our
theory to produce formulas and identities methodically. Although many of these
formulas and identities are already known, to our knowledge they had never been
derived from such a general and unified setting.

10.1 The Gamma Function

Since the Euler gamma function was the starting point of this theory and therefore
also Webster’s motivating example in his introduction of the �-type functions, it is
natural to test our results on this function first.

The following investigation of the gamma function does not reveal quite new
formulas. However, it can be regarded as a tutorial that clearly demonstrates how
our results can be used to carry out this investigation in a systematic way.

© The Author(s) 2022
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for Higher Order Convex Functions, Developments in Mathematics 70,
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In addition to the remarkable book by Artin [11], the interested reader can also
find a very good expository tour of the gamma function in Srinivasan’s paper [92].

ID Card The following table summarizes the ID card corresponding to the log and
log-gamma functions.

g(x) Membership deg g �g(x)

ln x C∞ ∩D1 ∩K∞ 0 ln�(x)

Bohr-Mollerup’s Theorem A characterization of the gamma function is given
in Bohr-Mollerup’s theorem (see Theorem 1.1 and Example 3.2). In the additive
notation, we have the following statement.

All eventually convex or concave solutions f : R+ → R to the equation

f (x + 1)− f (x) = ln x

are of the form f (x) = c + ln�(x), where c ∈ R.

Using Proposition 3.9, we can also derive the following alternative characterization
of the gamma function (see Example 3.11).

All solutions f : R+ → R to the equation

f (x + 1)− f (x) = ln x

that satisfy the asymptotic condition that, for each x > 0,

f (x + n)− f (n) − x lnn → 0 as n→N ∞

are of the form f (x) = c + ln�(x), where c ∈ R.

Extended ID Card The value of σ [g] has been discussed in Example 6.5. More
precisely, we also have the following values:

σ [g] σ [g] γ [g]
1
2 ln(2π) −1+ 1

2 ln(2π) γ [g] = σ [g]

• Inequality

|σ [g]| ≤ ln 4− 5

4
≈ 0.14.
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• Alternative representations of σ [g] = γ [g]

σ [g] =
∫ ∞

1

(
{t} ln 1+ �t�

t
+ (1− {t}) ln �t�

t

)
dt ,

σ [g] = lim
n→∞

(
lnn! + n− 1−

(
n+ 1

2

)
lnn

)
,

σ [g] =
∞∑

k=1

(
1−

(
k + 1

2

)
ln

(
1+ 1

k

))
,

σ [g] =
∫ ∞

1

(
1

2
ln(�t�2 + �t�)− ln t

)
dt ,

σ [g] =
∫ ∞

1

{t} − 1
2

t
dt ,

σ [g] =
∫ 1

0
ln�(t + 1) dt.

• Binet’s function

J 2[ln ◦�](x) = J (x) = ln�(x)− 1

2
ln(2π)+x−

(
x − 1

2

)
ln x , x > 0.

• Raabe’s formula

∫ x+1

x

ln�(t) dt = 1

2
ln(2π)+ x ln x − x , x > 0.

• Alternative characterization. The function f (x) = ln�(x) is the unique solution
lying in C0 ∩K1 to the equation

∫ x+1

x

f (t) dt = 1

2
ln(2π)+ x ln x − x , x > 0.

Inequalities The following inequalities hold for any x > 0, any a ≥ 0, and any
n ∈ N

∗.

• Symmetrized generalized Wendel’s inequality (equality if a ∈ {0, 1})
∣∣ ln�(x + a)− ln�(x)− a ln x

∣∣ ≤ |a − 1| ln
(
1+ a

x

)
,

(
1+ a

x

)−|a−1| ≤ �(x + a)

�(x) xa
≤
(
1+ a

x

)|a−1|
.
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• Symmetrized generalized Wendel’s inequality (discrete version)

∣∣∣∣∣ln�(x)−
n−1∑
k=1

ln k +
n−1∑
k=0

ln(x + k)− x lnn

∣∣∣∣∣ ≤ |x − 1| ln
(
1+ x

n

)
.

(
1+ x

n

)−|x−1| ≤ �(x)
x(x + 1) · · · (x + n− 1)

(n− 1)! nx
≤
(
1+ x

n

)|x−1|
.

• Symmetrized Stirling’s formula-based inequality

|J (x)| ≤ (x + 1)2

2
ln

(
1+ 1

x

)
− x

2
− 3

4
≤ 1

2
ln

(
1+ 1

x

)
,

(
1+ 1

x

)− 1
2 ≤ �(x)√

2π e−x xx− 1
2

≤
(
1+ 1

x

) 1
2

.

• Burnside’s formula-based inequality

∣∣∣∣ln�

(
x + 1

2

)
− 1

2
ln(2π)+ x − x ln x

∣∣∣∣ ≤ |J (x)| .

• Generalized Gautschi’s inequality

(x + a�)a−a� ≤ e(a−a�) ψ(x+a�) ≤ �(x + a)

�(x + a�) ≤ (x + �a�)a−a� .

Stirling’s and Related Formulas For any a ≥ 0, we have the following limits and
asymptotic equivalences as x →∞,

ln�(x + a)− ln�(x)− a ln x → 0,

ln�(x)− 1

2
ln(2π)+ x −

(
x − 1

2

)
ln x → 0,

ln�

(
x + 1

2

)
− 1

2
ln(2π)+ x − x ln x → 0,

�(x + a) ∼ xa �(x), ln�(x + a) ∼ x ln x,

�(x) ∼ √
2π e−xxx− 1

2 , �(x + 1) ∼ √
2πx e−xxx .
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Burnside’s approximation (better than Stirling’s approximation)

�(x) ∼ √
2π

(
x − 1

2

e

)x− 1
2

.

Further results (obtained by differentiation)

ψ(x + a)− ψ(x) → 0, ψ(x)− ln x → 0, ψ(x + a) ∼ ln x ,

ψk(x + a) ∼ (−1)k−1 (k − 1)!
xk

, ψk(x) → 0, k ∈ N
∗.

Asymptotic Expansions For any m, q ∈ N
∗ we have the following expansion as

x →∞

1

m

m−1∑
j=0

ln�

(
x + j

m

)
= 1

2
ln(2π)+ x ln x − x − 1

2m
ln x

+
q∑

k=1

Bk+1
k(k + 1) xk mk+1 +O

(
x−q−1) .

Setting m = 1 in this formula, we retrieve the known asymptotic expansion of the
log-gamma function ln�(x) as x →∞ (see, e.g., [93, p. 7])

ln�(x) = 1

2
ln(2π)− x +

(
x − 1

2

)
ln x +

q∑
k=1

Bk+1
k(k + 1) xk

+O
(
x−q−1) ,

(10.1)

or equivalently,

J (x) =
q∑

k=1

Bk+1
k(k + 1) xk

+O
(
x−q−1) .

For instance, setting q = 4 in (10.1) we get

ln�(x) = 1

2
ln(2π)− x +

(
x − 1

2

)
ln x + 1

12x
− 1

360x3
+O

(
x−5
)

.

Generalized Liu’s Formula For any x > 0 we have

ln�(x) = 1

2
ln(2π)− x +

(
x − 1

2

)
ln x +

∫ ∞

0

1
2 − {t}
t + x

dt,
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or equivalently,

J (x) =
∫ ∞

0

1
2 − {t}
t + x

dt.

Limit, Series, and Integral Representations We now consider various represen-
tations of ln�(x), including the Eulerian and Weierstrassian forms.

• Eulerian form and related identities. We have

ln�(x) = − ln x −
∞∑

k=1

(
ln(x + k)− ln k − x ln

(
1+ 1

k

))
,

�(x) = 1

x

∞∏
k=1

(1+ 1
k
)x

1+ x
k

.

Upon differentiation and integration, we obtain (cf. Example 8.3)

ψ(x) = − 1

x
−

∞∑
k=1

(
1

x + k
− ln

(
1+ 1

k

))
,

ψk(x) = (−1)k−1 k! ζ(k + 1, x), k ∈ N
∗,

ψ−2(x) = x − x ln x −
∞∑

k=1

(
(x + k) ln

(
1+ x

k

)
− x − x2

2
ln

(
1+ 1

k

))
.

• Weierstrassian form and related identities. We have

ln�(x) = − γ x − ln x −
∞∑

k=1

(
ln(x + k)− ln k − x

k

)
,

�(x) = e−γ x

x

∞∏
k=1

e
x
k

1+ x
k

.

Upon differentiation and integration, we obtain (cf. Example 8.8)

ψ(x) = − γ − 1

x
−

∞∑
k=1

(
1

x + k
− 1

k

)
,

ψ−2(x) = − γ
x2

2
+ x − x ln x −

∞∑
k=1

(
(x + k) ln

(
1+ x

k

)
− x − x2

2k

)
.
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• Gauss’ limit and related identities. The Gauss limit is

ln�(x) = lim
n→∞

(
ln(n− 1)! −

n−1∑
k=0

ln(x + k)+ x lnn

)
.

Upon differentiation and integration, we obtain

ψ(x) = lim
n→∞

(
lnn−

n−1∑
k=0

1

x + k

)
,

ψk(x) = (−1)k+1 k! ζ(k + 1, x), k ∈ N
∗,

ψ−2(x) = lim
n→∞

(
nx − x ln x + (lnn)

x2

2
−

n−1∑
k=1

(x + k) ln
(
1+ x

k

))
.

(10.2)

The multiplicative version of Gauss’ limit reduces to the following formula
(just replace n with n+ 1 and note that (n+ 1)x ∼ nx as n →∞)

�(x) = lim
n→∞

n! nx

x(x + 1) · · · (x + n)

as stated in (1.6). We also have the following alternative form of Gauss’ limit,
which immediately follows from the Weierstrassian form

�(x) = e−γ x

x
lim

n→∞

n∏
k=1

e
x
k

1+ x
k

= lim
n→∞

n! exψ(n)

x(x + 1) · · · (x + n)
.

This latter limit can also be derived immediately from Gauss’ limit and the well-
known fact that ψ(x)− ln x → 0 as x →∞.

• Integral representation. Considering the antiderivative of the digamma function
ϕ = ψ as the solution to the equation �ϕ = g′ (using the elevator method), we
obtain

ln�(x) = ψ−1(x) =
∫ x

1
ψ(t) dt.
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• Gregory’s formula-based series representation. For any x > 0 we have the series
representation (see Example 8.12)

ln�(x) = 1

2
ln(2π)− x + x ln x −

∞∑
n=0

Gn+1�n ln(x) (10.3)

= 1

2
ln(2π)− x + x ln x −

∞∑
n=0

|Gn+1|
n∑

k=0
(−1)k(n

k

)
ln(x + k).

Setting x = 1 in this identity yields the following analogue of Fontana-
Mascheroni series

∞∑
n=0

|Gn+1|
n∑

k=0
(−1)k(n

k

)
ln(k + 1) = − 1+ 1

2
ln(2π).

Gauss’ Multiplication Formula For any m ∈ N
∗ and any x > 0, we have

m−1∏
j=0

�

(
x + j

m

)
= (2π)

m−1
2 m

1
2−x �(x).

Corollary 8.33 provides the following asymptotic equivalence for any x > 0

�(mx)
1
m ∼ e−xxxmx as m →N ∞,

which also follows from Stirling’s formula.

Wallis’s Product Formula We have the following limits

lim
n→∞

1 · 3 · · · (2n− 1)

2 · 4 · · · (2n)

√
n = 1√

π
,

lim
n→∞

(
1

2
ln(πn)+

2n∑
k=1

(−1)k−1 ln k

)
= 0.

Restriction to the Natural Integers We have the well-known identity

�(n+ 1) = n! , n ∈ N.

Gregory’s formula states that for any n ∈ N
∗ and any q ∈ N we have

ln n! = 1− n+ (n+ 1) lnn−
q∑

j=1
Gj

(
(�j−1 ln)(n)− (�j−1 ln)(1)

)
− R

q
n ,
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with

|Rq
n | ≤ Gq |(�q ln)(n)− (�q ln)(1)|.

Moreover, Eq. (10.1) yields the following asymptotic expansion as x →∞. For any
q ∈ N

∗, we have

lnn! = 1

2
ln(2πn)− n+ n ln n+

q∑
k=1

Bk+1
k(k + 1) nk

+O
(
n−q−1) .

Similarly, Eq. (10.3) yields the following series representation

lnn! = 1

2
ln(2π)− n+ (n+ 1) lnn−

∞∑
k=0

Gk+1�kg(n) , n ∈ N
∗.

We also have Liu’s formula

ln n! = 1

2
ln(2πn)− n+ n lnn+

∫ ∞

n

1
2 − {t}

t
dt .

Many other representations of ln n! can be derived from, e.g., the limit and series
representations of the log-gamma function described above.

Generalized Webster’s Functional Equation For any m ∈ N
∗ and any a > 0,

there is a unique solution f : R+ → R+ to the equation

m−1∏
j=0

f (x + aj) = x

such that ln f lies in K0 (or in K1), namely

f (x) = (am)
1
m

�(x+a
am

)

�( x
am

)
.

Analogue of Euler’s Series Representation of γ The Taylor series expansion of
ln�(x + 1) about x = 0 is

ln�(x + 1) = − γ x +
∞∑

k=2

ζ(k)

k
(−x)k , |x| < 1.
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Integrating both sides of this equation on (0, 1), we obtain (see Example 7.16)

∞∑
k=2

(−1)k 1

k(k + 1)
ζ(k) = 1

2
γ − 1+ 1

2
ln(2π) .

Reflection Formula For any x ∈ R \ Z, we have �(x)�(1− x) = π csc(πx).

10.2 The Digamma and Harmonic Number Functions

Let us now see what we get if we apply our results to both the digamma function
x �→ ψ(x) and the harmonic number function x �→ Hx . Recall first that the identity

Hx−1 = ψ(x)+ γ

holds for any x > 0.

ID Card We have the following data about the functions 1/x and ψ(x):

g(x) Membership deg g �g(x)

1/x C∞ ∩D0 ∩K∞ −1 Hx−1 = ψ(x) + γ

Analogue of Bohr-Mollerup’s Theorem The digamma function can be character-
ized as follows.

All eventually monotone solutions f : R+ → R to the equation

f (x + 1) − f (x) = 1

x

are of the form f (x) = c + ψ(x), where c ∈ R.

It is noteworthy that this characterization immediately follows from the basic
version when p = 0 of our Theorem 1.4, which was established by John [49].

Interestingly, this characterization enables us to establish almost instantly the
following identities for every x > 0,

Hx−1 = ψ(x)+ γ =
∫ 1

0

1− tx−1

1− t
dt .

Indeed, each of the three expressions above vanishes at x = 1 and is an eventually
increasing solution to the equation f (x + 1) − f (x) = 1/x. Hence, they must
coincide on R+. We can actually prove many other representations similarly; for
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instance, the following Gauss and Dirichlet integral representations (see, e.g., [93,
p. 26])

ψ(x) =
∫ ∞

0

(
e−t

t
− e−xt

1− e−t

)
dt , x > 0,

ψ(x) =
∫ ∞

0

(
e−t − 1

(t + 1)x

)
dt

t
, x > 0.

Kairies [51] obtained a variant of the characterization of the digamma function
above by replacing the eventual monotonicity with the convexity property. This
variant is also immediate from our results since g also lies in D1 ∩K1.

Using Proposition 3.9, we can also derive the following alternative characteriza-
tion of the digamma function.

All solutions f : R+ → R to the equation

f (x + 1) − f (x) = 1

x

that satisfy the asymptotic condition that, for each x > 0,

f (x + n) − f (n) → 0 as n→N ∞

are of the form f (x) = c + ψ(x), where c ∈ R.

Extended ID Card We already know that σ [g] = γ (see Example 8.19). Hence
we have the following table:

σ [g] σ [g] γ [g]
∞ γ γ

• Alternative representations of σ [g] = γ [g] = γ

γ = lim
n→∞

(
n∑

k=1

1

k
− lnn

)
=

∞∑
k=1

(
1

k
− ln

(
1+ 1

k

))
,

γ =
∫ ∞

1

(
1

�t� −
1

t

)
dt = 1

2
−
∫ ∞

1

{t} − 1
2

t2
dt ,

γ =
∫ 1

0
Ht dt .



190 10 Applications to Some Standard Special Functions

• Generalized Binet’s function. For any q ∈ N and any x > 0

J q+1[ψ](x) = ψ(x)− ln x +
q∑

j=1
|Gj |B(x, j),

where (x, y) �→ B(x, y) is the beta function.
• Analogue of Raabe’s formula (see Example 8.19)

∫ x+1

x

ψ(t) dt = ln x , x > 0.

• Alternative characterization. The function f = ψ is the unique solution lying in
C0 ∩K0 to the equation

∫ x+1

x

f (t) dt = ln x , x > 0.

Inequalities The following inequalities hold for any x > 0, any a ≥ 0, and any
n ∈ N

∗.

• Symmetrized generalized Wendel’s inequality (equality if a ∈ {0, 1})

|ψ(x + a)− ψ(x)| ≤ a� 1
x

.

• Symmetrized generalized Wendel’s inequality (discrete version)

∣∣∣∣∣ψ(x)+ γ −
n−1∑
k=1

1

k
+

n−1∑
k=0

1

x + k

∣∣∣∣∣ ≤ x� 1
n

.

• Symmetrized Stirling’s and Burnside’s formulas-based inequalities

∣∣∣∣ψ
(

x + 1

2

)
− ln x

∣∣∣∣ ≤ |ψ(x)− ln x| ≤ 1

x
.

Considering for instance the value p = 1 in Corollary 6.12, we see that the latter
inequality can be refined into

1

2(x + 1)
− 1

x
≤ ψ(x)− ln x ≤ − 1

2(x + 1)
.

• Generalized Gautschi’s inequality

a − a�
x + �a� ≤ ψ(x + a)− ψ(x + a�) ≤ (a − a�) ψ1(x + a�) ≤ a − a�

x + a� .
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Generalized Stirling’s and Related Formulas For any a ≥ 0, we have the
following limits and asymptotic equivalence as x →∞,

ψ(x + a)− ψ(x) → 0, ψ(x)− ln x → 0, ψ(x + a) ∼ ln x.

Burnside-like approximation (better than Stirling-like approximation)

ψ(x)− ln

(
x − 1

2

)
→ 0.

Further results (obtained by differentiation)

ψk(x + a) ∼ (−1)k−1 (k − 1)!
xk

, ψk(x) → 0, k ∈ N
∗.

Asymptotic Expansions For any m, q ∈ N
∗ we have the following expansion as

x →∞

1

m

m−1∑
j=0

ψ

(
x + j

m

)
= ln x +

q∑
k=1

(−1)k−1 Bk

k (mx)k
+O

(
x−q−1) . (10.4)

Setting m = 1 in this formula, we retrieve the known asymptotic expansion of ψ(x)

as x →∞ (see, e.g., [93, p. 36])

ψ(x) = ln x +
q∑

k=1

(−1)k−1 Bk

k xk
+O

(
x−q−1) ,

or equivalently,

J 1[ψ](x) =
q∑

k=1

(−1)k−1 Bk

k xk
+O

(
x−q−1) .

For instance, setting q = 5 we get

ψ(x) = ln x − 1

2x
− 1

12x2 +
1

120x4 +O
(
x−6
)

.

Generalized Liu’s Formula For any x > 0 we have

ψ(x) = ln x − 1

2x
+
∫ ∞

0

{t} − 1
2

(t + x)2
dt.

Limit and Series Representations Let us now examine the main limit and series
representations of the digamma function that we obtain from our results.
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• Eulerian and Weierstrassian forms. We have

ψ(x) = − γ − 1

x
+

∞∑
k=1

(
1

k
− 1

x + k

)
,

ψ(x) = − 1

x
+

∞∑
k=1

(
ln

(
1+ 1

k

)
− 1

x + k

)
.

Upon differentiation, we obtain

ψk(x) = (−1)k−1 k! ζ(k + 1, x), k ∈ N
∗.

Moreover, integrating the Eulerian (resp. Weierstrassian) form of the digamma
function on (0, x), we retrieve the Weierstrassian (resp. Eulerian) form of the
log-gamma function.

• The analogue of Gauss’ limit coincides with the Eulerian form.
• Gregory’s formula-based series representation. For any x > 0 we have the series

representation

ψ(x) = ln x −
∞∑

n=1
|Gn|B(x, n) = ln x −

∞∑
n=1

|Gn|
n
(
x+n−1

n

) .

Setting x = 1 in this identity, we retrieve the Fontana-Mascheroni series (see,
e.g., Blagouchine [20, p. 379])

γ =
∞∑

n=1

|Gn|
n

.

Setting x = 2, we get

1− ln 2 =
∞∑

n=1

|Gn|
n+ 1

,

which is consistent with the identities given in Example 8.16.

Analogue of Gauss’ Multiplication Formula For any m ∈ N
∗ and any x > 0, we

have (see, e.g., Berndt [18, p. 5])

m−1∑
j=0

ψ

(
x + j

m

)
= m(ψ(mx)− lnm) (10.5)
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and

m−1∑
j=0

Hx+j/m = m(Hmx+m−1 − lnm) .

Corollary 8.33 provides the following formula for any x > 0

lim
m→∞(Hmx−1 −Hm−1) = ln x.

Analogue of Wallis’s Product Formula The analogue of Wallis’s formula reduces
to the classical identity

∞∑
k=1

(−1)k−1 1
k
= ln 2 .

Project 10.1 Find the analogue of Wallis’s formula for the function g(x) = ψ(x).
We apply our method (see Sect. 9.7) to the function

g̃(x) = �g(2x) = 1

2x
.

Thus, we get

h(x) = ψ(2n)− ψ(1)− 1

2
γ − 1

2
ln n = 1

2
(γ + ln(4n))+O

(
n−1
)

,

and the analogue of Wallis’s formula for g(x) = ψ(x) is

lim
n→∞

(
− ln(4n)+ 2

2n∑
k=1

(−1)kψ(k)

)
= γ .

This provides yet another formula to define Euler’s constant γ . ♦
Restriction to the Natural Integers For any n ∈ N we have

Hn =
n∑

k=1

1

k
.

Gregory’s formula states that for any n ∈ N
∗ and any q ∈ N we have

Hn−1 = ln n−
q∑

j=1
|Gj |

(
B(n, j) − 1

j

)
− R

q
n ,
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with

|Rq
n | ≤ Gq

∣∣∣∣B(n, q + 1)− 1

q

∣∣∣∣ .

Many representations of Hn can be derived from, e.g., the limit and series
representations of the digamma function described above. For instance, using the
generalized Liu formula, we get (see also Remark 8.47)

Hn = lnn+ γ + 1

2n
+
∫ ∞

n

{t} − 1
2

t2
dt = lnn+ 1

2
+ 1

2n
−
∫ n

1

{t} − 1
2

t2
dt .

Generalized Webster’s Functional Equation For any m ∈ N
∗ and any a > 0,

there is a unique eventually monotone solution f : R+ → R to the equation

m−1∑
j=0

f (x + aj) = 1

x
,

namely

f (x) = 1

am
ψ

(
x + a

am

)
− 1

am
ψ
( x

am

)
.

Analogue of Euler’s Series Representation of γ We have ψ(1) = −γ and

ψk(1) = (−1)k−1k! ζ(k + 1) , k ∈ N
∗.

Thus, the Taylor series expansion of ψ(x + 1) about x = 0 is

Hx = ψ(x + 1)+ γ =
∞∑

k=1
(−1)k−1ζ(k + 1) xk , |x| < 1.

Integrating both sides of this equation on (0, 1), we retrieve Euler’s series represen-
tation of γ

γ =
∞∑

k=2
(−1)k ζ(k)

k
.

Analogue of the Reflection Formula For any x ∈ R \ Z, we have

ψ(x)− ψ(1− x) = − π cot(πx).
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10.3 The Polygamma Functions

We now investigate the polygamma functions ψν for any ν ∈ Z. In this context,
our results will prove to be particularly interesting when ν ≤ −2, that is, when the
function ψν has a strictly positive asymptotic degree.

For any ν ∈ Z, we set gν = �ψν ; hence we have g′ν = gν+1 and ψ ′ν = ψν+1. It
follows immediately that

�gν(x) = ψν(x)− ψν(1).

(The cases ν = 0 and ν = −1 correspond to the functions ψ(x) and ln�(x),
respectively, and have been already considered in the previous sections.) We will
often deal with the cases ν ≥ 1 and ν ≤ −1 separately. In the latter case, we will
often consider the value ν = −2 for simplicity and brevity.

ID Card When ν ≥ 1 Here we clearly have

gν(x) = Dν
x

1

x
= (−1)ν ν!

xν+1

and (see Example 7.6)

ψν(1) = (−1)ν+1ν! ζ(ν + 1).

Hence we have the following table.

gν(x) Membership deg gν �gν(x)

(−1)νν! x−ν−1 C∞ ∩D−1 ∩K∞ −1 ψν(x) − ψν(1)

ID Card When ν ≤ −1 Using (8.9), we obtain the following recurrence to
compute the functions gν . For any integer ν ≤ −1, we have

gν−1(x) =
∫ x+1

x

ψν(t) dt =
∫ x

0
gν(t) dt +

∫ 1

0
ψν(t) dt

=
∫ x

0
gν(t) dt + ψν−1(1).

In particular,

lim
x→0

gν−1(x) = ψν−1(1) =
∫ 1

0
ψν(t) dt.
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Unfolding this recurrence, we obtain g−1(x) = ln x and, for any integer ν ≤ −1,

gν−1(x) =
∫ x

0

(x − t)−ν−1

(−ν − 1)! ln t dt +
−ν−1∑
j=0

ψν+j−1(1)
xj

j ! , (10.6)

which is precisely the (−ν − 1)th order Taylor expansion of gν−1(x).
Thus, we have

g−1(x) = ln x ,

g−2(x) = x ln x − x + 1

2
ln(2π) ,

g−3(x) = 1

2
x2 ln x − 3

4
x2 +

(
1

2
x + 1

4

)
ln(2π)+ lnA.

Hence the following ID card

gν(x) Membership deg gν �gν(x)

Eq. (10.6) C∞ ∩D−ν ∩K∞ −ν − 1 ψν(x) − ψν(1)

Analogue of Bohr-Mollerup’s Theorem The function ψν can be characterized as
follows.

All solutions f : R+ → R to the equation f (x + 1)− f (x) = gν(x) that lie in K(−ν)+ are
of the form f (x) = cν + ψν(x), where cν ∈ R.

When ν ≥ 1, this characterization enables us to prove easily the following integral
representation of ψν

ψν(x) = (−1)ν−1
∫ ∞

0

tν e−xt

1− e−t
dt , x > 0.

Indeed, both sides of this identity coincide at x = 1 and are eventually monotone
solutions to the equation �f = gν . Hence they must coincide on R+.

Extended ID Card The asymptotic constant σ [gν] satisfies the following identity

σ [gν] =
∫ 1

0
ψν(t + 1) dt − ψν(1) = gν−1(1)− ψν(1).
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Moreover, if ν ≥ 1 we also have

σ [gν] = γ [gν] =
∞∑

k=1
gν(k)−

∫ ∞

1
gν(t) dt

= (−1)ν �(ν) (ν ζ(ν + 1)− 1)

and hence the following values

σ [gν ] σ [gν] γ [gν ]
∞ (−1)ν �(ν) (ν ζ(ν + 1)− 1) γ [gν ] = σ [gν ]

For ν ≤ −1 we have the values

σ [gν ] σ [gν ] γ [gν ]
ψν−1(1)− ψν(1) gν−1(1) − ψν(1) σ [gν ] −∑−ν

j=1 Gj�
j−1gν(1)

For instance we have

σ [g−2] = lnA− 1

4
ln(2π), σ [g−2] = lnA+ 1

4
ln(2π)− 3

4
,

and

γ [g−2] = lnA+ 1

6
ln 2− 1

3
.

We also have the following identities.

• Alternative representations of σ [g]

σ [gν] =
(−ν)+∑
j=1

Gj �j−1gν(1)−
∞∑

k=1

⎛
⎝�gν−1(k)−

(−ν)+∑
j=0

Gj �jgν(k)

⎞
⎠ ,

σ [gν] = lim
n→∞

⎛
⎝n−1∑

k=1
gν(k)+ gν−1(1)− gν−1(n)+

(−ν)+∑
j=1

Gj �j−1gν(n)

⎞
⎠ ,

σ [gν] = lim
n→∞

⎛
⎝n−1∑

k=1
gν(k)+ gν−1(1)− gν−1(n)−

(−ν)+∑
j=1

Bj

j ! gν+j−1(n)

⎞
⎠ .
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If ν ≥ 1, then

σ [gν] = (−1)ν ν!
(
1

2
− (ν + 1)

∫ ∞

1

{t} − 1
2

tν+2
dt

)
.

If ν ≤ −1, then for any integer q ≥ −ν/2�,

σ [gν] = 1

2
gν(1)−

q∑
k=1

B2k

(2k)! gν+2k−1(1)−
∫ ∞

1

B2q ({t})
(2q)! gν+2q(t) dt.

• Representations of γ [g]

γ [gν] = σ [gν] −
(−ν)+∑
j=1

Gj�
j−1gν(1) ,

γ [gν] =
∫ ∞

1

⎛
⎝

(−ν)+∑
j=0

Gj �jgν(�t�)− gν(t)

⎞
⎠ dt ,

γ [gν] =
∫ ∞

1

⎛
⎝

(−ν)+∑
j=0

({t}
j

)
�jgν(�t�)− gν(t)

⎞
⎠ dt .

• Generalized Binet’s function. For any q ∈ N and any x > 0

J q+1[ψν](x) = ψν(x)− gν−1(x)+
q∑

j=1
Gj �j−1gν(x).

For instance,

J 3[ψ−2](x) = ψ−2(x)− 1

12
(x + 1) ln(x + 1)+ 1

12
(3x − 1)2

− 1

12
x(6x − 7) ln x − 1

2
x ln(2π)− lnA.

• Analogue of Raabe’s formula

∫ x+1

x

ψν(t) dt = gν−1(x) , x > 0.
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• Alternative characterization. The function f = ψν is the unique solution lying
in C0 ∩K(−ν)+ to the equation

∫ x+1

x

f (t) dt = gν−1(x) , x > 0.

Inequalities When ν ≥ 1 The following inequalities hold for any x > 0, any a ≥
0, and any n ∈ N

∗.

• Symmetrized generalized Wendel’s inequality (equality if a ∈ {0, 1})

|ψν(x + a)− ψν(x)| ≤ a� ν!
xν+1 .

• Symmetrized generalized Wendel’s inequality (discrete version)

∣∣∣∣∣ψν(x)− ψν(1)−
n−1∑
k=1

gν(k)+
n−1∑
k=0

gν(x + k)

∣∣∣∣∣ ≤ x� ν!
nν+1 .

• Symmetrized Stirling’s and Burnside’s formulas-based inequalities

∣∣∣ψν

(
x + 1

2

)
− gν−1(x)

∣∣∣ ≤ |ψν(x)− gν−1(x)| ≤ |gν(x)| .

Considering for instance the value p = 1 in Corollary 6.12, we see that the latter
inequality can be refined into

∣∣∣∣ψν(x)− gν−1(x)+ 1

2
gν(x)

∣∣∣∣ ≤ 1

2
|�gν(x)|.

• Additional inequality

|ψν(x + n)| =
∣∣∣∣∣
∞∑

k=n

gν(x + k)

∣∣∣∣∣ ≤ |ψν(n)| .

• Generalized Gautschi’s inequality

(−1)ν−1(a − a�) ψν+1(x + a�) ≤ (−1)ν−1(ψν(x + a)− ψν(x + a�))
≤ (−1)ν−1(a − a�) gν(x + �a�) .
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Inequalities When ν ≤ −1 The following inequalities hold for any x > 0, any
a ≥ 0, and any n ∈ N

∗.

• Symmetrized generalized Wendel’s inequality (equality if a ∈ {0, 1, . . . ,−ν})
∣∣∣∣∣∣ψν(x + a)− ψν(x)−

−ν∑
j=1

(
a
j

)
�j−1gν(x)

∣∣∣∣∣∣
≤
∣∣∣(a−1−ν

)∣∣∣
∣∣∣�−ν−1gν(x + a)−�−ν−1gν(x)

∣∣∣
≤ a�

∣∣∣(a−1−ν

)∣∣∣ ∣∣�−νgν(x)
∣∣ .

• Symmetrized generalized Wendel’s inequality (discrete version)

∣∣ψν(x)− ψν(1)− f−ν
n [gν](x)

∣∣ ≤
∣∣∣(x−1−ν

)∣∣∣
∣∣∣�−ν−1gν(x + n)−�−ν−1gν(n)

∣∣∣
≤ x�

∣∣∣(x−1−ν

)∣∣∣ ∣∣�−νgν(n)
∣∣ ,

where

f−ν
n [gν](x) =

n−1∑
k=1

gν(k)−
n−1∑
k=0

gν(x + k)+
−ν∑
j=1

(
x
j

)
�j−1gν(n) .

• Symmetrized Stirling’s formula-based inequality

∣∣∣∣∣∣ψν(x)− gν−1(x)+
−ν∑
j=1

Gj�
j−1gν(x)

∣∣∣∣∣∣

≤
∫ 1

0

∣∣∣(t−1−ν

)∣∣∣
∣∣∣�−ν−1gν(x + t)−�−ν−1gν(x)

∣∣∣ dt

≤ G−ν

∣∣�−νgν(x)
∣∣

• Generalized Gautschi’s inequality
Considering the function ψ−2, we obtain

(a − a�) ψ−1(x + a�) ≤ ψ−2(x + a)− ψ−2(x + a�)
≤ (a − a�) g−2(x + �a�),

for any x + �a� ≥ x0, where x0 = 1.461 . . . is the unique positive zero of the
digamma function.
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Generalized Stirling’s and Related Formulas When ν ≥ 1 For any a ≥ 0, we
have the following limit and asymptotic equivalence as x →∞,

ψν(x + a) ∼ gν−1(x) = (−1)ν−1 (ν − 1)!
xν

, ψν(x) → 0.

Burnside-like approximation (better than Stirling-like approximation)

ψν(x)− gν−1(x − 1
2 ) → 0 .

Generalized Stirling’s and Related Formulas When ν ≤ −1 For any a ≥ 0, we
have the following limits and asymptotic equivalence as x →∞,

ψν(x + a)− ψν(x)−
−ν∑
j=1

(
a
j

)
�j−1gν(x) → 0,

ψν(x)− gν−1(x)+
−ν∑
j=1

Gj�
j−1gν(x) → 0,

ψν(x)−
−ν∑
k=0

Bk

k! gν+k−1(x) → 0,

ψν(x + a) ∼ gν−1(x) ∼ 1

(−ν)! x
−ν ln x.

When ν = −2 for instance, these limits reduce to

∫ x+a

x

ln�(t) dt − a ln

(√
2π

xx

ex

)
− (a2

)
ln

(
(x + 1)x+1

e xx

)
→ 0 ,

ψ−2(x)− 1

12
(x + 1) ln(x + 1)+ 1

12
(3x − 1)2

− 1

12
x(6x − 7) ln x − 1

2
x ln(2π) → lnA ,

ψ−2(x)− 1

12
(6x2 − 6x + 1) ln x + 1

4
(3x − 2)x − 1

2
x ln(2π) → lnA ,

ψ−2(x + a) ∼ 1

2
x2 ln x .
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Asymptotic Expansions For any m, q ∈ N
∗ we have the following expansion as

x →∞

1

m

m−1∑
j=0

ψν

(
x + j

m

)
=

q∑
k=0

Bk

mk k! gν+k−1(x)+O(gν+q(x)) .

Setting m = 1 in this formula, we obtain

ψν(x) =
q∑

k=0

Bk

k! gν+k−1(x)+O(gν+q(x)) .

For instance the asymptotic expansion of ψ−2 is

ψ−2(x) = 1

12
(6x2 − 6x + 1) ln x − 1

4
(3x − 2)x + 1

2
x ln(2π)+ lnA

+ 1

720x2 +O
(
x−4
)

.

Generalized Liu’s Formula For any ν ≥ 1 and any x > 0 we have

ψν(x) = (−1)ν−1 �(ν)

(
2x + ν

2xν+1 + ν(ν + 1)
∫ ∞

0

1
2 − {t}

(t + x)ν+2
dt

)
.

For ν = −2 and any x > 0 we have

ψ−2(x) = 1

12
(6x2 − 6x + 1) ln x − 1

4
(3x − 2)x + 1

2
x ln(2π)+ lnA

+
∫ ∞

0

B2({t})
2(x + t)

dt.

Limit and Series Representations When ν ≥ 1 The Eulerian and Weierstrassian
forms of ψν reduce to

ψν(x) = −
∞∑

k=0
gν(x + k) = (−1)ν−1 ν! ζ(ν + 1, x)

and this series converges uniformly on R+.

Limit and Series Representations When ν ≤ −1 The analogue of Gauss’ limit is

ψν(x) = ψν(1)+ lim
n→∞ f−ν

n [gν](x)
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and both sides can be integrated on any bounded subset of [0,∞) (the limit and the
integral commute). They can also be differentiated infinitely many times (the limit
and the derivative operator commute).

For instance, when ν = −2 we obtain

ψ−2(x) = lim
n→∞

( n−1∑
k=1

k ln k −
n−1∑
k=0

(x + k) ln(x + k)+ x

(
n ln n+ 1

2
ln(2π)

)

+
(

x

2

)(
(n+ 1) ln

(
1+ 1

n

)
+ lnn− 1

))
.

Comparing this formulawith that of (10.2), we see that the latter is less complicated,
since it was produced from less terms in its polynomial part. Now, differentiating
the formula above, we obtain a limit representation for ln�(x), but the Gauss limit
is less complicated. In this context, finding the simplest limit representations seems
to be an interesting problem.

The Eulerian and Weistrassian representations of ψν take the following forms

ψν(x)− ψν(1) = −gν(x)+
−ν∑
j=1

(
x
j

)
�j−1gν(1)

+
∞∑

k=1

⎛
⎝−gν(x + k)+

−ν∑
j=0

(
x
j

)
�jgν(k)

⎞
⎠

and

ψν(x)− ψν(1) = −gν(x)+
−ν−1∑
j=1

(
x
j

)
�j−1gν(1)− γ

(
x
−ν

)

+
∞∑

k=1

⎛
⎝−gν(x + k)+

−ν−1∑
j=0

(
x
j

)
�jgν(k)+ ( x

−ν

)1
k

⎞
⎠ ,

respectively. These series can be integrated term by term on any bounded subset of
[0,∞). They can also be differentiated term by term infinitely many times.

For instance, when ν = −2, both identities above reduce to

ψ−2(x) = ln

(
(2π)

1
2 x( 4

e
)(

x
2)

xx

∞∏
k=1

(1+ 2/k)(k+2)(
x
2)

(1+ x/k)x+k (1+ 1/k)(k+1)x(x−2)

)
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and

ψ−2(x) = ln

(
(2π)

1
2 xe−γ (x

2)

xx

∞∏
k=1

e
1
k (

x
2) (1+ 1/k)(k+1)x

(1+ x/k)x+k

)
.

Integrating both the Eulerian and Weierstrassian forms of ln�(x), we obtain the
following representations (which are simpler than the previous ones since less terms
are involved; see also Examples 8.3 and 8.8)

ψ−2(x) = ln

(
ex

xx

∞∏
k=1

ex(1+ 1/k)x
2/2

(1+ x/k)x+k

)

and

ψ−2(x) = ln

(
e−γ x2/2 ex

xx

∞∏
k=1

ex+x2/(2k)

(1+ x/k)x+k

)
.

Here again, finding the simplest Eulerian and Weierstrassian forms remains an
interesting problem.

Integral Representation For any ν ∈ Z, we have

ψν(x) = ψν(1)+
∫ x

1
ψν+1(t) dt.

If ν ≥ 1, then ψν is not integrable at x = 0 (since gν is not). If ν ≤ −1, then ψν is
integrable at 0 by definition and we have

ψν−1(x) =
∫ x

0
ψν(t) dt =

∫ x

0

(x − t)−ν−1

(−ν − 1)! ln�(t) dt.

Gregory’s Formula-Based Series Representation Proposition 8.11 gives the
following series representation: for any x > 0 we have

ψν(x) = gν−1(x)−
∞∑

n=0
Gn+1 �ngν(x)

= gν−1(x)−
∞∑

n=0
|Gn+1|

n∑
k=0

(−1)k(n
k

)
gν(x + k) .
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Setting x = 1 in this identity yields the analogue of Fontana-Mascheroni series. For
instance, taking ν = 1, we derive the identity (see, e.g., Merlini et al. [72, p. 1920])

∞∑
n=1

|Gn| Hn

n
= π2

6
− 1 .

Taking ν = 2, we obtain

∞∑
n=1

|Gn| ψ1(n+ 1)−H 2
n

n
= 1− 2 ζ(3)+ γ

π2

6
.

Analogue of Gauss’ Multiplication Formula Assume first that ν ≥ 1. Differen-
tiating repeatedly both sides of the multiplication formula (10.5) for the digamma
function ψ , we obtain the following formula. For any m ∈ N

∗ and any x > 0, we
have

m−1∑
j=0

ψν

(
x + j

m

)
= mν+1 ψν(x).

Moreover, Corollary 8.33 provides the following limit

lim
m→∞mνψν(mx) = gν−1(x), x > 0.

Assume now that ν ≤ −1. Applying Theorem 8.27 to the function gν , we obtain
that for any m ∈ N

∗ and any x > 0

m−1∑
j=0

ψν

(
x + j

m

)
=

m−1∑
j=1

ψν

(
j

m

)
+ ψν(1)+�x gν

( x

m

)
.

Let us expand this formula in the special case when ν = −2. First, we have

g−2
( x

m

)
= 1

m
g−2(x)− x

lnm

m
+ m− 1

m
ψ−2(1)

and hence

�x g−2
( x

m

)
= 1

m
ψ−2(x)−

(
x

2

)
lnm

m
+
(

m− 1

m
x − 1

)
ψ−2(1).

Using Proposition 8.28, after some algebra we also obtain

m−1∑
j=1

ψ−2
(

j

m

)
=
(
1− 1

m

)
lnA− lnm

12m
+ (m− 1) ln((2π)

1
4 A).
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Now, collecting terms, we finally get the following multiplication formula for ψ−2

m−1∑
j=0

ψ−2
(

x + j

m

)
= 1

m
ψ−2(x)− 1

12m
(6x2 − 6x + 1) lnm

+ (m− 1) ln(2π)

(
x

2m
+ 1

4

)
+
(

m− 1

m

)
lnA.

Settingm = 2 in the formula above, we obtain the following analogue of Legendre’s
duplication formula

ψ−2
(x

2

)
+ ψ−2

(
x + 1

2

)
= 1

2
ψ−2(x)− 1

24
(6x2 − 6x + 1) ln 2

+ 1

4
ln(2π) (x + 1)+ 3

2
lnA.

Taking x = 0 in this latter identity, we obtain

ψ−2
(
1

2

)
= 5

24
ln 2+ 3

2
lnA+ 1

4
lnπ .

Moreover, Corollary 8.33 provides the following limit

lim
m→∞

(
1

m2 ψ−2(mx)− x2

2
lnm

)
= 1

2
x2 ln x − 3

4
x2 , x > 0.

Analogue of Wallis’s Product Formula If ν ≥ 1, then the analogue of Wallis’s
formula is simply

∞∑
k=1

(−1)k−1gν(k) = (−1)ν(1− 2−ν) ν! ζ(ν + 1),

or equivalently,

∞∑
k=1

(−1)k−1gν(k) = (−1)ν ν! η(ν + 1),

where η is Dirichlet’s eta function. In the case when ν = −2, after a bit of calculus
we obtain the following analogue of Wallis’s formula

lim
n→∞

(
h(n)+

2n∑
k=1

(−1)k−1g−2(k)

)
= 1

12
ln 2− 3 lnA.



10.3 The Polygamma Functions 207

where

h(n) =
(

n+ 1

4

)
ln n− n(1− ln 2).

Project 10.2 Find the analogue of Wallis’s formula for the function g(x) =
ψ−2(x). After some algebra, we obtain

lim
n→∞

(
h(n)+

2n∑
k=1

(−1)k−1ψ−2(k)

)
= lnA− 1

12
ln 2 ,

where

h(n) = n2 ln(2n)− 3

2
n2 + 1

2
n ln(2π)− 1

12
ln n.

This formula is a little harder to obtain than the former one; it requires the
computation of both functions �ψ−2(x) and 2�xψ−2(2x) using the elevator
method (Corollary 7.20) with r = 2. That is,

�ψ−2(x) = − 1

12
x(x − 1)(2x − 1)+ 1

4
x(x + 1) ln(2π)

+ 2x lnA+ (x − 1) ψ−2(x)− 2ψ−3(x) (10.7)

and

2�xψ−2(2x) = −1

6
x(2x − 1)(4x − 1)+ (4x + 3) lnA

+ 1

12
(−24x2 + 48x + 5) ln 2− 4ψ−2(x)

+ 2x ψ−2(2x)− 2ψ−2
(

x + 1

2

)
− 2ψ−3(2x).

These formulas can also be verified using the difference operator. ♦
Restriction to the Natural Integers When ν ≥ 1 For any n ∈ N

∗, we have

ψν(n)− ψν(1) =
n−1∑
k=1

gν(k) = (−1)νν!
n−1∑
k=1

1

kν+1 .

In particular,

ψν(1) = −
∞∑

k=1
gν(k).
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Gregory’s formula states that for any n ∈ N
∗ and any q ∈ N we have

n−1∑
k=1

gν(k) = gν−1(n)− gν−1(1)

−
q∑

j=1
Gj

(
�j−1gν(n)−�j−1gν(1)

)
− R

q
n ,

with

|Rq
n | ≤ Gq

∣∣�qgν(n)−�qgν(1)
∣∣ .

Generalized Webster’s Functional Equation For any m ∈ N
∗, there is a unique

solution f : R+ → R to the equation

m−1∑
j=0

f

(
x + j

m

)
= gν(x)

that lies in K(−ν)+ , namely

f (x) = ψν

(
x + 1

m

)
− ψν(x) .

Analogue of Euler’s Series Representation of γ Assume first that ν ≥ 1. In this
case, for any k ∈ N we have

ψ(k)
ν (1) = ψν+k(1) = (−1)ν+k−1(ν + k)! ζ(ν + k + 1).

Thus, the Taylor series expansion of ψν(x + 1) about x = 0 is

ψν(x + 1) =
∞∑

k=0
(−1)ν+k−1 (ν + k)!

k! ζ(ν + k + 1) xk, |x| < 1.

Integrating both sides of this equation on (0, 1), we obtain the identity

gν−1(1) =
∞∑

k=0
(−1)ν+k−1 (ν + k)!

(k + 1)! ζ(ν + k + 1) .



10.3 The Polygamma Functions 209

We proceed similarly when ν ≤ −1. To keep the computations simple, let us assume
that ν = −2. We then have

ψ−2(1) = 1

2
ln(2π), ψ ′−2(1) = ψ−1(1) = 0, ψ ′′−2(1) = ψ0(1) = − γ,

and for any integer k ≥ 3,

ψ
(k)
−2 (1) = ψk−2(1) = (−1)k−1(k − 2)! ζ(k − 1).

Thus, the Taylor series expansion of ψ−2(x + 1) about x = 0 is

ψ−2(x + 1) = 1

2
ln(2π)− γ

x2

2
+

∞∑
k=3

(−1)k−1 ζ(k − 1)

(k − 1)k
xk, |x| < 1.

Integrating both sides of this equation on (0, 1), we obtain

∞∑
k=2

(−1)k ζ(k)

k(k + 1)(k + 2)
= 1

6
γ − 3

4
+ 1

4
ln(2π)+ lnA .

Analogue of the Reflection Formula Assume first that ν ≥ 1. Differentiating
the reflection formula for ψ repeatedly, we obtain the following formula. For any
x ∈ R \ Z, we have

ψν(x)− (−1)νψν(1− x) = − π Dν cot(πx).

When ν ≤ −1, a reflection formula on (0, 1) can be obtained by integrating both
sides of the identity

ln�(x)+ ln�(1− x) = lnπ − ln sin(πx).

For example, for any x ∈ (0, 1) we have

ψ−2(x)− ψ−2(1− x) = x lnπ − 1

2
ln(2π)−

∫ x

0
ln sin(πt) dt.

As a byproduct, we obtain

∫ 1
2

0
ln sin(πt) dt = − 1

2
ln 2.
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10.4 The q-Gamma Function

For any 0 < q < 1, the q-gamma function �q : R+ → R+ is defined by the
equation (see, e.g., [93, p. 490])

�q(x) = (1− q)1−x

∞∏
k=0

1− qk+1

1− qx+k
= (1− q)1−x (q; q)∞

(qx; q)∞
for x > 0.

(10.8)

Here we use the standard notation

(a; q)∞ =
∞∏

k=0

(
1− aqk

)
.

Note that these functions should not to be confused with the multiple gamma
functions discussed in Sect. 5.2 (although the same symbols are used).

The function fq(x) = ln�q(x) is a convex solution satisfying fq(1) = 0 to the
equation �fq = gq on R+, where gq : R+ → R is the function defined by the
equation

gq(x) = ln
1− qx

1− q
for x > 0.

Since gq lies inD1∩K1 (and deg gq = 0), by the uniqueness theorem we must have

ln�q(x) = �gq(x), x > 0. (10.9)

Askey [13] proved an analogue of the Bohr-Mollerup theorem for �q . However, as
Webster [98, p. 615] already observed, this is actually an immediate consequence of
the uniqueness Theorem 3.1 in the special case when p = 1.

Let us now investigate this function in the light of our results.

Remark 10.3 When q > 1, the q-gamma function �q : R+ → R+ is also
defined by Eq. (10.9). In this case, using L’Hospital’s rule we can readily see that
�gq(x) → ln q as x → ∞, and hence deggq = 1. An analogue of the Bohr-
Mollerup characterization for �q was established by Moak [74]. We can see now
that this characterization is a trivial consequence of our uniqueness Theorem 3.1 in
the special case when p = 2. The complete analysis of �q through our results is
similar to the case when 0 < q < 1 and is left to the reader. ♦
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ID Card As discussed above, the function �q is a �-type function and we
immediately derive the following basic information.

gq(x) Membership deg gq �gq(x)

ln 1−qx

1−q
C∞ ∩D1 ∩K∞ 0 ln�q(x)

Analogue of Bohr-Mollerup’s Theorem The q-gamma function can be character-
ized as follows.

All eventually convex or concave solutions fq : R+ → R to the equation

fq(x + 1)− fq(x) = ln
1− qx

1− q

are of the form fq(x) = cq + ln�q(x), where cq ∈ R.

Using Proposition 3.9, we can also derive the following alternative characterization
of the q-gamma function.

All solutions fq : R+ → R to the equation

fq(x + 1)− fq(x) = ln
1− qx

1− q

that satisfy the asymptotic condition that, for each x > 0,

fq(x + n) − fq(n) − x ln
1− qn

1− q
→ 0 as n→N ∞

are of the form fq(x) = cq + ln�q(x), where cq ∈ R.

Extended ID Card Interestingly, El Bachraoui [35] recently established the
following analogue of Raabe’s formula

∫ x+1

x

ln�q(t) dt =
(
1

2
− x

)
ln(1− q)− 1

ln q
Li2(qx)+ ln(q; q)∞, x ≥ 0,

where

Lis(z) =
∞∑

k=1

zk

ks
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is the polylogarithm function. This formula provides immediately the following
values

σ [gq ] = 1

2
ln(1− q)− ζ(2)

ln q
+ ln(q; q)∞ , (10.10)

σ [gq ] = −1

2
ln(1− q)− 1

ln q
Li2(q)+ ln(q; q)∞ , (10.11)

and the integral

∫ x

1
gq(t) dt = (1− x) ln(1− q)− 1

ln q

(
Li2(qx)− Li2(q)

)
.

We then have the following values

σ [gq ] σ [gq ] γ [gq ]
Eq. (10.10) Eq. (10.11) γ [gq ] = σ [gq ]

• Alternative representations of σ [gq ] = γ [gq ]

σ [gq ] =
∫ 1

0
ln�q(t + 1) dt ,

σ [gq ] = log[q]
∫ ∞

1

(
1

2
− {t}

)
qt

1− qt
dt ,

σ [gq ] =
∫ ∞

1
ln

(1− q�t�)1/2(1− q�t+1�)1/2

1− qt
dt ,

σ [gq ] = 1

2

∞∑
k=1

ln
(
(1− qk)(1− qk+1)

)
− 1

ln q
Li2(q) .

• Generalized Binet’s function

J 2[ln ◦�q ](x) = ln�q(x)+ (x − 1) ln(1− q)+ 1

ln q
Li2(qx)+ 1

2
ln(1− qx)

− ln(q; q)∞ .

• Alternative characterization. The function fq(x) = ln�q(x) is the unique
solution lying in C0 ∩K1 to the equation

∫ x+1

x

fq(t) dt =
(
1

2
− x

)
ln(1− q)− 1

ln q
Li2(qx)+ ln(q; q)∞, x > 0.
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Inequalities The following inequalities hold for any x > 0 and any a ≥ 0.

• Symmetrized generalized Wendel’s inequality (equality if a ∈ {0, 1})
∣∣ln�q(x + a)− ln�q(x)− a gq(x)

∣∣ ≤ |a − 1| ∣∣gq(x + a)− gq(x)
∣∣

≤ a� |a − 1| |�gq(x)| ,
(
1− qx+a

1− qx

)−|a−1|
≤ �q(x + a)

�q(x)
(
1−qx

1−q

)a ≤
(
1− qx+a

1− qx

)|a−1|
.

• Symmetrized Stirling’s formula-based inequality

|J 2[ln ◦�q ](x)| ≤ 1

2

(
gq(x + 1)− gq(x)

)
,

(
1− qx+1

1− qx

)− 1
2

≤ �q(x) (1− q)x−1(1− qx)
1
2

(q; q)∞ exp
(
− 1

lnq
Li2(qx)

) ≤
(
1− qx+1

1− qx

) 1
2

.

• Burnside’s formula-based inequality

∣∣∣∣ln�q

(
x + 1

2

)
+
(

x − 1

2

)
ln(1− q)+ 1

ln q
Li2(qx)− ln(q; q)∞

∣∣∣∣
≤ |J 2[ln ◦�q ](x)|.

• Generalized Gautschi’s inequality

e(a−a�) ψq,0(x+a�) ≤ �q(x + a)

�q(x + a�) ≤
(
1− qx+�a�

1− q

)a−a�
,

where ψq,0(x) = D ln�q(x).

Generalized Stirling’s and Related Formulas For any a ≥ 0, we have the
following limits and asymptotic equivalences as x →∞,

ln�q(x + a)− ln�q(x) → − a ln(1− q),

�q(x)

�q(x + a)
∼ (1− q)a, ln�q(x + a) ∼ − x ln(1− q) ,

ln�q(x)+ (x − 1) ln(1− q)− ln(q; q)∞ → 0 ,

�q(x) ∼ (q; q)∞ (1− q)1−x .
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The generalized Stirling formula simply shows that ln�q(x) has the oblique
asymptote

y = (1− x) ln(1− q)+ ln(q; q)∞.

Burnside-like approximation (better than Stirling-like approximation)

�q(x) ∼ (q; q)∞ (1− q)1−x exp

(
− 1

ln q
Li2(q

x− 1
2 )

)
.

Further results (obtained by differentiation). For any 0 < q < 1 and any ν ∈ N,
let the function ψq,ν : R+ → R denote the q-polygamma function defined by the
equation

ψq,ν(x) = Dν+1 ln�q(x) for x > 0.

We then have the following limits and asymptotic equivalences as x →∞,

ψq,0(x + a)− ψq,0(x) → 0, ψq,0(x) → − ln(1− q) ,

ψq,0(x + a) ∼ − ln(1− q), ψq,ν(x) → 0, ν ∈ N
∗.

Project 10.4 Find the generalized Stirling formula when q > 1. In the case when
q > 1, we have deg gq = 1 and hence the generalized Stirling formula is

ln�q(x)−
∫ x+1

x

ln�q(t) dt + 1

2
gq(x)− 1

12
�gq(x) → 0 as x →∞,

where �gq(x) → ln q as x → ∞. However, here the integral takes the following
more complicated form (see El Bachraoui [35] and the references therein)

∫ x+1

x

ln�q(t) dt = lnCq − 1

2qx ln q

(
1− qx

1− q−x
(2 Li2(q

−x)+ (ln(1− q−x))2)

− 2
1− qx

1− q−x
ln

1− qx

1− q
ln(1− q−x)− qx

(
ln

1− qx

1− q

)2 )

where

Cq = q−
1
12 (q − 1)

1
2− ln(q−1)

2 ln q (q−1; q−1)∞ .

This is the analogue of Raabe’s formula for ln�q(x) when q > 1. ♦
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Asymptotic Expansions For any m, r ∈ N
∗ we have the following expansion as

x →∞

1

m

m−1∑
j=0

ln�q

(
x + j

m

)
=
(
1

2
− x

)
ln(1− q)− 1

ln q
Li2(qx)+ ln(q; q)∞

+
r∑

k=1

Bk

mk k! g
(k−1)
q (x)+O

(
g(r)

q (x)
)

.

Settingm = 1 in this formula, we obtain the expansion of the log-q-gamma function

ln�q(x) =
(
1

2
− x

)
ln(1− q)− 1

ln q
Li2(qx)+ ln(q; q)∞

+
r∑

k=1

Bk

k! g(k−1)
q (x)+O

(
g(r)

q (x)
)

.

Generalized Liu’s Formula For any x > 0, we have

ln�q(x) =
(
1

2
− x

)
ln(1− q)− 1

ln q
Li2(q

x)+ ln(q; q)∞

− 1

2
ln

1− qx

1− q
+ (ln q)

∫ ∞

0

(
{t} − 1

2

)
qx+t

1− qx+t
dt.

Limit and Series Representations It is not difficult to see that both the Eulerian
form of �gq(x) and the analogue of Gauss’s limit reduce to the definition of
the q-gamma function given in Eq. (10.8). Let us now examine the other series
representations.

• Weierstrassian form. For any x > 0, we have

ln�q(x) = − ln
1− qx

1− q
+ψq,0(1) x −

∞∑
k=1

(
ln

1− qx+k

1− qk
+ (ln q)

qk

1− qk
x

)
.

Differentiating this series term by term, we obtain

ψq,0(x) = (ln q)
qx

1− qx
+ ψq,0(1)+ (ln q)

∞∑
k=1

(
1

1− qx+k
− 1

1− qk

)
.
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• Gregory’s formula-based series representation. For any x > 0 we have the series
representation

ln�q(x) =
(
1

2
− x

)
ln(1− q)− 1

ln q
Li2(qx)+ ln(q; q)∞

−
∞∑

n=0
|Gn+1|

n∑
k=0

(−1)k(n
k

)
gq(x + k).

Setting x = 1 in this identity yields the following analogue of Fontana-
Mascheroni series

∞∑
n=0

|Gn+1|
n∑

k=0
(−1)k(n

k

)
gq(k+1) = − 1

2
ln(1−q)− 1

ln q
Li2(q)+ ln(q; q)∞.

Analogue of Gauss’ Multiplication Formula After first noting that

gq

( x

m

)
= g

q
1
m

(x)+ gq

(
1

m

)
, x > 0,

we immediately obtain the following identity

m−1∑
j=0

ln�q

(
x + j

m

)
=

m∑
j=1

ln�q

(
j

m

)
+ ln�

q
1
m

(mx)+ (mx − 1) gq

(
1

m

)
.

Now, using Proposition 8.28, we also obtain

m∑
j=1

ln�q

(
j

m

)
= m− 1

2
ln(1− q)+m ln(q; q)∞ − ln

(
q

1
m ; q 1

m

)
∞ .

Thus, we get the following multiplication formula

m−1∏
j=0

�q

(
x + j

m

)
= (1− q)

m−1
2

(q; q)m∞(
q

1
m ; q 1

m

)
∞

�
q

1
m

(mx)

(
1− q

1
m

1− q

)mx−1
,

or equivalently, replacing q with qm,

m−1∏
j=0

�qm

(
x + j

m

)
= (1− qm)

m−1
2

(qm; qm)m∞
(q; q)∞

�q(mx)

(
1− q

1− qm

)mx−1
.
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(See also, e.g., Srivastava and Choi [93, p. 494] and Webster [98, p. 617].) For
instance, when m = 2, we obtain the following analogue of Legendre’s duplication
formula

�q2(x) �q2

(
x + 1

2

)
= (1− q2)

1
2

(
q2; q2

)2
∞

(q; q)∞
�q(2x)

(1+ q)2x−1
.

Analogue of Wallis’s Product Formula Using Proposition 8.49 with

g̃q(x) = 2gq(2x) = 2(gq2(x)+ gq(2)),

we obtain

h(n) = �g̃q(n+ 1)− �gq(2n+ 1)

= 2 ln�q2(n+ 1)+ 2g2(2)n− ln�q(2n+ 1).

Using the generalized Stirling formula, we then have

lim
n→∞ h(n) = 2 ln(q2; q2)∞ − ln(q; q)∞.

Finally, we obtain the following analogue of Wallis’s formula

lim
n→∞

2n∑
k=1

(−1)k−1 ln 1− qk

1− q
= ln

(q; q)∞
(q2; q2)2∞

.

Generalized Webster’s Functional Equation For any m ∈ N
∗ and any a > 0,

there is a unique solution f : R+ → R+ to the equation

m−1∏
j=0

f (x + aj) = 1− qx

1− q

such that ln f lies in K0 (or in K1), namely

f (x) = �qam( x+a
am

)

�qam( x
am

)

(
1− qam

1− q

) 1
m

.
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10.5 The Barnes G-Function

The Barnes function G : R+ → R+ is the function G = 1/�2 as defined in
Sect. 5.2. Hence, it can be defined by the equations

lnG(x) = � ln�(x) = �ψ−1(x) for x > 0.

ID Card We have the following basic information about the Barnes G-function:

g(x) Membership deg g �g(x)

ln�(x) C∞ ∩D2 ∩K∞ 1 lnG(x)

Analogue of Bohr-Mollerup’s Theorem The function G can be characterized in
the multiplicative notation as follows.

All solutions f : R+ → R+ to the equation f (x+1) = �(x)f (x) for which ln f lies in K2

are of the form f (x) = c G(x), where c > 0.

Interestingly, this characterization enables one to establish the following identity

lnG(x) = − (x2
)+ (x − 1) ln�(x)+ 1

2 ln(2π) x − ψ−2(x). (10.12)

Indeed, both sides vanish at x = 1 and are eventually 2-convex solutions to the
equation

f (x + 1)− f (x) = ln�(x).

Hence, they must coincide on R+.
Using Proposition 3.9, we can also derive the following alternative characteriza-

tion of the Barnes G-function.

All solutions f : R+ → R+ to the equation f (x+1) = �(x)f (x) that satisfy the asymptotic
condition that, for each x > 0,

f (x + n) ∼ �(n)x n(x
2)f (n) as n→N ∞

are of the form f (x) = c G(x), where c > 0.

Extended ID Card The value of the asymptotic constant σ [g] can be derived for
instance from identity (10.12). One can show that (see, e.g., [93, p. 53])

σ [g] =
∫ 1

0
lnG(t + 1) dt = 1

12
+ 1

4
ln(2π)− 2 lnA ≈ 0.045.
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We then have the following values:

σ [g] σ [g] γ [g]
1
12 − 1

4 ln(2π) − 2 lnA 1
12 + 1

4 ln(2π) − 2 lnA γ [g] = σ [g]

• Inequality

|σ [g]| ≤ 7

3
ln 2− 109

72
≈ 0.10 .

• Alternative representations of σ [g] = γ [g]

σ [g] = 1

2
ln(2π)+ lim

n→∞

(
n∑

k=1
ln�(k)− ψ−2(n)− 1

2
ln�(n) − 1

12
lnn

)
,

σ [g] = 1

2
ln(2π)+ lim

n→∞

(
n∑

k=1
ln�(k)− ψ−2(n)− 1

2
ln�(n) − 1

12
ψ(n)

)
,

σ [g] =
∫ ∞

1

(
ln

�(�t�)
�(t)

+ {t} ln�t� +
({t}
2

)
ln

(
1+ 1

�t�
))

dt ,

σ [g] =
∫ ∞

1

(
ln

�(�t�)
�(t)

+ ln
�t�7/12

�t + 1�1/12
)

dt ,

σ [g] = 1

12
γ − 1

2

∫ ∞

1
B2({t}) ψ1(t) dt ,

σ [g] = ln

⎛
⎜⎜⎝
∞∏

k=1

�(k) ek
√

k(
1+ 1

k

) 1
12

kk
√
2π

⎞
⎟⎟⎠ .

• Generalized Binet’s function. For any q ∈ N and any x > 0

J q+1[ln ◦G](x) = lnG(x)− ψ−2(x)− σ [g] +
q∑

j=1
Gj �j−1 ln�(x).

For instance,

J 3[ln ◦G](x) = lnG(x)− ψ−2(x)− σ [g] + 1

2
ln�(x)− 1

12
ln x.



220 10 Applications to Some Standard Special Functions

• Analogue of Raabe’s formula

∫ x+1

x

lnG(t) dt = σ [g] + ψ−2(x) , x > 0. (10.13)

• Alternative characterization. The function f (x) = lnG(x) is the unique solution
lying in C0 ∩K2 to the equation

∫ x+1

x

f (t) dt = σ [g] + ψ−2(x) , x > 0.

Project 10.5 Find a closed-form expression for the integral

∫ x

1
lnG(t) dt.

We apply Proposition 8.20. Using (10.13) and then (10.7) we obtain

∫ x

1
lnG(t) dt = �x

∫ x+1

x

lnG(t) dt = σ [g] (x − 1)+�ψ−2(x)

= 2 lnA+ 1

4
(x2 + 1) ln(2π)− 1

12
(2x + 1)(x − 1)2

+ (x − 1) ψ−2(x)− 2ψ−3(x) .

This expression could have been obtained also by integrating both sides of (10.12).
♦
Inequalities The following inequalities hold for any x > 0, any a ≥ 0, and any
n ∈ N

∗.

• Symmetrized generalized Wendel’s inequality (equality if a ∈ {0, 1, 2})
∣∣lnG(x + a)− lnG(x)− a ln�(x)− (a2

)
ln x
∣∣ ≤

∣∣∣(a−12
)∣∣∣ ln

(
1+ a

x

)
,

(
1+ a

x

)−∣∣∣(a−1
2 )
∣∣∣ ≤ G(x + a)

G(x) �(x)a x(a
2)
≤
(
1+ a

x

)∣∣∣(a−1
2 )
∣∣∣
.
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• Symmetrized generalized Wendel’s inequality (discrete version)

∣∣∣∣∣lnG(x)−
n−1∑
k=1

ln�(k)+
n−1∑
k=0

ln�(x + k)− x ln�(n)− (x2
)
lnn

∣∣∣∣∣
≤
∣∣∣(x−12

)∣∣∣ ln
(
1+ x

n

)
,

(
1+ x

n

)−∣∣∣(x−1
2 )
∣∣∣ ≤ G(x)

�(x)�(x + 1) · · ·�(x + n− 1)

�(1)�(2) · · ·�(n− 1)�(n)xn(x
2)
≤
(
1+ x

n

)∣∣∣(x−1
2 )
∣∣∣
.

• Symmetrized Stirling’s formula-based inequality

∣∣∣J 3[ln ◦G](x)

∣∣∣ ≤ 1

12
(x + 1)2(2x + 5) ln

(
1+ 1

x

)
− 1

72
(12x2 + 48x + 49)

≤ 5

12
ln

(
1+ 1

x

)
,

(
1+ 1

x

)−5/12
≤ G(x) �(x)1/2

x1/12 eψ−2(x)+σ[g] ≤
(
1+ 1

x

)5/12
.

• Generalized Gautschi’s inequality

�(x + a�)a−a� ≤ e(a−a�)D lnG(x+a�) ≤ G(x + a)

G(x + a�) ≤ �(x + a�)a−�a�.

(These inequalities are valid only if x + �a� ≥ x0, where x0 = 1.92 . . . is the
unique positive zero of the function D2 lnG(x).)

Remark 10.6 It is not difficult to see that the first inequality in Proposition 6.19 does
not hold for large values of x when g(x) = ln�(x). This shows that the analogue
of Burnside’s formula does not hold in general when deg g ≥ 1. ♦
Generalized Stirling’s and Related Formulas For any a ≥ 0, we have the
following limits and asymptotic equivalences as x →∞,

lnG(x + a)− lnG(x)− a ln�(x)− (a2
)
ln x → 0,

lnG(x)− ψ−2(x)+ 1

2
ln�(x)− 1

12
ln x → σ [g],

lnG(x)− ψ−2(x)+ 1

2
ln�(x)− 1

12
ψ(x) → σ [g],
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G(x + a) ∼ G(x) �(x)a x(a
2), lnG(x + a) ∼ ψ−2(x),

G(x) ∼ exp(ψ−2(x)+ σ [g]) �(x)−
1
2 x

1
12 .

Further results (obtained by differentiation)

x ψ(x + a)− x ψ(x) → a, x ψ1(x) → 1, x ψ(x + a) ∼ ln�(x),

ln�(x)−
(

x − 1

2

)
ψ(x)+ x → 1

2
(1+ ln(2π)).

Remark 10.7 Using one of the asymptotic equivalences above, we get

G(x + 1) ∼ exp(ψ−2(x)+ σ [g]) �(x)
1
2 x

1
12 as x →∞.

Combining this latter equivalence with identity (10.12) and the Stirling formula for
the gamma function, we also obtain the following simpler form

G(x + 1) ∼ A−1 x
1
2 x2− 1

12 (2π)
x
2 e−

3
4 x2+ 1

12 as x →∞.

♦
Asymptotic Expansions For any m, q ∈ N

∗ we have the following expansion as
x →∞

1

m

m−1∑
j=0

lnG

(
x + j

m

)
= σ [g] +

q∑
k=0

Bk

mk k! ψk−2(x)+O(ψq−1(x)) . (10.14)

Setting m = 1 in this formula, we obtain

lnG(x) = σ [g] +
q∑

k=0

Bk

k! ψk−2(x)+O(ψq−1(x)) ,

or equivalently, if q ≥ 2,

J 3[ln ◦G](x) = 1

12
(ψ(x)− ln x)+

q∑
k=3

Bk

k! ψk−2(x)+O(ψq−1(x)) .

Setting q = 4 for instance, we obtain the following expansion

lnG(x) = σ [g] + ψ−2(x)− 1

2
ψ−1(x)+ 1

12
ψ(x)− 1

720
ψ2(x)+O

(
x−4
)

.
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Generalized Liu’s Formula For any x > 0 we have

lnG(x) = σ [g] +ψ−2(x)− 1

2
ψ−1(x)+ 1

12
ψ(x)+ 1

2

∫ ∞

0
B2({t}) ψ1(x + t) dt

or equivalently,

J 3[ln ◦G](x) = 1

12
(ψ(x)− ln x)+ 1

2

∫ ∞

0
B2({t}) ψ1(x + t) dt.

Limit, Series, and Integral Representations Let us now determine the main
representations of the function lnG(x).

• Eulerian form and related identities. We have

lnG(x) = −ln�(x)−
∞∑

k=1

(
ln�(x + k)− ln�(k)− x ln k − (x2

)
ln

(
1+ 1

k

))
,

G(x) = 1

�(x)

∞∏
k=1

�(k)

�(x + k)
kx(1+ 1/k)(

x
2).

Upon differentiation, we obtain

x ψ(x) = x−1

2
(1+ln(2π))−

∞∑
k=1

(
ψ(x + k)− ln k −

(
x − 1

2

)
ln

(
1+ 1

k

))
,

ψ(x)+ x ψ1(x) = 1−
∞∑

k=1

(
ψ1(x + k)− ln

(
1+ 1

k

))
,

(r + 1) ψr(x)+ x ψr+1(x) = −
∞∑

k=1
ψr+1(x + k), r ∈ N

∗.

• Weierstrassian form and related identities. We have

lnG(x) = (−1− γ )
(
x
2

)− ln�(x)

−
∞∑

k=1

(
ln�(x + k)− ln�(k)− x ln k − (x2

)
ψ1(k)

)
,

G(x) = e(−γ−1)(x
2)

�(x)

∞∏
k=1

�(k)

�(x + k)
kxeψ1(k) (x

2) ,
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Upon differentiation, we obtain

x ψ(x)+
(

x − 1

2

)
γ+ 1

2
ln(2π) = −

∞∑
k=1

(
ψ(x + k)−

(
x − 1

2

)
ψ1(k) − ln k

)
,

ψ(x)+ x ψ1(x)+ γ = −
∞∑

k=1
(ψ1(x + k)− ψ1(k)) .

• Analogue of Gauss’ limit and related identities. The analogue of Gauss’ limit is

lnG(x) = lim
n→∞

(
n−1∑
k=1

ln�(k)−
n−1∑
k=0

ln�(x + k)+ x ln�(n) + (x2
)
lnn

)
,

G(x) = lim
n→∞

�(1)�(2) · · · �(n)

�(x)�(x + 1) · · · �(x + n)
n!x n(x

2) .

Upon differentiation, we obtain

(x − 1) ψ(x)− x + 1

2
(1+ ln(2π))

= lim
n→∞

(
−

n−1∑
k=0

ψ(x + k)+ ln�(n)+
(

x − 1

2

)
lnn

)
,

(x − 1) ψ1(x)+ ψ(x)− 1 = lim
n→∞

(
ln n−

n−1∑
k=0

ψ1(x + t)

)
.

• Integral representations. Using the elevator method on one and two levels, we
obtain the following representations

lnG(x) = − 1

2
(x − 1)(x − ln(2π))+

∫ x

1
(t − 1) ψ(t) dt

and

lnG(x) = − 1

2
(x − 1)(x − ln(2π))+

∫ x

1
(x − t)(ψ(t) + (t − 1) ψ1(t)) dt.

Each of these representations actually leads to identity (10.12).
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• Gregory’s formula-based series representation. For any x > 0 we have the series
representation

lnG(x) = ψ−2(x)+ σ [g] − 1

2
ln�(x)−

∞∑
n=0

Gn+2�n+1g(x)

= ψ−2(x)+ σ [g] − 1

2
ln�(x)−

∞∑
n=0

|Gn+2|
n∑

k=0
(−1)k(n

k

)
ln(x + k).

Setting x = 1 in this identity yields the analogue of Fontana-Mascheroni series

σ [g] = − 1

2
ln(2π)+

∞∑
n=0

|Gn+2|
n∑

k=0
(−1)k(n

k

)
ln(k + 1).

Note that the Eulerian and Weierstrassian forms above can also be integrated
term by term on any bounded interval of [0,∞). For instance, integrating on (1, x)

provides series representations for the integral of lnG(x) as defined in Project 10.5.

Analogue of Gauss’ Multiplication Formula For any m ∈ N
∗ and any x > 0, we

have

m−1∑
j=0

lnG

(
x + j

m

)
=

m∑
j=1

lnG

(
j

m

)
+ �x ln�

( x

m

)
.

For instance, setting m = 2 in this identity, we obtain

lnG

(
x + 1

2

)
+ lnG

(x

2

)
= lnG

(
1

2

)
+ �x ln�

(x

2

)
.

However, to make this multiplication formula interesting and usable, we need to find
a simple expression for its right side. In particular, we need a closed-form expression
for the function �x ln�( x

m
). Such a result would be most welcome.

We can nevertheless investigate the asymptotic behavior of the function

x �→
m−1∑
j=0

lnG

(
x + j

m

)
.
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In addition to the asymptotic expansion given in (10.14), Proposition 8.30 yields the
following convergence result. We have

m−1∑
j=0

lnG

(
x + j

m

)
−m ψ−2

( x

m

)
+ 1

2
ln�

( x

m

)

− 1

12

(
ln�

(
x + 1

m

)
− ln�

( x

m

))
→ m σ [g] as x →∞.

Analogue of Wallis’s Product Formula Using Legendre’s duplication formula for
the gamma function, we obtain

�x ln�(2x) = lnG(x)+ lnG(x + 1
2 )− lnG( 12 )

+ (x2 + 1) ln 2− x
2 ln(16π).

Using this identity with Proposition 8.49, we can derive the surprising analogue of
Wallis’s formula

lim
n→∞

�(1)�(3) · · · �(2n− 1)

�(2)�(4) · · · �(2n)

(
2n

e

)n

= 1√
2

.

Note that a shorter proof of this formula can be obtained using the second sequence
described in Remark 8.53.

Project 10.8 Find the analogue of Wallis’s formula for the function g(x) =
lnG(x). After some algebra, we obtain

lim
n→∞

G(1)G(3) · · · G(2n− 1)

G(2)G(4) · · · G(2n)

nn2− 1
2n− 1

24 2n2− 7
24 π

1
2n

e
3
2n2− 1

2n− 1
24

= A
1
2 .

This latter formula is a little harder to obtain than the former one. Using Proposi-
tion 8.49 requires the computation of both functions � lnG(x) and 2�x lnG(2x)

using the elevator method (Corollary 7.20) with r = 1. That is,

� lnG(x) = −1

8
x(x − 1)(2x − 5)+ 1

4
x(x − 3) ln(2π)− x lnA

+ 1

2
(x − 1)(x − 2) ln�(x)− 1

2
(2x − 3) ψ−2(x)+ ψ−3(x)

and

2�x lnG(2x) = −1

4
x(2x − 1)(4x − 7)− 2x lnA

+ 1

2
(2x2 − 3x − 1) ln 2+ x(x − 2) lnπ
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+ 1

2
ln�(x)+ 1

2
(2x − 1)(2x − 3) ln�(2x)

− 2(x − 1) ψ−2(2x)+ ψ−3(2x).

Here again, a shorter proof of the limit above can be obtained using the second
sequence described in Remark 8.53. ♦
Restriction to the Natural Integers For any n ∈ N

∗ we have

G(n) =
n−2∏
k=0

k! .

Generalized Webster’s Functional Equation For any m ∈ N
∗, there is a unique

solution f : R+ → R+ to the equation

m−1∏
j=0

f

(
x + j

m

)
= �(x)

such that ln f lies in K1, namely

f (x) = G(x + 1
m

)

G(x)
.

Analogue of Euler’s Series Representation of γ The Taylor series expansion of
lnG(x + 1) about x = 0 is (see, e.g., [93, p. 311])

lnG(x + 1) = 1

2
(ln(2π)− 1) x − γ + 1

2
x2 −

∞∑
k=2

ζ(k)

k + 1
(−x)k+1 , |x| < 1.

Integrating both sides of this equation on (0, 1), we obtain the identity

∞∑
k=2

(−1)k ζ(k)

(k + 1)(k + 2)
= 1

2
+ 1

6
γ − 2 lnA.

Also, the exponential generating function for the sequence n �→ σ [g(n)] is

egfσ [g](x) = lnG(x + 1)− ψ−2(x + 1)+ 1

4
ln(2π)− 1

12
+ 2 lnA
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Integrating both sides of this equation on (0, 1) (i.e., we use (7.5)), after some
algebra we obtain

∞∑
k=2

(−1)k k − 1

k(k + 1)(k + 2)
ζ(k) = 5

4
− 3 lnA− 1

4
ln(2π) .

Analogue of the Reflection Formula A reflection formula for the Barnes G-
function is given in (8.27); see, e.g., [93, p. 45].

10.6 The Hurwitz Zeta Function

For any x > 0, the Hurwitz zeta function s �→ ζ(s, x) is defined as an analytic
continuation to C \ {1} of the series (see, e.g., [93, p. 155])

∞∑
k=0

(x + k)−s = 1

�(s)

∫ ∞

0

ts−1e−xt

1− e−t
dt, �(s) > 1.

It is known (see, e.g., [93, p. 159–160]) that this function satisfies the identity

Dk
xζ(s, x) = (−s)k ζ(s + k, x) , k ∈ N,

and the difference equation

ζ(s, x + 1)− ζ(s, x) = − x−s . (10.15)

For any fixed s ∈ R \ {1}, define the function gs : R+ → R by the equation

gs(x) = − x−s for x > 0.

We then have gs ∈ C∞ ∩ K∞. If s > 0 and s �= 1, then gs ∈ D0
N
. If s > 1, then

gs ∈ D−1
N

. If −p < s < 1 for some p ∈ N, then gs ∈ Dp

N
, and hence we can

consider

p = 1+ deggs = �1− s�.

In all cases, we have

�gs(x) = ζ(s, x)− ζ(s),

where s �→ ζ(s) = ζ(s, 1) is the Riemann zeta function.
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ID Card The basic information about the Hurwitz zeta function is summarized in
the following table.

gs(x) Membership deg gs �gs(x)

− x−s C∞ ∩D−1 ∩K∞, if s > 1,

C∞ ∩D�1−s� ∩K∞, if s < 1.
−1+ �1− s�+ ζ(s, x) − ζ(s)

Project 10.9 Find a closed-form expression for �g, where

g(x) = x2

√
x + 1

.

Expanding x2 = (x + 1− 1)2, we obtain

g(x) = (x + 1)
3
2 − 2(x + 1)

1
2 + (x + 1)−

1
2

and hence

�g(x) = c − ζ(− 3
2 , x + 1)+ 2ζ(− 1

2 , x + 1)− ζ( 12 , x + 1)

for some c ∈ R. ♦
Analogue of Bohr-Mollerup’s Theorem The function ζ(s, x) can be character-
ized as follows.

All solutions fs : R+ → R to the equation

fs(x + 1)− fs(x) = − x−s

that lie in K�1−s�+ are of the form fs(x) = cs + ζ(s, x), where cs ∈ R.

Extended ID Card The asymptotic constant σ [gs] satisfies the following identity

σ [gs] =
∫ 1

0
ζ(s, t + 1) dt − ζ(s) = 1

s − 1
− ζ(s).

Hence we have the following values

σ [gs ] σ [gs ] γ [gs ]
∞, if s > 1,

−ζ(s), if s < 1.
1

s−1 − ζ(s) σ [gs ] −∑�1−s�+
j=1 Gj �j−1gs(1)

We also have the following identities.
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• Alternative representations of σ [gs]

σ [gs ] = lim
n→∞

⎛
⎝1− n1−s

s − 1
−

n−1∑
k=1

k−s +
�1−s�+∑

j=1
Gj �j−1gs(n)

⎞
⎠ ,

σ [gs ] = lim
n→∞

⎛
⎝ 1

s − 1
−

n−1∑
k=1

k−s + 1

1− s

�1−s�+∑
j=0

(1−s
j

) Bj

ns+j−1

⎞
⎠ ,

σ [gs ] =
�1−s�+∑

j=1
Gj �j−1gs(1)

+
∞∑

k=1

⎛
⎝k1−s − (k + 1)1−s

s − 1
+
�1−s�+∑

j=0
Gj �jgs(k)

⎞
⎠ .

If s > −1, then

σ [gs] = − 1

2
+ s

∫ ∞

1

{t} − 1
2

ts+1
dt.

If s ≤ −1, then for any integer q ≥ (1− s)/2�,

σ [gs ] = − 1

2
+

q∑
k=1

B2k

(2k)! (−s)2k−1 + (−s)2q

(2q)!
∫ ∞

1

B2q({t})
ts+2q

dt.

• Representations of γ [gs]

γ [gs] = σ [gs] −
�1−s�+∑

j=1
Gj �j−1gs(1) ,

γ [gs] =
∫ ∞

1

( �1−s�+∑
j=0

Gj �jgs(�t�)− gs(t)

)
dt ,

γ [gs] =
∫ ∞

1

( �1−s�+∑
j=0

({t}
j

)
�jgs(�t�)− gs(t)

)
dt .

• Generalized Binet’s function. For any q ∈ N and any x > 0

J q+1[�gs](x) = ζ(s, x)− x1−s

s − 1
+

q∑
j=1

Gj �j−1gs(x).
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• Analogue of Raabe’s formula

∫ x+1

x

ζ(s, t) dt = x1−s

s − 1
, x > 0.

• Alternative characterization. The function fs(x) = ζ(s, x) is the unique solution
lying in C0 ∩K�1−s�+ to the equation

∫ x+1

x

fs(t) dt = x1−s

s − 1
, x > 0.

Inequalities The following inequalities hold for any x > 0, any a > 0, and any
n ∈ N

∗.

• Symmetrized generalized Wendel’s inequality (equality if a ∈ {0, 1, . . . , �1 −
s�+})

∣∣∣∣∣∣ζ(s, x + a)− ζ(s, x)−
�1−s�+∑

j=1

(
a
j

)
�j−1gs(x)

∣∣∣∣∣∣
≤ a�

∣∣∣( a−1
�1−s�+

)∣∣∣
∣∣∣��1−s�+gs(x)

∣∣∣ .
If s ≤ 0, then

∣∣∣∣∣∣ζ(s, x + a)− ζ(s, x)−
�1−s�∑
j=1

(
a
j

)
�j−1gs(x)

∣∣∣∣∣∣
≤
∣∣∣( a−1
�1−s�

)∣∣∣
∣∣∣��−s�gs(x + a)−��−s�gs(x)

∣∣∣ .
• Symmetrized generalized Wendel’s inequality (discrete version)

∣∣∣ζ(s, x)− ζ(s)− f
�1−s�+
n [gs](x)

∣∣∣ ≤ x�
∣∣∣( x−1
�1−s�+

)∣∣∣
∣∣∣��1−s�+gs(n)

∣∣∣ .
If s ≤ 0, then

∣∣∣ζ(s, x)− ζ(s)− f �1−s�
n [gs ](x)

∣∣∣ ≤
∣∣∣( x−1
�1−s�

)∣∣∣
∣∣∣��−s�gs(x + n)−��−s�gs(n)

∣∣∣ .
Here

f
�1−s�+
n [gs](x) =

n−1∑
k=0

(x + k)−s −
n−1∑
k=1

k−s −
�1−s�+∑

j=1

(
x
j

)
�

j−1
n n−s .
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• Symmetrized Stirling’s formula-based inequality

∣∣∣J �1−s�++1[�gs](x)

∣∣∣ ≤ G�1−s�+
∣∣∣��1−s�+gs(x)

∣∣∣ .
If s ≤ 0, then

∣∣∣J �2−s�[�gs](x)

∣∣∣ ≤
∫ 1

0

∣∣∣( t−1
�1−s�

)∣∣∣
∣∣∣��−s�gs(x + t)−��−s�gs(x)

∣∣∣ dt.

• Burnside’s formula-based inequality if s > −1
∣∣∣∣ζ
(

s, x + 1

2

)
− x1−s

s − 1

∣∣∣∣ ≤
∣∣∣J �1−s�++1[�gs](x)

∣∣∣ .

• Additional inequality if s > 1.

0 ≤ ζ(s, x + n) =
∞∑

k=n

(x + k)−s ≤ ζ(s, n).

• Generalized Gautschi’s inequality
If s ≥ 0, s �= 1,

(a� − a)(x + a�)−s ≤ s(a� − a) ζ(s + 1, x + a�)
≤ ζ(s, x + a)− ζ(s, x + a�) ≤ (a� − a)(x + �a�)−s .

If s ≤ 0, then these inequalities must be reversed and they are valid only if the
Hurwitz zeta function is concave on [x + �a�,∞).

Generalized Stirling’s and Related Formulas For any a ≥ 0, we have the
following limits and asymptotic equivalences as x →∞,

ζ(s, x + a)− ζ(s, x)−
�1−s�+∑

j=1

(
a
j

)
�j−1gs(x) → 0,

ζ(s, x)− x1−s

s − 1
+
�1−s�+∑

j=1
Gj �j−1gs(x) → 0,
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ζ(s, x)+ 1

1− s

�1−s�+∑
j=0

(1−s
j

) Bj

xs+j−1 → 0,

ζ(s, x + a) ∼ x1−s

s − 1
.

In particular, if s > 1, then ζ(s, x) → 0 as x →∞.
For instance, setting s = − 3

2 in these latter two asymptotic formulas, we obtain

ζ
(
− 3

2 , x
)
+ 2

5 x5/2 − 7
12 x3/2 + 1

12 (x + 1)3/2 → 0 ,

ζ
(
− 3

2 , x
)
+ 2

5 x5/2 − 1
2 x3/2 + 1

8 x1/2 → 0 .

If s > −1, then we have the analogue of Burnside’s formula

ζ(s, x)− 1
s−1 (x − 1

2 )
1−s → 0 , as x →∞,

which provides a better approximation of ζ(s, x) than the generalized Stirling
formula.

Asymptotic Expansions For any m, q ∈ N
∗ we have the following expansion as

x →∞

1

m

m−1∑
j=0

ζ

(
s, x + j

m

)
= 1

s − 1

q∑
k=0

(1−s
k

) Bk

mk xs+k−1 +O
(
x−q−s

)
.

Setting m = 1 in this formula, we obtain

ζ(s, x) = 1

s − 1

q∑
k=0

(1−s
k

) Bk

xs+k−1 +O
(
x−q−s

)
.

In particular, this clearly shows that ζ(s, x) is a (1−s)-degree polynomial whenever
1− s is a positive integer. More precisely, we have

ζ(1− n, x) = − 1

n

n∑
k=0

(
n
k

)
Bk xn−k, n ∈ N

∗,

that is,

ζ(1− n, x) = − 1

n
Bn(x), n ∈ N

∗. (10.16)
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Generalized Liu’s Formula We have the following formulas for x > 0.

• If s > −1, then

ζ(s, x) = x1−s

s − 1
+ 1

2
x−s − s

∫ ∞

0

{t} − 1
2

(x + t)s+1
dt.

• If s ≤ −1, then for any integer q ≥ (1− s)/2�,

ζ(s, x) = x1−s

s − 1
+ 1

2
x−s−

q∑
k=1

B2k

(2k)!
(−s)2k−1

xs+2k−1 −
(−s)2q

(2q)!
∫ ∞

0

B2q({t})
(x + t)s+2q

dt.

Limit and Series Representations When s > 1 We simply have

ζ(s, x) =
∞∑

k=0
(x + k)−s

and this series converges uniformly on R+. In particular, we retrieve the identity

ψν(x) = (−1)ν+1ν! ζ(ν + 1, x) , ν ∈ N
∗.

Limit and Series Representations When s < 1 We have the following Eulerian
form

ζ(s, x)− ζ(s) = −gs(x)+
�−s�∑
j=0

(
x

j+1
)
�jgs(1)

+
∞∑

k=1

⎛
⎝−gs(x + k)+

�1−s�∑
j=0

(
x
j

)
�jgs(k)

⎞
⎠ ,

and the Weierstrassian form can be obtained similarly. The associated series
converge uniformly on any bounded subset of [0,∞).

For instance, we have

ζ
(
− 3

2 , x
)
− ζ

(
− 3

2

)

= x
3
2 + lim

n→∞

(
n−1∑
k=1

(
(x + k)

3
2 − k

3
2

)
− x n

3
2 − (x2

)
�nn

3
2

)
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= x
3
2 − x − (2

√
2− 1)

(
x
2

)+
∞∑

k=1

(
(x + k)

3
2 − k

3
2 − x�kk

3
2 − (x2

)
�2

kk
3
2

)

= x
3
2 − x + 3

4 ζ
(
1
2

)(
x
2

)+
∞∑

k=1

(
(x + k)

3
2 − k

3
2 − x�kk

3
2 − 3

4

(
x
2

)
k− 1

2

)
.

The analogue of Gauss’ limit is

ζ(s, x) = ζ(s)+ lim
n→∞ f �1−s�

n [gs](x), x > 0.

where

f �1−s�
n [gs](x) =

n−1∑
k=0

(x + k)−s −
n−1∑
k=1

k−s −
�1−s�∑
j=1

(
x
j

)
�

j−1
n n−s .

Gregory’s Formula-Based Series Representation For any x > 0 we have

ζ(s, x) = x1−s

s − 1
−

∞∑
n=0

Gn+1�ngs(x)

= x1−s

s − 1
+

∞∑
n=0

|Gn+1|
n∑

k=0
(−1)k(n

k

)
(x + k)−s .

Setting x = 1 in this identity yields a known series expression for ζ(s) that is the
analogue of Fontana-Mascheroni series

ζ(s) = 1

s − 1
+

∞∑
n=0

|Gn+1|
n∑

k=0
(−1)k(n

k

)
(k + 1)−s .

Analogue of Gauss’ Multiplication Formula For any m ∈ N
∗ and any x > 0, we

have

m−1∑
j=0

ζ

(
s,

x + j

m

)
= ms ζ(s, x).

Corollary 8.33 provides the following limits for any x > 0

lim
m→∞ms−1ζ(s,mx) = x1−s

s − 1
, s < 1,

lim
m→∞ms−1(ζ(s,mx)− ζ(s,m)) = x1−s − 1

s − 1
, s �= 1.
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Analogue of Wallis’s Product Formula If s > 1, then we have

∞∑
k=1

(−1)k−1
ks

= (1− 21−s) ζ(s) = η(s), (10.17)

where s �→ η(s) is Dirichlet’s eta function. When s < 1, the form of the formula
strongly depends upon the value of s. When s = − 3

2 for instance, we obtain

lim
n→∞

(
h(n)+

2n∑
k=1

(−1)kk 3
2

)
= (4

√
2− 1) ζ(− 3

2 ).

where h(n) = − 8n+3
4

√
n
2 .

Restriction to the Natural Integers For any n ∈ N
∗ we have

ζ(s, n)− ζ(s) = −
n−1∑
k=1

k−s and ζ(s, n) =
∞∑

k=n

k−s .

Gregory’s formula states that for any n ∈ N
∗ and any q ∈ N we have

n−1∑
k=1

k−s = 1− n1−s

s − 1
+

q∑
j=1

Gj

(
�j−1gs(n)−�j−1gs(1)

)
+ R

q
s,n ,

with

|Rq
s,n| ≤ Gq |�qgs(n)−�qgs(1)|.

Many other representations of this sum can be derived from, e.g., the limit and series
representations of the Hurwitz zeta function.

Generalized Webster’s Functional Equation For any m ∈ N
∗ and any a > 0,

there is a unique solution fs : R+ → R to the equation

m−1∑
j=0

fs (x + a j) = − x−s

that lies in K�−s�+ , namely

fs(x) = 1

(am)s
ζ

(
s,

x + a

am

)
− 1

(am)s
ζ
(
s,

x

am

)
.
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Analogue of Euler’s Series Representation of γ We have

(�gs)
(k)(1) = (−s)k ζ(s + k), k ∈ N

∗.

Thus, the Taylor series expansion of ζ(s, x + 1) about x = 0 is

ζ(s, x + 1) =
∞∑

k=0

(−s
k

)
ζ(s + k) xk , |x| < 1.

Integrating both sides of this equation on (0, 1), we obtain the identity

∞∑
k=1

(1−s
k

)
ζ(s + k − 1) = − 1 , s < 2, s /∈ Z .

(When s > 2, the summand in the series above does not approach zero as k

increases.)

Analogue of the Reflection Formula A reflection formula can be derived when s

is an integer. Recall that we have the following special values for any n ∈ N
∗

ζ(1+ n, x) = (−1)n−1 1
n! ψn(x)

and

ζ(1− n, x) = − 1

n
Bn(x).

It follows that for any x ∈ R \ Z, we have

ζ(s, x)+ (−1)s ζ(s, 1 − x) =
{

(−1)s−1
(s−1)! π Ds−1 cot(πx), if s − 1 ∈ N

∗,
0, if − s ∈ N.

10.7 The Generalized Stieltjes Constants

Recall that the generalized Stieltjes constants are the numbers γn(x) that occur in
the Laurent series expansion of the Hurwitz zeta function

ζ(s, x) = 1

s − 1
+

∞∑
n=0

(−1)n
n! γn(x)(s − 1)n. (10.18)
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Recall also that the numbers γn = γn(1), where n ∈ N, are called the Stieltjes
constants. The Stieltjes constants and generalized Stieltjes constants are known to
satisfy the relations

γ0(x) = − ψ(x) and γ0 = γ

as well as the following identities for every q ∈ N

γq = lim
n→∞

(
n∑

k=1

(ln k)q

k
− (lnn)q+1

q + 1

)
,

γq(x) = lim
n→∞

(
n∑

k=0

(ln(x + k))q

x + k
− (ln(x + n))q+1

q + 1

)
.

For recent background on these constants, see, e.g., Blagouchine [19, 20] and
Blagouchine and Coppo [22] (see also Nan-Yue and Williams [80]).

Here we naturally restrict the values of x to the set R+. Interestingly, the
generalized Stieltjes constants also satisfy the difference equation

γq(x + 1)− γq(x) = gq(x),

where gq : R+ → R is the function defined by the equation

gq(x) = − 1

x
(ln x)q for x > 0.

Thus, our theory is particularly suitable for the investigation of these constants. For
any q ∈ N, the function gq lies in C∞ ∩D0 ∩K∞ and is increasing on [eq,∞). By
uniqueness of �gq , it follows that

�gq(x) = γq(x)− γq.

ID Card The introduction above enables us to provide the following basic
information about the generalized Stieltjes constants.

gq(x) Membership deg gq �gq(x)

− 1
x
(ln x)q C∞ ∩D0 ∩K∞ −1 γq (x)− γq

Analogue of Bohr-Mollerup’s Theorem The function γq can be characterized as
follows.
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All eventually monotone solutions fq : R+ → R to the equation

fq(x + 1) − fq(x) = − 1

x
(ln x)q

are of the form fq(x) = cq + γq(x), where cq ∈ R.

Using Proposition 3.9, we can also derive the following alternative characterization
of the function γq .

All solutions fq : R+ → R to the equation

fq(x + 1) − fq(x) = − 1

x
(ln x)q

that satisfy the asymptotic condition that, for each x > 0,

fq(x + n) − fq(n) → 0 as n→N ∞

are of the form fq(x) = cq + γq(x), where cq ∈ R.

Extended ID Card Using identity (8.11), we can immediately make the remark-
able observation that the asymptotic constant σ [gq ] is exactly the opposite of the
Stieltjes constant γq . We then have the following values

σ [gq ] σ [gq ] γ [gq ]
∞ −γq −γq

• Alternative representations of σ [gq ] = γ [gq ]

γq =
∞∑

k=1

(
(ln k)q

k
− (ln(k + 1))q+1 − (ln(k))q+1

q + 1

)
,

γq =
∫ ∞

1

{t} − 1
2

t2
(ln t)q−1(q − ln t) dt (q ≥ 1),

γq =
∫ ∞

1

(
(ln�t�)q
�t� − (ln t)q

t

)
dt .

• Generalized Binet’s function. For any r ∈ N and any x > 0

J r+1[γq ](x) = γq(x)+ (ln x)q+1

q + 1
+

r∑
j=1

Gj �j−1gq(x).
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• Analogue of Raabe’s formula

∫ x+1

x

γq(t) dt = − (ln x)q+1

q + 1
, x > 0. (10.19)

• Alternative characterization. The function f (x) = γq(x) is the unique solution
lying in C0 ∩K0 to the equation

∫ x+1

x

f (t) dt = − (ln x)q+1

q + 1
, x > 0.

Inequalities The following inequalities hold for any x > 0, any a > 0, and any
n ∈ N.

• Symmetrized generalized Wendel’s inequality (equality if a ∈ {0, 1})
If x ≥ eq , we have

∣∣γq(x + a)− γq(x)
∣∣ ≤ a�

∣∣∣∣(ln x)q

x

∣∣∣∣ .

• Symmetrized generalized Wendel’s inequality (discrete version)
If n ≥ eq , we have

∣∣∣∣∣γq(x)− γq − (ln x)q

x
−

n−1∑
k=1

(
(ln(x + k))q

x + k
− (ln k)q

k

)∣∣∣∣∣ ≤ x�
∣∣∣∣(ln n)q

n

∣∣∣∣ .

• Symmetrized Stirling’s and Burnside’s formulas-based inequalities
If x ≥ eq , we have

∣∣∣∣γq

(
x + 1

2

)
+ (ln x)q+1

q + 1

∣∣∣∣ ≤
∣∣∣∣γq(x)+ (ln x)q+1

q + 1

∣∣∣∣ ≤
∣∣∣∣ (ln x)q

x

∣∣∣∣ .

• Further inequalities. For 0 < x ≤ 1, we use the following approximations (see
Nan-Yue and Williams [80, p. 148])

∣∣∣∣γ0(x)− 1

x

∣∣∣∣ ≤ γ

and
∣∣∣∣γq(x)− (ln x)q

x

∣∣∣∣ ≤ (3+ (−1)q)(2q)!
qq+1(2π)q

, q ∈ N
∗.
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Generalized Stirling’s and Related Formulas For any a ≥ 0, we have the
following limits and asymptotic equivalence as x →∞,

γq(x + a)− γq(x) → 0, γq(x)+ (ln x)q+1

q + 1
→ 0,

γq(x + a) ∼ − (ln x)q+1

q + 1
.

Burnside-like approximation (better than Stirling-like approximation)

γq(x)+ 1

q + 1

(
ln

(
x − 1

2

))q+1
→ 0.

Further results (obtained by differentiation)

γ ′q(x)+ (ln x)q

x
→ 0, γ ′q(x + a) ∼ − (ln x)q

x
.

For any r ∈ N,

γ (r)
q (x + a)− γ (r)

q (x) → 0, Dr
x

(
γq(x)+ (ln x)q+1

q + 1

)
→ 0.

Dr
x

(
γq(x)+ 1

q + 1

(
ln

(
x − 1

2

))q+1)
→ 0.

Asymptotic Expansions For any m, r ∈ N
∗ we have the following expansion as

x →∞

1

m

m−1∑
j=0

γq

(
x + j

m

)
= − (ln x)q+1

q + 1
+

r∑
k=1

Bk

mkk! g
(k−1)
q (x)+O

(
g(r)

q (x)
)

.

Setting m = 1 in this latter formula, we obtain

γq(x) = − (ln x)q+1

q + 1
+

r∑
k=1

Bk

k! g(k−1)
q (x)+O

(
g(r)

q (x)
)

.

Let us detail this expansion when q = 1. We first observe that

g
(k−1)
1 (x) = (−1)k(k − 1)! ln x −Hk−1

xk
, k ∈ N

∗.
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Using (10.4), we then obtain

1

m

m−1∑
j=0

γ1

(
x + j

m

)
+ (ln x)

1

m

m−1∑
j=0

ψ

(
x + j

m

)

= (ln x)2

2
+

r∑
k=1

(−1)k−1 Bk Hk−1
k(mx)k

+O
(
x−r−1) .

Setting m = 1 in this latter formula, we get

γ1(x) = (ln x)2

2
− ψ(x) ln x +

r∑
k=1

(−1)k−1 Bk Hk−1
k xk

+O
(
x−r−1) .

Setting r = 5 for instance, we obtain

γ1(x) = (ln x)2

2
− ψ(x) ln x − 1

12x2 +
11

720x4 +O
(
x−6
)

.

Generalized Liu’s Formula For any q ≥ 1 and any x > 0 we have

γq(x) = − (ln x)q+1

q + 1
+ (ln x)q

2x
+
∫ ∞

0

{t} − 1
2

(x + t)2
(ln(x + t))q−1(q − ln(x + t)) dt.

Series Representations Since the function gq(x) lies in D−1
N

, we only have the
following series representations of γq(x).

• Eulerian and Weierstrassian forms. We have

γq(x) = γq + (ln x)q

x
+

∞∑
k=1

(
(ln(x + k))q

x + k
− (ln k)q

k

)
,

γq(x) = (ln x)q

x
+

∞∑
k=1

(
(ln(x + k))q

x + k
− (ln(k + 1))q+1 − (ln k)q+1

q + 1

)
.

The series can be differentiated term by term infinitely many times. For instance,
we get

γ ′q(x) =
∞∑

k=0

(ln(x + k))q−1

(x + k)2
(q − ln(x + k)).

• The analogue of Gauss’ limit coincides with the Eulerian form.
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• Gregory’s formula-based series representation. For any x > 0 satisfying the
assumptions of Proposition 8.11, we obtain

γq(x)+ (ln x)q+1

q + 1
=

∞∑
n=0

Gn+1�n
x

(ln x)q

x

=
∞∑

n=0
|Gn+1|

n∑
k=0

(−1)k(n
k

) (ln(x + k))q

x + k
.

Setting x = 1 in this identity (provided that x = 1 satisfies the assumptions of
Proposition 8.11), we obtain the Fontana-Mascheroni’s series expression for γq

γq =
∞∑

n=0
|Gn+1|

n∑
k=0

(−1)k(n
k

) (ln(k + 1))q

k + 1
.

This latter expression can be found in Blagouchine [20, p. 383] and the references
therein.

Analogue of Gauss’ Multiplication Formula The following analogue of Gauss’
multiplication formula was previously known (see also Blagouchine [19, p. 542])
but it can be derived straightforwardly from our results.

For any m ∈ N
∗ and any x > 0, we have

m−1∑
j=0

γq

(
x + j

m

)
= − m

q + 1

(
ln

1

m

)q+1
+m

q∑
j=0

(
q
j

) (
ln

1

m

)j

γq−j (x).

In particular,

m∑
j=1

γq

(
j

m

)
= − m

q + 1

(
ln

1

m

)q+1
+m

q∑
j=0

(
q
j

) (
ln

1

m

)j

γq−j .

Corollary 8.33 provides the following limits for x > 0

lim
m→∞

q∑
j=0

(
q
j

) (
ln

1

m

)j (
γq−j (mx)− γq−j (m)

) = − (ln x)q+1

q + 1
,

lim
m→∞

⎛
⎝− 1

q + 1

(
ln

1

m

)q+1
+

q∑
j=0

(
q
j

) (
ln

1

m

)j

γq−j (mx)

⎞
⎠ = − (ln x)q+1

q + 1
.
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For instance, setting q = 1 in these formulas yields

lim
m→∞

(
γ1(mx)− γ1(m)+ (lnm)(ψ(mx)− ψ(m))

) = −1

2
(ln x)2 ,

lim
m→∞

(
γ1(mx)− 1

2
(lnm)2 + ψ(mx) lnm

)
= −1

2
(ln x)2 .

Now, setting m = 2 in the multiplication formula, we obtain the following analogue
of Legendre’s duplication formula

γq

(x

2

)
+ γq

(
x + 1

2

)
= − 2

q + 1

(
ln

1

2

)q+1
+ 2

q∑
j=0

(
q
j

) (
ln

1

2

)j

γq−j (x).

When q = 0 and q = 1, the multiplication formula reduces to the known formulas

m−1∑
j=0

ψ

(
x + j

m

)
= m(ψ(x)− lnm) ,

m−1∑
j=0

γ1

(
x + j

m

)
= −m

2
(lnm)2 +m(lnm) ψ(x)+m γ1(x).

Analogue of Wallis’s Product Formula The analogue of Wallis’s formula for the
function gq(x) is

∞∑
k=1

(−1)k (ln k)q

k
= − (ln 2)q+1

q + 1
+

q−1∑
j=0

(
q
j

)
(ln 2)q−j γj . (10.20)

This formula was established by Briggs and Chowla [25, Eq. (8)]. For q = 1, it
reduces to

∞∑
k=1

(−1)k ln k

k
= − (ln 2)2

2
+ γ ln 2 .

For q = 2, we obtain

∞∑
k=1

(−1)k (ln k)2

k
= − (ln 2)3

3
+ γ (ln 2)2 + 2γ1 ln 2 .

These latter two formulas were also established by Hardy [47].
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As an aside, let us establish conversion formulas between the sequences q �→ γq

and q �→ η(q)(1), where η(s) is the Dirichlet eta function introduced in (10.17) and
η(q)(1) stands for the limiting value of η(q)(s) as s → 1. To ease the computations,
let us instead consider the conversion formulas between the sequences q �→ γq and
q �→ λq , where

λq = 1

q + 1
(ln 2)q+1 + (−1)q+1 η(q)(1) , q ∈ N.

Using (10.20), we can readily derive the following equations

λq =
q−1∑
k=0

(
q
k

)
(ln 2)q−k γk , q ∈ N. (10.21)

These equations actually consist of an infinite consistent triangular system. Solving
this system provides the following conversion formula

γq =
q∑

k=0

(
q
k

) Bq−k

k + 1
(ln 2)q−k−1 λk+1 , q ∈ N, (10.22)

that is,

γq = − Bq+1
q + 1

(ln 2)q+1 +
q∑

k=0
(−1)k (q

k

) Bq−k

k + 1
(ln 2)q−k−1η(k+1)(1) , q ∈ N.

Indeed, plugging (10.22) in the right side of (10.21) we obtain for any q ∈ N

q−1∑
k=0

(
q
k

)
(ln 2)q−k γk =

q−1∑
k=0

(
q
k

)
(ln 2)q−k

k∑
j=0

(
k
j

) Bk−j

j + 1
(ln 2)k−j−1 λj+1

=
q−1∑
j=0

(
q
j

)
(ln 2)q−j−1 λj+1

j + 1

q−1∑
k=j

(
q−j
k−j

)
Bk−j ,

where the inner sum reduces to 0q−j−1. The latter quantity then reduces to λq , as
expected.

Remark 10.10 The conversion formulas (10.21) and (10.22) are not quite new. In
essence, they were established by Liang and Todd [63, Eq. (3.6)] and Nan-Yue and
Williams [80, Eqs. (1.9) and (7.1)]. ♦
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Generalized Webster’s Functional Equation For any m ∈ N
∗ and any a > 0,

there is a unique eventually monotone solution f : R+ → R to the equation

m−1∑
j=0

f (x + a j) = − 1

x
(ln x)q ,

namely

f (x) = Sq,am

(
x + a

am

)
− Sq,am

( x

am

)
,

where

Sq,am(x) = 1

am

q∑
j=0

(
q

j

)
(ln(am))j γq−j (x).

For instance, the unique eventually monotone solution f : R+ → R to the equation

f (x)+ f (x + 1) = − 1

x
ln x

is

f (x) = γ1(x)− γ1

(x

2

)
+ (ln 2) ψ(x)+ 1

2
(ln 2)2.

Rational Arguments Theorem Let us apply Proposition 8.65 to the function
gq(x). For any a, b ∈ N

∗ with a < b and any j ∈ {0, . . . , b − 1} we have

Sb
j [gq ] = b (−1)q+1

q∑
i=0

(
q

i

)
(ln b)q−iDi

s Lis(z)
∣∣
(s,z)=(1,ωj

b)
,

where Lis (z) is the polylogarithm function. Hence, we have

γq

(a

b

)
− γq = (−1)q+1

q∑
i=0

(
q

i

)
(ln b)q−i

b−1∑
j=0

(1− ω
−aj
b )Di

s Lis (z)
∣∣
(s,z)=(1,ωj

b)
.

We note that a more practical formula was derived in the special case when q = 1
by Blagouchine [19] as a generalization of Gauss’ digamma theorem.
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10.8 Higher Order Derivatives of the Hurwitz Zeta Function

Let s ∈ R \ {1} and q ∈ N. Differentiating q times both sides of (10.15) we obtain

ζ (q)(s, x + 1)− ζ (q)(s, x) = (−1)q+1x−s(ln x)q , x > 0,

where ζ (q)(s, x) stands for D
q
s ζ(s, x). This equation shows that the investigation

of the higher order derivatives of the Hurwitz zeta function can be carried out using
our results. To keep our presentation simple, we will focus on some selected results
only.

The interested reader can find an earlier study of these functions in Ramanujan’s
second notebook [18, p. 36 et seq.].

ID Card The following basic information can be easily derived.

gs,q(x) Membership deg gs,q �gs,q(x)

− x−s (− ln x)q
C∞ ∩D−1 ∩K∞, if s > 1,

C∞ ∩D�1−s� ∩K∞, if s < 1.

−1
+ �1− s�+

ζ (q)(s, x)

−ζ (q)(s)

We observe that this investigation can be regarded as a simultaneous generalization
of the studies of the Hurwitz zeta function and the generalized Stieltjes constants.
For the latter, we observe that

(−1)q lim
s→1

gs,q(x) = − 1

x
(ln x)q.

Setting s = 0 in our results may also be very informative as it produces formulas
involving the well-studied quantities ζ (q)(0) and ζ (q)(0, x)− ζ (q)(0) for any q ∈ N.

Project 10.11 Find a closed-form expression for the integral

∫ x

1
γq(t) dt.

We apply Proposition 8.20 to gq(x) = − 1
x
(ln x)q . Using (10.19) we obtain

∫ x

1
γq(t) dt = �x

∫ x+1

x

γq(t) dt = − 1

q + 1
�(ln x)q+1

= (−1)q+1
q + 1

�g0,q+1(x) ,



248 10 Applications to Some Standard Special Functions

that is,

∫ x

1
γq(t) dt = (−1)q+1

q + 1

(
ζ (q+1)(0, x)− ζ (q+1)(0)

)
.

In particular,

γq(x) = (−1)q+1
q + 1

Dxζ (q+1)(0, x) .

♦
Analogue of Bohr-Mollerup’s Theorem The function ζ (q)(s, x) can be character-
ized as follows.

All solutions fs,q : R+ → R to the equation

fs,q (x + 1)− fs,q(x) = gs,q(x)

that lie in K�1−s�+ are of the form fs,q(x) = cs,q + ζ (q)(s, x), where cs,q ∈ R.

Extended ID Card The asymptotic constant σ [gs,q] satisfies the identity

σ [gs,q] =
∫ 1

0
ζ (q)(s, t + 1) dt − ζ (q)(s) = −q!

(1− s)q+1
− ζ (q)(s).

Hence we have the following values

σ [gs,q ] σ [gs,q ] γ [gs,q ]
∞, if s > 1,

−ζ (q)(s), if s < 1.
−q!

(1−s)q+1 − ζ (q)(s) σ [gs,q ] −∑�1−s�+
j=1 Gj�

j−1gs,q(1)

• Alternative representations of σ [gs,q]

σ [gs,q] = lim
n→∞

⎛
⎝n−1∑

k=1
gs,q(k)−

∫ n

1
gs,q(t) dt +

�1−s�+∑
j=1

Gj�
j−1gs,q(n)

⎞
⎠ ,

σ [gs,q] =
�1−s�+∑

j=1
Gj�

j−1gs,q(1)

−
∞∑

k=1

⎛
⎝
∫ k+1

k

gs,q(t) dt −
�1−s�+∑

j=0
Gj�

jgs,q(k)

⎞
⎠ .
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Setting s = 0 in the previous formulas, we obtain

(−1)q(q! + ζ (q)(0)) = lim
n→∞

(
n∑

k=1
(ln k)q −

∫ n

1
(ln t)q dt − 1

2
(lnn)q

)

=
∞∑

k=1

(
1

2
(ln k)q −

∫ k+1

k

(ln t)q dt

)
.

The left-hand quantity can actually be related to the Stieltjes constants in a
very simple way. Indeed, on differentiating both sides of (10.18), we obtain the
following surprising identity

(−1)q(q! + ζ (q)(0)) =
∞∑

n=0

γn+q

n! .

• Generalized Binet’s function. For any r ∈ N and any x > 0

J r+1[�gs,q](x) = ζ (q)(s, x)−
∫ x+1

x

ζ (q)(s, t) dt +
r∑

j=1
Gj �j−1gs,q(x).

• Analogue of Raabe’s formula. We have

∫ x

1
gs,q(t) dt = q! − �(q + 1, (s − 1) ln x)

(1− s)q+1
, x > 0,

and hence the analogue of Raabe’s formula is

∫ x+1

x

ζ (q)(s, t) dt = −�(q + 1, (s − 1) ln x)

(1− s)q+1

= −q! x1−s

(1− s)q+1
q∑

j=0

((s − 1) ln x)j

j ! , x > 0.

Generalized Stirling’s and Related Formulas For any a ≥ 0 we have

ζ (q)(s, x + a)− ζ (q)(s, x)−
�1−s�+∑

j=1

(
a
j

)
�j−1gs,q(x) → 0 as x →∞,
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with equality if a ∈ {0, 1, . . . , �1 − s�+}. Also, we have the following analogue of
Stirling’s formula

ζ (q)(s, x)−
∫ x+1

x

ζ (q)(s, t) dt +
�1−s�+∑

j=1
Gj �j−1gs,q(x) → 0 as x →∞.

Setting s = 0 in this latter formula and then simplifying the resulting expression,
we obtain

ζ (q)(0, x)+ �(q + 1,− ln x)+ 1

2
(−1)q+1(ln x)q → 0 as x →∞.

We also have

ζ (q)(s, x + a) ∼
∫ x+1

x

ζ (q)(s, t) dt as x →∞.

Finally, if s > −1, then we have the following analogue of Burnside’s formula

ζ (q)(s, x)−
∫ x+ 1

2

x− 1
2

ζ (q)(s, t) dt → 0 , as x →∞,

which provides a better approximation of ζ q(s, x) than the analogue of Stirling’s
formula.

Eulerian and Weierstrassian Forms If s > 1, then for any x > 0, we simply have

ζ (q)(s, x) = −
∞∑

k=0
gs,q(x + k)

and this series converges uniformly on R+ and can be integrated and differentiated
term by term. If s < 1, then for any x > 0, we obtain the following Eulerian form

ζ (q)(s, x)− ζ (q)(s) = −gs,q(x)+
�−s�∑
j=0

(
x

j+1
)
�jgs,q(1)

+
∞∑

k=1

⎛
⎝−gs,q(x + k)+

�1−s�∑
j=0

(
x
j

)
�jgs,q(k)

⎞
⎠

and the Weierstrassian form can be obtained similarly. Both associated series
converge uniformly on any bounded subset of [0,∞) and can be integrated and
differentiated term by term. Note that the case where (s, q) = (0, 2) can be found
in Ramanujan’s second notebook [18, p. 26–27].
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Gregory’s Formula-Based Series Representation For any x > 0 satisfying the
assumptions of Proposition 8.11, we have

ζ (q)(s, x) =
∫ x+1

x

ζ (q)(s, t) dt −
∞∑

n=0
Gn+1�ngs,q(x)

=
∫ x+1

x

ζ (q)(s, t) dt −
∞∑

n=0
|Gn+1|

n∑
k=0

(−1)k(n
k

)
gs,q(x + k) .

Setting x = 1 in this identity (provided that x = 1 satisfies the assumptions
of Proposition 8.11) yields a series expression for ζ (q)(s) that is the analogue of
Fontana-Mascheroni series

ζ (q)(s) = −q!
(1− s)q+1

−
∞∑

n=0
|Gn+1|

n∑
k=0

(−1)k(n
k

)
gs,q(k + 1) ,

which can also be obtained differentiating the analogue of Fontana-Mascheroni
series for the Hurwitz zeta function. For instance, we have

ζ ′′(0) = − 2+
∞∑

n=0
|Gn+1|

n∑
k=0

(−1)k(n
k

)
(ln(k + 1))2

and this latter value is also known to be (see, e.g., Berndt [18, p. 25])

1

2
γ 2 − π2

24
− 1

2
(ln(2π))2 + γ1 .

Analogue of Gauss’ Multiplication Formula Upon differentiating the analogue
of Gauss’ multiplication formula for the Hurwitz zeta function, we immediately
obtain the following multiplication formula. For any m ∈ N

∗ and any x > 0, we
have

m−1∑
j=0

ζ (q)

(
s,

x + j

m

)
= ms

q∑
j=0

(
q
j

)
(lnm)q−j ζ (j)(s, x).

Moreover, Corollary 8.33 provides the following limit for any x > 0 and any s < 1

lim
m→∞

q∑
j=0

(
q
j

)
(lnm)q−j ζ (j)(s,mx)

m1−s
= − �(q + 1, (s − 1) ln x)

(1− s)q+1
.
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Also, for any s �= 1, we have

lim
m→∞

q∑
j=0

(
q
j

)
(lnm)q−j ζ (j)(s,mx)− ζ (j)(s,m)

m1−s
= q! − �(q + 1, (s − 1) ln x)

(1− s)q+1
.

Analogue of Wallis’s Product Formula When s < 1, the form of the analogue of
Wallis’s product formula strongly depends upon the value of s. If s > 1, then we
have

η(q)(s) =
∞∑

k=1

(−1)k−1
ks

(− ln k)q

= ζ (q)(s)− 21−s

q∑
j=0

(
q
j

) (
ln

1

2

)q−j

ζ (j)(s),

where s �→ η(s) is Dirichlet’s eta function. Just as we did for the formulas (10.21)
and (10.22), we can easily establish the following conversion formulas for s > 1

μq(s) =
q−1∑
k=0

(
q
k

) (
ln

1

2

)q−k

ζ (k)(s) , q ∈ N ,

ζ (q)(s) =
q∑

k=0

(
q
k

) Bq−k

k + 1

(
ln

1

2

)q−k−1
μk+1(s) , q ∈ N ,

where

μq(s) = 2s−1(ζ (q)(s)− η(q)(s))− ζ (q)(s) , q ∈ N.

10.9 The Catalan Number Function

The Catalan number function is the restriction to R+ of the map x �→ Cx defined
on (− 1

2 ,∞) by

Cx = 1

x + 1

(
2x

x

)
.

This function satisfies the equation

Cx+1 =
(
4− 6

x + 2

)
Cx .
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The additive version of this equation reads �f = g, where the function g is
the logarithm of a rational function. We observe that such equations have been
thoroughly investigated by Anastassiadis [7, p. 41] (see also Kuczma [57]).

The equation above shows that the Catalan number function can be investigated
using our results. Let us briefly study this function.

ID Card The function Cx is clearly a �-type function and we immediately derive
the following basic information.

g(x) Membership deg g �g(x)

ln
(
4− 6

x+2
)

C∞ ∩D1 ∩K∞ 0 lnCx

Analogue of Bohr-Mollerup’s Theorem The function Cx can be characterized as
follows.

All solutions f : R+ → R+ to the equation

(x + 2) f (x + 1) = (4x + 2) f (x)

for which lnf lies in K1 are of the form f (x) = c Cx , where c > 0.

Extended ID Card We have the following values:

σ [g] σ [g] γ [g]
1
2

(
3+ ln 1

8π

)
1
2

(
3+ ln 8

27π

)
1
2

(
3+ ln 4

27π

)

We also have the inequality

|γ [g]| ≤ 25

8
ln 5+ 39

8
ln 3− 16 ln 2+ 3

4
≈ 0.04

and the following representations

γ [g] =
∫ ∞

1

3({t} − 1
2 )

(t + 2)(2t + 1)
dt ,

σ [g] =
∫ 1

0
lnCt+1 dt.

Moreover, the analogue of Raabe’s formula is

∫ x+1

x

lnCt dt = ln

(
e
3
2 (4x + 2)x+ 1

2√
π (x + 2)x+2

)
, x > 0.



254 10 Applications to Some Standard Special Functions

Generalized Stirling’s and Related Formulas For any a ≥ 0, we have

Cx+a

Cx

∼ 4a and Cx ∼ 4x

x3/2
√

π
as x →∞.

Also, the analogue of Burnside’s formula gives

lnCx − ln

(
e
3
2 (4x)x

√
π (x + 3

2 )
x+ 3

2

)
→ 0 as x →∞.

Restriction to the Natural Integers For any n ∈ N
∗ we have

Cn = 1

n+ 1

(2n
n

)
.

Eulerian and Weierstrassian Forms For any x > 0, we have

Cx = x + 2

4x + 2
2x

∞∏
k=1

(
2− 3

k+3
)x

(
2− 3

k+2
)x−1 (

2− 3
x+k+2

)

and

Cx = x + 2

4x + 2
e−

x
2

∞∏
k=1

1+ x
k+2

1+ 2x
2k+1

e
3x

(k+2)(2k+1) .
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Chapter 11
Defining New Multiple log �-Type
Functions

In the previous chapter, we tested our results on some multiple log�-type functions
that are well-known special functions. It is clear, however, that there are many other
multiple log�-type functions that are still to be introduced and investigated, simply
as principal indefinite sums of standard functions.

In this chapter, we introduce and investigate the following functions (we use the
acronym PIS for “principal indefinite sum”)

• The PIS of the digamma function.
• The PIS of the Hurwitz zeta function.
• The PIS of the generating function for the Gregory coefficients.

The latter two examples are examined here in a broad way. A deeper investigation
of these examples can be carried out simply by following all the steps and recipes
given in Chap. 9.

11.1 The PIS of the Digamma Function

Let us see what our theory tells us when g(x) = ψ(x) is the digamma function. We
first observe that g lies in C∞ ∩D1 ∩K∞.

Using summation by parts, we can easily see that

�ψ(x) = (x − 1)(ψ(x)− 1).

Moreover, from the identity Hx−1 = ψ(x)+ γ , we obtain immediately

�xHx−1 = (x − 1)(Hx−1 − 1).
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This example may seem very basic at first glance, but since Hx is the discrete
analogue of the function ln x, we expect an important analogy between �ψ(x) and
� ln x = ln�(x), at least in terms of asymptotic behaviors. Actually, the analogue
of Burnside’s formula shows that the function

ln�

(
x − 1

2

)
+ 1

2
(1− ln(2π))

is a very good approximation of �ψ(x).
Interestingly, using (10.12) we can easily derive the following additional identity

�ψ(x) = 1

2
(1− ln(2π))+D lnG(x), x > 0,

where G is the Barnes G-function (see Sect. 10.5).

Project 11.1 Find a closed-form expression for the function �xψ2(x). Using again
summation by parts, we obtain

�xψ2(x) = (x − 1) ψ2(x)− (2x − 1) ψ(x)+ 2x − 2− γ.

We also note that the functionψ2(x) lies in C∞∩D1∩K∞, just as does the function
ψ(x). The investigation of this new function in the light of our results is left to the
reader. ♦
ID Card The following basic information about the functions ψ(x) and �ψ(x)

follows trivially from the discussion above.

g(x) Membership deg g �g(x)

ψ(x) C∞ ∩D1 ∩K∞ 0 (x − 1)(ψ(x) − 1)

Analogue of Bohr-Mollerup’s Theorem The function �ψ(x) can be character-
ized as follows.

All eventually convex or concave solutions f : R+ → R to the equation

f (x + 1)− f (x) = ψ(x)

are of the form f (x) = c +�ψ(x), where c ∈ R.

Extended ID Card It is not difficult to see that

σ [g] =
∫ 1

0
�ψ(t + 1) dt = 1

2
(1− ln(2π)).
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Hence we have the values

σ [g] σ [g] γ [g]
∞ 1

2 (1 − ln(2π)) 1
2 (1− ln(2π) + γ )

• Alternative representations of σ [g]

σ [g] = −1

2
γ −

∞∑
k=1

(
ln k − ψ(k)− 1

2k

)
,

σ [g] = −1

2
γ +

∫ ∞

1

(
{t} − 1

2

)
ψ1(t) dt,

σ [g] = lim
n→∞

((
n− 1

2

)
ψ(n) − ln�(n)− n+ 1

)
.

• Alternative representations of γ [g]

σ [g] =
∫ ∞

1

(
ψ(�t�) − ψ(t) + 1

2�t�
)

dt,

σ [g] =
∫ ∞

1

(
ψ(�t�) − ψ(t) + {t}

�t�
)

dt.

• Generalized Binet’s function. For any q ∈ N
∗ and any x > 0,

J q+1[�ψ](x) = �ψ(x)− 1

2
(1− ln(2π))− ln�(x)+ 1

2
ψ(x)

+
q−2∑
j=0

Gj+2(−1)j B(j + 1, x),

where (x, y) �→ B(x, y) is the beta function.
• Analogue of Raabe’s formula

∫ x+1

x

�ψ(t) dt = 1

2
(1− ln(2π))+ ln�(x), x > 0.

• Alternative characterization. The function f = �ψ is the unique solution lying
in C0 ∩K1 to the equation

∫ x+1

x

f (t) dt = 1

2
(1− ln(2π))+ ln�(x), x > 0.
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Inequalities The following inequalities hold for any x > 0, any a ≥ 0, and any
n ∈ N

∗.

• Symmetrized generalized Wendel’s inequality (equality if a ∈ {0, 1})

|�ψ(x + a)− �ψ(x)− aψ(x)| ≤ |a − 1| |ψ(x + a)− ψ(x)|
≤ a� |a − 1|

x
.

• Symmetrized generalized Wendel’s inequality (discrete version)

|�ψ(x)− f 1
n [ψ](x)| ≤ |x − 1| |ψ(n+ x)− ψ(n)| ≤ x� |x − 1|

n
,

where

f 1
n [ψ](x) = (n+ x − 1)(ψ(n)− ψ(x + n))+ (x − 1) ψ(x)+ 1.

• Symmetrized Stirling’s formula-based inequalities

∣∣∣∣�ψ

(
x + 1

2

)
− 1

2
(1− ln(2π))− ln�(x)

∣∣∣∣
≤
∣∣∣∣�ψ(x)− 1

2
(1− ln(2π))− ln�(x)+ 1

2
ψ(x)

∣∣∣∣
≤ x ln x − ln�(x)− 1

2
ψ(x)− x + 1

2
ln(2π) ≤ 1

2x
.

• Generalized Gautschi’s inequality

(a − a�) ψ(x + a�) ≤ (a − a�) (�ψ)′(x + a�)
≤ (�ψ)(x + a)− (�ψ)(x + a�)
≤ (a − a�) ψ(x + �a�).

Generalized Stirling’s and Related Formulas For any a ≥ 0, we have the
following limits and asymptotic equivalence as x →∞,

�ψ(x + a)− �ψ(x)− aψ(x) → 0, �ψ(x + a) ∼ ln�(x),

�ψ(x)− ln�(x)+ 1

2
ψ(x) → 1

2
(1− ln(2π)),

�ψ(x)− ln�

(
x − 1

2

)
→ 1

2
(1− ln(2π)).
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Asymptotic Expansions For any q ∈ N
∗ we have the following expansion as x →

∞

�ψ(x) = 1

2
(1− ln(2π))+

q∑
k=0

Bk

k! ψk−1(x)+O(ψq(x)).

Setting q = 3 for instance, we get

�ψ(x) = 1

2
(1− ln(2π))+ ln�(x)− 1

2
ψ(x)+ 1

12
ψ1(x)+O(x−3).

Generalized Liu’s Formula For any x > 0, we have

�ψ(x) = 1

2
(1− ln(2π))+ ln�(x)− 1

2
ψ(x)−

∫ ∞

0

(
{t} − 1

2

)
ψ1(x + t) dt.

Limit and Series Representations Let us briefly examine the main limit and series
representations of �ψ(x). The additional representations obtained by differentia-
tion and integration are left to the reader.

• Eulerian and Weierstrassian forms. We have

�ψ(x) = − γ x − ψ(x)−
∞∑

k=1

(
ψ(x + k)− ψ(k)− x

k

)
,

�ψ(x) = − (1+ γ )x − ψ(x)−
∞∑

k=1
(ψ(x + k)− ψ(k)− x ψ1(k)) .

• Analogue of Gauss’ limit. We have

�ψ(x) = (x − 1) ψ(x)+ 1+ lim
n→∞(n+ x − 1)(ψ(n)− ψ(x + n)).

Gregory’s Formula-Based Series Representation For any x > 0 we have

�ψ(x) = 1

2
(1− ln(2π))+ ln�(x)− 1

2
ψ(x)+

∞∑
n=0

|Gn+2|B(n+ 1, x) .

Setting x = 1 in this identity yields the following analogue of Fontana-Mascheroni’s
series

∞∑
n=2

|Gn|
n− 1

= − 1

2
+ 1

2
ln(2π)− 1

2
γ ,
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and the right-hand value is precisely the generalized Euler constant γ [ψ] associated
with the digamma function. We also observe that this latter identity was obtained by
Kowalenko [52, p. 431].

Analogue of Gauss’ Multiplication Formula Since we do not have any simple
expression for the function�xψ( x

m
), it seems difficult to find a usable multiplication

formula here. We had the same difficulty in the investigation of the Barnes G-
function (see Sect. 10.5). However, we can use Proposition 8.30 to derive the
following convergence result. For any m ∈ N

∗ we have

m−1∑
j=0

�ψ

(
x + j

m

)
−m ln�

( x

m

)
+ 1

2
ψ
( x

m

)
→ m

2
(1− ln(2π)) as x →∞.

Analogue of Wallis’s Product Formula The following analogue of Wallis’s
formula was already found in Project 10.1

lim
n→∞

(
− ln(4n)+ 2

2n∑
k=1

(−1)kψ(k)

)
= γ .

Generalized Webster’s Functional Equation For any m ∈ N
∗, there is a unique

eventually monotone solution f : R+ → R to the equation

m−1∑
j=0

f

(
x + j

m

)
= ψ(x)

namely

f (x) = �ψ

(
x + 1

m

)
−�ψ(x).

Analogue of Euler’s Series Representation of γ We have (�ψ)′(1) = −1 − γ

and

(�ψ)(k)(1) = k ψk−1(1) = (−1)kk! ζ(k), k ≥ 2.

The Taylor series expansion of �ψ(x + 1) about x = 0 is

�ψ(x + 1) = (−1− γ )x +
∞∑

k=2
ζ(k)(−x)k, |x| < 1.
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Integrating both sides of this equation on (0, 1), we obtain

∞∑
k=2

(−1)k ζ(k)

k + 1
= 1+ 1

2
(γ − ln(2π)).

Analogue of the Reflection Formula For any x ∈ R \ Z, we have

�ψ(1 + x)+�ψ(1 − x) = 1− πx cot(πx).

11.2 The PIS of the Hurwitz Zeta Function

In this section we apply our theory to investigate the function

x �→ ζ2(s, x)
def= �x ζ(s, x)

for any fixed s ∈ R \ {1}.
Using summation by parts, we observe that if s �= 2 we have

ζ2(s, x) = (x − 1) ζ(s, x)− ζ(s − 1, x)+ ζ(s − 1).

If s = 2, then

ζ2(2, x) = �xψ1(x) = (x − 1) ψ1(x)+ ψ(x)+ γ.

To keep this investigation simple, here we focus on some selected results only and
we restrict ourselves to the case when s > 2, for which the sequence n �→ ζ(s, n)

is summable. In this case, by (6.23) we obtain immediately the following surprising
identity (see also Paris [83])

∞∑
k=1

ζ(s, k) = ζ(s − 1).

We also have
∫ ∞

1
ζ(s, t) dt = ζ(s − 1)

s − 1
.

ID Card We can easily summarize the basic information as follows:

gs(x) Membership deg gs �gs(x)

ζ(s, x) C∞ ∩D−1 ∩K∞ −1 ζ2(s, x)
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Analogue of Bohr-Mollerup’s Theorem The function ζ2(s, x) can be character-
ized as follows.

All eventually monotone solutions fs : R+ → R to the equation

fs(x + 1) − fs(x) = ζ(s, x)

are of the form fs(x) = cs + ζ2(s, x), where cs ∈ R.

Extended ID Card We immediately have

σ [gs] =
∞∑

k=1
ζ(s, k) −

∫ ∞

1
ζ(s, t) dt = s − 2

s − 1
ζ(s − 1).

Hence we have the values

σ [gs ] σ [gs ] γ [gs ]
∞ s−2

s−1 ζ(s − 1) γ [gs ] = σ [gs ]

• Alternative representations of σ [gs] = γ [gs]

σ [gs ] =
∫ 1

0
ζ2(s, t + 1) dt =

∫ ∞

1
(ζ(s, �t�) − ζ(s, t)) dt ,

σ [gs ] = 1

2
ζ(s)+ s

∫ ∞

1

(
1

2
− {t}

)
ζ(s + 1, t) dt.

• Analogue of Raabe’s formula

∫ x+1

x

ζ2(s, t) dt = ζ(s − 1)− ζ(s − 1, x)

s − 1
, x > 0.

Inequalities and Asymptotic Analysis For any a ≥ 0 and any x > 0, we have

|ζ2(s, x + a)− ζ2(s, x)| ≤ a� ζ(s, x) ,∣∣∣∣ζ2(s, x)− ζ(s − 1)+ ζ(s − 1, x)

s − 1

∣∣∣∣ ≤ ζ(s, x).

In particular, we have

ζ2(s, x) → ζ(s − 1) as x →∞.
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Generalized Liu’s Formula For any x > 0 we have

ζ2(s, x) = ζ(s − 1)− ζ(s − 1, x)

s − 1
− 1

2
ζ(s, x)

+ s

∫ ∞

0

(
{t} − 1

2

)
ζ(s + 1, x + t) dt.

Eulerian and Weierstrassian Forms For any x > 0, we have

ζ2(s, x) = ζ(s − 1)−
∞∑

k=0
ζ(s, x + k).

and this series converges uniformly on R+ and can be integrated and differentiated
term by term.

Gregory’s Formula-Based Series Representation For any x > 0 we have

ζ2(s, x) = ζ(s − 1)− ζ(s − 1, x)

s − 1
−

∞∑
n=0

Gn+1 �n
xζ(s, x)

= ζ(s − 1)− ζ(s − 1, x)

s − 1
−

∞∑
n=0

|Gn+1|
n∑

k=0
(−1)k(n

k

)
ζ(s, x + k) .

Setting x = 1 in this identity yields the analogue of Fontana-Mascheroni series

∞∑
n=0

|Gn+1|
n∑

k=0
(−1)k(n

k

)
ζ(s, k + 1) = s − 2

s − 1
ζ(s − 1) .

Analogue of Wallis’s Product Formula The analogue of Wallis’s formula is

∞∑
k=1

(−1)k−1ζ(s, k) = (2− 21−s)ζ(s)+ (1− 21−s)ζ(s − 1)

− 21−s
∞∑

k=0
ζ

(
s, k + 1

2

)
.

This formula is actually obtained by combining Proposition 6.7 with the duplication
formula for the Hurwitz zeta function

2 ζ(s, 2x) = 21−sζ(s, x)+ 21−sζ

(
s, x + 1

2

)
.
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On the other hand we also have (see Paris [83])

∞∑
k=1

(−1)k−1ζ(s, k) = (1− 2−s) ζ(s), s > 1.

Combining this formula with the analogue of Wallis’s formula, we derive the
following identity

∞∑
k=0

ζ

(
s, k + 1

2

)
= (2s−1 − 2−1) ζ(s)+ (2s−1 − 1) ζ(s − 1).

Taylor Series Expansion We have

(�gs)
(k)(1) = − k! (−s

k

)
ζ(s + k − 1), k ∈ N

∗.

The Taylor series expansion of ζ2(s, x + 1) about x = 0 is

ζ2(s, x + 1) = −
∞∑

k=1

(−s
k

)
ζ(s + k − 1) xk , |x| < 1.

11.3 The PIS of the Generating Function for the Gregory
Coefficients

Let us investigate the function �hp for any p ∈ N
∗, where hp : R+ → R is defined

by the equation

hp(x) = xp

ln(x + 1)
= xp li′(x + 1) for x > 0

and li(x) is the logarithmic integral function defined for all positive real numbers
x �= 1 by the integral

li(x) =
∫ x

0

1

ln t
dt .

Incidentally, when p = 1, this function reduces to the ordinary generating function
for the sequence n �→ Gn. That is,

h1(x) =
∞∑

n=0
Gn xn, |x| < 1.



11.3 The PIS of the Generating Function for the GregoryCoefficients 265

More generally, hp(x) = xp−1h1(x) is the ordinary generating function for the
right-shifted sequence n �→ Gn−p+1, that is the sequence

0, . . . , 0,G0,G1,G2, . . .

with p − 1 leading 0’s.
We also note that the function hp has the following integral representation

hp(x) = xp−1
∫ 1

0
(x + 1)s ds.

This latter representation actually suggests introducing, for anyp ∈ N
∗, the function

gp : R+ → R defined by the equation

gp(x) =
∫ 1

0
(x + 1)s+p−1 ds = x(x + 1)p−1

ln(x + 1)
for x > 0.

The conversion formulas between the h′ps and the g′ps are simply given by the
following equations

gp(x) =
p∑

k=1

(
p−1
k−1
)
hk(x) ,

hp(x) =
p∑

k=1
(−1)p−k

(
p−1
k−1
)
gk(x) .

In particular, we have g1 = h1.
Since the function gp has a nicer integral form than hp , for the sake of simplicity

we will investigate the function �gp for any p ∈ N
∗. By Proposition 5.7, the

function �hp can then be obtained by applying the operator � to both sides of
the second conversion formula above.

Remark 11.2 We observe that the function gp is also the ordinary generating
function for the sequence n �→ ψn(p − 1), where ψn is the nth degree Bernoulli
polynomial of the second kind (see Sect. 12.8). ♦
ID Card It is not difficult to see that both gp and hp lie in C∞ ∩ Dp ∩ K∞ and
hence also in Kp. We also have deg gp = deghp = p − 1.

From the integral form of gp above, we can easily derive the following explicit
form of �gp (after replacing 1− s with s in the integral)

�gp(x) =
∫ 1

0
ζ(s − p, 2) ds −

∫ 1

0
ζ(s − p, x + 1) ds,
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that is,

�gp(x) = τp −
∫ 1

0
ζ(s − p, x + 1) ds ,

with

τp = − 1+
∫ 1

0
ζ(s − p) ds ,

where ζ(s, x) is the Hurwitz zeta function.

Remark 11.3 For any integer n ≥ 2, the harmonic number function of order n is
defined on (−1,∞) by

x �→ H(n)
x = ζ(n)− ζ(n, x + 1),

see, e.g., Srivastava and Choi [93, p. 266]. Extending this definition to noninteger
orders by writing

H(s)
x = ζ(s)− ζ(s, x + 1), s ∈ R \ {1},

we obtain the following very compact integral representation

�gp(x) = − 1+
∫ 1

0
H

(s−p)
x ds , x > 0.

♦
Analogue of Bohr-Mollerup’s Theorem Thus defined, �hp is a log�p-type
function that lies in C∞∩Dp+1∩K∞. This function can be characterized as follows.

All solutions f : R+ → R to the equation �f = hp that lie in Kp are of the form

f (x) = cp +
p∑

k=1
(−1)p−k

(
p−1
k−1
)
�gk(x) ,

where cp ∈ R.

Extended ID Card Let us compute the asymptotic constant associated with the
function gp. We have

σ [gp] =
∫ 1

0
�gp(t + 1) dt = τp −

∫ 1

0

∫ 1

0
ζ(s − p, t + 2) dt ds

= τp +
∫ 1

0

2s+p

s + p
ds .
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Using the change of variable u = 2s+p, we finally obtain

σ [gp] = τp +
∫ 2p+1

2p

1

ln t
dt = τp + li(2p+1)− li(2p).

Now, we have

∫ x

1
gp(t) dt =

∫ 1

0

(x + 1)s+p − 2s+p

s + p
ds

= li((x + 1)p+1)− li((x + 1)p)− li(2p+1)+ li(2p)

and hence the analogue of Raabe’s formula is

∫ x+1

x

�gp(t) dt = τp + li((x + 1)p+1)− li((x + 1)p) , x > 0.

Generalized Stirling’s and Related Formulas When p = 1 For any a ≥ 0, we
have the following limits and asymptotic equivalence as x →∞,

�g1(x + a)− �g1(x)− a
x

ln(x + 1)
→ 0,

�g1(x)− li((x + 1)2)+ li(x + 1)+ x

2 ln(x + 1)
→ τ1 ,

�g1(x + a) ∼ li((x + 1)2)− li(x + 1).

Upon differentiation,

D�g1(x)− x − 1
2

ln(x + 1)
→ 0, Dk+1�g1(x) → 0, k ∈ N

∗,

D�g1(x + a) ∼ x

ln(x + 1)
,

where

D�g1(x) =
∫ 1

0
(s − 1) ζ(s, x + 1) ds.
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Limit and Series Representations When p = 1 The Eulerian and Weierstrassian
forms are

�g1(x) = − g1(x)+ x g1(1)−
∞∑

k=1
(g1(x + k)− g(k)− x �kg1(k))

and

�g1(x) = − g1(x)+ x D�g1(1)−
∞∑

k=1

(
g1(x + k)− g(k)− x g′1(k)

)
,

where

D�g1(1) =
∫ 1

0
(s − 1) ζ(s, 2) ds = 1

2
−
∫ 1

0
s ζ(1− s) ds.

Gregory’s Formula-Based Series Representation When p = 1 Proposition 8.11
provides the following series representation: for any x > 0 we have

�g1(x) = τ1 + li((x + 1)2)− li(x + 1)−
∞∑

n=0
Gn+1 �ng(x)

= τ1 + li((x + 1)2)− li(x + 1)−
∞∑

n=0
|Gn+1|

n∑
k=0

(−1)k(n
k

) x + k

ln(x + k + 1)
.

Setting x = 1 in this identity, we obtain the following analogue of Fontana-
Mascheroni’s series

σ [g1] = τ1 + li(4)− li(2) =
∞∑

n=0
|Gn+1|

n∑
k=0

(−1)k(n
k

) k + 1

ln(k + 2)
.

Analogue of Gauss’ Multiplication Formula For any m ∈ N
∗ and any x > 0, we

have

m−1∑
j=0

�gp

(
x + j

m

)
= m τp −

∫ 1

0

m−1∑
j=0

ζ

(
s − p, x + 1+ j

m

)
ds.

Using the multiplication formula for the Hurwitz zeta function, we then obtain the
following analogue of Gauss’ multiplication formula

m−1∑
j=0

�gp

(
x + j

m

)
= m τp −

∫ 1

0
ms−p ζ(s − p,mx +m) ds.
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Now, using (8.15) we obtain

�x gp

( x

m

)
=

m−1∑
j=0

�gp

(
x + j

m

)
−

m∑
j=1

�gp

(
j

m

)

=
∫ 1

0
ms−p (ζ(s − p,m+ 1)− ζ(s − p, x +m)) ds.

Corollary 8.33 then tells us that the sequences

m �→
∫ 1

0
ms−p−1 (ζ(s − p, 2m)− ζ(s − p,mx +m)) ds

and

m �→
∫ 1

0
ms−p−1 (ζ(s − p,m+ 1)− ζ(s − p,mx +m)) ds

converge to the integrals

∫ x

1
gp(t) dt and

∫ x

0
gp(t) dt ,

respectively.
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Chapter 12
Further Examples

The scope of applications of our theory is very wide since it applies to any function
lying in the domain of the map �. In Chap. 10, we made a thorough study of some
standard special functions. In Chap. 11, we defined and investigated new functions
as principal indefinite sums of known functions. In the present chapter, we briefly
discuss further examples that the reader may want to explore in more detail.

12.1 The Multiple Gamma Functions

The multiple gamma functions introduced in Sect. 5.2 can also be studied through
the sequence of functions G0,G1, . . ., defined by (see Srivastava and Choi [93,
p. 56])

Gp(x) = �p(x)(−1)p−1, p ∈ N.

Equivalently, we have G0(x) = x and

lnGp(x) = � lnGp−1(x) for all p ∈ N
∗.

Clearly, the function lnGp−1(x) lies in C∞∩Dp∩K∞ and we have deg(ln ◦Gp) =
p. Moreover, this sequence of functions can naturally be extended to p = −1 by
defining

G−1(x) = 1+ 1

x
.
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Just as for the gamma function and the Barnes G-function, we can derive the
following asymptotic equivalence: for any a ≥ 0,

Gp(x + a) ∼
p∏

j=0
Gp−j (x)(

a
j) as x →∞,

with equality if a ∈ {0, 1, . . . , p}. We also have the following product representation

Gp(x) = 1

Gp−1(x)

∞∏
k=1

Gp−1(k)

Gp−1(x + k)
Gp−2(k)xGp−3(k)(

x
2) · · · G−1(k)(

x
p)

and the recurrence formula

lnGp(x) = − (x − 1) σ [D ln ◦Gp−1] +
∫ x

1
�D lnGp−1(t) dt.

For example, one can show that

lnG3(x) = − 1

8
x(x − 1)(2x − 5)+ 1

4
x(x − 2) ln(2π)+ (x−12

)
ln�(x)

− 1

2
(2x − 3) ψ−2(x)+ ψ−3(x)− x ψ−3(1).

This latter formula can also be established using the characterization of G3 as a
3-convex solution to the equation �f (x) = lnG2(x).

12.2 The Regularized Incomplete Gamma Function

Consider the 2-variable function Q(x, s) = �(x, s)/�(x) on R
2+, where �(x, s) is

the upper incomplete gamma function. Thus defined, the function Q(x, s) satisfies
the difference equation

Q(x + 1, s)−Q(x, s) = e−ssx

�(x + 1)
.

For any s > 0, we define the function gs : R+ → R by

gs(x) = e−ssx

�(x + 1)
.
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This function lies in C∞∩D−1∩K∞ and has the property that�gs(x) = Q(x, s)−
e−s . We also note that the Eulerian form of Q(x, s) is

Q(x, s) = 1−
∞∑

k=0
gs(x + k) = 1− e−ssx

�(x + 1)

∞∑
k=0

�(x + 1)

�(x + k + 1)
sk

= 1− e−ssx

�(x + 1)

∞∑
k=0

x−k sk ,

where x−k = �(x + 1)/�(x + k + 1) for any k ∈ N.

12.3 The Error Function

Recall that the Gauss error function erf(x) is defined by the equation

erf(x) = 2√
π

∫ x

0
e−t2 dt for x > 0.

To study this function, we could for instance work with the function g(x) =
�erf(x). Instead, let us consider the function g : R+ → R defined by the equation

g(x) = 2√
π

e−x2 for x > 0.

It clearly lies in C∞ ∩ D−1 ∩ K∞. Thus, the Eulerian form of �g is given by the
identity

�g(x) = 2√
π

∞∑
k=0

(e−(k+1)2 − e−(k+x)2).

The generalized Stirling formula yields the following limit

erf(x)+ 2√
π

∞∑
k=0

e−(k+x)2 → 1 as x →∞.

Incidentally, the analogue of Legendre’s duplication formula provides the surprising
identity

∞∑
k=0

(e−(k+1)2 − e−(k+ x
2 )2 − e−(k+ x+1

2 )2 + e−(k+ 1
2 )2 − e−( k+1

2 )2 + e−( k+x
2 )2) = 0.
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12.4 The Exponential Integral

Recall that the exponential integral E1(x) is defined by the equation

E1(x) =
∫ ∞

x

e−t

t
dt for x > 0.

Similarly to the previous example, let us consider the function g : R+ → R defined
by the equation

g(x) = e−x

x
for x > 0.

It lies in C∞ ∩D−1 ∩K∞. Thus, the Eulerian form of �g is given by the identity

�g(x) =
∞∑

k=0

(
e−(k+1)

k + 1
− e−(k+x)

k + x

)
.

The generalized Stirling formula easily provides the following convergence result

E1(x)−
∞∑

k=0

e−(k+x)

k + x
→ 0 as x →∞.

Moreover, the analogue of Raabe’s formula is

∫ x+1

x

�g(t) dt = 1− ln(e − 1)− E1(x), x > 0.

12.5 The Hyperfactorial Function

The hyperfactorial function (or K-function) is the function K : R+ → R+ defined
by the equation lnK = �g, where the function g(x) = x ln x lies in C∞∩D2∩K∞.
Since we also have

g(x) = x +�ψ−2(x)− ψ−2(1),

we immediately derive (see also Example 8.21)

lnK(x) = �g(x) = (
x
2

)+ ψ−2(x)− x ψ−2(1) = (x − 1) ln�(x)− lnG(x).
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Actually, g also corresponds to the special case when (s, q) = (−1, 1) of the
function gs,q investigated in Sect. 10.8. Thus, we also have

�g(x) = ζ ′(−1, x)− ζ ′(−1),

where ζ ′(−1) = 1
12 − lnA. Finally, we note that the integer sequence n �→ K(n) is

the sequence A002109 in the OEIS [90].

12.6 The Hurwitz-Lerch Transcendent

The Hurwitz-Lerch transcendent �(z, s, a) is a generalization of the Hurwitz zeta
function defined as an analytic continuation of the series

∞∑
k=0

zk(a + k)−s

when |z| < 1 and a ∈ C \ (−N) (see, e.g., Srivastava and Choi [93, p. 194]). It
satisfies the difference equation

�(z, s, a + 1)− z−1�(z, s, a) = − z−1a−s .

It follows that the modified function

�(z, s, a) = − za �(z, s, a)

satisfies the difference equation

�(z, s, a + 1)−�(z, s, a) = zaa−s .

Thus, for certain real values of z and s, the restriction to R+ of the map a �→
�(z, s, a) fits the assumptions of our theory. Its investigation is left to the reader.

12.7 The Bernoulli Polynomials

Recall that, for any n ∈ N, the nth degree Bernoulli polynomial Bn(x) is defined by
the equation

Bn(x) =
n∑

k=0

(
n
k

)
Bn−k xk for x ∈ R,



276 12 Further Examples

where Bk is the kth Bernoulli number. This polynomial satisfies the difference
equation

Bn(x + 1)− Bn(x) = n xn−1.

Thus, the function gn : R+ → R defined by the equation gn(x) = n xn−1 for x > 0
lies in C∞ ∩Dn ∩K∞ and has the property that

�gn(x) = Bn(x)− Bn(1),

that is, in view of (10.16)

�gn(x) = nζ(1− n)− nζ(1− n, x) , n ∈ N
∗.

Thus, the nth degree Bernoulli polynomial can be characterized as follows.

All solutions fn : R+ → R to the equation fn(x + 1) − fn(x) = n xn−1 that lie in Kn are
of the form fn(x) = cn + Bn(x), where cn ∈ R.

Using the generalized Webster functional equation (Theorem 8.71), we can also
easily characterize the nth degree Euler polynomial En(x), which is defined by the
equation

En(x) = 2n+1

n+ 1

(
Bn+1

(
x + 1

2

)
− Bn+1

(x

2

))
.

We then obtain the following statement.

All solutions fn : R+ → R to the equation fn(x + 1) + fn(x) = 2 xn that lie in Kn are of
the form fn(x) = cn + En(x), where cn ∈ R.

Finally, we also easily retrieve the multiplication formula:

m−1∑
j=0

Bn

(
x + j

m

)
= 1

mn−1 Bn(x) x > 0.

12.8 The Bernoulli Polynomials of the Second Kind

For any n ∈ N, the nth degree Bernoulli polynomial of the second kind is defined
by the equation

ψn(x) =
∫ x+1

x

(
t
n

)
dt for x > 0.
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In particular, we have ψn(0) = Gn. Also, these polynomials satisfy the difference
equation

ψn+1(x + 1)− ψn+1(x) = ψn(x).

Thus, the function gn : R+ → R defined by the equation gn(x) = ψn(x) for x > 0
lies in C∞ ∩Dn+1 ∩K∞ and has the property that

�gn(x) = ψn+1(x)− ψn+1(1).

Thus, the Bernoulli polynomials of the second kind can be characterized as follows.

All solutions fn : R+ → R to the equation fn(x+ 1)− fn(x) = ψn(x) that lie in Kn+1 are
of the form fn(x) = cn + ψn+1(x), where cn ∈ R.
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Chapter 13
Conclusion

Krull-Webster’s theory offered an elegant extension of Bohr-Mollerup’s theorem
and has proved to be a very nice and useful contribution to the resolution of the
difference equation�f = g on the real half-lineR+. In this book, we have provided
a significant generalization of Krull-Webster’s theory by considerably relaxing
the asymptotic condition imposed on the function g, and we have demonstrated
through various examples how this generalization provides a unified framework to
investigate the properties of many functions. This framework has indeed enabled us
to derive several general formulas that now constitute a powerful toolbox and even
a genuine Swiss Army knife to investigate a large variety of functions.

The key point of this generalization was the discovery of expression (1.4)
for the sequence n �→ f

p
n [g](x) for any p ∈ N. We also observe that our

uniqueness and existence results strongly rely on Lemma 2.7 together with identities
(3.3) and (3.8). These results actually constitute the common core and even the
fundamental cornerstone of all the subsequent formulas that we derived in this
book. For instance, the generalized Stirling formula (6.21) has been obtained almost
miraculously by merely integrating both sides of the inequality given in Lemma 2.7
(see Remark 6.16). Similarly, Gregory’s summation formula (6.33) has been derived
instantly by integrating both sides of identity (3.8), and we have shown how its
remainder can be controlled using Lemma 2.7 again.

Our results clearly shed light on the way many of the classical special functions,
such as the polygamma functions and the higher order derivatives of the Hurwitz
zeta function, can be systematically studied, sometimes by deriving identities and
formulas almost mechanically.

Beyond this systematization aspect, our theory has enabled us to introduce
a number of new important and useful objects. For instance, the map � itself
is a new concept that appears to be as fundamental as the basic antiderivative
operation (cf. Definition 5.4). Both concepts are actually strongly related through,
e.g., Propositions 6.19, 6.20, and 8.18. Other concepts such as the asymptotic
constant and the generalized Binet function also appear to be new fundamental
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objects that merit further study. For instance, it is remarkable that the asymptotic
constant appears not only in the generalized Stirling formula (Theorem 6.13), but
also in many other important formulas, such as the generalized Euler constant
(Proposition 6.36), the Weierstrassian form (Theorem 8.7), the analogue of Raabe’s
formula (Proposition 8.18), the analogue of Gauss’ multiplication formula (Propo-
sition 8.28), the asymptotic expansion (Proposition 8.36), and the generalized Liu
formula (Proposition 8.42).

Our work has also revealed how important and natural are the higher order
convexity properties. Although these properties seem to be still poorly used in math-
ematical analysis, they actually constitute an essential and highly useful ingredient
in the development of our theory and therefore also merit further investigation (see,
e.g., Proposition 4.14 and Remark 4.15).

In conclusion, the results that we have obtained as well as the new concepts that
we have introduced and explored show that this area of investigation is very rich and
intriguing. We have just skimmed the surface, and there are a lot of questions that
emerge naturally. We now list some below.

• Find a simple characterization of the domain of the map � (see Proposition 5.21
and Conjecture 5.23).

• Find necessary and sufficient conditions on the function g to ensure both the
uniqueness and existence of solutions lying in Kp to the equation �f = g (cf.
Webster’s question in Appendix C).

• Find a natural extension of the map � to a larger domain, e.g., a real linear space
of functions that would include not only the current admissible functions but also
every function that has an exponential growth.

• Find a general method to determine a simple or compact expression for the
asymptotic constant σ [g] associated with any function g lying in C0 ∩ dom(�)

(cf. our discussion in Sect. 8.5).
• Find general methods to determine analogues of Euler’s reflection formula (cf.

our discussion on Herglotz’s trick in Sect. 8.9) and Gauss’ digamma theorem for
any multiple log�-type function.

• Find necessary and sufficient conditions on the function g for the function �g to
be of class C∞ or even real analytic.

• Find an extension of our theory to functions of a complex variable. On this
issue, it is noteworthy that a very nice “complex” counterpart of Bohr-Mollerup’s
characterization of the gamma function was established by Wielandt (see, e.g.,
Srinivasan [92] and Srivastava and Choi [93, p. 12] and the references therein).

• Find an extension of our theory by replacing the equation�f = g with the more
general first-order linear difference equation

f (x + 1)− a f (x) = g(x),

where a is a given constant. Consider also linear difference equations of any
order. Partial results along this line can be found, e.g., in John [49, Theorem C].
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Appendix A
Higher Order Convexity Properties

We establish a number of basic facts about higher order convexity and concavity
properties with the aim of proving Lemma 2.6.

Lemma 2.6 is a fundamental element of our theory. It can be derived from more
general results established by Kuczma [61, Chapter 15]. However, this derivation
is not immediate and actually requires considerable attention. In this appendix, we
prove Lemma 2.6 almost from scratch and using elementary means only.

Let I be an arbitrary nonempty open real interval. We first observe that for any
functions f, g : I → R and any system x0 < x1 < · · · < xn of n + 1 points in I ,
we have

(f + g)[x0, x1, . . . , xn] = f [x0, x1, . . . , xn] + g[x0, x1, . . . , xn].

Moreover, for any c ∈ R, if the function h : I − c → R is defined by the equation
h(x) = f (x + c) for x ∈ I − c, then

h[x0, x1, . . . , xn] = f [x0 + c, x1 + c, . . . , xn + c].

These properties are immediate consequences of identity (2.4).
We now present a proposition and an immediate corollary. Let �[h] denote the

forward difference operator with step h.

Proposition A.1 For any n ∈ N, any system x0 < x1 < · · · < xn of n+ 1 points in
I , any function f : I → R, and any h ∈ R \ {0} such that x0 + h, xn + h ∈ I , we
have

1

h
(�[h]f )[x0, x1, . . . , xn] =

n∑
k=0

f [x0, . . . , xk, xk + h, . . . , xn + h].
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Proof Using a telescoping sum, we obtain

1

h
(�[h]f )[x0, x1, . . . , xn] = 1

h
(f [x0 + h, x1 + h, . . . , xn + h] − f [x0, x1, . . . , xn])

= 1

h

n∑
k=0

(
f [x0, . . . , xk + h, xk+1 + h, . . . , xn + h]

− f [x0, . . . , xk, xk+1 + h, . . . , xn + h]).
We then conclude the proof using the recurrence relation (2.3). ��
Corollary A.2 Let f lie in Kp

+(I) for some p ∈ N and let h ∈ R \ {0}. If the

function 1
h

�[h]f is defined on I , then it lies in Kp−1
+ (I).

We can now readily see that Lemma 2.6(b) is an immediate consequence of
Corollary A.2 (just take h = 1).

The next result establishes Lemma 2.6(c). Let us first observe that a pointwise
limit of functions lying in Kp

+(I) also lies in Kp
+(I). This fact can be proved

straightforwardly using identity (2.4).

Corollary A.3 If f : I → R is differentiable and lies in Kp
+(I) for some p ∈ N,

then the derivative f ′ lies in Kp−1
+ (I).

Proof It is clear that the derivative f ′ is the pointwise limit of the sequence n �→ fn,
where, for each n ∈ N

∗, the function fn : I → R is defined by the equation

fn = n�[1/n]f for n ∈ N
∗.

We then conclude the proof using Corollary A.2. ��
We now have the following corollary, which follows from Proposition 2.1. It

immediately establishes Lemma 2.6(d).

Corollary A.4 If f : I → R is differentiable and f ′ lies in Kp−1
+ (I) for some

p ∈ N, then f lies in Kp
+(I).

Proof This result is an immediate consequence of Proposition 2.1 (just use identity
(2.7) with n = p + 1). ��

It remains to establish Lemma 2.6(a). To this end, we present the following
technical lemma, which provides a test for differentiability of real functions on I .

Lemma A.5 Let n ∈ N, let a, x1, . . . , xn be n+ 1 pairwise distinct points in I and
let f : I → R. If the limit

lim
h→0

f [a, a + h, x1, . . . , xn]

exists and is finite, then f is differentiable at a.
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Proof This result can be easily proved by induction on n using the recurrence
relation (2.3). To simplify the computations, let us consider the first two cases only.
For n = 0, we have trivially

lim
h→0

f [a, a + h] = lim
h→0

f (a + h)− f (a)

h

and f is clearly differentiable at a if this limit exists and is finite. For n = 1, we get

f [a, a + h, x1] = f [a, x1] − f [a, a + h]
x1 − a − h

and hence

lim
h→0

f [a, a + h] = f [a, x1] − lim
h→0

(x1 − a − h) f [a, a + h, x1]

and this limit is finite if so is the right-hand limit. The induction process is now
clear. ��

We now have the following proposition.

Proposition A.6 If f lies in Kp
+(I) for some integer p ≥ 2, then f is differentiable

on I .

Proof Let a ∈ I and let J be a compact subinterval of I whose interior contains a.
Let Ip+1 denote the set of tuples of Ip+1 whose components are pairwise distinct.
By Lemma 2.5, the restriction of the map

(z0, . . . , zp) �→ f [z0, . . . , zp]

to Ip+1 is increasing in each place, hence this map is bounded on Ip+1 ∩ Jp+1.
Let x1, . . . , xp−2 be p − 2 pairwise distinct points in J , and distinct from a, and

let h1, h2 be sufficiently small distinct nonzero real numbers such that a+h1, a+h2
lie in J . Using (2.3), we get

f [a, a + h1, a + h2, x1, . . . , xp−2]

= f [a, a + h2, x1, . . . , xp−2] − f [a, a + h1, x1, . . . , xp−2]
h2 − h2

Thus, there exists CJ > 0 such that

∣∣f [a, a + h2, x1, . . . , xp−2] − f [a, a + h1, x1, . . . , xp−2]
∣∣ ≤ CJ |h2 − h1|.
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It follows that for any sequence n �→ hn converging to zero, the sequence

n �→ f [a, a + hn, x1, . . . , xp−2]

is a Cauchy sequence whose limit does not depend on the sequence n �→ hn.
Therefore, the limit

lim
h→0

f [a, a + h, x1, . . . , xp−2]

exists and is finite. By Lemma A.5, f is differentiable at a. ��
We are now in a position to prove Lemma 2.6(a).

Proposition A.7 If f lies in Kp+1
+ (I) for some p ∈ N, then f lies in Cp(I).

Proof We proceed by induction on p. The case when p = 0 is folklore and can
be found, e.g., in Artin [11, Theorem 1.5]. Suppose that the result holds for some
p ∈ N and let us show that it still holds for p + 1. Let f lie in Kp+2

+ (I). By

Proposition A.6 and Corollary A.3, f is differentiable on I and f ′ lies in Kp+1
+ (I).

Using our induction hypothesis, we see that f ′ lies in Cp(I), and hence f lies in
Cp+1(I). ��

Let us end this study with an interesting generalization of Lemma 2.5. It is an
immediate corollary of the following proposition.

Proposition A.8 Let n,m ∈ N, let x0, . . . , xn−1, y0, . . . , ym be n+m+1 pairwise
distinct points in I , let f : I → R, and let g : I \ {x0, . . . , xn−1} → R be defined by
the equation

g(x) = f [x0, . . . , xn−1, x] for x ∈ I \ {x0, . . . , xn−1}.

Then we have

g[y0, . . . , ym] = f [x0, . . . , xn−1, y0, . . . , ym].

Proof This result can be easily proved by induction on m for any fixed value of n,
simply by using the recurrence relation (2.3). To simplify the computations, let us
consider the first two cases only. For m = 0, we have trivially

g[y0] = g(y0) = f [x0, . . . , xn−1, y0].
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For m = 1, we have

g[y0, y1] = g(y1)− g(y0)

y1 − y0
= f [x0, . . . , xn−1, y1] − f [x0, . . . , xn−1, y0]

y1 − y0

= f [x0, . . . , xn−1, y0, y1].

The induction process is now obvious. ��
Corollary A.9 Let j, p ∈ N, with j ≤ p, and let Ij+1 denote the set of tuples of
I j+1 whose components are pairwise distinct. A function f : I → R lies in Kp

+(I)

if and only if the restriction of the map

(z0, . . . , zj ) �→ f [z0, . . . , zj ]

to Ij+1 is (p − j)-convex in each place.



Appendix B
On Krull-Webster’s Asymptotic
Condition

We show that our uniqueness and existence results fully generalize a recent attempt
by Rassias and Trif [86] to solve the particular case when p = 2.

Recall that the original asymptotic condition imposed by Krull and Webster on
the function g is that, for each x > 0,

g(x + t)− g(t) → 0 as t →∞;

see Eq. (1.2). Using our notation, this means that the function g lies in R1
R
.

Geometrically, this condition also means that the chord to the graph of g on any fixed
length interval has an asymptotic zero slope. Only fixed length intervals whose left
endpoints are integers are to be considered if the condition reduces to requiring that
g ∈ R1

N
. The restriction of our uniqueness and existence results to the case when

p = 1 shows that this condition can actually be relaxed into g ∈ D1
N
, which means

that the chord to the graph of g on any interval of the form [n, n + 1], n ∈ N
∗, has

an asymptotic zero slope. The function g(x) = ln x is a typical example that shows,
just as does every function whose derivative vanishes at infinity, that those functions
need not behave asymptotically like constant functions.

It remains, however, that Krull-Webster’s asymptotic condition is rather restric-
tive. As already mentioned in Chap. 1, this condition is not satisfied by the functions
g(x) = x ln x and g(x) = ln�(x). To overcome this restriction, Rassias and Trif
[86] proposed a modification of Webster’s results by considering solutions lying in
K2 and replacing the asymptotic conditionwith a more appropriate one. Specifically,
they considered any function g : R+ → R for which there exists a number a > 0
such that

lim
t→∞ g(x + t)− g(t) − x ln t = x ln a, for all x > 0. (B.1)
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It turns out that both functions g(x) = x ln x and g(x) = ln�(x) satisfy this
alternative condition. However, the identity function g(x) = x does not.

Let us now show that our asymptotic condition that g ∈ D2
R
generalizes not only

Rassias and Trif’s (B.1) but also many other similar conditions.

Proposition B.1 Let ϕ : R+ → R and suppose that g : R+ → R has the property
that, for each x > 0,

g(x + t)− g(t)− x ϕ(t) → 0 as t →∞.

Then g lies in R2
R
⊂ D2

R
. In particular, R2

R
contains all the functions that satisfy

Rassias and Trif’s condition.

Proof For any t > 0 and any g : R+ → R, define the function ρ
ϕ
t [g] : [0,∞)→ R

by the equation

ρ
ϕ
t [g](x) = g(x + t)− g(t) − x ϕ(t) for x > 0.

Let also Rϕ
R
be the set of functions g : R+ → R with the property that, for each

x > 0, ρϕ
t [g](x)→ 0 as t →∞. Then we immediately see that

ρ2
t [g](x) = ρ

ϕ
t [g](x)− xρ

ϕ
t [g](1),

which shows that Rϕ

R
⊆ R2

R
. Now, if g satisfies Rassias and Trif’s condition, then

it lies in the set ∪a>0Rϕa

R
, where ϕa(x) = ln(ax), and hence it also lies inR2

R
. ��

Proposition B.1 can be generalized toRp

R
for any value of p ≥ 2 as follows.

Proposition B.2 Let p ≥ 2 be an integer, let ϕ1, . . . , ϕp−1 : R+ → R, and suppose
that g : R+ → R has the property that, for each x > 0,

g(x + t)− g(t) −
p−1∑
j=1

(
x
j

)
ϕj (t) → 0 as t →∞.

Then g lies in Rp

R
⊂ Dp

R
.

Proof For any t > 0 and any g : R+ → R, define the function ρ
ϕ
t [g] : [0,∞)→ R

by the equation

ρ
ϕ
t [g](x) = g(x + t)− g(t) −

p−1∑
j=1

(
x
j

)
ϕj (t).
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Define also the functions ψ
ϕ,1
t [g], . . . , ψϕ,p

t [g] : [0,∞) → R recursively by the
equations ψ

ϕ,1
t [g] = ρ

ϕ
t [g] and

ψ
ϕ,j+1
t [g] = ψ

ϕ,j
t [g] − (x

j

)
ψ

ϕ,j
t [g](j), j = 1, . . . , p − 1.

Then, it is not difficult to see that

ψ
ϕ,j
t [g](x) = ρ

ϕ
t [g](x)−

j−1∑
i=1

(
x
i

)
(�ig(t)− ϕi(t))

and hence ψ
ϕ,p
t [g] = ρ

p
t [g]. Thus, if the function g : R+ → R has the property

that, for each x > 0, ρϕ
t [g](x)→ 0 as t →∞, then it lies in Rp

R
. ��



Appendix C
On a Question Raised by Webster

We discuss conditions on the function g to ensure both the uniqueness (up to an
additive constant) and existence of solutions to the equation �f = g that lie in Kp .

A natural question raised by Webster [98, p. 606], and that we now extend to any
value of p ∈ N, is the following.

Find necessary and sufficient conditions on the function g : R+ → R to ensure both the
uniqueness (up to an additive constant) and existence of solutions lying in Kp

+ (resp. Kp
−)

to the equation �f = g.

Lemma 2.6(b) shows that a necessary condition for this to occur is that g ∈ Kp−1
+

(resp. g ∈ Kp−1
− ). Also, our uniqueness and existence results show that a sufficient

condition is that g ∈ Dp∩Kp
− (resp. g ∈ Dp∩Kp

+). It is tempting to believe that this
latter condition is also necessary. The following two examples support this idea.

(a) Both functions

ln�(x) and ln�(x)+ ln
(
1+ 1

2 sin(2πx)
)

are solutions to the equation �f = g that lie in K0+, where g(x) = ln x does
not lie in D0 ∪K0− (see Example 3.2).

(b) Both functions

2x and 2x + sin(2πx)

are solutions to the equation �f = g that lie in Kp
+ for any p ∈ N, where

g(x) = 2x does not lie in Dp ∪Kp
−.

Nevertheless, the following proposition shows that in general the condition above is
not necessary.
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Proposition C.1 There exists a function f ∈ C0 ∩K0 such that

(a) �f does not lie in D0 ∪K0, and
(b) for any function ϕ ∈ K0 satisfying �ϕ = �f we have that f − ϕ is constant.

Proof Let f ∈ K0+ be the function whose graph is the polygonal line through the
points (4n, 4n) and (4n+2, 4n+4) for all n ∈ N. Thus the sequence n �→ �f (n) is
the 4-periodic sequence 2, 0, 0, 2, 2, 0, 0, 2, . . . and hence condition (a) holds. Now,
let ϕ ∈ K0 be such that �ϕ = �f . Clearly, we must have ϕ ∈ K0+. For the sake
of a contradiction, suppose that the 1-periodic function ω = f − ϕ is not constant.
That is, there exist 0 < x < y ≤ 1 such that ω(x) �= ω(y). There are two exclusive
cases to consider.

(a) Suppose that ω(x) < ω(y). For large integer n, we then have

0 ≤ ϕ(y + 4n+ 2)− ϕ(x + 4n+ 2) = ω(x)− ω(y) < 0.

(b) Suppose that ω(x) > ω(y). For large integer n, we then have

0 ≤ ϕ(x + 4n+ 3)− ϕ(y + 4n+ 2) = ω(y)− ω(x) < 0.

In both cases we reach a contradiction, and hence condition (b) holds. ��
We note that the function f arising from Proposition C.1 is such that g = �f

does not lie inD0∪K0. The following proposition shows that if the equation�f = g

has a unique solution (up to an additive constant) and if g ∈ Kp for some p ∈ N,
then necessarily g ∈ Dp ∩Kp (see also Corollary 4.18).

Proposition C.2 Let g : R+ → R and p ∈ N, and suppose that the sequence
n �→ �pg(n) is eventually decreasing. Suppose also that there exists a unique (up
to an additive constant) function f ∈ Kp

+ satisfying the equation �f = g. Then g

lies in Dp

N
.

Proof For the sake of a contradiction, suppose that the assumptions are satisfied
and that the sequence n �→ �pg(n) does not approach zero. Since this sequence is
eventually nonnegative (because we eventually have �pg = �p+1f ≥ 0), it must
converge to a value C > 0. It follows that the function g̃(x) = g(x)− C

(
x
p

)
lies in

Dp ∩Kp
− and hence �g̃ lies in Kp

+. Now, for any 0 < τ < C/(2π)p, the functions

f (x) = �g̃(x)+ C
(

x
p+1
)
,

ϕ(x) = �g̃(x)+ C
(

x
p+1
)+ τ sin(2πx),

lie in Kp
+ by Lemma 2.6(d); indeed, we have

Dp+1(C
(

x
p+1
)+ τ sin(2πx)) ≥ C − τ (2π)p > 0.
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Moreover, these functions are solutions to the equation �f = g and satisfy ϕ(1) =
f (1). This contradicts the uniqueness assumption. ��
Remark C.3 We observe that if f and ϕ are solutions to �f = g, then for any
x > 0 and any p ∈ N

∗, we have �pf (x) ≥ 0 if and only if �pϕ(x) ≥ 0. Indeed,
suppose on the contrary that �pf (x) ≥ 0 and �pϕ(x) < 0 for some x > 0. Then

0 ≤ �pf (x) = �p−1g(x) = �pϕ(x) < 0,

a contradiction. ♦
Thus, Webster’s question still remains a very interesting open problem whose

solution would certainly shed light on the theory developed in this book.
Regarding uniqueness issues only, the following two results (John [49]) are also

worth mentioning. Generalizations of these results to higher convexity properties
would be welcome.

Proposition C.4 (See [49]) Let g : R+ → R have the property that

inf
x∈R+

g(x) = 0.

Then there is at most one (up to an additive constant) solution f to the equation
�f = g that is increasing.

Proposition C.5 (See [49]) Let g : R+ → R have the property that

lim inf
x→∞

g(x)

x
= 0.

Then there is at most one (up to an additive constant) solution f to the equation
�f = g that is convex.



Appendix D
Asymptotic Behaviors and Bracketing

We show that by considering higher and higher values of p in Corollary 6.12 we
obtain closer and closer bounds for the generalized Binet function Jp+1[�g].

We have seen in Example 6.15 that the inequalities

(
1+ 1

x

)− 1
2 ≤ �(x)√

2π e−x xx− 1
2

≤
(
1+ 1

x

) 1
2

hold for any x > 0 and that tighter inequalities can also be obtained by using
different values of the integer p ≥ 1 in Corollary 6.12. In this appendix we show
that and how this feature applies in general to multiple log�-type functions.

Let g lie in C0 ∩ Dp ∩ Kp , where p = 1 + degp. By Corollary 6.12, for any
x > 0 such that g is p-convex or p-concave on [x,∞) we have the inequalities

−Gp

∣∣�pg(x)
∣∣ ≤ Jp+1[�g](x) ≤ Gp

∣∣�pg(x)
∣∣ .

Let us now show how tighter inequalities can be obtained. For any r ∈ N,
define the functions αr [�g] : R+ → R and βr [�g] : R+ → R respectively by
the equations

αr [�g](x) = −Gp+r

∣∣�p+rg(x)
∣∣−

p+r∑
j=p+1

Gj�
j−1g(x) ,

βr [�g](x) = Gp+r

∣∣�p+rg(x)
∣∣−

p+r∑
j=p+1

Gj�
j−1g(x) ,

for x > 0.
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We immediately see that the equality

αr [�g](x) = βr [�g](x)

holds if and only if �p+rg(x) = 0. Moreover, by Corollary 6.12, if g ∈ Kp+r and
if x > 0 is so that g is (p + r)-convex or (p + r)-concave on [x,∞), then the
following inequalities hold:

αr [�g](x) ≤ Jp+1[�g](x) ≤ βr [�g](x).

The following proposition shows that these inequalities get tighter and tighter as the
value of r increases.

Proposition D.1 Let g lie in C0 ∩ Dp ∩ Kp+r+1 for some r ∈ N, where p =
1+ degg. Let x > 0 be so that g|[x,∞) lies in

Kp+r ([x,∞)) ∩Kp+r+1([x,∞)).

Then, we have

αr [�g](x) ≤ αr+1[�g](x) ≤ βr+1[�g](x) ≤ βr [�g](x).

These inequalities are strict if �p+rg(x + 1) �= 0.

Proof We already know that the central inequality holds. Now, using Corol-
lary 4.19, we can assume that g is (p + r)-convex and (p + r + 1)-concave on
[x,∞); the other case can be dealt with similarly. By Lemma 2.5, it follows that
�p+rg ≤ 0 and �p+r+1g ≥ 0 on [x,∞). Let us show that the first inequality
holds; the third one can be established similarly.

We have two exclusive cases to consider.

• If Gp+r+1 < 0, then

�r αr [�g](x) = −Gp+r+1
(
�p+r+1g(x)+�p+rg(x)

)

= −Gp+r+1�p+rg(x + 1).

• If Gp+r+1 > 0, then

�r αr [�g](x) = −Gp+r�
p+rg(x+1)+Gp+r+1

(
�p+r+1g(x)−�p+rg(x)

)
.

In both cases, we can see that �r αr [�g](x) ≥ 0. Moreover, we have�r αr [�g](x)

> 0 if �p+rg(x + 1) �= 0. ��
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It is natural to wonder how the inequalities in Proposition D.1 behave as
r →N ∞. The following proposition, which is a reformulation of Proposition 8.11,
answers this question and provides a series representation for Jp+1[�g].
Proposition D.2 Let g lie in C0 ∩Dp ∩K∞, where p = 1+ degg. Let x > 0 be so
that for every integer q ≥ p the function g is q-convex or q-concave on [x,∞).
Suppose also that the sequence q �→ �qg(x) is bounded. Then the following
assertions hold.

(a) The sequence q �→ βq [�g](x)− αq [�g](x) converges to zero.
(b) The sequence n �→ Gn�

n−1g(x) is summable.
(c) We have

�g(x) = σ [g] +
∫ x

1
g(t)dt −

∞∑
j=1

Gj�
j−1g(x).

Equivalently,

Jp+1[�g](x) = −
∞∑

j=p+1
Gj�

j−1g(x).



Appendix E
Generalized Webster’s Inequality

Webster [98] provided bounds for ρ
p+1
x [�g](a) in the special case when p = 1. We

generalize Webster’s bounds to any integer p ∈ N and use integration to provide
new bounds for Jp+1[�g](x) that are tighter than those given in Theorem 6.11.

As we mentioned in Sect. 6.4, one can show that if g lies in D1 ∩ K1 and if
x > 0 and a > 0 are so that g is concave on [x + a,∞), then the following double
inequality holds

�a�∑
k=0

g(x + k)+ ({a} − 1) g(x + a)− a g(x) ≤ ρ2
x [�g](a)

≤
�a�∑
k=0

g(x + k)− g(x + a)+ {a} g(x + �a� + 1)− a g(x).

This result was proved in the multiplicative notation by Webster [98, Eq. (6.4)] to
establish the limit (6.4) in the case when p = 1. In the following proposition, we
generalize this inequality to any value of p ∈ N. We call it the generalized Webster
inequality.

Proposition E.1 (Generalized Webster’s Inequality) Let f : R+ → R and
g : R+ → R be functions such that �f = g on R+. Let also x > 0 and a ≥ 0. The
following assertions hold.
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(a) If f is monotone on [x + a,∞), then

0 ≤ ±
(
ρ1

x [f ](a)+ g(x + a)−
�a�∑
k=0

g(x + k)
)
≤ ± g(x + �a� + 1),

where ± stands for 1 or −1 according to whether f lies in K0+ or K0−.
(b) If f is p-convex or p-concave on [x + a,∞) for some p ∈ N

∗, then

0 ≤ ± εp+1({a}) ρ
p+1
x+�a�+1[f ]({a})

≤ ± εp+1({a}) {a}
p

ρ
p

x+�a�+1[g]({a} − 1),

where εp+1({a}) = 0, if a ∈ N, and εp+1({a}) = (−1)p, otherwise, and ±
stands for 1 or −1 according to whether f lies in Kp

+ or Kp
−. Moreover, we

have

ρ
p+1
x+�a�+1[f ]({a}) = ρ

p+1
x [f ](a)+ g(x + a)

+
p∑

j=1

((
a
j

)− ({a}
j

))
�j−1g(x)−

p∑
j=0

({a}
j

) �a�∑
k=0

�jg(x + k).

Proof Let us first prove assertion (a). Using monotonicity of f , we get

± f (x + �a� + 1) ≤ ± f (x + a + 1) ≤ ± f (x + �a� + 2),

or equivalently, using (3.2),

±
(
f (x)+

�a�∑
k=0

g(x + k)
)
≤ ± (f (x + a)+ g(x + a))

≤ ±
(
f (x)+

�a�+1∑
k=0

g(x + k)
)
.

This proves assertion (a). Let us now prove assertion (b). The first inequality
immediately follows from Lemma 2.7. To see that the second inequality holds, we
first observe that

{a}p+1 f [x + �a� + 1, . . . , x + �a� + p, x + a, x + a + 1]
= ({a} − p) {a}p f [x + �a� + 1, . . . , x + �a� + p, x + a + 1]
− {a} ({a} − 1)p f [x + �a� + 1, . . . , x + �a� + p, x + a] (by (2.3))
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= ({a} − p) ρ
p
x+�a�+1[f ]({a})− {a} ρp

x+�a�+1[f ]({a} − 1) (by (2.12))

= {a} ρp−1
x+�a�+1[g]({a} − 1)− p ρ

p

x+�a�+1[f ]({a}) (by (4.3))

= {a} ρp

x+�a�+1[g]({a} − 1)− p
({a}

p

)
�pf (x + �a� + 1)

− p ρ
p

x+�a�+1[f ]({a}) (by (1.7))

= {a} ρp
x+�a�+1[g]({a} − 1)− p ρ

p+1
x+�a�+1[f ]({a}) (by (1.7))

Now, since f is p-convex or p-concave on [x + a,∞), we have

0 ≤ ± εp+1({a}) {a}p+1 f [x + �a� + 1, . . . , x + �a� + p, x + a, x + a + 1],

and hence

0 ≤ ± εp+1({a})
({a}

p
ρ

p

x+�a�+1[g]({a} − 1)− ρ
p+1
x+�a�+1[f ]({a})

)
.

This proves the second inequality. Finally, using (1.7) and then (3.2) we obtain

ρ
p+1
x+�a�+1[f ]({a})− ρ

p+1
x [f ](a)

= f (x + a + 1)−
p∑

j=0

({a}
j

)
�jf (x + �a� + 1)− f (x + a)+

p∑
j=0

(
a
j

)
�jf (x)

= g(x + a)+
p∑

j=1

((
a
j

)− ({a}
j

))
�jf (x)−

p∑
j=0

({a}
j

) �a�∑
k=0

�jg(x + k).

This completes the proof. ��
The generalized Webster inequality applies to multiple log�-type functions

simply by taking f = �g in Proposition E.1, provided that g lies in Dp ∩ Kp for
some p ∈ N. This inequality then provides bounds for the quantity ρ

p+1
x [�g](a).

We now show how narrow bounds for Jp+1[�g](x) can be derived by “inte-
grating” the generalized Webster inequality. We also show that these new bounds
are narrower than the generalized Stirling’s formula-based inequalities given in
Theorem 6.11 and Corollary 6.12.

Let us begin with the special case when p = 0. Thus, let g lie in C0∩D0∩K0 and
let x > 0 be so that g is monotone on [x,∞). Corollary 6.12 provides the following
bounds for J 1[�g](x)

−|g(x)| ≤ J 1[�g](x) ≤ |g(x)|.



304 E Generalized Webster’s Inequality

The following proposition provides a finer approximation of J 1[�g](x), where the
absolute error is bounded at x by |g(x + 1)|.
Proposition E.2 Let g lie in C0 ∩D0 ∩K0 and let x > 0 be so that g is monotone
on [x,∞). Then we have

0 ≤ ±
(
g(x)−

∫ 1

0
g(x + t) dt

)
≤ ± (−1) J 1[�g](x)

≤ ±
(
g(x)+ g(x + 1)−

∫ 1

0
g(x + t) dt

)
≤ ± g(x),

where ± stands for 1 or −1 according to whether �g lies in K0+ or K0−.

Proof Negating g is necessary, we can assume that it lies in K0−, which means
that �g lies in K0+. This immediately establishes the first and the last inequalities.
The two inner inequalities can then be obtained by integrating the expressions in
assertion (a) of Proposition E.1 on a ∈ (0, 1). ��
Example E.3 Let us apply Proposition E.2 to g(x) = 1

x
. For any x > 0, we have

the following inequalities

ln x − 1

x
≤ ln(x + 1)− 1

x
− 1

x + 1
≤ ψ(x) ≤ ln(x + 1)− 1

x
≤ ln x.

The inner approximation has an absolute error that is bounded at any x > 0 by the
quantity 1

x+1 . ♦

Let us now assume that p ≥ 1. Thus, let g lie in C0 ∩Dp ∩Kp for some p ∈ N
∗

and let x > 0 be so that g is p-convex or p-concave on [x,∞). Then we have seen
in Theorem 6.11 that the following inequalities hold

0 ≤ ± (−1)pJ p+1[�g](x) ≤ ± (−1)p+1 Bp[g](x),

where± stands for 1 or −1 according to whether g lies in Kp
+ or in Kp

−, and

Bp[g](x) =
∫ 1

0

(
t−1
p

)
(�p−1g(x + t)−�p−1g(x)) dt

=
∫ 1

0

(
t−1
p

)
�p−1g(x + t) dt − (−1)p Gp �p−1g(x).
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In the following proposition, we give finer bounds for Jp+1[�g](x). To this end,
we introduce the quantity

Ap[g](x) = Jp+1[g](x)+ 1

p

∫ 1

0
t ρ

p

x+1[g](t − 1) dt.

It is not difficult to see that this quantity can be rewritten as follows

Ap[g](x) = Jp+1[g](x)+ 1

p

∫ 1

0
t g(x + t) dt − 1

p

p∑
j=1

jGj �j−1g(x + 1).

Indeed, using (1.7) we clearly have

∫ 1

0
t ρ

p
x+1[g](t − 1) dt =

∫ 1

0
t g(x + t) dt −

p−1∑
j=0

∫ 1

0
t
(
t−1
j

)
dt �jg(x + 1)

where

∫ 1

0
t
(
t−1
j

)
dt = (j + 1)

∫ 1

0

(
t

j+1
)
dt = (j + 1) Gj+1.

We also observe that A1[g] = B1[g].
Proposition E.4 Let g lie in C0 ∩ Dp ∩ Kp for some p ∈ N

∗ and let x > 0 be so
that g is p-convex or p-concave on [x,∞). Then, we have

0 ≤ ± (−1)p+1 Jp+1[g](x) ≤ ±(−1)pJ p+1[�g](x)

≤ ±(−1)p+1 Ap[g](x) ≤ ± (−1)p+1 Bp[g](x),

where ± stands for 1 or −1 according to whether g lies in Kp
+ or in Kp

− .

Proof Recall that if g lies inKp
+ (resp.Kp

−), then�g lies inKp
− (resp.Kp

+). The first
inequality is then clear. The second and third inequalities are obtained by integrating
the expressions in assertion (b) of Proposition E.1 on a ∈ (0, 1). To establish the
fourth inequality, we first prove the following claim.

Claim For any g ∈ R+ → R, any p ∈ N
∗, any x > 0, and any 0 < t < 1, we have

(
t−1
p

)
(�p−1g(x + t)−�p−1g(x))+ ρ

p+1
x [g](t)− t

p
ρ

p

x+1[g](t − 1)

= 1

p
tp+1

p−1∑
j=1

g[x + j, . . . , x + p − 1︸ ︷︷ ︸
p − j places

, x + t, . . . , x + t + j︸ ︷︷ ︸
j + 1 places

].



306 E Generalized Webster’s Inequality

Proof of the Claim Using (1.7), it is easy to see that the claimed identity holds
when p = 1, in which case the right-hand side is identically zero. Hence, we can
assume that p ≥ 2. Using (2.3), we then obtain

1

p
tp+1

p−1∑
j=1

g[x + j, . . . , x + p − 1, x + t, . . . , x + t + j ]

= 1

p

tp+1

t

p−1∑
j=1

(
g[x + j + 1, . . . , x + p − 1, x + t, . . . , x + t + j ]

− g[x + j, . . . , x + p − 1, x + t, . . . , x + t + j − 1]),
where the latter sum telescopes to

g[x + t, . . . , x + t + p − 1] − g[x + 1, . . . , x + p − 1, x + t].

Thus, using (2.12) we see that the right-hand side of the claimed identity reduces to

(
t−1
p

)
�p−1g(x + t)− t − p

p
ρ

p−1
x+1 [g](t − 1)

Now, subtracting the left-hand side of the claimed identity from this latter expres-
sion, we get

p − t

p
ρ

p−1
x+1 [g](t − 1)+ t

p
ρ

p
x+1[g](t − 1)− ρ

p+1
x [g](t)+ (t−1

p

)
�p−1g(x).

Using identities (1.7), (3.5), and the trivial identity t
p

(
t−1
p−1
) = ( t

p

)
, it follows that the

latter expression becomes

−( t
p

)
�p−1g(x + 1)+

p∑
j=0

(
t
j

)
�jg(x)−

p−2∑
j=0

(
t−1
j

)
�jg(x + 1)+ (t−1

p

)
�p−1g(x).

Substituting g(x)+�g(x) for g(x + 1) in this latter expression, we obtain

−
((

t
p

)
�p−1g(x)+ ( t

p

)
�pg(x)

)
+
⎛
⎝( t

p

)
�pg(x)+ ( t

p−1
)
�p−1g(x)+

p−2∑
j=0

(
t
j

)
�jg(x)

⎞
⎠

−
⎛
⎝

p−2∑
j=0

(
t−1
j

)
�jg(x)+

p−2∑
j=0

(
t−1
j

)
�j+1g(x)

⎞
⎠+ (t−1

p

)
�p−1g(x).
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Collecting terms, this latter expression reduces to

(
t

p−1
)
�p−1g(x)−( t−1

p−1
)
�p−1g(x)+

p−2∑
j=1

((
t
j

)− (t−1
j

))
�jg(x)−

p−1∑
j=1

(
t−1
j−1
)
�jg(x)

= (
t−1
p−2
)
�p−1g(x)+

p−2∑
j=1

(
t−1
j−1
)
�jg(x) −

p−1∑
j=1

(
t−1
j−1
)
�jg(x) = 0.

This completes the proof of the claim. ��
Let us now establish the fourth inequality. Negating g if necessary, we can

assume that it lies in Kp
−. Using the claim, we have immediately that

Bp[g](x)−Ap[g](x) =
p−1∑
j=1

∫ 1

0

tp+1

p
g[x+j, . . . , x+p−1, x+t, . . . , x+t+j ] dt,

where the divided difference of g has p+ 1 arguments and is therefore nonnegative
since g is (p − 1)-convex by Corollary 4.19. This completes the proof. ��
Example E.5 (The Gamma Function) Let us apply Proposition E.4 to the function
g(x) = ln x with p = 1 (recall here that A1[g] = B1[g]). We obtain the following
inequalities for x > 0

0 ≤ 1

2
(2x + 1) ln

(
1+ 1

x

)
− 1 ≤ J (x) ≤ 1

2
(x + 1)2 ln

(
1+ 1

x

)
− x

2
− 3

4
.

This provides an approximation of Binet’s function J (x) with an absolute error that
is bounded at any x > 0 by

x2

2
ln

(
1+ 1

x

)
− x

2
+ 1

4
,

that is, 1
6x − 1

8x2
+O(x−3) as x →∞. In the multiplicative notation, we obtain

1 ≤ e−1
(
1+ 1

x

)x+ 1
2 ≤ �(x)√

2π e−x xx− 1
2

≤ e−
x
2− 3

4

(
1+ 1

x

) 1
2 (x+1)2

,

thus retrieving (6.28). In turn, these inequalities provide an approximation of the
log-gamma function with the same absolute error. ♦
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Example E.6 (The Barnes G-Function, see Sect. 10.5) Let us apply Proposition E.4
to the function g(x) = ln�(x) with p = 2. After some calculus we obtain the
following inequalities for x > 0

0 ≤ ln�(x)+ x −
(

x − 1

2

)
ln x − 1

12
ln

(
1+ 1

x

)
− 1

2
ln(2π)

≤ − lnG(x)+ ψ−2(x)− 1

2
ln�(x)+ 1

12
ln x + 1

12
− 1

4
ln(2π)− 2 lnA

≤ 1

2
ψ−2(x)+ 3

4
ln�(x)− 1

12
(3x2 + 6x − 4) ln x + 3

8
x2 + 1

2
x

− 1

8
(2x + 3) ln(2π)− 1

2
lnA

≤ 1

12
(x + 1)2(2x + 5) ln

(
1+ 1

x

)
− 1

72
(12x2 + 48x + 49).

Here, the absolute error is bounded by 1
16x − 59

1440x2
+O(x−3) as x →∞. ♦

Remark E.7 (Bounds for the Generalized Euler Constant) If g lies in C0∩Dp∩Kp

for p = 1 + deg g and if g is p-convex or p-concave on [1,∞), then (6.45) and
(6.46) provide bounds for the generalized Euler constant (see Definition 6.34)

γ [g] = − Jp+1[�g](1).

Finer bounds can now be obtained as follows. Under the assumptions of Proposi-
tion E.4, we have

±(−1)pJ p+1[g](1) ≤ ± (−1)p+1γ [g] ≤ ± (−1)pAp[g](1).

For instance, when g(x) = ln�(x), we obtain

1− 7

12
ln 2− 1

2
lnπ ≤ γ [ln ◦�] = σ [ln ◦�] ≤ 7

8
− 1

2
lnA− 3

8
ln(2π).

Thus, γ [ln ◦�] ≈ 0.045 lies in the interval [0.023, 0.062], with amplitude <

0.039. ♦
Searching for Finer Approximations We now end this appendix with an interest-
ing observation about the approximations of Jp+1[�g](x) (or equivalently �g(x))
given in Propositions E.2 and E.4.

For any p ∈ N and any g ∈ C0 ∩Dp ∩Kp, define the function εp[g] : R+ → R

by the equation

εp[g](x) =
{
|g(x + 1)|, if p = 0,

|Ap[g](x)− Jp+1[g](x)|, if p ≥ 1.
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Let us show that, if g is p-convex or p-concave on [x,∞), then the function εp[g]
decreases to zero on [x,∞). This is clear if p = 0, so we can assume that p ≥ 1.We
know from Theorem 6.11 that the function |Bp[g]| vanishes at infinity, and hence
so does the function εp[g] by Proposition E.4. On the other hand, using (2.12) we
see that

εp[g](x) =
∣∣∣∣
∫ 1

0

t

p
ρ

p

x+1[g](t − 1) dt

∣∣∣∣

=
∣∣∣∣∣
∫ 1

0

tp+1

p
g[x + 1, . . . , x + p, x + t] dt

∣∣∣∣∣ ,

and this function is monotone by Lemma 2.5.
In terms of approximations of �g(x) given in Propositions E.2 and E.4, this

observation shows that, for any m ∈ N, the approximation of �g(x + m) is finer
than that of �g(x) and it is actually finer and finer as m increases.

Thus, finer approximations of �g(x) can be obtained using the following
procedure.

Step 1. Replace x with x +m in Propositions E.2 and E.4.
Step 2. Use the substitution (cf. (5.3))

�g(x +m) = �g(x)+
m−1∑
k=0

g(x + k)

in the expression of J p+1[�g](x +m).

Note that we already used this trick when we investigated the generalized
Gautschi inequality (see Remark 8.69).

Example E.8 (The Gamma Function) Let m ∈ N. Replacing x with x + m in the
following approximation of the gamma function (see Example E.5)

e−1
(
1+ 1

x

)x+ 1
2 ≤ �(x)√

2π e−x xx− 1
2

≤ e−
x
2− 3

4

(
1+ 1

x

) 1
2 (x+1)2

.

and then using the substitution

�(x +m) = (x +m− 1)m �(x)
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we finally obtain

e−1
(
1+ 1

x +m

)x+m+ 1
2 ≤ (x +m− 1)m �(x)√

2π e−x−m (x +m)x+m− 1
2

≤ e−
x+m
2 − 3

4

(
1+ 1

x +m

) 1
2 (x+m+1)2

.

This double inequality provides an approximations of the log-gamma function with
an absolute error that is bounded by 1

6(x+m)
− 1

8(x+m)2
+O(x−3) as x →∞. ♦



Appendix F
On the Differentiability of �g

We establish Proposition 7.3, which states that, for every p ∈ N, there exists a
function g lying in Cp+1 ∩Dp ∩Kp for which �g does not lie in Cp+1.

To establish Proposition 7.3, we first show that it is enough to consider the special
case when p = 0. Suppose that there exists a function g : R+ → R lying in C1 ∩
D0 ∩K0 such that �g does not lie in C1. By Proposition 4.12, its antiderivative

G(x) =
∫ x

1
g(t) dt

clearly lies in C2 ∩D1 ∩K1. By Proposition 8.20, we also have

D�G(x) = �g(x)− σ [g], x > 0.

Since we assumed that �g does not lie in C1, it follows that �G cannot lie in C2.
Iterating this process, we obtain that the statement is true for any p ∈ N.

We now construct a function g lying in C1 ∩D0 ∩K0 (and even in C∞) and such
that the function �g does not lie in C1.

Consider first the function � : R→ R defined by

�(x) =
⎧⎨
⎩

α exp
(
1− 1

1−4x2
)

, if x ∈
(
− 1

2 ,
1
2

)
,

0 , otherwise,

where

1

α
=
∫ 1/2

−1/2
exp

(
1− 1

1− 4x2

)
dx .
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Thus defined, � is a bump function that is of class C∞ with the compact support

supp(�) =
[
− 1

2 ,
1
2

]
.

For every m ∈ N
∗, define the function �m : R→ R by the equation

�m(x) = �(2m(x −m)) for x ∈ R.

We clearly have that

supp(�m) =
[
m− 1

2m+1 ,m+ 1
2m+1

]
, (F.1)

∫
R+

�m(x) dx = 1

2m
, and �m(m) = α .

Now, define the functions � : R+ → R and g : R+ → R by

�(x) =
∞∑

m=1
�m(x).

and

g(x) = − 1+
∫ x

0
�(t) dt.

Then, we can easily see that the function g lies in C∞ ∩ D0 ∩ K0+, and hence the
function �g exists and lies in C0 ∩D1 ∩K0−.

We now have the following claim, which establishes Proposition 7.3.

Claim For any m ∈ N
∗, the function �g is not differentiable at m. More precisely,

we have

lim
h→0

�g(m+ h)−�g(m)

h
= −∞.

Proof Since g lies in C∞ and satisfies the equation �g(x + 1) = �g(x)+ g(x), it
is enough to prove the claim for m = 1. For any h > 0, we have

1

h
(�g(1+ h)−�g(1)) = 1

h
�g(1+ h) = − 1

h

∞∑
k=1

(g(k + h)− g(k))

= −
∞∑

k=1
g[k, k + h].
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Now, for any k ∈ N
∗ the function g is increasing and concave on [k, k+ 1

2 ) (because
its derivative g′|[k,k+ 1

2 )
= �k|[k,k+ 1

2 )
is nonnegative and decreasing). We then see

that the function

h �→ g[k, k + h]

is nonnegative and continuously decreases (by Lemma 2.5) on [0, 1
2 )with maximum

value g[k, k] = g′(k) = �k(k) = α. It follows that, for any integers 1 ≤ k ≤ m,
there exists 0 < δk,m < 1

2 such that

α

2
≤ g[k, k + h] ≤ α for all h ∈ (0, δk,m).

Thus, for any m ∈ N
∗, there exists

0 < hm < min
k=1,...,m δk,m,

such that

α

2
≤ g[k, k + hm] ≤ α k = 1, . . . ,m.

Thus, we have

1

hm

�g(1+ hm) = −
∞∑

k=1
g[k, k + hm] ≤ −

m∑
k=1

g[k, k + hm] ≤ −m
α

2
,

which shows that the function �g cannot be right-differentiable at 1.
Now, since the function

h �→ 1

h
�g(1+ h) = −

∞∑
k=1

g[k, k + h]

is increasing on [0, 1
2 ), we can easily see that

lim
h→0+

1

h
�g(1 + h) = −∞.

Similarly, we obtain the same limit when h→ 0−. ��
Thus, we have shown that �g is a continuous and decreasing function that is not

differentiable at each positive integer. Let us now establish the interesting fact that
�g is of class C∞ on R+ \N.
Claim The function �g is of class C∞ on R+ \ N.
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Proof Since g lies in C∞ and satisfies the equation�g(x+1) = �g(x)+g(x), it is
enough to show that �g is of class C∞ on (0, 1), or equivalently, on every compact
interval [a, b], with 0 < a < b < 1.

By the existence Theorem 3.6, the sequence n �→ f 0
n [g], with

f 0
n [g](x) =

n−1∑
k=1

g(k)−
n−1∑
k=0

g(x + k),

converges uniformly to �g on [a, b]. Let us now show that the sequence n �→
Df 0

n [g], with

Df 0
n [g](x) = −

n−1∑
k=0

�(x + k),

converges uniformly on [a, b]. In view of identity (F.1), it is then clear that there
exists k0 ∈ N

∗ for which

supp(�k) ∩ [a + k, b + k] ∩ supp(�k+1) = ∅ for every k ≥ k0.

Thus, for any integer k ≥ k0 and any x ∈ [a, b], we have �(x + k) = 0. Therefore,
we have

Df 0
n [g](x) = −

k0−1∑
k=0

�(x + k), x ∈ [a, b], n ≥ k0.

It follows that the sequence n �→ Df 0
n [g]|[a,b] is eventually constant and hence

uniformly convergent on [a, b]. Using the classical result on uniform convergence
and differentiation, we obtain that �g is of class C1 on [a, b]. An immediate
adaptation of this proof shows that �g is of class C∞ on [a, b]. ��



Appendix G
Analogues of Properties of the Gamma
Function

• Analogue of Bohr-Mollerup’s theorem. Theorems 1.5 and 3.1
• Analogue of Burnside’s formula. Section 6.5
• Analogue of Euler’s infinite product (Eulerian form). Section 8.1
• Analogue of Euler’s reflection formula. Section 8.9
• Analogue of Euler’s series representation of γ . Equation (7.4)
• Analogue of Fontana-Mascheroni’s series. Section 8.4
• Analogue of Gauss’ digamma theorem. Section 8.10
• Analogue of Gauss’ limit. Theorems 1.5 and 3.1
• Analogue of Gauss’ multiplication formula. Section 8.6
• Analogue of Gautschi’s inequality. Section 8.11
• Analogue of Legendre’s duplication formula. Section 8.6
• Analogue of Raabe’s formula. Section 8.5
• Analogue of Wallis’s product formula. Section 8.8
• Analogue of Weierstrass’ infinite product (Weierstrassian form). Section 8.2
• Generalized Binet’s function. Section 6.3
• Generalized Euler’s constant. Section 6.8
• Generalized Liu’s formula. Section 8.7
• Generalized Stirling’s constant. Definition 6.17
• Generalized Stirling’s formula. Sections 6.4 and 8.7
• Generalized Webster’s functional equation. Section 8.12
• Generalized Webster’s inequality. Appendix E
• Generalized Wendel’s inequality. Section 6.1
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