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Data Science in Healthcare: COVID-19 and Beyond

Tim Hulsen

Department of Hospital Services & Informatics, Philips Research, 5656AE Eindhoven, The Netherlands;
tim.hulsen@philips.com

Data science is an interdisciplinary field that applies numerous techniques, such as
machine learning (ML), neural networks (NN) and artificial intelligence (AI), to create
value, based on extracting knowledge and insights from available ‘big’ data [1]. The recent
advances in data science and AI have had a major impact on healthcare already, as can be
seen in the recent biomedical literature [2]. Improved sharing and analysis of medical data
results in earlier and better diagnoses, and more patient-tailored treatments. This increased
data sharing, in combination with advances in health data management, works hand-
in-hand with trends such as increased patient-centricity (with shared decision making),
self-care (e.g., using wearables), and integrated healthcare delivery. Using data science
and AI, researchers can deliver new approaches to merge, analyze, and process complex
data and gain more actionable insights, understanding, and knowledge at the individual
and population level [3]. AI can be applied in all three major areas of early detection and
diagnosis, treatment, as well as outcome prediction and prognosis evaluation [4]. ML
algorithms can make predictions on how a disease will develop or respond to treatment,
deep learning algorithms can find malignant tumors in magnetic resonance (MR) images
and digital pathology images, and natural language-processing (NLP) algorithms can
analyze unstructured documents with high speed and accuracy. These are just a few
examples of what data science can do. This Special Issue focuses on how data science and
AI are used in healthcare, and on related topics such as data sharing and data management.
Since this Special Issue contains papers from 2020 to 2022, naturally there are a few papers
about the COVID-19 pandemic: one on the determination of potential risk factors for the
case fatality rate, one on the analysis of Arabic Twitter data to detect government pandemic
measures and public concerns, and one on an enhanced sentinel surveillance system for
outbreak prediction. There are also papers about data-sharing initiatives, depression
treatment, the relationship between depression and metabolic status, cardiac thoracic pain,
hand-foot-and-mouth disease infection, arteriovenous fistula (AVF) failure, chronic kidney
disease (CKD) and breast cancer diagnosis.

“Coronavirus Disease 2019 (COVID-19): A Modeling Study of Factors Driving Varia-
tion in Case Fatality Rate by Country” by Pan et al. [5], “COVID-19: Detecting Government
Pandemic Measures and Public Concerns from Twitter Arabic Data using Distributed
Machine Learning” by Alomari et al. [6] and “Enhanced Sentinel Surveillance System for
COVID-19 Outbreak Prediction in a Large European Dialysis Clinics Network” by Belloc-
chio et al. [7] all present research around the COVID-19 pandemic. Pan et al. [5] identified
24 potential risk factors driving variation in SARS-CoV-2 case fatality rate (CFR). Their
model predicted an increased CFR for countries that waited over 14 days to implement
social distancing interventions after the 100th reported case. Smoking prevalence and the
percentage population over the age of 70 years were also associated with higher CFR. Hospi-
tal beds per 1000 and CT scanners per million were identified as possible protective factors
associated with decreased CFR. Alomari et al. [6] proposes a software tool comprising a
collection of unsupervised Latent Dirichlet Allocation (LDA) ML and other methods for the
analysis of Twitter data in Arabic with the aim to detect government pandemic measures
and public concerns during the COVID-19 pandemic. Using the tool, they collected a
dataset comprising 14 million tweets from the Kingdom of Saudi Arabia (KSA) for the
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period 1 February to 1 June 2020. They detected 15 government pandemic measures and
public concerns, and six macro-concerns (economic sustainability, social sustainability, etc.),
and formulated their information-structural, temporal, and spatio-temporal relationships.
Bellocchio et al. [7] present a sentinel surveillance system supported by an ML prediction
model, whereby the occurrence of COVID-19 cases in a clinic propagates distance-weighted
risk estimates to adjacent dialysis units. The system allows for a prompt risk assessment
and a timely response to the challenges posed by the COVID-19 epidemic throughout
Fresenius Medical Care (FMC) European dialysis clinics.

“Sharing Is Caring-Data Sharing Initiatives in Healthcare” by Hulsen [8] shows an
analysis of the current literature around data sharing, and discusses five aspects of data
sharing in the medical domain, namely publisher requirements, data ownership, growing
support for data sharing, data sharing initiatives and how the use of federated data might
be a solution. With federated data, there is no need for a centralized source database (with
all its privacy issues), because the algorithm is brought to the data instead of the other
way around. The author also discusses some potential future developments around data
sharing, such as medical crowdsourcing and data generalists.

“Digital Training for Non-Specialist Health Workers to Deliver a Brief Psychological
Treatment for Depression in Primary Care in India: Findings From a Randomized Pilot
Study” by Muke et al. [9] evaluates the feasibility and acceptability of a digital program
for training non-specialist health workers to deliver a brief psychological treatment for
depression. This study, performed in Sehore (a rural district in Madhya Pradesh, India)
adds to mounting efforts aimed at leveraging digital technology to increase the availability
of evidence-based mental health services in low-resource primary care settings in.

“Association of Metabolically Healthy Obesity and Future Depression; Using National
Health Insurance System Data in Korea from 2009–2017” by Seo et al. [10] investigates
if depression and metabolic status are relevant by classifying them into the following
four categories by their metabolic status and body mass index: (1) metabolically healthy
non-obese (MHN); (2) metabolically healthy obese (MHO); (3) metabolically unhealthy
non-obese (MUN); and (4) metabolically unhealthy obese (MUO). Their results show that
the MHN ratio in women is higher than in men. In both men and women, depression
incidence was the highest among MUO participants. In female participants, MHO is also
related to a higher risk of depressive symptoms. This indicates that MHO is not an entirely
benign condition in relation to depression in women. Therefore, reducing the number
of metabolic syndrome and obesity patients in Korea will likely reduce the incidence of
depression.

“Assessment of Thoracic Pain Using Machine Learning: A Case Study from Baja
California, Mexico” by Rojas-Mendizabal et al. [11] aims to determine the correlated vari-
ables with thoracic pain of cardiac origin. Their analysis of 258 geriatric patients from
Medical Norte Hospital in Tijuana (Baja California, Mexico) uses two ML techniques, i.e.,
tree classification and cross-validation. Their results suggest that among the main factors
related to cardiac thoracic pain are dyslipidemia, chronic kidney failure, hypertension,
diabetes, smoking habits, and troponin levels at the time of admission.

“Optimized Neural Network Based on Genetic Algorithm to Construct Hand-Foot-
and-Mouth Disease Prediction and Early-Warning Model” by Lin et al. [12] discusses
the high number of recent infections of hand-foot-and-mouth disease (HFMD). Previous
research on the prevalence of HFMD mainly predicts the number of future cases based on
the number of historical cases in various places, and the influence of many related factors
that affect the prevalence of this disease is ignored. Existing early-warning research of
HFMD mainly uses direct case report, which uses statistical methods in time and space
to provide early-warnings of outbreaks separately. It leads to a high error rate and low
confidence in the early-warning results. This paper uses ML methods to establish an HFMD
epidemic prediction model with a high accuracy. Both incidence data and environmental
(mostly weather) data are used.
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“Development and Validation of a Machine Learning Model Predicting Arteriovenous
Fistula Failure in a Large Network of Dialysis Clinics” by Ricardo et al. [13] derived and
validated an arteriovenous fistula failure model (AVF-FM) based on ML. The model was
trained in the derivation set (70% of initial cohort) by exploiting the information routinely
collected in the Nephrocare European Clinical Database (EuCliD; 13,369 patients). Model
performance was tested by concordance statistic and calibration charts in the remaining 30%
of records. Feature importance was computed using the SHapley Additive exPlanations
(SHAP) method. The model achieved good discrimination and calibration properties by
combining routinely collected clinical and sensor data, requiring no additional effort by
healthcare staff. Therefore, it can potentially facilitate risk-based personalization of AVF
surveillance strategies.

In “Validation of a Novel Predictive Algorithm for Kidney Failure in Patients Suffering
from Chronic Kidney Disease: The Prognostic Reasoning System for Chronic Kidney
Disease (PROGRES-CKD)” by Ricardo et al. [14] a novel algorithm predicting end-stage
kidney disease (ESKD) is described, named PROGRES-CKD. This Naïve-Bayes classifier
accurately predicts kidney failure onset among chronic kidney disease (CKD) patients.
Contrary to equation-based scores, PROGRES-CKD extends to patients with incomplete
data and allows for the explicit assessment of prediction robustness in case of missing
values. The algorithm may efficiently assist physicians’ prognostic reasoning in real-life
applications.

Finally, Rasool et al. [15] discuss in “Improved Machine Learning-based Predictive
Models for Breast Cancer Diagnosis” four different predictive models to improve breast-
cancer diagnostic accuracy, as well as data exploratory techniques (DET) such as feature
distribution, correlation, elimination and hyperparameter optimization. The Wisconsin
Diagnostic Breast Cancer (WDBC) and Breast Cancer Coimbra Dataset (BCCD) datasets
were used as input. They report a significant improvement in the models’ diagnostic
capability with their DET. Therefore, the techniques can help to improve breast cancer
diagnosis.

The manuscripts in this Special Issue give us only a brief overview of the wide use of
data science in healthcare, and offer a glimpse into the future, where even faster computers
and more advanced AI algorithms will make many more applications possible. For example,
whereas many AI algorithms only use data from specific data types, this can be expanded
to a combination of a wide range of patient-related (structured or unstructured) data,
including clinical data, imaging data, digital pathology data, genomics data, data from
wearables, and much more, to optimize the result for the patient. AI systems will not
replace clinicians on a large scale, but rather will support their care for patients [16]. For
example, AI can also be used to optimize the workflow in the hospital, or to create intelligent
chatbots to help patients while reducing the workload for the clinicians. Furthermore, AI
algorithms created in these times of COVID-19 might be of good use when managing
similar pandemics in the future. It is probably safe to say that in ten years from now,
there will not be a ‘Data Science in Healthcare’ Special Issue, because by that time almost
everything in healthcare will be influenced by data science.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Background: The novel Severe Acute Respiratory Syndrome Coronavirus-2 has led to a
global pandemic in which case fatality rate (CFR) has varied from country to country. This study
aims to identify factors that may explain the variation in CFR across countries. Methods: We identified
24 potential risk factors affecting CFR. For all countries with over 5000 reported COVID-19 cases,
we used country-specific datasets from the WHO, the OECD, and the United Nations to quantify
each of these factors. We examined univariable relationships of each variable with CFR, as well
as correlations among predictors and potential interaction terms. Our final multivariable negative
binomial model included univariable predictors of significance and all significant interaction terms.
Results: Across the 39 countries under consideration, our model shows COVID-19 case fatality rate
was best predicted by time to implementation of social distancing measures, hospital beds per 1000
individuals, percent population over 70 years, CT scanners per 1 million individuals, and (in countries
with high population density) smoking prevalence. Conclusion: Our model predicted an increased
CFR for countries that waited over 14 days to implement social distancing interventions after the
100th reported case. Smoking prevalence and percentage population over the age of 70 years were
also associated with higher CFR. Hospital beds per 1000 and CT scanners per million were identified
as possible protective factors associated with decreased CFR.

Keywords: COVID-19; SARS-CoV-2; pneumonia; computed tomography; case fatality rate; social
distancing; smoking

1. Introduction

On 31 December 2019, a pneumonia of increasing incidence and unknown etiology in Wuhan,
China was reported to the World Health Organization (WHO). Investigations led to the discovery of a
novel coronavirus, later dubbed Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2),
which causes the pathology known as Coronavirus Disease 2019 (COVID-19) [1]. Despite initial
containment measures recommended by the WHO in early January 2020, COVID-19 spread rapidly to
other countries in the following weeks and was eventually classified as a global pandemic on 11 March

Int. J. Environ. Res. Public Health 2020, 17, 8189; doi:10.3390/ijerph17218189 www.mdpi.com/journal/ijerph
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2020 [2,3]. Since then, it has posed major challenges to healthcare systems in affected countries around
the world while crippling the global economy. At the time of our analysis, epidemiological data
indicates that COVID-19 had since spread to 205 countries with over 3.1 million reported cases and
over 227,000 deaths worldwide [4].

As effective antiviral therapies and vaccines remain unavailable, current efforts to halt the
transmission of COVID-19 rely on social distancing, individual quarantine and isolation, and community
containment measures [5]. Yet there has been great variation worldwide in the implementation of such
measures. As demonstrated in China, the spread of the disease was slowed by effectively combining
the largest quarantine ever implemented—over 200,000 people were either tracked via contact tracing
or received medical observation as of 30 January 2020—with stringent community facemask use,
limitations on social gatherings, isolation of affected workplace institutions, and lockdown of multiple
public transportation outlets to isolate communities and towns with outbreaks [6,7]. However,
this approach is resource-intensive and is less likely to be emulated by more liberal democracies [8].
Therefore, it may be useful to examine the differences in implementation of quarantine policies in
different countries and their impact on disease mortality.

Numerous studies have examined the daily and cumulative number of confirmed cases by country
and have analyzed variation in case-fatality rate (CFR), defined as number of deaths relative to number
of confirmed cases. Estimates of CFR are placed at 2.3% in China, while estimates of infection-fatality
ratio (IFR), which attempt to account for proportions of mild and asymptomatic disease, sits markedly
lower at 0.1–0.94% [7,9–11]. However, because the exact proportions of mild and asymptomatic cases
are variable and reliant on estimations in lieu of confirmatory testing, IFR-based metrics have yet to
produce a reliable model [10,11]. Therefore, CFR remains a more concrete measure of describing and
identifying predictive factors associated with disease mortality. CFR varies from country to country
and, while multiple studies have found links to possible underlying factors driving changes in case
mortality, a complete explanation of this variation remains unclear. Using country-specific data from
global organizations, our study aims to identify factors that best explain differences in CFR among 39
highly impacted countries during the first five months of the COVID-19 pandemic. To the best of our
knowledge, this is the first study to investigate multiple factors affecting CFR using country-specific
data to drive our modeling.

2. Materials and Methods

2.1. Data Collection

We began by conducting a targeted literature search for potential risk factors for COVID-19
mortality through Pubmed, using variations on terms including “COVID-19 mortality risk factors”
and “pandemic mortality risk factors”. Our approach was similar to a study conducted by Morales
et al., investigating H1N1 influenza risk factors that varied by country [12]. In our review of studies
on the current pandemic as well as past SARS and influenza pandemics, we identified 24 risk factors
(Table S1) for COVID-19 fatality that were worth investigating, including quarantine policies, air travel
activity, age distribution, comorbidities, healthcare access, availability of diagnostic tests, cumulative
and daily testing data, and environmental factors such as air pollution and climate [5–7,13–22].
Regarding quarantine policies, government responses varied by country. For purposes of this study,
we defined this intervention as the first date per international news sources when recommendations were
made or legislation was passed limiting gathering size, closing non-essential business, or encouraging
social distancing (Table S2). School closures and international travel bans were not considered as they
only applied to certain individuals within each country’s population.

To calculate CFR, we used the total confirmed cases and deaths for a given country from Our
World in Data [4]. As higher testing rates per capita could be associated with an increased record of
mild cases, we included total cumulative tests and tests per 1000 to explore the relationship between
CFR and testing capacity per capita. Additionally, we included socioeconomic factors such as GDP,
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level of education, and scientific production. To examine healthcare-related factors, we included
hospital beds, physicians per 1000, and per capita healthcare expenditure. We also looked at the
availability of CT scanners and radiologists per one million population, as CT chest imaging represents
a possibly limited resource that can increase the diagnostic accuracy. This was particularly true during
the first wave of the pandemic, during which reverse transcription polymerase chain reaction (RT-PCR)
kits were limited and imaging was relied upon by multiple countries for diagnosis of the disease [23].
Finally, given recent data linking the comorbidities of obesity and chronic lung disease to increased
disease severity and poorer outcomes in cases of COVID-19 [16,19,24], we included prevalence of
obesity, chronic obstructive pulmonary disease (COPD), and tobacco use, along with particulate matter
as a measure of air pollution.

We decided to include in our analysis all countries with over 5000 COVID-19 deaths at the time of
writing [4]. This cutoff was chosen to generate a set of at least 20 countries located in all hemispheres
with diverse quarantine measures, GDPs, and geographic locations. 39 countries were found to
meet this criterion and were included in the study. For each country, data was generated for the 24
variables from the following sources: Our World in Data project [4], World Bank database [25], OECD
database [26], United Nations World Population Prospects [27], Global Health Data Exchange [28],
and various international news sources (Table S2).

2.2. Statistical Analysis

We began by examining the distributions of and correlations among all variables. We found
that population density, GDP in 2017, scientific production, total tests, air travel, percentage illiterate,
and air pollution were highly positively skewed. To reduce the influence of extreme observations, we
transformed these variables on the log scale, except for population density for which a square root
transformation was sufficient. We next examined the univariable relationships between independent
variables and case fatality rates to find candidate variables for our final multivariable model. We found
the negative binomial model for case fatality rate to be appropriate, as the overdispersion parameter
α was statistically significant in each of these models. We noted the significance of each variable in
these univariable models and selected variables for a preliminary multivariable model at p < 0.15.
We additionally wanted to examine whether the effect of candidate predictors was moderated by
population density and time to quarantine. We therefore examined models with each independent
variable and (1) an interaction with population density and (2) an interaction with days from 100th case
to quarantine (dichotomized as >14 days). Days from 100th case to quarantine was dichotomized as it
showed a nonlinear relationship with CFR, with higher CFR rates in the highest quartile (>14 days).
Our preliminary multivariable model was created by including all univariable candidate predictors
and then adding all significant interaction terms. A hands-on guided approach was used to check for
any anomalies that arose when adding or removing variables from the final model. Our preliminary
final model contained all multivariable predictors significant at p < 0.05. Before arriving at our final
model, each variable excluded in the univariable step was added back one-by-one to ensure they were
still nonsignificant predictors of case fatality rate. All analyses were performed in Stata (v15.0).

3. Results

Case fatality rate varied widely by country, as low as 0.6% and as high as 17.7% (M = 5.4%,
SD = 4.3%). Means and standard deviations of candidate predictors are shown in Table 1, along with
rate ratios from the univariable negative binomial model for each individual predictor. We found that
percent population >70 years old, general mortality per 1000 individuals, percentage of population
illiterate, percentage of population with HIV, and air pollution were significantly associated with case
fatality rate in these univariable models. In addition, tests per 1000 individuals, percentage of population
obese, smokers, tobacco users, and with HIV significantly interacted with population density.
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Table 1. Descriptive statistics (mean & SD) for candidate predictor variables, rate ratios (SE) for
univariable relationships between predictors and case fatality rate, and p-value for the interaction of
each predictor variable with population density (square root transformed). For comparability, all rate
ratios reflect the effect of the standardized predictor on case fatality rate.

Variable Mean (SD) Rate Ratio (SE) p (Density Interaction)

Percent population >70
years old † 8.9 (4.7) 1.33 (0.16) * -

Population density 158.7 (148.2) 1.14 (0.32) -
Population size † 135.4 × 106 (310 × 106) 1.07 (0.14) -
GDP in 2017 ($) † 1.82 × 1012 (3.57 × 1012) 1.23 (0.16) -

GDP per capita in 2017 29761 (22379) 1.11 (0.15) -
Healthcare expenditure

per capita 2849 (2735) 1.17 (0.16) -

Scientific production † 53393 (91189) 1.20 (0.15) -
Hospital beds per 1000 3.95 (2.91) 0.92 (0.14) -

Physicians per 1000 2.78 (1.26) 1.16 (0.14) -
General mortality per

1000 7.82 (2.62) 1.44 (0.21) * -

Life expectancy 78.7 (4.3) 1.21 (0.14) -
CT scanners per 1 million 26.6 (22.2) 0.75 (0.13) -

Radiologists † 5863 (14180) 1.20 (0.20) -
Radiologists per 1

million 64.1 (43.2) 1.25 (0.20) -

Total tests † 330013 (325817) 1.15 (0.14) -
Tests per 1000 12.0 (9.4) 1.04 (0.15) 0.04
Median age 36.3 (6.8) 1.23 (0.14) -

Days from 100th case to
quarantine 9.5 (8.4) 1.26 (0.18) -

Air travel † 93587 (165381) 1.05 (0.13) -

Education 73.5 (19.2) 0.88 (0.14) -
Percent Illiterate † 4.5 (8.1) 0.75 (0.09) * -

Percent Obese 21.1 (8.5) 0.99 (0.15) 0.005
Percent Smokers 20.3 (6.2) 1.08 (0.14) 0.03

Percent Tobacco Users 23.3 (8.0) 1.11 (0.15) 0.06
Percent HIV 0.2 (0.3) 1.30 (0.18) * 0.001

Percent COPD 5.4 (2.3) 1.23 (0.15) -
Air pollution † 27.2 (34.0) 0.68 (0.09) ** -

† Log-transformed variable was used for Rate Ratio, * p < 0.05, ** p < 0.01.

We also found several instances of collinearity. For example, we found high correlations between:
smoking prevalence and tobacco use prevalence (r = 0.92, p < 0.001); air travel and GDP (r = 0.96,
p < 0.001); and percentage of population >70 years old was correlated with several variables such
as general mortality (r = 0.80, p < 0.001), prevalence of COPD (r = 0.71, p < 0.001), life expectancy
(r = 0.74, p < 0.001), physicians per capita (r = 0.73, p < 0.001), tests per capita (r = 0.88, p < 0.001),
and GDP (r = 0.71, p < 0.001). When collinear variables were included in the model, we sequentially
added them in one-by-one and evaluated the model fit; the variable producing the best fit was retained
in the model.

Our final model included time from 100th case to quarantine (dichotomized >14 days), hospital
beds per 1000 individuals, percentage population over 70 years, CT scanners per 1 million individuals
(log-transformed), and interaction between smoking prevalence and population density. This model
had good agreement between observed and predicted CFR values (Figure 1). We found that countries
waiting over 14 days from the 100th case to quarantine had 1.5 times the case fatality rate of those
that did not wait as long (p = 0.045), and each percentage increase in the population over 70 years
was associated with 1.15-time increase in the case fatality rate (p < 0.001). Though proportion of
population over 70 years was correlated with a slew of health-related variables, there were some that
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were predictive of case fatality rate above and beyond the proportion of the population that is elderly.
We found that each additional hospital bed per 1000 individuals reduced the case fatality rate by 15%
(RR = 0.85, p < 0.001), and that a 1-unit increase in the log number of CT scanners per million was
associated with half the case fatality rate (RR = 0.49, p < 0.001). The deleterious effect of smoking
on case fatality rate was significant, but only in countries with higher density (p-interaction < 0.001).
To aid in interpretation, we calculated the rate ratio at the mean, and 0.5 SD below and above the mean,
of square root transformed population density. These results are presented in Table 2 (Model 1).

Figure 1. Final model (Model 1) of predicted values plotted against observed values of case fatality
rate. These two variables were correlated at r = 0.84.

Table 2. Final multivariable negative binomial model predicting case fatality rate. Rate ratios and
95% confidence intervals are presented. Smoking prevalence is evaluated at the mean of (square root
transformed) population density, 0.5 SD below (low, approximately 65 per km2), and 0.5 SD above
(high, approximately 200 per km2). Model I contains our final estimates without imputation (n = 26),
Model II additionally adjusts for date of 100th case, and Model III shows the results from our final
model on imputed CT scanner data (n = 39).

Variable
Model I Model II Model III

RR (95% CI) RR (95% CI) RR (95% CI)

Prevalence smoking (10% population increase)
at low population density 1.00 (0.69, 1.44) 1.13 (0.80, 1.61) 0.96 (0.69, 1.33)

at mean population density 1.59 (0.99, 2.56) 1.72 (1.12, 2.65) 1.33 (0.90, 1.96)
at high population density 2.53 (1.32, 4.87) 2.62 (1.46, 4.70) 1.83 (1.09, 3.07)

>14 days from 100th case to quarantine 1.54 (1.01, 2.35) 1.23 (0.78, 1.92) 1.57 (1.01, 2.43)
Hospital beds per 1000 individuals 0.85 (0.78, 0.92) 0.84 (0.77, 0.90) 0.58 (0.45, 0.74)

Percent population >70 years 1.15 (1.08, 1.23) 1.12 (1.03, 1.20) 1.13 (1.07, 1.20)
CT scanners per 1 million individuals (log) 0.49 (0.34, 0.67) 0.44 (0.32, 0.60) 0.67 (0.46, 0.98)

Date of 100th case (days) - 0.96 (0.92, 0.99) -

We performed additional sensitivity analyses to explore the effect of (1) date of country being
impacted by COVID-19 and (2) missing covariate data. First, we created a new model by including
date of 100th case to examine any change in coefficients (Table 2, Model 2). It was suspected that
CFR may be lower in countries that reached their 100th case later, as they may not have had sufficient
time for the virus to act on individuals. We examined the correlation between date of 100th case and
days-to-quarantine and found a negative relationship (r = −0.47, p = 0.003) after excluding China,
which was impacted early but also had quick quarantine implementation (Figure 2). We also note that
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13 countries were missing data on CT scanners in our model. To determine possible impacts of this
missing data, we performed multiple imputation with 25 data sets using all complete variables in the
data that were not included in our final models. Our final model changed slightly but not appreciably
(Table 2, Model 3). Date of 100th case was not significant when added to this model (p = 0.66; model
not shown).

Figure 2. Days from 100th case to quarantine plotted against date of 100th case (in days from 19 January
2020; China’s 100th case). The two variables are correlated (r = −0.47, p = 0.003) after removing China
(red square).

4. Discussion

Our analysis of 24 variables relative to COVID-19 mortality across 39 countries suggests that the
case fatality rate is related to a variety of country-specific factors, including time to implement social
distancing measures after the 100th case, hospital beds per 1000 individuals, percentage population over
70 years, CT scanners per 1 million individuals, and smoking prevalence with high population density.

Social distancing interventions, such as increased case isolation and community contact reduction,
have been shown to be highly effective in slowing the spread of the virus [29]. According to our
model, countries that waited over 14 days to implement social distancing interventions after their 100th
reported case saw an increased CFR (RR = 1.54, p = 0.045), consistent across all population densities.
As COVID-19 spread has been shown to occur during the asymptomatic incubation period [30,31],
the promptness of local and national government response in implementing quarantine policies may
have played a crucial role in limiting human-to-human transmission. As respiratory failure from Acute
Respiratory Distress Syndrome appears to be the leading cause of mortality [32], surges in severe
COVID-19 cases have the potential to overwhelm the capacity of a country’s healthcare system to
provide mechanical ventilation and other intensive resources [33,34]. Thus, timely implementation
of social distancing measures may, in many cases, have delayed epidemic peak in regard to CFR by
reducing exponential growth of cases [29]. However, we did see this effect attenuated when including
date of 100th case in the model. While it may be possible that countries that were affected more recently
may not have had time to fully experience the true extent of COVID-related deaths, we did find that
countries affected by COVID-19 later were quicker to implement quarantine measures. Because of this,
we cannot truly disentangle the effect of time-to-quarantine from date of 100th case.
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With regards to comorbidities, our model predicts that a 10% increase in smoking prevalence
more than doubles the CFR in countries with high population density (RR = 2.53, p < 0.001). There is
a growing body of evidence associating increased risk of both increased severity of disease, ICU
admission, and death among infected patients with smoking history, particularly active smokers [35,36].
Yet, it is unclear why our model correlated smoking prevalence with increased CFR strongly in
high-density populations only. One possible explanation is that high density areas are more likely to
suffer outbreaks sufficient to overwhelm the local hospital and ICU capacity, triggering mass casualty
protocols with possible triaging of resource allocation in favor of patients with more favorable prognostic
indicators [37,38]. Smoking history is often associated with other medical comorbidities, notably
cardiovascular disease, which may contribute to a poorer overall prognostic presentation and thus less
priority in a resource-poor scenario [36,39]. Finally, the effect that smoking may have as a potential
risk factor is likely to be more exaggerated in densely populated regions where these vulnerable
individuals interact with others in closer proximity and with higher frequency. Smoking prevalence
may also be related to other factors that are impacted by population density. It will be necessary to
further explore the effects of smoking and its sequalae on disease course to determine the additional
considerations that should be given to patients with a history of smoking, particularly in areas of high
population density.

Case fatality rate was reduced by 15% (RR = 0.85, p < 0.001) for each additional hospital bed per
1000 individuals, a reflection of resources available for delivering inpatient medical services. Studies on
past influenza pandemics have shown that scarcity of healthcare resources and clinical infrastructure,
particularly in rural or developing areas, is a major limitation to pandemic preparedness [40–42]. It is
important to note that the capacity of a healthcare system is tied not only to infrastructure but also
to the availability of providers; in order to increase capacity, it will be necessary to build a larger
healthcare workforce to support more hospital beds and higher patient volume [41]. CT scanners
represent another limited resource that appears to be a protective factor. Our model shows that a 1-unit
increase in the log number of CT scanners per million was associated with half the case fatality rate
(RR = 0.49, p < 0.001). A possible explanation for this protective effect is that CT scans have led to
earlier detection of the disease, as early reports describe characteristic imaging features that are helpful
in aiding diagnosis [43]. This may have been particularly advantageous in developing countries,
where the capacity to develop and mass-distribute testing was limited during the first months of the
pandemic [43–45], as well as for frontline providers in any country irrespective of testing ability as a
means of providing earlier diagnosis [46,47]. Countries with more radiologists and CT scanners per
capita are also likely to have increased availability of other health resources, and thus the variables
may serve as proxy for other factors that reflect the robustness of a nation’s healthcare system.

Our model also suggests a positive relationship between CFR and percentage of the population
over age 70, with every added percent increasing the CFR by a factor of 1.15. This variable is highly
associated with general mortality (r = 0.80, p < 0.001), life expectancy (r = 0.74, p < 0.001), and COPD
(r = 0.71, p < 0.001) at the country level and could potentially be viewed as a proxy for indicating a
country with older, more vulnerable population. Observations on age and increased case mortality are
consistent with multiple retrospective studies identifying advanced age as a potential risk factor for
more severe disease and worsened prognosis [48,49]. There are multiple possible explanations for this
observation. In addition to frailty and increased risk of having multiple co-morbidities, some studies
suggest age-related declines in T and B cell function alongside preserved innate immunity may be
contributory, with the resultant cytokine 2-dominant response triggering a pro-inflammatory state
which increases mortality [50,51].

Limitations and Future Directions

This modeling study used a cross-sectional, ecological dataset taken during the pandemic’s first
wave. As such, most of our model’s limitations stem from the weaknesses of this approach. As with
most data gathered in the first several months of the pandemic, accuracy was limited by the information
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available at that time and capacity to report cases in a timely manner may vary from country to country.
This limitation affects estimates of CFR, which has been shown to require an assessment of the delay
between infection and the reporting of case data as well as the extent to which death-related cases are
underreported. Furthermore, CFR itself is best modeled as a continuous variable which changes over
time as the disease spreads to areas which vary in risk due to population density and demographic,
as well as how healthcare systems and government policies adapt to disease burden [52]. Finally,
given the ecological nature of our study, it should be noted that our findings and discussion of risk
factors do not necessarily reflect a relationship between these variables and probability of survival at
the individual level.

In addition, our study was limited by the availability of datasets used for country-specific
data. Some of the datasets used to generate data for the 24 variables did not include all countries.
For example, although our univariate analysis did not find a significant correlation between CFR and
total radiologists or radiologists per one million, our data on radiologists per country was limited to
one study from 2008 that included only 26 of the 39 countries analyzed [53]. More data is needed
on this subject, as early reports on the global response to COVID-19 have shown that computerized
tomography (CT) of the chest may serve an integral role in the timely diagnosis of the disease, as
well as in severity staging and monitoring of clinical course [43,44,47,54,55]. Another limitation arises
from utilizing data pertaining to entire countries for risk factors that may vary within each country on
a geographically smaller scale-among cities, for example. This is especially true for large countries
such as the United States and China with wide variations in population density, resource availability,
and environmental characteristics based on region. For the timing of isolation and quarantine measures,
our study relied on multiple secondary news sources for specific dates (Table S2), which, despite a
standardized and systematic approach, is inherently less reliable than documentation from a single
primary source.

Future studies are also needed to evaluate the effect and timing of government interventions on
disease spread and CFR. While our results suggest a possible relationship between early government
implementation of social distancing measures and reduced CFR, it remains unclear whether differences
in the type or stringency of these measures appreciably influences CFR. Timing of quarantine measures
is also important, and a comparison of specific state-imposed measures as well as their timing relative
to the date of first confirmed case and other milestones of cumulative case growth could represent a
strong follow-up to our findings. We also suggest a closer look at the relationship between smoking and
its association with severe disease, as well as the extent to which such risk factors affect comprehensive
care under triage protocols in resource-restricted circumstances.

5. Conclusions

Using country-based multivariate modeling, our study found significant correlations between
increased CFR and smoking prevalence, percentage of a population over the age of 70 years, increased
time to implementation of social distancing or stay-at-home measures, as well as decreased CFR and
hospital beds per 1000 and CT scanners per million. Notably, CFR appears to increase significantly
for every day after the 100th documented case where governmental precautions are not put in place.
More research is needed on the relationship between the timing and effectiveness of government
precautions and case fatality rate, as well as the role that hospital bed capacity and CT scanner
availability play in reducing case fatality. The relationship between population density and smoking
prevalence, as well as the influence smoking has on disease course, is also worth further exploration.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/21/8189/s1,
Table S1: 24 country-level risk factors with potential influence on COVID-19 case fatality rates, Table S2: Date of
first government intervention per aggregation of secondary news sources as indicated.
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Abstract: Today’s societies are connected to a level that has never been seen before. The COVID-19
pandemic has exposed the vulnerabilities of such an unprecedently connected world. As of 19
November 2020, over 56 million people have been infected with nearly 1.35 million deaths, and the
numbers are growing. The state-of-the-art social media analytics for COVID-19-related studies to
understand the various phenomena happening in our environment are limited and require many
more studies. This paper proposes a software tool comprising a collection of unsupervised Latent
Dirichlet Allocation (LDA) machine learning and other methods for the analysis of Twitter data in
Arabic with the aim to detect government pandemic measures and public concerns during the COVID-
19 pandemic. The tool is described in detail, including its architecture, five software components, and
algorithms. Using the tool, we collect a dataset comprising 14 million tweets from the Kingdom of
Saudi Arabia (KSA) for the period 1 February 2020 to 1 June 2020. We detect 15 government pandemic
measures and public concerns and six macro-concerns (economic sustainability, social sustainability,
etc.), and formulate their information-structural, temporal, and spatio-temporal relationships. For
example, we are able to detect the timewise progression of events from the public discussions on
COVID-19 cases in mid-March to the first curfew on 22 March, financial loan incentives on 22 March,
the increased quarantine discussions during March–April, the discussions on the reduced mobility
levels from 24 March onwards, the blood donation shortfall late March onwards, the government’s
9 billion SAR (Saudi Riyal) salary incentives on 3 April, lifting the ban on five daily prayers in
mosques on 26 May, and finally the return to normal government measures on 29 May 2020. These
findings show the effectiveness of the Twitter media in detecting important events, government
measures, public concerns, and other information in both time and space with no earlier knowledge
about them.

Keywords: COVID-19; coronavirus; machine learning; big data; social media; apache spark; Twitter;
Arabic language; distributed computing; smart cities; smart healthcare; smart governance; Triple
Bottom Line (TBL)

1. Introduction

The level of digital and physical connectedness of today’s societies has never been
seen before. We are able to see and talk to people on the other side of the planet as if
they are with us. We are able to control machines in the farthest continents using our
smartphones. We are able to physically travel across the world in a day. We travel a lot to
distant lands and frequently share gifts and viruses with each other.

Unfortunately, the COVID-19 pandemic has exposed the vulnerabilities of this un-
precedentedly connected world. The COVID-19 pandemic, or coronavirus pandemic
(COVID-19 is the name of the disease), is caused by the virus SARS-CoV-2 (Severe Acute

Int. J. Environ. Res. Public Health 2021, 18, 282. https://doi.org/10.3390/ijerph18010282 https://www.mdpi.com/journal/ijerph
17



Int. J. Environ. Res. Public Health 2021, 18, 282

Respiratory Syndrome CoronaVirus 2) [1]. As of 19 November 2020, over 56 million people
have been infected with nearly 1.35 million deaths, and the numbers are growing [1]. Social,
economic, and environmental sustainability has been severely affected throughout the
world. There is a growing consensus that the post-pandemic societies and world may
take a different course for living, work, education, and other spheres of life. If (partial or
full) remote working, businesses, and education are to become the norm, many people
may choose to move and live in suburban or rural areas, and this will shift the course
of urbanization.

There is a need to understand what is happening around the world during and after
the pandemic, what measures are being taken to fight the pandemic by the government and
authorities, what the needs of the people are, and what people’s concerns and priorities are,
etc. This information can help us to understand the implications of various pandemic mea-
sures (e.g., social isolation), manage the pandemic, address people’s concerns, understand
the impact of various policies for the post-pandemic future, and more.

Traditional methods of data collection and analysis using surveys and other means
cannot capture such timely and large-scale data, alongside them having other disadvan-
tages. Researchers in recent years have increasingly used social media including Twitter to
study different issues in many application domains and sectors [2–5]. Naturally, social me-
dia has also been used during the COVID-19 pandemic times even more so, because the use
of social media and virtual platforms by the public has increased due to social isolation and
reduced mobility. A detailed literature review has revealed that the state-of-the-art research
on social media analytics for COVID-19-related studies is limited. Many more studies are
needed to improve the breadth and depth of the research on the subject in several aspects
(Section 2 elaborates the research gap, novelty, and contributions of our work).

1.1. Description of the Proposed Work

In this paper, we propose a software tool comprising a collection of machine learning
and other methods for the analysis of Twitter data in Arabic with the aim to detect gov-
ernment pandemic measures and public concerns during the COVID-19 pandemic. The
methods used in the tool include an unsupervised Latent Dirichlet Allocation (LDA) topic
modeling algorithm, natural language processing (NLP), correlation analysis, and other
spatio-temporal information extraction and visualization methods. The tool was built using
a range of technologies including MongoDB, Parquet, Apache Spark, Spark SQL, and Spark
ML. The tool comprises five software components (see Section 3). The Data Collection and
Storage Component (DCSC) uses various search queries and geo-coordinates to collect
data using Twitter REST (Representational State Transfer) API (Application Programming
Interface) and stores it using MongoDB and Apache Spark DataFrame (DF), a distributed
data collection organized into named columns. The Data Pre-Processing Component (DPC)
removes noise from the text and provides cleaned, normalized, and stemmed tokens. The
Measures and Concerns Detector Component (MCDC) uses an unsupervised LDA model
to cluster the tweets and detect government and public measures and concerns. The cor-
relations in data are also computed here. The Spatio-Temporal Information Component
(STIC) performs spatial and temporal analysis by extracting the date, time, location, and
other information from the tweets. The Validation and Visualization Component (VVC)
visualizes the results spatially and temporally using maps and other tools and validates
the detected measures and concerns using internal or external sources such as news media.
The Twitter dataset used in this specific study comprises 14 million tweets. It was collected
using the Twitter API from 1 February 2020 to 1 June 2020 for the Kingdom of Saudi Arabia.

The software developed for this work is part of the tool Iktishaf [6–9] that we have
been developing for the last few years. Earlier work on this tool has focused mainly on
mobility-related event detection using supervised learning. We have also developed other
tools for big data social media analytics in healthcare [10], logistics [11,12], and public
opinion mining for government services [13]. These works have used Twitter data in Arabic
or English.
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1.2. Findings

We formulate and analyze the findings of this paper from three relationship perspec-
tives: information-structural, temporal, and spatio-temporal.

Information-Structural Perspective: Using the tool, in terms of the information-
structural (or subject matters) perspective, we have detected 15 government pandemic
measures and public concerns (quarantine, loan, salary, mobility, etc.) and have grouped
them into six macro-concerns (economic sustainability, social sustainability, contain the
virus, etc.). For the pandemic measures implemented by the Saudi government in relation
to the COVID-19 pandemic, we detect curfew and restrictions on mobility in the country,
quarantine and fines, restrictions on praying in the mosques, campaigns to stay home,
COVID-19 prevention, and cleaning services provided to curb the coronavirus spread. For
economic sustainability, we detected that the government provided financial incentives
including loans and private-sector salaries. Businesses increased offers to increase their
sales. People moved to or increased their online economic activities, such as the activities
related to prize draws for income earnings. For health, well-being, and social sustainabil-

ity, we detected that blood donation and treatment at hospitals have been a major cause
of concern. People also actively talked about the new number of cases. The daily liveli-

hood issues in Saudi Arabia include five daily congregational prayers at the mosques that
were suspended by the government. This was a major concern because praying five daily
prayers in congregations is compulsory in Islam (with certain exceptions). People usually
pray in mosques in congregations, standing close to each other and aligning shoulders
and ankles with the person on the right and left, which is risky in the pandemic situation.
People also increased in supplications for the safety of people. Roads were found to be
empty or with abnormally low traffic during the corona times, and this was also vigorously
discussed. A significant reduction in mobility was noted across the country that was
related to environmental sustainability, health, and well-being due to the reduction in
traffic congestion and air pollution. The detected events in Kingdom of Saudi Arabia (KSA)
are also aligned with international concerns, such as various lockdown measures [14],
reduced mobility [15], reduction in blood donations [16], financial difficulties and related
government incentives [17,18], and worries related to returning to normal times [19].

Temporal Perspective: Regarding the temporal perspective of the various pandemic-
related events within the time period of the dataset (1 February 2020–1 June 2020), we
are able to see timely relationships in the progression of various events. Figure 1 shows
the timeline of some of the detected government measures and public concerns. Some
of these events in the Twitter activity that remained high for a period are shown with
their start and end times. The earliest detected events in the data are related to virus
infection, prevention, curfew, and stay home. Between mid-March 2020 and the end of

May (with some intermittent gaps), people also increased their Twitter activity related to
the virus infection concern (spread of coronavirus and the increase in the number of cases).
The curfew (7 a.m.–6 p.m.) in Saudi Arabia was ordered firstly on 22 March and applied
from the next day. The events related to loans were detected with the highest peak on
22 March (Saudi Arabian Monetary Agency (SAMA) announced it on the same day [20]).
The activities on Twitter related to the quarantine event (we use “measure”, “concern”,
and “event” interchangeably, as appropriate) remained high during the initial period of
the curfew to around mid-April. The “No Mobility” event (empty roads) was vigorously
discussed on 24 March, two days after the curfew was ordered. The curfew situation and
the reduction in government services along with people’s fear of getting infected by the
virus had caused a reduction in blood donations and blood supplies. The activity on this
topic requesting blood donations was seen to be increased from late March to mid-April.
On 2 April, a 24 h curfew was enforced in Makkah and Medina (the two holiest cities
in KSA and the Muslim world), which stirred heavy Twitter activity. The events for the
salary events were detected on the 3 April the day King Salman of Saudi Arabia ordered to
contribute towards 60% of the salaries of Saudi private-sector employees with a financial
incentive of 9 billion Riyals in total (this was verified through external sources [21]). A peak
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activity related to the Five Daily Prayers concern was found on 26 May when the Ministry
of Interior announced that they would allow daily prayers to be held in all mosques of the
Kingdom (except the mosques in Makkah city). Finally, we detected the “Back to Normal”
government measure on 29 May 2020.

 

Figure 1. The timeline of some of the detected government pandemic measures and public concerns.

Spatio-Temporal Perspective: We extracted location information using different ap-
proaches including tweet text and hashtags, geo-coordinate attributes, and user profiles. We
were able to detect important events in over 50 cities around the kingdom with major activ-
ities related to COVID-19 cases, curfew, etc., in the Makkah, Riyadh, and Eastern provinces.

We validated the detected government measures and public concerns and their spatial
and temporal nature through external validation by searching online news media or
through internal validation by checking tweets. These findings show the effectiveness of
the Twitter media in detecting important events, government measures, public concerns,
and other information in both time and space with no earlier knowledge about them.

The organization of the paper is as follows. Section 2 reviews the related works and
elaborates on the research gaps. Section 3 explains our methodology and the design of
the tool. Section 4 discusses the results and analysis. Section 5 gives the conclusions and
directions for future work.

2. Literature Review

Smart cities and societies are driven by the need to provide highly competitive, pro-
ductive, and smarter environments through the innovation and optimization of urban
processes and life [22,23]. Artificial intelligence has taken us by storm [24], and has led
to the emergence of concepts such as artificially intelligent cities [25]. A key to providing
smartness for emerging urban and rural environments is to continuously sense and analyze
these environments and make timely and effective decisions [6,10,24,26]. Social media
analysis using machine learning has become a key method to provide the pulse for sensing
and engaging with the environments [6] and is expected to provide smarter solutions for
our fight against COVID-19 and future pandemics as well as during peace times.

We review here the literature relevant to the topic of this paper, which is the detection
of COVID-19-related public concerns from social media (big) data in the Arabic language
using machine learning, specifically the LDA topic modelling method. Firstly, in Section 2.1,
we provide a background on the pre-COVID-19 use of social media in various application
domains. Subsequently, we review in Section 2.2 the works about COVID-19 analysis that
have used social media data without limiting the reviewed works to any analysis method
or a language. In Section 2.3, we review the works about COVID-19 analysis and social
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media that have specifically used topic modelling for analysis purposes; these works are
not limited to any language. We focus on the Arabic language in Section 2.4 and review the
works related to COVID-19 analysis that use Twitter data. Finally, Section 2.5 discusses the
research gap.

2.1. Use of Social Media in Research (Pre-COVID-19)

Digital societies could perhaps be characterized by their increasing desire to express
themselves and interact with others, and this is done through various digital platforms such
as social media. It is reported that roughly 58% of the global “eligible population” (70% of
the eligible population in 100 countries around the world) uses social media [10,27]. Social
media could provide a two-way communication channel for individuals, governments,
businesses, and others to engage with their friends, communities, stakeholders, etc. [10].
The traditional methods of data collection and analysis using surveys and other means
cannot capture such timely and large-scale data, alongside them having other disadvan-
tages. Researchers in recent years have increasingly used social media including Twitter to
study different issues in many application domains and sectors, and this trend has been
ramping up in COVID-19-related research and other studies. Social media and Internet
of Things (IoT) provide the pulse for sensing and engaging with the environments [10].
Sentiment analysis, or opinion mining, that utilizes social and other textual media is a vital
tool in natural language processing (NLP), defined as “the field of study that analyzes peo-
ple’s opinions, sentiments, evaluations, appraisals, attitudes, and emotions toward entities
such as products, services, organizations, individuals, issues, events, topics, and their at-
tributes” [10,28]. Many of the notable works on sentiment analysis rely on machine learning
and social media, with applications in logistics and urban planning [12,25,29–31]; catego-
rizing tweets about road conditions into useful, nearly useful, and irrelevant complaint
tweets [2]; identifying sources of noise pollution [32]; extracting traffic-related information
from tweets [3]; general and traffic-related event detection [6,9,11,33–35]; public opinion
mining for government services [13]; detecting health-related topics from the stream of
tweets (without aiming to detect a particular illness) [36]; tracking the side effects of certain
medications [37]; the detection of top symptoms, diseases, and medications and related
awareness activities [10]; tracking flu infections on Twitter [38], influenza surveillance from
social media data [39–41]; and many more.

2.2. COVID-19 and Social Media (General)

We review here the works about COVID-19 analysis that have used social media
data without regard to any modelling method or a language. Singh et al. [42] analyzed
tweets about coronavirus in different languages including English, French, German, Italian,
and others. Furthermore, they have performed spatiotemporal analysis of the data. They
focused on three countries, which are the United States, Italy, and China, and showed
the time series of tweets and the daily confirmed COVID-19 cases. They found that
the countries that had a higher number of COVID-19 cases also had a higher number
of tweets about COVID-19. Gencoglu [43] applied supervised classification to capture
COVID-19-related discourse during the pandemic. They collected around 26 million
tweets using Twitter streaming API with keyword filtering. They trained classifiers using
k-nearest neighbor, logistic regression, and support vector machine (SVM) to classify
the tweets into 11 categories including donate, prevention, reporting, share, speculation,
symptoms, and others. For training the machine learning classifiers, they utilized two
annotated datasets of questions and comments related to COVID-19. The dataset consisted
of several languages, including English, French, and Spanish, and was generated by native-
speaker annotators based on an ontology. Then, they employed language-agnostic BERT
(Bidirectional Encoder Representations) sentence embeddings to obtain a pre-trained model.
To extract embeddings, they used the TensorFlow framework on a 64-bit Linux machine
with an NVIDIA Titan Xp GPU. They found that Twitter activity increased due to the
increase in the spread of COVID-19 across the world.
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Several other works on the use of social media for COVID-19 analysis have been
reported. These include studies on American and Chinese peoples’ views on COVID-
19 [44], the mood of Indian people during the pandemic [45], the spread of anti-Asian
hate speech [46], the political tension between Brazil and China [47], and the identification
of emotional valence and predominant emotions [48]. Moreover, others have looked
into modelling social media data for COVID-19-related analysis to study the spread of
misinformation about the coronavirus [49–51], discovering political conspiracies in the
U.S. that were posted by Twitter automated accounts during the COID-19 outbreak [52],
identifying the causal relationship of the daily Twitter activity and sentiments during the
pandemic [53], and studying the frequency of the phrases “Chinese virus” and “China
virus” before and after the outbreak in the United States [54].

None of the works reported in this subsection have a focus or methods similar to our
research reported in this paper. None of them have used the distributed big data computing
framework Apache Spark. The discussed works did not support social media in the Arabic
language, which, as mentioned earlier, has its own challenges, particularly since it is not
based on the Latin script. Moreover, the size and period of the used data are also different.

2.3. COVID-19 and Topic Modeling

We review here the works about COVID-19 analysis using social media that have
specifically used topic modelling as the modelling method. These works are not limited
to any language. Liu et al. [55] studied the role of the Chinese mass media during the
COVID-19 crisis using news articles from the WiseSearch database. They applied LDA
and extracted 20 topics and then classified them into nine themes. The topics include
prevention and control policy, prevention and control measures, medical affiliation and
staff, epidemiologic study, and others. The themes include confirmed cases, prevention
and control procedures, medical treatment and research, detection at public transportation,
and others. Kaila and Prasad [56] applied LDA analysis and found the topics related to
the coronavirus from 18,000 tweets. Besides, they applied sentiment analysis and found
that most of the tweets were negative. Abd-Alrazaq et al. [57] identified twelve topics
from 167,073 tweets, collected for the period 2 February 2020 to 15 March 2020, using
LDA and grouped them into four themes: the origin of COVID-19, the source of the
novel coronavirus, the impact of COVID-19 on people and countries, and the methods for
decreasing the spread of COVID-19. Then, they used a simple string-matching technique to
find tweets that contain the selected keywords of the topics. Additionally, they calculated
the interaction rate for each topic after calculating the sentiment score and the number of
retweets, likes, and followers for each topic. None of the works discussed in this paragraph
have applied temporal or spatial analysis, supported social media in the Arabic language,
or used distributed big data computing platforms such as Apache Spark.

Med [58] collected 94,467 posts from the Reddit website in the period between 3 March
and 31 March. Then, they applied LDA and found 50 topics, 10 of them were assigned
to one of the following categories: public health measures, daily life impact, and sense
of pandemic severity. After that, they measured daily changes in the frequency of topics.
Ordun et al. [59] applied keyword analysis to find the most frequent words. They analyzed
around 5.5 million tweets in different languages that are based on Latin script. Arabic,
Chinese, and other languages that are based on non-Latin scripts were not included. They
used term-frequency inverse-document-frequency (TF-IDF) and defined the max_features
to 10,000. In addition, they performed topic modeling and identified twenty topics using
the default parameters of the Gensim LDA MultiCore model. For each topic, they extracted
the top twenty terms and used the first three terms to label the topic. Further, they used
Uniform Manifold Approximation and Projection (UMAP) to visualize how the 20 topics
grouped together. Additionally, they performed a temporal analysis to examine the trend
of topics over time. Additionally, they applied time-to retweet analysis and measure the
time between the tweet and the retweets. None of the works discussed in this paragraph
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have used distributed big data computing platforms such as Apache Spark, supported
social media in the Arabic language, or applied spatial analysis.

Mackey et al. [60] applied the Biterm Topic Model (BTM) to detect topics related
to COVID-19 symptoms, experiences with access to testing, and disease recovery. They
collected around 4 million tweets after filtering by keywords. The data was collected for
the period 3 March 2020 to 20 March 2020. Then, the tweets were grouped into five main
thematic categories: “conversations about first and secondhand reports of symptoms”,
“symptom reporting concurrent with lack of testing”, “discussion of recovery”, “confirma-
tion of negative diagnosis”, and “discussion about recalling symptoms”. For the analysis,
they used python packages and R-studio. Additionally, they analyzed the time and location
for the geotagged tweets (in our work, we use multiple methods for the location extraction
of tweets). Li et al. [61] detected stress symptoms related to COVID-19 in the United
States. They integrated a Correlation Explanation (CorEx) learning algorithm and clinical
Patient Health Questionnaire (PHQ) lexicon and proposed a CorExQ9 algorithm. They
collected 80 million tweets for the period of January 2020 to April 2020 and used a Jupyter
computing environment deployed on the Texas A&M High Performance Computer. They
compared CorExQ9 with LDA and non-negative matrix factorization (NMF). Moreover,
they visualized the symptoms of COVID-19 related stress at the county level for multiple
two-week periods. These works differ from our work in multiple aspects, including the
differences in the foci of the studies, the overall methodology, the specifics of analysis,
the time period of the data used, and particularly the processing of social media in the
Arabic language.

2.4. COVID-19 and Twitter (Arabic Language)

We review the works related to COVID-19 analysis that use Twitter data with a focus
on the tweets in the Arabic language. Alam et al. [62] analyzed Arabic and English tweets
during the COVID-19 pandemic to find whether the tweets contained a factual claim.
They defined annotation guidelines for manual annotation. Alshaabi et al. [63] collected
tweets in 24 languages including Arabic. They created time series for the top thousand 1 g
for each language. Then, they applied basic observations about some of the time series
data, including the use of the word “virus” in the tweets of all languages. Alsudais and
Rayson [64] collected around 1 million tweets about coronavirus for the period December
2019 to April 2020 and clustered them using the K-means algorithm with the Python
Scikit-learn package. They found five topics; these are “COVID-19 statistics”, “prayers for
God”, “COVID-19 locations”, “advice and education for prevention”, and “advertising”.
Besides this, to identify rumors, they applied supervised classification and labeled 2000
tweets as false information, correct information, and unrelated. The review of the works on
COVID-19 analysis using Twitter data in the Arabic language shows that the works on the
topic are scarce and are limited in their variety and the depth of the technologies, methods,
and analysis used in those works. For example, none of these works have used big data
platforms, and none have reported spatio-temporal analysis.

2.5. Research Gap, Novelty, and Contributions

The literature review provided in this section clearly establishes the enormous poten-
tial of social media analytics for COVID-19-related studies. The traditional methods of data
collection and analysis using surveys and other means cannot capture such timely and
large-scale data, alongside them having other disadvantages. The state-of-the-art social
media analytics for COVID-19-related studies is limited. Many more studies are needed
to improve the breadth and depth of the research on the subject with regard to the focus
of the studies, the size and diversity of the data, the applicability and performance of the
machine learning methods, the diversity of the social media languages, the scalability of
the computing platforms, etc. The maturity of research in this area will allow the develop-
ment, commercialization, and wide adoption of the tools for pandemic-related and general
surveillance and other purposes.
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The research reported in this paper is different from the existing works on social
media analytics for COVID-19-related studies in several respects, including the focus of
the studies, the methodology, the size of the data, the time/period of the social media data,
support for the social media in the Arabic language, whether the studies have used big
data distributed computing platforms, the breadth and the depth of the reported analysis
such as spatial and temporal analysis, the geographical focus of the studies, and the specific
findings. None of the existing works have reported a similar COVID-19 analysis of Twitter
data in the Arabic language with regard to the modelling method used and the depth
of the analysis. The Twitter data we have used, its time period, and the methodology
of its collection and analysis are different. The methods used for the validation of the
findings are also different. None of the existing works on the COVID-19 analysis has
used big data technologies for social media in Arabic. Even the works that use big data
distributed computing platforms for the analysis of text in languages other than Arabic
are very limited and differ in several aspects. The scalability of the software systems for
COVID-19 analysis is critical and is being hampered due to the challenges related to the
management, integration, and analysis of big data (the 4V challenges). We have developed
a novel architecture and pipeline (see Figure 2) for big data management and analysis
using distributed machine learning. We have also provided an analysis of the execution
time complexity for LDA algorithms for a different number of iterations (between 5 and
1000 iterations) on a varying number of computing cores (see Section 4.4). The use of big
data distributed computing technologies is important, because it will allow the scalability
and integration of COVID-19-related software with each other and with other healthcare
and smart city systems.

Figure 2. The tool architecture.

3. The System Methodology and Design

The architecture of the proposed system is depicted in Figure 2. It comprises five
components that are depicted in the figure as five separate blocks and discussed in the
following subsections subsequent to the overview below.

3.1. The System Overview

We built our tool in Apache Spark, which is a big data platform for in-memory
computations on distributed data. Apache Spark provides the Spark ML package for
machine learning and Spark SQL for data handling. Spark SQL acts as a distributed SQL
engine. Additionally, it offers a programming abstraction called DataFrames, which is
conceptually equivalent to a table in a relational database but is immutable, parallel, and
distributed to handle big data. Moreover, the proposed tool was developed using Python
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and runs over Aziz supercomputer, which supports running Spark with YARN. Aziz
consists of 380 regular computer nodes, 112 compute nodes with large memory, as well as
2 additional GPU compute nodes and 2 additional MIC compute nodes. All the computer
nodes run CentOS 6.4 with dual Intel E5-2695v2 processors. Each node has 24 cores.
Regular nodes provide 96 GB memory, while large memory nodes provide 256 GB memory.
Further, they provided the Fujitsu Exabyte File System (FEFS) which offers high-speed
storage to store input/output data for the running jobs. It provides 7 petabytes of memory.

Algorithm 1 shows the master algorithm. The inputs are the search queries and the geo-
coordinates, which are required for the Data Collection and Storage Component (DCSC) in
addition to the location dictionary, which will be used during spatio-temporal information
extraction. The dataset was collected using the Twitter REST API and stored in MongoDB.
Then, the tweets will be loaded into Spark DataFrame (DF), which is a distributed data
collection organized into named columns. After that, the tweet Dataframe will be passed
to the Data Pre-Processing Component (DPC), which removes noise from the text and
provides cleaned, normalized, and stemmed tokens. Furthermore, the major concerns will
be discovered using the Measures and Concerns Detector Component (MCDC), which
applies an unsupervised LDA model to cluster the tweets. Subsequently, to perform
spatial and temporal analysis, the date, time, and location information are extracted
using a Spatio-Temporal Information Component (STIC). Finally, in the Validation and
Visualization Component (VVC), the results are visualized and validated against external
or internal sources.

Algorithm 1: Master

Input: search_query; geo_coordinate; location_d
Output: The discovered concerns and their space and time information

1 tweets ← DCSC(search_query, geo_coordinate)
2 spark ← createSparkSession()
3 tweets_DF ← spark.read(tweets)
4 tweets_p_DF ← DPC(tweets_DF)
5 tweets_g_DF ←CDC(tweets_p_DF)
6 tweets_st_DF ← STEC(tweets_g_DF, location_d)
7 VVC(tweets_g_DF, tweets_st_DF)

3.2. Data Collection and Storage Component (DCSC)

The experimental dataset contains Arabic tweets collected using Twitter REST API
during the period from 1 February to 1 June 2020. The total number of fetched tweets are
approximately 14.8 million tweets. The tweets were acquired using two methods. First,
we use keywords and hashtags related to coronavirus, such as #corona and #< � ������>,
#covid19, as well as official accounts that post about it, such as the account of the Saudi
Ministry of Health (@SaudiMOH). The second method is fetching tweets without keyword
filtering to make sure that we do not miss any important tweets because we want to see
what are the topics that people were talking about and how the pandemic has changed
their life. Subsequently, we used geolocation filtering to obtain only tweets posted in
Saudi Arabia because our main focus in this work is to find the major concerns during the
pandemic time in Saudi Arabia.

Algorithm 2 illustrates the algorithm of the data collection. To store the collected
tweets, we searched for a storage method that supports flexible schemas. Therefore, we
selected the NoSQL databases, particularly MongoDB, which is a document-oriented
database. They enable storing various document data types, such as XML and JSON.

Moreover, to store the output of each component, we used Parquet file storage. One
of the reasons for selecting Parquet is because it is supported by many data processing
systems, including Apache Spark. Besides this, it automatically preserves the schema of
the original data and provides a good performance for both storage and processing. The
files were stored using the Fujitsu Exabyte File System (FEFS), which is a scalable parallel
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file system based on Lustre. Finally, the duplicated tweets were removed before passing
them to the next stage, which is pre-processing.

Algorithm 2: Data Collection and Storage

Input: search_query; geo_coordinate
Output: The collected tweets

1 db ← connect_MongoDB()
2 api ← connect_Twitter_API()
3 collect_store_tweetsCOVID19(api, db, search_query, geo_coordinate)
4 collect_store_tweets(api, db, geo)

3.3. Data Pre-Processing Component (DPC)

The main pre-processing steps can be summarized as follows: (1) irrelevant character
removal, (2) tokenizer, (3) normalizer (4) stop-word removal, and (5) stemmer. In the first
step, we removed all the numbers, the English alphabet, and all punctuation marks. This
means removing @, which every username started with, and # and _, which are used in
hashtags. However, we leave the hashtag name itself if it is not in English because it might
include useful information, such as the city name. Removing English and punctuation
means also removing links and all punctuation including Arabic semi-colons (	) and Arabic

question marks (
). Furthermore, we removed the thirteen forms of Arabic diacritics [65]
which can be grouped under three categories: vowel, nunation and shadda diacritics.
Vowel diacritics include the three main short vowels, called in Arabic Fatha (�), Damma

( �), and Kasra ( �), as well as the Sukun diacritic ( �), which indicates the absence of any
vowel. Nunation diacritics represent the doubled version of the short vowels known in
Arabic as Fathatan ( ��), Dammatan ( ��), Kasratan ( ��). The last form of diacritics is Shadda

(germination). It refers to the consonant-doubling diacritical (�). This also can be merged

with diacritics from the two previous types and result in a new diacritic such as (�) or ( ��).
The second step is dividing the text into tokens. We used the split() method in

Python with the white-space separator. The third step is using the Normalizer to nor-

malize the words (tokens) that contain different forms of Alif (
�
�, ��,

�
�), ‘Yaa’ (�� ) and ”TAA

MARBUTAH/ ��” into the basic form. To clarify, the letter “Taa marbutah” ( ���) will be re-

placed with “haa” ( ��) while “Yaa” (�� ) will be replaced with “dotless Yaa” (�). Additionally,

“Alif” with three forms (
�
�, ��,

�
�) will be replaced with “bare Alif” ( �).

The fourth step is removing stop-words. To do this, we modified the stop-words
provided by the Natural Language Toolkit (NLTK) to include a new list of stop-words
as well as normalize them. Since the NLTK stop-words list was designed for the formal
Modern Standard Arabic, we modified the list to include words that usually used in
dialectical Arabic, such as “ �����”, “���� �”, “ �����”, and “ ����”, in addition to that we consider

the common grammar mistakes. For example, the preposition “�� ” might be written “! ”

and “ �"#�” might be written “ �"�$”. Besides this, we included words that are usually used

in Du’aa (prayer) such as “%& ����”, “'()� �”, “ �*� �”. After that, we normalized the final stop-
words list before using them because they will be extracted from a normalized text. This
component is part of our earlier paper, Iktishaf. For further details, see the pre-processing
algorithm in [6].

Finally, we stem the tokens using the Iktishaf Light Stemmer [6]. Unlike the existing
Arabic light stemmers, Iktishaf stemmer was designed to minimize the number of letters
removed and eliminate changes in the meaning. It used a predefined list of prefixes and
suffixes. Then, based on the length of the word, the tool decides which affix can be removed.
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That leads to minimizing the word confusion and losing or changing the word meaning.
For further details, see the stemmer algorithm in [6].

3.4. Measures and Concerns Detector Component (MCDC)

To discover concerns, we used the Latent Dirichlet Allocation (LDA) topic modeling
algorithm. It is a statistical model that is used to identify the main topics discussed in
a collection of documents. It is an unsupervised method that models documents and
topics based on dirichlet distribution. Each document is characterized by the probability
distribution over various topics while each topic is modeled as a probability distribution
over words. The model received a collection of documents and returned a set of topics.
Each topic includes a set of words. This required defining the number of topics, denoted
by k to model the distributions. In this work, the tweets are the documents and we refer to
topics as concerns. Apache Spark supports LDA since Spark 1.3.0 in the MLlib package
and it also supports it in ML package.

Algorithm 3 illustrates the algorithm of the Measures and Concerns Detector Com-
ponent. The inputs for this component are the pre-processed tweets (tweet_p). The set
concerns number ([K]), the set of iterations number ([R]), and the threshold value. The
output of the DPC will be loaded from parquet files and stored in a Spark DataFrame
(tweet_DF). For training the model, we need to pass the documents (tweets) as vectors
of word counts. Thus, we used the CountVectorizer function. Then, we applied TF-IDF
weight, which is a statistical measure used to evaluate how important a word is to a doc-
ument (tweet) in a collection (tweets). This stands for term frequency-inverse document
frequency. TF-IDF comprises of two parts Term Frequency (TF) and Inverse Document
Frequency (IDF). TF measures how frequently a word occurs in a tweet. It is calculated
using the following equation:

TFw,t =
fwt

nt
, (1)

where fwt is the frequency of word w in tweet t and nt is the total number of words in
that tweet.

IDFt = 1 + log
|T|

|t : w ∈ t| (2)

where |T| is the total number of tweets, and it is divided by the total number of tweets that
contain the word w. Then, the multiplication of TF and IDF will represent the weight of the
word w in tweet t.

TF − IDFw,t = TFw,t × IDFt. (3)

After passing the collection of tweets as a vector to the LDA model, we need to specify
the number of concerns (k), which also can be thought of as cluster centers. To find a
suitable number of concerns, we tested different concerns numbers and calculated the
perplexity. Perplexity is a statistical criterion of how well a probability model predicts
a sample. It is a standard metric to measure generalization performance [66]. Lower
perplexity score indicates a good model. Further, we tested different iteration numbers to
find the best value.

Algorithm 3: Measures and Concerns Detector

Input: tweets_p; [K]; [R]; threshold
Output: concerns[][], tweets_g_DF

1 spark ← createSparkSession()
2 tweets_DF ← spark.read(tweets_p)
3 features_DF ← generate_TFIDF_vector(tweets_DF)
4 LDAmodel ← get_best_model(LDA_clustering(features_DF, [K], [R]))
5 concernsProb_tw_DF ← train_best_model(LDAmodel)
6 concerns[][] ← LDAmodel.describeTopics()
7 concern_tw_DF ← assign_tweets_to_concern(concernsProb_tw_DF)
8 tweets_g_DF ← group_filter_tweets(concern_tw_DF, threshold)
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Figure 3 shows the perplexity score against the number of concerns, k. The perplexity
score decreases with an increase in the value of k with some minor exceptions. The gain
in the perplexity score after k = 15. is relatively insignificant. Therefore, we use 15 as the
value of k—i.e., the number of concerns to be detected by our tool is set to 15. We also
carried out an empirical analysis of the various concerns detected by different values of k
and found that k = 15 produces the best results.
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Figure 3. Perplexity score versus the number of concerns.

Moreover, the model that achieved the best results is trained to obtain a final concerns
list. Furthermore, by calling the describeTopics function, we obtain a list of the top terms for
each concern. From the list of terms, we can understand the concern and thus we define
a label that represents it. For each tweet, we get an array of the probability distribution,
which represents how much the tweet belongs to each cluster. The concerns probability as
well as the tweets are stored in concernsProb_tw_DF. We need to make each tweet belong to
one concern (cluster), so we pick the concern with the highest probability in the array and
we consider it the best concern that represents the tweet. Thus, we get a group of tweets
under each concern. Since we have a large number of tweets, we assume that some of them
might be included under a specific concern because it represents the highest probability
comparing to the other concerns but the probability value itself might be very low. To keep
only tweets that are highly related to the concern, we decide to define a threshold and filter
out the tweets that have a probability less than the threshold value. This value will depend
on the data; in our particular case, we found that most of the tweets have a probability
higher than 0.8 as shown in Figure 4. So, we set the threshold = 0.8. The outputs of this
component are the lists of top keywords that explain each concern and the tweets grouped
by the concerns. The detected concerns will be explained later in the results section (see
Section 4).

In the MCDC component, we also compute the correlation matrix by calculating
correlation coefficients between the keywords of the detected concerns. This helps in
understanding relationships between the keywords. There are three main types of corre-
lation coefficient formulas, which are Pearson, Kendall, and Spearman correlation. The
Pearson correlation coefficient is the most commonly used. We selected it in this work. It
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measures the linear dependence between two variables. The Pearson correlation between
two variables x and y is computed using Equation (4) below.

r = ∑(xi − x)(yi − y)√
∑(xi − x)2 ∑(yi − y)2

, (4)

where xi is the ith value of x variable, yi is the ith value of y variable, x is the mean of the
values of the x variable, and y is the mean of the values of the y variable.

 

Figure 4. Tweet intensity versus probability of concerns.

The correlation matrix (see Section 4.1) is an asymmetrical (K × K) square matrix
where AB entry is a cell in the matrix that shows the correlation between two keywords in
row A and column B. Each cell has a value between 1 and −1, where 1 represents a strong
positive correlation and −1 represents a strong negative correlation.

3.5. Spatio-Temporal Information Component (STIC)

In this work, we identify concerns, and then each tweet under each concern that has
information about location or time, we call it an event. To apply spatio-temporal analysis,
we need to know the time and the location of the extracted event.

The obtained data using the Twitter API are encoded using JavaScript Object No-
tation (JSON). Each tweet object we obtained can have over 150 attributes associated
with it according to their documentation [67]. Each child object, such as users and place,
encapsulates attributes to describe it.

We extracted time and date information from “created-at” attribute which shows UTC
time when the tweet was created. For location extraction from the tweet object, we applied
different techniques.

The first approach is extracting location names from the “text” attribute. It contains
the tweet message. The location name might be explicitly mentioned in the text or it might
be part of the hashtags. We generated a dictionary for Saudi cities in English and Arabic as
well as their coordinates. Before using the dictionary to search for the cities’ names in the
text, we passed the Arabic names list to Iktishaf Light Stemmer because we extracted them
from the text after applying pre-processing. However, if the city name is not found in the
text, we move to the next approach, which is looking for geo coordinates information.

Therefore, the second approach is obtaining coordinates from “coordinate” or “place”
child objects. The “place” child object includes several attributes, such as “place_type”,
“place_name”, “country_code”. The “place_type” can be either city or point of interest
(poi). Moreover, we do not move to this approach unless we do not find the information
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in the text because the associate geo-coordinates within the tweet object represents the
location where the user physically present at the time of posting the tweet and it does not
necessarily be the actual location of the event that they are talking about. If users disable
location services in their smartphones, the value of these attributes will be null.

Thus, the third approach we follow is extracting information from the “user” child
object. This contains the user profile information such as the screen name and bio, which in-
cludes a short description as well as the country and city name. Users fill in the information
manually so they can be written in English or Arabic and they might use different spelling
such as Makkah can be written as Makah or mecca. Therefore, our location extractor was
designed to extract both English and Arabic names as well as the common names for Saudi
cities. However, users usually fill in this information when they create their account and
do not change them when they travel to another country/city. That is why we leave this
option to the end and we do not apply it unless we do not find the location information
from the previous two approaches.

3.6. Validation and Visualization Component (VVC)

We followed two methods to validate the identified concerns as well as their spatial
and temporal nature. The first method is based on searching against various official sources,
reports, and news media on the web. We consider it an external validation. The second
method is based on Twitter data we have, where it can give us the detailed information in
addition to space and time information, particularly if it was posted by an official news
account such as @spagov or the account of Ministry of Health.

After identifying the public concerns using the MCDC (see Section 3.4), we drew line
charts to show changes of concerns overtimes. Further, to show the concerns for their
spatial nature, we plotted them on top of the Saudi Arabia map. For this purpose, we used
Power BI and Tableau.

4. Results and Analysis

We will now discuss the results of our proposed system. Section 4.1 describes the
detected pandemic measures and concerns (topics) using LDA. Section 4.2 provides an
analysis of the identified measures and concerns as regards their temporal nature (the date)
as well as the validation process of the identified concerns using internal sources (Twitter)
and external sources (online news media). Section 4.3 provides an analysis in terms of
their spatio-temporal nature (the date and the cities). Section 4.4 provides an analysis of
the model execution times using distributed computing. Finally, Section 4.5 discusses the
relationship between the detected measures and concerns.

4.1. COVID-19: Pandemic Measures, Public Concerns, and Macro-Concerns

Table 1 lists the fifteen major pandemic measures and public concerns (hereon we
refer to them as public concerns or concerns) discussed by the public on Twitter during
the COVID-19 pandemic. These are grouped into six groups that we call macro-concerns
(Column 1). These are virus infection, daily matters, contain the virus, social sustainability,
economic sustainability, and back to normal. Column 2 gives the rank in terms of the
importance of the concern based on the percentage of tweets for each concern (percentage
is listed in Column 3). The concerns are listed, firstly, in groups (macro-concerns) and,
within each macro-concern, by the descending order of the rank. The fifth column of
the table shows the top ten keywords related to each concern. Primarily, these keywords
are the clusters extracted by our tool using the LDA approach described in Section 3.
Subsequently, we assigned a label (i.e., concern) to each cluster of keywords based on our
understanding of the keywords in each cluster. For the purpose of gaining understanding
about a cluster of keywords, we looked at the tweets that were associated with a cluster
with the highest probabilities (we refer to these as the top-ranked tweets). We illustrate this
in the following by example. The first row in the table lists the first public concern, which is
COVID-19 Cases. This includes keywords including health, announce, new, case, register,
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and infection. These keywords are usually used by individuals and various organizations
(e.g., the Ministry of Health in Saudi Arabia) when disseminating information related to
the daily number of cases, deaths, etc. The following is one such tweet by the Ministry of
Health (the number of cases, deaths, etc. would vary in these tweets).

  الله
The Ministry of Health announces the registration of (382) new cases of infection with
the new Coronavirus (COVID 19) and records (35) cases of recovery and (5) cases of
death, may God have mercy on them.

The second row lists the concern Supplications and its keywords. Supplication is
an important part of Muslim beliefs and daily life. Muslims supplicate when they face
difficulty or hear good news (they may also supplicate without any good or bad news). To
illustrate, Muslims believe that a difficulty is a test from God (Allah), and thus they are
encouraged to increase their supplications. During the pandemic, people might pray asking
Allah to protect them and others from the virus. Muslims increase their supplications
greatly during Ramadhan (the lunar month of fasting that comes once a year). The month
of Ramadhan this year (2020) fell between 24 April and 23 May. The keywords for this
concern are clearly representative of the label “Supplications”.

The third concern is Quarantine. This is one of the methods that have been followed
by various countries to prevent the spread of the virus by isolating healthy people from
potentially unhealthy people who could have been infected with the SARS-CoV-2 virus.
The fourth concern is about the Five Daily Prayers. Muslims pray in congregations, next
to each other without gaps, at mosques five times a day. The Saudi government suspended
all the congregational prayers across all mosques in the Kingdom to prevent the spread of
the virus. We found tweets from individuals and organizations similar to the following
top-ranked tweet.

1441 28 1441 8

Urgent starting from Sunday 8 Shawwal 1441 AH until the end of Saturday 28 Shawwal
1441 AH prayers are permitted to be performed in all mosques of the Kingdom, except for
#Makkah

This explains the existence of the keywords Sunday, Saturday, and Shawwal in the
clustered keywords. Shawal is the tenth month of the Islamic lunar calendar. The fifth
identified concern is Stay Home. From the top keywords, we can see that people consider
staying home a strong measure to stop the spread of COVID-19 and save lives. To increase
awareness among people about the importance of their role in fighting the coronavirus
outbreak, authorities used the slogan “We are all responsible”, which is visible in the
keywords of this concern. The sixth concern is Loan. The COVID-19 pandemic has severely
affected people’s financial situation globally due to reasons such as the loss of jobs. They
are seeking loans or struggling to repay loans, which makes it one of the major pandemic
concerns. The seventh concern is Cleaning Services. During the pandemic, the cleaning
services were in high demand such as for cleaning public areas affected by virus-carrying
people. The following tweet is an example of this concern.

#

#Riyadh_municipality continues its tours to sterilize and clean the roads of Riyadh
during the period of #curfew to provide a safe and healthy environment for the residents
# WAS_general
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Table 1. COVID-19 pandemic: government measures and public concerns (1 February–1 June 2020).

Macro-Concern Rank % Public Concern Keywords

Virus Infection 1 10.46% COVID-19 Cases
���+, ��& �,�, �-��-+& , �%$�+, .�/0� �1�& , 2��3& 4���, 2��3& 4��, �567, -��-+& , �")8��

Case, Infection, New, Cases, Virus, Register, Health, New, Announce

Daily Matters

2 8.86% Supplications

�"0�9�, :;�
�< , -)�& , ��� �=� , :�49, �>�3�&?, �>� �@9�, A��& �, �B+�, 28C& �

Ameen, Great, Country, Health, Muslim, Glory to, Ramadan,
Epidemic, Mercy, Make

4 7.87% Five Daily
Prayers (Salah)

-+�, ����C, D�� �?, E!?, ����F �G, �8B+& , �!,, � �B+& , -+& �49, �H�&?
Sunday, Life, Shawwal, Peace, End, Friday, Prayer, Group, Mosque,

Saturday

11 5.81% Mobility
�-+& , �I����, �J��/K, /0& , ��/9, �L/K, �H�=�, ��5M, �I��, H& 4C

Jeddah, Riyad, Road, Through, Traffic, Roads, Time, Local, Land,
According to

Contain the
Virus

3 8.38% Quarantine
.���, A��;

�N, /5&C, O�56�N, H& ��K, 2�-B+, � �;8��, �"#PQ, R��, S67
People, Things, Quarantine, Person, Fine, Praise be to God, Means,

Possible, Go, True

5 6.53% Stay Home
D� ��49, .�/��� �=, D �/ �09, � ������, �C& ��TU, A� �1�& , ���=�, � ��C!?, ���V, �567

Responsible, Virus, Home, Corona, Facing, Stay, Strong, Weapon,
Circle, Health

9 6.13% Prevention
(COVID-19)

�"0�9/C, �W��/X�N, EV� �+, Y)9, �� �4�� �� �, A�49, .�/0� �=, � ������, � �?, -3)�
Haramain, Holy, Custodian, King, Spread, Evening, Virus, Corona,

Hour, Reduce

7 6.46% Cleaning
Services

�I����, ��/X�N, �W�� �< ����, �#9, :�?�, � ����-9, 2�1��, � ���9�, 2,����, ��<9�
Riyadh, Company, Clean, Makkah, Peace, Medinah, Move,

Municipality, Continue, Rains

13 5.70% Curfew
Z��9, �#9, D�5&[

�, �9/#9, � ����-9, 2 �+�V, ��/�=, 2���&C& , ���-�� �=, �����9
Prevent, Makkah, Wandering, Mukaramah, Medinah, Inside, Order,

Jubail, Video, Munawarah

Social
Sustainability

8 6.39% Hospital
Treatment

/0� �+, \ �1 �4��49, �C& �5[& ,
�W)9, R��&,, �)��@ �=, EV, ]/0& ��, :�=�, H& C�,

Good, Hospital, Need, File, Morning, Type, Blood, Donation,
Number, Owner

Economic
Sustainability

6 6.48% Loan

�I����, R��&,, -B+, �I�/�=, V�-?, E���, ����, �9V��=, �"9�, ��^�
Riyadh, Morning, Thank, Loans, Pay, Day, Light, Coming, Security,

My family

10 5.92% Prize Draw
� ������, ���-�� �=, �H������, ���-^, .�/0� �=, H& 56N, �"K��9, E���, _�/X�N, �J���9

Corona, Video, Retweet, Gift, Virus, Withdraw, Citizen, Day, Terms,
Documented

12 5.80% Salary
I� �+, :`�, ]�<�=, �� V�8?, H& �����, �9�#C, �9 ���, ]�a��C& �, E� �< ��, �)5&M

Private, Done, Sector, Saudi, Salary, Government, Crisis, Meeting,
System, Council

14 4.74% Offers
:;b �C, V��, �_�c , �>�#��, $��, � ������, 23& 4���, �>���, �>��& ��, �L��1C

Discount, Code, Okaz, Be, First, Corona, Register, Noon, Coupon,
Rights

Back to Normal 15 4.48% Back to Normal
�V� , ��� �-�& , �d��, ���?�, ]� �=V, 2+�/9, � ���/�0+�, � ������, D�����9�, -a��8��

Back, Beginning, First, Message, Defense, Phase, Precaution, Corona,
Compliance, Depend

The eighth concern is Hospital Treatment. From the top keywords, we can see
that the need for blood donation became very high during the pandemic. This was an
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international concern because fewer people donated blood. It could be because they cannot
visit hospitals/clinics because of the curfew or because they are worried about getting
infected. Besides this, according to the Food and Drug Administration (FDA) [16] the
number of blood donations dramatically declined during the pandemic time due to the
implementation of social distancing as well as the cancellation of blood drives. We found
several tweets in our dataset similar to the following, with differing patient file number
and hospital name. We removed the file number from the tweet to protect the patient’s
identity.

 
Urgent owner of the file —– needs #Blood #Donation type: accepts all blood types King
Faisal Hospital #Jeddah

The ninth pandemic-related concern is about the Prevention of COVID-19. This is
clear from the top keywords: reduce, spread, corona, virus, and others. The top tweets
that we found for this concern have shown different prevention strategies applied by the
government to instill a sense of responsibility and to increase awareness among people
about the importance of their role in fighting the spread of this virus. One of the approaches
is enforcing curfew. The following tweet was posted on 22 March by @spagov account,
which is the official account of the official Saudi Press Agency (SPA) for the news of the
royal decrees, orders, council of ministers, and official statements.

7  

The Custodian of the Two Holy Mosques issues a curfew order to limit the spread of the
new #Corona_virus starting at 7 p.m.

Besides this, as another example, the Twitter account of the Ministry of Health (@Saudi-
MOH) has posted the following tweet on 22 March.

 
For your safety, we recommend postponing non-urgent medical appointments and proce-
dures. #Coronavirus_prevention

Another tweet with the same hashtag, #Coronavirus_prevention, was posted by the
official account of the Minister of Health Dr. Tawfiq Al-Rabiah (@tfrabiah) on 15 May
before the end of the curfew and the return to normal. He encouraged people to wear
masks before getting out of their houses.

 
I advise everyone to use a cloth mask when going out of the house #Coronavirus_prevention

Moreover, we found another tweet posted by @SaudiMOH on 30 March about the
government order to treat all COVID-19 patients for free.

  الله
. 

The Minister of Health announces the order of the Custodian of the Two Holy Mosques,
may God preserve him for free treatment to all citizens and residents infected and violators
of the residency system with the new #Coronavirus.

The tenth pandemic-related concern regards Prize Draw. Note in Table 1. the top
keywords, such as withdrawal, documented, video, gift, and retweet. It is common on
social media to see some users announce prizes that will be given to a randomly selected
follower who retweets their tweet. This helps them to increase their popularity because
they will get more followers and thus it would be a mean of earning. This can be done by
individuals or companies. The following tweet is an example.

11

Withdrawal tonight is documented in the video . . . the gift is iPhone 11 retweet and follow

The 11th public concern includes the keywords roads and traffic, and therefore we
named it Mobility. The levels of daily mobility have changed significantly during the
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COVID-19 crisis throughout the world. All forms of transportation from road traffic flow
to commercial flight activities have been reduced due to the fear of getting infected and
the government lockdowns. The following tweet shows an example from Jeddah, the
second largest Saudi city. This was posted on 19 March by the official account of the traffic
department in Saudi Arabia, @eMoroor.

 
Jeddah roads are witnessing a decrease in the level of traffic, which reflects the commitment
to preventive and precautionary procedures [.] Thank you and we wish everyone safety.

The 12th pandemic-related concern is Salary. The top keywords include salary, private,
government, and sector. Many employees lost their jobs due to the government lockdown
restrictions and the closure of shops. Besides this, small, medium, and large businesses
were also severely affected. Many organizations cut down their employees’ salaries and/or
laid off their employees. The 13th concern is Curfew. The top keywords include prevent,
wandering, and the names of some cities. The 14th public concern is Offers. Discount,
code, and coupon are among the top keywords. Various vendors in order to compensate
for their losses due to the business closures in physical spaces have provided offers to
attract online shopping customers.

Finally, the 15th concern is Back to Normal. This is related to the issues that need to be
addressed for returning to normal life (as opposed to the life during the pandemic). By the
end of the curfew, the authorities in Saudi Arabia started a new awareness campaign under
the slogan “� �-5[&

��V�8��” (returning with caution). People were discussing and responding
to this campaign on social media. This is the last concern in terms of the ranking, because
we believe that it includes fewer tweets compared to the other concerns. The “Back to
Normal” was a relatively recent public concern within the dataset this stage had started by
the end of May and our dataset contains tweets until 1 June.

Figure 5 visualizes the correlation matrix. The correlation matrix is visualized as a
heatmap using the Seaborn library in Python. We computed the correlation matrix by
calculating the correlation coefficients between the keywords of the detected concerns to
show the relationship between the keywords (see Section 3.5 for details on its computations).
There are a total of 15 concerns with 10 keywords each. We remove the duplicates keywords
that exist in multiple concerns and sort them based on the frequency and keep the top
50 keywords. The dark blue color represents the strongest positive relationship between
keywords while the dark red represents the strongest negative correlation. For example,
note the dark blue color between wandering and prevent, which are used when mentioning
Curfew. Note the dark blue squares between the keywords facing, stay, home, and strong,
which imply a strong positive relationship between them. As mentioned earlier, these
keywords refer to the Stay Home concern. There also seems to be a strong positive
correlation between custodian, holy, and Haramain, which are usually used when referring
to the Custodian of the Two Holy Mosques, the King of Saudi Arabia. Besides, a strong
positive correlation can also be noted between Makkah and Mukarramah, which is the
full name of Makkah city, as well as Madinah and Munawwarah, which is the full name
of Almadinah city, the two holiest cities in Islam. Additionally, note the light blue color
between the Makkah and Madinah keywords that shows that these two words have a
mild positive relationship, which makes sense because these two cities appear together in
many tweets. Note also the positive correlation between case, health, announce, register,
corona, and infection. As mentioned earlier, these keywords are used when posting about
COVID-19 cases.

Note that the most distinctive horizontal or vertical line is the line for the corona key-
word, indicating that it has a relatively distinctive relationship with most of the keywords
even though the light colors indicate mild positive and negative correlations. The highest
positive correlation appears to be between corona and virus, while the highest negative
correlation is between corona and good. This makes sense, because good is a positive
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keyword. Finally, we note that there are not many dark red colors, implying that none of
the keywords have strong negative correlations between them.

Figure 5. The correlation matrix of keywords.

4.2. Temporal Analysis

In this section, we will investigate how the public concerns have evolved over time
during the pandemic. Figure 6 depicts the changes in the intensity of the tweets over time
for the fifteen identified public concerns. We elaborate the data on these trends in Figure 6
using the following six figures, one for each of the six public macro-concerns.

Figure 7 depicts the intensity of tweets related to the public macro-concern Contain

the Virus. The public concerns in this macro-class include curfew, stay home, quarantine,
prevention, and cleaning services. The curfew was ordered on 22 March and applied from
the next day between 7 a.m. and 6 p.m. It can be seen that the highest peak (for Curfew)
was on 2 April. From external validation [68], we found that on that day the Makkah and
Madinah cities were put under a 24 h curfew to prevent the spread of the virus and protect
the health of residents. It appears that this 24 h curfew event was this detected highest
peak because these are the two holiest cities in Saudi Arabia and for the whole Islamic
world, and thus the lookdown of these two cities drew the attention of everyone.
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Figure 6. Daily Twitter activity of government measures and public concerns (all).

 
Figure 7. Daily Twitter activity for a macro-concern (Contain the Virus).

Figure 7 shows the Twitter activity for the Stay at Home public concern in red color.
It can be seen that the highest peak for this concern was on 21 March. We found that on
that day the Government Communication Center of the Information Ministry launched the
new visual identity initiative for the awareness campaign for coronavirus under the slogan
“D� ��49 � ��)e” (we are all responsible) to encourage people staying at home [69]. We believe
that people interacted with this initiative and posted about it on Twitter using the hashtag
# � ��)e_D� ��49 that explains a large Twitter activity related to the Stay at Home concern on
that date. The Prevention concern is represented in Figure 7 using a light purple color. The
highest detected peak for this concern was on 22 March and the second-highest peak was
on 30 March. We found that many orders have been placed around the end of March to
control the spread of the virus, including the order of curfew that has been announced on
22 March [70]. Further, as posted in the Ministry of Health website, on 30 March the King
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of Saudi Arabia ordered providing free treatment to all citizens, residents, and even those
who violated the residency rules [71].

The line plot in purple color in Figure 7 represents the quarantine concern. There are
several peaks between 22 March and 18 April. The posts about quarantine had increased
after the spread of the virus in the country and the increase in the number of cases. As
we mentioned earlier, the government enforced several actions, including lockdown and
curfew, as well as closing mosques, schools, and shopping malls by the end of March. The
public concern cleaning services is represented in Figure 7 in green color. Note in the graph
that the number of tweets start increasing after 22 March and reach the highest point on 3
April. Generally speaking, individuals and organizations have become more careful and
concerned with cleanliness. As mentioned in Section 4.1 using example tweets, the Riyadh
municipality has been sterilizing and cleaning the roads of the Riyadh city to provide a
safe and healthy environment. This tweet was posted on 26 March, which is in the same
period that shows a surge in the discussion about this concern.

Figure 8 depicts the intensity of tweets related to the public macro-concern Virus

Infection that includes one public concern, COVID-19 Cases. Note in the figure that
between mid-March 2020 and the end of May (with some intermittent gaps), people have
an increased Twitter activity related to the virus infection concern—i.e., the spread of
coronavirus and the increase in the number of cases. Specifically, the top two highest
peaks are on 22 and 30 March. We found from the external validation process that involves
searching in online news media (see Section 3.6) that the number of daily cases increased
on 22 March from 48 to 119, while on 30 March the number of cases increased from 96
to 154. This is a significant increase in the number of cases, considering that it was the
beginning of the pandemic period in Saudi Arabia. This caught the attention of the people
and increased the worries, leading to a peak in the Twitter activity on the subject.

Figure 8. Daily Twitter activity for a macro-concern (virus infection).

Figure 9 shows the intensity of the tweets for the public macro-concern Back to

Normal that includes one public concern with the same name Back to Normal. The
highest peak was on 29 May. We found that on that date the Minister of Health posted the
following tweet on Twitter:

 الله

We are cautiously beginning the first stages of #returning_with_Caution, so we depend
on your commitment. We hope that you follow the precautions.
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Figure 9. Daily Twitter activity for a public macro-concern (back to normal).

This tweet was posted by the end of the nationwide coronavirus curfew. The Ministry
of Health considered it the first stage to return to normal and started a new awareness
campaign under the slogan “� �-5[&

��V�8��” (returning with caution). The interaction of

people with this announcement as well as the use of the hashtag “# ��V�8��_� �-5[&” explain the
increase in the tweet intensity on that day.

Figure 10 plots the intensity of the tweets for the public macro-concern Daily Matters

that includes three public concerns: Five Daily Prayers (Salah), Supplications, and Mo-

bility. Note in the figure that the intensity of the tweets about Supplications (see camel
color) increased with the spreading of the virus and the increased number of cases. People
in Saudi Arabia increased their supplications in response to the COVID-19 crisis. They
ask God to protect them and their families from the virus, as well as asking for an end
to the pandemic. The light blue color represents the Salah concern. The highest peak is
on 26 May. Looking in the news media, we found that on that day an official source in
the Ministry of Interior announced that, starting from Sunday 8 Shawwal (31 May) until
Saturday 28 Shawwal (20 June), they will allow prayers to be held in all mosques of the
Kingdom (except the mosques in the Makkah city) [72]. This explains the sharp increase
in the tweet intensity on that day, because people were very happy with this news since
praying at the mosque is critical for Muslims. The orange color represents the intensity
of tweets about the Mobility concern. Note in the figure that the highest peak is on 24
March, which is two days after the curfew was implemented in Saudi Arabia. This Twitter
activity was in response to how the roads appeared (empty) on the first day of the curfew.
We verified this through online articles (see, e.g., [73]). The users of social media shared
videos and photos showing the main streets empty due to the coronavirus curfew.

Figure 11 shows the intensity of the tweets for the public macro-concern Social Sus-

tainability, which includes one public concern, Hospital Treatment. There was an increase
over time in the Twitter activity on this concern during the pandemic, particularly during
the later part of March up until mid-April. This was due to the difficulties related to
the difficulties in getting treatment at hospitals and other related matters. Particularly,
we found several articles in the local newspaper (Okaz) [74,75] encouraging people to
donate blood because the blood bank supplies became low due to the COVID-19 situation.
Additionally, we found in the collected dataset several tweets about the need for blood
donation where they shared the patient files numbers in different hospitals in different

38



Int. J. Environ. Res. Public Health 2021, 18, 282

cities. Furthermore, the Saudi Twitter hashtags account (@HashKSA) posted the following
tweet on 12 April:

 
Figure 10. Daily Twitter activity for a public macro-concern (impact on daily life).

 .بنوك الدم تشكو قلة المتبرعین بعد جائحة #كورونا
مدیرة بنك الدم في التخصصي “د.الحمیدان” تؤكد شدة الحاجة وتحث على التبرع بالدم والصفائح خصوصاً لمرضى
 #الأورام و #زراعة_الأعضاء
Blood banks complain about the lack of donors after the Corona pandemic. The direc-
tor of the blood bank in Specialist Hospital, Dr. Al-Humaidan, emphasizes the need
and urges to donate blood and platelets, especially for the patients of #oncology and
#organ_transplants.

Figure 12 depicts the Twitter activity related to the macro-concern economic sustain-
ability, which includes the public concerns Prize Draw, Salary, Loan, and Offers. The blue
color represents the Prize Draw concern. A well-known Twitter activity is about some
Twitter users who post about a prize and then pick randomly from users who retweeted
their tweet about the prize. One of the reasons for them to do this is to get more followers
and become famous, and then this is one of the ways to earn income. This activity helps
both the person who wins the prize and the one who announced it. It can be noticed in the
graph that, during the pandemic, the intensity of the tweets related to this concern was on
the rise. We think that having more free time due to staying at home could be a reason for
the increase in such activities on social media. Besides this, the financial difficulties that
have become a concern for many people due to the pandemic perhaps have led the people
to find other ways to earn income. The green color represents activity for the concern
Offers. Note in the figure that the intensity of the tweets began to increase around the
end of March. The timeline coincides with the timeline of curfew enforcement and shop
closures. This, we believe, led business owners to increase sale offers on their products
to attract customers to keep shopping from their online stores. Our personal experience
in Saudi Arabia in the last few months is that many businesses have gone online or have
increased their online sales activities. Social media is one of the free and powerful ways for
marketing, and the trend of online shopping and sales offers can be witnessed here.

The public concern Salary in Figure 12 is represented by the magenta color plot in the
figure. We found that on 3 April King Salman of Saudi Arabia ordered the government to
contribute towards 60% of the salaries of Saudi private-sector employees with a financial
incentive of 9 billion Riyals in total [21]. This explains the dramatic rise in the intensity
of tweets on that day. The brown color represents the Loan concern; its highest peak was

39



Int. J. Environ. Res. Public Health 2021, 18, 282

on 22 March. We found that on that day the Saudi Arabian Monetary Agency (SAMA)
announced that Saudi local banks will postpone the 3-month mortgage installments of all
public and private health workers starting from April 2020 [20].

Figure 11. Daily Twitter activity for a public macro-concern (social sustainability).

 
Figure 12. Daily Twitter activity for a public macro-concern (economic sustainability).

4.3. Spatio-Temporal Analysis

We investigate in this section the spatio-temporal behavior of selected public concerns
during the pandemic. We overlay the location of the specific detected concerns on top of
the map of Saudi Arabia. We plot only the tweets that include location information. The
size of the circle represents the intensity of the relevant tweets.

Figure 13 depicts the location of tweets about the public concern Curfew posted
on 2 April 2020. For governance purposes, Saudi Arabia is divided into 13 provinces.
Their names are listed on the left of the figure. We have selected the spatial behavior
of the concern curfew on this date because the temporal analysis we presented earlier
(see Section 4.2, Figure 7) revealed that on that day a 24 h curfew was enforced in the
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Makkah and Madinah cities. Note in the figure that the largest circle is over Makkah, and
this validates the information we already have. We were expecting to find another large
circle over Madinah city, but we did not. The official name of Madinah city in Arabic is
“ ������TU � �� ����-TU �”, transliterated as “Al-Madinah Al-Munawwarah”. The Arabic word “ �� ����-TU �”
(Al-Madinah) can also mean “the city”, referring to a city that is being referred to in a
context, implicitly or explicitly—that is, people may refer to a city as “the city” that is being
mentioned in the same tweet or the name of the city may be known from the context of
the tweet. The choice we have made in designing the location extractor is that the word
“Al-Madinah” if appearing without “Al-Munawwarah” is not considered as a location. We
consider the tweet to be about the Madinah city only if the city name is mentioned in full
(Al-Madinah Al-Munawwarah). Note in Figure 13 that the activities related to the concern
curfew can also be seen in other cities around the kingdom, with some circles (Riyadh)
larger than the others. This is because prayers in the main mosques of Makkah (Mecca)
and Medina are important for people all around the world.

 

Figure 13. Spatio-temporal behavior of public concern (curfew: 2 April 2020).

Figures 14 and 15 illustrate the location of the tweets about the public concern COVID-

19 Cases on 22 March and 30 March, respectively. These two dates are selected for the con-
cern COVID-19 Cases because the temporal analysis we presented earlier (see Section 4.2,
Figure 8) has revealed that the two top peak intensities for the concern happened on these
two dates. A total of 119 cases were reported on 22 March, 72 of these in Makkah, 43
in Riyadh, 15 in Eastern Province (4 in Dammam, 4 in Qatif, 3 in Alhasa, 3 in Alkhobar,
and one in Dhahran), and one in Alqassim [76]. This explains many circles in the eastern
province in Figure 14. Each circle represents a city and the size reflects the tweets’ intensity.
Note the large light blue circle over Riyadh city and large green circles around Jeddah and
Makkah (Jeddah is in Makkah province). We also know that people all around the country
were interested in the situation, so they posted about the virus spread and the number of
infected people. This explains the presence of circles in different cities around the kingdom.
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Figure 14. Spatio-temporal behavior of public concern (COVID-19 cases: 22 March 2020).

Figure 15 depicts the spatial information for 30 March. A total of 154 cases were
reported on the day with the following distribution: Makkah (40), Dammam (34), Riyadh
(22), Madinah (22), Jeddah (9), Haffof (6), Alkhobar (6), Qatif (5), Taif (2), and one in each
of the following cities: Yanbu, Buraydah, Alras, Khamis Mushait, Alduwadimi, Dhahran,
Samta, Tabuk [77]. To help to understand the map, note that Dammam, Haffof, Alkhobar,
Dhahran, and Qatif are in the Eastern Province, whereas the Makkah, Jeddah, and Taif
cities are in Makkah Province. Comparing Figure 15 with Figure 14, note that there are
some additional circles in Figure 15, implying that the discussion about the public concern
had spread to other cities. Moreover, the discussions on the public concern increased in
Makkah (dark green circles), perhaps mostly due to the concern becoming a bigger issue
over time during March 2020.

4.4. Execution Time Analysis

We explained earlier that our tool is designed as a distributed computing tool to
address scalability in terms of big data and compute-intensive analytics applications. The
tool was developed using the distributed computing platform Apache Spark and was
executed on the Aziz supercomputer (see Section 3.1). LDA clustering is RAM-intensive.
We have used multiple nodes with 256 GB RAM each.

Figure 16 plots the execution times of the LDA algorithm with five iterations against a
varying number of cores (24, 48, 72, 96, 120, 144, and 168). The number of features, in this
case, was not limited (compare with Figure 17). The results show that parallelizing the LDA
algorithm on a higher number of cores (up to a certain extent) reduces the execution time.
The LDA algorithm took 163.9 h (6 days) on 24 cores. We were able to reduce this time to
the minimum time of 23.6 h using 168 cores. Increasing the number of cores beyond 120 (to
144 and 168) did not help much and only managed to reduce the execution time of the LDA
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algorithm a little. This behavior where the execution time of a parallel algorithm does not
decrease with an increase in the number of computing cores or nodes is a normal behavior
in parallel or distributed computing and happens when the task size is small relative to
the number of cores. This is caused by the overhead of parallelizing or distributing a task.
Usually, once the parallelization reaches a saturation point where an increase in the number
of cores does not decrease the execution time, the execution time may even begin increasing
with an increase in the number of cores (see Figure 17).

Figure 15. Spatio-temporal behavior of public concern (COVID-19 cases: 30 March 2020).

Figure 17 plots the execution times against the number of cores (24, 48, and 72)
for a varying number of LDA iterations (5, 10, 50, 100, 250, 500, 1000) using 10,000 fea-
tures/keywords (we have limited the number of features to reduce execution times). For the
LDA algorithm with 1000 iterations, we are able to reduce the execution time by more than
half, from 16.8 h on 24 cores to 7.4 h on 48 cores, benefitting from an increase in the number
of cores. The LDA algorithms with the lower number of iterations (5, 10, 50, . . . , 500) have
also benefited by their execution on a higher number of cores. However, a further increase
in the number of cores (72 from 48) does not improve execution speed and rather increases
the execution time. As explained earlier, this is a normal behavior in parallel computing
due to the parallelization reaching the saturation point.

Generally speaking, a higher number of iterations is expected to produce better clus-
ters. Our experiences in this work suggest that the clusters (public concerns) obtained from
100 iterations were better than the other configurations in terms of the relationship between
the keywords of a cluster, etc., enabling us to better label the clusters with appropriate
public concern names. Based on the results, the best choice was to execute LDA with
100 iterations on 72 cores. The results reported in this paper are based on this configuration
(LDA with 100 iterations and 10,000 features).
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Figure 16. Execution time vs. number of cores for varying number of LDA iterations (no limit on the number of features).
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Figure 17. Execution time vs. number of cores for various numbers of LDA iterations (a limited number of features—
10,000 keywords).

It may appear that the total savings one would obtain by using our tool on Apache
Spark would be 4 h (7.34–3.31 h, for the LDA algorithm with 100 iterations). The process of
LDA clustering such as presented in this paper may require running the LDA algorithm
many times on large volumes of data with different numbers of iterations and features.
In our case, we executed the LDA algorithm with various configurations between 30 to
40 times. For this, using the LDA algorithm with 5 to 1000 iterations would easily require
over a month of computing time. The ability of the tool to execute in parallel could save a
month of computing time in this case and speed up the development process. For larger
datasets, executing sequential codes may not even be possible, or distributed computing
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could save years of development time. How to select the number of cores for a given job
that could save experimental time and energy itself is a challenge and has been addressed
in our other works [78,79].

4.5. Pandemic Measures, and Public Concerns, and Their Interrelationship

Table 1 lists the fifteen major pandemic measures and public concerns discussed
by the public on Twitter during the COVID-19 pandemic. The pandemic measures are
quarantine, stay home, prevention (COVID-19), cleaning services, curfew, loan, salary, and
back to normal. The measures taken by the public and industry to address the economic
difficulties caused due to the COVID-19 pandemic are offers and prize draw. The public
concerns are COVID-19 cases, supplications, Five Daily Prayers (Salah), mobility, hospital
treatment. Some measures, in a way, could also be concerns. For example, quarantine, stay
home, prevention (COVID-19), curfew, loan, salary, and back to normal are both measures
and concerns.

The interrelationship or impact of public, industry, or government measures on public
concerns can be evidenced in our analysis presented in this section. For example, the events
related to loans were being discussed by the public, but were the highest peak was detected
on 22 March, the day when the Saudi Arabian Monetary Agency (SAMA) announced it
in the media (see [20]). Another example is the “No Mobility” event (empty roads) that
was vigorously discussed on 24 March, two days after the curfew measure was announced.
The impact of the quarantine and curfew measures was also seen in a reduction in blood
donations and blood supplies, leading to increased Twitter activity (concern) on this topic
requesting blood donations from late March to mid-April. This concern can also be seen as
a measure by the hospital authorities to announce the blood shortage and request action
from the public.

5. Conclusions

The level of digital and physical connectedness of today’s societies has never been
seen before. We travel a lot to distant lands and frequently share gifts and viruses with
each other. Unfortunately, the COVID-19 pandemic has exposed the vulnerabilities of this
unprecedentedly connected world. The COVID-19 pandemic is rapidly growing across the
world. Many countries have been affected and the number of cases has greatly increased.
World Health Organization (WHO) declared it a pandemic on 11 March 2020. Currently,
medical specialists can only treat the symptoms of the disease, since there are no cures for
this disease, and developing a new vaccine with low risks and a high success rate will take
time. Therefore, it is a serious global health issue.

Social networking platforms such as Twitter streams hundreds of millions of posts
daily. They can be treated as a useful medium for the dissemination of information
about diseases. This provides us a great opportunity to study and capture the dynamics
of real-world events and understand the various public measures being undertaken by
governments, as well as the changes in the daily activities of people during such outbreaks.

In this paper, we proposed a software tool that aims to detect government pandemic
measures and public concerns during the COVID-19 pandemic. The methods used in
the tool include an unsupervised Latent Dirichlet Allocation (LDA) topic modeling algo-
rithm, natural language processing (NLP), correlation analysis, and other spatio-temporal
information extraction and visualization methods. The tool is built using a range of tech-
nologies, including MongoDB, Parquet, Apache Spark, Spark SQL, and Spark ML. The tool,
its architecture, five software components, and its algorithms are described in detail. Using
the tool, we collected a dataset comprising 14 million tweets from the Kingdom of Saudi
Arabia (KSA) for the period 1 February 2020 to 1 June 2020. We formulated and analyzed
the findings of this paper from three relationship perspectives: information-structural,
temporal, and spatio-temporal.

Concerning the information-structural or subject matter perspective, we have detected
15 government pandemic measures and public concerns and have grouped them into
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six macro-concerns. For the pandemic measures implemented by the Saudi government
concerning the COVID-19 pandemic, we detected curfew and restrictions on mobility in
the country, quarantine and fines, restrictions on praying in the mosques, campaigns to
stay home, COVID-19 prevention, and cleaning services provided to curb the coronavirus
spread. For economic sustainability, we detected that the government provided financial
incentives including loans and private-sector salaries. Businesses increased offers to
increase their sales. People moved to or increased in their online economic activities,
such as activities related to prize draws for income earnings. For health, well-being, and
social sustainability, we detected that blood donation and treatment at hospitals have
been a major cause of concern. People also actively talked about the new number of
cases. The daily livelihood issues in Saudi Arabia include the five daily congregational
prayers at the mosques that were suspended by the government. People also increased in
supplications for the safety of people. A significant reduction in mobility was noted across
the country that was related to environmental sustainability, health, and well-being due
to the reduction in traffic congestion and air pollution. As regards the temporal perspective,
we were able to detect the timewise progression of events from the public discussions on
COVID-19 cases in mid-March to the first curfew on 22 March, financial loan incentives on
22 March, the increased quarantine discussions during March–April, the discussions on
the reduced mobility levels from 24 March onwards, the blood donation shortfall from late
March onwards, the government’s 9 billion SAR salary incentives on 3 April, lifting the ban
on five daily prayers in mosques on 26 May, and finally the return to normal government
measures on 29 May 2020. For the spatio-temporal perspective, we extracted location
information using different approaches including tweet text and hashtags, geo-coordinate
attributes, and user profiles. We were able to detect important events in over 50 cities
around the kingdom, with major activities related to COVID-19 cases, curfew, etc., in the
Makkah, Riyadh, and Eastern provinces. We validated the detected government measures
and public concerns and their spatial and temporal nature through external validation by
searching online news media or internal validation by checking tweets.

The detected events in KSA are also aligned with international concerns, such as
various lockdown measures [14], reduced mobility [15], reduction in blood donations [16],
financial difficulties and related government incentives [17,18], and worries related to
returning to normal times [19]. Saudi Arabia has followed different strategies to fight the
outbreak, instill a sense of responsibility, and raise awareness among people about the
importance of their role in the fight against coronavirus. The government undertook early
actions to prevent the spread of the virus. KSA reported its first case of the COVID-19
on 2 March. One week later, they closed the schools. On 16 March, they suspended all
international and national flights, closed shopping malls, and suspended all sports activities.
On 18 March, the attendance of employees at their workplaces in government agencies
and the private sector was suspended. Furthermore, the king ordered free treatment for all
citizens and residents, even for the violators of the residency system. The KSA government
also provided financial incentives in terms of private-sector salaries and the temporary
postponement of loan payments.

The research reported in this paper is different from the existing works on social
media analytics for COVID-19-related studies in several respects, as has been discussed
in detail in Section 2. None of the existing works have reported a similar COVID-19
analysis of Twitter data in the Arabic language in terms of the modelling methods used
and the depth of the analysis. The software developed for this work is part of the tool
Iktishaf [6–9] that we have been developing for the last few years. The ability of the tool to
execute in parallel could save a month of computing time for the specific dataset size and
the problem addressed in this paper and speed up the development process. For larger
datasets, executing sequential codes may not even be possible, or distributed computing
could save years of development time.

The findings presented in this paper show the effectiveness of the Twitter media in
detecting important events, government measures, public concerns, and other information
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in time, space, and information-structure with no earlier knowledge about them. The
utilization possibilities of such tools are unlimited. For example, governments could learn
about the various public concerns in pandemic and normal times and develop policies
and measures to address these concerns. The public could raise their concerns and give
feedback on government policies. The public could learn about various public and industry
activities (such as economic activities detected by our tool) and get involved in these
to address financial, social, and other difficulties. The standardization and adoption of
such tools could lead to real-time surveillance and the detection of disease outbreaks (and
other potentially dangerous phenomena) across the globe and allow governments to take
timely actions to prevent the spread of diseases and other disasters. The international
standardization of such tools could allow governments to learn about the impact of policies
of various countries and develop best practices for national and international response.

While we have shown good evidence of the use of LDA, NLP, and other methods,
more work is needed to improve the breadth and depth of the work with regard to what
can be detected, the diversity of data and machine and deep learning methods, the accuracy
of detection in space and time, and the real-time analysis of the tweets.

Our focus in this work is on Saudi Arabia. The tool hence currently works with
tweets only in the Arabic language. The tool can be used in other Arabic language-
speaking countries, such as Egypt, Kuwait, Bahrain, and UAE. The system methodology
and design of the tool developed in this paper are generic, and therefore the tool can be
extended to other countries globally. This will require the adaptation of the tool with
additional languages, such as English, Spanish, or Chinese, by additional modules in the
pre-processing and clustering modules.
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Abstract: Accurate predictions of COVID-19 epidemic dynamics may enable timely organizational
interventions in high-risk regions. We exploited the interconnection of the Fresenius Medical Care
(FMC) European dialysis clinic network to develop a sentinel surveillance system for outbreak
prediction. We developed an artificial intelligence-based model considering the information related
to all clinics belonging to the European Nephrocare Network. The prediction tool provides risk
scores of the occurrence of a COVID-19 outbreak in each dialysis center within a 2-week forecasting
horizon. The model input variables include information related to the epidemic status and trends in
clinical practice patterns of the target clinic, regional epidemic metrics, and the distance-weighted
risk estimates of adjacent dialysis units. On the validation dates, there were 30 (5.09%), 39 (6.52%),
and 218 (36.03%) clinics with two or more patients with COVID-19 infection during the 2-week
prediction window. The performance of the model was suitable in all testing windows: AUC = 0.77,
0.80, and 0.81, respectively. The occurrence of new cases in a clinic propagates distance-weighted
risk estimates to proximal dialysis units. Our machine learning sentinel surveillance system may
allow for a prompt risk assessment and timely response to COVID-19 surges throughout networked
European clinics.

Keywords: SARS-CoV-2; COVID-19; sentinel surveillance system; outbreak prediction; machine
learning; artificial intelligence

1. Introduction

Due to its unique characteristics, the Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2) pandemic has posed unprecedented challenges to clinics providing life-
saving services to patients suffering from chronic illnesses, including chronic kidney
disease (CKD). In fact, non-specific clinical manifestations of Coronavirus disease 2019
(COVID-19) [1] as well as the viral transmission from asymptomatic or pre-symptomatic
individuals [2–4] make the early recognition of newly infected cases extremely difficult.
Moreover, the occurrence of superspreading events (SSEV), during which few individuals
are able to infect many people [5], hampers infection control measures [6,7].

Social distancing, preventive quarantine, and the isolation of infected subjects still
represents the most effective means to reduce the risk of SARS-CoV-2 human-to-human
transmission [8,9]. However, patients with end-stage kidney disease (ESKD) need to
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undergo in-center dialysis three times per week for 4 h per session, which makes phys-
ical distancing more difficult to achieve due to repeated, prolonged interactions with
other patients and healthcare staff [10–13]. Unfortunately, ESKD individuals also show a
higher risk of complications following SARS-CoV-2 infection due to weakened immune re-
sponse [14–17] and to the occurrence of many of the risk factors commonly associated with
development of severe COVID-19 [18,19], including older age and comorbidities [20,21].
Moreover, because of compromised host immunity, a vaccine may not exhibit the same
efficacy on hemodialysis patients as it does in immunocompetent individuals [13].

Therefore, the reduction of the contagion risk within dialysis clinics while preserving
clinical operations is a key challenge for healthcare systems during this pandemic. To
help anticipate local epidemic dynamics and adjust non-pharmacological interventions
to the changing background of infection risk, we sought to develop an advanced sentinel
surveillance system supported by a machine learning (ML) prediction model, where the
occurrence of COVID-19 cases in a clinic propagates distance-weighted risk estimates to
adjacent dialysis units. The present study describes the derivation and validation of the
prediction model, as well as the strategies adopted to monitor its performance throughout
the pandemic period.

2. Materials and Methods

2.1. Design and Setting

All dialysis clinics belonging to the Fresenius Medical Care (FMC) European Nephro-
care Network confer clinical data to a centralized data-repository, namely the European
Clinical Database (EuCliD®, Fresenius Medical Care, Deutschland GmbH, Vaiano Cre-
masco, Italy) [22,23]. Since April 2020, all SARS-CoV-2 infections (suspected and confirmed
cases as well as initial symptoms), diagnostic procedures, and clinical endpoints are re-
ported in the treatment incident report (TIR) module in EuCLiD®. We used aggregated data
abstracted from the TIR, open source data describing epidemic dynamics in European coun-
tries, as well as aggregated data on biochemical assays prescriptions and results to estimate
outbreak risk in dialysis clinics belonging to the FMC European Nephrocare Network.

2.2. Outcome Variable

The model forecasts the risk of a COVID-19 outbreak in each dialysis clinic in a 2-week
horizon. Clinic outbreak is defined as the occurrence of two or more COVID-19-confirmed
cases in a given clinic. Therefore, for each clinic registered in the Nephrocare network,
the model estimates the probability of COVID-19 outbreak (2 or more PCR confirmed
cases within a 2-week horizon) as a function of a vector of input variables. Study design is
represented in Figure 1.

Figure 1. Study design: Reference timeframe for data collection/calculation is shown.

For illustrative purposes, we established 3 risk categories: (1) low (L), when outbreak
risk is less than or equal to 1.5%; (2) medium (M), risk greater than 1.5% and less than or
equal to 12.5%; (3) high (H), if risk is greater than 12.5%. For this purpose, the action thresh-
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old defining the low risk class has been chosen to select a subpopulation of clinics where
the risk of outbreak is very small so that non-pharmacological interventions to prevent the
spread of COVID-19 can be temporarily and partially mitigated. In this context, a costly
error would be to assign to the Low Risk class a clinic which will experience an outbreak in
the following two weeks. Such threshold would be useful when a sufficiently large share of
clinics (i.e., P(Class = L)) could be found, so that P(Class = L|Outbreak = No) is high and
P(Outbreak = Yes|Class = L) is, conversely, very small. On the other hand of the spectrum,
we selected a more specific action threshold, which defines a High-Risk Class of clinics. In
this risk group, additional non-pharmacological intervention should be initiated including,
for example, the formal testing of temperature and thorough physical examination admin-
istered to each patient before entering the clinic or even periodical screening test (i.e., once-
weekly). Since the intervention would require intensive resources, may be constraint by
procurement difficulties, and would unduly overburden patients with unnecessary testing,
the High Risk threshold should ideally define a group where P(Outbreak = Yes|Class = H)
is high and both P(Class = H|Outbreak = No) and P(Outbreak = Yes|Class �= H) are low.
It is important to remark that the choice and number of the action thresholds depends on
the intended use of the risk score, the set of interventions available to the organization,
the price cost of each intervention, and ultimately by the value function ranking the desir-
ability/undesirability of different health outcomes. Therefore, the thresholds presented
in this paper should not be considered generalizable per se: different institutions may
choose different thresholds (or no thresholds at all) depending on the availability, cost,
and expected outcomes of COVID-19-related interventions (i.e., email alerts to medical
directors, shipments of medical equipment such as face masks or diagnostics kits, delivery
of health education modules, PCR screening, etc.,). Therefore, the problem is not diagnostic
in nature, yet reduces to optimal ranking (and longitudinal stability of such ranking of
risk) in order to efficiently allocate limited resources and minimize risk for the patients
throughout a continuously changing epidemic landscape.

2.3. Input Variables

The model is computed using aggregated data provided by all the dialysis centers
(min: 545; max: 611) located in one of the 23 countries of the FMC European Nephrocare
Network. The final model incorporates 74 variables belonging to one of the following
categories (Appendix A):

1. Open Source Data [24];
2. Epidemic status in the clinical country/region (prefix: RG): 15 parameters;
3. Aggregated Data abstracted from EuCLiD®:

a. Epidemic status in the target clinic (prefix: CL): 5 variables;
b. Distance-weighted information of the adjacent clinics (prefix: CLS); 5 variables.

Adjacent clinics were defined as the 3 centers with shorter distance in terms of
both latitude and longitude to the target clinic. Measures of the adjacent clinics,
including cases and trends, were computed as the average value weighted for
the inverse of the distance to the target clinic;

c. Other parameters related to the target clinic (prefix: CL): 49 parameters.

As detailed in Appendix A, each variable can be calculated/collected over different
timeframes of the ascertainment period, i.e., the last 7 days (d), previous 7 d, last 14 d,
previous 14 d, and previous 28 d.

2.4. Statistical Analysis
2.4.1. Model Derivation

We used XG Boost, a scalable ML system for tree boosting [25]. We used the available
open source package [26] for Python, Version 3.7.4 (Python Software Foundation, Delaware,
DE, United States) [27].

The first release of the model was trained using data related to 1st April 2020 (training
dataset index date), while the second and the third versions were derived using data
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related to 15th July 2020 and 1st November 2020, respectively. We considered all the clinics
delivering services to at least one patient on the index date as well as over the week before
index date.

2.4.2. Model Accuracy and Feature Importance

Prediction accuracy of each release was tested every first and fifteenth day (validation
dataset index dates). Therefore, development and validation datasets can include the same
set of clinics/patients every two weeks.

To evaluate model performance, we measured the area under the curve (AUC) of the
receiver operating characteristics (ROC) curve in the testing datasets [28] using Python,
Version 3.7.4 (Python Software Foundation, Delaware, DE, United States) [27]. The AUC
provides an aggregate measure of performance as the ROC curve plots the true positive
rate (TPR) against the false positive rate (FPR) at all classification thresholds. Model
discrimination ability over time was monitored by visual inspection of AUC trends.
For illustrative purposes, we also reported the classification performance in terms of
P(Outbreak|Class) (i.e., probability of outbreak (Yes/No) given the assigned risk class
(L/M/H)) and P(Class|Outbreak) (i.e., probability of the assigned risk class given the
outbreak) for the two action-thresholds chosen (0.015 and 0.125). In order to calculate
P(Outbreak|Class) and P(Class|Outbreak) we artificially treated our problem as a binary
decision for each threshold. We computed average probability values across the whole
study period.

Feature importance was computed using the SHapley Additive exPlanations (SHAP)
method [29]. This analysis enables intuitive model explainability via an accurate and
efficient estimation of the contribution to risk of each input variable.

2.4.3. Descriptive Statistics

For both the training and validation datasets, we analyzed the number of active
clinics, frequency and incidence of a COVID-19 outbreak, the distribution of clinics in each
prediction level of risk (low, medium, high), as well as the relative risk compared to clinics
in low-risk groups with Python, Version 3.7.4.

3. Results

3.1. Dialysis Clinic Characteristics

Model version 1, 2, and 3 were trained using a dataset related to 1st April 2020,
15th July 2020, and 1st November 2020, respectively. On these dates, active clinics were 589,
597, 603, while 34 (5.77%), 44 (7.37%), and 233 (38.64%) clinics had two or more patients
with COVID-19 infection in the fortnight after the index date.

The surveillance system stratifies clinics by their risk of new local outbreak within two
weeks. To facilitate the interpretation of the results, we established three risk categories:
(1) Low, when outbreak risk is less than or equal to 1.5%; (2) Medium, risk greater than
1.5% and less than or equal to 12.5%; (3) High, if risk is greater than 12.5%. Risk thresholds
depend both on the incidence of pandemic and on the ability of any given clinic to imple-
ment containment measures. Figure 2 reports the share of active dialysis clinics in different
risk classes at each testing date.

The actual outbreak incidence in the dialysis clinics during the validation period is
reported in Figure 3.
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Figure 2. Number of dialysis clinics at the validation dates. Colors denote risk categories: Red, high > 12.5%; Yellow,
medium 1.5% < x ≤ 12.5%; Green, low ≤ 1.5%.

Figure 3. Model Performance and Incidence of Clinics with Outbreaks: the plot reports data related to the 1 year observa-
tion period.

3.2. Model Performance

All versions of the model showed a good performance over the validation period.
Figure 3 shows trends in AUC values of the three model versions over a 1-year observation
period. Variability in prediction accuracy decreased as retraining was applied: version 1’s
average AUC was 0.73 (95% CI 0.55–0.91), AUC of version 2 was 0.75 (95% CI 0.65–0.86),

55



Int. J. Environ. Res. Public Health 2021, 18, 9739

while version 3 had a more stable performance with an average AUC of 0.79 (0.74–0.85).
The ROC-AUC diagram for the three model versions have been reported in Figure 4.

Figure 4. Cont.
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Figure 4. Panel (a–c) respectively contain the ROC-AUC plot related to Model 1, Model 2, and Model
3 evaluated on the following dates: 15 April 2020, 1 August 2020, and 15 November 2020.

In order to demonstrate the potential use of the model, we geographically mapped
the risk on a few exemplary dates, i.e., the 2 August 2020, 4 October 2020, 1 November
2020, and 3 January 2020 (Figure 5). The graphical representation visually highlights clinic
clusters according to the risk of a COVID-19 outbreak occurrence within 2 weeks (Figure 5,
left panels, colored circles denote the low, medium, and high-risk categories). There was
substantial correlation between the predicted risk (Figure 5, left panels) and the actual
outcome (Figure 5, right panels) on all of the validation dates.

Figure 5. Cont.
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Figure 5. COVID-19 outbreak risk mapping in European clinics of the Nephrocare network. Geographical risk maps were
built considering epidemic data related to the following exemplary dates: (a) 2 August 2020, (b) 4 October 2020, (c) 1
November 2020, and (d) 3 January 2020. Panels on the left show clinic clusters according to the risk of a COVID-19 outbreak
occurrence within 2 weeks: Red circles: risk > 12.5%; Yellow, 1.5% < risk ≤ 12.5%; Green, risk ≤ 1.5%. Panels on the right
report the actual incidence of COVID-19 outbreaks in the forecasting period.
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Tables 1 and 2 report the classification performance in terms of P(Outbreak|Class)
(i.e., probability of outbreak (Yes/No) given the assigned risk class (L/M/H)) and P(Class
|Outbreak) (i.e., probability of the assigned risk class given the outbreak) for the two
action-thresholds chosen (0.015 and 0.125). In order to calculate P(Outbreak|Class) and
P(Class|Outbreak), we artificially treated our problem as a binary decision for each thresh-
old. We computed average probability values across the whole study period.

Table 1. Average classification performance in terms of P(Outbreak|Class) (i.e., probability of outbreak (Yes/No) given
the assigned risk class, L) and P(Class|Outbreak) (i.e., probability of the assigned risk class given the outbreak) at the low
action-thresholds (predicted risk = 0.015).

Low Risk Group. P(Class = L) = 0.648

P(Class = L|Outbreak = Yes) P(Class �= L|Outbreak = Yes) P(Class = L|Outbreak = No) P(Class �= L|Outbreak = No)
0.23 0.77 0.73 0.27

P(Outbreak = Yes|Class = L) P(Outbreak = No|Class = L) P(Outbreak = Yes|Class �= L) P(Outbreak = No|Class �= L)
0.06 0.94 0.37 0.63

Table 2. Average classification performance in terms of P(Outbreak|Class) (i.e., probability of outbreak (Yes/No) given the
assigned risk class, H) and P(Class|Outbreak) (i.e., probability of the assigned risk class given the outbreak) at the high
action-thresholds (predicted risk = 0.125).

High Risk Group P(Class = H) = 0.197

P(Class = H|Outbreak = Yes) P(Class �= H|Outbreak = Yes) P(Class = H|Outbreak = No) P(Class �= H|Outbreak = No)
0.51 0.49 0.14 0.86

P(Outbreak = Yes|Class = H) P(Outbreak = No|Class = H) P(Outbreak = Yes|Class �= H) P(Outbreak = No|Class �= H)
0.40 0.60 0.09 0.91

Overall, the risk score was strongly associated with the likelihood of COVID-19
outbreak, as demonstrated by the relative risk of outcome occurrence in the three risk
classes over the study period (Table 3).

Table 3. Average classification performance in terms of relative risk of COVID-19 outbreak by risk
class. The relative risk is calculated as RR = P(Outbreak=Yes|Class)

P(Outbreak=Yes|Class=L) .

Risk Class RR

L −ref
M 3.45
H 5.95

3.3. Model Feature Importance

Feature analysis investigated the impact of each variable on model output (Figure 6).
Although there are some differences among the model versions, overall, the most important
variables are related to the epidemic dynamics in the clinic in the period immediately
preceding the index date for risk evaluation. Regional data on the number of COVID-19
cases and deaths were likewise ranked high. The number of COVID-19 cases in adjacent
clinics resulted in the top predictor list of all three model versions. Of note, variables
routinely measured in clinical practice, including changes in CRP and blood white cell
count over the observation period, were also strongly associated with outbreak risk.
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Figure 6. Cont.
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Figure 6. Panel (a–c) respectively contain the Shapley additive explanations (SHAP) related to Model 1, Model 2, and Model 3 evaluated
on the following dates: 15 April 2020, 1 August 2020, and 15 November 2020. SHAP plots show relative feature importance. The blue
bar represents overall SHAP values for each variable and are interpreted as relative importance of each variable to risk estimates. On
the right side, SHAP values show the direction of association between predictor and risk estimates. Each dot represents one individual
clinic from the test dataset. Higher values of the predictors are represented in red color; lower values of the predictors are represented
in blue color. The X axis represents the impact of variables on risk in terms of SHAP values. Red color in correspondence with positive
values suggests direct correlations between risk factors and the occurrence of COVID-19 outbreak, while red color in the region of
negative SHAP values suggests inverse correlation.

4. Discussion

The present study describes the development and validation of a novel sentinel
surveillance system allowing for the prompt risk assessment of a COVID-19 outbreak in a
large European network of dialysis clinics over a 2-week forecasting horizon. The model
had a stable accuracy over time and was able to consistently discriminate outbreak risk
in dialysis units across all European countries at every stage of the current pandemic, i.e.,
during epidemic growth and decay phases. The design of our ML prediction model enables
administrators and developers to quickly retrain this tool in case the visual inspection of
AUC values over time suggests a trend toward a decrease in its discrimination ability.

Nosocomial transmission has greatly contributed to an increase in the global burden
of COVID-19 pandemic by extremely affecting the capacity of the health system, not only
to provide medical support to patients, but also to protect healthcare professionals [30,31].
Dialysis centers are particularly vulnerable to outbreak development [11,12,32] in that
mitigation strategies are not entirely feasible due to the necessity of in-person encounters
to provide a life-saving treatment such as hemodialysis [11]. Considering the peculiar
frailty of ESKD patients, all scientific nephrology societies have provided guidance on
COVID-19 transmission prevention in dialysis facilities [33–35]. In this regard, surveillance
and early contagion detection are essential to reduce the risk of local outbreaks developing
into epidemics.
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Clinics of the FMC European Nephrocare Network have implemented multiple non-
pharmacological interventions to limit viral spreading among the CKD community, includ-
ing stringent hygiene procedures, social distancing, and the identification and isolation
of suspected cases. In addition, dialysis facilities have established recording pathways to
report any infection event in the EuCliD® TIR System. Such data are used to monitor the
effectiveness of non-pharmacological intervention and to detect high-risk patients needing
special attention [36–38].

One important feature of our modeling strategy entailed the combined use of open
source and clinical data collected in standard clinical practice. In fact, we exploited the
interconnection of the European Nephrocare clinics to augment background epidemic data
with a surveillance system based on incident reports and practice pattern variation at each
dialysis unit. Information about local epidemic status in a given clinic was then propagated
through distance-weighting metrics to the surrounding facilities. An ML method was used
to integrate all information into a summary score metric. Remarkably, variables related to
the epidemic dynamics in the clinic and to the regional epidemic status, as well as to the
risk proxies propagated from adjacent clinics, were all important predictors of outbreak
occurrence. Such an approach is particularly relevant because it enabled us to capture
local disease spread beyond the registry data compiled for the general population, which
does not capture the heterogeneity of viral transmission in a setting where frequent and
multiple human interactions necessarily occur. Indeed, as the basic reproduction index (R0)
is a function of both the transmissibility of a disease and the contact patterns that underlie
transmission [39], the regional/provincial R0 cannot be translated in dialysis facilities in
that ESKD patients’ biological and socio-behavioral factors significantly differ from those
of the general population [40]. The occurrence of SSEVs further complicates the picture,
making generalizations of regional epidemic trends that are not entirely appropriate for
the reliable prediction of viral spreading in healthcare settings [41,42].

The interconnection of the FMC network allows for the collection and subsequent
central integration of a bulk of information provided by facilities distributed throughout
European countries. This particular setting offers the advantage to perform the real-time
monitoring of sentinel sensors that are likely to provide timely and accurate indications
of epidemic activity [43], while considering the heterogeneity underlying transmission
dynamics. Sentinel surveillance in outpatient settings was previously shown to provide
a robust approach to oversee SARS-CoV-2 spreading [44]. In general, the monitoring of
community transmission in nodes distributed across different regions was reported to
ensure efficient disease detection in networked populations [45]. It is important to highlight
that the analytic strategy adopted in this study is general and can be applied to any
epidemic communicable disease, as all naturally occurring, clustering units where social
promiscuity, density, and duration of interactions are substantially different compared to
the general population. Henceforth, this method may be applied to social contexts with a
high risk of outbreak generation, including schools, hospitals, and workplaces from which
the provided infection data are promptly captured and conferred to a central database,
even in aggregated form. Monitoring of the pandemic situation within the network allows
for the timely implementation of infection control procedures in the adjacent networked
unit and efficiently anticipates resource needs.

Finally, variable importance analysis has indicated that trends in clinical practice
patterns are among the top predictors. This observation indicates that the tracking of
physicians’ prescription behavior can provide valuable information to assess epidemic
dynamics also during explosive growth, when surveillance and laboratory resources are
limited and COVID-19 cases may be recorded with some delay due to the emergency
situation [46].

5. Conclusions

Our sentinel surveillance system allows for a prompt risk assessment and timely
response to the challenges posed by the COVID-19 epidemic throughout FMC European
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dialysis clinics. This tool can have significant implications for public health practice in that it
represents a robust strategy to assess the level of community transmission of COVID-19 and
to guide the selection and implementation of mitigation measures. The same framework can
be applied in other networked settings, such as healthcare facilities or schools to improve
early detection and forecasting of SARS-CoV-2 transmission. Finally, the implementation
of our surveillance system can guide preparedness efforts for future pandemics.
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Appendix A

Table A1. Variables included in the model.

Category Variable Reference Time

Epidemic Status in the Country/Region (prefix: RG)
cumulative cases previous 7 days and last 7 days

number of hospitalized previous 7 days and last 7 days
number of ICU patients previous 7 days and last 7 days

cumulative fatalities previous 7 days and last 7 days
cumulative recovered previous 7 days and last 7 days

trend of cumulative cases last 7 days/previous 7 days
Category Variable Reference Time

trend of hospitalized patients last 7 days/previous 7 days
trend of ICU patients last 7 days/previous 7 days

trend of cumulative recovered in the
last week last 7 days/previous 7 days

trend of cumulative fatalities last 7 days/previous 7 days
epidemic status in the clinic (prefix: CL)

number of suspected COVID-19 cases previous 14 days, previous 7 days, and
last 7 days

change in suspected cases last 7 days–previous 7 days
change in suspected cases last 14 days–previous 14 days
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Table A1. Cont.

Category Variable Reference Time

distance-weighted information of the adjacent clinics (prefix: CL)
number of COVID-19 suspected cases

in the closest clinics
previous 14d, previous 7 days, and last

7 days
change in COVID-19 suspected cases in

the closest clinics last 7 days–previous 7 days

change in COVID-19 suspected cases in
the closest clinics last 14 days–previous 14 days

other parameters related to the clinic (prefix: CL)
change in the number of treated

patients last 28 days–last 14 days

change in the number of treatments last 28 days–last 14 days
change in the weekly dialysis frequency

per clinic last 28 days–last 14 days

change in the weekly dialysis frequency
per patient last 28 days–last 14 days

change in the number of treatments
with pre/post-BT last 28 days–last 14 days

change in the number of treatments
with pre/post-BT > 37 ◦C last 28 days–last 14 days

change in the percentage of treatments
with pre/post-BT > 37 ◦C last 28 days–last 14 days

change in the mean value of
pre/post-dialysis BT last 28 days–last 14 days

change in the number of treatments
with pre-dyalisis diastolic BP last 28 days–last 14 days

change in the mean value of
pre-dialysis diastolic BP last 28 days–last 14 days

change in the number of treatments
with dialysis time last 28 days–last 14 days

change in the mean value of dialysis
time last 28 days–last 14 days

change in the number of treatments
with IDWG last 28 days–last 14 days

change in the mean value of IDWG last 28 days–last 14 days
change in the number of treatments

with O2 sat last 28 days–last 14 days

change in the mean value of O2 sat last 28 days–last 14 days
change in the number of patients with

lab tests last 28 days–last 14 days

change in the number of lab tests last 28 days–last 14 days
change in the number of lab tests with

Albumin last 28 days–last 14 days

change in the mean value of Albumin last 28 days–last 14 days
change in the number of lab tests with

lymphocytes last 28 days–last 14 days

change in the mean value of
lymphocytes last 28 days–last 14 days

change in the number of lab tests with
monocytes last 28 days–last 14 days

change in the mean value of monocytes last 28 days–last 14 days
change in the number of lab tests with

neutrophils last 28 days–last 14 days

change in the mean value of
neutrophils last 28 days–last 14 days

change in the number of lab tests with
platelets last 28 days–last 14 days

change in the mean value of platelets last 28 days–last 14 days
change in the number of lab tests with

PDW last 28 days–last 14 days
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Table A1. Cont.

Category Variable Reference Time

change in the mean value of PDW last 28 days–last 14 days
change in the number of lab tests with

leukocytes last 28 days–last 14 days

change in the mean value of leukocytes last 28 days–last 14 days
change in the number of lab tests with

D-dimer last 28 days–last 14 days

change in the mean value of D-dimer last 28 days–last 14 days
change in the number of lab tests with

CRP last 28 days–last 14 days

change in the mean value of CRP last 28 days–last 14 days
change in the number of lab tests with

IL-6 last 28 days–last 14 days

change in the mean value of IL-6 last 28 days–last 14 days
change in the number of lab tests with

ANP last 28 days–last 14 days

change in the mean value of ANP last 28 days–last 14 days
change in the number of lab tests with

BNP last 28 days–last 14 days

change in the mean value of BNP last 28 days–last 14 days
change in the number of lab tests with

Ferritin last 28 days–last 14 days

change in the mean value of Ferritin last 28 days–last 14 days
Number of patients with at least one

hospitalization last 14 days

Number of hospitalizations last 14 days
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Abstract: In recent years, more and more health data are being generated. These data come not only
from professional health systems, but also from wearable devices. All these ‘big data’ put together
can be utilized to optimize treatments for each unique patient (‘precision medicine’). For this to be
possible, it is necessary that hospitals, academia and industry work together to bridge the ‘valley
of death’ of translational medicine. However, hospitals and academia often are reluctant to share
their data with other parties, even though the patient is actually the owner of his/her own health data.
Academic hospitals usually invest a lot of time in setting up clinical trials and collecting data, and want
to be the first ones to publish papers on this data. There are some publicly available datasets, but these
are usually only shared after study (and publication) completion, which means a severe delay of
months or even years before others can analyse the data. One solution is to incentivize the hospitals
to share their data with (other) academic institutes and the industry. Here, we show an analysis of the
current literature around data sharing, and we discuss five aspects of data sharing in the medical
domain: publisher requirements, data ownership, growing support for data sharing, data sharing
initiatives and how the use of federated data might be a solution. We also discuss some potential
future developments around data sharing, such as medical crowdsourcing and data generalists.

Keywords: data sharing; data management; data science; big data; healthcare

1. Introduction

The past years have seen a steep rise in the amount of health data being generated. These
data come not only from professional health systems (MRI scanners, pathology slides, DNA tests,
etc.) but also from wearable devices. All these data combined form ‘big data’ that can be utilized
to optimize treatments for each unique patient (‘precision medicine’) [1]. To achieve this precision
medicine, it is necessary that hospitals, academia and industry work together to bridge the ‘valley
of death’ of translational medicine [2]. However, hospitals and academia often have problems with
sharing their data, even though the patient is actually the owner of his/her own health data, and data
sharing is associated with increased citation rate [3,4]. Academic hospitals usually want to be the first
ones to publish papers on the data, because they spent a lot of time in setting up clinical trials and
collecting the data. Society benefits the most if the patient’s data are shared as soon as possible so that
other researchers can work with it [5], but this idea has not settled in yet. Some datasets are publicly
available (e.g., in prostate cancer [6]), but these are usually only shared after studies are finished and/or
publications have been written based on the data, which means a severe delay of months or even
years before others can use the data for analysis. One solution is to incentivize the hospitals [7,8] to
share their data with (other) academic institutes and the industry. Besides this academic reluctance,
data is also being shared less because of stricter privacy laws such as the EU General Data Protection
Regulation (GDPR) [9] and the California Consumer Privacy Act (CCPA) [10]. At the moment, only
around 10% of the world’s population has it personal information covered by the GDPR or similar
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laws, but Gartner Research predicts that this will be around 50% by 2022 [11]. There is an increasingly
urgent need to balance the opportunity big data provides for improving healthcare, against the right of
individuals to control their own data [1]. Scientists should maximize their efforts to improve healthcare,
but they should also only use data with appropriate informed consent. This open science vs. privacy
balance will remain an increasing challenge for the coming years.

The topic of data sharing has received more attention in recent years. In 1980, only 46 articles
(0.0186% of the total) published in PubMed contained the keyword “data sharing”, while in 2019 there
were 5960 articles (0.4253% of the total) containing this keyword (Figure 1). It is also interesting to see
the sudden rise of interest in the subject since 2016, the year of the approval of the GDPR, and another
peak in 2018, the year of its enforcement.

Figure 1. Graph of the number of abstracts of PubMed publications containing the keyword “data
sharing” as a percentage of the total, per year since 1980.

If we use PubMed to find terms related to “data sharing”, there are some interesting observations
(Figure 2). Mostly used are obviously terms such as “patients”, “health”, “study” and “information”,
but closely behind these are “use” (or “used”/”using”), “treatment”, “care” “analysis” and “rights”.
“Use” might point to the fact that data collection and sharing is closely connected to the usage of
the data, i.e., in the consent form it should be mentioned in detail what the health data will be used
for. “Treatment”, “care” and “analysis” point to one of the main uses of the data: analysis in order
to improve treatment and care, for example in clinical decision support (CDS) systems. “Rights” is
probably related to the patients’ privacy rights when it comes to data sharing, an issue that is discussed
in detail in this manuscript.

There have been some studies on the conditions and challenges for sharing data. For example, for
the BigData@Heart platform of the Innovative Medicines Initiative (IMI), a descriptive case study into
the condition for data sharing was carried out [12]. Principle investigators of the participating databases
were requested to send any kind of documentation that possibly specified the conditions for data
sharing, which were then qualitatively reviewed for conditions related to data sharing and data access.
This review revealed overlap on the conditions: (1) only to share health data for scientific research,
(2) in anonymized/coded form, (3) after approval from a designated review committee, and while (4)
observing all appropriate measures for data security and in compliance with the applicable laws and
regulations. These challenges give thought to the design of an ethical governance framework for data
sharing platforms. The conclusion of the case study was that current data sharing initiatives should
concentrate on: (1) the scope of the research questions that may be addressed, (2) how to deal with
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varying levels of de-identification, (3) determining when and how review committees should come
into play, (4) align what policies and regulations mean by “data sharing” and (5) how to deal with
datasets that have no system in place for data sharing.

Figure 2. Wordcloud of all abstracts of PubMed publications containing the keyword “data sharing”,
generated by the R package PubMedWordcloud [13].

Sharing data should not just be a one-way street from the clinician to the researcher; ideally the
clinician, the researcher and the patient (or patient organization) would work together on setting up the
study, so that there is an agreement on data usage upfront, and expectations are managed. Sharing data
will also increase confidence and trust in the conclusions drawn from clinical trials [14]. It will help
to enable the independent confirmation of results (reproducibility), an essential part of the scientific
process. It will foster the development and testing of new hypotheses. Sharing clinical trial data should
also make progress more efficient by making the most of what may be learned from each trial and by
avoiding unwarranted repetition. It will help to satisfy the moral obligation of researchers towards
study participants, and it will benefit patients, investigators, sponsors, and society. In this review,
we discuss several aspects of data sharing in the medical domain. The Section 2 is about publisher
requirements, which shows what guidelines have been created by publishers and editors to promote
the sharing of data. Since academics rely on publication of their data, these are important measures and
a logical first topic to be discussed. The Section 3 shows that there is an ongoing discussion about data
ownership, which influences the way that regulations are being implemented. The Section 4 shows the

71



Int. J. Environ. Res. Public Health 2020, 17, 3046

growing support for data sharing, making the link to open science and the reproducibility of results.
The Section 5 shows data sharing initiatives that have been undertaken recently. The Sections 6 and 7
discusses how the use of federated data might be a solution of the privacy and reproducibility issues
mentioned in the Sections 2–4.

2. Publisher Requirements

Most publishers strongly recommend sharing research data. For this section, the publisher
requirements of five major publishers are discussed, as well as the most widely used sets of guidelines
from publishers and editors.

Nature states that data sharing makes new types of research possible [15], for example through
the pooling of patient cohorts, and hints to future developments: sharing data is not only a way to
improve the reproducibility and robustness of the science that is taking place today, but can drive
new science for tomorrow. By browsing through existing datasets, new hypotheses can be formed,
which can then be tested in new studies. Because nobody can predict how valuable a dataset will
be in the future, data should be made available to future scientists whenever possible. The Science
journals support the efforts of databases that aggregate published data for the use of the scientific
community [16]. Therefore, before publication, large data sets must be deposited in an approved
database and an accession number or a specific access address must be included in the published
paper. The Science journals also encourage compliance with Minimum Information for Biological and
Biomedical Investigations (MIBBI) guidelines [17]. British Medical Journal (BMJ) journals have three
different data sharing policies (“tiers”), dependent of the journal [18]. They encourage researchers to
make available as much of the underlying data from an article as possible (without compromising the
privacy of the patients). The BMJ journals also consider reproducibility: all data that are needed to
reproduce the results presented in the associated article should be made available. When submitting a
manuscript to a publisher such as BioMed Central (BMC), the researcher even “agrees to make the
raw data and materials described in your manuscript freely available to any scientist wishing to use
them for non-commercial purposes, as long as this does not breach participant confidentiality” [19].
Public Library of Science (PLOS) journals require authors “to make all data necessary to replicate their
study’s findings publicly available without restriction at the time of publication. When specific legal or
ethical restrictions prohibit public sharing of a data set, authors must indicate how others may obtain
access to the data” [20]. Other publishers have similar guidelines in place, promoting data sharing on
a global level.

In 2015, the Transparency and Openness Promotion (TOP) guidelines [21] were published.
The guidelines were developed to translate scientific norms and values into concrete actions and
change the current incentive structures to drive researchers’ behavior toward more openness. The TOP
guidelines have eight standards: (1) citation standards; (2) data transparency; (3) analytics methods
(code) transparency; (4) research materials transparency; (5) design and analysis transparency;
(6) preregistration of studies; (7) preregistration of analysis plans; and (8) replication. For each
standard, there are three levels with increasing stringency. Currently, over 1000 scientific journals have
implemented the TOP guidelines [22].

The International Committee of Medical Journal Editors (ICMJE) also recommends the sharing
of data [14]. In 2016, they proposed to require authors to share with others the deidentified
individual-patient data (IPD) underlying the results presented in the article no later than 6 months after
publication. The data underlying the results are defined as “the IPD required to reproduce the article’s
findings, including necessary metadata”. Since 2019, the ICMJE requires investigators to register
a data-sharing plan when registering a trial as well. This plan must include where the researchers
will house the data and, if not in a public repository, the mechanism by which they will provide
others access to the data, whether data will be freely available to anyone upon request or only after
application to and approval by a learned intermediary, whether a data use agreement will be required,
etc. Declaring the plan for sharing data prior to their collection will further enhance transparency in the
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conduct and reporting of clinical trials by exposing when data availability following trial completion
differs from prior commitments. However, ICMJE also stresses that the rights of investigators and trial
sponsors must be protected. To achieve this, the following four rules apply: (1) editors will not consider
the deposition of data in a registry to constitute prior publication; (2) authors of secondary analyses
using these shared data must attest that their use was in accordance with the terms (if any) agreed to
upon their receipt; (3) authors of secondary analyses must reference the source of the data using a
unique identifier of a clinical trial’s data set to provide appropriate credit to those who generated it
and allow searching for the studies it has supported; (4) authors of secondary analyses must explain
completely how theirs differ from previous analyses. In addition, those who generate and then share
clinical trial data sets deserve substantial credit for their efforts. Those using data collected by others
should seek collaboration with those who collected the data.

By providing the guidelines and rules set out above, the publishers and editors contribute to
the acceptance of data sharing by researchers. Not only does it help solve their problem of a lack of
reproducibility of the scientific results published in their journals, increasing confidence and trust
in these results; it will also help the scientists in the generation of new hypotheses, and avoiding
unnecessary repetition. In the end, publishers, as well as scientists, patients and societies will benefit
from complying with these rules.

3. Data Ownership

When discussing the sharing of data, it is important to realize that there is not much consensus on
who is actually the owner of that data. This section briefly discusses this issue of data ownership in the
light of recent privacy laws. These laws have a very large impact on the topic of data sharing.

Institutions tend to believe that they own the patient data, since they collected it. However, these
institutions are in fact just “data custodians”; the data is the property of the patient and the access
and use of that data outside of the clinical institute usually requires patient consent [1]. This limits
the exploitation of the “big data” that are available in the clinical records, because the data should
be destroyed (or sufficiently anonymized) after the end of the study. Big data techniques such as
machine learning and deep learning use thousands to millions of data points, which may have required
considerable processing. It would be a waste to lose such valuable data at the end of the project.
Therefore, it is advised to ask the patient for consent to store and use their data for future scientific
research. Although it is not possible to use the data from a large number of retrospective datasets in this
manner, this will make sure that at least the prospectively collected data can be used in future studies.
The dilemma of the use of patient data versus privacy rights has gotten much attention because of the
implementation of the GDPR in 2018 (as well as the CCPA in 2020), initiating an international debate
on the sharing of big data in the healthcare domain [23]. Earlier laws such as the Health Insurance
Portability and Accountability Act (HIPAA) Privacy Rule [24] of the USA and the Personal Information
Protection and Electronic Documents Act (PIPEDA) [25] of Canada already gave more rights to patients
regarding their data, but the GDPR and CCPA have taken it to another level. However, GDPR and
similar laws do not say much about data ownership. The GDPR’s main entities are the data controller
and the data processor [9]. “Data controller” means the natural or legal person, public authority,
agency or other body which, alone or jointly with others, determines the purposes and means of the
processing of personal data. “Data processor” means a natural or legal person, public authority, agency
or other body which processes personal data on behalf of the controller. In countries outside of the
European Union, where GDPR does not apply, there is also not much agreement on data ownership,
making it even more justifiable to always ask for the consent of the patient.

4. Growing Support for Data Sharing

The idea that data should be shared as much as possible to enable scientific progress is gaining
momentum, mostly because of the power of big data analyses, machine learning, deep learning, etc.
In this section, some developments are discussed which show this growing support for data sharing.
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Some of them were already known to the author, whereas others were a result from the literature
analysis mentioned in the introduction.

Science in Transition [26] claims that “science has become a self-referential system where quality is
measured mostly in bibliometric parameters and where societal relevance is undervalued”, emphasizing
that researchers tend to care mostly about publications instead of using the data to solve real-life
problems. It also gives attention to the reproducibility problem in science: more than 70% of researchers
have tried and failed to reproduce another scientist’s experiments, and more than half have even failed
to reproduce their own experiments [27]. This problem is not only caused by a lack of data sharing, but
also because researchers do not share methodologies used to combine and analyse datasets. In many
projects, data from several sources (possibly collected using different protocols and standards) need to
be combined before the data analysis can take place. If these methodologies, as well as the analysis
scripts, are not shared, results cannot be reproduced even if the data is available. This reproducibility
issue could be resolved by ‘Open Science’, which is defined as the practising of science in a sustainable
manner which gives others the opportunity to work with, contribute to and make use of the scientific
process. This allows users from outside science to influence the research world with questions and
ideas and help gather research data [28]. The Open Science movement stimulates not only open
access to data, but also open access publishing, open source scientific software and open educational
resources [29].

The Mayo Clinic Platform [30] is a new cloud-based clinical data analytics platform, storing
de-identified patient data, which providers, payers and pharmaceutical companies outside of Mayo can
link up to via application programming interfaces (APIs), as well as establishing standard templates
for compliance and legal agreements. The first partner of the Mayo Clinic Platform is Nference, a
software startup that Mayo is an investor in. Nference develops analytics, machine learning and
natural language processing tools that “augment” the work of data scientists, in order to help research
organizations and pharmaceutical companies conduct “research at scale”. Mayo Clinic hopes to work
with pharma to commercialize new therapies. Mayo itself wouldn’t commercialize those therapies,
though the system could receive royalties from insights generated on the platform. These royalties
would be re-invested into Mayo’s clinical practice, research and education work.

Healthcare Business and Technology wrote about how data sharing could change the entire
healthcare industry [31]. It discusses the partnership announced by Apple in 2018 with 13 major
healthcare systems, including Johns Hopkins and the University of Pennsylvania, that will allow Apple
to download patients’ electronic health data onto its devices (with consent of the patients). This type
of data sharing could transform the U.S. healthcare industry by empowering patients in new ways
and improving care. It could even reduce organizational costs by streamlining care processes, because
hospital staff would need to spend less time on making data available to patients. And artificial
intelligence (AI) could use the patient data to answer patients’ questions and direct them to the
healthcare services they need.

The ‘Ten Commandments of Translational Research Informatics’ [32] are some guidelines related to
data management and data integration in translational research projects. Some of the commandments
relate to the sharing of data: clear arrangements about data access need to be made (commandment 4),
agree about de-identification and anonymization (commandment 5), the FAIR guiding principles [33]
should be adhered to (commandment 8), and researchers should think about what will happen to the
data after the project (commandment 10): e.g., research can be shared in a public repository.

5. Data Sharing Initiatives

There are many initiatives around the world supporting the sharing of medical data, leading the
way to open science while still respecting the privacy rights of the patients. This paragraph gives some
recent examples of these initiatives, resulting from the literature analysis from the introduction.

GIFT-Cloud [34] is a platform for data sharing and collaboration in medical imaging research.
The goal of GIFT-Cloud is to provide a flexible, clinician- and researcher-friendly system for anonymising
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and sharing data across multiple institutions. It was built to support the Guided Instrumentation
for Fetal Therapy and Surgery (GIFT-Surg) project, an international research collaboration that is
developing novel imaging methods for fetal surgery, but it also has general applicability to other areas
of imaging research. It simplifies the transfer of imaging data from clinical to research institutions,
facilitating the development and validation of medical research software and the sharing of results
back to the clinical partners. GIFT-Cloud supports collaboration between multiple healthcare and
research institutions while satisfying the demands of patient confidentiality, data security and data
ownership. It achieves this by building upon existing, well-established cross-platform technologies.
GIFT-Cloud stores data from each institution in a separate data group and access to these groups
can be individually configured for each account, corresponding with what is arranged in the data
sharing agreements.

Another development in data sharing is the Personalized Consent Flow [35]: a new consent model
that allows people to control their personally collected health data and determine to what extent they
want to share these for research purposes. Three main features characterize the consent flow: (1) Users
are asked general questions about sharing data. When they wish to share data for scientific research,
they may opt for “narrow” consent (treating each study separately) or “broad” consent (for multiple
studies). Furthermore, users can decide which data will be shared for specific studies and with whom.
(2) Users can choose to share existing data that they have collected passively, to share prospectively,
collect data, or both. For prospective studies, researchers can invite specific users to collect selected
data during a specific time period. Users can also be notified about future studies by signing up for
the research program. (3) Expiration dates are connected to each consent choice, which ensures that a
user reconsiders his decision. A default expiration date of one year will be assigned, but users may
also select personal expiration dates, such as an expiration date connected to the duration of the study.
Users can choose to quit sharing data at any time, as required by GDPR regulations. During all steps,
users are informed about implications of consent options.

In the United States, the Sync for Science (S4S) [36] collaboration between Electronic Health Record
(EHR) vendors, the National Institutes of Health (NIH), the Office of the National Coordinator for
Health IT (ONC), and Harvard Medical School’s Department of Biomedical Informatics was started
in 2016. S4S allows individuals to access their health data and share these data with researchers to
support studies that generate insights into human health and disease [37]. Different EHRs collect and
store health data differently, so S4S has focused on promoting both authorization and healthcare data
standards to make it possible for EHR systems to release, upon patient approval, high quality data that
researchers can readily consume. The All of Us Research Program [38] was the first study to adopt
S4S technology in a pilot program. The program began national enrollment in 2018 and is expected
to last at least 10 years. An initiative like Sync for Science gives the power to the patient: the patient
can decide what information to share with researchers, and under what conditions. Much like many
countries now have organ donation registration systems in place, this ‘data donation registration’
might be something that will be implemented around the world in the near future.

In the EU, the 1+Million Genomes Initiative [39] is a good example of how many datasets could
be combined into one large database, enabling the study of, e.g., rare diseases. The declaration aims to
bring together fragmented infrastructure and expertise supporting a shared and tangible goal: one
million genomes accessible in the EU by 2022. The 22 participating European countries envision that
the digital transformation of genomic medicine (and healthcare in general) will help health systems
to meet the challenges they face and become more sustainable, thereby improving the provision of
high-quality health services and the effectiveness of treatments. They believe that this requires a
concerted effort to overcome data silos, lack of interoperability and fragmentation of initiatives across
the EU. Another recent example of such a large-scale collaborative data sharing effort is the Pan-Cancer
Analysis of Whole Genomes (PCAWG) [40], which was facilitated by international data sharing using
compute clouds. PCAWG contains 2658 whole-cancer genomes and their matching normal tissues
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across 38 tumour types. More than 1300 scientists and clinicians from 37 countries were involved in
the project.

Data sharing goes beyond the academic world. Many public-private partnerships have been set
up, in order to make sure that discoveries are not only published, but also applied in a product such as
a medical device, a medicine or a computer program. Funding programmes, such as the Horizon 2020
Research and Innovation Programme of the European Union, very much stimulate data sharing with
companies. In May 2016, it was announced that Deepmind, a company owned by Google and most
famous for its innovative use of AI, was given access to the healthcare data of up to 1.6 million patients
from three hospitals run by a major London NHS trust [41]. And in January 2018, Apple announced
that they created a pact with 13 prominent health systems, including prestigious centers like Johns
Hopkins and the University of Pennsylvania, allowing Apple to download the electronic health data of
patients onto its devices, with consent [42]. Of course, when sharing data with commercial parties,
privacy needs to be taken into account. For example, if GDPR applies, the patient needs to ‘opt-in’
for sharing their data for commercial use. Besides industry using data generated by academia, the
opposite is also possible; these collaborations are called “data collaboratives” [43]. Data collaboratives
are a new form of partnership in which privately held data are made accessible for analysis and use by
external parties working in the public interest. By having researchers from both industry and academia
work on the data, new insights and innovations can be created, and the potential of privately-owned
data can be unlocked.

6. Federated Data

Data federation is a recent development in medical science, which is a possible solution for the
data sharing vs. patient privacy dilemma. In this section, three examples of federated data systems for
sharing medical data are discussed, resulting from the literature analysis from the introduction.

When applying machine learning methods on healthcare data, large samples sizes are required.
Often these sizes can only be achieved by combining data from several studies. But this kind of
pooling of information is difficult because of patient privacy and data protection needs. Privacy
preserving distributed learning technology has the potential to overcome these limitations. The general
idea behind distributed learning is that sites share a statistical model and its parameters, instead of
sharing sensitive data. Each site runs computations on a local data store that generate these aggregated
statistics. In this setting, organizations can collaborate by exchanging aggregated data/statistics while
keeping the underlying data safely on site and undisclosed. VANTAGE6 [44] provides a way to use
distributed learning technology, using open source software. It is one of the federated data systems
that has recently become available in order to share data while preserving the patients’ privacy rights.

The Personal Health Train (PHT) [45,46] is another example of a federated data system; it aims to
connect distributed health data and create value by increasing the use of existing health data for citizens,
healthcare, and scientific research. The key concept in the Personal Health Train is to bring algorithms
(‘trains’) to the data where they happen to be (‘stations’), rather than bringing all data together in a
central database. The Personal Health Train is designed to give controlled access to heterogeneous
data sources, while ensuring privacy protection and maximum engagement of individual subjects.
As a prerequisite, health data are made FAIR (Findable, Accessible, Interoperable and Reusable) [33].
Stations containing FAIR data may be controlled by individuals, (general) physicians, biobanks,
hospitals and public or private data repositories. The Personal Health Train was applied recently to a
project with 20,000+ lung cancer patients [47] and will also be used in the Coronary ARtery disease:
Risk estimations and Interventions for prevention and EaRly detection (CARRIER) project [48]. Likely
more projects will follow.

Another example of a federated data system is DataSHIELD [49]. It provides a novel technological
solution that can circumvent some of the most basic challenges in facilitating the access of researchers
and other healthcare professionals to individual-level data. It facilitates research in settings where
sharing the data itself is not possible (due to government restrictions, intellectual property issues,
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or data size). Commands are sent from a central analysis computer (AC) to several data computers
(DCs) storing the data to be co-analysed. The data sets are analysed simultaneously but in parallel.
The separate parallelized analyses are linked by non-disclosive summary statistics and commands
transmitted back and forth between the DCs and the AC. DataSHIELD has been used by the Healthy
Obese Project and the Environmental Core Project of the Biobank Standardisation and Harmonisation
for Research Excellence in the European Union (BioSHaRE-EU [50]) for the federated analysis of
10 datasets across eight European countries.

7. Conclusions

This review discusses the current state of data sharing in healthcare. It shows that data sharing is
widely supported by governments, funding programs and publishers, but that there are also issues.
Clinicians or researchers might be reluctant to share data, because of publication pressure and fear
for competition. This might be solved by the “open science” initiatives mentioned in this paper,
which need to be supported by governments as well as the scientific communities itself in order to
make it a success. Next to this, there are also patient-related issues such as stricter privacy laws.
A possible (technical) solution here is the use of federated data systems such as the Personal Health
Train, which enable algorithms to reach out the data without having the need to bring all data together.
The challenges around privacy might also be solved by non-technical means such as using standardized
consent forms to enable future use of data for research and/or commercial purposes. For the (near)
future, there are some more developments that might be influential on the acceptance of open science
and the sharing of data. One of these developments is medical crowdsourcing [51], which offers hope
to patients who suffer from complex health conditions or rare diseases that are difficult to diagnose.
Medical crowdsourcing platforms empower patients to use the “wisdom of the crowd” by providing
access to a large pool of diverse medical information. One example medical crowdsourcing platform is
CrowdMed [52]. This platform was appreciated by some patients with undiagnosed illnesses, because
they received helpful guidance from crowdsourcing their diagnoses during their difficult diagnostic
journeys [53]. Greater participation in crowdsourcing increases the likelihood of encountering a correct
solution, and this might help to encourage patients to share their data. However, more participation
can also lead to more noise, making the identification of the most likely solution from a broader
pool of recommendations difficult. The challenge for medical crowdsourcing platforms is to increase
participation of both patients and solution providers, while simultaneously increasing the efficacy
and accuracy of solutions. Moreover, caution should be taken when giving people without a medical
background the power to diagnose others. Another future development is the increase in “data
generalists”; experts that focus entirely on data sharing and communication [54]. A data generalist
takes on all responsibility for the sharing of data and needs critical thinking skills to integrate, evaluate
and communicate the benefits and drawbacks of providing open data. They also have a role in data
analysis. The emergence of this role should encourage better sharing of data. In a time where much
attention is going to the data scientist, it could be the data generalist that really has the job of the future.
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Abstract: Introduction: Task sharing holds promise for scaling up depression care in countries such as
India, yet requires training large numbers of non-specialist health workers. This pilot trial evaluated
the feasibility and acceptability of a digital program for training non-specialist health workers to
deliver a brief psychological treatment for depression. Methods: Participants were non-specialist health
workers recruited from primary care facilities in Sehore, a rural district in Madhya Pradesh, India.
A three-arm randomized controlled trial design was used, comparing digital training alone (DGT) to
digital training with remote support (DGT+), and conventional face-to-face training. The primary
outcome was the feasibility and acceptability of digital training programs. Preliminary effectiveness
was explored as changes in competency outcomes, assessed using a self-reported measure covering
the specific knowledge and skills required to deliver the brief psychological treatment for depression.
Outcomes were collected at pre-training and post-training. Results: Of 42 non-specialist health
workers randomized to the training programs, 36 including 10 (72%) in face-to-face, 12 (86%) in DGT,
and 14 (100%) in DGT+ arms started the training. Among these participants, 27 (64%) completed the
training, with 8 (57%) in face-to-face, 8 (57%) in DGT, and 11 (79%) in DGT+. The addition of remote
telephone support appeared to improve completion rates for DGT+ participants. The competency
outcome improved across all groups, with no significant between-group differences. However,
face-to-face and DGT+ participants showed greater improvement compared to DGT alone. There
were numerous technical challenges with the digital training program such as poor connectivity,
smartphone app not loading, and difficulty navigating the course content—issues that were further
emphasized in follow-up focus group discussions with participants. Feedback and recommendations
collected from participants informed further modifications and refinements to the training programs
in preparation for a forthcoming large-scale effectiveness trial. Conclusions: This study adds to
mounting efforts aimed at leveraging digital technology to increase the availability of evidence-based
mental health services in primary care settings in low-resource settings.

Keywords: depression; psychological treatment; task sharing; primary care; pilot study; non-specialist
health worker; training; digital technology; mental health
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1. Introduction

According to the global burden of disease study, nearly 200 million people were living with
mental disorders in India by 2017, which represents 14.3% of the total population of the country [1].
This includes over 45 million people living with depressive disorder, the leading mental health
contributor to the global disease burden, comprising approximately 3.3% of the total population of
the country [1]. The National Mental Health Survey of India 2015–16 found that the prevalence of
depression was about 2.7% and the lifetime prevalence was 5.3% in the study population [2]. Several
studies have reported a significant gap between those living with depression and those who have
access to adequate care [3,4]. The National Mental Health Survey estimated that the care gap for
current depression was 79.1% [2], while in some regions of the country this gap exceeds 90% [5].

The World Health Organization’s (WHO) Mental Health Gap Action Programme (mhGAP)
recommends brief psychological interventions as first-line treatments for depression [6]. However,
access to brief psychological treatments remains a significant challenge, particularly in lower-income
countries like India. This is partly due to the limited number of available specialist providers to deliver
these treatments or supervise care, as well as to train other therapists [7,8]. Task sharing involves
building the capacity of non-specialist health workers, which include a broad range of frontline health
workers who do not have specialized training in mental health care, to deliver brief evidence-based
psychological treatments for common mental disorders [9]. This approach appears to be a key strategy
to address the care gap for depression, as reflected by mounting evidence that non-specialist health
workers can effectively deliver brief psychological treatments for depression across a range of lower
resource settings [10–12].

In India, the formation of the National Mental Health Policy of India in 2014 [13] and enforcement
of the Mental Health Care Act 2017 [14], as well as revised guidelines of the National Mental Health
Program (NMHP) [15], are major drivers at the policy and health system level for expanding and
integrating mental health services in primary health care [16]. These recent legislative developments
have highlighted the importance of task sharing as being critical to achieving universal coverage
of basic mental health services. A major barrier to the successful implementation and scale up of
task sharing is the need to adequately train sufficient non-specialist health workers to deliver brief
psychological treatments and to ensure that this workforce achieves the necessary clinical competencies
to sustain delivery of high-quality care [17–19].

In India, conventional face-to-face residential training requiring extended stays at government
training facilities is the typical approach for training non-specialist health workers, such as ASHAs
(Accredited Social Health Activists) through the National Health Mission [20–23]. However, there
are financial and logistical challenges, such as the need for expert trainers to lead the training,
as well as the requirement of significant travel across long distances for participants to attend the
training [7,24]. Therefore, this method of training health workers is limited by poor scalability.
The increasing availability and use of digital technologies, such as smartphones, among non-specialist
health workers offer new opportunities to support training and skill-building without requiring
in-person instruction [25,26]. For instance, mobile internet penetration continues to increase rapidly in
many low-resource countries, with close to 450 million people in 2020 in India having internet access
from their phones [27]. While many frontline health workers do not have access to or own smartphones,
this is changing in several parts of India as government health systems are now providing smartphones
to health workers to support them in their work [28,29].

To date, there have been promising initial efforts demonstrating the feasibility of using digital
technology as a tool for enhancing in-person training programs for non-specialist health workers
in a low-resource setting in rural Pakistan [30]. Additionally, prior studies have demonstrated
promising findings using digital technology to support task-sharing mental health services in
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low-resource settings through the use of digital tools for diagnosis, guiding clinical decision making, and
facilitating supervision [25]. Specifically in India, recent studies have reported on a successful digital
decision-support platform for supporting community health workers and primary care providers in the
screening, diagnosis, and management of common mental disorders [31]; the use of an Android app with
tailored video content for training community volunteers about mental health, connecting individuals
with available services, and raising awareness [32]; and the initial feasibility and acceptability of a
digital game accessible from a smartphone app involving a problem-solving intervention for adolescent
mental health [33]. These studies highlight the viability and promise of digital interventions for mental
health in low-resource settings such as India; however, there remains an immediate need to generate
evidence on the feasibility, acceptability, and potential effectiveness of using a fully remote digital
training program delivered on a smartphone application to non-specialist health workers in a rural
area of a low-resource setting.

In earlier formative research, we demonstrated the interest in using digital technology for accessing
a training program to deliver a brief psychological treatment for depression among non-specialist
health workers in Madhya Pradesh, India [34]. We found that a digital platform was feasible for use
among non-specialist health workers, and through a series of focus group discussions, we gained
valuable stakeholder insights about what features could make a digital training program interesting
and appealing for this target group. Specifically, participants provided suggestions for simplifying
the language in the program contents and materials, and using familiar terms tailored to the local
context; they also recommended adding more images or graphics and interactive features to create
a more engaging training program [34]. Drawing from these findings, our team developed a digital
program for training non-specialist health workers to deliver the Healthy Activity Program (HAP),
a brief evidence-based psychological treatment for depression in primary care [35].

Our next step, and primary objective of this pilot study, was to determine the feasibility and
acceptability of this digital training program compared to conventional face-to-face training. In this pilot
study, our goal was to collect data on the use of the digital training, such as navigating the smartphone
app and accessing the training content, as well as participant feedback to inform refinements to the
digital training as well as our study procedures in preparation for a larger fully powered effectiveness
trial. Specifically, we conducted this three-arm randomized pilot trial to explore the acceptability and
feasibility of two digital training programs (digital training alone and digital training with remote
support), and to explore changes in competency outcomes compared to conventional face-to-face
training for non-specialist health workers, to deliver the evidence-based HAP treatment for depression
in Sehore, a rural district in Madhya Pradesh, India.

We included a third arm in this pilot study to test the use of remote support for enhancing
engagement and completion of the digital training program. Our rationale for using remote support
stems from the existing online education literature highlighting that additional support can promote
participant engagement and completion in online learning programs [36,37]. While this study was
primarily focused on determining the feasibility and acceptability of the digital training program,
we also collected a measure of competency to assess preliminary effectiveness, which was defined by
the acquisition of the knowledge and skills required to deliver HAP.

2. Material and Methods

This exploratory three-arm randomized pilot study followed the extension of CONSORT guidelines
to pilot studies [38]. In this study, non-specialist health workers were recruited from three community
health centers (i.e., Doraha, Bilkishganj, and Shyampur) in the Sehore district of Madhya Pradesh,
India. This study site was selected because Sangath, the research organization leading this project,
has a close partnership and an established Memorandum of Understanding with the state government.
Additionally, the goal was to create a model of depression care that could be successfully delivered by
non-specialist health workers in Sehore district and then scaled up to other districts in the state, and also
to other regions of India. Madhya Pradesh is a large, centrally located state with over 72 million people,

83



Int. J. Environ. Res. Public Health 2020, 17, 6368

of which nearly 73% reside in rural areas [39]. Relative to many other Indian states, Madhya Pradesh
ranks lower with respect to human development and availability of resources [40,41]. According to the
2016 National Mental Health Survey of India, the care gap for mental disorders in Madhya Pradesh
exceeds 90% [5]. Ethics review boards at Sangath, India (VP_2017_028), and Harvard Medical School,
USA (IRB17-0092), approved all study procedures.

2.1. Sample

The target sample for this pilot trial was 45 non-specialist health workers. This sample size was
considered sufficient for achieving our primary goal of assessing acceptability and feasibility of the
training programs [42] and was also selected to ensure we had the minimum number of participants
for in-person instruction in the face-to-face training (n = 15). The sample included Accredited Social
Health Activists (ASHAs), ASHA Facilitators and Multi-Purpose Health Workers (MPWs) employed
in the National Health Mission (Madhya Pradesh state) in India. ASHAs are all women, and a cadre
of community health workers in India, introduced by the National Health Mission (NHM) in 2005
with the goal to serve as health activists in the community, create awareness on health and its social
determinants, as well as to mobilize the community especially marginalized populations to increase
utilization and accountability of the existing health services [43]. Each ASHA covers a population of
1000 and receives performance-based and service-based incentives as compensation for facilitating
immunization, referral, and escort services for institutional deliveries [44]. ASHA Facilitators work
as a support mechanism to ASHAs to provide mentoring and support and to monitor performance.
One ASHA Facilitator typically works with 10 to 20 ASHAs [43]. MPWs are male health workers
who are appointed primarily for the control of communicable diseases and are a key functionary at
Sub-Health Centers, which are the most peripheral health facilities covering a population of 5000 to
deliver preventative health services to the community [43].

Eligible non-specialist health workers who met the inclusion criteria of having age ≥18 years
(the minimum age required for employment by the National Health Mission [22,45]); being a certified
non-specialist health worker (i.e., ASHA, ASHA Facilitator, or MPW); having a minimum education
level of 8th standard (i.e., to ensure they can read and write to access the digital program, written
training materials, and complete study assessments); willing to provide written informed consent;
and, willing to complete the full training program and stay in the study area during the pilot trial
period. Non-specialist health workers were excluded if they had participated in prior formative
research activities conducted by our research team (due to prior exposure to the training content),
which we confirmed by referring to the list of non-specialist health workers provided by a National
Health Mission official in the district (see below), or if they had significant speech, sight, or hearing
impairment, or were unable to read or write. Smartphone ownership was not required to participate,
as participants were provided with a smartphone to access the digital training programs.

2.2. Recruitment Procedure

A district National Health Mission official provided the list of non-specialist health workers from
the three community health centers. Community health centers represent secondary level health
services facilities designed to provide referrals as well as specialist care to rural populations [46,47].
We screened the list containing 377 health workers based on the criteria of age (18 years and above),
education (8th standard and above), and non-participation in earlier formative research activities.
We found a total of 302 potentially eligible health workers. From this list, our data manager randomly
selected 92 potentially eligible health workers using the Research Electronic Data Capture (REDCap)
software [48]. Research assistants then contacted these potentially eligible health workers by phone to
confirm their interest and availability to participate in this pilot study.

Potentially eligible non-specialist health workers were invited to attend a group information
session at a nearby community health center to learn more about the study. The research team organized
the group information session to describe the purpose of the study and to inform participants that this
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study involves collaboration with the National Health Mission. The information session also served
as a way to explain what the training involves, the study procedures, and the pre- and post-training
assessments. This was also an opportunity for participants to ask questions about the study, and to
emphasize that their decision to participate was completely voluntary. After the group information
session, non-specialist health workers who expressed interest in participating confirmed their eligibility
criteria (age and education), and were provided with an information sheet and completed individual
written-informed consent. During the individual consent process, health workers were informed that
their decision to participate or withdraw from the study at any time would not have any adverse
consequences on their current standing as a health worker or their employment status, and that any
data collected during the study would be kept confidential and that no identifiable results would be
shared with the health system or others outside the research team.

2.3. Randomization

Participants were randomly allocated to one of three training programs based on stratification
variables of age, education, and type of non-specialist health worker (i.e., ASHA, ASHA Facilitator,
MPW). The study data manager conducted the randomization using the randomizer package available
in R software. The age range of recruited ASHAs (24–42 years), ASHA Facilitators (31–46 years), and
MPWs (39–52 years) varied widely, hence it was decided to keep different cut-off points for stratification
based on the average age for each category of health worker. Two strata for age variables for ASHAs
were age ≤35 and age >35; for ASHA Facilitators were age ≤37 and age >37; and for MPWs were age
≤47 and age >47. Similarly, stratification for education for ASHAs was 8th standard and >8th standard;
for ASHA Facilitators was 8–12th standard and >12th standard; and for MPWs was 8–12th standard
and >12th standard. In total, there were 12 strata to maintain a balance of participant characteristics
across study arms. This also served as an opportunity to pilot test our randomization procedures in
preparation for the forthcoming larger trial.

2.4. Training Programs

The training programs in this study were designed to provide instruction to non-specialist health
workers to gain the clinical skills and competencies necessary to deliver the Healthy Activity Program
(HAP) for treatment of depression [49]. The HAP is an evidence-based brief psychological treatment for
depression designed and tested in Goa, India, that has demonstrated effectiveness and cost-effectiveness
in primary care settings in India [35], as well as sustained clinical benefits [50]. The success of the HAP
for treating depression has also been demonstrated in other lower-resource contexts, including among
people receiving treatment for multidrug-resistant tuberculosis [51] and people with severe depression
in primary care settings in Nepal [52], and as part of recent efforts to scale up mental health services
in Madhya Pradesh [53]. The HAP consists of two manuals covering general counseling skills and
treatment specific skills. These manuals are open source and available online (http://www.sangath.in/).
These manuals were adapted to the local context of Madhya Pradesh and converted into digital and
F2F training programs (i.e., covering the same content using different teaching strategies). In this pilot
study, we compared three different training programs: conventional face-to-face (F2F) training; digital
training (DGT); and digital training with remote support (DGT+).

2.4.1. Conventional Face-to-Face Training (F2F)

The conventional F2F training consists of a six-day classroom training facilitated by two
experienced counselors with certification as Master Trainers, meaning that they have significant
experience delivering the HAP to patients with depression in clinical settings, have completed
instruction in being an effective trainer, and have provided training to other health workers in the
delivery of the HAP. This conventional in-person training is considered the ‘gold-standard’ in training
non-specialist health workers based on the prior methods employed in the evaluation and delivery of
the HAP treatment [35]. The six-day training is hosted in a community setting and follows the content
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in the HAP manuals. This form of in-person training is consistent with the type of training currently
available to non-specialist health workers in the district.

2.4.2. Digital Training (DGT)

DGT consists of a digitized version of the HAP manuals hosted on the Moodle Learning
Management System and accessible through a smartphone app [54]. The training program content
was divided across 16 modules following the same structure as the F2F instruction. The modules
consisted of expert lecture videos, role-play videos showing clinical scenarios, PowerPoint presentations,
reading materials, interactive quizzes embedded within the modules, and assessment questions at
the end of each module. Duration of digital training content was matched to the duration of the
F2F training, and consisted of approximately 48 h, covering the time required to view the content,
read the accompanying materials, and complete the interactive quizzes and assessment questions.
Participants were provided with a smartphone to access the training program and were invited to
attend a short orientation session to learn how to use the phone, access the instructional content through
the smartphone app, and navigate the Learning Management System interface. Participants were
provided with a 30-day window to complete the digital training. Throughout the training, participants
could contact our research team for technical assistance regarding any concerns or challenges with
using the smartphone or accessing the training program content.

2.4.3. Digital Training with Remote Support (DGT+)

The DGT+ training program includes access to the same smartphone app, digital training content,
and technical support described above for the DGT program. DGT+ included the addition of remote
support from the research team. This involved weekly phone calls from a research assistant to
participants. The purpose of the support phone calls was to check in with participants about their
progress with the training, and whether they had experienced any challenges or had questions about
the digital platform or program content. The research assistant also provided participants with
encouragement and praise during the calls as a way to motivate participants and support engagement
in the training.

2.5. Outcome Assessment

We collected outcomes on acceptability and feasibility of the training programs and preliminary
effectiveness of the training on competency outcomes. After informed consent, a unique participant ID
number was assigned to each participant. This number was used on all subsequent data collection
forms, with no participant name or identifiable information used on any of the data collection forms.
Prior to the outcome assessment, participants were informed of the purpose of using participant ID
numbers for their identification throughout the study duration, rather than using their names. Study
outcomes were collected before and after the training using paper-based forms distributed in-person
at the community health center. The average duration of completing the outcome assessment was
approximately 2 h. We used paper-based forms instead of digital data collection to avoid giving an
unfair advantage to participants in the digital training programs, as the F2F training participants may
not have had equivalent exposure to use of digital technology. Members of our research team who
were blind to arm allocation, and who were not involved in the development of the training programs,
collected the outcome assessments.

2.5.1. Acceptability and Feasibility Indicators

We collected process indicators to determine participant engagement and use of each of the
training programs. This included: daily attendance at the F2F training; metrics collected from the
Learning Management System for the digital training programs (for both the DGT and DGT+ programs),
including the number of days to complete the training program and the number of modules completed;
the number of phone calls made by the participants for seeking technical assistance (for both the
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DGT and DGT+ programs) from the research team; and the number of phone calls initiated by the
research team to participants for follow up with their queries and types of challenges or questions that
commonly were mentioned (for the DGT+ only).

After completing the training (end line), we also collected a satisfaction and acceptability
questionnaire adapted from an existing measure of motivation and engagement in face-to-face and
online education programs called the MUSIC® model of motivation inventory [55–58]. The 26-item
questionnaire asks about the level of satisfaction with the training, acceptability of the content and
method of instruction, and feasibility of completing the training. The items are rated on a six-point
Likert scale, and relate to feasibility, acceptability, adoption, and appropriateness of the training
programs. The questionnaire was translated into Hindi and modified for the F2F and digital (DGT and
DGT+) training programs. The items are rated on a six-point Likert scale, with 1 being the lowest and
6 the highest score. The questionnaire covers the domains of acceptability, appropriateness, adoption,
and feasibility. The average score of each domain was calculated by adding the score of all the items in
the domain divided by the number of questions in the domain.

We also conducted one focus group discussion for all the participants in each arm to obtain
feedback about the training and to ask questions pertaining to acceptability and appropriateness
of the content, methods of instruction, and engagement in the training, as well as the feasibility
of accessing and navigating the digital training platform on the smartphone app, and providing
recommendations for what could be improved in the training program. The focus group discussions
lasted about 45–60 min, were facilitated by a qualitative researcher and were audio-recorded for
analysis. Another researcher from our team observed the focus groups to collect field notes to identify
key recommendations from participants for modifying the training programs.

2.5.2. Preliminary Effectiveness Outcome

Competency outcomes were collected before (baseline) and after (end line) the training to determine
the preliminary effectiveness of the different training programs. Competency was assessed using a
questionnaire consisting of short clinical vignettes followed by multiple-choice questions covering the
core skills and competencies needed to deliver the HAP. The measure was based on prior research
showing that self-assessment can reliably assess therapist competency following training [24,59,60].
Three equivalent versions of the questionnaire were used to allow repeat testing. The measure focuses
on testing knowledge of the HAP treatment as well as applied knowledge of how to deliver the
treatment, an essential aspect of provider competence. This questionnaire is scored from 0 to 100,
with higher scores reflecting higher levels of knowledge and competency. The questionnaire was
translated into Hindi for this study, and modifications were made to fit the local context, such as
simplifying complex or technical language and using local terms. Experienced counselors reviewed
the Hindi translation to ensure that it was appropriate for administering to non-specialist health
workers in the local context in Madhya Pradesh. To avoid “teaching to the test” [61], none of the
individuals involved in the development of the HAP training materials had access to the competency
assessment questionnaire.

2.6. Data Analysis

Descriptive statistics were computed for socio-demographic characteristics between the three
training programs. Process indicators and the satisfaction questionnaires were summarized in
tables. Field notes were collected during the focus group discussions to capture key feedback
for supporting refinements to the programs. As this was a pilot study with the primary goal of
determining feasibility and acceptability of the training programs and to inform improvements to the
instructional content and delivery of the training programs, we did not conduct an in-depth thematic
analysis of the qualitative data. Rather, we followed guidance from the person-based approach to
intervention development [33,62], which enabled the combination of quantitative and qualitative
data to inform modifications to the training programs. Specifically, we used a framework analysis
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approach [63] to guide our identification of common topics within the qualitative data, following
a coding framework with the four core domains outlined from the satisfaction and acceptability
questionnaire (i.e., appropriateness, acceptability, adoption, and feasibility) [55]. One researcher
from our team who was not involved in the development of the training programs coded the
transcripts following this a priori framework and categorized key observations from participants
according to each of the broad domains. Two additional researchers from our team who supported
the development of the training programs reviewed the classification of participants’ observations
and the key recommendations for improving the program. This second round of review provided
an opportunity to expand on any observations that were not clear, and to draw from the field notes
to supplement the description of the recommendations. A fourth researcher who was external to
this process then reviewed the tables summarizing the qualitative feedback to ensure that actionable
steps could be identified for improving the usability and acceptability of the training programs in
preparation for a subsequent large scale randomized controlled effectiveness study.

As part of an exploratory analysis of change in the competency assessment outcome, we used a
paired t-test to determine if there was a statistically significant mean difference between the competency
scores obtained before and after the training. We also explored pre- and post-training differences in the
competency assessment scores within the three training programs using a non-parametric Wilcoxon
signed-rank test [64]. This method was selected to account for the small sample size. Due to the
heteroscedasticity, since the p-value for the Bartletts’s test for homogeneity of variance was less than
0.05, we used Welch’s one-way ANOVA test to determine if the change in competency assessment
scores obtained before and after the training program was different for the three arms, followed with
a Games–Howell post-hoc test. All analyses were completed using STATA (StataCorp LLC, College
Station, TX, USA), and p < 0.05 was considered statistically significant.

3. Results

Out of 92 potentially eligible non-specialist health workers, we contacted a total of 73 until
reaching our recruitment target of 45. These 45 non-specialist health workers were invited to attend
the group information session to learn more about the study. As outlined in Figure 1, 42 consented and
enrolled in the study and were randomly allocated to the three study arms. This included 23 ASHAs,
10 ASHA Facilitators, and 9 MPWs. Participant characteristics are summarized in Table 1. Of the 42
enrolled participants, 36 started the training programs to which they were randomized (n = 10 in
F2F; n = 12 in DGT; n = 14 in DGT+) and 36 (86%) participants completed post-training assessments
(n = 11 in F2F; n = 12 in DGT; n = 13 in DGT+). We found that there were no differences in participant
baseline characteristics (such as type of health worker, mean age, education, and gender) between
those who completed the training compared with those who did not complete the training. No harms
were recorded for any participants throughout the duration of this pilot study.
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Figure 1. Participant flow diagram. DGT: Digital Training.
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Table 1. Baseline socio-demographic characteristics of study participants.

Socio-Demographic Characteristics

F2F
n

DGT
n

DGT+
n p-Value

n = 14 n = 14 n = 14

Gender 1
Female 11 (79%) 11 (79%) 11 (79%)
Male 3 (21%) 3 (21%) 3 (21%)

Designation 1
ASHA 8 (57%) 7 (50%) 8 (57%)
ASHA Facilitator 3 (21%) 4 (29%) 3 (21%)
MPW 3 (21%) 3 (21%) 3 (21%)

Education 0.51
8th to 10th 8 (57%) 9 (64%) 6 (43%)
Above 10th 6 (43%) 5 (36%) 8 (57%)

Experience in years mean (95% CI) * 9.73 (6.71, 12.76) 8.96 (5.37, 12.55) 8.38 (5.32, 11.44) 0.8153

Age in years mean (95% CI) * 36.07 (31.34, 40.80) 37.71 (32.43, 42.99) 36 (31.31, 40.68) 0.8341

Type of mobile phone owned # 0.931
Ordinary mobile phone 7 (50%) 6 (43%) 6 (43%)
Smartphone 7 (50%) 7 (50%) 8 (57%)

Family Size (number of persons in household)
mean (95% CI) 5.3 (4.19, 6.42) 4.85 (3.07,6.63) 5.35 (3.62, 7.09) 0.868

Previous Experience in Mental Health Training ** (n = 11) (n = 12) (n = 14) 0.591
Yes 5 (46%) 8 (67%) 8 (57%)
No 6 (54%) 4 (33%) 6 (43%)

How many years before took part in the training
mean (95% CI) * 3 (0.67, 5.32) 3 (2.22, 3.77) 3.13 (1.6, 4.66) 0.9814

# one missing value in DGT arm. * Means ± CIs are presented for continuous variables, counts for categorical
variables. ** The non-specialist health workers had previously learned about mental health issues associated with
domestic violence during their routine trainings. However, they have not received any formal training on delivering
brief psychological treatments for mental health problems such as depression. We collected the data for this question
after the baseline assessment; hence, the number of respondents is lower. F2F: Face-to-Face; DGT: Digital Training;
ASHA: Accredited Social Health Activists; MPW: Multi-Purpose Workers.

3.1. Acceptability and Feasibility Indicators

Process indicators are listed in Table 2. Six participants never started the training program, out of
which 5 were the MPWs and 1 was an ASHA. The reasons for not starting the training were largely due
to other work commitments, and other personal or family commitments. Further, several participants
(n = 9) started the training but could not complete it. This was similarly due to other family or work
commitments, and inclement weather as the training happened during the monsoon season (making it
difficult to travel to the training facility for F2F participants). Thus, 27 (64%) participants completed
the full training program, with 8 (57%) in F2F, 8 (57%) in DGT, and 11 (79%) in DGT+. We observed
differences in program completion between the different types of non-specialist health workers, where
16 (70%) ASHAs, 8 (80%) ASHA Facilitators, and 3 (33%) MPWs completed the training.

Table 2. Summary of process indicators across the three different training programs.

Number of Participants
F2F

(n = 14)
DGT

(n = 14)
DGT+

(n = 14)

Started the training 10 (71%) 12 (86%) 14 (100%)
Completed the full training (all modules) 8 (57%) 8 (57%) 11 (79%)
Did not complete all of the modules in the training 2 (14%) 4 (29%) 3 (21%)
Number of phone calls made by participants for seeking technical assistance NA 149 57
Number of phone calls made by the research team to participants for follow
up on their queries NA 106 87

F2F: Face-to-Face; DGT: Digital Training.

There were a total of 399 support calls related to technical assistance for the digital training
programs. Among the DGT participants, there were 255 calls. This involved calls made by the
participants and calls made by the research team to respond to the participants. In total, 58% of the
calls (149 out of 255) were from participants to the research team. While 42% of the calls (106 out of 255)
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were from the research team in response to participants’ queries. For DGT+ participants, the major
difference was that our research team initiated the calls (as opposed to participants initiating calls).
Among DGT+ participants, there were 144 calls. In total, our research team initiated 60% of the calls
(87 out of 144) to participants, while 40% of the calls (57 out of 144) were from participants to our
research team. The number of calls per participant ranged from 4 to 37. The calls primarily related to
technical challenges, as summarized in Table 3, such as poor connectivity, the mobile app not loading
or being deleted from the phone, and challenges with navigating the course content.

Table 3. Common technical challenges mentioned by participants during phone calls with the research
team in the digital training programs.

Registered Queries by Phone Specific Technical Challenges Encountered

Internet related

• Internet is not working
• There is no phone connectivity network in the area
• Internet speed is slow
• Internet data is over, should I recharge it
• Course is not opening even connecting on Wi-Fi

Smartphone handling related
• How to operate smartphone features
• Don’t know how to use a smartphone
• App has been deleted/removed from phone

Moodle Learning Management
System app related

• Got logged out from course
• The app is requiring me to enter the password
• The app is showing an error on the screen
• Videos are not opening in the app
• Quizzes are not showing up in the app
• Videos are running very slow, show continuous booting

Course navigation related

• How to attempt quizzes and in which order to attempt them
• How to erase the wrong answer if entered mistakenly in the

assessment quiz
• How to see in the app how much of the course is completed
• How to know what grades I have scored
• Completed all three given attempts but would like to attempt

more to increase my scores, how to do it

Smartphone hardware/software
related

• Phone screen has been broken
• Phone is lost

Table 4 summarizes participants’ responses to the satisfaction and acceptability questionnaire for
each training program. Mean score across the domains was generally 5 or greater (out of a possible score
of 6), indicating that participants rated the training programs favorably for feasibility, acceptability,
and adoption. Across study arms, appropriateness was ranked lowest, suggesting that additional
efforts are necessary to promote engagement with the program content. Findings from the focus group
discussions (n = 28 participants) were grouped within the same four domains from the satisfaction
and acceptability questionnaire, as highlighted in Table 5. Recommendations for improving the F2F
training including increasing the duration of the training and clarifying some of the training manual
content. For the digital training programs, the main recommendations were related to ensuring that
the entire course could be accessed offline due to poor internet connectivity in the region, as well as
providing a more comprehensive orientation session at the beginning of the program to provide an
overview of the smartphone app and navigating the digital program interface, as well as extending the
availability of telephone support from the research team.
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Table 5. Summary of key findings from the focus group discussions with participants in the three
training programs.

Focus Group
Discussion

Themes
F2F (n = 8) DGT (n = 9) and DGT+ (n = 11)

Acceptability

Facilitators

• Became aware about depression; before the
training, did not know much about it

• Felt happy and good about having the
chance of being part of training on mental
health and depression

• Pleased with the way trainers conducted
the training

• Enjoyed the subject of the training and found it
useful to help people with stress and tension

• Able to relate to the training subject as they had
experienced symptoms of depression in their
own lives or among people around them

• Pleased to learn about depression and mental
illness as it was a new subject for them

• Learned how to do the training on smartphones
• Digital training app was easy to understand

and navigate
• Digital training app was attractive, interactive,

and well-designed

Challenges and/or
suggestions to

address the
challenges

• Some participants sought help from family
members (i.e., husband, children, neighbor, etc.)
to address challenges faced while using the
smartphone and understanding the app

Appropriateness

Facilitators

• Trainers taught the course and were able to
address participants’ questions

• The role plays and group activities were
helpful to learn the topic and helped to
decrease hesitation while performing
role plays

• Participants used training materials to
supplement role plays and group activities

• Liked to learn about the HAP model,
PHQ-9, and counseling skills (e.g., how to
provide mental support and talk to the
person with stress, how to sit during a
session, how to ask questions, etc.)

• Understandable language
• Learning through video lectures was helpful for

learning the content and more quickly
• Interesting to learn about symptoms of

depression and how to identify them, suicide
risks, PHQ-9, and counseling processes and
counseling skills (e.g., how to build rapport and
how to talk with patients)

• Provision of a list of all modules was useful
• Multiple chances for attempting questions was

helpful to answer the questions correctly and
learn more about particular topics

• Did not use the help tab given on the digital
training app when facing problems, instead
phoned to seek support from the research team

• The support provided by the research team was
helpful in addressing questions and challenges

• Active support from the research team worked
as a motivating factor

• Interactive questions were interesting and kept
participants engaged with the course

• Some participants found the training manual
helpful, others did not feel the need to use it

Challenges and/or
suggestions to

address challenges

• Some participants did not use training
manual during training

• The training manual should contain details
of all sessions of HAP modules explaining
practical guidelines to carry out HAP
activities and sessions instead of theoretical
HAP details

• Training was too packed and heavy, felt like
a lot of content taught in six days

• Training days can be increased but that will
not be feasible, hence the alternative is to
organize refresher training after every 3 or
6 months

• Learning PHQ-9 and interpretation of the
PHQ-9 score and activity chart was challenging
to understand for some participants during the
first time viewing the course content; but
participants were able to understand the
content after reviewing the content again

• Did not check the notifications and messages
sent on the digital training app

• Found it difficult to comprehend messages on
the phone that were in the English language

• At the time of orientation to the training
program, the purpose and use of the help option
on the digital training app should be explained

• Calling hours from 10 am to 5 pm to seek
support should be extended as health workers
remain busy with their work schedules during
these hours

• Some of the participants suggested to add
subtitles to the videos

93



Int. J. Environ. Res. Public Health 2020, 17, 6368

Table 5. Cont.

Focus Group
Discussion

Themes
F2F (n = 8) DGT (n = 9) and DGT+ (n = 11)

Adoption

Facilitators

• HAP training will be useful to identify the
people with stress or tension (i.e., local term
for depression) in the community and help
them through counseling

• Training will be useful for health workers to
also address their own mental health issues

• This training can be helpful in providing
counseling to people and especially to pregnant
women with stress and tension

Challenges and/or
suggestions to

address challenges

• Wanted the course on their mobile device after
completing the training so that they can relearn
the training if they forget anything

Feasibility

Facilitators
• Convenient and flexible to learn the training in

the time allotted
• Can learn and re-learn the content if needed

Challenges and/or
suggestions to

address challenges

• Some words in the training were difficult
to understand

• Poor internet connectivity created disturbance
in learning, and irritation and sometimes
frustration lowered motivation to learn

• Make the entire course offline to address the
issue of poor internet connectivity

• Poor mobile network in some of the villages
• Use a different mobile service provider to

address connectivity issues
• Difficulty in understanding how to submit the

answers online
• Include digital orientation training as part of the

course to address the technical challenges
• Deleted the digital training app by mistake
• Due to the challenge of poor internet

connectivity, unable to access all content from
the modules as all videos did not play

F2F: Face-to-Face; DGT: Digital Training; HAP: Healthy Activity Program; PHQ-9: 9-item Patient
Health Questionnaire.

3.2. Preliminary Effectiveness Outcome

Using a paired t-test to explore whether there was a statistically significant mean difference between
the competency scores obtained pre- and post-training for all participants (all three training programs
combined), we found that participants (N = 36) overall scored better on the post-training assessment
(Mean= 35.43; SD= 11.39) compared to the pre-training (baseline) assessment (Mean= 25.82; SD= 7.42),
with a maximum attainable score of 100. This represents a significant increase of 9.61 points (95% CI:
5.17 to 14.04), t (35) = 4.401, p < 0.0005, suggesting that competency scores increased after completing
the training program regardless of training format (F2F or digital). For the F2F training, the Wilcoxon
signed-rank test showed a significant change in participants’ competency scores (Z = 2.934, p = 0.0033).
For the DGT training participants, the change was not significant (Z = 0.863, p = 0.3882), whereas,
for the DGT+ training participants, the change was statistically significant (Z = 2.271, p = 0.0231),
as illustrated in Figure 2. For F2F, the mean competency score improved by 13.8 (SD = 6.6) points,
while for the DGT and DGT+ arms it was 2.5 (SD = 7.8) points and 12.7 (SD = 18.2) points, respectively.
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p=0.003

p=0.388

p=0.023

Figure 2. Change in competency assessment scores within each training program. Note: this Figure
includes scores from the n = 11 in F2F, n = 12 in DGT, and n = 13 DGT+ participants who completed
the post-training (endline) competency measure; though, some of these participants did not complete
the training programs. F2F: Face-to-Face; DGT: Digital Training.

Next, we explored changes in scores on the competency measure between training groups.
We conducted a Welch’s ANOVA test, which showed that there was a statistically significant difference
in change in the competency score obtained before and after the training between the three groups,
F (2,21) = 7.0358, p = 0.00455. Following up with a Games–Howell post-hoc test, we found that there
was a statistically significant difference in the scores on the competency assessment obtained pre- and
post-training between the F2F and DGT arm with p < 0.01, but not between the F2F and DGT+ arms.

4. Discussion

This pilot study evaluated the feasibility and acceptability of conventional F2F training compared
with digital training programs to build the capacity of non-specialist health workers for delivering
HAP, a brief evidence-based psychological treatment for depression. The primary goals of this study
were to test the study procedures and, importantly, to inform modifications and refinements to
the training programs in preparation for a large-scale fully powered effectiveness trial. While we
previously demonstrated the interest in using digital technology for accessing training programs
among non-specialist health workers, the current study substantially expanded on our prior work
by testing these programs in the field, allowing the opportunity to gain insights about the use of the
training programs in real world settings.

This study highlighted the need for several significant modifications to the digital training program.
These included: the need to modify the timing and structure of the F2F training to accommodate
participants’ long commutes from distant villages, as well as to account for their family responsibilities
such as childcare; the need to ensure that the digital program content could be accessed entirely
offline given the low internet connectivity in rural areas in the Sehore district; the need for a more
comprehensive orientation session for using the smartphone app to access the training program and
navigating the Learning Management System, including use of more pictures and screenshots of ‘how
to’ examples to account for low digital literacy among participants (this was also reflected by the large
number of technical assistance calls received during this pilot study); and modifications to the provision
of technical support, to allow early identification of participants who may be struggling to complete the
digital training and enable a more timely response to technical challenges that could arise. The challenge
of poor internet connectivity was similarly reported in a prior trial from Pakistan, where efforts to
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address this concern also involved ensuring access to the training content in an offline format [30].
This prior study reported that the online training approach required a stable internet connection that
may not be available in many remote, rural, resource-poor settings; hence, to increase the feasibility
of the online training program, the researchers used an offline tablet-based application to deliver the
training to frontline health workers [30]. Following the focus group discussions, we made substantial
modifications to the remote support component of the DGT+ arm, given that participants expressed
high interest in having a member of our research team contact them to provide encouragement and
motivation on a regular basis.

Our study aligns with an emphasis in the digital mental health research literature that it is necessary
to consider the perspectives of users in order to support adoption, engagement, and sustained use
of digital interventions [65–67]. Despite the large number of technical challenges that participants
mentioned throughout this pilot study, we were reassured by participants’ continued interest in
learning about the mental health treatment related content. This was consistent between participants
in the digital training programs and F2F training, suggesting recognition among non-specialist health
workers of the importance of depression care in their communities. This is an essential first step
towards successfully scaling up mental health services in primary care settings in the Sehore district,
as well as across the state and nation.

Another important finding in this study was about which cadre of non-specialist health workers
would be most suitable for completing the training program based on their availability. We learned
that the MPWs had too many other competing demands, and were frequently called away by their
superiors for attending to urgent duties, which is reflected in their low completion rates across the
three training programs. However, for non-specialist health workers who are frequently required to
travel for other work related activities, use of a digital training program may offer the opportunity for
these individuals to gain the necessary skills to deliver mental health services while accommodating
their already busy workload. In addition, digital training holds the potential to train all types of health
workers on depression care, as the program can be accessed on a smartphone, which could potentially
expand access to mental health services at the community level, thereby advancing efforts to achieve
the Mental Health Care Policy goal of providing universal mental health care services for all [13].

While this was a pilot study primarily focused on assessing the feasibility and acceptability of the
different training programs, we found that scores on the competency assessment improved for the
F2F and DGT+ participants. This is a promising finding, suggesting that digital training with added
support may be equally effective compared to the regular classroom or in-person training in terms
of gaining knowledge and skills. Also, digital training is potentially more convenient, feasible, and
scalable for building the capacity of non-specialist health workers when compared to conventional
in-person training, which is supported by similar studies and recent reviews from other low-income
and middle-income countries [30,68,69]. Additionally, the findings also indicate that the training
content is appropriate for gaining the knowledge and skills related to HAP delivery, as reflected
by improved scores on the competency measure. However, the DGT participants did not show
significant improvements, suggesting that the use of digital technology alone may not be sufficient for
contributing to knowledge acquisition. Importantly, the addition of support initiated by our research
team appeared to greatly improve program completion for DGT+ participants (79%) compared to
DGT participants (57%). This is consistent with prior studies of online education programs that have
demonstrated that the use of digital training is most effective when supplemented with access to remote
or in-person support [30,36]. For example, the recent study of the Technology-Assisted Cascaded
Training and Supervision system for Lady Health Workers, conducted in rural areas in Pakistan, found
that use of digital technology in combination with in-person support and training contributed to
comparable improvements in competence as conventional face-to-face training [30]. Additionally,
a study in Zambia using technology to train community health workers highlighted a similar finding
that in-person support is required to address technical challenges related to poor network coverage,
mobile hardware, and software [70]. If these challenges are not addressed, it can negatively impact
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the delivery process and training outcomes [70]. Further, a recent review of mobile technologies for
education and the training of community health workers in low-income and middle-income countries
indicated the value of digital training methods for augmenting periodic in-person training activities,
while highlighting that digital training programs could be embedded within existing health care
services to allow opportunities for continuing education among community health workers [69].

Several limitations with this study warrant consideration. Firstly, this was a pilot study looking
at acceptability and feasibility of the training program, and therefore the sample size was small and
not adequately powered to detect differences in competency outcomes between groups. Additionally,
participants’ satisfaction and acceptability ratings were generally very positive, suggesting a potential
desirability bias. On the other hand, appropriateness was ranked lower, suggesting the need for
improvements to the training programs to promote engagement and sustained interest, which was
further reflected during the focus group discussions. The self-report measure used to assess competency
outcomes was translated into Hindi and adapted to the local context, though the psychometric properties
of this measure have not yet been established for use in rural India. It will be important that further
efforts seek to validate this self-report competency measure to support its widespread use in diverse
contexts in India. While more scalable and efficient to administer, the use of a self-report measure for
competency presents other disadvantages compared to conventional competency assessment methods
such as role plays or direct observation because it may not capture the application of skills during direct
interactions between the health worker and patient. Furthermore, we made conscious efforts to limit
potential bias during the quantitative and qualitative data collection. For instance, the quantitative
surveys about satisfaction and acceptability with the training programs may have been subject to
social desirability bias, where participants may have reported highly positive responses. To minimize
this potential risk, members of our research team overseeing data collection were not involved in
the intervention development, and they also reassured participants that there are no right or wrong
answers to the questions about program satisfaction because honest feedback is most important for
finding ways to improve the training program and content for the future. To minimize a similar
risk of social desirability bias in the qualitative data collection, we ensured that the facilitators of
the focus group discussions and note taking were also not members of our team involved in the
training program development, as they may have influenced participants’ responses. Members of our
research team who were not involved in the development of the training program conducted the focus
group discussions and collected field notes. Given that our study was primarily aimed at informing
a subsequent large-scale trial, we did not conduct an in-depth thematic analysis of our qualitative
findings. Therefore, in future research developing digital applications, we can build on our approach
presented here to strengthen the qualitative methods for analysis and interpretation of participants’
feedback and recommendations about program design.

We made an effort to recruit only participants who had not previously participated in our
formative research as a method to minimize prior exposure. However, there is still a possible risk of
contamination [71], which we did not assess, though we believe that this risk was low. Furthermore,
the non-specialist health workers were recruited from real world settings; therefore, it is not possible
to fully minimize contamination in such settings, as health workers may look up information about
the training materials on the Internet or may talk to each other about the program content in routine
encounters in the workplace. Participants were recruited from three community health centers in a
single district in Madhya Pradesh, indicating that these findings may not generalize to other settings in
India in terms of context and culture, or other settings globally. However, many of the findings reported
here relate to the use of digital training in a low-resource setting and overcoming challenges such as
low digital literacy and poor bandwidth likely apply to many other settings. Our finding that some
cadres of health workers, such as the MPWs, were not able to complete the training due to their prior
engagement with work commitments highlights potential challenges for scaling up this type of training
program due to competing priorities. Therefore, our findings may only generalize to health workers
who have the time available and who are interested and willing to learn about treatment for depression.
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To achieve the goal of universal access to mental health services, it will be necessary to consider what
cadres of health workers are available and ideally positioned to successfully complete the training
program and provide care for depression and other mental disorders as part of their routine service
delivery. Furthermore, we restricted our sample to non-specialist health workers with minimum 8th
standard education to ensure that they were literate and able to follow the written training materials,
to access and navigate the training program on the smartphone app, and to answer the questions on
the competency assessment measure. This type of training would likely not be suitable for health
workers who may be illiterate, or who may not be able to operate a smartphone. Even though we
found that roughly half of the sample had ever used a smartphone, all participants randomized to
either of the digital training programs were able to learn to use the smartphone and access the training
program content. This further attests to the interest among non-specialist health workers to use digital
technology to support their work, which has been consistently reported in prior studies [68,69].

5. Conclusions

The findings and observations from this pilot study offer insights that can inform modifications
and improvements to the face-to-face and digital training programs for non-specialist health workers
in preparation for a larger fully powered effectiveness trial. A potentially important finding from
this pilot study was the apparent motivation for enrollment and starting the training on depression
care among non-specialist health workers (n = 36 out of n = 42) and the motivation to complete this
training (n = 27 out of n = 36), and specifically among ASHAs and ASHA Facilitators. Based on our
findings, there seems to be a demand for training in depression care that will be further explored in the
forthcoming trial. With digital technologies becoming an increasingly important tool in health systems
in many low-resource settings in India, as reflected by efforts to finance the adoption of smartphones
among frontline health workers to support care delivery [29], future research can expand on the
findings reported here to determine how technology can support the scale up of mental health care.
Importantly, it will be necessary to determine how to effectively leverage digital technology to enable
supervision and quality assurance for the sustained delivery of high quality psychological treatment
for depression, as this will be critical to support task-sharing mental health services in low-resource
settings towards addressing the care gap [72].
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Abstract: (1) Background: The health implications associated with the metabolically healthy obese
(MHO) phenotype, in particular related to symptoms of depression, are still not clear. the purpose
of this study is to check whether depression and metabolic status are relevant by classifying them
into four groups in accordance with the MHO diagnostic standard. Other impressions seen were the
differences between sexes and the effects of the MHO on the occurrence of depression. (2) Methods:
A sample of 3,586,492 adult individuals from the National Health Insurance Database of Korea was
classified into four categories by their metabolic status and body mass index: (1) metabolically healthy
non-obese (MHN); (2) metabolically healthy obese (MHO); (3) metabolically unhealthy non-obese
(MUN); and (4) metabolically unhealthy obese (MUO). Participants were followed for six to eight
years for new incidences of depression. The statistical significance of the general characteristics of
the four groups, as well as the mean differences in metabolic syndrome risk factors, was assessed
with the use of a one-way analysis of variance (ANOVA). (3) Results: The MHN ratio in women
was higher than in men (men 39.3%, women 55.2%). In both men and women, depression incidence
was the highest among MUO participants (odds ratio (OR) = 1.01 in men; OR = 1.09 in women).
It was concluded as well that, among the risk factors of metabolic syndrome, waist circumference
was the most related to depression. Among the four groups, the MUO phenotype was the most
related to depression. Furthermore, in women participants, MHO is also related to a higher risk
of depressive symptoms. These findings indicate that MHO is not a totally benign condition in
relation to depression in women. (4) Conclusion: Therefore, reducing metabolic syndrome and
obesity patients in Korea will likely reduce the incidence of depression.

Keywords: metabolically healthy obese phenotype; metabolic syndrome; obesity; depression

1. Introduction

Obesity is usually one of the metabolic syndrome conditions. It is a cluster of car-
diometabolic abnormalities, including elevated high blood pressure, fasting blood glucose
and dyslipidemia [1]. However, this does not mean that all obese persons are suffering
from metabolic abnormalities, and there is some evidence that the impact of obesity on
health can be kept away from individuals who comprise the metabolically healthy obese
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(MHO) phenotype [2,3]. It is interesting to note the health implications associated with
this phenotype, even though there are no consistent results across studies and the health
outcomes have not been examined [4–8].

Obesity and depression are essential factors of disease burden, but the evidence that
proves that these two conditions are associated with one another is still not vivid. Even
though recent studies including meta-analysis of prospective cohorts have proposed that
having a greater body mass index (BMI) can increase the risk of depressive symptoms,
several individual studies show that there is no relationship between obesity and depressive
symptoms, while another group of individual studies show that greater BMI can reduce
the risk of future mental health problems and of suicide [9–12]. Metabolic syndrome has a
relationship with depression, independent of obesity [13]. The analysis of the relationship
between depressive symptoms and the MHO phenotype sheds light on the association of
obesity and depression.

Only a few studies have investigated the relationship between depressive symptoms
and the MHO phenotype [14–16]. Two of them have shown that there is not an increased
risk of depressive symptoms in MHO individuals followed for two years and ten years in
comparison with healthy and non-obese individuals [14,16]. However, in another study,
which was a pooled analysis of eight cross-sectional studies, it was shown that there is a
moderately increased risk of depressive symptoms in obese individuals with advantageous
metabolic profiles in comparison with healthy and non-obese individuals [15].

The purpose of this study is to check whether depression and metabolic status are rel-
evant by dividing them into four groups in accordance with the MHO diagnostic standard.
The differences between sexes and the effects of the MHO on the occurrence of depression
were observed.

2. Materials and Methods

2.1. Study Population

In this retrospective study, we used a database given by the National Health Insurance
Services-Health Screening (NHIS-HEALS) Cohort in Korea. The insurance system was
set by the Korean government and covers about 97.2% of the residents. Individuals aged
≥40 years can have a general health-screening program every 2 years. The screening has
included standardized self-reporting questionnaires on routine laboratory tests of blood
and urine, anthropometric and blood pressure measurements, medical history and lifestyle
behaviors. The cohort profile of the NHIS-HEALS is presented elsewhere [17]. Furthermore,
the NHIS gave a research-specific database from the NHIS-HEALS in accordance with
the conditions set by the researchers. Our research-specific database included 2009–2011
data of participants aged 19–69 years who had at least two general health-screening
programs in 2009–2011. We extracted a list of participants from the research-specific
database and excluded those who were aged ≤40 years or ≥70 years in 2009 or who did
not participate in a general health screening program in 2009 (n = 4,708,511). Thus, all
the participants in the list have their own 2009 health screening records. Participants
who had one or more missing values in the metabolic syndrome (MetS) components were
excluded (n = 9448) because MetS scores were not available. To exclude participants with
depression, participants who were receiving medications for depression or who had the
following the 10th revision of the international classification of disease (ICD-10) codes
(as a main diagnosis or a sub-diagnosis at baseline) were not included: F32.0 to F34.9
(n = 822,603). Medication status was determined by prescription records. Based on the
individual’s smoking information entered in the survey response, participants whose
smoking information had changed or was missing were also excluded (n = 289,968). A total
of 3,586,492 participants (1,936,582 men and 1,649,910 women) participated in this study
(Supplementary Table S1). The institutional review board of Yonsei University, Wonju
College of Medicine, Korea (IRB number: CR318350) approved a Waiver of Informed
Consent for this study.
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2.2. Measurements and Definitions

Healthcare institutions for screening were selected in accordance with the Framework
Act on Health Examinations and the standard requirements for equipment, manpower
and facilities. To lessen the measurement errors, the average values of all test data from
laboratory between 2009 and 2011 were used. Values beyond the extreme outlier were
considered as missing values. Height, weight and waist circumference were measured,
and BMI was calculated with the formula BMI = kg/m2, where kg is a participant’s weight
in kilograms and m2 is the square of the participant’s height in meters. Blood samples for
serum glucose and total cholesterol (TC) level measurement were acquired following an
overnight fast [18]. Low-density lipoprotein cholesterol (LDL-C) levels were calculated
from TC, high-density lipoprotein cholesterol (HDL-C) and triglyceride (TG) levels or
measured directly.

Obesity was defined as BMI ≥ 25 kg/m2 and metabolically healthy as metabolic
syndrome risk < 2 in the 2009–2011 health-screening program. The participant’s level of
alcohol consumption, frequency of physical activity, family economic status and smoking
status were acquired using a set of questions. Smoking status was grouped as current
smoker and not, and alcohol consumption as heavy drinker (i.e., consumption of 14 and
7 units of alcohol per week in men and women, respectively) and not. Regular exercise
was interpreted as moderate to vigorous intensity physical activity for more than three
days each week.

We categorized the participants into four main groups according to their metabolic
status and BMI:

1. Metabolically healthy non-obese (MHN): those who have less than two metabolic
syndrome risk factors and a BMI under 25 kg/m2;

2. Metabolically healthy obese (MHO): those who have less than two metabolic syn-
drome risk factors and a BMI of 25 kg/m2 or greater;

3. Metabolically unhealthy non-obese (MUN): those who have more than two metabolic
syndrome risk factors and a BMI under 25 kg/m2;

4. Metabolically unhealthy obese (MUO): those who have more than two metabolic
syndrome risk factors and a BMI of 25 kg/m2 or greater.

2.3. Study Outcome

In this study, we registered the population at risk between 2009 and 2011 and analyzed
the outcomes in the follow-up period from 2014 to 2017, succeeding a 2-year washout
period (2012–2013). The primary endpoint of the study was newly diagnosed depression
in the follow-up period. Depression was determined by a recording of international
classification of diseases (ICD)-10 codes F32.0 to F34.9 on health insurance data or the
taking of an antidepressant (Supplementary Tables S2 and S3). Medication status was
determined by the Anatomical Therapeutic Chemical (ATC) code provided in the National
Health Insurance Survey.

2.4. Statistical Analysis

The statistical significance of the general characteristics of the four groups and the
mean differences in metabolic syndrome risk factor were assessed with the use of one-way
analysis of variance (ANOVA). The depression incidence among the four groups was
assessed and compared with the odds ratio (OR) using multiple logistic regressions by
complex sampling. We applied the multivariable-adjusted proportional hazards model:
model 1 adjusted for age, while model 2 adjusted for age, alcohol consumption, exercise
and smoking status. We also carried out a subgroup analysis based on the sex of the
participants. We also compared the OR between seven metabolic syndrome risk factors
adjusted for the participant’s age with the use of multiple logistic regressions.
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3. Results

3.1. Baseline Characteristics of the Study Population

There were a total of 3,586,492 participants (1,936,582 men and 1,649,910 women)
enrolled in this study. Tables 1 and 2 show the baseline characteristics of both the men and
women participants included in the analysis by BMI categories and metabolic status. The
MHN ratio in women was higher than in men (men 39.3%, women 55.2%). According to
the study, 11–12% of obese participants were described as metabolically healthy, i.e., with
no more than one metabolic risk factor.

Table 1. Characteristics of the study population at the baseline (men).

MHN MUN MHO MUO

(n = 760,561) (n = 441,741) (n = 213,940) (n = 520,340)
Age (years) 50.3 ± 7.85 51.6 ± 7.78 49.4 ± 7.49 50.4 ± 7.64

Income classification
Highest 25% (%) 13.5 16.2 11.8 15.0

Upper-middle 25% (%) 17.2 18.1 14.7 15.8
Lower-middle 25% (%) 25.9 26.4 24.2 25.4

Lowest 25% (%) 43.4 39.2 49.3 43.8
Alcohol consumption

≥3/week (%) 20.3 28.9 19.3 26.2
2/week (%) 18.5 20.6 19.7 21.3
1/week (%) 26.2 22.4 26.8 23.4

<1/week (%) 35.1 28.2 34.3 29.1
Non-smokers (%) 24.1 19.5 25.9 21.2
Ex-smokers (%) 34.3 34.4 40.2 39.0

Current smokers (%) 41.6 46.1 33.9 39.8
Vigorous activity (%) 27.0 26.1 31.4 27.5

BMI (kg/m2) 22.3 ± 1.78 23.0 ± 1.51 26.3 ± 1.18 27.3 ± 1.89
Waist (cm) 79.6 ± 5.06 82.5 ± 4.88 86.7 ± 3.91 91.0 ± 5.34

FBS (mg/dL) 94.1 ± 14.57 110.6 ± 28.47 94.1 ± 12.44 108.9 ± 26.01
HDL (mg/dL) 56.3 ± 18.57 51.5 ± 24.10 53.1 ± 17.94 48.8 ± 19.97
TG (mg/dL) 112.8 ± 55.50 197.9 ± 111.05 127.1 ± 61.80 210.4 ± 117.76
sBP (mmHg) 112.0 ± 10.36 129.5 ± 11.46 122.3 ± 9.72 130.3 ± 11.19
dBP (mmHg) 75.1 ± 6.99 81.8 ± 7.30 76.5 ± 6.73 82.4 ± 7.55

Mean ± standard deviation or proportions of participants are indicated. Abbreviations: BMI, body mass index;
dBP, diastolic blood pressure; FBS, fasting blood sugar; HDL, high-density lipoprotein; MHN, metabolically
healthy non-obese; MHO, metabolically healthy obese; MUN, metabolically unhealthy non-obese; MUO, metabol-
ically unhealthy obese; sBP, systolic blood pressure; TG, triglyceride. Vigorous activity is defined as physical
activity more than three times a week with a strength of moderate, severe or above.

Table 2. Characteristics of the study population at baseline (women).

MHN MUN MHO MUO

(n = 910,641) (n = 258,827) (n = 198,719) (n = 281,723)
Age (years) 49.5 ± 7.35 54.2 ± 7.90 51.4 ± 7.66 54.7 ± 7.94

Income classification
Highest 25% (%) 27.9 26.7 28.8 26.7

Upper-middle 25% (%) 21.7 21.1 22.1 21.8
Lower-middle 25% (%) 20.7 22.9 22.1 24.0

Lowest 25% (%) 29.7 29.4 27.1 27.5
Alcohol consumption

≥3/week (%) 3.1 3.1 3.3 3.1
2/week (%) 4.6 3.7 4.7 3.9
1/week (%) 15.4 11.0 14.7 11.4

<1/week (%) 76.9 82.2 77.4 81.6
Non-smokers (%) 97.0 96.6 97.5 96.8
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Table 2. Cont.

MHN MUN MHO MUO

Ex-smokers (%) 1.1 0.9 0.9 1.0
Current smokers (%) 1.9 2.4 1.6 2.2
Vigorous activity (%) 24.4 23.8 25.1 22.9

BMI (kg/m2) 22.0 ± 1.77 22.8 ± 1.54 26.6 ± 1.52 27.8 ± 2.35
Waist (cm) 73.0 ± 5.19 76.9 ± 5.42 81.6 ± 4.72 87.0 ± 6.08

FBS (mg/dL) 91.0 ± 10.98 104.8 ± 23.51 92.2 ± 10.78 105.3 ± 23.59
HDL (mg/dL) 62.4 ± 20.69 51.7 ± 21.93 60.6 ± 20.43 52.9 ± 20.98
TG (mg/dL) 90.4 ± 37.37 161.5 ± 81.53 101.1 ± 39.52 159.3 ± 79.25
sBP (mmHg) 116.1 ± 11.28 127.4 ± 12.84 120.3 ± 10.81 129.8 ± 12.37
dBP (mmHg) 72.2 ± 7.47 79.2 ± 8.08 74.3 ± 7.05 80.3 ± 7.86

Mean ± standard deviation or proportions of participants are indicated. Abbreviations: BMI, body mass index;
dBP, diastolic blood pressure; FBS, fasting blood sugar; HDL, high-density lipoprotein; MHN, metabolically
healthy non-obese; MHO, metabolically healthy obese; MUN, metabolically unhealthy non-obese; MUO, metabol-
ically unhealthy obese; sBP, systolic blood pressure; TG, triglyceride. Vigorous activity is defined as physical
activity more than three times a week with a strength of moderate, severe or above.

3.2. Relation between Metabolically Healthy Obesity and Depression

According to the pooled analysis for men participants with MHN as the reference
category, a relationship with a higher risk of depressive symptoms was only shown in the
MUO group (fully adjusted OR = 1.012; confidence interval (CI) = 1.002, 1.023) (Table 3).

Table 3. Odds ratio (OR) (95% CI) for the relationship between metabolic health and obesity with a
risk of depression over three years of follow-up (men).

Cases/N Model 1 OR (95% CI) Model 2 OR (95% CI)

Metabolically healthy
non-obese (MHN) 104,143/760,561 1.000 (Ref) 1.000 (Ref)

Metabolically
unhealthy non-obese

(MUN)
64,297/441,741 1.012 (1.001–1.023) 1.009 (0.998–1.019)

Metabolically healthy
obese (MHO) 28,149/213,940 0.999 (0.984–1.013) 1.002 (0.987–1.016)

Metabolically
unhealthy obese

(MUO)
72,235/520,340 1.014 (1.003–1.024) 1.012 (1.002–1.023)

Abbreviations: CI, confidence interval; Model 1: adjustment for age; Model 2: adjustment for age, alcohol
consumption, exercise and smoking status.

In female participants, however, compared to MHN as the reference category, a higher
risk of depressive symptoms presented in all three other groups (Table 4). The relationship
with depressive symptoms was significantly higher for MUO (fully adjusted OR = 1.096;
CI = 1.085, 1.107). In comparison to all non-obese participants (MHN or MUN), the
depression risk for MUO (fully adjusted OR = 1.096; CI = 1.085, 1.107) was higher than
for MHO (fully adjusted OR = 1.073; CI = 1.061, 1.086). Table 4 also indicates that, in
comparison to all metabolically healthy participants (MHO or MHN), the depression risk
for MUO (fully adjusted OR = 1.096; CI = 1.085, 1.107) was higher than for MUN (fully
adjusted OR = 1.035; CI = 1.024, 1.046).
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Table 4. OR (95% CI) for the relationship between metabolic health and obesity with a risk of
depression over three years of follow-up (women).

Cases/N Model 1 OR (95% CI) Model 2 OR (95% CI)

Metabolically healthy
non-obese (MHN) 189,972/910,641 1.000 (Ref) 1.000 (Ref)

Metabolically
unhealthy non-obese

(MUN)
63,850/258,827 1.038 (1.027–1.049) 1.035 (1.024–1.046)

Metabolically healthy
obese (MHO) 46,256/198,719 1.072 (1.060–1.085) 1.073 (1.061–1.086)

Metabolically
unhealthy obese

(MUO)
73,531/281,723 1.099 (1.088–1.110) 1.096 (1.085–1.107)

Abbreviations: CI, confidence interval; Model 1: adjustment for age; Model 2: adjustment for age, alcohol
consumption, exercise and smoking status.

3.3. Relationship between Metabolic Syndrome Factors and Depression

Tables 5 and 6 have shown the relationship between incident depression and metabolic
syndrome factors for males (Table 5) and females (Table 6). In both sexes, the conclusion
was that the greater the waist circumference, the greater the frequency of depression. In
male participants, fasting blood sugar is also associated with depression (fully adjusted
OR = 1.001; CI = 1.001, 1.001), while, in female participants, BMI is also associated with
depression (fully adjusted OR = 0.994; CI = 0.994, 0.995).

Table 5. Relationship between metabolic syndrome factors and incident depression (men).

Model 1 Model 2

OR (95% CI) OR (95% CI)
BMI 0.999 (0.998–1.001) 0.978 (0.976–0.981)

Waist 1.004 (1.003–1.004) 1.011 (1.010–1.012)
FBS 1.001 (1.001–1.001) 1.001 (1.001–1.001)

HDL 1.000 (1.000–1.000) 1.000 (1.000–1.001)
TG 1.000 (1.000–1.000) 1.000 (1.000–1.000)
sBP 0.997 (0.997–0.998) 0.997 (0.996–0.998)
dBP 0.996 (0.996–0.997) 0.999 (0.998–1.000)

Abbreviations: BMI, body mass index; CI, confidence interval; dBP, diastolic blood pressure; FBS, fasting blood
sugar; HDL, high-density lipoprotein; OR, odds ratio; sBP, systolic blood pressure; TG, triglyceride. Model 1:
adjustment for age; Model 2: adjustment for risk factors and age of metabolic syndrome.

Table 6. Relationship between metabolic syndrome factors and incident depression (women).

Model 1 Model 2

OR (95% CI) OR (95% CI)
BMI 1.013 (1.011–1.014) 0.995 (0.993–0.997)

Waist 1.008 (1.007–1.008) 1.010 (1.009–1.010)
FBS 1.001 (1.000–1.001) 1.000 (1.000–1.000)

HDL 1.000 (1.000–1.000) 1.000 (1.000–1.000)
TG 1.001 (1.001–1.001) 1.001 (1.000–1.001)
sBP 0.998 (0.998–0.998) 0.994 (0.994–0.995)
dBP 0.999 (0.999–1.000) 1.004 (1.004–1.005)

Abbreviations: BMI, body mass index; CI, confidence interval; dBP, diastolic blood pressure; FBS, fasting blood
sugar; HDL, high-density lipoprotein; sBP, systolic blood pressure; TG, triglyceride. Model 1: adjustment for age;
Model 2: adjustment for age and risk factors of metabolic syndrome.

4. Discussion

As far as we know, this is the first Korean population-based study to depict the rele-
vance of both depression and metabolically healthy obesity. Even though recent studies
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indicate that metabolically healthy obesity (MHO) is related to an increased risk of depres-
sive symptoms, there are still irregularities in the reports [14–16]. However, those analyses
did not account for sex. In this study, we have found that the MHO group has a higher
future depression risk than other subgroups in female participants, while, in male patients,
there is a similar future depression risk to other subgroups.

The principal strength of this study is its nationally representative population-based
study design with a huge pooled sample size. Our study is special and different from
other results that can meta-analyzed based on the literature and biased by the selective
publication of positive results because our current analysis was based on publicly available
databases from National Health Insurance Database of Korea and not published results. It
is logical to assume that the present results of these datasets generally represent Korea so
they are not likely to be subject to a major publication bias.

Bi-directional associations have been outlined for the relationships between metabolic
syndrome and depression, proposing that obesity, depressive symptoms and metabolic
abnormalities could be associated through multiple pathways [9,19,20]. Using the NHIS-
HEALS cohort, we have registered the population at risk between 2009 and 2011 and
analyzed the outcomes in the follow-up period from 2014 to 2017. By excluding participants
previously diagnosed with depression between 2009 and 2011, it is possible to analyze the
temporal direction of the association.

In this study, complete case analysis was done by excluding participants who had one
or more missing values in the MetS components (n = 9448) and whose smoking information
had changed or was missing (n = 289,968). However, this study did not characterize the
excluded population, which can result in bias.

The mechanisms that determine metabolically unhealthy and healthy obesity states
are not popular [21,22]. One crucial factor could be where we should store the person’s fat,
with excess visceral fat being more harmful for metabolic health than excess subcutaneous
fat [3]. Additionally, some analysis has shown that people categorized as MHO have differ-
ent health characteristics to those categorized as MUO, including higher physical activity,
lower smoking prevalence and higher educational levels, proposing that both behavioral
and physiological factors could be involved [15]. There are also various common biological
states that link metabolic factors and obesity to depression, such as impaired glycemic
control, inflammation and dysregulation of the hypothalamic–pituitary–adrenocortical
axis [23–28]. A different set of factors may determine the depression risk of MHO individu-
als from non-obese individuals, such as negative self-image, physical inactivity, functional
limitations in daily life, social stigma and discrimination [29–31].

The differences in future depression between metabolically healthy obesity men and
women are still not known, but there are some studies on the different effects of sex of
obesity and depression. One study proposed that prenatal stress-immune programming of
the different sexes effects hypothalamic-pituitary-adrenal-gonadal axes and on metabolic
and cardiac functions, leading to differences between the sexes in the comorbidity of
major depressive disorders and obesity/metabolic syndrome [32]. Another study has
shown that obesity has a relationship with different psychosocial profiles in both men and
women [33,34]. Women are associated with being overweight and having an increased risk
of suicidal tendencies and clinical depression, while men are the opposite [35]. Men may
favor a large muscular body rather than a skinny one and having a high body weight may
not increase the risk of depression as much as being underweight. Moreover, we also noted
that the greater the waist circumference, the greater the frequency of depression. However,
including BMI, the incidence of depression did not affect other metabolic syndrome factors.

5. Conclusions

In conclusion, the present results from a large pooled analysis of men and women
show that MUO (metabolically unhealthy obesity) has a higher risk of depressive symptoms
than MHN (metabolically healthy non-obese). Furthermore, in women participants, MHO
(metabolically healthy obesity) is also related to a higher risk of depressive symptoms.
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These findings indicate that MHO is not a totally benign condition in relation to depression
in women. Therefore, reducing metabolic syndrome and obesity patients in Korea will
likely reduce the incidence of depression.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-460
1/18/1/63/s1, Table S1: Study population; Table S2: List of antidepressants selected in the study;
Table S3: List of ICD-10 codes selected in the study.
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Abstract: Thoracic pain is a shared symptom among gastrointestinal diseases, muscle pain, emotional
disorders, and the most deadly: Cardiovascular diseases. Due to the limited space in the emergency
department, it is important to identify when thoracic pain is of cardiac origin, since being a symptom
of CVD (Cardiovascular Disease), the attention to the patient must be immediate to prevent irre-
versible injuries or even death. Artificial intelligence contributes to the early detection of pathologies,
such as chest pain. In this study, the machine learning techniques were used, performing an analysis
of 27 variables provided by a database with information from 258 geriatric patients with 60 years old
average age from Medical Norte Hospital in Tijuana, Baja California, Mexico. The objective of this
analysis is to determine which variables are correlated with thoracic pain of cardiac origin and use the
results as secondary parameters to evaluate the thoracic pain in the emergency rooms, and determine
if its origin comes from a CVD or not. For this, two machine learning techniques were used: Tree
classification and cross-validation. As a result, the Logistic Regression model, using the characteristics
proposed as second factors to consider as variables, obtained an average accuracy (μ) of 96.4% with
a standard deviation (σ) of 2.4924, while for F1 a mean (μ) of 91.2% and a standard deviation (σ)
of 6.5640. This analysis suggests that among the main factors related to cardiac thoracic pain are:
Dyslipidemia, diabetes, chronic kidney failure, hypertension, smoking habits, and troponin levels at
the time of admission, which is when the pain occurs. Considering dyslipidemia and diabetes as
the main variables due to similar results with machine learning techniques and statistical methods,
where 61.95% of the patients who suffer an Acute Myocardial Infarction (AMI) have diabetes, and the
71.73% have dyslipidemia.

Keywords: machine learning; thoracic pain; tree classification; cross-validation

1. Introduction

Thoracic pain is one of the generally most relevant factors in people with cardiovas-
cular problems at risk of heart attacks. However, despite its relevance in this area, chest
pain may be an indicator of some other pathology not related to CVD. In 2015, the WHO
(World Health Organization) recorded 17.7 million deaths related to CVD, where 42.8%
were due to coronary heart disease and 36.15% to cerebrovascular accidents [1]. While
the World Heart Federation in 2017 reported that in Mexico, 77% of deaths were due to
NCD (Non-Communicable Diseases), where 24% of these were caused by CVD [2]. In 2018,
the INEGI (National Institute of Statistical Geography) reported in Baja California 149,368
cases of death from CVD, where ischemic diseases represented 72.7%, while hypertensive
diseases were 15.9%; the rest were split between pulmonary vascular disorders and acute
rheumatic fever, among others [3].

Since CVDs are involved with a large percentage of the causes of death in Baja Cal-
ifornia, a decision was made to analyze a database with information from 258 patients
provided by Medica Norte with variables such as Edad, Género, Fumador, HTA, Dys-
lipidemia, Diabetes, ERC (Cr basal), Suma FRCV, C. Isquémica previa, PPT, Rangos PPT,
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Tipo dolor, TnT Ingreso, TnT Curva (4 h), ECG, Tipo Alteración, TC > 100, IC, Alta pre-
coz, UDT, Ingreso, Ergometría, Eco stress, Cate, Angio TAC, IAM, Revascularización
(See Appendix A); and thus, with the help of Orange, data analysis was carried out to
find which biochemical markers or habits are mostly related to thoracic pain of cardiac
origin, to more accurately locate the risk factors involved in development of a cardiac
event and dismiss as an emergency those patients with chest pain who do not meet the
conditions established for the development of CVD. With these results, a proposal for
second parameters to take into account in emergency rooms is produced to avoid possible
deaths caused by thoracic pain.

For this analysis, two variables based on troponin were considered, since it is in charge
of establishing the frequency of cardiac muscle contraction, which, when affected by a
heart attack, is released and can be used as a bio indicator [4]. According to a 2019 study,
Troponin has a positive predictive value of 62%, while its negative predictive value is
93% for cardiac lesions [5]. Therefore, the first variable was TnT Ingreso, where troponin
levels were measured in the blood of patients on arrival at the emergency room, and the
second was TnT curve (4 h), which are the levels of troponin found in the blood of admitted
patients four hours later.

When a patient arrives at the emergency room with chest pain, he is evaluated with an
exam known as PreTest Probability (PPT), which helps choose the most accurate method of
analysis to determine the type of pain in the patient. This PreTest consider variables like
gender, age, and some symptoms such as typical angina, atypical angina, or non-anginal
pain. Later, depending on the values of these variables, a percentage is established that can
be part of one of the four ranges used, and this range will determine the probability that
the pain present is due to CVD or not [6].

Among the conventional predictive methods to assess the etiology of thoracic pain
are the SCORE (Systematic Coronary Risk Evaluation), ASCVD (AtheroSclerotic Cardio-
Vascular Disease) Risk Estimator, and Framingham. The SCORE method is adapted from
the guide for CVD prevention in 2016 carried out by a project with the same name, which
is based on the calculation of risk factors for the prediction of possible CVDs at 10 years in
European patients [7]. On the other hand, ASCVD Risk Estimator evaluates the risk that
the patient has of atherosclerosis since this disease affects the arteries causing CVD. While
the Framingham method is the most widely used and oldest, since it dates back to 1948,
the risk of CVD using this method is calculated by assigning a value to variables related to
the patient’s condition and subsequently making a summation that will indicate the risk of
developing CVD within 10 years [8].

Nowadays, machine learning technologies, deep learning, and artificial intelligence
have been a meaningful tool for the healthcare industry. Thus, its classification and
patterns recognition capabilities for applications enable the image processing for treatable
diseases diagnosis. In addition, predictions based in mathematical models algorithms
using databases to classify different diseases related with a specific system and variables
correlation to find possible factors associated with high risk of mortality and chronic
diseases are used as decision making tool. The way these tools work is by simulating the
human brain functioning, with the greatest advantage in big data processing capabilities.
This technology offers methods such as supervised learning based (Random Forest, Support
Vector Machine, and Artificial Neural Network), unsupervised learning based (capable of
finding patterns of unlabeled data and cluster), and hybrid methods based on trial and
error (Reinforcement Learning) [9–11].

2. Materials and Methods

For the data analysis employed for this paper, we used Orange software version 3.23.
This software offers a visual programming environment that allows analyzing data from
statistics to machine learning by using interconnected “widgets” that indicate the flow
that data must follow and functions applied to data. To analyze the database provided
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by Clinic Medical Norte to find the secondary variables to consider a thoracic pain with a
cardiac origin, we used 17 widgets.

Five different machine learning algorithms available in the Orange data mining
toolkit [12], including k-nearest neighbor (kNN), decision tree, support vector machine
(SVM), random forest, and logistic regression, were employed in this study. To evaluate
the classification models, we use a 10-fold cross-validation strategy, where the original
samples were randomly partitioned into ten equal-sized subsamples, and we retained a
single subsample as validation data for testing. For this analysis, we use the following
tools of Orange:

Data

• File: Allows to upload the file to analyze. When loading the file, the value of each
variable must be selected, that is, whether it is categorical, numeric, or text, and its
role within the analysis, if it works as a feature, target, meta, or skip. In this case,
our aims were AMI and FRCV; we registered it as categorical.

• Data table: Allows us to visualize in a table the uploaded file.

Visualize

• Scatter plot: This graphic allows us to see continuous data represented in two dimen-
sions.

• Box plot: This graphic shows the distribution of the values of each attribute.
• Classification tree viewer: Allows us to visualize the resulting analysis of the model

tree classification. It shows a classification tree that indicates the hierarchy of each
value, which allows us to determine the most important.

Models

• Classification Tree.
• Logistic regression.
• Random Forest.
• kNN.
• SVM.

Evaluation:

• Tests and Scores: Analyzes the information using selected models, and shows different
parameters like accuracy, Precision, F1, recall.

• Confusion Matrix: Generates a matrix presenting false positives, true positives, false
negatives, and true negatives.

2.1. Description of the Database

The database (provided by the Clinic Medical Norte) contains 27 data items from
256 patients (See Appendix B). The average age of the participants included in this study
is 60 years. Table 1 presents the assessment criteria used in the patients of the Clinic
Medical Norte.

Table 1. Assessment criteria used for patients.

Classic Patterns of Thoracic Pain

Condition Location Radiating Pain Duration Type of Pain

AMI Retroesternal Arm, Neck >15 min Oppressive
Angina Retroesternal Arm, Neck 5–20 min Oppressive

Aortic dissection Retroesternal Interescapular Constant Tearing
TEP Hemithorax - Constant

Pneumothorax Hemithorax Neck, Back Constant

Pericarditis Retrosternal,
shoulder, arm Back, Neck Constant

Esophageal ruptura Retrosternal Posterior Thorax Constant
Esofagitis Retrosternal Interescapular Minutes to hours

Esophageal spasm Retrosternal Interescapular Minutes to hours
Musculoskeletal Localized - Variable

Note. Adapted from Prehospital Medical Emergency Manual (p. 334), by A. Pacheco-Rodríguez, A. Serrano-Moraza, J.
Ortega-Carnicer, F. Hermoso-Gadeo, 2001 [13], Madrid, España: Aran Ediciones. Copyright 2001 by Aran Editions.
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2.2. Machine Learning Models for Thoracic Pain Evaluation

Figure 1 shows the thoracic pain management guide. To create these models, we use
the variables that provide post-disease information, such as medications. Furthermore,
according to the clinical practice guideline, the variables used as a diagnosis were elimi-
nated [14,15].

Figure 1. Thoracic pain management guide.

To identify the most influential variables in the different created models, a classification
of these variables was done by assigning to each one a score, with the lower scores being
indicative of greater importance. For this analysis, we considered a sample of 256 patients,
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and two machine learning techniques were used: Tree classification and cross-validation.
For statistical analysis, the “distributions” tool from Orange was used.

3. Results

The database provided by Clinic Medical Norte is formed by 256 patients, of which
35.66% had an IAM. Of those who suffered from an IAM, 63.04% had dyslipidemia,
50% suffered from CKD, 71.74% had diabetes, 36.96% had Hypertension, 72.42% were
smokers or smoke, and 54.35% were men.

3.1. Tree Classification

As mentioned before, in this model, the target was IAM where the decision tree
suggested six factors to determine if the person with thoracic pain was in risk to present an
IAM; these factors were found as the current considered in the emergency room when a
patient with chest pain arrives. Another target examined was the variable of Risk Factors
for Cardiovascular Disease (FRCV), this target was considered as a categorical variable,
which showed if the patients suffered from a disease of had a negative result in clinical
tests, and the result of the decision tree revealed the proposed secondary factors to evaluate
if a thoracic pain has a cardiac origin or does not. In Table 2, the results from botch tree
classification analysis are shown.

Table 2. Comparison between Acute Myocardial Infarction (AMI) and Risk Factors for Cardiovascular
Disease (FRCV) used as a target for Tree classification.

Tree Classification

Level AMI FRCV

1 Angio TAC Dyslipidemia
2 Ergometry CKD
2 TnT curve 4 h Diabetes
3 Eco-Stress Hypertension
3 Catheterization Smoking habits
4 PPT Age
5 - TnT entry
6 - Gender

3.2. Cross-Validation

For the cross-validation analysis, 66% of the database was used to train the models,
using a number of 10 folds as parameter. For this, the used classifiers were: tree classifi-
cation, random forest, SVM, logistic regression and kNN. Considering the results of the
FRCV decision tree, of the previous analysis, these secondary factors were used as targets,
of which results are presented in Table 3.

Table 3. Metric’s formulas.

Metric Expresion

Accuracy
Accuracy =

True positive+True Negative
True Positive+True Negative+False Positive+False Negative

F1 F = 2 ∗ Precision∗Recall
Precision+Recall

Precision Precision =
True positive

True Positive+False Positive
Recall Recall = True Positive

True positive+False Negative

In Table 4, the variables determined as secondary factors to consider when a patient
arrives in the emergency room with chest pain are shown. The research suggests a close
relation between these diseases and habits, since one can be caused by another. Among
these variables, according to the results of the machine learning analysis, dyslipidemia may
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be considered as the main disease responsible for possible thoracic pain with cardiac origin,
followed by hypertension, smoking habits, diabetes, chronic kidney disease, and PPT
ranges. In the case of the variable dyslipidemia, the best obtained result was using logistic
regression with an accuracy of 0.969, F1 of 0.938, precision of 0.937, and recall of 0.940.
In hypertension, we found an accuracy of 0.994, F1 of 0.966, precision of 0.966, and recall of
0.966. For smoking, we found an accuracy of 0.918, F1 of 0.799, precision of 0.796, and recall
of 0.803. Lastly, for diabetes, we found an accuracy of 0.986, F1 of 0.961, precision of 0.963,
and recall of 0.961. For the variable of PPT ranges, the Random Forest model showed better
results, with an accuracy of 0.977, F1 of 0.880, precision of 0.881, and recall of 0.891.

Table 4. Cross-Validation results using a target FRCV decision tree results.

Variables Classification Accuracy F1 Precision Recall

Dyslipidemia

Tree classification 0.780 0.787 0.787 0.787
SVM 0.823 0.737 0.750 0.753
kNN 0.630 0.618 0.614 0.622

Logistic Regression 0.969 0.938 0.937 0.940
Random Forest 0.795 0.753 0.614 0.622

Hypertension

Tree classification 0.765 0.762 0.761 0.762
SVM 0.846 0.757 0.757 0.758
kNN 0.733 0.689 0.688 0.691

Logistic Regression 0.994 0.966 0.966 0.966
Random Forest 0.825 0.762 0.762 0.764

Smoking

Tree classification 0.691 0.580 0.578 0.586
SVM 0.716 0.514 0.547 0.569
kNN 0.658 0.510 0.504 0.532

Logistic Regression 0.918 0.799 0.796 0.803
Random Forest 0.739 0.587 0.585 0.606

Diabetes

Tree classification 0.712 0.727 0.729 0.701
SVM 0.746 0.612 0.725 0.705
kNN 0.546 0.602 0.590 0.625

Logistic Regression 0.986 0.961 0.963 0.961
Random Forest 0.733 0.704 0.706 0.724

Rangos PPT

Tree classification 0.997 0.990 0.990 0.990
SVM 0.895 0.707 0.699 0.720
kNN 0.992 0.855 0.954 0.960

Logistic Regression 0.951 0.845 0.841 0.851
Random Forest 0.977 0.880 0.881 0.891

4. Discussion

In emergency rooms, between 5% and 15% of the patients report thoracic pain,
whereby 23.8% of patients with thoracic pain are related to cardiovascular pathologies [16].
Another case that was found to be alarming in the Hospital de la Línea de la Concepción in
Cádiz is that 25% of the patients present an AMI (Acute Myocardial Infarction) after they
left the emergency room due to a normal electrocardiogram [4], which can be construed as
1 out of 4 patients had a wrong diagnosis, which could lead to a sudden death. For this
reason, it is important to find new methods to efficiently classify the origin of thoracic
pain, since it can be related to cardiogenic factors either ischemic or not ischemic; and not
cardiogenic factors being of gastrointestinal, pulmonar, neuromuscular, or psychological
origin [17]. Due to the multiple risk factors for CVD, it is critical to find the nearest linked
factor to a sudden death caused by a cardiomyopathy with thoracic pain as a symptom, con-
sidering that health conditions and lifestyle, including alimentation, have a considerable
impact in CVD development. For this, machine learning techniques and tools are proposed
to predict cardiopathies that could lead to sudden death [4,18]. Furthermore, studies found
that when a person presents various risk factors, the probabilities to develop a CVD in a
10-year range increases significatively [19]. Hence, it is recognized as widely important
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to identify the risk factors present when the patient arrives at the emergency room with
thoracic pain. This study suggests the use of the risk factors obtained as results in the tree
classification analysis and validated by cross-validation method, in the evaluation of the
thoracic pain in order to classify it as cardiac or not cardiac, considering these as secondary
factors alongside those currently used in the emergency rooms. However, these results
must be interpreted with caution and a series of limitations must be taken into account
since the study was carried out only with elderly patients and with less than 30 variables;
to achieve more precise results in future studies, the use of a database with more variables
to consider and a population with different age ranges is proposed, and with this, better
training in machine learning models would be achieved, which would allow for finding
greater differentiation between variables.

4.1. Relationship of Secondary Factors Variables with IAM
4.1.1. Patients with Smoking Habits

Tobacco consumption increases the oxidative stress due to the free radicals genera-
tion for both passive and active consumers, and for this reason it is known as the main
factor in the development of different diseases, including CVD. Among the adverse ef-
fects in health caused by tobacco consumption besides oxidative stress, studies found
a relationship in the increase of the arterial pressure and cardiac frequency, increase in
inflammation, developments of atherosclerosis, thrombosis, and damage in both arterial
coronary systems [20,21].

Regarding chest pain, a study done with 70,208 participants, which mostly have
smoking habits, discusses an experimentation using methods as pain tolerance testing
and surveys, which concluded that people with smoking habits tend to have lower pain
tolerance; this information is important to know regardless that the intensity has not
relation with a cardiac origin pain. Moreover, it was found that the chest pain in smoking
patients can be originated by, inter alia, the frequency in tobacco consumption, chronic
cough and shortness of breath [22].

4.1.2. Patients with Hypertension

Hypertension is one of the most important risk factors on CVD. Worldwide, hyper-
tension is responsible for 54% of strokes, and 47% of ischemic cardiopathy [23]. It has also
been observed that after a decade of presenting hypertension, the risk of contracting any
CVD has increased from 15% to 30% [24]. On the other hand, evidence of a study made
in 1997 in Chile found interesting results in records of people with obesity, which suggest
that obesity increases blood pressure with 6.5 mmHg, plasma cholesterol with 12 mg/dL,
and 2 mg/dL of blood glucose for each 10% of accession in the patient’s weight [25].

A study described in the Cuban Magazine of Health compares their findings done
between 2007 and 2011 with findings made in Spain on 2011, and both results agree with the
fact that Hypertension is strongly related with sudden death by a cardiac event; this, due to
the development of an adaptive process initiated by blood pressure causing hypertrophy
as a result of left ventricular injure. It is also stated that a combination of hypertension with
smoking habits or any other risk factor as diabetes, dyslipidemia, and obesity can lead to
an increase in the left ventricular hypertrophy expanding the probabilities of suffering a
cardiac event [26].

4.1.3. Patients with Diabetes

Diabetes is a disease that is also tightly related with CVD and obesity, when there are
no other risk factors involved it is called Diabetic Heart Disease (DHD). Amidst the possible
factors of the relationships between these conditions, insulin resistance, hyperglycemia,
and hyperinsulinemia were found to be responsible for the decrease in elasticity of the
tissue generated by an impact in the production of collagen, which provokes myocardial
damage leading to hypertrophy and fibrosis [27].
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Despite the fact that in a study carried out in the Grama region, it was determined
that patients with DM II who present other cardiovascular risk factors, compared to those
without Diabetes, did not present chest pain as a symptom. However, the study suggests
that those with DM II are exposed to cardiac failure by a factor of 2.8, since it has also been
found that patients with this disease suffer from alterations in diastolic function without
having any history of cardiovascular disease [28].

The chemical reactions generated by cardiac metabolism are oxidative in nature, so
that as there is a lack of biological contribution to the region of cardiac tissue, ATP is
stopped in cardiomyocytes, which in turn, causes a metabolic change due to the lack of
oxygen and nutrients directly affecting cardiac functionality [29].

4.1.4. Patients with Chronic Kidney Disease

Chronic Kidney Disease (CRD) is another risk factor linked to CVD. Findings from
a study made with dialysis patients revealed that CVD patients start their development
in precocious phases of the CRD, causing problems such as left ventricular hypertrophy,
atherosclerosis, and vascular calcifications [30]; therefore, early detection and treatment of
this disease can reduce the chances of death from CVD, as well as decrease kidney damage,
since it was revealed in a study carried out using patients with advanced ECR with and
without dialysis, which those with an AMI have a very low chance of survival [31,32].
On the other hand, CKD is found in some cases related to diabetes, which is called diabetic
nephropathy, which develops hypertension and kidney damage [33].

4.1.5. Patients with Dyslipidemia

Among the distributions related to patients with dyslipidemia and pain in the database
from Medical Norte, 22.87% of the patients with dyslipidemia presented soft pain, while 26.74%
presented moderate pain and 14.34% presented severe pain. Of the remaining individuals
without dyslipidemia, only 5.81% presented severe pain. Despite these results, it is important
to know, beyond pain, how dyslipidemia would affect the cardiovascular system.

Dyslipidemia is a disease where the regulation of lipids in blood is affected by the
augmentation of cholesterol and triglycerides, which in turn produces the accumulation of
lipids in the arterial walls causing ischemic heart disease, which can lead to death; the main
reason of this disease is due to obesity, even though it can be also a genetic disease [34].
The most known disease in Mexico is obesity since, in 2012, 71.3% of the population was
diagnosed with obesity, while in Baja California, 74.9% of the population presented obesity
and overweight [35]. Obesity is one of the main factors for various diseases, including
CVD. The relationship between dyslipidemia and obesity is very close due to the excess of
fatty tissue, which produces an insulin resistance [36]; also, it is related to diseases such as
Diabetes Mellitus II (DM II). According to the WHO in 2012, 44% of the people living in
Baja California developed DM II due to obesity and overweight, pathology related with
hypertension, dyslipidemia, CDV, osteoarthritis, and different types of cancer [37].

This documental research confirms the correlation between the proposed secondary
risk factors related with possible thoracic pain with cardiac origin. In Figure 1, the diagram
above shows graphically the relation between these variables, which was confirmed by
both the assessment with machine learning and bibliography. The figure is divided into
three main components, the blue navy hexagon in the center indicates the target, which
is thoracic pain with cardiac origin, the second level with blue hexagons shows the six
main conditions proposed as factors to consider in the determination of a cardiac event
with thoracic pain as symptom, and the last level with light blue hexagons shows some
effects that the main factors have in health. The orange lines used in Figure 2 express the
relationship between the conditions.
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Figure 2. Relationship between secondary risk factors variables.

5. Conclusions

Among the main health problems presented in the country are deaths from obesity
problems and cardiovascular diseases, which in turn are related to each other, sharing other
risk factors. When considering cardiovascular problems as diseases that can cause sudden
events involving a person’s life, it is important to learn to recognize the patterns that these
cardiac events present and to take into account the factors that have the greatest impact on
their development. It is known that in emergency rooms, there are a limited number of
patients to attend, and since thoracic pain is a symptom of a future cardiac event, but also a
symptom of different diseases, it is important to learn to recognize when thoracic pain is of
cardiac origin and non-cardiac.

Nowadays, there are different computer tools such as machine learning, deep learning,
and artificial intelligence, which, through algorithms, can find patterns and classify a large
number of data. This is why it was decided to carry out a machine learning analysis of a
database provided by Clinic Medical Norte in Tijuana, Baja California, Mexico. The results
of this analysis suggest variables that can be considered secondary conditions to classify
thoracic pain as cardiac in addition to those already established in the emergency depart-
ment, such as Troponin levels, smoking habits, and diseases such as dyslipidemia, chronic
kidney disease, diabetes, and hypertension.
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Appendix A

Table A1. Index of terms.

Term Type Meaning

Edad Numeric Age
Género Categorical Gender

Fumador Categorical Smoker
HTA Categorical Hypertension

Dyslipidemia Categorical Dislipidemia
Diabetes Categorical Diabetes

ERC (Cr Basal) Categorical Chronic Kidney Disease
Suma FRCV Numeric Sum of Cardiovascular Risk Factors

C. Isquémica Previa Categorical Previous Ischemic Heart Disease
PPT Numeric Pretest Probability of Ischemic Heart Disease calculated from the type of chest pain and age

Rangos PPT Categorical Pretest Probability Ranges
Tipo dolor Categorical Pain type

TnT Ingreso Numeric Troponin levels upon entry
TnT Curva (4 h) Numeric Troponin levels 4 h after entry

ECG Categorical Electrocardiogram
TC > 100 Categorical Body Temperature

IC Categorical Ictus
Alta Precoz Categorical Early discharge

UDT Categorical Thoracic Pain Units
Ingreso Numeric Entry (days)

Ergometría Categorical Ergometry
Eco-stress Categorical Eco-stress

Cate Categorical Catheterization
Angio TAC Categorical Computed Tomography Angiography

AMI Categorical Acute Myocardial Infarction
Revascularización Categorical Revascularization

Appendix B

Table A2. Variables used by methods.

SCORE ASCVD Framingham

Age Age Age
Gender Gender Gender

Smoking habits Race Smoking habits
Total cholesterol (mg/dL) Total cholesterol (mg/dL) Total cholesterol (mg/dL)
HDL-cholesterol (mg/dL) HDL-cholesterol (mg/dL) HDL-cholesterol (mg/dL)

Systolic blood pressure (mmHg) Systolic blood pressure (mmHg) Systolic blood pressure (mmHg)
Diastolic blood pressure (mmHg)

Smoking habits
Treated for High pressure

Diabetes

Note. “Framingham risk score for estimation of 10-years of cardiovascular disease risk in patients with metabolic syndrome” by Jahangiry,
L., Farhangi M.A. and Rezaei, F., 2017 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5682637/, accessed on 17 February 2021).
Copyright 2017 by Jahangiry, L., Farhangi M.A. and Rezaei, F. “ACC/AHA ASCVD Risk Calculator” by ACC/AHA, 2013 (http://
www.cvriskcalculator.com/, accessed on 17 February 2021). Copyright 2013 by ACC/AHA. “SCORE Risk Charts” by European Society
of Cardiology, 2020 (https://www.escardio.org/Education/Practice-Tools/CVD-prevention-toolbox/SCORE-Risk-Charts, accessed on
accessed on 17 February 2021). Copyright 2020 by European Society of Cardiology.
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Abstract: Accompanied by the rapid economic and social development, there is a phenomenon of
the crazy spread of many infectious diseases. It has brought the rapid growth of the number of
people infected with hand-foot-and-mouth disease (HFMD), and children, especially infants and
young children’s health is at great risk. So it is very important to predict the number of HFMD
infections and realize the regional early-warning of HFMD based on big data. However, in the
current field of infectious diseases, the research on the prevalence of HFMD mainly predicts the
number of future cases based on the number of historical cases in various places, and the influence
of many related factors that affect the prevalence of HFMD is ignored. The current early-warning
research of HFMD mainly uses direct case report, which uses statistical methods in time and space to
have early-warnings of outbreaks separately. It leads to a high error rate and low confidence in the
early-warning results. This paper uses machine learning methods to establish a HFMD epidemic
prediction model and explore constructing a variety of early-warning models. By comparison of
experimental results, we finally verify that the HFMD prediction algorithm proposed in this paper
has higher accuracy. At the same time, the early-warning algorithm based on the comparison of
threshold has good results.

Keywords: hand-foot-and-mouth disease; early-warning model; neural network; genetic algorithm

1. Introduction

With the intensification of global warming, climate abnormalities and natural disasters
have become more and more intense, and the increasing changes in the environment
have provided very favorable conditions for the spread of hand-foot-and-mouth disease
(HFMD) [1,2]. Although HFMD is not a critical disease, there are still many children who
have very serious complications due to this illness. If they are not treated in time, a series of
complications such as myocarditis and encephalitis will occur, causing vital organ damage
and even threatening their lives [3].

The prevalence of HFMD in China has continued unabated, and it has received great
attention from the national health department. The prevention and treatment of HFMD
should stop transmission from the root cause. However, the virus that leads to HFMD is not
only many kinds, but also many types. Therefore, to carry out research on the prediction of
the number of HFMD prevalence, the early-warning of epidemic trends and related factors
has become the top priority of the country’s HFMD epidemic control [4].

However, in previous studies on HFMD prediction and early-warning models, rel-
evant researchers mainly conducted statistical analysis on factors related to the HFMD
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epidemic [5]. Including weather and demographic attributes, they explore the correlation
between the different regions in the incidence of HFMD at different times of the amount of
each factor and established a variety of models for prediction. However, these methods
lack accurate positioning and research on the HFMD epidemic warning, and the data for
establishing the prediction model is insufficient, the time and space of the data are too large,
and the method used by the model is not perfect. Above shortcomings have caused many
problems such as HFMD prediction and early-warning model to be inaccurate, limited to
the problems of broad prediction and blind early-warning.

This paper aims to carry out accurate data analysis and standard data preprocessing
based on the incidence of HFMD. At the same time, this paper also established a more
accurate prediction model of the number of HFMD cases and a more reasonable early
warning model. These have laid the foundation for realizing early warning of whether the
regional HFMD has broken out or strengthened prevention and control.

2. Related Work

The World Health Organization (WHO) attaches great importance to the establish-
ment of an early-warning system for infectious diseases, and develops an early-warning
mechanism for infectious diseases and promoted its irreplaceable important role [6]. The
principle of the early warning system is to make a judgment on whether there will be an
outbreak or epidemic of infectious diseases based on the clinical information of the existing
disease diagnosis patients. Their purpose is clear, just to detect abnormal health incidents
promptly, quickly notify relevant health departments and staff, and take preventive and
control measures in the first time. The early-warning system of such infectious diseases is
the symptom monitoring system [7,8].

Since its establishment in 1946, the Centers for Disease Control and Prevention (CDC)
has established a national infectious disease surveillance system for epidemic infectious
diseases such as malaria and influenza. Until 1995, they began to build for all types of
acute infectious disease monitoring network, in 2001 they integrated more than 100 spotty
infectious disease surveillance system. Since then, the monitoring and early-warning
system has been changed to “National Disease Electronic Monitoring System” [9].

The European Union (EU) has developed a group-type infectious disease monitoring
and early-warning system based on the cooperation of all member states. It provides a
collaborative platform for information and control and prevention for the countries in the
group, and at the same time focuses on international cooperation and exchanges [10].

In January 2004, China began trial operation of the direct online reporting system for
epidemics and public health emergencies, and the system was officially launched in April
of the same year [11]. Afterwards, direct online reporting of various infectious diseases
such as tuberculosis, dengue fever, and HFMD have been launched on the system, and
public health information resources have been integrated and shared. At present, China’s
infectious disease early-warning model mainly uses the mobile percentile early-warning
method and the spatial scanning statistical method [12,13]. However, these two methods
rely too much on the direct reporting system of infectious diseases, and because the model
is simple, many parameters are determined artificially. This has led to the problems of
poor early-warning accuracy, repeated early-warnings, no early-warnings during epidemic
periods and chaotic early-warning during non-epidemic periods, which seriously affected
the early-warning work of HFMD epidemics.

At present, most researchers’ research on the prevalence of HFMD relies on statistical
methods such as multiple linear regression [14], cross-correlation analysis, and correla-
tion analysis. They analyzed the correlation between related influencing factors and the
incidence of HFMD, and obtained statistically significant results. This research results
mostly proved the correlation between certain epidemic factors and the number of HFMD
cases; at the same time, the incidence of HFMD epidemic was predicted by using the
above-mentioned three infectious disease prediction methods.
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Yin Ye et al. counted the daily incidence of HFMD for six years since 2011, calculated
the correlation coefficient between the daily incidence of HFMD and twelve weather indi-
cators of the day, and drew the conclusion that the daily incidence of HFMD is correlated
with certain meteorological factors [15]. Jing Qinlong et al. used cross-correlation analysis
methods to study relevant meteorological factors. They found that as the lag period de-
creases, the relationship between monthly average temperature and monthly cumulative
precipitation and the number of HFMD monthly cases is the strongest [16]. Liu Yamin et
al. established a variety of different prediction models using monthly incidence data from
2010 to 2015, then input the monthly incidence rate data of HFMD in 2016 as test data into
the model [17]. Under the comparison of four objective evaluation indicators, they found
that the seasonal autoregressive integrated moving average (SARIMA) model not only has
excellent fitting generalization ability, but also has higher prediction accuracy.

As we entered the era of big data, many scholars began to design methods using big
data to help build more accurate prediction or early-warning model of diseases [18,19].
So in this paper, we would present our effort at constructing a HFMD prediction and
early-warning model with the help of big data.

3. Construct HFMD Prediction Algorithm Model Based on BP Neural Network

Figure 1 shows the overall process of the HFMD prevalence prediction model based on
back propagation (BP) neural network constructed in this article, which will be introduced
in detail below.

3.1. Data Acquisition and Analysis

This paper uses big data to build a predictive and early-warning model for HFMD
through multi-dimensional data fusion. The data used mainly include two parts: incidence
data and environmental data.

First of all, the incidence data comes from HFMD in Shanxi Province in 2016. There
is no personal privacy data in this data, including: region (township), date of onset, age
group, gender group, and population classification.

For the incidence data, we carried out exploratory data analysis to select appropriate
characteristic factors affecting the HFMD epidemic in the model construction process,
mainly analyzing indicators such as gender, population type, onset time, and patient age:

1. In terms of gender: As shown in Figure 2, among all HFMD patients in the province
in 2016, the ratio of male to female patients was about 4:3. It can be considered that
the relationship between HFMD infection and gender is very small, i.e., the chances of
male and female being infected with HFMD are equal, so the ratio of men to women
is not considered as a relevant factor affecting the prevalence of HFMD.

2. In terms of population types: As shown in Figure 3, there are three types of pop-
ulations for all patients: kindergarten, scattered living, and other categories. The
proportions of patients are 33.6%, 60.2%, and 6.2% respectively. Patients infected with
HFMD are mainly concentrated in kindergartens and scattered populations, but the
proportion of scattered patients is twice that of kindergarten patients, so the number
of children in kindergartens cannot be a good predictor of HFMD infection patients.

3. In terms of time: As shown in Figure 4, the infection time of patients is mainly
concentrated in 22–32 weeks (June-August). The 24th, 25th, and 26th week is the
HFMD epidemic period, and the number of infections reaches a large peak. There
are also multiple occurrences in 36–48 weeks, reaching a small peak of infection
around the 44th week. Therefore, the prevalence of HFMD is characterized by a
strong seasonal infection. The relevant weather indicators can be used as one of the
important factors in determining the prevalence of HFMD.

4. In term of age: As shown in Figure 5, infants and children aged 0–6 years of HFMD
infection account for a considerable portion, accounting for about 95% of all infected
people.Therefore, the number of children aged 0–6 in each region can be used as an
important indicator to predict the prevalence of HFMD.
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Figure 1. Flow chart of HFMD epidemic prediction model based on BP neural network.
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Figure 2. Sex ratio of HFMD patients.

Figure 3. HFMD’s proportion of each population category.
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Figure 4. HFMD’s proportion of each population category.

Figure 5. Age distribution of HFMD epidemic. the link (http://data.sheshiyuanyi.com/WeatherData/,
accessed on 1 March 2020). x-axis is in years.
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After the epidemic analysis of the original data, according to the number of cases per
day in each district and county, the statistics are summarized, and only the date, area and
statistical incidence in the original data file are retained.

Then, according to the results of epidemic analysis, the daily weather of each district
and county was obtained. Due to different weather data sources and different ways
of data acquisition, some weather data (maximum temperature, minimum temperature,
wind level) need to be obtained from lishi.tianqi.com by web crawler; the other part of
weather data (sunshine duration, air humidity, average air pressure) is obtained by file
download. Because this part of the weather data only exists in the meteorological stations
in the province and the data index is stable, the three weather data of 18 meteorological
stations in Shanxi Province are downloaded from the http://data.sheshiyuanyi.com/
WeatherData/, accessed on 1 March 2020, and the statistical areas are allocated according
to the weather data of the nearest meteorological stations. Before the distribution, the
nearest meteorological stations can be found by crawling the geographical location of the
regions and meteorological stations, i.e., latitude and longitude data, and the three weather
data of the nearest stations are allocated to the statistical areas; to consider the effect of the
incubation period (usually 4 days) on the daily incidence of disease, the corresponding
weather data of the day before 4 days were obtained, and the weather indexes such as
maximum temperature, minimum temperature, wind grade, average sunshine duration,
average air humidity and average air pressure were obtained in the same way.

Finally, according to the results of HFMD epidemic analysis, population data needs
to be summarized, so the internal population data is calculated to count the number
of children aged 0–6 in each region, and integrated into the data file generated in the
previous step; at the same time, in order to consider the impact of the incidence of the day
before the day on the day, the number of cases from the previous day is also included in
the model characteristics to generate complete data for establishing the HFMD epidemic
prediction model.

3.2. Data Preprocessing

The process of data preprocessing will greatly influence the result of data analysis [20].

3.2.1. Missing Value Processing

Among the data related to the factors affecting the spread of HFMD, the weather
data or the population data of districts and counties on the day have some variable
values missing, so appropriate methods must be used to deal with them. First of all, for
variables whose values are not collected and most of the individuals whose variables are
missing, the simple deletion method is used to directly delete variables or individual data,
and will not be included in experimental research and data analysis. Then, the nearest
neighbor padding method is used to fill the attributes with stable attribute values and
small numerical variance. Finally, the mean value filling method is used to deal with the
situation where a small part of the data is missing.

3.2.2. Outlier Handling

The regional weather data obtained by the web crawler is identified through outliers,
and it is found that some data is abnormal, so the outliers need to be replaced or corrected.
First, for univariate factors, define constraints that meet actual needs, and use the mean
replacement method for variable outliers that do not meet the constraint definition. That
is, when the value of a certain variable of a certain object is found to be abnormal, the
average value of all other normal and non-missing values on the variable is calculated to
replace the abnormal value. Secondly, for multiple variable factors, the order of the highest
temperature and the lowest temperature often changes due to changes in the structure
and content of the crawler page. Therefore, it is necessary to identify the individual data
with the lowest temperature higher than the highest temperature, and exchange the two to
make the data meet the constraints.
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3.2.3. Data Standardization

The Z-score standardization method used in this paper. This paper also uses a simple
downgrading standardization method, because the number of population plays a crucial
role in the incidence of HFMD, and the magnitude of the difference between the number of
population and the actual incidence of HFMD is large, which is not conducive to analysis.
Therefore, the value of this variable is degraded.

3.3. Feature Selection

Through the data preprocessing process, we finally established the data table shown
in Table 1.

Table 1. HFMD epidemiological research data sheet.

Variable Name Basic Meaning of Data Type of Data Range

weekofyear week of statistical time discrete variable 1–53
addID statistical area code discrete variable 1401–1411
count number of infections integer variable 0–

last_count number of infections in the previous week integer variable 0–
highTem average maximum temperature continuous variable 0–39
lowTem average minimum temperature continuous variable 0–39

windLevel average wind level continuous variable 0–12
p_highTem average maximum temperature before the incubation period continuous variable 0–39
p_lowTem average minimum temperature before incubation period continuous variable 0–39

p_windLevel average wind level before the incubation period continuous variable 0–12
hTemDiff maximum temperature difference continuous variable −15–15
lTemDiff lowest temperature difference continuous variable −15–15

windLevDiff wind power difference continuous variable −3–3
wet average air humidity continuous variable 0–100

sunshine average sunshine duration continuous variable 0–10
pressure average air pressure continuous variable −2–2

p_wet average air humidity before incubation period continuous variable 0–100
p_sunshine average sunshine duration before incubation period continuous variable 0–10
p_pressure average pressure before the incubation period continuous variable −2–2

wetDiff average humidity difference continuous variable −100–100
sunDiff average sunshine duration difference continuous variable −10–10

pressDiff average air pressure difference continuous variable −5–5
Children number of children under 6 integer variable 1–

When constructing the supervised learning model for the prediction of the number
of HFMD cases, we maximized the fact that many a priori unknown related features
(meteorological and demographic features) were incorporated into the learning objectives.
So that the target problem (the number of HFMD cases) can be trained and learned more
effectively. However, some of the related features are not very relevant to the learning goal,
or even have no relationship. These features are usually called redundant features. When
they are added to the learning task, problems such as poor learner performance and data
disaster are likely to occur. Therefore, it is very necessary to select all features to greatly
enhance the generalization ability of the prediction model. This paper uses a multivariate
joint feature selection method based on correlation analysis.

In the study of the HFMD epidemic prediction model, three comprehensive feature
selection algorithms including filtering, wrapping and embedding are used. Different
methods are used in different training and learning stages, using filtering algorithms before
training, using embedded algorithms during training, and using wrapped algorithms after
training. In this way, the feature subset with the best performance is selected, the learner
with the strongest generalization ability is selected, and the number of cases is predicted
more accurately for scientific prevention and control.
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The core of the embedded algorithm is to integrate the feature selection process
into the model learning process, and the features are selected cleverly while learning, so
the algorithm depends on the machine learning algorithm used. However, embedded
algorithms are not used in the preprocessing of data in the early stage, and only used
during model training.

The core of the wrapped algorithm is to directly use the evaluation index of the learner
to reflect the pros and cons of the feature subset. The higher the accuracy of the learner,
the better the feature subset. Therefore, it is necessary to repeatedly use different feature
subsets to construct multiple learners until the best learner is obtained and the best feature
subset is obtained.

The core of the filtering algorithm is to directly filter out undesirable features to filter
out relatively good feature subsets. Then, without training the model, use an appropriate
evaluation function to evaluate the pros and cons of the feature subset until the best
evaluated feature subset is selected. Therefore, the feature selection of this method is
independent of the target learner, and the advantage is that it is simple, efficient and fast.

Before the actual training of the learner, the filter method is usually used to select the
features, and the dependency metric is used to evaluate the feature subset. At the same
time, according to the results of the dependency measurement, the measurement threshold
is set, and the features whose relevant indicators are greater than the threshold are selected,
and further statistically significant tests are performed on them as a double standard for
selecting features. At the same time, bivariate correlation analysis is difficult to escape the
influence of confounding factors, so multiple linear regression analysis methods must be
used to establish a regression model for the influencing factors and the number of hand,
foot and mouth cases, and find the secondary confounding factors according to the partial
regression coefficients. The previous filtering feature selection process is completed.

The selection process can be divided into the following steps:

1. Calculate the variance of all variables using a single variable analysis method;
2. Filter out attributes whose variance is greater than the variance threshold, and get a

preliminary feature subset;
3. Using bivariate correlation analysis method, calculate the Pearson coefficient, Spear-

man coefficient, distance correlation coefficient and p-value of the independent vari-
able and the dependent variable;

4. According to the correlation coefficient and statistical p-value results, select the fea-
tures whose p-value is less than the significance level and the correlation coefficient is
greater than the coefficient threshold to obtain a more accurate initial feature subset;

5. According to the feature subset selected by the variable analysis method, establish a
multivariate joint regression model based on the multiple linear regression model, and
obtain the partial regression coefficient, intercept and statistical p-value of the model;

6. According to the multiple regression parameter table, filter and select variables
whose p value is less than the significance level, and obtain the feature subset in the
linear model;

7. Then the k features with the largest nonlinear correlation coefficients in the initial
feature subset, which do not exist in the linear model feature subset, are included in
the nonlinear model feature subset.

3.4. Construction of HFMD Prediction Model

Commonly used machine learning regression prediction algorithms include multiple
linear regression (LR), support vector regression (SVR), differential integrated moving
average autoregressive models and BP neural networks [15] and so on. Through analysis,
we will select BP neural network to construct an early prediction model for HFMD on
big data.
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After analysis of related factors, seven related variables were obtained. After these
seven related variables are normalized by Min-Max, the training set and the test set are
randomly selected according to the ratio of 7:3. Then input the training set into the
prediction model to be established, and train and adjust the parameters in the model. After
a series of training processes, a HFMD epidemic prediction model suitable for solving
this problem is obtained. Then input the test set into the HFMD prevalence prediction
model for prediction, obtain the prediction result, and compare the result with the expected
output to evaluate the HFMD prevalence prediction model.

The structure of the HFMD prediction model based on the machine learning regression
algorithm is shown in Figure 6. It includes six modules: data acquisition and summary,
data preprocessing, influencing factor analysis, model learning, epidemic case number
prediction, and model evaluation analysis. In the data acquisition and summary module,
the meteorological factors and demographic factors data related to the HFMD epidemic are
acquired in multiple ways, and the county daily data is summarized as city weekly data;
the dirty data is mainly cleaned in the data preprocessing module; in the influencing factor
analysis module, univariate, bivariate and multivariate joint analysis of the correlation
between influencing factors and the number of popular populations are carried out, and
the feature set of relevant HFMD epidemic influencing factors suitable for modeling is
selected; in the process of model learning, the machine learning regression model is used
to learn to obtain the optimal structure; in the HFMD epidemic case number prediction
module, the test set is input into the model; in the model evaluation and analysis module,
the learned optimal model is analyzed with different weights on the training set and the
test set, and the relevant evaluation index values are obtained to judge the pros and cons
of the model.

Figure 6. Structure diagram of HFMD epidemic prediction model based on machine learning regres-
sion algorithm.

Figure 7 shows the three-layer structure of the BP neural network used in this article.
The number of neurons in each layer is m, k, and 1, respectively. The number of hidden
layers and the number of neurons in each layer can be dynamically adjusted according to
the training effect. However, the number of neurons in the first and last layers is fixed. The
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training process of BP neural network is realized by error feedback mechanism [16]. The
activation function used is the relu function.

Figure 7. Three-layer single output BP neural network structure diagram.

The model training process is:

1. Establish the network structure according to the actual HFMD prediction problem.
There is only one input layer and output layer, which contain the number of neurons
as the feature number and 1, respectively. A hidden layer with k neurons is initially set.
If the training result is not Ideally, the number of layers and the number of neurons
on each layer can be dynamically changed, but not more than three hidden layers;

2. Initialize the hyperparameters in the network structure, including learning rate,
training times, and connection weights. If the training results are not ideal, the
hyperparameter values can also be dynamically adjusted;

3. Start to input training samples into the network, obtain the predicted value of each
sample through the forward propagation process, and calculate the overall error
between the output predicted value and the expected value;

4. If the error does not meet the condition or the training does not reach the number
of generations, the error is propagated back to the input layer, and the connection
weight is updated in the process;

5. If it is greater than the set number of generations, the training process is ended, the
structure of the BP neural network is output, and the test data is evaluated according
to relevant indicators;

6. If the test result does not reach a certain threshold, it is necessary to adjust the relevant
hyperparameters or the number of hidden layers or the number of neurons in each
hidden layer in the network, and repeat the above training process.

4. Neural Network Parameter Optimization Based on GA

In the training process of BP neural network, the gradient descent method and error
feedback propagation mechanism are essentially used to dynamically update the connec-
tion weights, which also exposes the shortcomings of this training method [21]. First of all,
there are strict requirements for model hyperparameters such as learning rate, too large
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or too small learning rate will affect the optimization effect; Secondly, if the number of
training iterations is too large, the convergence efficiency is low when the error function
gradually becomes flat in the later stage, and it is difficult to converge to a flat point if the
number of generations is too small; Finally, it is because the training starts according to
the initial set of random weights, looking for a smooth gradient and falling into a local
minimum state, it is difficult to jump out to find the global minimum state. Therefore, in
view of the above shortcomings, we use genetic algorithm (GA) to globally optimize the
connection weights.

First determine the BP network structure, and encode the target individual with
floating-point numbers. Arrange all the connection weights in the neural network in order
to form the row vector Wj = (w1, w2, · · · , wn) of individual j, which represents the genetic
code of chromosome j in the population, The weight wi of connection i in the network
represents the genotype of gene i on the chromosome, and n represents the number of all
connections in the neural network. In this model, if the number of neurons contained in
the input layer, the first hidden layer, the second hidden layer, and the output layer are m,
k, h, 1, respectively, then the number of genes n is calculated as in Equation (1).

n = m × k + k × h + h (1)

Secondly, all individuals in the population must be initialized randomly. Each indi-
vidual has a chromosome vector, which can be decoded back into a BP neural network
model with floating-point numbers. Therefore, before learning, all individual vectors
must be initialized with random real numbers in the range of [−1, 1] to generate the first
generation population.

Finally, it is necessary to calculate the fitness of all individuals, select individuals
for genetic operations, including replication, crossover and mutation, to generate a new
generation of populations [22]. In this paper, the fitness can be calculated directly from the
average error of the individual on the sample. Therefore, select high fitness, i.e., individuals
with small errors for retention, and select low fitness, i.e., individuals with large errors for
elimination. Thus, individual neural networks with poor fit are discarded in the training
process. Then, perform uniform mutation and arithmetic crossover operations on general
individuals to obtain a new generation. After repeated training reaches the specified
number of evolutions, the optimal model is obtained. Otherwise, it returns to the fitness
calculation step to reiterate. The final individual is decoded to obtain all the connection
weights in the neural network, which are used for actual prediction and quantitative
evaluation indicators are obtained. Figure 8 is a detailed flowchart of the GA-BP HFMD
prediction model.
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Figure 8. Flow chart of GA-BP HFMD epidemic prediction model.
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5. Construction of HFMD Early-Warning Model Based on Big Data

The traditional HFMD epidemic warning model is mainly based on two major meth-
ods of time and space, namely the moving percentile prediction method and the spatial
scanning statistical method. It also needs to use the repeated warning kicking algorithm
to remove duplicates. The early-warning method is only based on historical data before
and after the same period. It does not consider that the HFMD outbreak may be related
to related weather and demographic factors. Blind warning and the warning process are
cumbersome and wrong. There is a situation of blind warning every day and everywhere.

As there is no yet a complete and accurate early-warning mechanism for infectious
diseases, HFMD epidemic early-warning methods based on adjustable parameters, moving
percentiles and a combination of the two are proposed, mainly proposed different methods
for the setting of HFMD early-warning threshold. The HFMD epidemic early-warning
model is mainly based on the number of HFMD cases in the region generated by the above
HFMD epidemic prediction model and the number of cases in the same period in history.
That is, whether there will be an outbreak of HFMD epidemic in the early warning area,
Or according to historical data in the same period, relevant health departments need to be
warned to increase the vigilance of the HFMD epidemic in the region. The overall process
of the model is shown in Figure 9.

Figure 9. Flow chart of HFMD epidemic warning model.

5.1. HFMD Epidemic Warning Model Based on Adjustable Parameters

The parameters are adjustable, referring to different HFMD epidemic areas, according
to the epidemic time of different seasons, the corresponding characteristic parameters in
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the HFMD prediction model can be dynamically adjusted according to the actual local
conditions. The corresponding features can be obtained by the feature selection method,
and the number of patients output by the feature parameters through the model is used
as the early-warning threshold of HFMD infectious diseases. If the actual predicted value
exceeds the early-warning threshold, the system will issue an early-warning signal. For
example, when the minimum temperature, air humidity, the number of illnesses last week,
the number of children aged 0–6, and the number of weeks are 24 degrees Celsius, 40%,
45 cases, 28 thousand people, and 16:00, through the HFMD epidemic prediction model,
the incidence under this feature is obtained and used as the early-warning threshold.
These characteristic values can be dynamically adjusted according to different regions and
different times.

5.2. HFMD Epidemic Warning Model Based on Historical Percentile Method

First, establish a database of local historical cases of HFMD with the city as the unit,
refer to the historical incidence of the same period in the past 3–5 years and two cycles
before and after the same period. Like the forecast period, the general historical period is
seven days. Then get the percentile (usually 80% after sorting from small to large) from the
historical incidence as the early-warning threshold. When the predicted incidence in the
statistical period is greater than this early-warning threshold, the system will automatically
send an early-warning signal to relevant departments in the observation area within one
day. For example, it is predicted that the weekly incidence of the area will reach 100.
Among the nine incidence data of the same period and before and after the past three years,
the incidence at the 80th percentile is 80. Then the system will send an early-warning signal
to the relevant departments in the forecast area to remind the area that there may be an
outbreak, or the need to strengthen prevention and control higher than the historical level.

5.3. HFMD Epidemic Warning Model Based on Threshold Comparison

Threshold comparison is to compare the two early-warning thresholds obtained by
the above-mentioned parameter adjustable method and the historical percentile method,
and use the smallest as the new early-warning threshold. The flow chart of the HFMD
epidemic warning model based on threshold comparison is shown in Figure 10.

First, set the characteristic thresholds of the influencing factors of the HFMD epidemic,
i.e., under the corresponding weather factors and demographic factors, the number of
possible HFMD incidences is the number at risk of HFMD outbreaks, and these charac-
teristic values are substituted into the HFMD prediction model to obtain the incidence
number threshold.

Then, according to the local database of historical HFMD cases, calculate the 80th
percentile number of cases in the same cycle and two swing cycles in the past three years,
and use this value as another threshold for early-warning.This threshold is compared
with the early-warning threshold obtained by parameter adjustment, and the minimum
incidence threshold is used as the early-warning threshold of HFMD early-warning model.

Finally, the HFMD epidemic prediction model is used to predict the number of local
cases. When the number of cases exceeds the early-warning threshold, the local health
department will send an early-warning signal and take corresponding measures after
verification. At the same time, it can feed back suggestions, continuously adjust the charac-
teristic parameter thresholds, and improve the precise HFMD early-warning mechanism;
When this incidence does not exceed the warning threshold, no warning signal is issued,
only the number of HFMD infections that may occur in the local area.
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Figure 10. Flow chart of HFMD epidemic warning model based on threshold comparison.
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6. Experiments

6.1. Predictive Model Evaluation Index
6.1.1. Goodness of Fit

Goodness of fit refers to the degree of fit of the regression model to the observations,
and its measurement statistic is the coefficient of determination R2. The value range of R2 is
[0, 1]. The larger the value in this range, the better the fitting effect of the regression equation
to the training sample; on the contrary, the worse the fitting degree. When the goodness of
fit is negative, It shows that the fitting effect of this regression model is too poor and has
no practical significance. Suppose y is the value to be fitted, its mean value is ȳ, the fitted
predicted value is rounded to ŷ, the total square sum (SST) is ∑n

i=1(yi − ȳ)2, the regression
square sum (SSR) is ∑n

i=1(ŷi − ȳ)2, and the residual square sum (SSE) is ∑n
i=1(yi − ŷi)

2, then
SST = SSR + SSE, the calculation method of the determination coefficient is as follows:

R2 =
SSR
SST

= 1 − SSE
SST

(2)

Generalization ability is an important indicator for detecting regression prediction
performance. Therefore, when designing a regression model, it is necessary to consider not
only the model’s correct prediction of the required regression prediction object, but also
the prediction effect of the model on the new data. The preprocessed data is divided into
training data and test data in a ratio of 7:3. The evaluation index of the final model is the
sum of the weights of the goodness of fit of the two, and the weight ratio is 3:7.

6.1.2. Mean Absolute Error

The mean absolute error (MAE) refers to the average of the absolute value of the
difference between multiple predicted values and the true value. In the HFMD epidemic
prediction model, the average absolute error indicates the degree of deviation between the
number of HFMD cases predicted by the model and the number of true cases when the
number of HFMD cases is predicted in different regions or at different times. The smaller
MAE, the more accurate the mode. The larger MAE, the worse the predictive ability of the
model. Therefore, the magnitude of the average absolute error MAE reflects the pros and
cons of the model, and its calculation formula is as follows:

MAE =
1
n

n

∑
i=1

|yi − y| (3)

where, n represents the number of predictions, yi represents the predicted value, and y
represents the true value.

6.1.3. Accuracy within Error

Similar to the accuracy rate in the classification problem, in order to avoid the influence
of interference factors, the accuracy rate within the error is introduced. The accuracy within
error (AWE) refers to the ratio of the number of samples correctly fitted by the regression
model obtained through training to the total number of training samples in the regression
analysis process of predicting integer dependent variables within a certain error tolerance.
To a certain extent, AWE explains the generalization ability of the regression model. The
higher the AWE, the stronger the fitting ability of the model, and the lower AWE, indicating
the weak fitting ability of the regression model, which ranges between 0 and 100%. The
calculation formula of AWE is as follows:

AWE =
n
N

× 100% (n := n + 1 when | f (Xi)− yi| ≤ errorpeople) (4)

where n represents the number of samples correctly predicted by the regression, and N
represents the total number of samples. When the absolute value of the error between
the predicted value and the true value is less than the specified error range, add 1 to the
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number of correctly fitted samples n, until all samples are trained, and the final number of
samples correctly predicted is obtained.

When predicting the number of HFMD cases, the number of cases of the dependent
variable is an integer number. Therefore, the predicted value must be rounded up, and
then the predicted value after processing is compared with the true value. If the difference
between the two is within the allowable range of the number of errors, it is considered
that the trained model predicts the sample correctly, otherwise it is considered that there
is a large error in the sample prediction. According to the analysis of infectious disease
researchers and the regression model, the number of errors is five, i.e., when the difference
between the predicted value and the true value does not exceed five, it is determined that
the model fits this sample correctly.

6.2. Early-Warning Model Evaluation Index
6.2.1. Warning Rate

The warning rate (WR) refers to the ratio of the number of samples that use the early
warning model to send out early warning signals to the total number of samples, and its
value is within the range of [0%, 100%]. Appropriate warning rate can reflect the difference
of the model to different test data, and avoid the phenomenon of full warning and no
warning. If the warning rate is too large or too small, it reflects the large error of the early
warning model and the failure of correct warning.

6.2.2. Accuracy Rate

Accuracy rate (ACR) refers to the ratio of the number of samples with the same early
warning results of the model to the test data and the real early-warning results to the total
sample, reflecting the accuracy of the HFMD epidemic early-warning model, and its value
range is Between [0, 1].

The higher the accuracy rate, the better the prediction ability of the early-warning
model, and the lower the accuracy rate, the worse the prediction ability of the early-warning
model. Therefore, the accuracy rate can truly reflect the prediction effect of the HFMD
epidemic early-warning model.

6.3. Comparison of Different Prediction Time and Space Accuracy

To obtain a more accurate prediction model of the number of HFMD cases, the different
temporal and spatial precisions were compared. From the finest time accuracy (day) and
spatial accuracy (districts and counties) to a week and prefectures, respectively, linear
regression, BP neural network and SVR are used to fit predictions. Because the average
and variance of the number of cases in different time and space accuracy are very different,
only the goodness of fit R2 is used to compare the models. The experimental results are
shown in Table 2, and the broken line graph is shown in Figure 11. With the expansion of
time and space accuracy, the goodness of fit of the model doubles. At the same time, in the
comparison of three different methods, the BP neural network prediction model has the
largest R2, so the city-level weekly prediction model based on the BP neural network has
the highest accuracy.

Table 2. Experimental results of different time precision and spatial precision prediction.

Forecast Model Name District/County, Daily Forecast District/County, Weekly Forecast City-Level, Weekly Forecast

LR 0.3914 0.7611 0.8983
BP-NN 0.3931 0.7613 0.8994

SVR 0.3041 0.7597 0.8948
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Figure 11. Comparison line chart of results of different prediction accuracy. The value represents
results for R2, MAE/10, AWE for different parameters settings.

6.4. Comparative Analysis of Forecasting Models

In this paper, by training and forecasting numerical variables, based on the weekly
incidence of HFMD in the city and the weekly weather data that affects the epidemic and
the child population data, the relevant variable analysis of the influencing factors is carried
out. After that, a multivariate joint feature selection method based on correlation analysis
was used to screen out a subset of features suitable for building a linear model, including
the weekly ordinal number of the statistical time, the incidence of the previous week, the
weekly average air pressure, and the number of children aged 0–6. At the same time, a
subset of features suitable for establishing a nonlinear model is obtained, including the
weekly ordinal number of the statistical time, the incidence of the previous week, the
weekly average air pressure, the weekly minimum temperature, the weekly air humidity,
the wind level and the number of children aged 0–6. Three regression methods were used
to establish a model to fit the weekly incidence. Under different evaluation indicators, the
training results of each model are shown in Table 3 and Figure 12. The analysis shows that
the R2 of the BP neural network reaches the maximum and the MAE reaches the minimum.
At the same time, when the prediction error does not exceed the MAE, the AWE reaches
its maximum value. Therefore, the HFMD epidemic prediction model based on BP neural
network performs best, and the fitting effect is relatively best.

Table 3. Training results of different machine learning regression algorithms.

Evaluation Index LR BP-NN SVR

R2 0.9193 0.9243 0.9142
MAE 8 7 7
AWE 58.94% 69.94% 63.85%
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Figure 12. Line chart comparing the training results of different machine learning regression algorithms.
The value represents results for R2, MAE/10, AWE for different parameters settings.

6.5. GA Tuning Parameter Analysis

When optimizing the connection weights of the BP neural network prediction model
with a good fit effect, it is necessary to adjust and compare the hyperparameters such as
the number of individuals in the population, the number of generations, the crossover and
mutation probability in the genetic algorithm. Therefore, in this section, the hyperparame-
ters in Table 4 are adjusted from the default values, and the optimal value is selected as the
result of this test after three tests under the same conditions. It is used to evaluate the com-
parison results of R2, MAE and AWE recording the changes of various hyperparameters,
find the relevant hyperparameters of the model with the strongest generalization ability,
and find the HFMD epidemic prediction model with the highest prediction accuracy based
on these hyperparameters.

Table 4. Hyperparameters related to genetic algorithm in GA-BP neural network model.

Hyperparameter Name Description Default

Population size number of individuals in the population 70
Number of generations population evolution times 60

Mutation probability probability of genetic mutation on individual chromosomes 0.1
Crossover probability probability of genetic recombination on chromosomes of two individuals 0.9

6.5.1. Impact of the Number of Generations

The model evaluation results of adjusting the number of generations are shown in
Table 5, and the line graph shown in Figure 13 is drawn accordingly.

According to Table 5 and Figure 13, when the number of generations reaches 90 times,
the goodness of fit and the accuracy within error achieve the maximum value. When it is
greater than or less than this value, these two indicators will become smaller and affect
the prediction effect. At the same time, MAE reaches the minimum value, and increases
whenever it is greater or less than this value. Therefore, the population evolution is iterated
90 times, and the model is optimal.
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Table 5. Evaluation table for adjusting the number of generations of hyperparameters in GA-BP model.

Number of Generations R2 MAE AWE

30 0.7933 13 0.3922
40 0.7916 12 0.4902
50 0.8538 10 0.5752
60 0.6798 17 0.2549
70 0.8622 10 0.5556
80 0.8539 10 0.5163
90 0.8992 8 0.5962

100 0.8328 11 0.5033
110 0.8209 12 0.4314
120 0.8628 11 0.4510

Figure 13. Line chart of adjustment results of hyperparameters in GA-BP model. The value represents
results for R2, MAE/10, AWE for different parameters settings.

6.5.2. Effect of Population Size

The evaluation results of the model for adjusting the population size are shown in
Table 6, and the line graph shown in Figure 14 is drawn accordingly.

Table 6. The population size adjustment evaluation table of the hyperparameters in the GA-BP model.

Population Size R2 MAE AWE

10 −0.7920 35 0.2418
20 −0.1791 30 0.2353
30 0.6508 16 0.3203
40 0.6592 17 0.3072
50 0.7964 13 0.3856
60 0.9023 7 0.6053
70 0.8131 12 0.4575
80 0.7942 13 0.4379
90 0.7422 13 0.4575

100 0.8052 13 0.3856
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Figure 14. Line chart of adjustment results of hyperparameters in GA-BP model. The value represents
results for R2, MAE/10, AWE for different parameters settings.

According to Table 6 and Figure 14, when the population size reaches 60, the goodness
of fit and AWE take the maximum value. When it is greater than or less than 60, the value
decreases. At the same time, MAE is the smallest, and when it is greater than or less than
60, its value will increase. Therefore, the model with a population size of 60 is optimal.

6.5.3. Impact of Crossover Probability

The model evaluation results for adjusting the cross probability are shown in Table 7,
and the line graph shown in Figure 15 is drawn accordingly.

It can be obtained from Table 7 and Figure 15 that when the crossover probability
reaches 0.8, the goodness of fit and AWE achieve the maximum value, while MAE is the
smallest. When the crossover probability is not 0.8, the relevant index values are not ideal.
Therefore, the GA model with a crossover probability of 0.8 performs best.

Figure 15. Line chart of the adjustment results of the crossover probability of the hyperparameters
in the GA-BP model. The value represents results for R2, MAE/10, AWE for different parameters
settings.
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Table 7. Adjustment evaluation table of cross probability of hyperparameters in GA-BP model.

Crossover Probability R2 MAE AWE

0.1 0.3900 22 0.2484
0.2 0.1680 26 0.2876
0.3 0.7922 13 0.3268
0.4 0.7411 13 0.4444
0.5 0.8301 12 0.4444
0.6 0.7688 14 0.3333
0.7 0.8258 11 0.5074
0.8 0.8341 10 0.5098
0.9 0.7635 13 0.3399

6.5.4. Impact of Gene Mutation Probability

The evaluation results of the model for regulating the probability of gene mutation
are shown in Table 8, and the line graph shown in Figure 16 is drawn accordingly.

Table 8. Adjustment evaluation table of hyperparameter mutation probability in GA-BP model.

Mutation Probability R2 MAE AWE

0.10 0.8270 11 0.4837
0.09 0.8194 12 0.4444
0.08 0.8036 13 0.3464
0.07 0.8053 13 0.3399
0.06 0.8137 12 0.3660
0.05 0.8400 11 0.4706
0.04 0.9256 9 0.7011
0.03 0.7796 12 0.4033
0.02 0.7484 14 0.3725
0.01 0.7643 13 0.4314

Figure 16. Line chart of adjustment results of hyperparameter mutation probability in GA-BP model.
The value represents results for R2, MAE/10, AWE for different parameters settings.

It can be obtained from Table 8 and Figure 16 that when the mutation probability is
0.04, the goodness of fit and AWE reach a good result, the maximum value is selected,
and MAE is minimum. Higher or lower than this probability will make the relevant index
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value worse. Therefore, the GA model with a mutation probability of 0.04 has the best
performance and a better effect.

Through the adjustment and comparison of these four hyperparameters in GA, it is
found that the individual population is 60, the number of evolutionary iterations is 90, the
gene crossover probability is 0.8, and the gene mutation probability is 0.04. At this time,
the neural network HFMD prevalence prediction model based on GA has the strongest
generalization ability, the smallest error, and best results.

6.6. Comparative Analysis of Early-Warning Models

According to our experiment, we have built the GA-BP HFMD prediction model.
We set the critical eigenvalue of HFMD outbreak and substitute the eigenvalue into the
prediction model to obtain the first HFMD outbreak threshold. Then, the samples of test
data were input into three early warning models, and the 80 percentile incidence of the
region was calculated as the second HFMD outbreak threshold for the same period of
3 years and 2 weeks before and after the same period. Finally, the WR and ACR values of
different warning models were counted, as shown in Table 9.

Table 9. Comparison of different early-warning models.

Adjustable Parameters Historical Percentile Threshold Comparison

WR 4.13% 29.08% 32.02%
ACR 98.62% 85.46% 87.28%

According to the comparison, we could see that although warning model based on
adjustable parameters has the best ACR, its WR is too small, so it is not generalized.
Therefore, we conclude that the warning-model based on threshold comparison should be
the optimal one.

7. Conclusions

This paper proposes a prediction and early-warning model for HFMD and the model
uses big data. Data used in this paper are patient data and weather data. We can obtain a
more accurate early-warning effect by constructing integrated prediction and early-warning
model based on big data.

This paper constructs the prediction model by using GA to optimize the BP neural
network. The best prediction accuracy could be gain as 92.56%. Then we explores the vari-
ous construction methods of early-warning model. Through the comparison of experiment
results, it is found that the early-warning model based on the comparison of threshold has
the highest accuracy. And the optimal accuracy of the early-warning method is around
87.28%.There are still many parts that can be optimized in the research of this paper. For
example, we would want to add more factors to enhance the accuracy of the prediction
model. We will continue to study in depth accordingly.
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Abstract: Background: Vascular access surveillance of dialysis patients is a challenging task for
clinicians. We derived and validated an arteriovenous fistula failure model (AVF-FM) based on
machine learning. Methods: The AVF-FM is an XG-Boost algorithm aimed at predicting AVF failure
within three months among in-centre dialysis patients. The model was trained in the derivation set
(70% of initial cohort) by exploiting the information routinely collected in the Nephrocare European
Clinical Database (EuCliD®). Model performance was tested by concordance statistic and calibration
charts in the remaining 30% of records. Features importance was computed using the SHAP method.
Results: We included 13,369 patients, overall. The Area Under the ROC Curve (AUC-ROC) of
AVF-FM was 0.80 (95% CI 0.79–0.81). Model calibration showed excellent representation of observed
failure risk. Variables associated with the greatest impact on risk estimates were previous history
of AVF complications, followed by access recirculation and other functional parameters including
metrics describing temporal pattern of dialysis dose, blood flow, dynamic venous and arterial
pressures. Conclusions: The AVF-FM achieved good discrimination and calibration properties by
combining routinely collected clinical and sensor data that require no additional effort by healthcare
staff. Therefore, it can potentially enable risk-based personalization of AVF surveillance strategies.

Keywords: machine learning; artificial intelligence; vascular access surveillance; arteriovenous
fistula; end stage kidney disease; dialysis; kidney failure

1. Introduction

Arteriovenous fistula (AVF) represents the gold standard vascular access (VA) for
haemodialysis (HD). Over time, AVFs may develop dysfunction and lower blood flow due
to a series of biological changes that can lead to the formation of a stenosis and subsequent
thrombosis. This event has a severe impact on the clinical status of dialysis patients; in the
best scenario, endovascular and surgical interventions can restore a satisfactory AVF flow;
if not, a central venous catheter (CVC) needs to be placed for interim dialysis access.

Considering the strong negative impact of AVF failure on patient survival, morbidity
and quality of life, recent guidelines focused on potential strategies for AVF preservation.
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The National Kidney Foundation’s (NKF) (KDOQI) Guidelines [1], recommend AVF peri-
odical physical examination (PE), or ultrasound evaluation as primary monitoring methods
to detect access dysfunction. However, there is no evidence on the advantages to routine
AVF surveillance by measuring intra access blood flow (Qa) [1,2] to improve access patency;
nevertheless, its assessment should be considered [3,4].

The controversy concerning the best surveillance strategy to ascertain and evaluate
venous stenoses has not yet been solved [5]. The rationale for surveillance is based on
the hypothesis that progressive stenosis can be accurately detected by reduced Qa and
increased venous pressure (VP) before VA thrombosis occurs [4,6].

Even though both Qa surveillance and ultrasound examination, coupled with pre-
emptive correction of hemodynamically significantly reduces the risk of thrombosis and ac-
cess loss [7–12], false positive tests would lead to unnecessary intervention procedures [13]
which may ultimately promote further neointimal hyperplasia [14]. No current surveillance
method is without pitfalls. Major concerns for Qa surveillance relate to low reproducibility
in clinical practice which corresponds to a minimal detectable change as large as 25%, ques-
tionable cost-effectiveness as the sole surveillance strategy [15] and suboptimal inter-rater
agreement across different measurement techniques [16]. Furthermore, the accuracy in
identifying stenosis with Qa varies according to patient characteristics and location [15,17].
On the other hand, ultrasound examination requires significant operator training and
skill, may not be readily available in all clinical contexts and may not yield conclusive
indications for interventions [18,19]. Structured physical examination has been proposed
as a convenient alternative monitoring method. The assessment of PE accuracy in detecting
and locating AVF stenosis has shown mixed results; whereas few studies have shown ac-
ceptable accuracy in either the diagnosis of outflow and of inflow stenosis [20,21] compared
with angiography; few others [22,23] reached opposite conclusions. In addition, a meta-
analysis of randomized control trial (RCT) studies showed that blood flow measurement
was superior in predicting outcomes [24–26]. Furthermore, PE is operator-dependent [27],
and has limited long-term prediction power thus explaining why, in a large majority of the
cases, many patients may need more frequent surveillance when assuming a rapid AVF
deterioration. Taken together, the impact of PE alone on actual prevention of thrombosis is
limited [28].

An excellent surveillance method should be quick, easy, accurate, non-invasive, non-
operator-dependent and cost-effective. It is clear, that none of the existing methods can
fulfil such expectations alone and a one-fits-all approach is not be able to adequately
capture the diversity of AVF functional trajectories between and within patients.

In principle, an automatic triage system based on routinely recorded data requiring
no additional effort by healthcare professionals may be used to personalize surveillance
strategies based on expected risk stratification.

To this end, we sought to develop and validate a risk model based on the machine
learning methods predicting the occurrence of AVF failure within three months.

2. Materials and Methods

2.1. General Description of the Arteriovenous Fistula Failure Model (AVF-FM)

The AVF Failure Model (AVF-FM) aims at predicting the occurrence of a composite
AVF failure endpoint (see, Endpoint Definition below) within three months based on
routinely recorded clinical information readily available in health information systems for
dialysis patients.

The model is based on the XGBoost algorithm, an iterative method where, at each
iteration, a new sub-model is added to correct the prediction error of the previous iteration.
Each sub-model is an ensemble of decision trees. A decision tree can be roughly described
as a flowchart-like structure in which each internal node represents a “discrimination test”
on a given attribute (e.g., any clinical parameter or demographic characteristics); each
branch of the decision tree represents the result of the discrimination test (i.e., passed
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or not), and each leaf node represent the probability of the outcome. This probability
represents the prevalence of events occurring in each leaf in the training set.

The iterative process ends in accordance with a pre-specified stopping rule (e.g.,
maximum number of iterations or minimal acceptable average prediction error). The
structure of the model is computed as a function optimization process combining the
minimization of both training error and model complexity.

We selected XGBoost since it is characterized by a good prediction accuracy in a
broad variety of problems coupled with short computational time. Furthermore, SHapley
Additive exPlanations (SHAP) analysis [29] enables intuitive model interpretation through
an accurate and efficient estimation of the contribution of each input variable to the risk.

2.2. AVF-FM Training

The AVF-FM was derived using the information collected in the European Clinical
Database (EuCliD®, Fresenius Medical Care, Deutschland GmbH, Wendel, Germany), a
large, multinational, database including in-centre dialysis patients [30].

We enrolled all HD/HDF adult patients in Italy, Spain, and Portugal with at least five
treatments performed using AVF as vascular access, in the period January 2015–October
2019 and at least three months of follow-up. Furthermore, we considered only AVFs with
more than three months of maturation. The unit of analysis for model development and test-
ing was the patient-quarter. The final dataset included all eligible patient quarters (January,
April, July and October) for each year. The ascertainment period for feature computation is
represented in Figure 1. To ensure sufficient data completeness, we excluded patients with
less than 90 days of ascertainment period before the index date for computation.

Figure 1. Study Design: the diagram represents the ascertainment period design for different groups of variables.

2.3. Measures
2.3.1. Endpoint Definition

We used a composite endpoint to define AVF failure. EuCliD® has a dedicated module
for record AVF failure event. However, reporting in this module may be incomplete. In
order reduce the impact of reporting bias, we used a set of proxy variables suggestive
of AVF failure. Therefore, we considered as an AVF failure any switch to a different
vascular access, the occurrence of procedures aimed at re-establishing AVF patency (e.g.,
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angiography with percutaneous angioplasty, stent placement or surgical AVF revision) and
hospitalization due to AVF complications. The exact operative definition of the endpoint
variable is described in Supplementary Table S1.

2.3.2. Input Variables

The following classes of variables were considered for model input:

- Socio-demographic and anthropometric parameters;
- Biochemical parameters;
- Vital Signs;
- Dialysis Treatment parameters;
- AVF-related parameters;
- Comorbidities.

We ascertained diabetes by the occurrence of suggestive ICD10 codes according to
the Charlson Comorbidity Index (CCI) definition [31]. Additionally, we extracted age,
biological sex, dialysis vintage and number of patient’s dialysis access.

2.3.3. Features Generation

We computed several metrics (minimum, maximum, average, standard deviation,
slope) for continuous variables (e.g., dynamic venous and arterial needle pressure). Each
metric was computed considering different time periods (e.g., last 7, 30, 90 days before
index date).

2.3.4. Features Selection

All features have been included in the first model iteration (Supplementary Table S2).
Features that provided trivial contribution to model prediction based on feature importance
statistics were excluded from the following training iterations. The final model included a
total of 46 features derived from 28 variables (Table 1).

Table 1. Patients Characteristics.

Variables Values

Socio-Demographics, vital signs and Comorbidities
Age (years), median (IQR) 70 (58–78)
Male, n (%) 8971 (67.1)
Body temperature, median (IQR) 36.1 (35.9–36.3)
Renal Replacement Therapy Vintage (months), median (IQR) 17.3 (5.3–59.3)
AVF vintage (months), median (IQR) 9.3 (3.7–42.7)
Diabetes mellitus, n (%) 4959 (37.1)
Complicated Diabetes, n (%) 4238 (31.7)
Biochemical parameters
Albumin (g/dL), mean (IQR) 3.9 (3.6–4.1)
C-reactive protein (mg/L), mean (IQR) 5.1 (2.1–12)
Ferritin (ng/mL), median (IQR) 391 (204–615)
Glucose (mg/dL), median (IQR) 113 (94–152)
PTH (pg/mL), median (IQR) 245 (143–392)
HD treatment parameters
Treatment time (min), median (IQR) 240 (239–242)
Ultrafiltration (L), median (IQR) 3.3 (2.8–4)
Effective blood flow (mL/min), median (IQR) 397 (357–428)
Effective processed blood volume (L), median (IQR) 95.7 (85.1–103.9)
Kt/V, mean (SD) 1.8 (0.4)
Recirculation, median (IQR) 13.9 (11.4–17.7)
Characteristics of AVF in use
Days since the last use of previous vascular access, median (IQR) 74 (38–115)
Number of vascular accesses used in the past 6 months, mean (SD) 1.3 (0.5)
Number of treatments with AVF in the past 6 months, mean (SD) 88.6 (56.3)
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Table 1. Cont.

Variables Values

AVF hemodynamic properties
Dynamic venous pressure: Mean (mmHg), median (IQR) 182 (165–202)
Dynamic arterial pressure: Mean (mmHg), median (IQR) −200 (−216–−181)
AVF failure history and previous adverse events
Number of failures: current AVF, mean (SD) 0.6 (1.5)
Days since the last failure, mean (SD) 168 (88.6)
Number of previous thrombosis, mean (SD) 0.4 (1)
Other active vascular access, mean (SD) 0.4 (0.7)
History of vascular access complications, mean (SD) 0.5 (1.4)

All variables were included in the AVF Failure Model. IQR, interquartile range; SD, standard deviation; AVF, arteriovenous fistula.

2.3.5. Missing Variables Handling

Missing values for the input variables are automatically managed by XGBoost, so no
data manipulation was required. The algorithm has proven greater accuracy compared
to the standard statistical sample or model based missing data handling methods, as well
as other machine learning techniques such as random forest or Bayesian ridge methods.
A detailed explanation of how XGboost handles missing variables for a wide range of
missingness patterns is beyond the scope of the manuscript and it has been thoroughly
described in previous technical publications [32]

2.4. Statistical Analysis and Model Performance Evaluation

Model derivation was conducted in a randomly selected partition representing 70%
of the original dataset. The final set of variables was obtained as the result of backward
stepwise feature selection [33]. Model performance and calibration have been evaluated in
the remaining 30% of patients. Model performance was evaluated by concordance statistic
and calibration charts. Discrimination was quantified by calculating the area under the
receiver operating characteristic curve (ROC AUC) Calibration was visually inspected by
plotting observed outcomes incidence by predicted risk score. To evaluate model stability,
both training and test has been repeated over 30 random resampling. All statistics are
reported as pooled estimates (inverse variance method) and 95% confidence intervals of
metrics obtained in the 30 resampling exercises obtained by fixed effect meta-analysis. The
importance of input variables for risk prediction was computed using SHAP method. All
analysis was performed with Python version 3.7.10, MetaXL® and SAS 9.4®.

3. Results

3.1. Derivation & Test Dataset

The final dataset consisted of 13,369 patients, which provided 113,592 patients-quarters.
AVF failure incidence density was 6.6 events/100 patient-quarters or 26.4 events/100 pa-
tient years. The AVF failure incidence density in the test set was 6.38 (95% CI: 6.33–6.43). A
breakdown of AVF failure events by type is reported in supplementary Table S3. Baseline
characteristics of participants are shown in Table 1.

3.2. Discrimination and Calibration in the Validation Sample

The final model had a very good discrimination accuracy. The Area Under the ROC
Curve (AUC-ROC) for the AVF-FM was 0.80 (95% CI 0.79–0.81). Model calibration showed
excellent representation of observed failure risk (Figure 2).
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Figure 2. Calibration Plot. The calibration plot represents the relationship between predicted probabilities and observed
frequency of events in the test dataset. The shaded band represents the 95% confidence interval of the calibration curve. The
dotted line represents perfect calibration. The observed calibration curve overlaps with the perfect calibration line over the
whole predicted probability distribution.

Based on model calibration we established three thresholds identifying 4 risk classes:
prevalence and observed event incidence for each risk group is summarized in Table 2.

Table 2. Arteriovenous fistula risk score classes.

Risk Class Prevalence (%) AVF Failure Risk * Risk Rate Ratio

Low 45.0 (95% CI: 44.9–45.1) 1.61 (95% CI: 1.57–1.64) Ref.
Moderate 38.9 (95% CI: 38.8–39.0) 5.29 (95% CI: 5.22–5.36) 3.29 (95% CI: 3.2–3.38)

High 15.7 (95% CI: 15.7–15.8) 21.46 (95% CI: 21.23–21.68) 13.37 (95% CI: 13.04–13.72)
Very high 0.4 (95% CI: 0.3–0.4) 65.76 (95% CI: 63.16–68.45) 41.18 (95% CI: 39.29–43.17)

Risk classes are defined based on three action thresholds of the AVF-FM risk score. Prevalence of each risk class, event rates and risk ratios
were estimated in 30 test set obtained as random partition of the original cohort with a 70–30 split. Figures represent pooled estimates
(inverse variance method) from 30 random samplings of the of the original cohort. Source figures for each random sampling is reported
in Supplementary Table S4. * The AVF Failure Risk is the Positive Predictive Value (events/100 patient-quarters) computed for patients
classified in a given risk class; that is PPV = P (Failure|Class). Note: AVF, Arteriovenous fistula.

3.3. Feature Analysis

The 20 most important data features contributing to performance of AVF failure
risk score model, are shown in Figures 3 and 4. Previous history of AVF complications
occurred on the vascular access under consideration was the most impactful variable,
followed by recirculation and other functional parameters including metrics describing
temporal pattern of spKt/V, blood pump flow (Qb), dynamic venous and arterial pressures.
Furthermore, AVF vintage, diastolic blood pressure, serum albumin and C-reactive protein
were ranked among the top-20 risk contributors.
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Figure 3. Shapley additive explanations (SHAP) plot showing relative feature importance. Each dot represents one
individual subject from the test dataset. Colour Coding: the red colour represents higher value of the variable; the blue
colour represents a lower value of the variable. The X axis represent the impact of variables on risk in terms of SHAP values.
Positive values suggest direct correlations between risk factors and the occurrence of AVF failures. Negative values suggest
inverse correlation between risk factors and the occurrence of AVF failures. Note: AVF, arteriovenous fistula; DBP, diastolic
blood pressure; SD, standard deviation; Qb, blood pump flow.

Figure 4. Variable Importance plot. Mean SHAP values represent variable importance plot for the top 20 features in the
final model Notes: AVF, arteriovenous fistula; DBP, diastolic blood pressure; SD, standard deviation; Qb, blood pump flow.
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4. Discussion

The wide scale implementation of electronic health record technology has led to an
important and unprecedented accumulation of clinical data, and patient information is
immediately accessible to computer systems. We exploited the wealth of information stored
in the EuCliD® system to derive a machine-learning algorithm for the prediction of AVF
failure within three months.

The model showed good discrimination and excellent calibration. To enhance the
interpretation and usability of risk estimates yielded by the model we selected three thresh-
olds identifying four distinct risk classes. The largest group was represented by very low
risk patients for whom the expected incidence of the composite AVF failure endpoint was
remarkably lower than the observed incidence in the whole target population. On the other
side of the spectrum there is a small group of patients accounting for less than 1% of the
target population with extremely high risk of clinically significant AVF disfunctions within
three months. This risk classification can be used to design personalized clinical manage-
ment workflows. For example, routine monitoring using dialysis parameters and physical
examination may suffice for the very low risk group, thus reducing the costs, resource
requirements and importantly, unnecessary interventions. Conversely, the very high-risk
patient group may be candidate for a more intensive surveillance and clinical review proto-
col to rule out conditions deserving immediate interventions. In-between, we found two
risk classes with moderate and high risk of AVF failure, respectively. For both such classes,
the optimal surveillance strategy could be designed to suit the needs and resources of the
local clinic, regions, or larger geography. Importantly, accurate risk estimation makes the
process of AVF surveillance optimization transparent and reproducible.

Feature analysis disclosed key information to inspect model functioning and enhance
score interpretation. Among the 46 input variables, the main contribution to model perfor-
mance was the past history of failures for the AVF in use, a condition associated with both
constitutional proneness to thrombosis and increased AVF vulnerability due to previous
surgical interventions aimed at re-establishing patency [34]. In fact, AVF stenosis are one
of the most common reasons for repeated endovascular or surgical intervention and are a
well-known problem in AV access maintenance. The high re-intervention rate observed
(i.e., 2.46 ± 1.40 procedures/patient/year) [35], clearly explains the importance of past
history of failure events as a key variable for our model.

One important finding of our study was that the majority of the 15 most important
variables in the model were represented by metrics tapping functional parameters of the
AVF under examination, namely recirculation rate, dynamic arterial and venous access
pressures, effective blood flow and spKt/V. Access recirculation was the second most
important contributing feature to risk estimates in our model. The measurement of ac-
cess recirculation has been used as a non-invasive method based by ultrasound dilution
technique (or dilutional-based method) to determine access blood flow (Qa) [36], and
stenosis identification. A high degree of access recirculation is one of the factors more
importance to identify AVF inflow problems among HD patients and was routinely used
for screening of stenosis in 64% from facilities in northern Italy [37]. Access recirculation
and poor HD adequacy assessed by spKt/V, may help indicate AV access dysfunction [1].
A recent study by Robert et al. [38] concluded that routine measurements of spKt/V was a
quick and straightforward method for early detection of hemodynamically significant AV
fistula stenosis.

Similarly, hemodynamic metrics representing the trajectory of dynamic venous and
arterial pressures in the dialysis access circuit along time were strong contributors of risk
estimates. Alteration of metrics representing the temporal profile of dynamic venous and
arterial pressures suggest a high predictive risk of AVF failure. Abnormal dynamic arterial
pressure (DAP) may be suggestive of access inflow problems while alterations of dynamic
venous pressure (DVP) is associated with outflow stenosis. The incidence of inflow stenosis
in patients with AVF from the cases referred to interventional facilities can reach rates
of 40% with significant effects in reducing dialysis blood pump flow (Qb) [39]; therefore,

158



Int. J. Environ. Res. Public Health 2021, 18, 12355

combining several AVF dysfunction predictors during the same surveillance evaluation is
of paramount importance.

Of note, all such measures are automatically recorded by sensors installed on HD
machines and have been used, alone or in conjunction for AVF monitoring [1]. The great
advantage of such metrics over routine access flow measurement (Qa) relates to their
continuous, effortless availability, since they are measured without any interruption in the
patient’s dialysis process, and without time-consuming procedures. Despite Qa has been
shown to outperform each of these functional parameters taken alone, this is the first study
showing the potential of their combined use for AVF functional assessment. Given that
Qa may be consistently available for a minority of patient, we did not include it in the
input matrix for model generation. Whether the combination of our risk estimates and Qa
provides additional predictive power in selected patients is a matter of further research.

Furthermore, given the strong dependency of risk estimates on AVF functional pa-
rameters, our model is sensitive to their changes in AVF and can be used to track risk
trajectories over time without any additional data collection burden to the healthcare staff.

Our study has several strengths. The large sample size gathered from multiple dialysis
centres across several countries ensured capturing wide diversity in clinical practice and
case-mix, two necessary pre-condition for reproducibility and generalizability in machine
learning. Additionally, we could leverage on a wide array of clinical variables to character-
ize patients’ health status including laboratory test results, socio-demographic information,
medication, dialysis treatment parameters, comorbidities and data continuously recorded
by the dialysis machine during each dialysis session. The evidence regarding risk factors
associated with AVF patency loss is still limited. Most studies have small sample size, and
a limited set of variables was available [40]. On the contrary, we were able to evaluate
the association of AVF patency loss with over 100 clinical parameters and their temporal
dynamics, an unprecedented wealth of information. One additional benefit of XGBoost-
based algorithm is their inherent explainability, which ensures transparency in clinical
decision making. For each patient the model produces SHAP metrics which represent the
importance of clinical parameters on risk estimates, allowing independent assessment by
the attending physician.

On the other hand, we should acknowledge some limitations as well. Our endpoint
definition is a composite outcome including thrombosis, switch to another vascular access,
interventions aimed at re-establishing patency in outpatient setting and day hospital ad-
mission related to intervention to re-establish patency of the AVF. Despite our operational
definition is consistent with the endpoint criteria for AVF patency loss described in the
Recommended standards for reports dealing with arteriovenous hemodialysis accesses issued by
the International Society of Vascular Surgery [41], we rely on data reported by healthcare
professionals in clinical practice. Therefore, we cannot rule out the possibility that infor-
mation bias affected our results. Additionally, our definition reflects medical treatment
decision and therefore we cannot exclude that inappropriate surgical intervention have
been conducted. This may be reflected in our risk estimates (A detailed description of
the endpoint definition is reported Supplementary Table S2). Furthermore, all patients
included in our analysis received treatment in the NephroCare network. Despite the
multicentre, cross-country design of the study, whether the accuracy and calibration of
the AVF-FM can be replicated in centres outside the NephroCare network is a matter of
further research.

5. Conclusions

The fundamental principle for performing routine vascular access monitoring and
surveillance is timely identification and correction of significant stenosis, thus prolonging
patency. Current monitoring and surveillance methods remain operator dependent, may
be inefficient and may potentially lead to unnecessary interventions.

The AVF Failure Model has shown promising discrimination performance by combin-
ing routinely collected clinical as well as sensor data; therefore, the AVF Failure Model can
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potentially enable risk-based personalization of AVF surveillance strategies. Whether the
use of the AVF Failure Model in clinical practice would translate in more efficient care and
prolonged access survival is a matter of further clinical testing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph182312355/s1, Supplementary Table S1: Detailed description of the endpoint definition;
Supplementary Table S2: All variables included in the first training iteration; Supplementary Table S3:
breakdown of AVF Failure causes in our study; Supplementary Table S4: Distribution of AVF-FM
risk classes in 30 re-samplings of the test set.
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Abstract: Current equation-based risk stratification algorithms for kidney failure (KF) may have
limited applicability in real world settings, where missing information may impede their computation
for a large share of patients, hampering one from taking full advantage of the wealth of information
collected in electronic health records. To overcome such limitations, we trained and validated the
Prognostic Reasoning System for Chronic Kidney Disease (PROGRES-CKD), a novel algorithm
predicting end-stage kidney disease (ESKD). PROGRES-CKD is a naïve Bayes classifier predicting
ESKD onset within 6 and 24 months in adult, stage 3-to-5 CKD patients. PROGRES-CKD trained
on 17,775 CKD patients treated in the Fresenius Medical Care (FMC) NephroCare network. The
algorithm was validated in a second independent FMC cohort (n = 6760) and in the German Chronic
Kidney Disease (GCKD) study cohort (n = 4058). We contrasted PROGRES-CKD accuracy against the
performance of the Kidney Failure Risk Equation (KFRE). Discrimination accuracy in the validation
cohorts was excellent for both short-term (stage 4–5 CKD, FMC: AUC = 0.90, 95%CI 0.88–0.91; GCKD:
AUC = 0.91, 95% CI 0.86–0.97) and long-term (stage 3–5 CKD, FMC: AUC = 0.85, 95%CI 0.83–0.88;
GCKD: AUC = 0.85, 95%CI 0.83–0.88) forecasting horizons. The performance of PROGRES-CKD
was non-inferior to KFRE for the 24-month horizon and proved more accurate for the 6-month
horizon forecast in both validation cohorts. In the real world setting captured in the FMC validation
cohort, PROGRES-CKD was computable for all patients, whereas KFRE could be computed for
complete cases only (i.e., 30% and 16% of the cohort in 6- and 24-month horizons). PROGRES-CKD
accurately predicts KF onset among CKD patients. Contrary to equation-based scores, PROGRES-
CKD extends to patients with incomplete data and allows explicit assessment of prediction robustness
in case of missing values. PROGRES-CKD may efficiently assist physicians’ prognostic reasoning in
real-life applications.
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1. Introduction

Multiple behavioral and pharmacological interventions have proven effective in re-
ducing the burden of risk factors for chronic kidney disease (CKD) progression [1–4].
Furthermore, timely transition management (i.e., vascular access creation and training) for
patients needing Kidney Replacement Therapy (KRT) is associated with prolonged survival
and reduced complication rates once on dialysis, while delayed referrals are associated with
increased morbidity, mortality, and healthcare costs [5], as well as worse patient quality of
life [6]. Therefore, early identification of high risk patients is an essential prerequisite of
personalized clinical decision making [7–9].

Several prediction models were developed to assist physicians in forecasting CKD
progression [10]. However, most of them have not been consistently implemented in
clinical practice [9,11,12]. Indeed, the majority of published risk scores lack external
validation [11,13,14], leading to suboptimal discrimination in external populations [12] and
limited generalizability to clinical settings [11]. One prominent exception is represented by
the Kidney Failure Risk Equations (KFREs) developed by Tangri and colleagues [15], which
showed stable discrimination in different validation studies [16–18]. However, KFREs
do not provide short-term forecasts, are not calculable for patients with incomplete data,
and need re-calibration when applied to CKD populations with risk factor distributions
departing from those of the original derivation dataset.

To overcome such limitations, we developed the Prognostic Reasoning System for
Chronic Kidney Disease (PROGRES-CKD), a risk score application for adult patients
suffering from CKD stages 3–5. PROGRES-CKD is based on a naïve Bayes Classifier (NBC)
algorithm and it was trained on a large-multinational clinical dataset, reflecting real-world
clinical practice. The application includes PROGRES-CKD-6 for 6-month forecasting and
PROGRES-CKD-24 for 24-month forecasting.

In the present study, we reported the training and validation of both PROGRES-CKD-6
and PROGRES-CKD-24 in two independent samples of CKD patients: the FMC Nephro-
Care cohort (European Clinical Database, EuCliD®, [19,20]) and the German Chronic
Kidney Disease (GCKD) study cohort [21]. Moreover, we compared the PROGRES-CKD
discrimination accuracy and suitability for clinical practice against the KFREs equations.

2. Materials and Methods

In reporting PROGRES-CKD training and validation studies we adhered to the Trans-
parent reporting of a multivariable prediction model for individual prognosis or diagnosis
(TRIPOD) statement [22] and to the Guidelines for Developing and Reporting Machine
Learning Predictive Models in Biomedical Research [23].

2.1. Description of Naïve Bayes Classifiers

All PROGRES-CKD models are NBCs. NBCs are probabilistic models based on appli-
cation of the Bayes’ theorem. The basic assumption of NBCs is conditional independence
of predictors given the outcome. NBCs are represented through directed acyclic graphs
(Figure 1). NBCs have been previously used in medical applications for diagnostic and
prognostic reasoning in several therapeutic areas [24,25]. In fact, once derived and vali-
dated, NBCs generate metrics informing medical prognostic reasoning. First, they generate
a risk score representing the expected incidence of a disease/event given a vector of known
patient characteristics. Furthermore, NBCs can be used to generate value of information
(VOI) statistics and impact metrics. VOI statistics represent the reduction in uncertainty
(i.e., entropy) in the outcome variable that would be obtained had the value of missing
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variables been observed instead [26]. Therefore, it can be used to prioritize additional
diagnostic testing or biomarker assays for patients with incomplete medical records. Third,
NBCs can provide impact metrics (i.e., Normalized Likelihood (NL) [27]) for each observed
variable. Impact metrics can be interpreted as the magnitude of association of different
subsets of evidence on the outcome variable.

(a) 

(b) 

Figure 1. The Bayesian Network structure of PROGRES-CKD. (a) PROGRESS-CKD-6; (b) PROGRESS-
CKD-24.

2.2. PROGRES-CKD Training

In this application of NBCs, we aimed at developing a model to predict the risk of
KRT initiation within 6 and 24 months. The risk score is anchored at 0.00 = no risk at all to
1.00 = certainty of failure within the prediction horizons.

We derived model weights for the PROGRES-CKD by a data-driven algorithm, ex-
ploiting the wealth of information collected in the European Clinical Database (EuCliD®,
Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany), a large, multina-
tional, database of CKD patients. All nephrology clinics belonging to the Fresenius Medical
Care (FMC) NephroCare network confer data collected for healthcare practice into this cen-
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tralized data-repository. EuCliD® is a fully codified database recording clinical, laboratory,
socio-demographic, treatment and prescription data for each medical encounter [19,20]. In-
formation is collected by healthcare professionals either manually or by means of interfaces
to existing local data managing systems.

All non-dialysis dependent, stage 3–5 CKD patients receiving care in outpatient
renal clinics belonging to the NephroCare network from 2017 to 2018 were screened for
eligibility. We enrolled only patients who received at least one outpatient visit and one
serum creatinine (s-cr) assessment. The endpoints of interest were KRT initiation within
6 and 24 months. We excluded patients dying before reaching the endpoint or before
the end-of-follow-up (i.e., 6 or 24 months, depending on endpoint of interest). Overall,
22,535 subjects met the inclusion criteria. This initial dataset was randomly partitioned into
2 analytical samples: development (70%, n = 17,775), and validation (30%, n = 6760). The
derivation of NBC weights was obtained with Hugin 8.5.

2.3. Measures
2.3.1. Endpoint Definition

The primary endpoint was KRT initiation within 6 and 24 months. Outcome definition
does not include episodes of dialysis treatment for acute and transient kidney derangement.

We defined patients as “lost to follow” when no additional s-cr assessments after end of
follow-up date and no dialysis-dependence onset notes were present in the clinical records.

2.3.2. Input Variables

A list of all the variables included in the final model is provided in Table 1. The final
model for the 6-month forecast incorporates 28 independent variables, while the model for
the 24-month forecast includes 34 variables.

Table 1. Variables included in PROGRES-CKD models.

PROGRES-CKD-6 PROGRES-CKD-24

Group Variable n = 28 n = 34

Demographics and anthropometrics
Age X X
Gender X X
BMI, Kg/m2 X X
Smoking status X X

Kidney function
Albumin, g/dL X X
Albumin Creatinine Ratio (ACR),
mg/mmol ** X X

Calcium, mg/dL X X
eGFR, (ml/min/173 m2) X X
regressGFR * X X
Hemoglobin, g/dL X X
Phosphate, mg/dL X X
Urine protein, g/24 h X X
Parathyroid hormone, ng/L X X
Sodium, mmol/L X X
Ferritin, microg/L X X

Etiology of kidney disease
Diabetes X X
Hypertension X
Glomerulonephritis X X
Polycystic X X
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Table 1. Cont.

PROGRES-CKD-6 PROGRES-CKD-24

Group Variable n = 28 n = 34

Comorbidities
Cerebrovascular disease X X
Chronic Pulmonary Disease X X
Congestive heart failure X X
Connective tissue disorder X
Coronary artery disease X
Dementia X X
Diabetes with organ damage X X
Diabetes without complications X
Hemiplegia X
Hypertension X
Mild liver disease X X
Moderate or severe liver disease X X
Peripheral vascular disease X X

Other
Number of hospitalizations X X
Systolic blood pressure X X

* Slope of linear regression of eGFR values over the last 12 months. ** Urine Protein-Creatinine Ratio was
converted to ACR by ACR = Urin protein*PCR (Urine protein = 0.6) (please, see the Supplementary Material for
the conversion table).

We assessed demographic, anthropometric, and lifestyle variables at index visit; blood
biomarkers were collected and averaged over 12 months before index date (i.e., during
the ascertainment period); their slope (i.e., change rate) was likewise calculated. Lifetime
occurrence of comorbidities was evaluated by abstracting ICD10 codes [28] from outpatient
medical records (Supplementary Material). Finally, etiologies of kidney disease were
also noted.

2.3.3. Definition of CKD Stages

GFR was estimated in adults using the 2009 CKD-EPI creatinine equation [29]. Patients
are classified into one of the following GFR categories: (1) G1 normal or high, GFR:
≥90 mL/min/1.73 m2; (2) G2 mildly decreased, GFR: 60–89 mL/min/1.73 m2; (3) G3a
mildly to moderately decreased, GFR: 45–59; (4) G3b moderately to severely decreased,
GFR: 30–44; (5) G4 severely decreased, GFR: 15–29; (6) G5 kidney failure, GFR: <15.3.

2.4. Design and Setting of PROGRES-CKD Validation Studies

For the validation study we randomly selected one visit from patients’ histories (index
date) before occurrence of study endpoint. All information collected before the index data
was used as an input variable for the model. Patients dying before reaching the endpoint
or before the end-of-follow-up (i.e., 6 or 24 months, depending on endpoint of interest)
were excluded.

Based on this general design setting, we validated PROGRES-CKD models in two
independent cohorts.

2.4.1. Study A

The first validation study was performed in the testing cohort derived from 30%
partitioning of the clinical data abstracted from the FMC NephroCare cohort.

2.4.2. Study B

A second analysis evaluated PROGRES-CKD performance using data from the Ger-
man CKD study [21]. Briefly, the GCKD study is an ongoing prospective observational
national study that recruited 5217 patients with CKD of various etiologies. The enrolment
period started in July 2011 and ended in 2012. Patient recruitment and follow-up is orga-
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nized through a network of academic nephrology centers collaborating with practicing
nephrologists throughout Germany. The main study endpoints were mortality, decline
in kidney function, and cardiovascular events. At the time of recruitment, patients were
under nephrological care and showed either eGFR of 30–60 mL/min/1.73 m2 or overt
urin protein in the presence of an eGFR > 60 mL/min/1.73 m2. In our validation analysis,
only patients subjected to serum creatinine evaluation at baseline and followed for at least
2 years were considered.

2.4.3. Study C

We conducted an impact study assessing concordance of nephrologists’ and PROGRES-
CKD-24 ratings of risk. Four experts were asked to forecast KRT initiation risk for 78 CKD
patients based on their demographic, anthropometric, and clinical data. These patients
were randomly selected from the FMC NephroCare cohort and had complete clinical history
up to 24 months after the index date. Information related to all input variables used by the
model were extracted from existing clinical records. Information extracts for each patient
were collected in real-world clinical practice by physicians during outpatient visits. Doctors
were asked to rate KRT risk on a 10-point rating scale anchored at 1 (risk is negligible,
almost no patient with these characteristics would require RRT within 2 years), 5 (about
50% of patients with these characteristics would require RRT within 2 years) and 10 (almost
100% patients with these characteristics would require RRT within 2 years). Risk ratings
provided by the physicians were then compared to scores obtained from PROGRES-CKD-24
for the same patients. Comparative analysis included accuracy, sensitivity, and specificity
based on score cut-off that maximized Youden’s Index. Thereafter, we investigated the
potential impact of using risk scores provided by either experts or PROGRES-CKD-24
in referring patterns to intensified healthcare prevention programs aimed at delaying
CKD progression. We simulated the use of risk estimates on a large, hypothetical CKD
population of stage 3–5 CKD patients (n = 10,000), assuming an ESRD incidence within
24 months of 4.6% (i.e., n = 460 expected ESKD cases) and an intervention effect size of
1.5 (i.e., patients in the standard of care arm would face 50% higher risk of ESKD compared
to those allocated in the intensified healthcare program). The intervention effect size was
estimated based on expert opinion and several intensified intervention programs reported
in diabetic and non-diabetic CKD [30–32].

2.5. Statistical Analysis

We computed the cumulative incidence and the incidence density of KRT initiation events
in the study population and their 95% confidence intervals based on the Poisson distribution.

Since PROGRES-CKD models are NBCs, no data manipulation was required to explic-
itly handle missing variables.

Model performance was evaluated by concordance statistic and calibration charts in
the FMC NephroCare and the GCKD cohorts. Discrimination was quantified by calculating
the area under the receiver operating characteristic curve (ROC AUC) [33]. An AUC
>0.70 was considered acceptable. Calibration was visually inspected by plotting observed
outcome incidence by quintiles of the risk score [34].

A further analysis investigated non-inferiority (defined as ΔAUC < 0.05) of both
PROGRES-CKD-6 and PROGRES-CKD-24 relative to the KFREs [15] calibrated for the
European population [16]. Briefly, Tangri’s models were developed using Cox proportional
hazards regression methods in stage 3–5 CKD patients. In the present study, the following
Tangri’s equations were used: (1) 4 Variables (4VAR), includes Age, Gender, eGFR, and
Albumin-Creatinine Ratio (ACR); (2) 6 Variables (6VAR), includes Age, Gender, eGFR,
ACR, Diabetes, and Hypertension. We could not apply the 8 Variables (8VAR) equation
given the lack of serum bicarbonate assessments in both study cohorts. Non-inferiority
was assessed by checking whether a one-sided confidence interval of the AUC remained
entirely above the non-inferiority threshold (0.05). In case non-inferiority was achieved,
we evaluated superiority of PROGRES-CKD compared to benchmark models; superiority
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was set at ΔAUC ≥ 0.05. Given the sequential nature of testing in a fixed order method
approach, type I error is not inflated by multiple testing. Superiority was tested with the
DeLong non-parametric approach [35]. Statistical significance was claimed at α < 0.05.

For study C, the following accuracy parameters were considered: Sensitivity, Speci-
ficity, Positive Predictive Value (PPV), and False Omission Rate (FOR). We also calculated
the number needed to treat (NNT) in order to avoid 1 KRT event as the reciprocal of the
absolute risk difference between the hypothetical prevention program and standard of care
for all patients:

NNT= (#patients int tr/[(#patients int tr∗PPV)−((#patients int tr∗PPV)/(effect−size))]

Model training was performed using Hugin Explorer. All analyses for the validation
study were performed with SAS 9.4®.

3. Results

3.1. Cohort Characteristics

Table 2 reports baseline demographic and clinical data of the whole FMC NephroCare
cohort. Among 22,535 non-dialysis-dependent stage 3–5 CKD patients, 18,504 and 9407 pa-
tients had 6 and 24 months of follow-up, respectively. KRT events were 801 within 6 months
(8.66 events/100 person-year) and 1817 within 24 months (9.66 events/100 person-year).
On the other hand, KRT events in the validation sample (derived from 30% partitioning
of the whole FMC cohort) were 248 (2.24 events/100 person-year) and 537 (9.36 events/
100 person-year) within 6 and 24 months, respectively.

Table 2. Baseline characteristics of patients from the FMC NephroCare and GCKD cohorts.

FMC Cohort GCKD Cohort

Variable n Mean ± SD or Median
(IQR) or n (%)

n Mean ± SD or Median
(IQR) or n (%)

Stage 3 11,965 11,965 (53.1%) 3593 3593 (88.54%)
Stage 4 8026 8026 (35.62%) 460 460 (11.34%)
Stage 5 2544 2544 (11.29%) 5 5 (0.12%)
Age (year) 22,535 72.15 ± 11.7 4058 62.12 ± 10.50
BMI (kg/cm2) 21,655 30.63 ± 10.92 4015 30.03 ± 5.91
eGFR ((mL/min/1.73 m2) 22,535 31.93 ± 13.4 4058 41.92 ± 9.76
Albumin (g/dL) 19,004 4.19 ± 0.4 4055 3.85 ± 0.42
Ferritin (μg/L) 7303 222.18 ± 260.98 1044 200.48 ± 196.11
Hemoglobin (g/dL) 21,916 12.65 ± 1.83 3978 13.49 ± 1.69
Phosphate (mg/dL) 20,362 3.65 ± 0.74 4058 3.45 ± 0.64
Calcium (mg/dL) 20,686 9.36 ± 0.73 4058 9.07 ± 0.63
Sodium (mmol/L) 20,612 140.17 ± 3.16 4057 139.70 ± 3.14
PTH (ng/L) 9466 131.84 ± 150.12 0 -
ACR (mg/mmol) 90 138.67 ± 568.28 3999 393.63 ± 888.48
Proteinuria (g/24 h) 8780 3.58 ± 150.29 0 -
Systolic (mmHg) 17,963 137.33 ± 18.41 4030 140.27 ± 20.53
CRP (mg/L) 13,468 4.23 (7.63) 4056 2.41 (4.27)
Glucose (mg/dL) 19,499 126.45 ± 48.59 0 -
HDL Cholesterol (mg/dL) 7074 48.3 ± 16.74 4051 50.72 ± 17.35
LDL Cholesterol (mg/dL) 7084 107.59 ± 219.29 4051 116.33 ± 42.93
Triglyceride (mg/dL) 15,191 142.77 (95.72) 4050 173.38 (126.45)
hsTNT (ng/L) 0 - 3976 13 (11)
Uric Acid (mg/dL) 20,273 6.68 ± 1.61 4058 7.40 ± 1.92
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Table 2. Cont.

FMC Cohort GCKD Cohort

Variable n Mean ± SD or Median
(IQR) or n (%)

n Mean ± SD or Median
(IQR) or n (%)

Gender (M) 22,535 11,349 (50.36%) 4058 2510 (61.85%)
Etiology Diabetes 22,535 3614 (16.04%) 4058 666 (16.41%)
Etiology Polycystic 22,535 477 (2.12%) 4058 157 (3.87%)
Etiology Hypertension 22,535 5281 (23.43%) 4058 1011 (24.91%)
Etiology Glomerulonephrite 22,535 987 (4.38%) 4058 623 (15.35%)
Smoking status: ex-smoker 3502 3502 (15.54%) 1819 1819 (44.96%)
Smoking status: no smoker 10,066 10,066 (44.67%) 1649 1649 (40.76%)
Smoking status: smoker 2274 2274 (10.09%) 578 578 (14.29%)
Alcohol: abuse 8636 8636 (38.32%) 771 771 (19.10%)
Alcohol: moderate 0 0 (0%) 3265 3265 (80.90%)
Alcohol: abstinence 6984 6984 (30.99%) 0 0 (%)
Peripheral Vascular Disease 22,535 1875 (8.32%) 4058 424 (10.45%)
Coronary Artery Disease 22,535 4336 (19.24%) 4058 908 (22.38%)
Congestive Heart Failure 22,535 1887 (8.37%) 4058 776 (19.12%)
Cerebrovascular Disease 22,535 1876 (8.32%) 4058 472 (10.52%)
Connective Tissue Disorder 22,535 399 (1.77%) 0 -
Cancer 22,535 2469 (10.96%) 4058 532 (13.11%)
Diabetes 22,535 9021 (40.03%) 4058 1545 (38.07%)
Anemia 22,535 9800 (43.49%) 4058 1057 (26.05%)
Hypertension 22,535 17,871 (79.3%) 4058 3951 (97.36%)
Atrial Fibrillation 22,535 2337 (10.37%) 4058 876 (21.59%)
Diabetes Without Complications (CCI) 22,535 3013 (13.37%) 4058 1545 (38.07%)
Chronic Pulmonary Disease (CCI) 22,535 1618 (7.18%) 4058 285 (7.02%)
Psychiatric Disease 22,535 177 (0.79%) 0 -
Liver Disease 22,535 987 (4.38%) 0 -
RRT in 24 months 9407 1817 (19.32%) 3684 80 (2.17%)
RRT in 6 months 18,504 801 (4.33%) 3888 11 (0.28%)

A second validation study was performed using data from the GCKD study. As
shown in Table 2, a total of 4058 stage 3–5 CKD patients were included, of whom 3888 and
3687 subjects had 6 and 24 months of follow-up, respectively. RRT events were 11 within
6 months (0.5 events/100 person-year) and 80 (1.1 events/100 person-year) within 24 months.

Early CKD stages were predominantly represented in the GCKD study, whereas
patients in stage 5 CKD were mostly enrolled in the FMC NephroCare cohort. Loss
to follow-up within 6 months was 4031 (17.9%) and 170 (4.2%) participants, while loss
to follow-up in 24 months was 13,128 (58.3%) and 371 (9.1%) participants in the FMC
NephroCare and GCKD cohorts, respectively.

3.2. Model Discrimination in the Training and Validation Dataset from the FMC
NephroCare Cohort

In the development dataset, AUC of PROGRES-CKD-6 was 0.88 (95%CI 0.86–0.89) in
stage 4–5 patients, while AUC of PROGRES-CKD-24 was 0.86 (95%CI 0.85–0.87) in stage
3–5 patients.

External validation was performed in an independent sample of patients treated
in the FMC NephroCare cohort. Analysis indicated a good discriminative ability for
both PROGRES-CKD-6 and PROGRES-CKD-24 models, with a concordance statistic of
0.90 (95%CI 0.88–0.91, stage 4–5) and 0.85 (95%CI 0.83–0.88, stage 3–5), respectively.

Calibration of predicted versus observed risk is represented in Figure 2.
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Figure 2. Calibration of (A) PROGRES-CKD-6, and (B) PROGRES-CKD-24 in the FMC cohort. Bar
graph denotes the incidence of RRT initiation events observed in each quintile of risk (left axis); line
graph denotes the fraction of RRT initiation events in each quintile with respect to the total number
of RRT initiation events (right axis). Endpoint horizons: 6 months for PROGRES-CKD-6; 24 months
for PROGRES-CKD-24.

3.3. Model Discrimination in the GCKD Cohort

PROGRES-CKD models showed a good discrimination accuracy in the GCKD dataset
(PROGRES-CKD-6, CKD stages 4–5, AUC = 0.91 (95%CI 0.86–0.97); PROGRES-CKD-24,
CKD stage 3–5, AUC = 0.85 (95%CI 0.83–0.88)).

Evaluation of ratios of observed risk across quintiles of predicted risk indicated that
the model best discriminated low and high-risk patients compared to those classified in
the central quintile or risk score distribution (Figure 3).
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Figure 3. Calibration of (A) PROGRES-CKD-6, and (B) PROGRES-CKD-24 in the GCKD cohort. Bar
graph denotes the incidence of RRT initiation events observed in each quintile of risk (left axis); line
graph denotes the fraction of RRT initiation events in each quintile with respect to the total number
of RRT initiation events (right axis). Endpoint horizons: 6 months for PROGRES-CKD-6; 24 months
for PROGRES-CKD-24.

3.4. Comparison with KFRE Performance

Table 3 shows the comparison in discrimination accuracy between PROGRES-CKD
and KFREs equations. Since KFREs equations are computable only for complete infor-
mation cases, patients with missing data were listwise deleted from this analysis. Given
the large amount of missing information for ACR, we converted timed proteinuria assays
(proteinuria g/24 h) into ACR when available. The conversion was based on a published
correspondence table (Supplementary Material).
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Table 3. Comparison between discrimination ability of (A) PROGRES-CKD-6 and (B) PROGRES-CKD-24 and that of Tangri’s
Kidney Failure Risk Equations (KFREs) in the FMC and the GCKD cohort. The two scores were computed considering
only complete cases (column “Effective sample size”), while patients with missing data were not included in the analysis.
Endpoint horizons: 6 months for PROGRES-CKD-6; 24 months for PROGRES-CKD-24. Imputation method: Listwise.
Non-inferiority was defined as AUC < 0.05, while superiority was set at ΔAUC ≥ 0.05. * Delta AUC: AUC of Tangri’s
KFRE–AUC of PROGRES-CKD model.

Model Validation Cohort Comparator Model AUC PROGRES-CKD Delta AUC * p-Value Effective Sample Size

PROGRES-CKD-6
FMC NephroCare

4VAR 0.90 −0.012 0.3255 927
6VAR 0.90 −0.016 0.2220 927

GCKD
4VAR 0.91 −0.146 0.0016 459
6VAR 0.91 −0.149 0.0013 459

PROGRES-CKD-24
FMC NephroCare

4VAR 0.87 0.020 0.0483 1081
6VAR 0.87 0.018 0.0888 1081

GCKD
4VAR 0.85 0.030 0.0105 3999
6VAR 0.85 0.027 0.0246 3999

Based on the superiority test criteria, the discrimination accuracy of PROGRES-CKD-6
was greater than KFRE equations for short term RRT risk among stage 4–5 CKD patients
(Table 3). PROGRES-CKD-24 discrimination was not inferior to that of the gold standard
algorithms (Table 3).

3.5. Potential Impact Simulation

A potential impact study compared the risk of KRT estimated by nephrologists with
those calculated by PROGRES-CKD-24 and investigated the potential incremental efficiency
of using PROGRES-CKD compared to physicians’ assessments to inform referral to an
intensified multidisciplinary prevention program to delay progression to ESKD.

Table 4 reports ratings of CKD progression risks provided by either physicians or
the prediction model. In the evaluation sample, 25 patients required KRT within 2 years,
while 53 patients did not reach the study endpoint. PROGRES-CKD-24 had excellent
discrimination within this dataset (AUC = 0.96), while experts’ ratings demonstrated good
discrimination (average AUC = 0.79), with average sensitivity = 0.64 and average specificity
= 0.85 at the optimal cut-off point (score > 6). Therefore, experts were less discriminative
of endpoint occurrence compared to PROGRES-CKD-24 (ΔM-E = 0.17, p = 0.005). The
correlation of physicians’ ratings with PROGRES-CKD-24 ratings was moderate (r = 0.50,
p < 0.01); furthermore, experts showed different abilities to discriminate patients’ risk.
(Table 4).

Table 4. PROGRES-CKD-24 and Experts’ ratings of CKD progression risk.

Experts

PROGRES-CKD-24 Expert 1 Expert 2 Expert 3 Expert 4

AUC 0.96 0.84 0.72 0.86 0.76
Sensitivity 0.76 0.80 0.50 0.75 0.60
Specificity 0.96 0.84 0.89 1.00 0.82

Figure 4 shows the results of our impact simulation. Based on the experts’ ratings
(PPV = 17%; FOR = 2%), n = 1725 (17.3%) patients would be assigned to the high-risk
category, while n = 8275 (82.8%) would be recommended to the standard care program
(Figure 4, panel A). Based on the assumptions set for the simulation exercise (i.e., ESKD
overall incidence without intervention: 2.3 events/100 patient-years; ESKD risk is reduced
by 50% in the intensified intervention group) there would be 362 ESKD events overall.
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Therefore, in this scenario, physicians’ referral to the intensified program would delay
98 ESKD cases (i.e., an Overall Program Effect Size of 1.27). The number of patients needed
to treat would be NNT = 18 (Figure 4, panel D). Conversely, risk stratification by PROGRES-
CKD-24 (PPV = 48%; FOR = 1.2%) leads to referral of n = 732 (0.73%) patients to intensified
intervention (Figure 4, panel B). In this case, 117 ESRD events would be prevented, i.e.,
an Overall Program Effect Size of 1.36. The number needed to treat would be NNT = 6
(Figure 4, panel D). Finally, under a hypothetical risk averse policy that would refer all
stage 3 CKD patients to the intensified program, 153 ESRD events would be prevented
with NNT = 65 (Figure 4, panel C).

Figure 4. Potential impact simulation of PROGRES-CKD-24 implementation in a hypothetical CKD cohort. Flowcharts
showing patients’ referral to intensified intervention programs based on (A) experts’ ratings, and (B) PROGRES-CKD scores;
(C) Number of ESKD events within 24 months: both observed and saved cases are shown; D) Number of patients needed
to treat to save 1 patient; “all-in strategy” involves referral of all stage 3 patients to the intensified healthcare program.
Abbreviations: ESKD, end-stage kidney disease; NNT, Number needed to treat.

4. Discussion

The present study reports the derivation and validation of the PROGRES-CKD algo-
rithm in two independent cohorts of non-dialysis dependent CKD patients. Discrimination
accuracy of PROGRES-CKD was excellent for both the short-term prediction horizon
(6 months) and the long-term prediction horizon (24 months).

Of note is the fact that PROGRES-CKD-6 and PROGRES-CKD-24 had reproducible
discrimination accuracy in both validation studies. The FMC NephroCare cohort included
real-world clinical data of stage 3–5 CKD patients from 15 countries (Europe, South-
America, Africa), while the GCKD study is a prospective CKD cohort study recruiting
a wider range of NDD-CKD patients with moderate GFR impairment in Germany [21].
Given the substantial differences between the two cohorts in geographical area of re-
cruitment (international vs. national), inclusion/exclusion criteria, and data collection
strategies (real-world vs. pre-specified protocol), the observed consistency in discrimina-
tion and calibration corroborates the generalizability of PROGRES-CKD across different
CKD subpopulations and clinical settings.
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To further characterize PROGRES-CKD accuracy, we compared its discrimination
performance against KFREs which were extensively validated in different CKD patient
populations [11,17,18] and are routinely used in clinical practice. PROGRES-CKD was as
accurate as KFREs for 24-month prediction in both validation cohorts and more accurate
for 6-month forecasting in the GCKD study. Even though the two algorithms showed com-
parable performance in long-term prediction, the KFRE risk score could not be computed
in a vast share of patients of the FMC NephroCare cohort because of missing informa-
tion of key input variables (Figure 5). Conversely, PROGRES-CKD was available for all
patients due to accurate handling of missing variables inherent to naïve Bayes classifiers
(Figure 5) [36]. In fact, PROGRES-CKD potentially incorporates input from as many as
32 clinical parameters, yet its prediction can be computed with any subset of information.
Therefore, PROGRES-CKD performance remained stable even for patients with many
missing parameters representative of a real-world clinical practice setting. Furthermore,
by assessment of VOI metrics, PROGRES-CKD allows the graphical representation of the
uncertainty around prediction due to missing data. Given that VOI metrics are calculated
for each missing clinical parameter within the patient’s health records, they can be used to
rank the potential prognostic benefit of additional diagnostic testing or biomarker assays
for patients with incomplete medical data. These peculiar features of PROGRES-CKD
significantly increase its clinical usability in that they enable to address the problem of
missing predictors in real-world data [17] by exploiting the full wealth of information
collected in routine clinical practice.

Figure 5. Discrimination ability of PROGRES-CKD and KFREs and percentage of computed scores
by each prediction tool. Only cases with complete medical information were included in this analysis.
(A) RRT prediction within 6 months; (B) RRT prediction within 24 months. Bars denote AUC (left y-
axis), while dots denote the percentage of computed scores on the total number of recruited patients in
each cohort (right y-axis). Abbreviations: P-CKD6, PROGRES-CKD-6; P-CKD24, PROGRES-CKD-24;
4VAR, KFRE 4 variables; 6VAR, KFRE 6 variables.
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One additional advantage of NBCs such as PROGRES-CKD over traditional equation-
based prediction tools rest in their ability to generate personalized, patient-specific impact
metrics representing the relative contribution of each predictor to a patient’s risk. Impact
metrics can be used to estimate the potential impact of interventions addressing modi-
fiable risk factors. This has important implications for patient care, since there can be
considerable heterogeneity in underlying diseases, demographics, co-morbidities, and
risk for progression among CKD patients and, consequently, optimal intervention strate-
gies might deviate between patients with the same overall risk estimate depending on
their individual high impact risk parameters. Therefore, both VOI and impact metrics
could help physicians within their decision-making processes in tailoring interventions
according to each individual patient’s needs and characteristics [37]. Adoption of a more
personalized clinical approach would lead not only to improved CKD clinical manage-
ment (targeted diagnostic and treatment investigations with minimum adverse events
and maximum efficacy, and consequently increased adherence to treatment), but it could
also contribute towards optimizing the utilization of healthcare resources. In fact, ranking
clinical parameters by their impact on risk score computation helps physicians’ reasoning
on priority and enables strategic and rational formulation of therapeutic plans considering
both patient/disease-related factors and resource availability.

One specification of PROGRES-CKD allows the identification of patients whose kidney
function is more likely to deteriorate within 6 months, a feature enabling timely referral
to vascular access creation services and transition management [38,39]. The potential
advantages of accurate short-term progression are two-fold. Patients starting on chronic
dialysis with an arteriovenous fistula (AVF) rather than catheter have improved clinical
outcomes in terms of survival, hospitalization, and complications [40]. On the other hand,
inappropriate AVF creation in stage 4 and 5 patients who do not rapidly progress to KF is
associated with complications and premature loss of patency [38].

Accurate risk prediction is a challenging task for physicians in real-world clinical
practice, due to a number of disease, clinician, and organization related factors, includ-
ing: inherent heterogeneity and variability in CKD progression rates [41,42], incomplete
information, unrecognized case ambiguity, overconfidence leading to reduced analyti-
cal scrutiny, wrong perception of average population risk, over-generalization, fatigue,
working overload, aging, altered affect impairing executive memory, switch of analytic
scrutiny, and inexperience [43–48]. Therefore, readily available risk scores which prove to
be accurate, generalizable to a wide array of CKD subpopulations and settings, and robust
to missing data patterns observed in real-life applications may considerably assist clinical
decision making, particularly when providing the opportunity to simulate the impact of
interventions to individual patient cases.

In order to estimate the potential impact of improved prognostication around CKD
progression on process outcomes, clinical outcomes, and costs [38,49], we conducted a
simplified simulation using PROGRES-CKD as a patient stratification system for referral to
intensified prevention programs for non-dialysis dependent (NDD)-CKD patients. In our
simulation, risk estimates provided by either PROGRES-CKD or nephrology experts were
used to stratify CKD patients. Subjects assigned to the “high-risk” category are referred
to an intensified healthcare program aimed at reducing the risk of CKD progression. Our
analysis suggested that PROGRES-CKD-driven referral to the intensified program would
be more effective and largely more efficient than referral patterns determined by both
healthcare expert risk assessment and an “all-in strategy” (i.e., all patients are referred to
the intensified healthcare program when they reach stage 3 CKD). Therefore, personalized,
risk-based referral may improve the efficiency of healthcare systems by enhancing the
appropriateness of resource allocation in terms of direct expenditures and staff utilization.
Personalized referral, however, is not just a matter of mere efficiency. In fact, inappropriate
referral to the intensified intervention would involve unnecessary medicalization with
greater risks of adverse events, impoverishment of quality of life even in people with a
very low risk of progression, increased rate of therapeutic fatigue, and reduced adherence.
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Conversely, accurate and reliable patient stratification helps physicians and healthcare
providers balance individual patient needs with overall resource utilization, ultimately
leading to more effective care for both the individual patient and the population [50].

5. Limitations

Validation of risk score should be considered a continuous process of generalization
tests rather than a single experiment. While the performance of PROGRES-CKD was stable
in both well-conducted longitudinal cohort studies (i.e., GCKD) and historical cohorts of
real-life practice (i.e., FMC NephroCare), evidence concerning PROGRES-CKD robustness
with real-world-representing clinical practices outside FMC NephroCare is still missing.
For this reason, PROGRES-CKD undergoes a periodical process of performance monitoring
while external cohorts for validation exercises are actively sought for.

6. Conclusions

The Prognostic Reasoning System for CKD patients (PROGRES-CKD) demonstrated
excellent discrimination accuracy in two independent cohorts of NDD-CKD patients.
The underlying models provide accurate prediction for both 24 and 6 months KRT risk.
Contrary to traditional equation-based algorithms which cannot be applied to a large
proportion of patients with incomplete data, PROGRES-CKD extends to all patients and
allows explicit assessment of prediction robustness in case of missing values for key risk
factors. Furthermore, PROGRES-CKD enhances prognostic reasoning by providing patient-
specific impact metrics representing the relative contribution of each predictor to a patient’s
risk and can be used to estimate the potential impact of tailored interventions in addressing
individual and modifiable risk factors. While PROGRES-CKD-24 may contribute to efficient
and effective referral to intensified prevention programs for NDD-CKD patients, prediction
of short-term outcomes (PROGRES-CKD-6) can be a key enabler of timely AVF creation and
transition management. Given these results, both PROGRES-CKD algorithms reported here
have the potential to advance current standards in routine CKD risk estimation, patient
stratification, and individualizing interventions.
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Abstract: Breast cancer death rates are higher than any other cancer in American women. Machine
learning-based predictive models promise earlier detection techniques for breast cancer diagnosis.
However, making an evaluation for models that efficiently diagnose cancer is still challenging. In
this work, we proposed data exploratory techniques (DET) and developed four different predictive
models to improve breast cancer diagnostic accuracy. Prior to models, four-layered essential DET,
e.g., feature distribution, correlation, elimination, and hyperparameter optimization, were deep-
dived to identify the robust feature classification into malignant and benign classes. These proposed
techniques and classifiers were implemented on the Wisconsin Diagnostic Breast Cancer (WDBC) and
Breast Cancer Coimbra Dataset (BCCD) datasets. Standard performance metrics, including confusion
matrices and K-fold cross-validation techniques, were applied to assess each classifier’s efficiency
and training time. The models’ diagnostic capability improved with our DET, i.e., polynomial SVM
gained 99.3%, LR with 98.06%, KNN acquired 97.35%, and EC achieved 97.61% accuracy with the
WDBC dataset. We also compared our significant results with previous studies in terms of accuracy.
The implementation procedure and findings can guide physicians to adopt an effective model for a
practical understanding and prognosis of breast cancer tumors.

Keywords: machine learning models; data exploratory techniques; breast cancer diagnosis; tumors
classification

1. Introduction

Breast cancer (BC) is the world’s leading cause of death in women after lung cancer,
with approximately 2,261,419 new cases and 684,996 new deaths in 2020 [1]. In the United
States, 281,550 new cases were diagnosed with breast cancer, and 43,600 deaths were
reported in the females during 2021 [2]. Breast cancer is a type of cancer that originates from
breast tissue, most generally from the internal layer of the milk conduit or the lobules that
provide milk to the milk conduit. Cancer cells arise from natural cells due to modification or
mutation of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). These modifications
or mutations may occur spontaneously as a result of the increase in entropy, or they may
be triggered by other factors. For example, electromagnetic radiation (X-rays, microwaves,
ultraviolet-rays, gamma-rays, et cetera), nuclear radiation, bacteria, viruses, fungi, parasites,
chemicals in the air, heat, food, water, free radicals, mechanical cell-level injury, evolution,
and aging of DNA and RNA [3]. In general, benign and malignant are two classes of
tumors. Although benign is not life-threatening and cancerous, it may boost the chances of
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breast cancer risk. In contrast, malignant is more alarming and cancerous tumors. A study
performed breast cancer detection and reported 20% of women died due to malignant
tumors [4].

These studies emphasize the diagnosis of tumors, and recently, it is a trending biomed-
ical issue. The researchers are employing data mining (DM) and machine learning (ML)
technologies for breast cancer prediction [5]. Classifier-based prediction models on DM
and ML can limit the diagnosis errors and enhance the efficiency of a cancer diagnosis.
DM is an extensive combination of different approaches to discover hidden knowledge
and information from large-scale datasets that are difficult to analyze directly. It has been
broadly used in the implementation of the prediction system for various diseases, such
as heart disease [6], lung cancer [7], and thyroid cancer [8]. DM and ML techniques have
been embedded for diagnosing breast cancer with computer-aided systems [9], and fuzzy-
genetics [10]. The results of these studies successfully classify the features into two types
of tumors by the evaluation of classifier and predicting the incoming tumor based on
previous data.

In the literature, a research study proved that breast cancer prediction with machine
learning classifiers in the early phases does not just increase the survival chances but can
control the diffusion of cancerous cells in the body [11]. For instance, a study used the
support vector machine (SVM) based method for breast cancer diagnosis and achieved
practical results in prediction [12]. Similarly, Furey et al. [13] also employed SVM for cancer
tissue classification with a linear kernel and attained a 93.4% accuracy. Later, this work
was extended by Zheng et al. (2014) by delivering a K-SVM hybrid model for Wisconsin
Diagnostic Breast Cancer (WDBC) dataset classification and acquiring 97% accuracy [14].
Meanwhile, some other researchers worked on different classifiers, such as Seddik et al.
(2015), who proposed a method based on tumor variables for a binary logistic model to
diagnose breast cancer WDBC data and secure good results [15]. Likewise, Mert et al.
used a k-nearest neighbor (KNN) classifier to predict breast cancer by designing a feature
reduction method with independent component analysis. It distributed the features with
reduced one feature (1C) and 30 features and computed the performance, and attained 91%
accuracy [16].

Apart from these advantageous accuracies with different classifiers and methods,
these studies mentioned above have not considered the data exploratory techniques, which
enable the data mining techniques to be more robust to acquire efficient performance.
Due to the absence of such essential techniques, various studies [16–19] face the accuracy
limitation of ML classifiers. Meanwhile, the confusion matrices misdiagnosed the malignant
and benign classes in those studies due to the incorrect prediction of true negative and false
negative matrices. Another defect was found in those previous studies that used criteria
to assess the feature training with nonlinear classification. However, the performance
of model execution time increases rapidly with the number of features [20]. As a result,
the prediction model becomes slower, affecting the diagnosis accuracy. In contrast, the
model’s accuracy and time complexity are critical issues for the data analyst and physician.
These problems, as mentioned above, and findings motivated us to pursue a new study
for breast cancer diagnosis by proposing data mining techniques with different machine
learning models.

In this research, four different prediction models were formulated with four machine
learning algorithms (SVM, KNN, logistic regression (LR), and ensemble classifier (EC)) to
deal with a massive volume of tumor features for the extraction of essential information
for the diagnosis of breast cancer. The objective was to explore an accurate and efficient
prediction model for tumor classification by using data mining techniques. It proposes
four-layered significant data exploratory techniques (DET), including feature distribution,
elimination, and constructing a hyperparameter for the practical analysis of Wisconsin
Diagnostic Breast Cancer (WDBC) and Breast Cancer Coimbra Dataset (BCCD). These
techniques enabled the machine learning predictive models to improve accuracy and
enhance diagnostic efficiency. In the absence of these techniques, we observed some
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literature suffers from accuracy limitations. Although image data are more reasonable for
breast cancer detection, we have not considered them in this work due to the targeted
WDBC and BCCD datasets to apply the intelligent ML classifiers. It presents a framework
by integrating DET and predictive models to explore the implementation method for
breast cancer diagnosis. The tumor features can be presented in many details, which
produces redundant information. Such features lead to tedious outcomes due to high
computation times. As a result, our fundamental goal was not only to investigate the
effective predictive model with attainable accuracy but also one with time complexity for
the cancer diagnosis. The deliberation of time efficiency will enable our models to extract
and mine vital information from a vast dataset by finding correlations and eliminating
the features. The results presented satisfactory accuracy for the breast cancer diagnosis
with the lowest computation time, which signifies the quality of our study as compared to
others. This work will enable a data analyst to apply an intelligent machine learning model
to analyze breast cancer data. Likewise, a physician would diagnose breast cancer precisely
by the tumor classification. As the dataset is available publicly, we uploaded our code on
GitHub (https://github.com/abdul-rasool/Improved-machine-learning-based-Predicti
ve-Models-for-Breast-Cancer-Diagnosis (accessed on 11 November 2021)) to assist data
analysts and physicians in further advancement and apply it in real-time. As summarized,
the following are the significant contributions of this study:

• We investigated four prediction models (SVM, LR, KNN, and EC) with the WDBC and
BCCD breast cancer datasets, which reached the next level of quality by diagnosing
the tumor and classifying it into benign and malignant.

• It proposes four-layered data exploratory techniques before implementing four ML
classifiers as prediction models. These techniques enable the predictive models to
acquire peak accuracies for breast cancer diagnosis.

• We set up experiments to validate the models’ prediction and classification accuracy
with regard to time complexity and deliver comparative analysis with state-of-the-art
studies and various evaluation matrices.

The rest of the article is organized as follows: Section 2 expands on the literature
reviews; Section 3 explains the preliminary part for the introduction of proposed prediction
models; Section 4 introduces the proposed methodology; Section 5 deals with the evaluation
of the results; Section 6 deliberates the discussion, and Section 7 provides the conclusion.

2. Related Work

Breast cancer disease causes a massive number of deaths in the world. After the
traditional cancer detection methods, the latest technologies enable experts with numerous
adaptive methods to discover breast cancer in women. Along with the new technologies,
various data science (DS) techniques assist in cancer-based data collection and evaluation
to predict this deadly disease. Machine learning algorithms have been successfully applied
to cancer-based data analysis among these DS technologies. For example, research [21]
was conducted to prove that these machine learning algorithms can improve diagnostic
accuracy. It turns out that a 79.97% diagnostic accuracy was achieved by an expert physician.
However, 91.1% correct predictions were attained with machine learning.

In the last couple of decades, machine learning applications in the medical field have
gradually increased. However, the data collected from the patients and evaluation by the
medical expert are the essential factors for diagnosis. The machine learning classifiers have
aided in minimizing human errors and delivered prompt analysis of medical data with
greater depth [22]. There are several machine learning classifiers for data modeling and
prediction; in our work, we employed support vector machine (SVM), logistic regression
(LR), k-nearest neighbor (KNN), and ensemble classifier (EC) for breast cancer prediction.

In previous studies, SVM was a widely implemented machine learning algorithm in
the diagnosis domain of breast cancer due to its highest prediction accuracy. For instance,
Furey et al. (2000) presented SVM with a linear kernel for cancer tissue diagnosis and
reached acceptable accuracy [13]. Similarly, Polat et al. (2007) used the least square SVM for
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breast cancer prediction to eliminate redundant features and secured a 98.53% accuracy. It
was suggested that least square SVM assisted in model training with linear equations [23].
However, his method did not deliver the feature selection process. The author [24] delivered
a distributed database for multi-active features to integrate different technologies. In 2010,
Prasad and Jain et al. [25] proposed a heuristic model for feature subset to train the SVM
classifier. It classifies the breast cancer data into two different classes with 91.7% accuracy.
However, this accuracy can be adequately improved if the author employs the feature
eradication method to get rid of the noise data.

Similarly, Zheng et al. (2014) proposed a hybrid model combining K-mean and SVM
classifiers. This model objective was to diagnose the tumor features from the Wisconsin
Diagnostic Breast Cancer (WDBC) dataset by employing the feature selection and extraction
method. A K-mean classifier was employed to identify the benign and malignant tumor
patterns. The generated patterns are computed and considered as new patterns for the
training of the SVM model. Then, SVM is executed for the prediction of incoming tumors.
The employment of their hybrid model improved the accuracy to 97%. However, the data
exploratory techniques are the fundamental tasks for the data preparation, which have not
been adequately addressed to train the proposed model [14].

Apart from the SVM, Lim and Sohn et al. (2013) performed logistic regression (LR)
with optimal parameters on the Wisconsin Original Breast Cancer (WOBC) and WDBC
datasets. It achieved 97.8% sufficient accuracy for the WOBC dataset and 93.8% accuracy for
the WDBC dataset with optimized feature sets [26]. Similarly, Seddik et al. (2015) presented
a binary logistic model for the diagnosis of breast cancer data based on variables with tumor
image characteristics. The proposed model classifies the WDBC data into malignant and
benign and accomplished the 98% average classification accuracy. This regression model
found that area, texture, concavity, and symmetry are significant WDBC features [15].

Previous literature reviews found numerous studies based on the SVM model for
breast cancer detection; however, few were based on others. For example, A. Mert et
al. (2015) delivered a feature reduction method with independent component analysis to
predict breast cancer. It utilized the k-nearest neighbor (KNN) classifier to categorize the
WDBC features efficiently with a reduced one feature (1C) and 30 features. It computed
the performance with different matrices and attained 91% accuracy [16]. Later, this study
was further improved by Rajaguru et al. (2019), who tackled the breast cancer prediction
challenge by implementing the KNN and decision tree (DT) machine learning algorithms
to classify the WDBC features. It used a traditional principal component analysis (PCA)
feature selection method for the feature categorization and found that KNN outperformed
the DT [18]. In another study conducted by Yang and Xu et al. (2019), KNN achieved
96.4% accuracy with the same feature selection method (PCA) [27]. Recently, work has
involved considering KNN efficiency by the k values and many distance functions of KNN
to find its effectiveness with two different breast cancer datasets. It involves the three
different types of the experiment: KNN without feature selection, with linear SVM, and
with Chi-square-based features. It indicated that the third technique, Chi-square-based
feature selection, succeeded in accomplishing the highest accuracy on both datasets with
Manhattan or Canberra distance functions [19].

As for the fourth prediction model, named ensemble classifier (EC) with the voting
technique, few studies consider this approach for breast cancer prediction. For instance,
M. Abdar et al. (2020) proposed an ensemble method by vote/voting classifier to detect
benign tumors from malignant breast cancer. It established a two-layer voting classifier for
two or three different machine learning algorithms. The results of these voting techniques
disclosed the adequate performance of the simple classification algorithm [5]. From these
studies, we got the motivation to conduct experiments based on voting classifiers with
different machine learning techniques. However, none of the above approaches has utilized
the feature correlation and elimination for the given breast cancer dataset to the best of our
knowledge. These studies conducted experiments to classify the cancer features, which
is still a challenging issue. Recently, in Nature Cancer, a study presented an approach to
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classify cancer into normal and tumor tissues [28]. Meanwhile, many studies have utilized
the SVM classifier for breast cancer prediction, while a few of them used only one classifier
in experiments. However, there is still a demand to explore the efficient classifier for breast
cancer prediction with more effective methods [5,14,15,18]. This study performed four
different prediction models with sufficient data mining exploratory techniques to diagnose
breast cancer.

3. Preliminary

This section deliberates data information and evaluation matrices for this study.

3.1. Data Description

In this research, the experiments were performed on two different datasets: WDBC
and BCCD. The selection reason for these datasets is it is extensively used in numerous
studies [16,28–30]. Moreover, those ML models that deliver adequate accuracy with the
binary dataset were trained. The detailed introduction and particular selection reason of
these datasets are given below:

Wisconsin Diagnostic Breast Cancer (WDBC): The WDBC dataset consists of 10 fea-
tures of breast tumor, and the result in the data were taken from 569 patients. Dr. William
H. Wolberg distributed it at the General Surgery Department, University of Wisconsin-
Madison, USA. It can be obtained via the file transfer protocol (FTP) from this link (https:
//ftp.cs.wisc.edu/math-prog/cpo-dataset/machine-learn/cancer/WDBC/ (accessed on
11 November 2021)). This dataset was created using fluid samples taken from patients’
solid breast masses. Then, software called Xcyt was used to perform cytological feature
analysis based on the digital scan. This software applies a curve-fitting algorithm to cal-
culate ten features by returning each feature’s mean value, worst value, and standard
error (SE) value. Thus, there were 30 values in total for each sample, to which we have
added an ID column to differentiate these samples. Finally, the diagnosis result of each
sample, which consisted of malignant (M) and benign (B), was also added. In conclusion,
the dataset contained 32 attributes (ID, diagnosis, and 30 input features) and 569 instances.
Features of each sample were radius (mean of distances from the center to points on the
perimeter), texture (standard deviation of gray-scale values), perimeter, area, smoothness

(local variation in radius lengths), compactness (calculated by, perimeter2

area−1 concavity (severity
of concave portions of the contour), concave points (number of concave portions of the
contour), symmetry, and fractal dimension (calculated by coastline approximation −1).

The first column of the dataset, ID, was not considered and was dropped from the
analysis. The second column, which is the diagnosis, will become the target of the study.
The third to the thirty-second column contains the mean, SE, and worst values of each fea-
ture, shown in Table 1. For instance, feature number 2 is Texture means; feature number 12
is Texture SE; and feature number 22 is Texture worst.

Breast Cancer Coimbra Dataset (BCCD): This dataset consists of nine predictors and
a binary dependent variable indicating the presence or absence of breast cancer. It can
be downloaded from this link (https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+
Coimbra (accessed on 11 November 2021)). The predictors are simple parameters that
can be collected from routine blood analysis. The nine predictors are Age (years), BMI
(kg/m2), Glucose (mg/dL), Insulin (μU/mL), Homeostasis Model Assessment (HOMA),
Serum value of Leptin (ng/mL), Adiponectin (μg/mL), Resistin (ng/mL), and Chemokine
Monocyte Chemoattractant Protein 1 (MCP-1) (pg/dL). The dataset was gathered by the
Gynecology Department of the University Hospital Center of Coimbra in Portugal between
2009 and 2013. It was collected from naïve data (the data were collected before the treatment)
of 64 women diagnosed with breast cancer and 52 healthy women (a total of 116 instances).
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Table 1. Features categorization of WDBC dataset.

No Feature No Feature No Feature

1 Radius mean 11 Radius SE 21 Radius worst

2 Texture mean 12 Texture SE 22 Texture worst

3 Perimeter mean 13 Perimeter SE 23 Perimeter worst

4 Area mean 14 Area SE 24 Area worst

5 Smoothness mean 15 Smoothness SE 25 Smoothness worst

6 Compactness mean 16 Compactness SE 26 Compactness worst

7 Concavity mean 17 Concavity SE 27 Concavity worst

8 Concave pts. mean 18 Concave pts. SE 28 Concave pts. worst

9 Symmetry mean 19 Symmetry SE 29 Symmetry worst

10 Fractal dim. mean 20 Fractal dim. SE 30 Fractal dim. worst

3.2. Performance Evaluations Matrices

In this research, we compared four cross-validation matrices: precision, recall, F1 score,
and accuracy. These matrices can be calculated by using the values in the confusion matrix,
which are true positive (TP)—the prediction is yes, and the actual data is also yes; true
negative (TN)—the prediction is no, and the actual data is also no; false positive (FP)—the
prediction is yes, but the actual data is no; and false negative (FN)—the prediction is no,
but the actual data is yes. Precision, recall, F1 score, and accuracy can be calculated as in
the equations below [20]:

precision(P) =
TP

Tp + FP
(1)

Recall(R) =
TP

Tp + FN
(2)

F1score =
2 × P × R

P + R
(3)

Accuracy(A) =
TP + TN

TP + TN + FN + FP
(4)

4. Proposed Methodology

The proposed methodology, including data information, model architecture, ML
models, and their assessment criteria, will be discussed in this section.

4.1. Novel Framework

In this work, we provide a solution to tackle the problems below for the breast cancer
dataset, which we found from [16–19].

• How are the data exploratory techniques (DET) be used most efficiently utilized with
the prediction models for breast cancer detection?

• How can the breast cancer features help the ML models detect cancer more precisely
and more scalable?

To solve these problems, a solution is proposed, illustrated in Figure 1. This solution
has nine significant different steps. The outlines of this methodology are as follows:

1. WDBC and BCCD datasets are downloaded from the machine learning repository.
2. Execute the fundamental preprocessing tasks for individual data.
3. Categorize the data into malignant and benign in WDBC and present and absent

in BCCD.
4. Distribute the features into positive, negative, and random (unrelated) by calculating

their correlation with each other.
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5. Detect less significant features then eliminate such recursive features for effective
results.

6. After exploratory data analysis, distribute the dataset into training and testing datasets.
7. Implementation of four predictive models (SVM, LR, KNN, and EC) on the datasets.
8. After the models’ execution, the classifier’s prediction is achieved with different

matrices to evaluate the performance of the models, such as confusion matrices.
9. Finally, analyze the results and compare each model’s accuracy and previous research

studies.

Figure 1. Schematic workflow diagram of our proposed method of breast cancer prediction with data
exploratory techniques with machine learning classifiers.

4.2. Data Exploratory Techniques (DET)

DE techniques, or DET, are the processes that help understand the nature of the dataset,
which will identify the outliers or correlated variables that are more accessible. Our research
applied feature distribution, correlation coefficient, and recursive feature elimination as
our data exploratory techniques.

• Feature Distribution: First, the distribution of each feature was observed to find how
these features are different from each other, i.e., benign and malignant in the WDBC
dataset and the presence and absence of breast cancer in the BCCD dataset. The dis-
tribution was carried out by plotting the distribution plot for each feature. The data
were separated by using binary code: benign (B) = 0, malignant (M) = 1, and absence = 0,
presence = 1. Then, the distribution of each feature was plotted between 0 and 1.

• Feature Correlation: Next, the Pearson Correlation Coefficient (r) [31] calculates the
correlation coefficient between each of the two features. Then, the relationship between
two features can be determined by categorizing them into three groups: positively
correlated features, negatively correlated features, and uncorrelated features. The
features will positively correlate (r = +1) if the variables move in the same direction.
In contrast, if these features move in the opposite direction, they will negatively
correlate (r = −1).

• Recursive features elimination (RFE): RFE is one of the essential processes of machine
learning. Since the dataset has many features, selecting the number of features that
give the most optimal prediction result is important for improving model performance.
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Using fewer features that provide better understanding is the gist of doing RFE. It will
recur the loop until it can find the optimal number of features. In this study, RFE was
utilized to reduce the features from 30 to 15. It was conducted by a built-in function,
selector. f it(x, y), of sklearn. The attributes support_, and ranking_ were passed to
the ranking position of i − th feature and mask the selected features. RFE works by
searching for a subset of features by starting with all features in the training dataset
and successfully removing features until the desired number remains. This is achieved
by fitting the given machine learning algorithm used in the core of the model, ranking
features according to their relevance, discarding the least important features, and
re-fitting the model. This process is repeated until a predetermined number of features
is retained.

• Hyperparameter Optimization: Hyperparameters optimization is a process of ma-
chine learning used for tuning a set of optimal parameters. The values of these
parameters are used to control the learning process. There are many approaches
for hyperparameters optimization, such as grid search, random search, Bayesian
optimization, gradient-based optimization, and evolutionary and population-based
optimization. In this study, we used grid search optimization due to its effective results
for optimization. It applies the brute-force method to generate candidates from the
grid of parameter values specified with the parameter. The grid search goal is to get
the highest cross-validation metric scores. In our case, we utilized scikit − learn based
GridSearch K-fold CV due to the disease prediction datasets. In all prediction models,
GridSearch CV was adopted to evaluate the hyperparameters. GridSearchCV uses a
different combination of specified hyperparameters and their values to perform the
analysis. We utilized estimator, param_grid, scoring, verbose, and njobs parameters to
calculate each combination’s performance.

4.3. Predictive Models

In this study, four ML classifiers were utilized as predictive models (PM) to diagnose
Y-variable in the data as malignant or benign in the WDBC dataset and as the presence or
absence of breast cancer in the BCCD dataset. The data were distributed into training and
test sets. In experiments, we conducted this distribution by setting an integer value for
the random_state. To tune the hyperparameter, this value can be any value, but split_size
should be a particular value. In our scenario, we considered 20% testing sets and 80%
training sets. The models were constructed on the training dataset, and then a test dataset
was used to evaluate the model’s performance. We chose SVM due to its highest accuracy
in the previous literature, and LR had the best performance by tuning the hyperparameter.
Likewise, KNN was selected due to effective results with input features. Meanwhile, we
experimented with the ensemble-based classifier using voting techniques to assess its
performance and compared it with other classifiers. The precise details of these models are
given below:

PM1—SVM: The first model applied SVM as a predictive model. SVM is one of the
robust supervised machine learning algorithms used to solve classification and regression
tasks [32]. The idea of SVM is to find an optimal hyperplane that gives the maximum
margin of each data class (0 and 1 in this case). The SVM approach aims to solve this
quadratic problem by finding a hyperplane in the high dimensional space and the classifier
in the original space, as shown in (5) [33].

min
α

Q1(α) =
N

∑
i=1

αi − 1
2

N

∑
i,j=1

αiαjyiyjK(xi, xj) (5)

where K(xi, xj) = (φ(xi), φ(xj)) is called the kernel function.
In this work, SVM is applied to predict whether the data are located in class 0 or

1 based on several features and then calculates its performance. SVM has many kernel
functions. For the linear dataset, it is called linear kernel SVM. For nonlinear, there are
many types, such as polynomial kernel SVM, radial kernel SVM, and hyperbolic tangent

188



Int. J. Environ. Res. Public Health 2022, 19, 3211

SVM. In this research, two different kinds of SVM kernels, the linear and polynomial kernel,
were applied.

PM2—LR: Our second model applied LR to predict the outcomes. LR is one of the
most widespread machine learning techniques. It is mainly used to predict a binary variable
with a large number of independent variables. It is efficient to forecast the probability of
being 0 or 1 based on predictors [34–36]. It can be expressed as (6):

y = π(X) + ε (6)

where X is a vector that contains xi, i = 1, 2, . . . , n independent predictor variables; π(X) is
the conditional probability of experiencing the event Y = 1 given the independent variable
vector X; and ε is a random error term. We can express π(X) as (7):

π(X) = P(Y = 1|X) =
eXT

β

1 + eXT
β

(7)

where β is the model’s parameters vector.
This study applied LR to predict whether the data are located in class 0 or 1 and then

calculated the performance. LR is like an upgraded version of linear regression. However,
by using linear regression to predict binary classification, some predictions will have values
more than one or less than 0. A sigmoid function is employed in LR to normalize the
prediction to be between 0 and 1.

PM3—KNN: The third model applied KNN as a predictive model. The KNN algo-
rithm used in our problem considered the output a target class. The problem was solved or
classified by the majority vote of its neighbors, where the value of K was taken as a small
and real-valued positive integer [37,38]. There are different methods for calculating the
distance: Manhattan, Euclidean, Cosine, etc [39]. However, this study applies to Euclidean
distance only. Let (cxj , cyj) be the centroid and (xi, yi) be the data point. The Euclidean
distance can be calculated by (8):

euclidean =
√
(cxj − xi)2 + (cyj − yi)2 (8)

From Figure 1 (the part of PM3), there are two types of data: square and triangle; each
type is referred to as a datum. The circle in the middle is the prediction. K represents a
numerical value for the nearest neighbors of the output. Given K = 3, the model will find
the nearest three data points to the output in the small circle. It contains two triangles
and one square, so the output will be a triangle because it has more than a circle. If K = 5,
the model comprises three squares and two triangles. Therefore, the prediction result of
K = 5 is square. Hence, this technique will be applied to predict whether an instance is
malignant or benign in the WDBC dataset and the presence or absence of breast cancer in
the BCCD dataset.

PM4—EC: The fourth model applies the ensemble classifier method as a predictive
model. It aims to maximize the precision and recall value to detect all malignant tumors
in the WDBC dataset and detect all cancer presence in the BCCD dataset. Our research
applied an ensemble classifier to optimize the logistic regression model [40,41]. Ensemble
classifiers have many types, i.e., bagging, boosting, and voting [42]. The kind that will be
used in this research is the voting classifier. A voting classifier combines various machine
learning algorithms such as SVM, LR, or KNN. Then, we ran them on the same dataset to
get the prediction result of each model. Finally, it will take a majority vote to make a final
prediction. For example, the voting classifier trained three algorithms; algorithm 1 resulted
in “1”; algorithm 2 resulted in “0”; and algorithm 3 resulted in “0.” The final result will be
“0” because two of them are “0” and only one is another option.

189



Int. J. Environ. Res. Public Health 2022, 19, 3211

4.4. Experimental Setup

This work was implemented in Jupiter Notebook with the Python language. We pro-
cessed the following key steps that can assist the data analyst or physician in implementing
this work for the breast cancer prediction in real-time:

1. Import the related Python libraries such as pandas, NumPy, and sklearn and execute
the preprocessing steps to drop out the missing values.

2. Process and execute the four-layered data exploratory techniques on each dataset.
3. Definitions and calling of all related functions, such as the confusion matrix, the

precision–recall curve, the ROC curve, the learning curve, and cross-validation metrics,
and assess the models’ performance.

4. Implement the proposed prediction models:

• Starting with SVM, first, it needs to define variables and the number of test and
training sets (in this case is 80% and 20%, respectively). Then, define the output
results and run the model using Linear and Polynomial SVM. The results would
be shown in cross-validation metrics.

• The following model is LR; after defining the variables and splitting the data,
two methods were applied to find the best hyperparameter. The first one was to
use GridSearchCV, and the second one was to use Recursive Feature Elimination
(RFE). Then, plot the confusion matrix, ROC curve, and learning, and find cross-
validation metrics were used for both methods.

• The 3rd prediction model was KNN; we used GridSearchCV to find the best
hyperparameter to run KNN and showed the confusion matrix and cross-vali-
dation metrics.

• The final model is EC; it applied LR with EC and the voting classifier for this
work. The execution steps are similar to the previous ones. The results are shown
in the confusion matrix, learning curve, and cross-validation metrics.

The experimental environment and fundamental packages for implementing proposed
prediction models and DE techniques are presented in Table 2.

Table 2. Information of our experimental environment.

No Name Version

1 Operating System Windows 10 Home 64-bit (10.0, Build 19042)

2 Processor Intel® Core™ i7-9750H CPU@ 2.60 GHz

3 Python 3.6.10

4 Jupyter Notebook 6.0.3

5 Pandas 1.0.5

6 Numpy 1.17.0

7 SKlearn 0.23.1

5. Results Evaluations

This section will evaluate the findings of our proposed prediction models and DE
techniques and compare them to prior research.

5.1. Exploratory Data Analysis

Data exploratory techniques were discussed in the previous section, and the DE
technique presents the following significant results. Figure 2 shows the size and classes of
both datasets. It is obvious that the WDBC is exponentially larger than BCCD. The WDBC
has benign and malignant classes (a), while the BCCD has absence and presence classes (b).
Thus, proper analysis of WDBC will provide better insight. More specifically, this study
focused on means, SE, worst, and correlations for demonstrating the dataset.
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Figure 2. Class distributions of breast cancer datasets with the number of samples; (a) indicates
WDBC classification into Benign and Malignant; (b) presents the BCCD classification into Absence
and Presence.

For simplicity, we presented feature distribution insights from the WDBC dataset in
Figure 3. We selected two random samples from each feature. For instance, the radius
means (a) from both classes of WDBC (benign and malignant) are in different shapes, and
benign presented the maximum intensity. While in texture mean (b), the intensity level in
both classes was almost identical in shape. Likewise, it explains the SE analysis of feature
sets based on concave points and smoothness. The graphs (c) of concave up and down
for both benign and malignant were different, while the inflection point was crossing the
up and down moments. However, in smoothness SE (d), concave down and up were
approximately in the same ranges, while malignant slopes were higher than benign. It
presents the worst feature (e) and (f) distribution based on Texture and area. Here Texture
waves for both benign and malignant look alike in appearance. Again, in the case of the
area graph, malignant cells are flatter and more prolonged.

Furthermore, we delivered the rest of the feature’s curves in Note 01 in the Supple-
mentary Materials.

Figure 3. Feature distribution of WDBC dataset with samples of (a) Radius mean, (b) Texture mean,
(c) Concave points SE, (d) Smoothness SE, (e) Texture worst, and (f) Area worst.

Furthermore, Figure 4 shows the feature correlations based on positively correlated
features (proportional relationship) (a), uncorrelated features (no relationship) (b), and
negatively correlated features (inversely proportional relationship) (c) among different
features and samples. For instance, Texture worst and Symmetry means do not have any
effective correlation (b). We presented a few features matrices due to a lack of space in
this study. In conclusion, the feature distribution and correlational analysis enabled the
proposed prediction models to detect the tumor more precisely. It is essential to mention
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that 80% of the total data set was used for training, and 20% of the data set was used for
testing. The correlation matrix for all features is illustrated in Note 2 (Figures S2 and S3)
in the Supplementary Materials. It shows the correlation of each pair of features by using
a color and value system to distinguish between positive, uncorrelated, and negatively
correlated features easily. For example, according to the WDBC dataset, area mean and
radius mean are positively correlated features; Texture mean and smoothness mean are
uncorrelated features; and smoothness SE and radius mean are negatively correlated
features. According to the BCCD dataset, insulin and HOMA are positively correlated
features; leptin and MCP.1 are uncorrelated features; and resistin and adiponectin are
negatively correlated features.

Figure 4. Feature correlation among different samples into positive, negative, and un-correlation of
(a) Perimeter mean, (b) Symmetry mean, and (c) Smoothness SE respectively.

5.2. Predictive Model’s Evaluations

The followings are the evaluations of given predictive models (PM):
PM1—SVM: This work considered two kernels for employing support vector ma-

chines, i.e., linear and polynomial kernels. Table 3 shows the performance analysis of both
SVM kernels with confusion matrices in which bolder entries are the highest performances.
On the WDBC data set, the polynomial kernel outperformed the linear kernel on both
training and testing sets. In training sets, the polynomial kernel received an almost similar
precision score to the linear kernel; however, it acquired a 99.3% F1 score and a 99.12%
accuracy score. On the other hand, the linear kernel performance was also significant in
training and testing datasets. Similarly, the performance of the SVM model in the BCCD
data set was not up to the mark. In this dataset, linear SVM succeeded with 76.91% accu-
racy, while the polynomial kernel had a 76.83% F1 score, which is not significant for cancer
detection. For that reason, further evaluation was excluded for the BCCD dataset; and only
the WDBC dataset was considered for the rest of the experiment. As the polynomial SVM
kernel performance report was superior, Figure 5 is illustrated for the comparison of both
kernels’ performances with four cross-validation scores with the WDBC dataset.

Figure 5. Performance’s comparison of SVM-kernels under cross-validation.
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Table 3. Performance Comparison of SVM kernels (Linear and Polynomial) on training and testing
dataset of WDBC and BCCD.

Datasets Names Data Distribution SVM Kernels
Confusion Matrices

P R F1 Score Accuracy

WDBC

Training Dataset
Linear SVM 98.95 98.22 98.57 98.68

Polynomial SVM 98.62 100 99.3 99.12

Testing Dataset
Linear SVM 97.14 95.77 96.45 95.61

Polynomial SVM 97.26 100 98.61 98.25

BCCD

Training Dataset
Linear SVM 72.39 81.05 76.48 76.91

Polynomial SVM 75.39 75.67 75.53 75.35

Testing Dataset
Linear SVM 79.01 68.34 73.29 72.09

Polynomial SVM 74.51 79.29 76.83 76.42

PM2—LR: This study utilized three types of experiments for the LR model, i.e., basic
LR, LR with 100% recall, and LR with the RFE method on the WDBC dataset. However,
Figure 6 shows the comparative performance of the learning curve of LR with and without
the RFE method. For the small amount of data, the training scores for both models
were much more significant than the cross-validation scores. However, adding more
training samples will most likely increase the generalization of the training score and cross-
validation score. With the more substantial number of instances, LR with the RFE model
(b) improved training and cross-validation scores. Additionally, those scores were getting
closer to each other than in the simple LR model (a). Table 4 shows the cross-validation
performance analysis in which bolder entries are the highest performances. Among these
three methods, LR with RFE received the most significant performance, with 97.36% and
98.06% of the F1 score and accuracy values, respectively. The basic LR received the second-
best performance with a slightly lower matrix score. Meanwhile, LR with 100% recall
received the lowest possible scores.

Figure 6. Comparisons of the learning curve of training and cross-validation scores for (a) simple LR
and (b) LR with RFE.

Table 4. Logistic regression performance with basic LR, LR predication with 100% recall, and LR
with RFE under Cross-validation.

Matrices Basic LR LR Predication with 100% Recall LR with RFE

Precision 97.15 86 98.58

Recall 93.87 100 96.22

F1 score 95.45 92.5 97.36

Accuracy 96.66 93.9 98.06
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PM3—KNN: The KNN predictive model has experimented on two methods, i.e., basic
KNN and KNN with hyperparameter. From Figure 7, it is clear that KNN with hyperpa-
rameter showed better performance than basic KNN. Basic KNN operates automatically
upon default parameters and displays results. On the other hand, hyperparameter allows
parameter tuning for KNN. It represents that basic KNN acquired a 94.73% F1 score and
95.43% accuracy. Meanwhile, KNN with hyperparameter achieved a 97.35% F1 score and
97.01% accuracy.

Figure 7. Comparison of KNN performance with basic KNN and KNN with hyperparameter.

PM4—EC: The performance analysis of ensemble classifiers (EC) is presented in
Table 5 in which bolder entries are the highest performances. It considers three methods
to evaluate the WDBC dataset: voting classifier (CV), ensemble LR, and CV prediction
with 100% recall. The ensemble LR and CV achieved the highest outcomes compared to
CV prediction with 100% recall. It is clear that CV successfully achieved a 96.02% F1 score
while 97.61% accuracy with the given dataset. Similarly, ensemble LR performance is also
significant. In contrast, CV with 100% recall values did not provide effective outcomes.

Table 5. Performance comparison of Ensemble LR, voting classifier (CV), and voting classifier
prediction with 100% recall.

Matrices CV Predication with 100% Recall Ensemble LR Voting Classifier

Precision 82.7 93.33 96.32

Recall 100 95.75 95.75

F1 score 90.5 95.99 96.02

Accuracy 92.1 97.01 97.61

5.3. Classifier’s Comparative Analysis

After the individual classifier performance analysis, Figure 8 depicts the performance
analysis of different classifiers and methods based on accuracy and F1 score with cross-
validation matrices. The lowest performance was delivered by CV prediction with 100%
recall, (basic) KNN, and LR prediction with 100% recall, where the F1 score and accuracy
values were below 95%. In this comparison, LR with RFE outperformed other methods
and achieved 98.06% accuracy and 97.36% F1 score. Meanwhile, polynomial SVM, CV, and
KNN with hyperparameter performance are beneficial. Therefore, based on these analyses,
it is clear that LR with RFE performance is higher than all other methods in cross-validation.
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Figure 8. Comparison of all prediction models and methods under the cross-validation matrices.

Furthermore, Table 6 delivers the comparison of best-achieved accuracies along with
the execution time of each classifier and bolder entries are the highest performances. It
presents that polynomial SVM achieves the best accuracy (99.03%) within 0.03 s, while
basic KNN performed in the shortest time but with the lowest accuracy. However, LR
with the RFE method performed reasonably, which had the highest accuracy (98.06%) in
cross-validation. In contrast, the execution time of KNN with hyperparameter was the
longest (4.023 s), although the accuracy (97.35%) was more sophisticated.

Table 6. Execution time comparison of each model along with best-achieved accuracy.

Prediction Model (PM) Classifiers with Proposed Approaches Accuracy Time (s)

PM1: SVM
Linear SVM 98.68 0.03

Polynomial SVM 99.03 0.03

PM2: LR

Basic LR 96.66 0.266

LR Predication with 100% Recall 93.9 0.87

LR with RFE 98.06 0.483

PM3: KNN
Basic KNN 95.43 0.031

KNN Performance with hyperparameter 97.35 4.023

PM4: Ensemble Classifier

Ensemble LR 97.01 0.634

CV Prediction with 100% Recall 92.1 1.845

Voting Classifier (CV) 97.61 0.611

5.4. Comparison with Previous Studies

The best-achieved outcomes with previous studies that used the same WDBC datasets
were compared. Table 7 compares the employed models or methods and the achieved
accuracies in the previous studies and our proposed prediction models and outputs. The
bolder entries are the outperformed results than prior works. The proposed model, SVM
polynomial kernel, gained a 99.03% of accuracy, while the LR with RFE accuracy was
the nearest possible 98.06% [20]. It is evident from these comparative analyses that the
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proposed prediction models outperformed the previous techniques and achieved sufficient
accuracy for the detection of breast cancer. The possible reason for these improvements
compared to other studies is the proposed data mining techniques with the ML prediction
models. The DE techniques enabled the topmost accuracy while consuming the least
execution time.

Table 7. Accuracy comparison of our proposed breast cancer prediction models with previous studies
that used the same WDBC dataset.

Author Name Reference Year Model/Method Best Observed Accuracy

Maglogiannis I. et al. [43] 2007 SVM Gaussian RBF 97.54%

Mert et al. [15] 2015 KNN 92.56%

Hazra et al. [29] 2016 Support Vector Machine (using 19 features) 94.423%

Osman A. H. et al. [44] 2017 SVM 95.23%

Wang et al. [30] 2018 SVM based ensemble learning 96.67%

Abdar et al. [16] 2018 Nested Ensemble 2-MetaClassifier (K = 5) 97.01%

Mushtaq et al. [18] 2019 KNN with multiple distances (Correlation K = 2) 91.00%

Rajaguru & Chakravarthy [17] 2019 KNN Euclidean distance 95.61%

Durgalakshmi & Vijayakumar [28] 2019 SVM 73%

Khan et al. [45] 2020 SVM 97.06%

Al-Azzam & Shatnawi [34] 2021 LR with area under curve 96%

Proposed Prediction Models 2022

Polynomial SVM 99.03%

LR with RFE 98.06%

Voting Classifier (CV) 97.61%

KNN Performance with hyperparameter 97.35%

* The bold number indicate the top performance of the classifiers.

6. Discussion

Our results evaluations mostly analyzed our findings by considering the F1 score. As
in real-world classification problems, large imbalanced class distributions happened in
datasets. We find some observations with significant differences between the classes in
the feature distribution results. For example, the concavity mean in Supplementary Note
01 had a significant difference between the distribution of benign and malignant classes.
The resampling techniques, i.e., oversampling, undersampling, and cross-validation, were
adopted to balance such features. The oversampling technique duplicates the minority
classes, but it creates an overfitting issue for machine learning algorithms. In contrast,
the undersampling technique deletes the majority classes that discard the potential data.
These disadvantages can decrease machine learning accuracy for particular problems
such as fraud detection, face recognition, disease detection, etc. Therefore, we omit the
oversampling and undersampling techniques in our study due to the cancer detection
problem. However, the author [46] suggested the cross-validation technique as a dominant
technique to overcome the imbalanced class distribution. Cross-validation utilizes different
portions of the data to test and train a model. This study employed the cross-validation
technique using the k-fold and GridSearchCV with prediction models to balance the
benign and malignant features in the training and testing dataset. The cross-validation
matrices, including F1 score, precision, and recall, were compared due to the efficient use of
crucial values of TP, TN, FP, and FN to deal with actual and predicted classes. The proper
definitions of these metrics are given in Section 3.2.

In the polynomial SVM implementation, we secured a 99.3% F1 score, which means
our proposed prediction model successfully identified the tumor and classified the cancer
features as malignant. Thus, a higher F1 score means a higher diagnostic efficiency of tu-

196



Int. J. Environ. Res. Public Health 2022, 19, 3211

mors. In Table 7, this study’s F1 score and accuracy are compared with previous studies that
utilized the same dataset (WDBC). These predictive models with data mining techniques
would assist the data analyst in detecting the cancerous mass by analyzing the cancerous
data. Similarly, Figure 8 illustrates the performance comparison of models and methods
with the cross-validation techniques. As the time complexity is also a significant issue for
the ML models, Table 6 presents each model’s execution time with minimum but maximum
accuracy. Hence, from the above analysis, our contribution with these proposed prediction
models and techniques can be efficiently helpful for the cancer domain to acquire highly
satisfying results for breast cancer diagnosis.

In this study, the objective was completed for detecting breast cancer with the highest
accuracy of machine learning models. However, we were unable to provide the precise
reason for malignant features, which needs a domain expert. It should be noted that the
BCCD dataset did not yield effective results with our prediction models except for SVM;
thus, we ignored those results in this study. We provided the sources/links of the datasets
in the “Data Description” subsection. As these datasets belong to American patients, the
results may not be similar and effective with the Asian patients’ data. This is one of the
limitations of this study, which could be extended in the future by a different dataset with
neural network implementation.

7. Conclusions

An accurate and timely diagnosis of various diseases, i.e., breast cancer, is still a major
problem for proper treatment in the healthcare field. The precise analysis of cancer features
is still a time-consuming and challenging task due to the availability of massive data and the
lack of DM techniques with appropriate ML classifiers. In this study, four-layered essential
data exploratory techniques were proposed with four different machine learning predictive
models, including SVM, LR, KNN, and ensemble classifier, to detect breast cancer tumors
and classify them into benign and malignant tumors. One of the primary objectives of
this study was the implementation of DE techniques before the execution of ML classifiers
on the WDBC and BCCD datasets. These mining techniques enabled us to improve the
prediction model’s performance with a maximum F1 score and an accuracy score higher
than before. The significant finding demonstrated that the first prediction model (with an
SVM polynomial kernel) had acquired the highest accuracy (99.3%). Meanwhile, logistic
regression with recursive features elimination also secured 98.06% accuracy, which shows
that DE techniques effectively detect higher accuracy. Our outcomes depict the competence
of our prediction models for breast cancer diagnosis and provide adequate results by
utilizing a short time for training the model. These sophisticated models, techniques, and
results would help the physician and data analyst to apply a more intelligent classifier to
diagnose breast cancer features.

As the image data relating to breast cancer are available, we will use deep learning
models to detect breast cancer with novel data augmentation strategies and data exploratory
techniques to handle the data scarcity and diversity. In the future, we will conduct experi-
ments on the datasets from other countries and try to answer whether or not the different
area patient’s data affect the model’s performance.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390
/ijerph19063211/s1, Figure S1: Feature distribution insights from the WDBC dataset into Benign and
Malignant, Figure S2: The correlation matrix for all features of the WDBC dataset, Figure S3: The
correlation matrix for all features of the BCCD dataset.
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