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Preface to ”Advances in Forensic Genetics”

Since the first publications of DNA typing with restriction fragment length polymorphisms

detected with radioactive multilocus DNA probes in forensic genetics in the mid-1980s, forensic

genetics has undergone impressive development leading to exciting possibilities in work in criminal

cases, relationship testing, identification of human remains, animal and plant forensics, etc. The

scientific progress in forensic genetics has been characterised by the constant development of new

methods that have improved the efficiency of forensic genetic examinations to a degree that was

unthinkable 40 years ago.

The new methods are being introduced with a speed that makes it complicated for newcomers

and professionals in the field to get an overview of the many aspects within it. Thus, high-quality

reviews of the status of forensic genetic methods, as well as new ones, are welcome.

This book includes 25 reviews and original research articles concerning forensic genetics

published in the Special Issue ”Advances in Forensic Genetics” of Genes (ISSN 2073-4425), a Special

Issue belonging to the section ”Molecular Genetics and Genomics”. The book is dedicated to

presenting the current status of some forensic genetic areas by invited review articles and original

research articles. I sincerely thank the authors of the invited reviews and original research articles for

their contributions.

Niels Morling
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Abstract: Y chromosome and mitochondrial DNA profiles have been used as evidence in courts for
decades, yet the problem of evaluating the weight of evidence has not been adequately resolved.
Both are lineage markers (inherited from just one parent), which presents different interpretation
challenges compared with standard autosomal DNA profiles (inherited from both parents). We
review approaches to the evaluation of lineage marker profiles for forensic identification, focussing
on the key roles of profile mutation rate and relatedness (extending beyond known relatives). Higher
mutation rates imply fewer individuals matching the profile of an alleged contributor, but they
will be more closely related. This makes it challenging to evaluate the possibility that one of
these matching individuals could be the true source, because relatives may be plausible alternative
contributors, and may not be well mixed in the population. These issues reduce the usefulness of
profile databases drawn from a broad population: larger populations can have a lower profile relative
frequency because of lower relatedness with the alleged contributor. Many evaluation methods do
not adequately take account of distant relatedness, but its effects have become more pronounced
with the latest generation of high-mutation-rate Y profiles.

Keywords: evidence; Y-STR; mtDNA; mitochondria

1. Weight of Evidence for Lineage Marker Profiles

Standard DNA profiles use autosomal DNA, inherited from both parents. We focus
here on DNA profiles obtained from the Y chromosome and the mitochondrial genome
(mitogenome/mtDNA), which are inherited only from the father and from the mother,
respectively. Because of this uniparental inheritance over generations, these DNA profiles
are called lineage markers. We outline the forensic value of lineage markers in general, give
a brief, historical review and critique of evaluation methods and make recommendations for
improved practice. A key message is that the high mutation rates of the latest generation
of Y chromosome short tandem repeat (STR) profiles have effects that exaggerate the
deficiencies of previous methods of analysis, but understanding these effects highlights
ways forward. The mutation rate of even the whole mitogenome is lower, but insights from
the high-mutation-rate setting are also informative for evaluating and communicating the
weight of evidence.

We focus on the simplest scenario in which there is a good-quality, single-contributor
DNA profile (either Y or mitogenome) obtained from an evidence sample, and a matching

Genes 2021, 12, 1209. https://doi.org/10.3390/genes13020202 https://www.mdpi.com/journal/genes1
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reference profile from a known individual Q who is alleged to be the source of the evidence
sample (sometimes Q is called the person of interest, PoI). Hypotheses of interest are:

HQ : the evidence profile came from Q,

HX : the evidence profile came from X,

where X is an alternative to Q as the source of the DNA whose profile is not available. The
likelihood ratio (LR) comparing the strength of the DNA profile evidence for HQ relative
to HX is then

LR(X, Q) =
P(profile evidence | HQ)

P(profile evidence | HX)
=

1
P(X has profile q)

, (1)

where q is the profile of Q. We omit background information and other evidence from the
notation; see [1] for a discussion. The denominator of (1) is a probability for the unknown
profile of X, given the observed q and possibly a database of profiles.

1.1. The Effect of Relatedness and Mutation Rate on the LR

For lineage markers, the relatedness of two individuals is fully captured by a single
number, G, of generations (or germline transfers, or meioses) that separate X and Q,
following either female-only or male-only ancestors. Degree-1 (G = 1) relative pairs
are parent/offspring, G = 2 for siblings and grandparent/grandchild, while G = 3 for
avuncular relationships such as aunt/niece as well as great-grandparent/great-grandchild.
As G increases, the relatedness becomes less likely to be known, but there is a female-
lineage G and a male-lineage G for all pairs of individuals, “unrelated” only means that G
is large and/or unknown.

Given G = g for X and Q, we can approximate (1) by

LR(X, Q) =
1

(1−μ)g ≈ egμ (2)

where μ is the profile mutation rate, which is the probability that parent and child have
non-matching profiles. For Y-STR loci with mutation rates μl , l = 1, . . . , L, and assuming
independence of mutation events across loci, we have

μ = 1 −
L

∏
l=1

(1−μl) <
L

∑
l=1

μl . (3)

For the mitogenome, the lower mutation rate, larger number of sites, and possible
germline selection events as part of the mitochondrial bottleneck [2] make it impractical to
use (3) at individual sites, but it can be employed over genome regions [3,4].

The LR Formula (2) is not exact for at least two reasons. Firstly, it assumes that μ is
constant over generations and independent of the current profile state. In fact, accurate
estimates are hard to obtain but the STR mutation rate is likely to depend on the allele
sequence (including its length and presence of a partial repeat) [5]. However, these effects
are relatively unimportant for the total mutation rate over many loci. Secondly, it is based
on assuming no mutations in the lineage path connecting X and Q, whereas a match can
also arise following an even number of mutations between X with Q such that the effect
of each mutation is reversed by another mutation. However, profiles consisting of many
loci and with multiple possible mutation events at each locus are very unlikely to match if
there is any mutation between X and Q [6,7].

For G unknown, in place of (2), we have (see also [8]):

LR(X, Q) =
1

∑∞
g=1(1−μ)gP(G = g)

where
∞

∑
g=1

P(G = g) = 1. (4)

2
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Equation (4) requires a probability distribution for G, which can be informed by
population genetic models and by the available information about alternative possible
sources of the DNA profile. We introduced X as a specific alternative individual but, in
practice, there are usually many alternative sources of the DNA. In either case, P(G = g)
can be interpreted as the probability that the unknown alternative source of the DNA is a
degree-g relative of Q. If, for example, it is known that all of the degree-g relatives of Q
are excluded as possible sources, then P(G = g) = 0 in (4), and the other values must be
assigned to maintain ∑∞

g=1 P(G = g) = 1.
Although we can rarely compute it accurately, (4) tells us how to evaluate a lineage

marker profile match: we need to assess, given the known circumstances, the probability
that an alternative source of the DNA has relatedness g with the alleged source Q, and
weight this probability by (1−μ)g, which means that individuals with g � 1/μ contribute
little to the LR.

Most presentations of lineage marker DNA profile evidence mention something like
“maternally-related individuals will share the same mitochondrial DNA profile” and then
proceed to assess weight of evidence assuming that X and Q are unrelated. This practice is
potentially misleading, because we are all maternally related and we are also all paternally
related, what is important is the degree g of the relatedness (or that g � 1/μ).

1.2. The Role of Databases in Evidence Evaluation

Most methods reviewed below make some use of a database of profiles to provide
information about population profile frequencies. When multiple databases are available,
the one with ancestry closest to that of Q should usually be chosen [9,10], unless the
database size is very small and there is an alternative database of larger size drawn from a
population with similar ancestry.

Databases are usually not random samples [7,11], and not drawn from the population
relevant to a specific case. For lineage markers, the important role of relatedness implies
that the way the database is sampled can have a big impact on inferences. On the one hand,
databases sampling may be biased towards including more sets of related individuals, for
example because relatives of a suspected contributor may also be suspects. On the other
hand, some databases implement a policy of excluding close relatives.

For Y and the mitogenome, the most important international databases, both highly
respected for their data quality [12], are available online at www.YHRD.org (accessed on
1 August 2021) [13] and www.EMPOP.online (accessed on 1 August 2021) [14,15]. In July
2021, EMPOP had 48,572 mtDNA sequences (of which 4289 cover the entire mitogenome,
the rest span some or all of the control region, which is the most variable part of the
mitogenome [15]). YHRD had 337,449 minimal (8 STR loci) profiles, of which 97,087 were
27-locus Yfiler Plus profiles. Both databases contain samples from multiple worldwide
populations—in some cases, including several subpopulations.

1.3. The Probability of Matching Profiles

Equation (4) has profound implications for the role of databases in computing the
LR. For any of the lineage markers in Table 1, the space of possible profiles is so vast
that it is extremely unlikely that two distinct lineages will generate the same (complete)
profile by neutral mutations. Although matching Y-STR profiles have been reported
between males with different single-nucleotide polymorphism (SNP) subhaplotypes, the
matching males were in the same geographic region and relatedness is the most likely
explanation [16,17], noting that the Y chromosome accumulates several single-nucleotide
mutations per generation [18]. Unless μ is very low, the possibility of a match between
distantly-related individuals is negligible relative to the much more likely event of a match
between pairs of individuals who are related closely enough to generate the match, but
distantly enough that the relatedness is not recognised. Relatedness also affects match
probabilities for autosomal profiles, but recombination weakens its effects, except in the
case of monozygotic twins [19].

3
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Table 1. Estimates of μ for lineage marker profiles. The per-year mitogenome mutation rates in [3,4]
have been multiplied by a generation time of 25 years.

Profile Mutation Rate μ
Type Markers [% Per Generation] Reference

Ychr PowerPlex Y (12 loci) 2.5% [7,20]
Ychr Yfiler (17 loci) 4.4% [7,20]
Ychr PowerPlex Y23 (23 loci) 8.3% [7,20]
Ychr Yfiler Plus (27 loci) 13.5% [7,20]

Mitogenome 16,070 sites 0.3–1.9% [3,21]
Mitogenome 16,494 sites 0.4–2.3% [4,21]

For the mitogenome, μ is estimated to be approximately 1 per 70 generations (Table 1).
Thus, alternative sources X will almost certainly be female-line relatives of Q with G up to
a few hundred [21]. This is greatly beyond the known relatives of Q, but is still closer than a
random pair of individuals in a large population, who are typically separated by thousands
of generations [21]. For older Y profile kits, μ is a small multiple of the mitogenome value;
but for more recent Y profile kits, μ can be an order of magnitude higher, approximately
1 per 7.5 generations for Yfiler Plus profiles (Table 1). In that case, profile matches occur
between pairs of individuals separated by at most a few tens of generations [7].

Therefore, the majority of profiles in broadly-defined databases such as YHRD or
EMPOP are drawn from individuals that are too distantly related to Q to be relevant to
a particular case. The frequency of q can depend sensitively on the choice of population,
according to its average relatedness with Q. Alternative sources of the DNA may be
concentrated in the same subpopulation as Q, defined by geographical origin and/or social
factors such as ethnicity and religion. A relevant consideration is that if Q is in fact not the
source of the DNA, the false allegation may in part be due to Q resembling the true source
in some characteristics such as appearance, place of residence, or social background, which
tends to increase P(G = g) for small values of g.

2. Review of Evaluation Methods

Most methods have not addressed the fundamental effects of relatedness, mutation
rate and database sampling frame discussed above. We will review methods assuming,
as most authors have done, that the available database is appropriate, and return to these
issues in the Discussion.

2.1. Adjusted Database Counts

The denominator of the LR (1), is often assumed to equal the match probability, πq, the
relative frequency of q in a population of alternative sources of the DNA. Many approaches
aim to estimate πq based on the count kq of q in a database of size n. The database relative
frequency kq/n has long been recognised as an unsatisfactory estimator of πq, because we
often have kq = 0 and yet Q has the profile and so πq > 0.

Further, the requirement to avoid overstatement of evidence converts here to pre-
ferring a "conservative" over-estimate of πq rather than an under-estimate. Excessive
conservativeness wastes information, and our goal should be to evaluate the evidence as
accurately as possible, while taking care to guard against being anti-conservative. However,
the latter requirement is difficult to satisfy, and there is no agreement about to what extent
we should seek to eliminate any risk of being anti-conservative.

Various adjustments to kq and n have been proposed to avoid zero estimates and
introduce an upward bias. We will discuss them in order of increasing conservativeness as
measured by π̂q when kq = 0.

4
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2.1.1. Adjustment Based on the Database Frequency Spectrum

Brenner’s κ (kappa) estimate [22] (based on [23]) is π̂q = (1−κ)/n when kq = 0, where
κ is the fraction of singleton profiles (observed only once in the database). Intuitively, a
large κ corresponds to high profile diversity, which justifies a low estimate for πq. The
estimator can be very small if the database consists mainly of singletons, which is the case
for high-mutation-rate Y profiles. In particular, if the database consists only of singletons,
then κ = 1 and π̂q = 0. Cereda’s estimators [24,25] are based on the numbers of both
singletons and doubletons (profiles observed exactly twice). All of these approaches take
no account of individuals that share profile q due to relatedness with Q, and the estimates
can be strongly influenced by the way the database is sampled, as discussed above.

2.1.2. Augmenting the Database

If we compute the database relative frequency after adding q, then both kq and n are
augmented by one to obtain π̂q = (kq+1)/(n+1). If we add two copies of q to the database,
corresponding to the profiles of both Q and X under HX , we obtain [26]

π̂q =
kq + 2
n + 2

. (5)

Other methods can be modified similarly by augmenting the database with one or
two copies of q.

Use of (5) is conservative in the sense that we do not know whether we have observed
one or two individuals with q (that is, we do not know whether HX is true). Both the
above estimators can alternatively be derived as Bayesian posterior probabilities given
a uniform prior for πq, the first using the original database, while (5) uses the database
augmented with one copy of q. A uniform prior is conservative in that it assigns weight to
unrealistically high values of πq.

2.1.3. Upper Confidence Limit (UCL)

An alternative to (5) is an upper confidence limit (usually 95%) for πq [27,28]. This is
the smallest binomial “success” probability π such that the probability of observing up to
kq successes in n trials is ≤0.05. That is, the UCL is the largest π such that

kq

∑
x=0

(
n
x

)
πx(1−π)n−x ≤ 0.05 (6)

which is sometimes called the Clopper–Pearson formula [29]. The UCL represents a stan-
dard scientific approach to controlling the risk of overstating the evidence: it provides an
answer to the question of how big the unknown πq could reasonably be, given observations
kq and n. The 95% UCL is larger (more conservative) than (5). For example, when kq = 0,
from (6) and ln(0.05) ≈ −3, the UCL is just under 3/n, whereas (5) is just under 2/n.

2.2. The Discrete Laplace Method

The Discrete Laplace method [30,31] models πq for all possible q, making it also
useful for model-based clustering and mixture analyses [32,33]. Intuitively, based on the
database profiles, clusters are identified corresponding to the descendants of a recent
common ancestor, and probabilities are computed for the observed profiles to belong to
each cluster. The ancestors are treated as unrelated and so their profiles are independent.
Profile probabilities are then computed by assuming that profiles descend independently
from each ancestor according to a Discrete Laplace (double geometric) distribution.
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2.3. Coancestry Adjustment for Population Substructure

The population genetic parameter FST , often referred to as θ in forensic DNA profiling,
has been widely used to correct match probabilities for autosomal DNA profiles [34]. An
analogous adjustment for lineage marker profiles [1,35] is

LR =
1

θ + (1−θ)πq
(7)

There are several interpretations of θ—one is that it represents the average level of
relatedness of individuals within a subpopulation, relative to a larger population. In
forensic settings, the larger population can be interpreted as the population from which the
available profile database was drawn, while the subpopulation is not usually well defined
but it is assumed to include Q and some or all of the alternative possible sources of the
evidence sample. The denominator of (7) can be loosely interpreted as follows. Under HX ,
there is probability θ that X is a relative of Q, sufficiently close that a match is very likely,
while with probability 1−θ, X comes from the broader population which includes more
distant relatives of Q such that the match probability is well estimated by the database
relative frequency.

Equation (7) can be used in conjunction with the Discrete Laplace or adjusted database
count methods to estimate πq. However, θ cannot be directly estimated because the value
will depend on the available case-specific background information as well as the population
that the reference database was drawn from. For example, if the database is drawn from a
broad population that extends greatly beyond the population relevant to the case, then a
larger θ would be needed than if the database came from a smaller more homogeneous
region that includes most alternative donors of the DNA in a particular case.

Population-genetic estimates of θ have been reported for many human subpopulation-
population pairs [36,37] and from simulation scenarios [9]. Most available estimates of θ
are for autosomal loci. For lineage markers, the smaller effective population size (there
are 4 copies of each autosome for every Y chromosome) tends to increase the value of
θ, but the higher mutation rate of the Y tends to act in the opposite direction. Many
population genetic studies do not estimate θ relative to a forensic database, but instead use
a hypothetical ancestral reference population which leads to smaller estimates. Further,
few studies are available at the fine geographical scale relevant for many cases.

In general, every alternative X can have a different value of θ reflecting their level
of ancestry shared with Q relative to the database population. However, rather than try
to choose a distribution of θ values appropriate for the alternative contributors in a case,
usual practice is to take a single value from the upper tail of that distribution. Ref. [36]
argued for θ = 0.03 as a conservative, default value for autosomal profiles, finding through
simulations based on real data that it remains appropriate even if X in fact comes from a
different continent than the database population.

2.4. Estimating the Number of Matches in the Population

If we knew that Kq individuals have a profile matching Q, and these are well-mixed
in a population of alternative sources of the DNA of size N, then the LR would equal the
inverse of the match probability, which is

LR =
N
Kq

. (8)

We have noted above that this is not directly useful in practice, in contrast with
the central role of the LR in the interpretation of autosomal profiles, because the choice
of population and hence the value of N is problematic for lineage marker profiles. As
we consider larger suspect populations, Kq tends to increase at a slower rate than N,
because the matching individuals are relatives of Q and they are expected to form a smaller
proportion of the population when it is more broadly defined.
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An alternative to reporting the LR is to report estimates of Kq. A precise estimate is
not usually possible, but probability distributions for Kq can be obtained using simulation
under different population genetic models [7,21,38], which can include various mutation
rates and mechanisms, and demographic factors such as population growth and structure,
as well as variance in offspring number. The simulations can also take into account database
frequencies, provided the database sampling scheme is known, which is only feasible in
practice if the database can be assumed to be a random sample from the population. Often
conditioning on kq and n from a database does not greatly alter the distribution of Kq, since
it merely confirms that the profile is rare, as expected from the mutation rate [7].

A further advantage of the simulation approach is that it can easily incorporate
available information about the numbers of close relatives of Q, and about their profiles if
available [38].

Using the malan (MAle Lineage ANalysis) software [20], the distribution of Kq was
found in high-mutation-rate settings to be insensitive to the modelling assumptions [7,38].
In the case of Yfiler Plus, the number of matching males is typically <10 and rarely more
than a few tens. This approach has been extended to mitogenomes [21], but due to their
lower mutation rate, the distribution of Kq was spread over a wider range, and was more
sensitive to the population genetic model. While there remains merit in reporting to jurors
an estimate of Kq, the arguments for this are less compelling than in high-mutation-rate
settings, and conversely problems with the match probability and LR are lessened.

Given the estimates of Kq, a juror can assess how likely it is that one of these matching
individuals was the source of the evidence profile, rather than Q. The population size N
may play some role in these considerations, but is relatively unimportant. Since Kq is a
count, it is likely to be more interpretable to a juror than an LR or a match probability [39]:
it can be presented using phrases such as “the number of individuals with profile q is
unlikely to be more than...”.

2.5. Methods Not Widely Used
2.5.1. Population Genetic Modelling Using the Coalescent

The first method for computing match probabilities using an explicit genetic model
was based on a genealogical tree with n + 2 leaves, representing the database augmented
with one copy of q plus a leaf node representing an unobserved profile [40]. Given a
mutation model and a demographic model describing the population size, growth rates
and structure, a Markov chain Monte Carlo algorithm updates the tree structure and
branch lengths, as well as the profiles at the internal nodes of the tree and the unobserved
leaf node. The distribution of profiles in the population is estimated from equilibrium
frequencies at the unobserved leaf. The method was found to perform well in comparison
to methods available at the time [41], but it is computationally demanding, particularly
for large databases. This is because the whole profile space is explored, whereas only the
probability of q is needed for forensic identification.

2.5.2. Frequency Surveying

The frequency surveying method [42–44] is based on pairwise distances, measured
in mutational steps, between the Y profiles from individual i and j. An exponential
regression is then based on these distances and used to establish a Beta prior distribution in
a Bayesian model with a binomial likelihood. One disadvantage of this approach is that the
differences in mutation rates across Y-STR loci are ignored, and only counting the number
of mutational steps discards information. This method is still available at www.YHRD.org
(accessed on 1 August 2021) [13], but is no longer recommended [11].

2.5.3. Graphical Statistical Models

These Y profile models [45,46] are computationally fast and allow intermediate alleles,
which the population-genetic models above cannot accommodate. However, they do not
exploit much genetic information and alleles are merely assumed to be different categories.
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3. Recommendations from Forensic Authorities

For Y profiles, the Discrete Laplace method (Section 2.2) is currently recommended in
the Philippines [47] and in Germany [48], where it was first used in court in a case from
2015 [49]. In that case, profiles were available for some male-line relatives of the suspected
contributor, which can be taken into account in assessing the strength of the evidence by
the malan simulation approach [38] (Section 2.4). The Polish Speaking Working Group of
the International Society for Forensic Genetics (ISFG) [50] currently recommends using the
κ method (Section 2.1.1). The UK Forensic Regulator has recently commended use of (5),
the adjusted database frequency [10].

Below we briefly summarise and comment on recommendations from two other
forensic authorities.

3.1. Scientific Working Group on DNA Analysis Methods (USA, Canada)
3.1.1. Y Profiles

The SWGDAM 2014 guidelines [51] note that “the profile probability is not the same as
the match probability”, but they do not distinguish between low- and high-mutation-rate
profiles. They recommend that the profile probability is estimated by the unadjusted
database relative frequency kq/n, or with a UCL (Section 2.1.3), and that this value be used
within (7) to adjust for population structure (Section 2.3).

The guidelines also discuss the importance of identifying the relevant population(s)
and the difficulty in choosing an appropriate θ value, and they suggest default values
for three kits. For PowerPlex Y23, the most discriminatory (highest profile mutation rate)
of the three, they suggest θ = 2 × 10−5 for African Americans, Asians, Caucasians and
Hispanics; and θ = 3 × 10−4 when Native Americans are considered.

3.1.2. mtDNA

The SWGDAM 2019 guidelines for mtDNA [52] are similar to those for Y profiles [51],
except for the θ adjustment. They write: “It is recognized that population substructure exists
for mtDNA haplotypes. However, determination of an appropriate theta (θ) value is complicated by
the variety of primer sets, covering different portions of HV1 and/or HV2, which may be applied to
forensic casework. SWGDAM has not yet reached consensus on the appropriate statistical approach
to estimating θ for mtDNA comparisons”.

3.2. International Society for Forensic Genetics (ISFG)
3.2.1. Y Profiles

The ISFG 2020 guidelines [11] state that “Information on the degree of paternal relat-
edness in the suspect population as well as on the familial network is, however, needed
to interpret Y chromosome results in the best possible way” but did not delineate how to
achieve this. The guidelines focus on estimating a profile relative frequency from a database,
for which they recommend the Discrete Laplace method (Section 2.2), which we support in
low-mutation-rate settings, but the guidelines do not distinguish low- and high-mutation-
rate settings. They note arguments for avoiding estimates of the match probability πq,
referencing [7], but they write “the appropriate wording for statements not relying on
population databases need to be validated in the context of the national guidelines”.

3.2.2. mtDNA

The ISFG 2014 guidelines on mtDNA [15] focus on estimates of πq. They do not recom-
mend a particular estimator, but they mention (5) (Section 2.1.2) and the UCL (Section 2.1.3).

4. Some Further Issues

4.1. Combination with Autosomal Evidence

In many respects, lineage marker profiles resemble a single locus of an autosomal
profile, with a higher mutation rate and hence greater allelic diversity than for typical
autosomal loci but only one allele rather than two. The problem of the strong role for
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relatedness that we have highlighted in this review also arises at a single autosomal locus,
although, due to diploidy, there are four lineages connecting Q and X at an autosomal
locus, one for each pairing of an allele from Q with one from X.

It is possible to compute a combined LR for autosomal and lineage marker profiles
that both match Q. This is rarely done in practice, perhaps because an autosomal profile
match is typically so informative that the relatively small additional evidential strength
of the lineage marker match is outweighed by the additional interpretation issues. One
possible approach would be to multiply a conservative estimate of Kq by the autosomal
match probability, to obtain an estimate of the expected number of individuals matching Q
at both lineage marker and autosomal profiles. Alternatively, if the lineage marker profile
mutation rate is low, it may be acceptable to multiply autosomal and lineage marker LRs,
each obtained using a suitable value of θ.

4.2. Locus Order for Duplicated Y Loci

The STR loci that form a Y profile have known locations on the Y chromosome, except
for the ordering of some pairs of duplicated loci including DYS385a and DYS385b. Two
males with the same pair of alleles DYS385a/b may or may not match because of the
unknown order. When the two alleles from Q are the same as those from the evidence
profile, the evaluation problem can be overcome by omitting the duplicated loci, which
tends to underestimate evidential strength, or by assuming a match at both loci, which
tends to overstate evidential strength, by at most a factor of two and arguably much less.

4.3. Consistency

A consistency principle has been proposed requiring that the strength of evidence
for a Y profile cannot be less than that for any of the subprofiles obtained by omitting one
or more loci [53]. This reasonable requirement is not enforced by most of the methods
discussed here, because a Y profile is treated as a single allele and subprofiles are not
considered. The problem can be important when there is a good sample size for a particular
DNA profiling kit, but a reduced sample size for a more detailed profile that includes
additional loci [10,51]. The method of Section 2.4 based on the distribution of the number
Kq of matching individuals does respect the principle, because adding additional loci to a
profile increases the mutation rate, and hence stochastically reduces Kq.

4.4. Partial Profiles

Often the DNA from a contributor of interest is at a very low level and/or degraded, so
that a partial profile can arise if no allele is observed at some Y-STR loci, due to allele drop-
out and/or masking by the alleles of a known contributor. The principles of interpretation
are unchanged, using only the loci at which an allele is observed. The fewer the loci
observed, the lower the profile mutation rate, which increases the number of matching
individuals and decreases their average relatedness with Q. These quantities can be
assessed using simulation including only the observed loci [20,54].

4.5. Mixtures

Many evidence profiles come from multiple unknown contributors. When there is a
large discrepancy in the amounts of DNA, it may be possible to deconvolve the mixture
(assign alleles to distinct, unknown contributors) based on peak heights. Mixture examples
with peak height information are included in [55].

Surprisingly, for high-mutation-rate Y profiles, a two-male mixture profile in which
q is fully represented is almost as powerful as observing q as a single-source evidence
profile [38]. Although many pairs of possible Y profiles could give rise to the observed
mixture, the great majority of these possible profiles do not exist in the worldwide human
population, which is minuscule compared with the vast number of possible profiles. Since
we know that q does exist in the population, the pair of profiles that includes q can be
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much more likely than all the other profile pairs combined, unless one or more of the other
profiles has been observed in a database [38].

For low-mutation-rate Y profiles, the Discrete Laplace method (Section 2.2) can be
used to deconvolve mixtures using estimated population frequencies [33].

A “profile-centred” (HC) method [55] is based on (4) and focusses on the number
of generations G in the lineage linking Q with alternative contributor X. Beyond some
threshold on G, the method assumes that the match probability is low and uses a population
frequency estimator similar to the Discrete Laplace method. The HC method assumes
a constant-size, random mating population of size N to assign weights for the mixture
donors (using formulas for the probability that two random persons are g generations
apart). The HC method uses the κ method (Section 2.1.1) for calibration, so that these
methods are the same in the special case of good-quality single-source profiles.

5. Discussion

Our review of methods for assessing the forensic value of DNA evidence from lineage
markers, namely Y profiles and mitogenomes, has emphasised the key roles of the profile
mutation rate and the (male-line or female-line) relatedness G, which are not adequately
addressed by many methods. In particular, it is unsatisfactory to inform courts that, for
example, a Y profile match is likely for male-line relatives and then to proceed as if the
alleged contributor Q is unrelated to the alternative contributors, because (4) highlights
that the evidential weight depends on the relatedness of Q with each alternative source of
the evidence sample DNA profile.

Values of G are typically unknown in actual populations except when G is very small,
but the distribution of G can be investigated via simulation in population genetic models
(Section 2.4). There are also some well documented actual human populations that can
be studied in more detail. To date these are relatively isolated and not typical of many
cosmopolitan urban populations. A national-scale project is underway in Denmark aimed
at tracing lineages over a century for almost the whole population [56]. At this time-
depth, lineage paths up to about G = 8 for two contemporary young adults can be traced,
provided that there are no migrants in the lineage.

When the profile mutation rate is low (say below 0.05 per generation, which holds
for the mitogenome and older Y-STR profiling kits), most of the individuals with profiles
matching Q are separated by at least several tens of generations. There are typically
hundreds of matching individuals—in some cases, thousands of them [21]. That is enough
individuals and at sufficient genetic distance that many of them will differ from Q in many
characteristics, thus lessening the problems discussed above. In these cases, methods
based on estimating the population match probability πq, such as the Discrete Laplace
method recommended by the ISFG (Section 2.2) may be acceptable, provided that the
role of relatedness is also adequately explained possibly through a θ adjustment. As
discussed in Section 2.3, appropriate values for θ can depend on case-specific details and
the reference database.

For high-mutation-rate profiles (say above 0.1 per generation), most males matching
Q are related to him within a few generations, and there seems no satisfactory alternative
to summarising to a court the distribution of the number of close relatives of Q expected
to match, as well as their degree of relatedness (Section 2.4). The UCL, for example, will
be conservative if the alternative sources of the DNA include few close relatives of Q,
but without addressing that question directly we cannot be sure. Methods that rely on a
database may be affected by a non-conservative bias, because a broad database population
may have lower average relatedness with Q than the alternative sources of the DNA in a
particular case, and they may be adversely affected by the role of relatives in the database
sampling frame.

Better models and rate estimates for mutation will improve the simulation-based
approach to approximating the number of matching individuals. Some data are available
but details such as the dependence of mutation rate on current profile state have been
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little studied, particularly for mitogenomes. Mutation models allowing for allele-specific
mutation rates have been investigated [5], but the available data were insufficient to
estimate the model parameters accurately.

We believe that the relatedness, mutation and database issues that we have highlighted
here can be adequately addressed, and that fair and comprehensible evaluation of lineage
marker profile evidence is now within reach.
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Abstract: The popularity of dogs as human companions explains why these pets regularly come into
focus in forensic cases such as bite attacks or accidents. Canine evidence, e.g., dog hairs, can also
act as a link between the victim and suspect in a crime case due to the close contact between dogs
and their owners. In line with human DNA identification, dog individualization from crime scene
evidence is mainly based on the analysis of short tandem repeat (STR) markers. However, when the
DNA profile does not match a reference, additional information regarding the appearance of the dog
may provide substantial intelligence value. Key features of the dog’s appearance, such as the body
size and coat colour are well-recognizable and easy to describe even to non-dog experts, including
most investigating officers and eyewitnesses. Therefore, it is reasonable to complement eyewitnesses’
testimonies with externally visible traits predicted from associated canine DNA samples. Here,
the feasibility and suitability of canine DNA phenotyping is explored from scratch in the form of
a proof of concept study. To predict the overall appearance of an unknown dog from its DNA as
accurately as possible, the following six traits were chosen: (1) coat colour, (2) coat pattern, (3) coat
structure, (4) body size, (5) ear shape, and (6) tail length. A total of 21 genetic markers known for
high predicting values for these traits were selected from previously published datasets, comprising
15 SNPs and six INDELS. Three of them belonged to SINE insertions. The experiments were designed
in three phases. In the first two stages, the performance of the markers was tested on DNA samples
from dogs with well-documented physical characteristics from different breeds. The final blind
test, including dogs with initially withheld appearance information, showed that the majority of
the selected markers allowed to develop composite sketches, providing a realistic impression of the
tested dogs. We regard this study as the first attempt to evaluate the possibilities and limitations of
forensic canine DNA phenotyping.

Keywords: domestic dog (Canis familiaris); canine DNA phenotyping; forensic; proof of concept study

1. Introduction

DNA phenotyping in a forensic context was developed as meaningful enhancement to
standard human DNA profiling, where STRs are mainly used to identify individuals [1,2].
In cases where DNA profiles do not match a suspect’s profile or a criminal DNA database
record, forensic DNA phenotyping (FDP) aims to predict externally visible characteristics
of a person by analyzing suitable DNA markers. It provides new investigative leads
irrespective of the presence of any other information such as eyewitness testimonies [1].
DNA-based appearance prediction within forensics started in the early 2000s [3] and so far,
tests on human iris, hair, and skin pigmentation were successfully validated for routine
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casework investigations [1,4–8]. Their implementation within legislative frameworks of
different countries is now discussed intensively [9].

In this study, we aim at outlining an approach for Canine DNA phenotyping in
forensic settings as it is an appealing idea to test if the concept of FDP can be transferred to
non-human DNA. As a first step, we generated proof of concept data to explore ways and
possibilities for developing a molecular genetic tool to predict externally visible traits of
dogs from DNA customized to the special needs of forensic issues. The choice fell on the
domestic dog because of its extreme morphological diversity and its forensic significance.

The diverse appearance of dogs is the result of a long-standing and intensive do-
mestication process. Although still being discussed with controversial arguments, it is
broadly accepted that all contemporary dogs were domesticated from the Eurasian grey
wolf (Canis lupus) and that they accompanied humans over millennia [10–21]. Dogs have
performed a variety of roles starting from ancestral dogs that were primarily valued
for their hunting or protective skills [22,23]. The desire to develop dogs with particular
physical traits was the driving force behind selective breeding practices. During the last
200 years, the focus of breeding changed from working ability to outward appearance and
resulted in the formation of modern dog breeds [24–26]. At present, more than 400 breeds
exist, and this diversity is even leveraged by inter-breeds and mongrels. Dogs exhibit a
vast array of phenotypic traits, with varying body sizes, skull shapes, hair structure, coat
colours, etc. [27–56]. As a result, even an untrained eye can easily identify and describe
some significant characteristics of a dog. This leads one to expect that the output of a canine
DNA phenotyping test could provide practical information about the appearance of a dog
of interest, which is comparable to an eye-witness testimony.

Today, there is an estimated number of almost 700 million to 1 billion dogs world-
wide [57,58]. The dog density varies considerably among countries, with much higher
numbers across the United States or Europe [57]. In these countries, dogs are kept almost
exclusively within the home, underlining the dog’s major role as a companion. This ex-
plains why canine-source material is relevant to diverse forensic cases. Dogs can cause
accidents or attack humans, wildlife and domestic animals. For a recent overview con-
cerning dog-related fatalities, see [59]. Probably forensically more relevant, and more
challenging to analyse, are cases in which the transfer of canine DNA evidence occurs.
Such instances can identify links between victims, suspects, and/or crime scenes and thus
contribute to generating evidence in human forensic cases. Due to the close contact with
humans, canine transfer samples can be plentiful. This may include, for example, saliva on
trousers or hair left on the back seat of a vehicle. As dogs shed more hairs than humans,
the probability of finding dog hairs can be higher than finding hairs of the dog owner.

DNA fingerprinting methods provide strong evidence for individual identification
of the involved dog(s). Accordingly, a number of approaches have been published using
canine STR loci for dog individualization from crime scene evidence [60–68] and guidelines
have been established for forensic validation requirement [69,70]. STR profiling allows to
answer questions such as: “was this dog the perpetrator of the attack?” or “does the hair
found on the victim originate from the suspect’s dog?”. However, cases where crime scene
DNA does not match a suspected dog or where reference material is not available occur
frequently. Consequently, statements such as “the attack was perpetrated by a large dog
with black coat colour” or “the hair comes from a black/white spotted dog with long fur”
would be typical examples for helpful leads. Traditionally, such statements come from
eyewitness reports. However, eyewitness testimony is not always available and can be
subjective or unreliable [71–74]. DNA analysis, particularly when tailored toward canine
DNA phenotyping, could counteract these limitations by answering questions similar to
the above-mentioned examples based on an objective and quantifiable methodology.
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2. Materials and Methods

2.1. Sampling, Documentation and DNA Extraction

Our sample collection was established based on direct inquiries to private dog owners,
by visiting dog shows, dog schools and dog breeders. Buccal swabs were taken by the
dog owner to minimize disturbing effects to the animals. Alphanumeric unique sample
IDs were used for unambiguous sample assignment. Metadata, including all relevant
externally visible characteristics, were recorded as displayed exemplarily in Table S1. In
addition, tissues from dead dogs were collected at the Institute for Veterinary Pathology,
Justus-Liebig-University Gießen, Germany, as described in [61]. In total, 84 dog samples
were included in the study.

DNA was extracted from buccal swabs according to routine procedures on a Qiagen
EZ1 Advanced XL Nucleic Acid Automated Purification System (Qiagen, Hilden, Germany)
using the DNeasy Blood & Tissue Kit (Qiagen) or using Gentra Puregene reagents and
protocols (Qiagen), according to the manufacturers’ recommendations. The DNA of the
tissue samples was extracted in a class 2 biological safety cabinet using the Gentra Puregene
Tissue Kit (Qiagen, Hilden, Germany) [61,75]. Nuclear DNA quantities were determined
with a spectral photometer (Nanodrop 2000; Peqlab GmbH, Erlangen, Germany) or by
applying a quantitative real-time PCR assay according to [76]. The assay was performed in
a total volume of 10 μL on an AB 7500 Fast Real-Time PCR System (Thermo Fisher Scientific
[TFS], Waltham, MA, USA).

2.2. Marker Selection and Study Design

A total of 21 markers were selected, comprising 15 SNPs and six INDELS. The latter
two were microINDELS (each with a length of 3 bp), one was of intermediate-size (167 bp)
and three belong to SINE insertions. The complete marker set is listed in Table 1, which
contains relevant molecular genetic information as well as metadata regarding the related
phenotypes. The primer sequences and positions according to CanFam3.1 are provided in
Table S2a.

The implementation of the proof of concept study was divided into three phases or
experimental tests that built on one another: the pilot test, the marker test, and the blind
test. Within each test, Sanger sequencing of all markers was carried out on a set of canine
DNA samples in order to create molecular data for downstream phenotype interpretations.

2.3. PCR Amplification and Sanger Sequencing

Where possible, primer sequences were directly adopted from published data or were
redesigned to reduce amplicon lengths. Detailed information on the primers is provided in
Table S2a. Primer design was performed with the OligoAnalyzer Tool (Integrated DNA
Technologies, Coralville, IA, USA) based on the CanFam3.1 (EMBL-EBI, Hinxton, Cam-
bridgeshire, UK) reference sequences and was checked for secondary structure formation
using Mfold (University at Albany, NY, USA).

PCR amplifications were carried out in 20 μL assays, containing 0.4 μL 50X Advan-
tage 2 Polymerase Mix, 2 μL 10X Advantage 2 PCR Buffer (both Takara, Kyoto, Japan),
0.25 mg/mL BSA (Serva, Heidelberg, Germany), 200 μM each dNTP (TFS), 0.6 μL of each
10 μM primer (Microsynth, Balgach, Switzerland, Table S2a). Two to 30 ng of DNA extract
were used for amplification. Thermal cycling was performed on a DNA Engine Dyad
thermal cycler (Bio-Rad, Hercules, CA, USA) or a Gene Amp PCR System 9700 (TFS),
comprising initial denaturation at 95 ◦C for 2 min, followed by 37 cycles of 95 ◦C for 15 s,
58 to 67 ◦C for 30 s (see Table S2a) and 72 ◦C for 45 s. PCR products were purified using
ExoSAP-IT (Amersham, Bucks, UK) according to the manufacturer’s recommendations.

Sanger sequencing was accomplished by combining 2 μL of BigDye Terminator v1.1
Ready Reaction Mix, 2 μL 5X Sequencing Buffer (both TFS), 1 μL 5 μM amplification primer
and 5 μL amplification product to a total volume of 10 μL. Cycling conditions were 95 ◦C
for 2 min, and 30 cycles of 96 ◦C for 1 min, 50 ◦C for 5 s and 60 ◦C for 4 min. Products
were purified using the Performa DTR Ultra 96-Well Plate Kit (EdgeBio, San Jose, CA,
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USA) according to the manufacturer’s recommendations. Capillary electrophoresis was
performed on an AB 3500xl Genetic Analyzer using POP6, 50 cm capillary arrays and
default instrument settings (all TFS). Sequencing data were analysed using Sequencing
Analysis Version 5.4 (TFS) and Sequencher Version 5.1 (GeneCodes, Ann Arbor, MI, USA).
SNP data were formatted in Excel 2016 (Microsoft Corporation, Redmond, WA, USA).

The genotypes relevant for predicting visible traits comprised single nucleotide poly-
morphisms (SNPs) and insertion/deletion markers (INDELS) including short interspersed
nuclear elements (SINEs; sequences are provided in Table S2b). The polymorphic sites
were addressed by sequence analysis of the amplified DNA fragments. The interpretation
of the allelic states at homo- and heterozygous SNP sites proved unambiguous. The same
held true for short INDELS (up to three base pairs). However, long INDEL markers, ASIP
SINE, MITF SINE, PMEL SINE, and the RSPO2 insertion caused difficult-to-interpret raw
data when heterozygous. In these cases, short and long amplicon sequences (derived from
both, the allele without insertion and with insertion) overlapped and caused out of phase
sequence data. For interpretation of the heterozygous state, the overlapping nucleotides
within the chromatogram—reflecting both sequence variants—were considered separately
(see Figure S1a–d).

3. Results

For a phenotypic description of individual dogs, genetic markers for the following
six traits were selected: (1) coat colour, (2) coat pattern, (3) coat structure, (4) body size,
(5) ear shape, and (6) tail length. In total, a set of 21 markers was applied (Table 1). Figure 1
provides a schematic representation of the possible phenotypic manifestations that could,
in principle, be deduced from this marker set. This information is based on the published
explanatory power of the markers (Table 1). In general, our results confirmed the published
effects of alleles at the tested loci on the phenotypic appearance of dogs.

Figure 1. Schematic illustration of the trait categories selected to deduce a dog’s appearance by applying canine DNA
phenotyping. The six trait categories include the most obvious characteristics of a dog that can easily be recognized and
described even by an untrained eyewitness. Each box refers to one trait category and contains clearly distinguishable
externally visible characteristics predictable from a particular genotype. The listings should provide an overview of the
standardized terminology used here to characterize the appearance. vs.—versus (picture copyright: Larissa Hasenheit).
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3.1. Pilot Test

The pilot test included DNA samples from twelve dogs selected from a sample
collection comprising approximately 1200 dogs [75]. Each of the 12 samples were analysed
in 21 markers, resulting in 252 genotypes. This test was performed to verify the SNP
and INDEL positions provided in the literature and to optimize the laboratory workflow,
including PCR and sequencing conditions as well as primer redesign, if necessary (see
Table S2a). All 21 markers were successfully sequenced and all SNPs/INDELS could
be unambiguously assigned. In all but three markers (PMEL, PSMB7, and T-box), all
previously described allelic states were found within the pilot test sample set (Table S3a).

3.2. Marker Test

In the marker test, the reliability of predicting the phenotype for each of the 21 mark-
ers representing the six trait categories was determined. Therefore, the test samples were
selected from the full sample collection (n = 1200) with respect to the phenotypical appear-
ance of the dogs to include the different phenotypic manifestations of a particular trait. A
detailed list of possible genotypes at all markers and the resulting genetic-based phenotype
prediction is given in Tables S4a–k.

The following presentation of the marker test outcomes is accompanied by an overview
of the genetic basis and nomenclature commonly used for each trait. The simplified chart
given in Figure S2 summarizes the dominance hierarchy of loci and alleles involved in the
manifestation of coat colour and pattern.

3.2.1. Coat Colour and Coat Pattern

The nomenclature for the genetics of coat colours and coat patterns in dogs is based
on the system established by [77] and with later adaptations (e.g., [38,55,78,79]). The term
“Locus” is preceded by an alphabetical character which refers to the main characteristic
realized by the particular locus (e.g., A-Locus: “A” stands for “Agouti”). Since the intro-
duction of this naming convention by Little (1957) [77], all loci were assigned to genes, as
described below.

As in most mammals, the synthesis of eumelanin (black, brown) or phaeomelanin
(yellow, red) is regulated by the two genes MC1R (E-Locus) and ASIP (A-Locus). In addition
to these two genes, CBD103 (K-Locus) is of particular importance for black fur [28,80,81].
The genes MITF (S-Locus), MLPH (D-Locus), PMEL (M-Locus), and PSMB7 (H-Locus)
modify the coat colour and pattern that is provided by the three main loci described above
and are therefore called “modifiers” [82].

For testing the coat colour markers, one set of sixteen dog samples was used. It
consisted of five solid brown, two solid black, two fawn/sable with white spotting, and
two brown dogs with white spotting, as well as one wild type agouti, one brown sable, one
black with white spotting, one black merle, and one blue (grey) dog.

E-Locus (“Extension”); see Table S4a: The MC1R (Melanocortin 1 receptor) gene is
epistatic to the K- and A-loci and responsible for a red, yellow, creme, and sometimes white
coat colour in dogs (genotype: e/e) [31–34,83]. Alleles of the E-Locus are the dominant
E (establishing a brown or black coat colour), and the recessive e. The allele for the coat
pattern “melanistic mask” Em is dominant over the E allele. Therefore, a melanistic mask
is present in all Em dogs, even if phenotypically not so well recognizable as in solid black
dogs [79].

K-Locus (“dominant black”); see Table S4b: The CBD103 (β-defensin) gene is responsi-
ble for black coat colour [28]. The effect of the K-Locus is dependent on the E-Locus and is
only expressed when at least one E allele is present in a genotype. The dominant KB allele
inhibits the expression of the A-Locus. That results in solid coloured phenotype when no
modifier gene (e.g., MLPH) is expressed [40,79]. The coat pattern “brindle” (Kbr), in which
stripes of red-yellow hair alternate with black-brown hair, was not included in this study.

A-Locus (“Agouti”); see (Table S4c): The Agouti signaling protein gene has four alleles
identified so far, hierarchically ordered according to their dominance: Ay (fawn/sable)
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> aw (agouti/wild type- wild type, black banded hairs) > at (tan points) >a (recessive
black) [27,29]. The A-Locus is expressed when the K-Locus is homozygous for the recessive
ky allele. The coat pattern “sable” arises from hairs with tips darker in colour than the
light-coloured base. Three main sable patterns are common in dog breeds: (1) clear
sable—completely fawn dogs with just a few eumelanin (black/brown) hairs; (2) tipped
sable—fawn dogs with eumelanin (black/brown) hairs usually on the back, head, ears
and tail; (3) shaded sable—fawn dogs with eumelanin (black/brown) hairs covering
the top of the head, ears and back; shading can be very light or very dark and distinct
[http://www.doggenetics.co.uk/tan.html#sable] (accessed on 10 June 2021).

Agouti (aw—“w” stands for “wild type”) is characterized by hairs showing alternating
colours along the hair shaft (“banding”; Fawn/black or brown).

B-Locus (“Brown”); see Table S4d: The gene TYRP1 (Tyrosinase-related protein 1)
affects only eumelanin, causing all black areas to turn to a brownish colour [33,55]. Brown
is expressed by recessive alleles. It can be expressed when two of the three brown alleles
are present in a genotype (bs/bs, bs/bd, bs/bc, bd/bd, bd/bc, bc/bc) [55]. The gene also
affects the colour of the nose and eyes, making them brownish (liver).

D-Locus (“Dilution”); see Table S4e: The MLPH (Melanophilin) gene affects both
eumelanin and phaeomelanin [30,56,84]. As the allele causing dilution is recessive, a
dilution is only expressed when a dog is homozygous for this allele. In this case, a black
dog will become dark grey (also called “blue”), and a brown dog will become pale cream-
brown (“Isabella”).

S-Locus (“Spotting”); see Table S4f: The MITF gene (microphthalmia associated
transcription factor) is associated with one or more spotting patterns in dogs [47,55,85]. The
range of spotting patterns is large, starting from no spotting and minimal white spotting,
known as wild type (S/S), pseudo irish spotting (S/Sp), to piebald spotting and extremely
white spotting (Sp/Sp). This is mainly caused by a SINE insertion on the MITF gene [85].

M-Locus (“Merle”); see Table S4g: The premelanosome protein (PMEL) gene is re-
sponsible for merle coats described by the following features: (1) a light, diluted base
colour and (2) random patches of fully pigmented fur of various size and location [39–41].
As the variant is semi-dominant, heterozygous individuals have at least a mild dilution of
eumelanin areas, whereas m/m animals are normally pigmented and M/M individuals
are mainly white (the latter occasionally exhibit deafness and ocular problems) [79]. A
variety of merle phenotypes is known among dog breeds, such the classic, double, hidden,
harlequin, cryptic and dilute forms. The hidden form possesses the M allele but the pheno-
typic merle pattern is invisible due to the epistatic impact of the e allele at the MC1R gene,
when homozygous [39,41,86].

H-Locus (“Harlequin”); Table S4g: The PSMB7 (Proteasome 20S Subunit β7) gene
is a dominant modifier gene of the merle SILV gene (M-Locus) that removes the dilute
pigment and increases the size of the fully pigmented regions (dark spots on a white
background) [37]. Harlequin is only expressed on a Merle background and is a well-known
and easily recognizable coat pattern almost exclusively found in Great Danes.

Applying the just-described genetic foundations of coat colour traits to the results
of the marker test, in 12 out of 16 analysed dogs, the genotypes predicted the expected
phenotypes correctly (Tables S3b and S5).

For six of the 16 dogs, the phenotypic interpretation of the genotypic data obtained
was straightforward, and for the other six dogs, heterozygous alleles in Q331 (bs) were
detected. Three of the latter group had a brown coat colour, one had a black coat colour
and one showed a grey coat that is in accordance with the recessive inheritance of the coat
colour modifier gene MLPH. One dog had an “e/e” MC1R genotype and a “B/bs” TYPR1
genotype and showed brown eye rims and brown nose leather, which is in accordance with
the description given in [55].

For three dog samples, the sequence analyses failed in the ASIP SINE markers. How-
ever, due to the hierarchical gene expression of the coat colour genes, it was deducible that
the ASIP gene was of no account in these cases. Dog DE02_20 showed an e/e genotype at
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the E-locus and both dogs DE01_006 and DE01_052 had a KB/KB genotype at the K-locus
(Figure S2, Table S3b).

The only discrepancy within the group of 16 dogs refers to the genotype interpretation
of markers TYRP1_Q331ter and TYRP1_345delP, which refer to a black coat colour instead
of actually brown (dog individuals AT0282, DE01_006, DE01_052, and DE02_017).

For the coat pattern trait, consistent results for all tested samples between the geno-
typic data and the physical visible traits of the dogs were achieved. Only individual AT0134
showed no results in both MITF markers. (Tables S3b and S5).

It should be noted that three dogs (AT0062, AT0183, AT0257) were heterozygous at
the K-Locus (KB/ky), indicating that their coat pattern could be brindled [80], but this
pattern was not observed in these individuals. AT0062 showed a black with white spotting
phenotype and AT0183 and AT0257 had a solid black phenotypic appearance.

The markers of the remaining trait categories were tested with 10 dog samples each.
For each category, the dogs were selected by their appearance, in order to include both
manifestations of the particular phenotypic characteristics in question, e.g., smooth vs.
curly dogs, small vs. tall dogs.

3.2.2. Coat Structure

Three genes, RSPO2, FGF5, and KRT71 (encoding for R-spondin–2, fibroblast growth
factor–5, and keratin-71, respectively), together account for most coat structure phenotypes
(Table S4h): The RSPO2 gene is strongly associated with wired hair as well as the “furnish-
ings”, phenotypically characterized by a moustache and pronounced eyebrows as well as
increased hair growth on the face and legs [36,87]. Variations in the FGF5 gene control the
hair length in many dog breeds, the short hair mutation being of dominant inheritance [40].
The KRT71 gene is found to be associated with a curly hair phenotype. As the mutation
is semi-dominant, animals heterozygous for this gene have an at least so-called “wavy”
coat [40].

The analyses for the three above-mentioned coat structure trait markers were straight
forward and the genotype data were in accordance with the phenotypical appearance of all
10 dogs (Tables S3b and S5).

3.2.3. Tail Length

The C189G mutation in exon 1 of the T-Box transcription factor T gene was found to
be strongly correlated with a short-tail phenotype for dogs belonging to specific breeds
if heterozygous for this mutation. The T gene mutation can cause both anury (absence of
tail) and brachyury (very short tail) [48,54]. Homozygosity for the mutation causes either
embryonic or early postnatal lethality [48,88] (Table S4i).

For the prediction of the tail length, the success-rate amounted to 70%. Three of
10 dogs showed no correct genotype–phenotype correlation for the bobtail phenotype
(Tables S3b and S5). These samples came from an English Bulldog (AT0056), a Boston
Terrier (AT0062) and a French Bulldog (AT0210).

3.2.4. Ear Shape

Wild canines have upright ears, whereas hanging ears are a characteristic of dog
domestication. The marker IGF2BP2_BICFPJ1062878 used for ear shape determination was
described in [89] (Table S4j).

The interpretation of this single ear shape marker included in the marker set proved
to be unreliable (Tables S3b and S5). Only two dogs reflected the genotype in their phe-
notypical appearance. One dog did not show drop ears as genotypically indicated. No
clear interpretation was possible for the six heterozygote dogs, as three of them had drop
ears, and the other three exhibited non-drop ears. For one sample, no sequence data were
obtained (AT0274).
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3.2.5. Body Size

The insulin-like growth factor 1 receptor (IGF1R) has a strong effect on the size of a
dog. The allele “A” of the nonsynonymous SNP at 41,849,479 (CanFam 3.1) is a causal
mutation for small body size in dogs (Table S4k) and is present in many tiny breeds [49].

IGF1R could be successfully genotyped for all dogs in the marker study. Even though
only this single body size marker was included in the marker set, an accurate prediction of
the body size in seven out of 10 dogs was possible (Tables S3b and S5).

3.3. Blind Test

In the course of the blind test, nine samples from dogs of blinded phenotypes were
analysed with the 21-marker set, resulting in 189 genotypes. For this test, nine canine DNA
extracts (D4925–D4931, D4933–D4934) were collected and prepared in a second lab—which
also recorded the associated metadata including a photographic documentation—and were
sent to the laboratory performing the tests. All samples were successfully genotyped in
all markers (Table S3c). Subsequently, sketches of the nine dogs were drawn based on
the genetic information obtained and compared to the dogs’ phenotypes as displayed on
photos, which were disclosed after the completion of the genetic analyses and the drawing
of the sketches. Figure 2 shows a comparison between the photographical documentation
and the images drawn based solely on the genetic data. Additionally, the outcome of the
test is summarized as a heatmap (Table S5).

Three dogs had an identical genotype for all markers (D4926, D4928 and D4931)
except for the ear shape marker, which showed a heterozygous state in D4931. Indeed,
their phenotypical appearance was very similar, as all three individuals had black and tan
points and minimal white spotting (S/S and at/at) fur, long smooth hair, a long tail, and a
rather tall body size. In all three cases, the ear shape could not be traced by the provided
photo documentation.

Dog D4927 showed a very similar genotype as the three dogs described above except
the two E-locus markers, both being heterozygous, resulting in a correctly predicted “black
tan points” fur including a melanistic mask (Figure 2).

For dog D4925, a high genotype–phenotype concordance was observed, except for
the tail length. The genotype indicates a long tail, which is in contrast to the tail on the
reference photo. However, the tail seemed to be artificially cropped.

For the light-coloured dog, D4929, with obvious upright ears, a high correspondence
between genotypic prediction and phenotypic appearance could be achieved.

D4930 showed, in all but two markers, a high concordance between the genotypic
predication and phenotypic appearance. The state of the body size marker suggested a tall
body size that obviously did not match the dog’s appearance. The heterozygous state at
the ear shape marker led to inconclusive phenotypic interpretation.

Five of the six physical visible traits of D4933 were successfully predicted by the
genetic data. Only the ear shape—non-drop ears—could not be unambiguously identified
based on the reference photo. The K-Locus showed a heterozygous allelic state (KB/ky),
which in some cases would indicate a brindle coat pattern, but the coat pattern of this
individual was black with white spotting.

D4934 had a high correspondence between genotypic predication and phenotypic
appearance for coat colour, coat pattern and coat structure, but for the body size, tail length,
and ear shape, the assignments were discrepant or inconclusive, respectively.
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4. Discussion

The canine DNA phenotyping approach introduced here builds on established knowl-
edge mainly gained in genome-wide association studies [49,50,90–94] and further advances
in canine genetics, in particular, the sequencing of the dog genome [24,95–97]. Hence, there
was no requirement to search for new candidate markers possibly associated with morpho-
logical traits; rather, a panel of published markers was selected, as summarized in Table 1.
Genotyping of various visible traits in dogs has already been established in the context
of medical research [98] or to support breeding efforts within particular breeds [82,99].
Existing applications of genomic prediction, some of which are commercially available, are
mainly intended to verify pedigrees or breeds, to select specific phenotypes according to
market demands or studbook policies, and to avoid associated inherited diseases. Obvi-
ously, the objectives of these approaches differ from forensic needs. One fundamental issue
relates to sample quality. DNA evidence from crime scenes can be notoriously difficult to
assess due to the low quantity and/or quality of DNA and the possibility of contamination
with other DNA sources or substances (e.g., PCR inhibitors). Therefore, the aims of the
pilot test included the optimization of the laboratory workflow and the verification of the
published SNP or INDEL positions. This optimization step comprised the redesign of
several published PCR primers, resulting in shortened amplicons (Table S2a), which are
known to be more successful when analysing degraded DNA [100–102]. The successful
completion of the pilot test was the methodological basis for the subsequent experiments.

Based on the idea of a proof of concept study, a relatively small selection of 21 ge-
netic markers described in the literature as causative or highly correlated to externally
visible traits was used. The reliability of predicting the phenotype was determined in the
marker test. Given the relatively small number of markers addressed herein, the ability to
differentiate visible traits turned out to be promising. However, the performance of the
individual markers to correctly predict particular trait categories varied considerably. The
choice of 15 markers selected for the categories coat colour and coat structure proved to be
adequate, as shown by the high predictive accuracy for most of the dogs in this study. The
coat colour and structure of nearly all dogs was predicted precisely as shown in Table S5.
However, the results of the test also suggest that a targeted expansion of the number of
markers could improve the predictions. An example for this assertion can be given for the
TYRP1 gene. Schmutz et al. [55] described the three TYRP1 alleles—Q331ter, 345delP and
S41C—that express a brown coat colour when a combination of any two of the recessive
TYRP1 alleles occurs. Our marker set included only the two markers TYRP1_Q331ter and
TYRP1_345delP, which might explain the low performance of colour prediction under some
allele combinations (Table S3). Therefore, the inclusion of at least a third TYRP1 marker
(allele “bc”), a base substitution in exon 2 that causes a serine to cysteine exchange (S41C;
c.121T>A), would probably increase the accuracy of coat colour prediction. Furthermore,
it is possible that there are additional rare alleles of TYRP1 causing brown that were not
detected in our original survey of dogs, but such alleles would likely be quite rare [55].
On the other hand, the category coat structure seems to be nearly perfectly covered by the
three markers included in our marker set. In this category, all samples of the marker test
and the blind test were correctly assigned. This is promising, as the category coat structure
comprised eye-catching traits such as long hairs and curled coats, which were predicted
accurately by only three markers.

For testing body size, only the IGF1R marker was applied. The body size from seven
out of 10 dogs was predicted correctly based on simple classification “rather small” versus
“rather tall”. Hoopes et al. [49] hypothesized that the IGF1R nonsynonymous SNP is a
causal mutation for tiny size in dogs. In their study, Allele A was present in many, but
not all, of the tiny breeds. This indicates that the inclusion of more body size-associated
markers may help to prevent a possible breed-specific bias. Breed-specific genotypes might
also be the reason for false predicted tail length in three of 10 tested dogs. Some breeds
including English bulldogs and Boston Terriers have bobtails without the mutation at
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the T-Box gene [48]. This could explain the observed discrepancy in samples AT0056 and
AT0062, which belong to both breeds, respectively.

The marker with the lowest explanatory power proved to be IGF2BP2_BICFPJ1062878
which was selected to differentiate between drop ears and non-drop ears. Particularly, the
heterozygous state, which was established in 60% of the tested dogs, did not allow for
firm conclusions.

In a final step, the practical forensic applicability of our approach was evaluated in
the blind test, comprising samples from nine dogs. To illustrate the global outcome of
the 21-marker set, a sketch of each dog was prepared on bases of the genotypes observed,
which included all characteristics deduced from the genetic data. The real phenotypical ap-
pearance was disclosed after the completion of the sketches by providing reference photos.
A direct comparison between the sketches and the photos showed a high recognition effect,
as laid out in Figure 2. The results of the blind test reflected those obtained in the marker
test with a very high accuracy for coat colour, coat pattern and coat structure prediction.
The discrepancies observed in the remaining traits may be related to the small number of
genetic markers used for these traits, particularly for ear shape, body size and tail length.
Additionally, the effect of (cosmetic) manipulation was observed as evident in the incorrect
tail length prediction (long tail) of dog D4925, which was caused by cropping. Although
prohibited in some countries, tail docking cannot be excluded. The same applies to ear
cropping, which is also commonly observed. Such artificially altered body parts cannot be
predicted but should be taken into consideration when translating the genetic information
into a phenotypic sketch.

5. Conclusions

This proof of concept study for the first time presents an experimental approach to
predict externally visible traits in dogs from DNA for forensic purposes. We used six trait
categories that were selected on the bases of an untrained person´s ability to recognize
them, as an eyewitness would probably be. The experiments were successful for the ma-
jority of the selected markers and predicted traits allowed for a realistic impression of the
general appearance of the tested dogs. These promising results stimulate future research
that requires an increased set of markers and individuals. We note that an extensive phe-
notypical documentation of the studied individuals is crucial for the interpretation of the
predicted traits. Finally, we suggest the development of molecular genetic tools that allow
for a stream-lined laboratory workflow compatible with forensic quality sample types.

Supplementary Materials: Supporting materials are available online at https://www.mdpi.com/
2073-4425/12/6/908/s1, Figure S1a–d: sanger sequencing chromatograms of dog samples with
heterozygous genotypes in length variant markers. The base circled indicates from where it is
possible to distinguish alleles with (+) and without (−) the insertion. The arrow indicates the
interpretation reading direction. The sequences of all SINEs and the insertion are provided in
Table S2b. Table S1a: ASIP SINE, heterozygous state: SINE (−) and SINE (+), Table S1b: MITF SINE,
heterozygous state: heterozygote SINE (−) and SINE (+), Table S1c: RSPO2 INS, heterozygous state:
Insertion (−) and Insertion (+), Table S1d: PMEL SINE, heterozygous state: SINE (−) and SINE
(+). Figure S2: Simplified chart of coat colour loci and alleles in the dog (modified according to
Embark Veterinary https://embarkvet.com/breeders/resources/canine-genetics-for-dog-breeders/
coat-color/genetics-101/) (accessed on 10 June 2021). It summarizes the dominance hierarchy of
loci and alleles involved in the manifestation of coat colour and pattern. The colouring of the boxes
(“Loci”) and the coloured circles below the allele designations indicate the deducible coat colours. For
simplicity, coat colour modifiers “S-locus” (white spotting), “D-locus” (dilution), “M-locus” (merle),
and “H-locus” (harlequin) were not included.
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preparation: C.B., B.B. and J.H.; Writing—review and editing: W.H. and W.P.; Supervision: W.P. All
authors have read and agreed to the published version of the manuscript.
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Abstract: Probabilistic genotyping has become widespread. EuroForMix and DNAStatistX are both
based upon maximum likelihood estimation using a γ model, whereas STRmix™ is a Bayesian
approach that specifies prior distributions on the unknown model parameters. A general overview
is provided of the historical development of probabilistic genotyping. Some general principles of
interpretation are described, including: the application to investigative vs. evaluative reporting;
detection of contamination events; inter and intra laboratory studies; numbers of contributors;
proposition setting and validation of software and its performance. This is followed by details of the
evolution, utility, practice and adoption of the software discussed.

Keywords: probabilistic genotyping; EuroForMix; DNAStatistX; STRmixTM

1. Introduction

The use of software to evaluate DNA profile evidence is widespread in the forensic
biology community. Since the late 1990 s software tools have been used to apply statistical
evaluation models to observed DNA profile data. There are currently over a dozen different
software applications that undertake this task. These can be grouped under the umbrella
term ‘probabilistic genotyping’ (PG) systems. All evaluate DNA profile data within a
probabilistic framework and provide a likelihood ratio (LR) to express the weight of
evidence. The LR is the probability of the observed DNA profile data, given two competing
propositions. Specifically, in the evaluation of DNA profile data within this framework, the
LR is the ratio of the sum of weighted genotype sets that apply under each proposition.

In Section 2 we discuss some general, software-agnostic aspects of PG. We give an
overview of available PG software and the class of modelling that each applies to carry out
evaluation. An important aspect of any evaluation is the sensitivity of the LR to the data
used to inform the model, and to the model choice itself (along with inherent underlying
assumptions). Ideally, the LR would remain relatively stable regardless of the choices made
within or between software (and therefore between models). There have been a number
of validations for software individually, but also between laboratories using the same
software, and between different software programs (Sections 2.4 and 3.6). User inputs are
important to deal with uncertainty about the number of contributors to a DNA profile and
to define propositions that are most appropriate to evaluate the value of the evidence.

In Sections 3 and 4 we review in detail three software applications; EuroForMix,
DNAStatistX (these software utilise the same theory but have been independently prepared)
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and STRmix™. All are in regular use in multiple forensic biology laboratories around
the world. These software applications utilise different models to describe DNA profile
behaviour and have developed niche capabilities. There are also a number of support
products, described in Sections 3 and 4, that add functionality for the user, either to perform
additional analyses, or to display results in an interactive or more intuitive manner.

2. Probabilistic Genotyping in Generality

2.1. Probabilistic Genotyping Software

The recommended method for evaluation of DNA profile data in the forensic field is
the LR [1–3]. It is assumed that autosomal markers are independent and in Hardy–Weinberg
equilibrium. The LR seeks to determine the probability of obtaining some observed data
(O) given a pair of competing propositions (H1 and H2), and any background information
(I) about the framework of circumstances of the case that is relevant to the evaluation.
Formulaically, the LR is expressed as:

LR =
Pr(O|H1, I)
Pr(O|H2, I)

(1)

From this point on we omit the background information term, I, for visual clarity but
note that it is ever present in the evaluation of any data. To calculate the LR, as shown in
Equation (1), a number of nuisance parameters must be considered. The most fundamental
of these (universal to any method of LR assignment) is the set of genotypes, S, that could
belong to individuals whose DNA is present in the profile. Incorporating the J possible
genotype sets into the LR from Equation (1) gives:

LR =
∑J

j=1 Pr(O
∣∣∣Sj)Pr(Sj

∣∣∣H1)

∑J
j=1 Pr(O

∣∣∣Sj)Pr(Sj

∣∣∣H2)
(2)

The terms Pr(Sj
∣∣Hx) , x ∈ {1, 2}, refer to the prior probability of observing the

genotype set given a proposition. If the proposition specifies the presence of a particular
individual, then any genotype set that does not contain the genotype corresponding to
that individual (and depending on the model, the genotype of that individual in a specific
component of the evidence profile) necessarily has a probability of 0. Any other genotype
set has a prior probability that is assigned based on population genetic models and allele
frequency databases. The terms Pr(O

∣∣Sj) in Equation (2) are the probability of obtaining
the observed data given a particular genotype set. These are often referred to as weights
(and given the short-hand nomenclature of wj) and are independent of propositions. The
assignment of weights in the LR has been fundamental to much of the advancement that
has occurred in probabilistic genotyping software used to interpret mixtures can be divided
into three different groups;

Binary models
Qualitative, discrete or semi-continuous models
Quantitative, or continuous models
In early statistical models referred to as ‘binary models’, in which drop-out and drop-

in were not considered, the weights were assigned values of 0 or 1, based on whether
the genotype set accounted for the observed peaks (unconstrained combinatorial) and
optionally on whether the peak balances were acceptable (constrained combinatorial). In
essence binary models make yes/no decisions to associate genotypes with contributors,
e.g., see the Clayton guidelines [4]. These early models were the precursors of more
sophisticated methods that were introduced in later years. Whilst they perform calculations
within a probabilistic framework, they are not probabilistic genotyping systems in nature
as they do not treat the DNA profile information probabilistically, beyond specifying
genotypes as being possible or impossible.
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Later models referred to as qualitative (‘discrete’ or ‘semi-continuous’) [5–10] calcu-
lated weights as combinations of probabilities of drop-out and drop-in as required by the
genotype set under consideration to describe the observed data. The qualitative models
did not model peak heights directly but could use them to inform the nuisance parameter
for the probability of drop-out or to infer a major donor genotype by applying different
drop-out probabilities per contributor [11]. Whilst qualitative models do not use peaks
heights directly, these systems do represent an advance over the binary model as they can
take account of multiple contributors, low-template DNA and replicated samples.

Quantitative (or ‘continuous’) models [12–18] are the most complete because they
take full account of the peak height information in order to assign numerical values to
the weights. Using various statistical models these quantitative systems describe the
expectation of peak behaviour in DNA profiles through a series of nuisance parameters
that align with real-world properties such as DNA amount, DNA degradation, etc. A list
of currently used PG software is provided in Supplement S1.

2.2. Investigative vs. Evaluative Forensic Genetics

The forensic scientist has a dual role as investigator and evaluator [3]. In conventional
casework, a suspect is identified; the case-circumstances are reviewed, then the alternate
propositions are formulated. This forms the basis of the court-case that the scientist
will provide testimony. He/she is said to be in “evaluative mode” and the principles of
interpretation apply as described, for example, by the ENFSI guideline [19].

Alternatively, a piece of evidence may be retrieved from a crime-scene, but there
may not be a suspect available. In this instance the scientists will work in “investigation
mode”. To identify potential suspects for further investigation a national DNA database is
typically searched.

Conventional database searches are usually restricted to searches of the person of
interest (POI) from a crime-stain profile that has been deconvolved. This strategy is
sufficient for single profiles and major/minor mixtures where the POI is represented in
the former. However, if allele dropout has occurred and there are multiple contributors,
then the POI may not be unambiguously resolved. The search is much more difficult, as
many more candidates are possible, and it becomes much less likely to identify ‘true-donor’
candidates and more likely to obtain a long list of adventitious matches.

Probabilistic genotyping offers a much more complete way to search large databases.
With a database of N individuals, each is considered as a possible candidate that is com-
pared to the crime stain O. Consequently, a likelihood ratio can be generated for every
individual in the database, where the propositions are:

H1: Candidate n is a contributor to the evidence profile O
H2: An unknown person is a contributor to the evidence profile O
Where all contributors to the profile not being considered as the candidate are desig-

nated as unknown and unrelated to the candidate. Consequently, for a well-represented
DNA profile, the majority of candidates will return a low LR < 1, which means that they
will be eliminated from the investigation; one or more may return LR > 1, and they are
forwarded to the prosecuting authorities for further investigation. If the crime-stain is a
low-template mixture of several contributors, the LRs will be lower and there may be nu-
merous potential candidates, especially with searches of large databases of several million
individuals. A list, ranked according to high→low LR, can be provided to investigators,
but the extent of the investigation will be dependent upon the resources available. Lists
may be shortened by prioritising candidates from a geographical location, or with known
modus operandi. Once suspects are identified, they may become defendants and the scientist
returns to evaluative mode reporting.

With complex cases, it may be of interest to identify individuals that may have
contributed to multiple crime-stains. STRmix™ utilises the semi-continuous method of
Slooten [20] to compare the alternative propositions:

The DNA profiles have a common contributor
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The DNA profiles do not have any common contributors (it is assumed that contribu-
tors are unrelated)

The method does not depend upon a database search or direct reference profile comparison.
CaseSolver [21] is based upon EuroForMix and is designed to process complex cases

with many reference samples and crime-stains. Here, mixtures are compared against
reference samples only—however, mixtures can be deconvolved so that unknown contrib-
utors found in other samples may be cross-compared. SmartRank [22,23] (qualitative) and
DNAmatch2 [24] (quantitative) are used to search large databases and can also be used in
contamination searches.

2.3. Probabilistic Genotyping to Detect Contamination Events

Investigative searches extend to comparisons of samples to detect potential contami-
nation events [25,26] that may be propagated either by:

Contamination of reagents or consumables by laboratory staff or other laboratory
employees, or at the crime scene, or in the examination room by investigators.

Sample to sample cross contamination during processing.
Type 1 contamination may be detected if each sample/mixture is compared to an

elimination database of, e.g., crime scene investigators and laboratory staff.
Type 2 cross contamination, e.g., between capillary electrophoresis (CE) plates may

occur. An extreme example is illustrated by the case of “wrongful arrest of Adam Scott” [27]
pp. 21–31, where CE plates were accidentally reused by the laboratory. However, the
biggest risk is with accidental carry-over of DNA on reusable tips or by capillary carry-over,
where PCR products injected by a capillary are not completely removed during the cleaning
process [25].

In much the same way that the improvement in PG systems has led to an increased
ability to identify donors to profiles in a criminal context, so too has the power improved to
identify contamination events. Additionally, with the continual drive for high-throughput
capabilities, many contamination searching processes within PG systems are either auto-
mated, part of the laboratories information management system, or able to be set-up and
run in bulk with minimal human effort. For further details about investigative searches
with STRmixTM refer to Section 4.5. CaseSolver, DNAmatch2 and SmartRank are described in
Section 3.4.

2.4. Inter and Intra-Laboratory Studies

The ultimate endpoint to a forensic biology evaluation is evidence presented in court.
An expectation exists that information presented is reliable; one component of demonstrat-
ing reliability of PG systems, is to carry out studies on their practical use in casework. These
studies can describe the performance of the PG systems in general (further details provided
in Section 2.7), but also the consistency of their use in multiple laboratories by multiple
people. Both inter- and intra-laboratory studies involve the distribution of mixtures with
known ground truth, usually as electronic files after analysis, among forensic scientists
within a laboratory and/or to a number of different laboratories. The compiled results give
a measure of the variability in performance within and between laboratories [28–37]. At
least two studies [38,39] (hereafter the GHEP-ISFG study and NIST studies) have appeared
in courtroom discussion due to the wide range of results observed.

The GHEP-ISFG study applies various PG software to the same mixture and has
been discussed in admissibility hearings. The results using LRmix varied from 2.6 × 103

to 3.2 × 1014. This variability is based primarily upon human decision making and in-
terpretation, e.g., choice of drop-in probability; drop-out probability and sub structuring
population correction. It is further aggravated by the presence of three pairs of unresolved
peaks. The variation is not intrinsic to the software but does emphasise that high repro-
ducibility will only come by carefully considering the human element. We also note that
much of the variation in human decision making comes from different actions intended to
be conservative. In other studies using LRmix, such as [40], the results are comparable.
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The NIST studies predate PG but have been subsequently reworked [41] using STR-
mix™, EuroForMix v1.10.0, EuroForMix v1.11.4, Lab Retriever, LRmix, and RMP (random
match probability) [42]. The quantitative software, STRmix and EuroForMix (both versions),
produced similar results with the exception of ref 5C for case 5. The qualitative software,
Lab Retriever and LRmix, also produced results similar to each other. RMP was given as
a benchmark.

Alladio et al. [43] compared Lab Retriever, LRmix Studio, DNA-VIEW®, EuroForMix, and
STRmixTM. In general, the quantitative software DNA-VIEW®, EuroForMix, and STRmixTM

performed similarly and the qualitative software Lab Retriever and LRmix Studio also
performed similarly to each other, but differed from the quantitative methods. Alladio et al.
concluded “results provided by fully-continuous models proved similar and convergent to one
another, with slightly higher within-software differences (i.e., approximatively 3–4 degrees of
magnitude)”. Iyer [44] has appealed to the community not to overlook the differences
between software of the order of 3–4 orders of magnitude even in a pattern of overall
similarity arguing that in some circumstances such differences could be crucial.

Alladio et al. suggested the use of a “statistic consensus approach [45]” which “consists
in comparing likelihood ratio values provided by different software and, only if results turn
out to be convergent, the most conservative likelihood ratio value is finally reported. On
the contrary, if likelihood ratio results are not convergent, DNA interpretation is considered
inconclusive.” In the paper, convergent (a) and non-convergent (b) are defined as the two
results both having (a) LR > 1 or LR < 1 and (b) one result LR > 1 and the other is LR < 1.
Using such an approach would deem ref 5C for case 5 of the NIST study inconclusive using
EuroForMix (LR about 103–106) and STRmix (LR about 0). The ground truth is that ref 5C
is a non-donor, although it was an artificial construct based on resampling alleles from
the profile [41] and consequently represents an outcome that would be rarely observed in
actual case-work. However, from a recent collaborative study [46] we note that STRmix
is more likely to report lower LRs when the alternative contributor has a high degree of
shared alleles (as in cases of relatedness). In a much-discussed case in upstate New York
(NY v Hillary) the result would also have been reported as inconclusive (STRmix LR about
105, TrueAllele LR not known but plausibly slightly less than 1). The ground truth in NY
v Hillary is, of course, not known. Taylor et al. [47] take up the subject of the “statistic
consensus approach” pointing out that either two quantitative or two qualitative systems
should be used (this plausibly is also Alladio et al.’s view) and averaging might be better
than taking the lowest. Furthermore, there is no particular reason to choose LR = 1 as a
value to use in the definition of non-convergent. In fact, an LR that is the inverse of the,
unknown, prior odds is more crucial from a decision theory perspective. To illustrate,
suppose that the prior odds are 1:X, then it is not until the LR reaches X:1 that the posterior
odds will begin to support a proposition that is potentially different from that supported
by the prior odds. From a decision theory perspective, this is a threshold at which a switch
may occur between two possible actions when making a decision.

Swaminathan et al. [48] create four variants of their CEESIt software and note some
large differences in the resulting LR. This is relatively unsurprising as the underlying
differences between their four versions are quite substantial and they analyse very low
peak heights. For example, one large LR difference is driven by a peak at 6 rfu.

Whilst the “statistic consensus approach” is a rational approach to lack of consistency
between different software we would add that it is vital to increase efforts to diagnose, and
hopefully remedy, the inconsistency. It is a great pity that much larger efforts have not
been made in this regard. Some of the authors are currently involved in such an exercise
and results are already greatly promising.

A useful way to measure and compare the performance of models is with Receiver
Operator Characteristics (ROC) plots [49]. These plots compare false positive support
vs. false negative support rates relative to the observed LR (Figure 1). A good model
simultaneously minimises the number of false positive and negative support for low values
of LR. Figure 1 shows that the LRmix MLE and conservative qualitative models have lower
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true positive support rates compared to the quantitative EuroForMix MLE and conservative
models, whereas false positive support rates are similar. This shows that the analysed
quantitative models are more efficient; as discussed in the previous paragraph, this would
not support a consensus approach between different classes (quantitative vs. qualitative)
of models. For a given set of data, ROC plots are useful to compare performance of
different models.

Figure 1. Receiver operating characteristic (ROC) plot where the rate of false positive support
(FP) (horizontal axis) and true positives support (TP) (vertical axis) are plotted as a function of LR
thresholds. The plot shows the results for the maximum likelihood estimation method (MLE) and
the conservative method (CONS) for both LRmix and EuroForMix. The points on the curves show
the FP and TP rates for different LR thresholds. Note that with this dataset, approximately 5% of
samples were very low-level mixtures so that the POI was undetectable This caused the number
of contributors to be underestimated, leading to very low (exclusionary) LRs. Therefore, the true
positive rate does not reach 1.0 with the MLE method. Reprinted from [50], Copyright (2016), with
permission from Elsevier.

You and Balding [51], also carried out ROC analysis to compare EuroForMix with
LikeLTD. These are both γ models, with differing modelling assumptions; the overall results
were similar. LikeLTD modelled forward n + 1 and complex n − 2 stutter and improvement
was observed with some low template samples (since the version of EuroForMix used did
not support these type of stutters). Manabe et al. [52] compared Kongoh with EuroForMix,
both γ models, again finding strong similarities.

The first interlaboratory study with STRmix was reported by Cooper et al. [33]. In
a subsequent enlargement of this exercise [53] two samples were examined. For one
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sample 176 responses were received with LRs ranging from 1028.3 to 1029.4. The bottom and
top values were obtained by variation in human judgement elements such as dropping
a locus (lowest LR) and a laboratory procedure that used a bespoke artefact handling
process (top LR). For the 173 responses to the other sample, nine false exclusions were
obtained by assigning numbers of contributors (NOC) as one fewer than the number used
in construction of the sample. The remaining LRs reported varied from 104.3 to 106.6 with
most of the variation attributable to GeneMapper® ID-X analysis settings used.

McNevin et al. [54] describe such variation as “extreme sensitivity” and set an ex-
pectation of much greater reproducibility in the reported statistic. This echoes a call, by
for example the UK Forensic Science Regulator (pers. comm.) to obtain similar results
regardless of the laboratory where the case is submitted. This would be dependent upon
human factors, laboratory policy, and elements outside the province of the software, as
well as the theory and application of the software itself.

Non-Contributor Tests and Calibration of the LR

Ramos and Gonzalez-Rodriguez [55] introduced the concept of “calibration of the
likelihood ratio”. Their purpose was to: “highlight that some desirable behaviour of LR
values happens if they are well calibrated”, meaning that the behaviour of the software is
consistent with the expectations of a predefined model. Calibration applies a much more
rigorous criterion than Turing expectation: the rate of non-contributor inclusionary support
is at most the reciprocal of the LR, i.e., Pr(LR > x|H2) ≤ 1/x [56]. Calibration tests that LRs
of any given magnitude are occurring at the expected rate. It has been applied to STRmix™
and EuroForMix [57,58].

It becomes increasingly difficult to test LRs as they become bigger as the number of
samples needed becomes prohibitively large. Importance testing appears to be a remedy
for this problem [59,60].

2.5. Number of Contributors (NOC)

In casework the number of contributors is unknown. This also holds for many mock
samples, especially where at least one donor has left no detectable signal. When a parameter
is unknown it is very useful to treat it as a nuisance parameter. We discuss some recently
developed methods based on this principle.

For many years the assigned NOC to a DNA profile has been estimated by applying
the maximum allele count (MAC) approach, often tempered by a human examination
of peak heights. This approach uses the locus exhibiting the largest number of alleles at
a locus, divided by two and rounded up to the nearest whole number [4,61] and ([62]
chapter 7) and SWGDAM interpretation guidelines [63]. This method equates the NOC
with the minimum number of contributors.

With such a method, the true NOC is uncertain, especially with high order mixtures
(three or more) and/or low levels of DNA [64–66]. It is difficult to refer to the true NOC
even in mock samples, but we will define it here as the number of donors that have left
some signal above the analytical threshold.

Under- or over-estimating the NOC can affect the weight of evidence [67] with quali-
tative models [35,68,69].

With quantitative models, underestimating usually, but not always, leads to false
negative support for the lowest template contributor. Overestimating tends to produce
false positive support for non-donors, usually at relatively low LRs. The larger template
donors are much more stable with respect to different NOC [70–73].

In some cases it is only possible to interpret the major contributor(s) of the DNA
mixture. If minor contributors are not of interest, the NOC can be based upon the former,
and this helps to simplify the model [72,74].

Increasing the number of loci, using those with a higher discriminatory power, or
massively parallel sequencing (MPS) data of STR loci, resulted in fewer misinterpretations
of the NOC compared to the MAC method [75–78].
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Alternative methods using the total number of alleles (total allele count, TAC), the
distribution of allele counts over the loci, the population’s genotype frequencies, peak
heights (PH), replicates, probability of allelic drop-out and stutter, or a Bayesian network
approach have shown to yield improved NOC estimates [68,79–89].

The latest advances for estimating the NOC rely on machine learning approaches
enabling optimal use of the available profile information. To date, a few models have
been developed for use in forensic DNA casework [37,90–92]. These models make use of
more information than the previously developed approaches since they are trained on a
separate ground truth dataset. A big benefit of the machine learning approaches is that
the estimation of the NOC can be performed in seconds, which is of importance in cases
requiring rapid analyses. See Section 3.1.3 for a description of the NOC-tool used in DNAxs.
The drawbacks of machine learning approaches are: (a) the requirement of large datasets
that are specific to the laboratory that generated the data; (b) lack of transparency—the
method of prediction may not be clear.

The need to assign the NOC for weight of evidence calculations is optimally treated
by considering it as a nuisance parameter [71,92–98].

In an elegant mathematical development Slooten and Caliebe [94], making a few
reasonable assumptions, show that the LR considering a reasonable range of NOC is the
weighted average of the LR for each separate NOC. Specifically: LR = ∑i LRiwi where

LRi =
Pr(Oc, Op

∣∣H1, NOC = i)
Pr(Oc, Op

∣∣H2, NOC = i)

where wi = Pr(NOC = i
∣∣H2, Oc, Op) terms the weights, and Oc and Op are the genotype

of the crime profile and the POI, respectively. The weights are the probability of the number
of contributors given the profile and assuming the POI is not a donor. This is the term that
has been assessed subjectively for many years and can now be assigned as a probability
distribution, sometimes with the assistance of software.

In an alternative approach, used with EuroForMix, the effective NOC is decided by
maximizing the likelihood adjusted by application of the ‘Akaike information criterion’
(AIC) [99], which favours simpler models to explain the evidence. The smallest number
of unknown contributors needed to explain the evidence usually maximises the respec-
tive likelihoods.

These approaches can be very useful since it is not necessary to define an absolute NOC
and the field should move this way, though most of the current probabilistic genotyping
systems still require that the user specifies the NOC [100]. STRmix™ v2.6 and higher treat
NOC as a nuisance parameter but is currently only validated for taking into account two
consecutive NOC values (say NOC = 3 or 4).

2.6. Proposition Setting/Hierarchy of Propositions

The application of Bayes’ rule in odds form requires at least two propositions which
are usually chosen to align with the prosecution position based upon the case circumstances
and a reasonable alternative. The alternative will also be based on the case circumstances,
ideally on information given by the defence (thus, the alternative is often referred to in the
literature as the defence proposition).

There are at least two views of how the alternative should be set:
The scientist for the defence should assign this proposition, or in the absence of any

meaningful consultation with the defense the scientist advising the prosecution assigns a
reasonable alternative that is consistent with the best defense proposition and has a good
approximation to exhaustiveness.

The concept of the hierarchy of propositions is well established [101,102]. Gittel-
son et al. [103] discussed this concept more recently; the ISFG DNA commission provides
an extensive review [3], with recommendations for practitioners, also summarised by
Gill et al. [62], chapter 12.

Propositions are classified into four levels: offence, activity, source, and sub-source.
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Offence level propositions describe the issue for the fact finder which is one of guilt or
innocence. This is a decision of the court; the forensic scientist does not offer opinions at
this level.

Activity level propositions describe the activity that deposited the DNA. Provided
that there is sufficient information, the forensic scientist may assist the court.

Source level refers to the origin of the body fluid or cell type examined. This is
relatively straightforward if there is sufficient body fluid to test but may be challenging to
address if there are low level mixtures of body-fluids.

Sub-source level refers to the origin of the DNA (i.e., donor).
It has proven useful to use a fifth level.
Sub-sub-source refers to the origin of part of the DNA, for example the major donor [104,105].
Probabilistic genotyping only provides information at sub-source and sub-sub-source

levels. In order to make inferences at source and activity levels, separate calculations are
required. If the distinction between levels in the hierarchy is not properly explained, it may
lead to “carry-over” of the LR from one level to another which can lead to miscarriages of
justice [3,27,106,107].

2.7. Validation of PG Systems

There are several publications that address ‘validation’ from scientific societies; for
example: SWGDAM [108], ISFG [109], the AAFS Standards Board [110] and the UK Forensic
Science Regulator [111]. Some laboratories have published validation studies—see Coble
and Bright [100] for an excellent review and other guidance [108,109,112–117].

The purpose of validation is to define the scope and limitations of software. This is
described in detail for STRmix (Section 4.6) and EuroForMix/DNAStatistX (Section 3.6) and
Gill et al. [62] chapter 9.

George Box (a British statistician) famously stated: “Essentially, all models are wrong,
but some are useful” [118]. All models are “wrong” in the sense that they are approxima-
tions of some unknown reality. However, so long as models demonstrate an empirical
behaviour that conforms to expectations of a given reality, then they are “useful”. The
question that follows in relation to different PG software is whether models that are based
upon different theories and assumptions are “equally reliable” or “equally useful”?

The terms “right” or “wrong” are two extremes. Probability is a numerical description,
somewhere between 0 and 1, which describes how likely it is that an event will occur.
Importantly, probability represents a personal belief about uncertainty, that is informed by
available data. Provided scientists use the same or similar datasets and the same methods
of analysis, then their personal beliefs should coincide. We never know if something is
true or not, but probability is always conditioned upon some hypothesis/ proposition
being true.

As an example, consider the probability assigned for an allele that has never been seen
before in the population sample (hereafter “rare allele”), but is observed in this case. We
can say for certain that the “true” probability of this allele is not 0, but we are uncertain
exactly what it is. Whenever something is unknown and uncertain it is best to model the
uncertainty with a probability density function. A workable option may be to insert a
reasonable point estimate. Further, in forensic science, some aspects of utility are usually
confounded into the probability assignment by deliberately biassing the assignment in a
direction thought to be conservative. However, in mixture evaluation the conservative
direction is very uncertain. For example, it is typically conservative to raise the sample
allele probability for the alleles that correspond with the person of interest (POI), but for
any other alleles the effect may be neutral or may vary either way. The use of a point
estimate biased upwards (for example 5/2N or 3/2N where N is the number of alleles
in the sample) is plausibly conservative on average, although we are unaware of any
systematic investigation of this assumption. The use of a probability density distribution
and resampling may enable the choice of a conservative quantile but requires assignment
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of a distribution. It would be very difficult, and be a matter of subjective judgement, to
choose which of these methods is appropriately conservative.

In the context of PG software, where two software may implement two different
models for the same process we can assess how well the models describe the empirical
data, then we can have confidence in the result. This can readily be supplemented by
varying the model within reasonable limits dictated by the data and thus creating a range
of plausible outcomes. We are left with the uncertainty that small modelling and inferential
errors accrue, or that the training data for the models are inappropriate.

There are various phases to a validation programme, originally described by Rykiel [119]
in relation to ecological models:

Conceptual validation: verification of the mathematical formulae used in the software
are correct.

Software validation: Verification and testing of the code, e.g., by running test scripts.
Operational validation: The output of the model is tested against a wide range of

evidence types, representing a typical case, as well as extreme examples.
A validation programme can address the following:

(a) Sensitivity (demonstrate the range of LRs that can be expected for true contributors)
(b) Specificity (demonstrate the range of LRs that can be expected for non-contributors)
(c) Precision (variation in LRs from repeated software analyses of the same input data)

Accuracy of statistical calculations and other results (comparison to an alternate
statistical model or software program)

Determination of the limits of the software (either computational or conceptual, re-
garding for instance the number of unknown contributors or types of DNA profiles)

Steps towards internal validation, to enable a laboratory to adopt a given procedure,
was described by [115] as an “accumulation of representative test data within the laboratory
to demonstrate that the established parameters, software settings, formulae, algorithms
and functions perform as expected”

In real casework, we do not know the ground truth. In validation, the model is tested
against samples where the ground truth is usually known. This enables two kinds of tests
to be carried out using the standard likelihood ratio formula: LR = Pr(O|H1)/Pr(O|H2)

(a) H1 = true: where we know the POI is a contributor.
(b) H2 = true: where we know that the POI is not a contributor

As a small word of caution: the ground truth is not known even for mock samples for
very low level contributors. For these it can be unclear whether they are, in reality, a donor
at all.

3. Evolution of EuroForMix and DNAStatistX
3.1. Evolution

An outline of the development and evolution of the software EuroForMix and DNAS-
tatistX, including its predecessors and related modules is shown in Figure 2. These software
will be discussed in the next sections.
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Figure 2. A diagram showing the evolution of probabilistic genotyping software developed by the NFI and Oslo University
Hospital. Blue and orange boxes indicate qualitative and quantitative (γ) models, respectively. Green boxes are binary
methods and purple boxes indicate software that include multiple types of methods.

3.1.1. Qualitative Software

The development of probabilistic genotyping undertaken by the authors began in 2007
with the development of qualitative software (discrete or semi-continuous) which took ac-
count of allele drop-out and drop-in, but peak heights were not modelled. The first software
was the introduction of LoComatioN by James Curran [120], whilst at the Forensic Science
Service (UK). The model was re-programmed by Hinda Haned [121,122], as part of her PhD
at the University of Lyon: LRmix is written in R and the module is found in the forensim pack-
age: https://forensim.r-forge.r-project.org/ accessed on 28 September 2021. Four years
later, in 2013, the Netherlands Forensic Institute (NFI) adopted LRmix, rewriting the code
into Java and rebranding it as LRmix Studio: https://github.com/smartrank/lrmixstudio
accessed on 28 September 2021. This software has been widely adopted in Europe
and elsewhere. LRmix Studio was further developed by NFI to provide SmartRank:
https://github.com/smartrank/smartrank accessed on 28 September 2021, a database
search engine [23] which was shown to be more efficacious than the CODIS search en-
gine [22]; it is still widely used by caseworkers (see collaborative study of Prieto et al. [40]).

For further details see Gill et al. [62] chapters 5 and 6. Exercises and presentations are
available from: https://sites.google.com/view/dnabook/chapter-6?authuser=0 accessed
on 28 September 2021.

3.1.2. Quantitative Software

Early models designed to explain variation in peak area observations were described
in 1998 by Evett et al. [123] who defined an underlying normal distribution and in 2007 by
Cowell et al. [18,124] who also defined a γ distribution (the γ model).

In 2013, Cowell, Graversen and colleagues released DNAmixtures which was based on
the γ model [125,126]: http://dnamixtures.r-forge.r-project.org/ accessed on 28 September
2021, written in R code as open-source, but requires HUGIN (commercial software) to
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run it. Supported by the EU-funded EuroForGen-Network- of-Excellence: https://www.
euroforgen.eu/ accessed on 28 September 2021, the γ model was re-written in R and C++
by Øyvind Bleka as EuroForMix: http://www.euroformix.com/ accessed on 28 Septem-
ber 2021. This program had enhanced capabilities compared to DNAmixtures, including
degradation parameterisation and “theta-correction” (Fst).

EuroForMix was further utilized to provide the database search tool DNAmatch2, which
also incorporated the forensim LRmix module, in order to carry out searches of large national
DNA databases. Later, the same modules were integrated into a more user-friendly expert
system called CaseSolver which is integrated into casework for analysing complex cases
where there are multiple suspects and case-stains. CaseSolver includes many useful features
for caseworkers: Visualization, automated comparison, deconvolution, weight-of-evidence
evaluation and reporting (discussed in Section 3.4).

In 2019, the NFI implemented DNAStatistX, the statistical module based on the Eu-
roForMix code which is further elucidated in Section 3.3.1. DNAStatistX can be used as a
stand-alone application or within the DNA eXpert System, DNAxs. DNAxs is a software
suite that was developed by the NFI, for the data management and (probabilistic) inter-
pretation of DNA profiles. It was implemented in forensic casework in 2017 and is under
continuous development to further advance the software, to improve the process of DNA
casework and to broaden the scope of application. Further information on the DNAxs
functionalities is provided in the following section.

3.1.3. DNAxs and Related Modules

Increased complexity of DNA profile comparisons and interpretation demands fast
and automated software tools to assist DNA experts in routine casework. eDNA is one
such application [127], whose functionalities were an inspiration for the development of
CaseSolver [21] and the DNA eXpert System DNAxs [128].

Within DNAxs, profile comparisons can be achieved at various levels:

(1) By aggregating replicate profiles into one composite view (bar graphs)
(2) By viewing the trace profile as bar graphs underneath which alleles of reference

profiles are comparedThrough the match matrix option
(3) By sending a DNA profile for a SmartRank search against the DNA database
(4) By calculating LRs using DNAStatistX for a comparison of a person of interest to a

trace DNA profile [128]

DNAxs imports (pre-analyzed) DNA profiling data which is shown as the original
electropherogram and is graphically represented as bar graphs with a color coding for
reproduced and non-reproduced alleles in case of PCR replicates, and a color coding for al-
leles of the major component of a mixture through the LoCIM method (Locus Classification
and Inference of the Major) [29]. This LoCIM method can be applied to one amplification
of a DNA extract or to replicate DNA profiles. In the latter case, LoCIM first generates a
consensus profile that includes alleles that are observed in at least half of the replicates [86].
Next, LoCIM classifies each locus as type I, II or III based on thresholds for peak height;
ratio of major to minor contributors; and heterozygote balance. A Type I locus fulfils the
most stringent criteria and will most likely be correctly inferred. Type II loci may have
lower peak heights or a smaller difference in peak heights compared to minor donors.
Type III loci do not meet one or more of the Type II criteria and are the most complex to
infer a major contributor’s genotype. Lastly, thresholds are used per locus type to infer the
major component’s alleles. It has been demonstrated that the LoCIM approach is successful
regardless of the laboratory’s STR typing kit and PCR and CE settings and the method is
easy to implement (one only needs to specify the laboratory’s stochastic threshold) [29,37].

The major contributor’s genotype predicted by the deconvolution method of Euro-
ForMix described in Section 3.3.4 (on loci with a probability that was at least twice as large
as the second likeliest genotype possibility) was compared to that of LoCIM (on type I
and II loci). Both methods are able to perform deconvolution by utilizing the peak height
information, though LoCIM is threshold based while EuroForMix applies a statistical model
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which consists of a set of parameters which are inferred by maximizing the likelihood
function [50]. EuroForMix applies a more comprehensive statistical model which calcu-
lates the uncertainty of different suggested genotype profiles extracted from the inferred
uncertainty of the whole evidence profile. Therefore, these calculations are much more
computationally intensive compared to the extremely fast LoCIM method. At the locus
level, and as expected, the EuroForMix deconvolution showed improved performance
compared to LoCIM [50]. Regardless, since LoCIM is extremely fast and was regarded
useful to many cases, this approach was implemented in DNAxs [62], chapter 10 and [37].

DNAxs provides summary statistics for its comparisons, such as the number of mis-
matches or unseen alleles, and to help estimating the NOC- such as the maximum allele
count (MAC) and the total allele count (TAC). Furthermore, DNAxs includes NOC tools
based on a machine learning approach. These are designated as the RFC19 model that is
specific to PowerPlex Fusion 6C (PPF6C) data as generated within NFI [89] and the generic
RFC11 model which is laboratory independent [37]. The RFC19 model outperformed the
MAC method and an in-house developed tool that utilised the TAC [89,91]. A drawback
of such models is that it requires a large dataset for development and is specific to a
laboratory’s data. To that end, the generic model was developed, which only involves
features of the 12 European Standard Set and U.S. core loci, and does not include features
holding information on peak heights or fragment lengths. The generic RFC11 model overall
showed improved NOC estimates for data of different laboratories when compared to
the MAC method but performed less efficiently when compared to the PPF6C specific
RFC19 model, since it uses less of the available information. However, in absence of a data
specific machine learning NOC model, or in absence of data or too limited resources to
develop such model, the generic RFC11 model was found to be a useful alternative that can
serve as an addition to the reporting officer’s toolbox to interpret mixed DNA profiles [37].
Another drawback of machine learning models is their lack of transparency; the model
outputs a prediction but not how it obtained to the particular result. Therefore, in a study
of Veldhuis et al. [129], eXplainable artificial intelligence (XAI) was introduced to help
users understand why such predictions are made.

Lastly, through web APIs (Application Programming Interfaces) DNAxs can communi-
cate with, for instance, CODIS, LIMS systems, SmartRank, and Bonaparte [128]. Additionally,
as previously mentioned, for weight of evidence calculations, DNAxs implements DNAS-
tatistX, which, alike EuroForMix, uses the γ distribution to model peak heights.

3.2. The γ Model

The model adopted by the authors is known as the “γ model” which was first de-
scribed by Cowell et al. [124,130].

The γ distribution is defined by two parameters known as shape α and scale β. There
is a different shape parameter per contributor in the EuroForMix model, but there is only
one (universal) scale parameter that is applied. The observed peak height is given as y.

The probability density function of the γ distribution is:

f (y|α, β) =
1

βαΓ(α)
yα−1 exp(− y

β
) = gamma(y|α, β) (3)

where α and β are the shape and scale parameters, respectively, and Γ(x) is the γ function.
The density function given in Equation (3) and provides the ‘weightings’ in EuroForMix
and DNAStatistX.

The shape and scale parameters are calculated based on the following model parame-
ters (for two donors):

Mx: the mixture proportion for contributor 1 and 1-Mx, the mixture proportion for
contributor 2

μ: the peak height expectation (close to the average peak heights)
ω: the coefficient of peak height variation (indicates variability)
An example is provided in Figure 3. Further details are in Supplement S2.
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Figure 3. γ distributions for a simple case, where shape parameters = 3.312 and 8.381, respectively and
the scale parameter is 86.2. The peak height expectation (μ) and Mx are shown for each contributor.
The probability density function for the individual peak height contributions are derived from these
curves. Reprinted from [62], chapter 7, Copyright (2020) with permission from Elsevier.

There is a detailed explanation of the model, in Gill et al. [62], chapter 7.
For a more detailed explanation, as applied to EuroForMix and DNAStatistX, see

Gill et al. [62], chapter 7 and associated website where excel spreadsheets, tutorials and exer-
cises can be downloaded: https://sites.google.com/view/dnabook/chapter-7?authuser=0
accessed on 28 September 2021.

The complexity of the γ model is increased by additional parameters: degradation,
forward and backward stutter.

3.3. An Outline of the γ Model Incorporated into Euroformix and DNAStatistX

The aim is to quantify the value of evidence if a POI is a contributor to a crime-scene
profile O. Two alternative propositions are specified and the likelihood ratio (LR) evaluates
how many more times likely it is to observe the evidence given that H1 is true compared to
the alternative that H2 is true.

3.3.1. Model Features

EuroForMix and DNAStatistX support multiple contributors, can condition upon any
number of reference profiles and can specify any number of unknown individuals, although
there is a practical limit of c. 4 due to computational time.

1. The software accommodates degradation, allele drop-out, allele drop-in, ‘n − 1’ and
‘n + 1’ stutters and sub-population structure (Fst correction). Note that stutters are not
accommodated in the current version of DNAStatistX, but is under development for a
future version.

2. Replicated samples can be analysed. Consensus or composite profiles, a feature of
pre-PG software, are not used.

3. The model assumes same contributors and the same peak height properties for
each replicate.
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4. Optional Locus specific settings (DNAStatistX from v1, EuroForMix v3 onwards) are
as follows:

(a) Analytical threshold
(b) Drop-in model
(c) Fst correction

Although EuroForMix and DNAStatistX are based upon the same model, there are
some differences. The software are programmed in different languages (EuroForMix in
R and C++ and DNAStatistX in Java) and therefore not all of the numerical libraries
EuroForMix uses were available when developing DNAStatistX. As a result, alternative
methods for function optimization were explored and selected. Despite the differences in
the choice of function optimizer, the two software yield LRs in the same order of magnitude
when the same data and model options are used [128]. DNAStatistX is implemented within
the overall software package, DNAxs, which supports parallel computing that can be
delegated to a computer cluster and enables queuing of requested LR calculations. This
feature can be extremely useful in a routine casework setting. Both software continue
development though functionalities and options can be prioritized differently by their
developers and users.

Whereas DNAxs parallelises over independent function optimizations (current ver-
sion), EuroForMix applies parallelisation within the inner part of the algorithm, where geno-
type summation is performed (versions before v3 also parallelised over function optimizations).

3.3.2. Exploratory Data Analysis

The reported LR is critically dependent upon the assumptions applied in the model.
The parameters that are fixed include: the population database including allele frequencies,
the level of Fst and the drop-in parameters used to specify the drop-in model.

The variable parameters are mixture proportions (Mx), peak height variation (coefficient-
of-variation), peak height expectation and the NOC. Decisions are needed whether to use a
stutter and/or a degradation model: Real case examples typically employ degraded DNA
causing a reduction in observed peak heights when the molecular fragment lengths increase.
The stutter models are important to apply when stutter filters are not applied—nevertheless
there may still be alleles present in the profile which could be explained as stutters. In
addition, the number of contributors can have an impact—so this must be carefully decided
(Section 2.5).

Finally, any model that is used for reporting must be a reasonable fit to the γ distribu-
tion. In order to highlight the principles of exploratory data analysis, details are described
by Gill et al. [62] (chapter 8).

3.3.3. Relatedness

The defence may wish to put forward a proposition that a sibling (or another close
relative) was the contributor to the crime stain, hence the defence alternative considered
may be H2: “The DNA is from a sibling of Mr. X”.

The calculations are described using formulae described by Gill et al. [62], chapter 5.5.4
and appendix A.2; encoded into LRmix Studio and EuroForMix. Examples can be found
from the “Relatedness” folder at: https://www.dropbox.com/home/Book/Data%20for%
20website/Chapter8/Relatedness accessed on 28 September 2021.

This folder contains laboratory data from derived samples of three person mixtures
using the ‘PowerPlex® Fusion 6C’ kit and Dutch database frequencies from a study by
Benschop et al. [73]. To explore whether closely related individuals will give a high LR
when Mr X is substituted by a sibling, we specify following propositions:

H1: The DNA is from Mr. X
H2: The DNA is from an unknown contributor
A total of 100 siblings were simulated. The majority provide a low LR (exclusionary:

LR < 1). A total of six LRs were greater than 100, with two approximating log10LR ≈ 6.
However, if the propositions are altered to:
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H1: The DNA is from Mr. X
H2: The DNA is from a sibling of Mr. X,
both LRs returned values less than one, favouring H2. This exercise illustrated that

(a) close relatives can occasionally provide high LRs when tested against the proposition
of unrelatedness, but (b) if the proposition is altered to ask the question of relatedness,
then the evidence can support H2. This illustrates the importance of asking the right
questions based upon the case-circumstances, i.e., when propositions are formulated, they
must be reasonable and they must above all be based upon a clear understanding of the
case circumstances.

3.3.4. Deconvolution

Deconvolution is used to predict the genotype of an ‘unknown’ contributor to a crime
stain and it is typically undertaken to extract a profile in order to search a national DNA
database. The method is described by Gill et al. [62], chapter 8.5.12, or in Section 4.3.1 for
the specifics of the deconvolution model in STRmix™. There are several different ways to
represent the data. The most common usage is to provide the ‘top marginal’ where the
most likely genotype (for the unknown component) is extracted. Each genotype (per locus)
is accompanied by ‘the ratio to next genotype’ which is the ratio of the top probability
to the second highest probability. The larger the ratio, the greater the confidence in the
genotype selected [50,131].

3.4. Investigative Forensic Genetics
Probabilistic Genotyping to Carry out Searches of National DNA Databases

SmartRank is based upon LRmix Studio [22,23], but was modified to enable searches of
very large national DNA databases. A validation study [22] tested anonymised parts of the
national DNA databases of Belgium, the Netherlands, Italy, France and Spain, along with a
simulated DNA database. To each of the databases, 44 reference profiles were added. A
total of 343 mixed DNA profiles were prepared from the reference samples, to act as the
test set of data. Finally, the data were searched with both SmartRank and CODIS software.

Searches are most successfully employed when the mixtures are simple (major/minor)
coupled with low levels of dropout. CODIS works by applying simple allele match-
ing criteria whereas SmartRank takes account of allele drop-out, and was shown to be
a more effective method to identify contributors for mixed profiles with low to mod-
erate drop-out. SmartRank can be downloaded from https://github.com/smartrank/
smartrank accessed on 28 September 2021 along with user guides; exercises are avail-
able at: https://www.dropbox.com/home/Book/Data%20for%20website/Chapter%20
11/SmartRank_Exercises and chapter accessed on 28 September 2021 [62].

DNAmatch2 and CaseSolver are search engines which also adopt the quantitative
model from EuroForMix [21,24]. A stepwise strategy is employed to search for matches,
since a search using EuroForMix alone would be time-consuming. Consequently, the
comparisons are filtered in a stepwise procedure. First, a simple matching allele count is
carried out where for example, samples exceeding a defined drop-out level are rejected.
The remaining comparisons are then searched using the qualitative LRmix model from
forensim (similar to SmartRank). This step is very fast: samples providing LRs above a
certain threshold are then re-tested using the quantitative EuroForMix model to provide
a final list of ranked LRs. Studies show that quantitative models out-perform qualitative
models [50,132]. DNAmatch2 is used both as a database search engine as well as providing a
platform to carry out contamination searches during routine casework, whereas CaseSolver
is mainly used for profile comparisons in casework. Importantly, both CaseSolver and
EuroForMix can conduct (reference to evidence) database searches; with the main difference
that CaseSolver can perform this with many evidence items at the same time, and it provides
a more flexible interface for data integration.

Casesolver contains more functionalities than DNAmatch2, with the focus of being
an effective and simple-to-use comparison tool for case officers (similar as DNAxs). This
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software is especially designed to cope with complex cases which have a large number of
evidence profiles and multiple reference samples. An example with 119 evidence profiles
and three references is described by Bleka et al. [21]. CaseSolver compares each reference
sample with each evidence profile, identifying potential ‘matches’ qualified by an LR.
The second step carries out cross-comparisons between case-stains to identify unknown
contributors. These can be deconvolved and used in further searches as required. If it is
known that contributors may be related to each other, then simple relatedness searches
can also be carried out. CaseSolver offers various ways to visualise or export the data,
even to a comprehensive report; for example, an informative graphical network can be
displayed that summarises the connections between the case samples (Figure 4). The
latest version of CaseSolver (v1.8) provides a weight-of-evidence module which offers
conservative corrections of LR for evaluative purposes, and automated report generation.

Figure 4. Graphical network summarizing the connections between case samples through LR calculations. The references
are the green nodes. Single contributor evidences are in cyan; two contributors are in orange and three or more contributors
are in red. If the ’plotly’ function in R is used then the mouse can be hovered over a node and this displays a list of the
matches, as shown for sample 30.01. The thickness of the edges between the nodes is inversely proportional to the size of
the LR on a log10 scale. Reprinted from [62], chapter 11, Copyright (2020) with permission from Elsevier.

CaseSolver is available at: http://www.euroformix.com/casesolver accessed on 28
September 2021. Data and presentations are available at https://sites.google.com/view/
dnabook/chapter-11?authuser=0 accessed on 28 September 2021.

3.5. Massively Parallel Sequencing (MPS)

Massive Parallel sequencing (MPS) is becoming increasingly used throughout the
forensic community and may eventually supersede classic capillary gel (CE) methods [133].
MPS returns the entire sequence of a locus, not only the repeat region, but the flanking
sequence as well; there is much more information to deal with compared to the standard
repeat unit count used in classic CE. The main advantage of MPS is the potential to combine
many more loci in multiplexes compared to CE. This results in much higher discriminating
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power. Shorter amplicon lengths should mean that more highly degraded DNA may
be detected, but this will increase the potential to detect background DNA, as well as
contamination. An additional challenge is that interpretation systems must be able to deal
with profiles that are complicated by the presence of complex stutters.

Just and Irwin [134] developed a method of nomenclature of MPS-STRs that was based
upon the longest uninterrupted sequence (LUS) and they used LRmix Studio to analyse
mixtures. Later, the LUS nomenclature was extended to LUS+ [135], which is similar to
that of Vilsen et al. [136], in order to identify as many different sequences as possible.
They were able to identify 1050 out of 1059 sequences alleles. This system was adopted
by Bleka et al. [137–139] who extended the analysis to the quantitative EuroForMix model.
Instead of peak height (rfu), coverage (reads) are used to quantify allelic sequences. CE and
MPS stutters are comparable [140]; ‘n − 1’ stutters are the most common to be found, but
‘n − 1’ and ‘n + 2’ forms are also observed, though the latter have much lower coverage and
can be removed by filtering. Stutters can arise from different blocks of sequences within
the same allele. Software packages such as FDSTools [141] are able to predict stutters, both
simple and complex, based upon the allelic sequence.

The EuroForMix implementation of MPS-STR interpretation is described by [138,139]
and both ‘n − 1’ and ‘n + 1’ stutters are accommodated from version 3. In order to obtain
data in LUS/LUS+ format, the R program seq2lus can be used to convert raw sequence data
derived from the ForenSeq Verogen Universal Analysis (UAS) software: https://verogen.
com/wp-content/uploads/2018/08/ForenSeq-Univ-Analysis-SW-Guide-VD2018007-A.pdf
accessed on 28 September 2021. To carry out the conversion, a look-up table file is used:
Table S5 from Just et al. [135]. Once the nomenclature conversions are made, the analysis
can proceed. The tool and updated look-up files, together with a tutorial is provided
at: http://euroformix.com/seq2lus accessed on 28 September 2021. A more general tool
called lusSTR, written in python, has been developed to avoid the need of a lookup table
(available at: https://github.com/bioforensics/lusSTR accessed on 28 September 2021).

Bleka et al. [138] explored the information gain, i.e., the LR increase, of the LUS vs.
standard repeat unit (RU) nomenclature. Full profiles with the RU nomenclature provided
an average log10LR = 37.04 whereas the LUS nomenclature returned log10LR = 43.3;
the ratio is the theoretical information gain TIGRU→LUS = 1.17. However, the LRs are
massive, and represent redundant information. Huge likelihood ratios have no benefit
when presented in court. In practice any log10LR > 9 may be considered as providing
redundant information because a greater LR has no impact upon a jury decision. Some
jurisdictions e.g., UK have a reporting limit, upper threshold of 1 billion.

Therefore, the main benefit of MPS-STR is related to the analysis of low-level DNA
profiles that may be highly degraded, so that the probability of successful amplification is
low. If the number of loci is increased, then the chance of successful amplification of a given
locus is also increased and this will be reflected in an expected increased LR (provided that
H1 is true). Doubling the number of loci from 27 loci to 54 loci will have an approximate
proportionate doubling effect on the LR (log-scale). E.g., if log10LR = 2 for the former, it
will return log10LR = 4 for the latter; if 128 loci are utilised then log10LR = 8, i.e., the more
loci that are analysed, the more likely it is that reportable profiles can be achieved. We can
summarise that the main advantage of MPS is the possibility to greatly increase the number
of loci in the multiplex, the increased discrimination power per locus is secondary to this.

In addition, Benschop et al. [142] examined allele detection and LRs obtained from STR
profiles generated by two different MPS systems that were analyzed with different settings.
The LR results for the over 2000 sets of propositions were affected by the variation for the
number of markers and analysis settings used in the three approaches tested. Nevertheless,
trends for true and non-contributors, effects of replicates, assigned number of contributors,
and model validation results were comparable for the different MPS approaches and were
similar to the trends observed in CE data.

Even though sequence information from MPS technology provides higher data resolu-
tion, there is still a limitation in how mixture profiles, including major/minor components,
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are exported from MPS software. Two papers [138,142] point out that default analysis
settings such as dynamic threshold potentially removes useful information forwarded for
interpretation, weakening the ability to detect low-template components.

The above mentioned studies [142] demonstrate that probabilistic interpretation
of MPS-STR data using the γ model in EuroForMix and DNAStatistX is fit for forensic
DNA casework.

Probabilistic genotyping is not restricted to STRs, SNPs are also amenable [143,144].
Whereas STRs are multi-allelic, SNPs are generally di-allelic. This represents a particular
challenge to assess the numbers of contributors because, with a maximum of two alleles in
a population, we cannot use allele counting methods to ascertain this value.

Using a panel of 134 SNPs from Life Technologies’ HID-Ion AmpliSeq™ Identity Panel
v2.2: https://www.thermofisher.com/content/dam/LifeTech/Documents/PDFs/HID-
Ion-AmpliSeq-Identity-Panel-Flyer.pdf accessed on 28 September 2021, Bleka et al. [143]
compared the LRmix model with EuroForMix showing that the latter was much more
efficient especially when there are more than two contributors. The effective NOC is
decided by following exploratory data analysis, outlined for STRs in Section 2.5, where the
likelihood is maximised under H2. LRs obtained from overestimation of the actual NOC
showed concordance with results compared to the actual NOC (from simulations up to six
contributors). With the SNP panel tested, there is a limitation of that the mixture proportion
(Mx) of the POI must exceed 0.2 in order to achieve an LR > 100, although this restriction
would be removed with much larger SNP panels. More recently, the performance of
EuroForMix was compared to machine learning approaches [145].

The data used in the MPS SNP and STR publications cited, along with presenta-
tions available online: https://sites.google.com/view/dnabook/chapter-13?authuser=0
accessed on 28 September 2021.

3.6. Validation, Guidelines for Best Practice and Quality

Developmental and internal validation of the probabilistic genotyping software LR-
mix, emphLRmix Studio, SmartRank, EuroForMix, CaseSolver, DNAmatch2, and DNAxs/
DNAStatistX is described in internal validation documents; much information has been
published [22,23,62,113,128]. Furthermore, there has been much research effort to gain
insights into trends and to characterize the various models, as well as to inform guidelines
for best practice.

Using the qualitative model LRmix Studio research was carried out to show the effects
of over- or under-assigning the NOC; the number of PCR replicates; the amount of DNA;
and the drop-in rate [68,69,146–148].

The SmartRank output was compared to that of LRmix Studio in order to gain insight
into the effects of model adaptations that enabled fast and efficient searching of voluminous
databases [23]. In addition, the software was characterized in terms of the retrieval of true
and non-donors; the effects of the size and composition of the DNA database; the number
of contributors; the number of markers; and the level of drop-out [22,23]. As expected,
positive effects on the retrieval of true donors were observed with: (1) a higher number
of loci, (2) fewer contributors, (3) lower drop-out rates and/or (4) a higher discriminatory
power. Retrieval of true donors was not influenced by the size of the DNA-databases used
in this study (37,000–1.55 million). The size of the DNA-database, however, can have an
effect on the retrieval of non-donors because of adventitious matches.

LRs generated from EuroForMix and LRmix were compared for true and non-donors
to two- or three-person NGM DNA profiles [50] and to two- to four-person PPF6C DNA
profiles [73]. This research demonstrated the effects of the NOC, over- or under-assigning
the NOC; the number of PCR replicates; the amount of DNA; the level of unseen alleles
for the person of interest; and the effect of increased PCR cycles. H1-true tests and H2-true
tests were utilised. In the H2-true tests, non-contributors were selected deliberately to
a have large overlap with the alleles within the mixture and worst-case scenarios were
examined where a simulated relative of one of the true donors was considered as the
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person of interest under the prosecution hypothesis [73]. A somewhat similar study was
performed to compare MPS with CE-based DNA profiling data [142]. It was observed that
the MPS read counts behaved in a similar manner to CE peak heights, and therefore similar
results were obtained.

To summarize, the following overall trends were observed for CE and MPS profiles
(note that exceptions can occur):

The lower the NOC and the lower the drop-out rate for the POI, the more often larger
LRs were obtained.

The more donors and the more drop-out for the person of interest, the more often
false-negative support was observed.

Using a lower NOC than designed yielded either equal results (predominantly with a
true major donor as POI) or lower LRs.

Over assigning the NOC hardly affected LRs for true major donors.
An over-assigned NOC for H2-true tests can have the effect of increasing the LR to

around neutral evidence.
False-positive support, LR > 1, was observed more often and with larger LRs when

the POI was a (simulated) relative of a true donor rather than if the POI was an unrelated
non-donor to the DNA mixture.

The use of multiple, instead of one PCR replicate, often increased the LR for true minor
donors and decreased the LR for non-donors.

Based on the outcomes of the above-mentioned research studies, guidelines for best
practice in forensic casework were developed. For LRmix (Studio) this included the ex-
ploratory data analysis approach, in which the effect of model parameters (such as the
probability of drop-out) on the LR is examined. Non-contributor tests provide an indication
of the range of LRs obtained if H2 is true. Although it is not mandatory, laboratories may
find this a useful feature that can help to explain results in court. For EuroForMix and
DNAStatistX, it is advised to perform model selection, to examine the model validation
(‘pp-plots’) and iteration results and to report the LR only if defined criteria are met. Fur-
thermore, for reasons of quality, efficiency and usefulness of performing weight of evidence
calculations, guidelines for application of the LR models were developed by NFI. For
EuroForMix/DNAStatistX these are presented in [128]; for instance there is an upper limit on
the number of unseen alleles that a person of interest can have before an LR calculation is
advised. Another quality aspect that relates to the use of the DNAxs/DNAStatistX software
is the audit trail which automatically keeps track of who performed which action and when.

Apart from software validation, guidelines for best practice and an audit trail, NFI
invests in (automated) software testing during development, prior to release and during
validation. This is important to ensure that the software is robust and behaves as designed.
With a growing number of features, software testing becomes a very time-consuming
task if performed manually. To save time, improve the test coverage, increase ad hoc
and exploratory testing, and, in the end, reduce costs and maintenance, automated tests
were designed and built for DNAxs. In the first three years after implementation of the
DNAxs software suite, a total of 521 bugs were reported by the software engineers during
development, by testers during validation, by users in casework, or by users performing
research. Software bugs are errors, flaws or faults causing the software to produce an
incorrect or an unexpected result, or to behave in unintended ways. The majority of bugs
were solved in major or minor software releases that were planned and a minority required
the release of a bug fix version or occurred during the development of these version. This
shows that bug detection and debugging is part of the developmental and validation
process, but also occurs in validated and released software versions. The reported bugs are
viewed from a software perspective and relate to the use of the software or functionalities
thereof. The observed bugs did not have effects on the DNA profile interpretation and/or
reported conclusions. Further information on code coverage by testing, bug detection
and debugging, but also information on the use of DNAxs (including DNAStatistX and

52



Genes 2021, 12, 1559

SmartRank) and post-analytical errors in forensic casework can be found in [149]. Further
details on the process of software testing can be found in [62], chapter 10.

4. STRmix™

4.1. History of STRmix™ Creation

STRmix™ is an Australian and New Zealand initiative that was jointly developed
by Duncan Taylor from Forensic Science SA (FSSA) in Australia and John Buckleton and
Jo-Anne Bright from the Institute of Environmental Science and Research (ESR) in New
Zealand. STRmix™ was first introduced into casework at FSSA and ESR in August 2012,
however the events that lead to its development occurred three years prior.

Prior to 2010 there was no focussed effort to drive standardisation in forensic biology
between laboratories in Australasia (Australia and New Zealand). Each laboratory had
accrued knowledge and developed policies in a siloed manner, which meant that in
one state Random Man Not Excluded (RMNE) also known as Cumulative Probability of
Inclusion (CPI) was being used, in others likelihood ratios (LR), and amongst those there
was a variety of implementations. In 2009 the Victoria Police Forensic Science Laboratory
(VPFSL) in Melbourne had been using a software program called DNAmix [150,151] for
calculating LRs in situations where unresolvable mixtures were obtained. DNAmix had
been created as a result of DNA profile evaluations in the OJ Simpson trial, and the models
within DNAmix required that no dropout-out had occurred. The VPFSL came to realise that
this assumption was not being met in the evaluations being carried out, which resulted in
the DNA profile evaluations in a number of cases being redone and reports reissued. One
result in particular, which shifted an LR from 550 billion to 3, concerned Victoria’s police
chief Simon Overland who ordered all DNA evidence be banned from court proceedings.

Following the laboratory shutdown, crisis talks were held with members of govern-
ment forensic laboratories from across Australia and New Zealand. One of the outcomes
was to form an Australasian forensic biology statistics working group in 2010 (with mem-
bers from all government forensic laboratories from across Australia and New Zealand)
with the overarching remit of standardisation across Australasia through the adoption of
world leading evaluation and statistical practices. In this group were John Buckleton and
Duncan Taylor, who started working on the ideas that would eventually become STRmix™
(Taylor and Buckleton thankfully acknowledge the technical input of David Balding and
the vision of Ross Vining, Linzi Wilson-Wilde and Keith Bedford). In 2011 Buckleton and
Taylor presented the idea of STRmix™ (initially to be called DyNAmix) to their member
organisations, and the National Institute of Forensic Sciences (NIFS), and development was
supported. Jo-Anne Bright joined the development team and by 2012 Taylor, Buckleton
and Bright had completed development and validation on version 1.0 of STRmix™.

4.2. Probabilistic Genotyping and STRmix™

STRmix™ considers parameters that describe some observed fluorescent peak col-
lectively as ‘mass parameters’, M. In essence probability of the observed data, given a
genotype, treats these mass parameters as nuisance variables that are integrated across:

wj = Pr(O
∣∣∣∣Sj) =

∫
p(O, M

∣∣∣∣Sj)p(M)dM

which assumes p(M
∣∣Sj) = p(M) .

In STRmix™ this integration is carried out using Markov Chain Monte Carlo (MCMC)
sampling. The equation above applies across the whole profile. The locus terms (a su-
perscript ‘l’) are a product within the integral, across all loci in the profile with data. The
model of STRmix™ then makes the assumption that the profile weight is approximated by
the product of the integrals at each locus:

wj =
∫

∏
l

p(Ol , M

∣∣∣∣∣Sl
j)p(M)dM = ∏

l

∫
p(Ol , M

∣∣∣∣∣Sl
j)p(M)dM
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When tested, this assumption appears reasonable (see Figure 2 of [15]). As well as
using weights to calculate the LR, having the weights themselves allows probing of the
DNA profile data in powerful investigative ways, which we describe later.

Assumption 1 fulfils Slooten’s [152] requirement that “we will assume that the model . . .
parameters are chosen independently of the hypotheses.” This allows the statement that the
“model cannot overstate the evidence very strongly very often for actual contributors: it cannot,
averaged over all mixtures and contributors, happen with probability more than 1/t that the evidence
is overstated by a factor t.”

We round out this claim by repeating Slooten’s [152] statement in his Equation (5.2),
which has a pedigree back to Turing (quoted in Good [153]), that the probability of obtaining
an LR ≥ t from a non-donor is ≤ 1

t .

4.3. Capabilities of STRmix™
4.3.1. Deconvolution

The process of deconvolution is the assignment of weights to genotype sets. In other
words, combinations of genotypes that could describe a profile(s) are considered, and a
probability is assigned to them, proportional to how well they explain the observed peaks.
In STRmix™ this is achieved by integrating across a set of mass parameters using MCMC.
The base model for STRmix™ was described by Taylor et al. [15] and included parameters:

1. A template amount for each of the n contributors,
2. A degradation (described in [154]) which models the decay with respect to molecular

weight (m) in the template for each of the contributors,
3. Amplification efficiency at each locus to allow for the observed amplification levels of

each locus,
4. Replicate multipliers, which scales all peaks up or down between PCR replicates.

Later, Taylor et al. [155] extended the model to not only consider PCR replicates
produced under the same system, but also DNA profiles from the sample produced under
different conditions, i.e.,

Using the same DNA profiling kit, but with different laboratory processes (such as
different PCR cycles or different models of laboratory hardware),

Using two different DNA profiling kits
which require the addition of mass parameter(s):
Kit multipliers, which scale all peaks in all replicates up or down between kits.
The expansion of the model for multiple kits/processes allowed various parameter

freedoms between profiles produced by different processes. This was particularly useful
for cold-cases where STRmix™ could be used to combine the original profiling work with
contemporary work in situations where technology had spanned multiple generations of
profiling kit, and the DNA sample itself may have exhibited different degradation patterns
between the generation of the two profiles.

Using a chosen set of values for the mass parameters allows the calculation of Total
Allelic Product (TAP) [156], the total amount of fluorescence expected resulting from
the amplification of an allele present in a DNA extract. As the PCR occurs, some of
the fluorescence that was destined for the allele will shift to stutter positions on the
EPG. The amount of the TAP that is expected to become stutter is based on the expected
stutter ratios for each allele at each locus, either measured directly or regressed using the
longest uninterrupted sequence (LUS) [156], or incorporating multiple repeat sequences
of an interrupted STR in a multi-LUS model [136,157]. In reality, there are a number
of stutter types that can occur, but the original STRmix™ model (described in [15]) only
included back stutter. This was later extended to include forward stutter (with modelling of
forward stutter described in [157,158]), and then generalised so that any number of stutters
(and with any size-based relationship to the parent peak), applied to any combination of
specific loci, could be added by users with the mathematical framework automatically
extending to incorporate them (generalised stutter modelling is described in [155]). The
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height of coincident peaks (either from multiple allele donations, or allele and stutter) are
added [159,160] to produce the final expected peak heights.

The calculation of expected allele and stutter (of any combination thereof) peak heights
using a set of mass parameters and expected stutter ratios ultimately results in a set of
expected peaks and their heights, for each locus, in each PCR replicate and for each
process or kit in which they have been generated. How well those mass parameter values
explain the observed peak heights (or technically the probability of the observed data
given the mass parameter values), depends on how well the observed and expected peak
heights align.

Differences between an observed (O) and an expected (E) peak height are assigned a
probability based on empirical models. These models take account of the magnitude of the
difference and use a proxy for template to assess how tolerable such differences are. In order
to determine how much to penalise stochastic effects in different types of fluorescence (i.e.,
allele, or stutter, or a combination), peak height variability models are used. An observed
peak comprising a single fluorescence type, with peak height variability parameter value
c2 is modelled by a log-Normal distribution with mean and variance parameters:

O ∼ LN
(

ln(E),
c2

f (E)

)
where f (E) =

b
E
+ E

and b is a constant that typically takes values around 1000. The variance is inversely
proportional to the function of expected peak height (which is approximately equal to E
when E is large), which describes the well-known phenomenon that the relative size of
stochastic peak height imbalance tends to increase as peak height decrease. The function
f (E), deals with the fact that as the expected height decreases to very low levels the peak
height variability starts to contract (see [161]). The constant b can be altered by the user
from 0 (which turns off this low-level peak height variability contraction effect) to any
arbitrarily high value.

A range of distributions were investigated for modelling stutter in Bright et al. [162].
The log-normal appeared to fit the empirical data adequately.

When a peak comprises different fluorescence types, the sum of log-normal random
variables is approximated by a shifted-log-normal distribution using moment matching.

If a peak has an expected height, but is not observed, then it is modelled as a drop-out
peak and a probability is used that is based on the integral of the probability of observing a
peak between baseline and AT for a peak at expected height E. If a peak is not expected,
but observed in the profile then it is modelled as a drop-in and a probability applied, based
on the model of Puch-Solis [13].

The above process describes the generation of a set of expected peak heights and
the probability for deviations of the expected heights from observed heights. The con-
stant, ‘b’ in the variance term and the prior distribution parameters for c2 are set during
model calibration in a tool called ‘Model Maker’ (described in Section 4.4). The MCMC
process within STRmix™ starts by assigning starting positions for all mass parameters,
and randomly assigning genotype sets to each locus. This is the current set of parameters.
Then, iteratively

(1) Choose a locus at random and propose a genotype set at that locus.
(2) Choose new values for all mass parameters by stepping a small distance from the

values in the current set (known as a random walk, and with step size dictated by a
Gaussian distribution). Propose these values.

(3) Calculate the expected peak heights using the proposed sample values.
(4) Calculate the likelihood value of the proposed sample values.
(5) Use a Metropolis-Hastings algorithm to accept or reject the proposed sample. If the

proposed sample is accepted, then the proposed set of parameter values becomes the
current set. If the proposed sample is rejected, then the proposal is discarded.

(6) Repeat steps 1 to 6 until a defined number of proposal accepts have been attained.
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The first iterations of the MCMC are considered burn-in (the number of steps is set
by the user) and discarded. After the burn-in the proportion of total iterations that a
genotype set was the focus of the MCMC (called residence time) is the weight assigned to
that genotype set.

A contributor that is assumed to be present under both H1 and H2 is described as a
conditioning contributor. It is highly desirable to include as many contributors as possible
as conditioning profiles. This is for practical reasons such as improving run time, but
also for the much more important reason that any correctly assumed donor improves the
ability of the system to differentiate between true and false donors [163]. Historically the
use of conditioning contributors has been restricted to those situations where a donor is
certain to correctly assumed, largely intimate samples. This underutilises the tool and is
not in the interests of an innocent person accused of being a donor [95]. We recommend the
extension of the use of conditioning to other evidential items such as assuming the presence
of the habitual wearer of clothing and to any co-accused with a very high LR, especially
if the POI is related to these persons [95,96]. Within a deconvolution, any number (up
to the NOC from which the profile is designated as having originated) can be assumed
as a conditioning profile, which during MCMC, locks their genotypes (known from their
references) into any genotype set being considered.

Since STRmix™ V2.6 the analysis of a profile can proceed without a set single number
assigned for a profile as STRmix™ has the ability to accept a range of contributors as the
user input [164]. A range of contributors may be chosen if the user is unable to assign a
single value due to the complexity or quality of the profile, or if different numbers may be
required by the different parties in order for them to have their most probable explanations
for the profile(s) [95,97]. The method works by carrying out a deconvolution of the evidence
profile(s) given each NOC in the chosen range and then calculating the Bayes Factor (based
on a method of Weinberg et al. [165,166]) to allow combination or contrast between the
deconvolution. This is an alternative to the recent method described by Slooten et al. [94],
but yields the same results under the same assumptions [71].

4.3.2. LR Calculation

Given the weights from a deconvolution, the calculation of an LR in STRmix™ is
achieved by taking the ratio of the weighted sum of genotype set probabilities given
two competing propositions. One or more references (some of which can have been
assumed at the point deconvolution) are compared to the evidence profile(s) using propo-
sitions that are aligned with prosecution and a sensible alternative, in a way that best
represents the strength of the evidence given the framework of circumstances of the case
(see [3,71,95,103,167] for guidance documents on proposition setting). STRmix™ can com-
pare individuals to specific combinations of contributor positions within the evidence
profile(s), generating an LR considering sub-sub-source level propositions [104], or to the
mixture as a whole (i.e., all components and all combinations) to generate an LR that
considers sub-source level propositions. When considering sources of DNA under the
H2, STRmix™ can consider these to be unrelated to the POI or related to the POI [168] in
various relationship types.

Following Balding [169,170] the different potential relationship types that the alternate
donor could be to the POI can be assembled into one statistic. Writing wj = Pr(O

∣∣Sj) and
introducing the different relationship types Ri, i = 1, r, where is the number of relationship
types considered we obtain

LR =
∑J

j=1 wjPr(Sj

∣∣∣H1)

∑r
i=1 Pr(Ri

∣∣∣H2)∑J
j=1 wjPr(Sj

∣∣∣H2, Ri)

The terms, Pr(Ri|H2) , represent the prior probability that a person related to the
POI by relationship Ri is the donor (given that the POI is not, H2). The expected prior
proportions that different relative types can make up in the population, Pr(Ri|H2) , can
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either be set manually in STRmix™ or estimated using the number of individuals in the
population and the average number of children per family in that population [171].

STRmix™ uses the sub-population model of Balding et al. [172], although the co-
ancestry coefficient (FST, θ) can be set to 0 by the user if desired in order to revert the
calculation to using the ‘product rule’.

When assigning probabilities for an allele in the population the value is set using a
Dirichlet distribution with a uniform prior. The posterior means of the allele probabilities
are then obtained by updating the prior with the counts of alleles in a database (using a
similar method as described in [173]). For allele ‘A’, the probability of occurrence in the
population, given it has been seen xA times out of N alleles is calculated by:

Pr(A) =
xA + k−1

N + 1
in early STRmixversions or Pr(A) =

xA + (k + 1)−1

N + 1
in V2.8 and higher

where k−1 is the prior allele probability [174], and k is the number of different allele states
that have been observed in the population.

Multiple populations can be set up in STRmix™, each with their own allele frequency
file, θ and population proportion in the local geographical region. This allows STRmix™ to
calculate an LR considering the contributors to be from any of the set populations individu-
ally, or anyone in the local geographical region, by stratifying across all populations [175].

In addition to the point estimate LR STRmix™ also provides a credible interval [176]
using the highest posterior density (HPD) method. While there has been justified debate
over the provision of intervals for LRs [177–184], it is the preference for most practising
forensic DNA laboratories to report a lower bound interval on the LR value. Within
STRmix™ the HPD interval optionally takes into account any combination of:

(1) sampling variation in allele frequency database
(2) sampling variation in the iterations of the MCMC leading to the assignment of weights
(3) uncertainty in the value of θ

The second of these factors intends to capture the amount of variability in the LR
resulting from Monte Carlo resampling inherent within MCMC processes. More recently
this process has been found to have variable coverage [185] although taken collectively
with other aspects of conservative behaviours the coverage is good [186] The third of these
factors is achieved by STRmix™ being able to take a point value for θ or a distribution
described by a β distribution (see [187–189] for examples of θ distribution models).

The result of an LR calculation on STRmix™ is that the user can be provided with the
LRs for the:

• sub-sub-source proposition pair,
• the sub-source proposition pair considering the alternate DNA donor as

� unrelated,
� sibling,
� half-sibling,
� parent/child,
� aunt/uncle/niece/nephew,
� grandparent,
� cousin, or
� unified across all relationship types,

• all of the above for:

� each ethnic population in the local geographical region, and
� stratified across all populations,

• all of the above for:

� each NOC in a chosen range, and
� stratified across the range (or with bespoke NOC choice for proposition),
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and all with an associated HPD interval to account for uncertainty in allele frequencies,
weights and θ. As well as generating LRs for the comparison of a reference to a deconvolu-
tion, STRmix™ can also compare a list of references in a database. Using an LR threshold
provides a search capability [190]. This is not restricted to resolved genotypes of a single
individual, but rather can be applied to any profile (single source or mixtures, resolved or
unresolved). Using the LR calculation feature than considers a relative of a POI as a source
of DNA, allows STRmix™ to carry out familial searches against any profile (again from
complete single source to complex and unresolved mixtures) [168]. This lead to Australia’s
first conviction resulting from a familial search [191]. The ability to search any DNA profile
against a database is also commonly used as a Quality Assurance tool to screen evidence
profiles for potential contamination or assist in environmental monitoring [192].

STRmix™ has a profile sampling tool that can be used to generate profiles from a
population and calculate LRs by comparison to a deconvolution. These profiles can either be
generated using probabilities based on their probability of occurrence in a population [59]
or using importance sampling [60] in order to build distributions of ‘H2 true’ LRs and
determine exceedance probabilities. Exceedance probabilities (sometimes called non-
contributor performance tests [9]) provide the probability of randomly selecting someone
from the population who would provide a particular level of support (typically for their
inclusion to the profile, and typically the level of interest is that yielded by a POI). These
probabilities, however, are fundamentally different from LRs and should not be confused
with, or substituted for LRs in evaluations [193]. The LR itself provides an upper bound on
exceedance probabilities (a simple proof was provided in [59] so that if LRPOI is produced
by the comparison of a POI to an evidence profile the statement can be made:

The probability of observing a likelihood ratio of LRPOI or larger from an unrelated
non-donor is less than or equal to 1 in LRPOI.

Another database searching tool available in STRmix™ is to carry out a top-down
analysis [74] in which only the main contributors to a highly complex profile are compared.
In concept, a top-down analysis is similar to carrying out an evaluation on a major ‘cluster’
of peaks in a profile [194]. The process works by carrying out deconvolutions in steps,
where in each step the AT is altered (on a per-locus basis) and only the peak information
that meets or exceed the step-AT is used. Each deconvolution considers the profile as
originating from N individuals (where N here represents the top N contributors in which
you are interested, to the profile and not the total number of contributors to the profile). At
the conclusion of each step’s deconvolution the result is searched against a database and
individuals that yield an LR that exceed a pre-determined LR threshold are flagged. The
first step raises the AT (on a per-locus basis) to the height of the highest peaks and each
step lowers the ATs by a proportion of the distance from the highest peak to the standard
AT used. The steps stop when the profile can no longer be described by N individuals (due
to excessive peaks that cannot be explained as allele, stutter or drop-in). The final database
search report returns individuals flagged at any step, with the maximum LR attained across
all steps in which they were flagged. This method has been extended to the quantitative
model of STRmix™ and has been trialed on a set of complex mixtures (5+ contributors)
from the no-suspect workflow of a forensic laboratory, showing an 80% link rate with
someone on the local database [195].

4.4. Implementation of STRmix™

STRmix™ utilises general models to describe DNA profile behaviour, for example
that peak height variability increases as peak heights decrease, or that loci can vary in
their amplification efficiencies depending on the PCR micro-environment, or that stutters
are expected to occur at a particular size (relative to their parent peak size) and height
(dependent on their parent peak height). Each of these models have parameters that can be
calibrated to the performance of DNA profile generation in a particular laboratory or for a
particular process. A standard objective for a DNA profile analysis is to use the calibrated
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models, and the observed data in order to obtain weights. Figure 5 shows these three
aspects diagrammatically, each connected to the other two.

Figure 5. Representation of the components involved in the analysis of a DNA profile.

Using this relationship, if the weights are known for a set of observed profiles, then
this information can be used to calibrate the models. Within STRmix™ there is a feature
known as Model Maker [196], which takes sets of single source input profiles (whose
donor references are known) to calibrate parameters in the STRmix™ models. The general
process is carried out with a component-wise MCMC, whereby cycles of sampling mass
parameters (on a per profile basis) followed by sampling of variance parameters (on a
dataset wide basis) eventually reaches a steady-state for all parameters in the dataset. The
variance parameter values are then attuned to the behaviour of profiles produced under
the conditions tested and can be set in STRmix™ as the default values for casework use.

Some, parameters such as expected stutter ratios have been shown to be robust to
laboratory effects [197], while others are more sensitive [196]. The most important factors
for peak height variability have been found to be the number of PCR cycles carried out
during amplification, the PCR kit used and the models of electrophoresis instrumenta-
tion [196]. The use of prior distributions rather than point values for parameters such
as variances with the calibration setting the hyper-parameters of the prior distribution
(using hierarchical Bayesian modelling) has shown that general settings can be applied
and are robust to a wide range of factors [198]. Despite this robustness, it is standard
practice (and the recommendation of the STRmix™ group, the SWGDAM 2015 [108] and
the ASB guidelines (Standards for Validation Studies of DNA Mixtures, and Development
and Verification of a Laboratory’s Mixture Interpretation Protocol: http://asb.aafs.org/
accessed on 28 September 2021)) that each laboratory implementing STRmix™ undertakes
a calibration prior to use on casework samples. In part this ensures the best alignment of
the prior distributions for the input parameters to the validation data.

4.5. DBLR—A Companion Product to STRmix™

STRmix™ has closely aligned companion product DBLR (which stands for DataBase
Likelihood Ratio, https://www.strmix.com/dblr/ accessed on 28 September 2021), which
can take the results of a deconvolution and carry out interrogations of the results. An
overview and developmental validation is given by Kelly at el [199]. It also has the flexibil-
ity and power to construct propositions that consider aspects of relatedness of contributors
within a sample or between samples (including common DNA donorship). DBLR has
databasing properties that allow automated, and auditable searching of deconvoluted
mixtures against a reference DNA database.

The investigative properties of DBLR allow the user to probe the deconvolution to
see what DNA profiles are the most supported by the data, to gauge the discrimination
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power of the analysis by producing distributions of LRs expected for contributor and
non-contributors [200], or to calculate exceedance probabilities.

Two mixtures can be compared using DBLR in order to determine whether there is
support for a common DNA donor, using the method described by Slooten [20]. Studies
into this feature have found a high efficacy for identifying common donors [159]. The
process has been shown to have use as a Quality Assurance tool to identify potential sample
to sample contamination events [25].

Recently DBLR has implemented a general framework for the comparison of decon-
voluted profiles or references. This general framework allows multiple deconvolutions,
from different evidence samples that are believed to possess a common DNA donor, to
be considered together in order to obtain better resolution in the genotypes of the donors
to any (or multiple) of the profiles [201]. The distribution of probabilities across a num-
ber of potential genotypes (or genotype sets) can be thought of in similar ways whether
considering a mixture deconvolution, or a kinship calculation [152]. Using this idea, the
general framework in DBLR allows the setting-up of competing pedigrees within the
evaluation [202]. The pedigrees can be linked to components of mixtures so that bespoke
propositions can be set up to consider issues such as:

• How many common donors are in a mixture?
• Are any donors of the multiple mixtures related (see [203] for an investigation into the

effect of not recognising relatedness in mixtures)?
• If I assume a relative of a POI to one mixture does that assist in resolving the other

components?
• If I use multiple mixed samples from a disaster victim identification (DVI) together in

a single analysis will that help to better resolve the genotypes of the donors?

The variation in potential propositions is virtually limitless. These types of questions,
and the evaluations that follow, have applications to standard casework, but also DVI, or
investigations looking into serial offenders, or offences involving multiple family members.

4.6. Validation of STRmix™

When STRmix™ was first implemented into active casework in 2012, probabilistic
genotyping was not as prevalent as it is in 2021. There were not yet the standards developed
as there are now for the validation or use of such software [108,109,204]. In these guidance
documents there are outlined various requirements for the development, validation, and
implementation of probabilistic genotyping systems. One of the criteria mentioned is that
the statistical and biological models used be published or otherwise generally accessible.
In Table 1 we provide a list of publications that detail the models used within STRmix™.

The publications relating to STRmix™ models (and some initial validation work) were
initially all described in the Taylor et al. publication “The interpretation of single source and
mixed DNA profiles” [15]. Since that publication, updates in models occurred over time and
so by necessity have appeared in numerous publications. All information about modelling
and validation are compiled in a single document in the STRmix™ manuals, provided to
users of the software and available to the defense under a non-disclosure agreement.
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Table 1. Publications of conceptual components of STRmix™ modelling.

Algorithms, Scientific Principles and Methods Version Introduced Reference

Allele and stutter peak height variability as separate
constants within the MCMC V2.0 [15]

Peak height variability as random variables within
the MCMC V2.3 [196]

Model for calibrating laboratory peak
height variability V2.0 [196]

Application of a Gaussian random walk to the
MCMC process V2.3 [205]

Modelling of back stutter by regressing stutter ratio
against allelic designation V2.0 [156,197,206,207]

Modelling of back stutter by regressing stutter ratio
against LUS V2.3 [156,162,206,207]

Modelling of forward stutter V2.4 [157]

Modelling of allelic drop-in using a simple
exponential or uniform distribution V2.0 [15]

Modelling of allelic drop-in using a γ distribution V2.3 [13]

Modelling of degradation and dropout V2.0 [154]

Modelling of the uncertainties in the allele
frequencies using the HPD V2.0 [208]

Modelling of the uncertainties in the MCMC V2.3 [171,208,209]

Database searching of mixed DNA profiles V2.0 [190]

Familial searching of mixed DNA profiles V2.3 [168]

Relatives as alternate contributors under the
defence proposition V2.3 [168]

Modelling expected stutter peak heights in
saturated data V2.3 [157]

Taking into account the ‘factor of two’ in
LR calculations V2.3 [104]

Model for incorporating prior beliefs in
mixture proportions V2.3 [210]

Combining DNA profiles produced under different
conditions into a single analysis V2.5 [155]

Assigning a range for the number of contributors to
a DNA profile V2.6 [164]

Mixture-to-mixture comparison to identify common
DNA donors V2.7 [20]

A top-down DNA search approach V2.8 [74]

The diagnostic outputs of STRmix™ V2.3 [211]

As well as detailing the machinations of the models, testing of their performance on
data is required to show foundational validity and validity of application. There have been
numerous such published validations of the performance of STRmix™ modelling either in
part or as a whole and we provide a list of these in Table 2. Many of these validations have
come from the desire of the developers (and more recently users) of STRmix™ to know the
performance of the models, but some have come as responses to published perceptions of
short-comings in validation efforts (for example the report of the President’s Council of
Advisors on Science and Technology [117]).
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In a brief summary STRmix™ publications on validation work from Table 2 include
data from profiling kits; Profiler Plus, Identifiler Plus, Fusion (5C, 6C), NGM SElect,
GlobalFiler, PowerPlex (21, ESI17 Pro, 16 HS, ESI17 Fast), SGMPlus and MiniFiler (we are
also aware of numerous other profiling kits that have been validated for use in casework,
but do not have the work published). There have been hundreds of millions of ‘H2 true’
tests, spanning over 3000 laboratory-produced profiles under a range of conditions (from
26 to 34 PCR cycles, and on multiple models of thermocycler or electrophoresis instrument)
and of complexity spanning single source to six person mixtures.

Table 2. Publications of validation of STRmix™ models.

Focus of Validation Reference

Ability of STRmix™ to deconvolute profiles and assign LRs that
comport to manual interpretation and human expectation [15]

Ability of STRmix™ to discriminate between donors and non-donors
in database searches [190]

Behaviour of STRmix™ to assign LRs when dealing with multiple
replicates, different number of contributors, and

assumed contributors
[163]

Sensitivity of LR produced by STRmix™ to different factors of
uncertainty such as theta, relatedness of alternate DNA source and

length of MCMC analysis
[171]

Tests to be performed when validating probabilistic genotyping,
using STRmix™ as an example [112]

Ability of individuals from different laboratories to standardise
evaluations when using STRmix™ [33,53]

Ability of STRmix™ to reliably use peak height information in very
low intensity profiles [56,132,210]

Ability of STRmix™ to discriminate between donors and non-donors
in large-scale Hd true tests, or using importance sampling [59,60,190,200,212,213]

Sensitivity of STRmix™ model parameters to laboratory factors [196,198]

Ability of STRmix™ to utilise information from profiles produced
under different laboratory conditions within a single analysis [155]

Effect of mixture complexity, allele sharing and contributor
proportions on the ability STRmix™ to distinguish contributors from

non-contributors
[54]

The ability of STRmix™ to identify common DNA donors in
mixed samples [25,159]

The sensitivity of LRs produced in STRmix™ to the choice of the
number of contributors [71,72,97]

Ability to use STRmix™ to resolve major components of mixtures [72]

Testing the assumption of additivity of peak heights in
STRmix™ models [159,160]

Performance of the degradation model within STRmix™ [214]

The effect of relatedness of contributors to the STRmix™ analysis [203,215]

Testing the calibration of LRs produced in STRmix™ [58]

Validation overviews of STRmix™ [205,216]

Comparison of STRmix™ to other probabilistic genotyping software [41,43,112,217]

4.7. Growth of STRmix™

Since its introduction in 2012 in ESR and FSSA, STRmix™ has now been adopted
throughout Australia and New Zealand and currently over 60 DNA forensic laboratories
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throughout the world, including the US army and the Federal Bureau of Investigation (FBI).
Figure 6 shows the growth of STRmix™ between 2012 and 2020.

When last tallied, STRmix™ is believed to have been used in over 220,000 cases
worldwide, available online: https://www.strmix.com/news/survey-shows-strmix-has-
been-used-in-220000-cases-worldwide/ accessed 28 September 2021. For the past 6 years,
users in the USA have organised a yearly STRmix™ workshop/conference, that had over
750 attending online presentations in 2020.

Figure 6. Growth of STRmix™ use over eight years.

The STRmix™ team has grown from an original three developers to employing over
20 individuals who work in training, support, validation, research and development,
programming and quality assurance.

4.8. Admissibility Experiences with STRmix™

The STRmix™ group’s experience with court and admissibility is mainly in the USA
and Australia. In the, at least, 83 admissibility hearings to which STRmix™ has been
subjected (as of 1 January 2021), a very wide range of issues have been raised but there
are a few that recur. These can be divided into those specifically aimed at STRmix™,
those aimed at PG in general, and those that relate more broadly to the use of LRs and
especially understandability and the verbal scale. See information available online:
https://johnbuckleton.wordpress.com/strmix/ accessed 28 September 2021, for a non-
exhaustive list of admissibility hearings, most with attached rulings or transcripts

Recurrent issues that have been raised regarding STRmix™ include independence of
validation, run to run variability, code access, code quality, and validation.

4.8.1. Independence of Validation

Perhaps the most recurrent complaint refers to the established fact that most publica-
tions on STRmix include one or more of the original developers. This is exemplified by
two comments in the PCAST [117] report. PCAST @ pg 79 give: “Appropriate evaluation of
the proposed methods should consist of studies by multiple groups, not associated with the software
developers, that investigate the performance and define the limitations of programs by testing them
on a wide range of mixtures with different properties.” PCAST @ pg 81 give: “As noted above,
such studies should be performed by or should include independent research groups not connected
with the developers of the methods and with no stake in the outcome.”

This argument has been taken further to suggest that even those labs separate from
the developers but who have purchased STRmix™ have a vested interest and hence their
publications should not be trusted.
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Whilst we reject the suggestion that we, and the many professional collaborators
that we have worked with, would distort our publications because of self-interest we
acknowledge the desire to have further distance between the validators and the developers.
The National Institute of Standards and Technology (NIST) is often suggested as a suitable
organization for this purpose [218]. NIST has had STRmix since March 2014 initially as an
evaluation copy but subsequently purchased. There is one publication from NIST [217]
that represents a comparison of STRmix™ and EuroForMix and both software perform well.
There is desire for more independent work to be done and the developers would like to
assist, at an appropriate distance, any efforts at independent validation.

4.8.2. Run to Run Variability

One complaint is that the MCMC means that the exact value reported for the LR could
be different if the process were rerun. The argument is that the existence of variability raises
doubts about whether any of the results should be accepted. This raises very significant
questions about precision and accuracy that we will touch on briefly later. However, a full
treatment is beyond the scope of this work. Here we simply note that STRmix™ includes
a partially successful attempt to give a lower bound to the MCMC variability [185]. In
conjunction with other conservancies, it is almost certain that the LR is understated in the
overwhelming majority of cases [186].

4.8.3. Code Access

The code for open source software is freely available on the internet. STRmix’s code
is not open source but is available under an non-disclosure agreement (NDA) [219] This
meets the ISFG guidelines [109] requirement “However, if requested by the legal system, the
code should be made available subject to the software provider’s legitimate copyright or commercial
interests being safeguarded. Supervised access to the code under a “no copy” policy is acceptable.”
Objections to the use of an NDA have included that inconvenience of supervision and the
risk presented by the sanctions agreed to in the NDA if the NDA is contravened.

4.8.4. Code Quality

The STRmix™ code has been inspected three times by the same independent analyst
under NDA. The comments made centre around coding practice, documentation, and
adherence to software engineering standards [220]. At no stage has a coding fault been
identified that affects the accuracy of the output although comments have been made that
certain coding practices might increase the risk of, as yet undiscovered, miscodes. The STR-
mix™ team maintain regularly updated specifications documentation, risk analysis, and a
gap analysis. This latter specifies any gaps between current STRmix practice and various
guidance documents. In summary STRmix™ complies or very nearly complies with the
SWGDAM [108], ISFG [109], Forensic Science Regulator [116] and IEEE requirements [221].
The STRmix™ group is accredited to ISO 9001 standard.

4.8.5. Validation

Various aspects of STRmix™ validation have been challenged in courts since 2012. The
initial challenges related to the conceptual validation of the models used by STRmix™ or
the laboratory in-house validation of the software to show that it was performing to a high
standard. Later challenges moved to the thoroughness of developmental validation, the
adherence of developmental validation with published guidelines, or the validation of the
computer coding (separately from the validation of the results produced by the computer
code). This latter point was the focus of a multiple day defence challenge to STRmix™ in R
v Tuite [222] in Australia.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12101559/s1, Supplement S1: Details of available software to carry out probabilistic
genotyping, Supplement S2: Details of the gamma model.
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Abstract: The forensic community has devoted much effort over the last decades to the development
of a logical framework for forensic interpretation, which is essential for the safe administration of
justice. We review the research and guidelines that have been published and provide examples of
how to implement them in casework. After a discussion on uncertainty in the criminal trial and
the roles that the DNA scientist may take, we present the principles of interpretation for evaluative
reporting. We show how their application helps to avoid a common fallacy and present strategies
that DNA scientists can apply so that they do not transpose the conditional. We then discuss the
hierarchy of propositions and explain why it is considered a fundamental concept for the evaluation
of biological results and the differences between assessing results given propositions that are at the
source level or the activity level. We show the importance of pre-assessment, especially when the
questions relate to the alleged activities, and when transfer and persistence need to be considered by
the scientists to guide the court. We conclude with a discussion on statement writing and testimony.
This provides guidance on how DNA scientists can report in a balanced, transparent, and logical way.

Keywords: DNA; forensic; principles of interpretation; investigative; evaluative; reporting; LR;
propositions; activity issues; transfer

1. Introduction

In this article we discuss a framework that has been established by forensic scientists
(and by extension, forensic DNA scientists) to help them reason about, and convey, their
findings in a balanced, robust, logical, and transparent way. This form of reasoning was
applied as early as the end of the 19th century [1]. It was formalised by the Case Assessment
and Interpretation team of the former Forensic Science Service of England and Wales in the
1990’s [2]. The approach is a paradigm for reasoning in the face of uncertainty, whatever
the forensic discipline, although here we focus on DNA. This paradigm, which we consider
to be the fundamental basis for reasoning in all forensic science disciplines, is discussed in
numerous books [3–8] and interpretation guidelines [9–12].

2. Uncertainty in the Criminal Trial

In the context of a criminal trial, there are few elements that are known unequivocally
to be true: the court is uncertain about key disputed events but needs to give a verdict.
Disputed events could be, for example, whether “Mr Smith is the father of the child”, or
if “Ms Jones is the source of the blood that has been recovered from the crime scene”. In
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those cases, the court will seek the help of DNA scientists. Very often, the court will have
high expectations and expect definitive answers. Because of the CSI effect [13], they might
believe that DNA is unique and, as such, will allow the identification of the person who is
the father of the child or is the origin of the blood/DNA found at a crime scene. However,
things are not that simple: the approach that is used does not allow the formal identification
of the person who is the father of the child or who is the origin of the trace. There are very
few forensic results that can be presented as “facts” and where one can be categorical. Is
this problematic? We argue that it is not: uncertainty exists and, as explained by Dennis
Lindley [14], rather than neglecting it or wanting to suppress it, the best approach is to
find a logical way to manage it. As we will see, this is done by invoking the notion of
probability, which provides a coherent logical basis for reasoning in the face of uncertainty.

3. Roles of the DNA Scientist and Different Type of Reporting (Factual,
Investigative, Evaluative)

Information given by DNA scientists may be factual or may be in the form of an
opinion. (Here, we refer to opinions based on knowledge and professional judgement (i.e.,
inferences drawn on the basis of forensic observations)).

A factual report describes what has been done and the observations obtained. The
scientist makes no inference based on these observations and offers no opinion on the
meaning of the results. Factual reporting is appropriate when conclusions are straight-
forward. A typical example would be a report where the DNA profile of a person is
described so that it can be entered into a national DNA database. If expert knowledge is
needed to draw a conclusion from the observations, then it would be misleading to present
only the observations without offering a professional opinion. An example would be if
the scientist only reported the description of the results of a presumptive test for blood.
Simply stating that the item was tested for the presence of blood and that the result was
positive could be misleading. Indeed, one cannot assume that a positive presumptive test
for blood demonstrates unequivocally that the material is blood, even in the investigation
stage [15]. Similarly, reporting in a paternity case that the child and the alleged father share
one allele in common for all but one locus, without offering an opinion, could be easily
misunderstood.

It has been suggested that the opinions given by forensic scientists can be classified
broadly into two types—"investigative” and “evaluative” [16]. This should not be taken to
mean that forensic scientists conduct police investigation or that they work as investigators.
The point of this distinction is to underline that the questions encountered during the
investigation and the court proceedings generally are of a different form. This leads to a
difference in the inferential process [16,17] used in the generation of the opinion that then
contributes to addressing these questions. Examples of the different activities that typify
the two different roles that DNA scientists can take is shown in Table 1. It must be stressed
that sometimes it may be difficult to separate these roles unequivocally.

Table 1. Differences between investigative and evaluative roles.

Investigative Role Evaluative Role

Tends to be crime-focused. Tends to be suspect-focused.

Tends to be at the beginning of the criminal justice process. Tends to be at the culmination of the criminal justice process.

Helps the investigator make decisions. Helps the court take decisions.

Type of questions: What happened? What is this? Who could
be involved?

Type of questions: Is Mr Smith the source of the DNA or is it someone
else? Did Mr Smith drive the car or was he a passenger?

Suggests explanations for the observations and gives guidance. Evaluates the observations (i.e., results) given at least two mutually
exclusive propositions.

Open-ended process. More formal and structured.

Explanations need to encompass all realistic possibilities to avoid bias
and avoid potentially misleading the inquiry.

Assigned probabilities should be calibrated; rates of misleading
opinions should be low and documented.
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An investigative opinion arises when explanations are generated to account for the
observations. They are generally, but not exclusively, made in the absence of a person of
interest (POI). An investigative opinion could be given in a case where a victim of a possible
rape does not have a clear recollection of what happened and where no semen is recovered.
Possible explanations for the absence of sperm could be that a condom was worn, or that
there was no ejaculation or that all trace of sperm was lost, or that the victim used a vaginal
douche or that there was no sexual intercourse. The list of explanations offered by the
scientist may not be exhaustive—there may be other possible explanations that the scientist
has not considered or has not been able to generate, and they are not necessarily mutually
exclusive (i.e., several explanations might be true [18], for example maybe a condom was
worn and the victim used a vaginal douche). Another example of an investigative opinion
could be a case where a DNA analysis of an athlete’s urine is performed in the context of
possible doping. Imagine that the single DNA profile derived from the urine does not align
with the DNA profile of the athlete, but that many alleles are shared between both DNA
profiles. In such a case, provided no error has been made, the athlete cannot be the source
of the urine. A possible explanation for the findings would be that a close relative is the
source of the urine. This could be suggested as a possible avenue of investigation.

As mentioned, the separation of the roles and the types of opinion provided by forensic
scientists is not always straightforward. There is nothing wrong in assessing the value
of a DNA comparison for investigative purposes, for example. This is typically the case
where a database search is carried out, when there is no suspect associated with the scene.
Here, the aim is to provide investigative leads and information on who could be the source
of the DNA. The main difference is that in the initial stages of a case, there might be no
suspect/defendant. When there is, if the results are meant to be used in court, the scientist
will need to take into account at least one alternative, for example, the defence’s perspective
of events. This may be based on what the defendant says, but as there is no obligation for
the defence to provide information, this can also be grounded in case information gathered
during the investigation (e.g., the defendant works at the same place as the victim) and/or
in what appears to be a reasonable alternative (i.e., a proposition that would be amenable
to a reasoned assignment of credibility by a judicial body). In a case in which there is a
defendant, scientists should offer an evaluative opinion on their results, based upon a pair
of case-specific propositions (sometimes also called “allegations” or “hypotheses”) and the
framework of circumstances. According to Willis et al. [9], evaluative reports for use in
court should be produced when two conditions are met:

1. The forensic practitioner has been asked by a mandating authority or party to examine
and/or compare material (typically recovered trace material with reference material
from known potential sources).

2. The forensic practitioner seeks to evaluate the results with respect to particular com-
peting propositions set by the specific case circumstances or as indicated by the
mandating authority.

4. Desiderata and Principles of Interpretation for Evaluative Reporting

When choosing the approach for the evaluation of forensic findings, there is a need
to first define what the desired properties of the interpretation framework are [16,19].
The desiderata of any approach to interpretation have been proposed as: balance, logic,
transparency, and robustness. Not unsurprisingly, these have since been included in
several guidelines on evaluative reporting [9,10,12,20]. This is not to say that investigative
opinions do not have these properties. However, the principles of interpretation [4,21,22]
apply mainly for forming evaluative opinions. This is because in the early stages of an
investigation, there may be very little case information, little in the way of suggestions
for what happened, and no suspect. In that case, it would not be possible to consider
alternatives put forward by, for example, a defence team. Below, we consider only the
principles for evaluative reporting as applied to issues relating to a POI when their case
proceeds to court.
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4.1. First Principle of Evaluative Reporting: Importance of Case Information

The first principle for forming evaluative opinions tells us that interpretation takes
place in a framework of circumstances. Note that this is also true for our choice regarding
the methods of analysis: we would need to know what the issue is. One can distinguish
between aspects of the circumstances that are task-pertinent and task-irrelevant. The role
of the forensic scientist can be divided in two parts: (1) understanding the uncertainties
facing the fact finder and (2) helping the fact finder to resolve them. They will thus first
need information to identify the issue(s) with which forensic science can help. Then, the
scientist should devise and agree on an effective case strategy, including an assessment of
the possible outcomes and their value, to help address the issue. Once the examinations
have been completed and observations have been made, scientists will assign a probability
to the specific observations, given propositions that are meaningful in the case and given
the available information (task-pertinent case circumstances, but also expert knowledge).
The probability they assign will be personal and conditional in the sense that it depends
on what the individual knows, is told, and what is assumed. For a DNA scientist, case
circumstances such as whether the persons of interest have legitimate access to the ob-
jects/persons/premises, what they say about the alleged incident in question, the activities
that are alleged to have taken place, and the timelines, are all examples of task-pertinent
information that will impact the value of the results. Examples of information that is not
relevant for the DNA scientist and is potentially harmful because of bias could include (1)
there is eyewitness evidence that points toward the POI, (2) there is a partial finger-mark
that supports the proposition that a specified person touched the object, or (3) the POI
had first confessed to the offence but later retracted that admission. As task-pertinent case
information impacts the value of the findings, it is essential to give a signal that should the
framework of circumstances change, it will be necessary to review the interpretation. We
discuss examples of caveats in Section 12.

4.2. Second Principle of Evaluative Reporting: Two or More Competing Propositions Should
Be Considered

To be balanced, when assessing the value of biological results, one must consider at
least two propositions (i.e., statements that are either true or false, and that can be affirmed
or denied). They will be formulated in pairs based on the case information (we discuss
proposition formulation in Section 7) and should represent the views of the two parties as
understood at the time of the writing of the report.

Propositions need to be mutually exclusive (if one is true, the other is not) and, if
possible, exhaustive in the context of the case (i.e., one should not consider all propositions
as default, but only those that are of interest to the court [23]). It is not feasible nor desirable
to consider absolute exhaustiveness, and practice can proceed with an acceptable coverage,
that is without the omission of a relevant proposition [24]. It is important to ensure that
the propositions to be considered are based on case information. If, the case information
changes and it is shown that the propositions considered are not meaningful anymore, a
new evaluation will need to be performed and a new written statement issued.

4.3. Third Principle of Evaluative Reporting: Scientists Need to Assign Their Probability of the
Findings, Not Their Probability of the (Alleged) Facts

To respect logic, forensic scientists shall assign the probability of their findings given
the truth of propositions, not the probability of the propositions given the findings. It
may seem obvious that scientists need to focus on the value of the findings. However, it
is not a straightforward endeavour, and many scientists are tempted to give an opinion
on propositions. An example could be the doping case discussed earlier: while the DNA
scientist is in a position to assign the probability of the results given the urine is from
the athlete’s sister, it is not possible—based on the results only—to assign the probability
that the urine is from the athlete’s sister. To do so, one would need to consider all the
information in the case (for example that the athlete has a sister).
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4.4. Forth Principle of Evaluative Reporting: The Value of the Findings Is Expressed by the Ratio of
the Probability of the Scientific Observations Given the Case Information and Given That Each, in
Turn, of the Propositions Are True

To measure how the new evidence (e.g., DNA results) affects one’s uncertainty about
the proposition (e.g., the urine is from the sister) considering conditioning information, one
can use a model which is known as Bayes’ rule. It is a mathematical idealisation that the
belief about a set of propositions is updated based on the (weight of the) evidence [25]. Note
that Bayes’ rule is seldom used in court (except maybe for paternity cases). Generally, the
different pieces of evidence are combined intuitively by the fact finder without assigning
any figure. This is done, for instance, when referring to “corroborating evidence”. Notwith-
standing, Bayes’ rule provides a very useful framework for understanding how DNA
results may be presented in a logical, transparent, and impartial way in legal proceedings.

Bayes’ rule may be depicted in a format known as the odds form of Bayes’ rule
(Equation (1)). Odds are the ratio of the probability of the proposition being true divided
by the probability of it being false.

Pr(Hp
∣∣I)

Pr(Hd|I)︸ ︷︷ ︸
prior odds

× Pr(E
∣∣Hp, I)

Pr(E|Hd, I)︸ ︷︷ ︸
likelihood ratio

=
Pr(Hp

∣∣E, I)
Pr(Hd|E, I)︸ ︷︷ ︸
posterior odds

(1)

where “Pr” denotes probability, “Hp” the proposition summarising the prosecution’s point
of view, and “Hd” the proposition summarising the defence’s point of view. The letter “I”
stands for the information mentioned in the section on the first principle of interpretation,
and “E” (for evidence) represents the scientific observations (i.e., results or findings). The
vertical bar “|” is called the conditioning bar and can be read as “given” or “assuming that”.

One of the most important lessons that can be learned from Bayes’ rule, as depicted
in this form, is the nature of the roles played by different actors in the judicial process. It
can be seen there are three terms in the equation, and the important question is: who takes
responsibility for each of these three?

The first term represents prior odds, where the probability of each proposition given
the information is considered. Assessing the allegations or the facts in issue is, without
doubt, the duty of the fact finders. The last term also represents odds, which again relate to
the probability of the propositions, but this time considering in addition the DNA results
(or other forensic observations). These are said to be posterior odds, as they represent one’s
updated belief after knowing the results (or the evidence) “E”.

The second term is the likelihood ratio (LR for short), which is a measure of the value
of the findings. It is defined in terms of the ratio of two conditional probabilities: (i) the
probability of the findings given that one proposition is true and given the conditioning
information; and (ii) the probability of the findings given that the other proposition is true
and given the conditioning information. The two conditional probabilities forming the LR
may be assigned either on the basis of (published) data and/or the general knowledge
(base) of the forensic practitioner. It is a measure of the relative strength of support that
particular findings give to one proposition against a stated alternative [3,4,7,26,27]. A LR
is a ratio of probabilities; thus, by definition, it is a number (as probabilities are numbers
between 0 and 1). If the LR is 1, results are uninformative, and they do not support one
proposition over the other. If the LR is larger than one, results support the first proposition
compared to the alternative. If the LR is smaller than 1 (e.g., 0.001), then results support the
alternative proposition over the first proposition. (It is sometimes reported that LRs can be
negative, that is smaller than 0. This is incorrect. LRs theoretically can range between 0 and
infinity. Log(LR) can be negative, but not LRs).

The focus of the LR is always on the findings, never on the proposition. It should be
seen as a reinforcing or weakening factor in the perception of the truth of propositions that
existed without the technical findings. This factor measures the change produced by the
findings on the odds of the fact in issue being true. (In the literature, this factor is also more
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generally called a Bayes Factor (BF). With simple propositions, a BF reduces to a LR, as
discussed in [28]. However, when multiple propositions are used, the BF does not reduce to
the LR: it is a ratio of weighted likelihoods). Because the focus of the LR is on the scientific
result, it is clearly in the domain and remit of the scientists. It allows them to provide
assistance through the use of their expertise to assign probabilities for their observations
given the truth of the competing propositions.

In addition, without considering Bayes’ rule, it appears quite sensible to say that
scientists must give their opinion on the results and not on the disputed facts in issue. It is
for the factfinder to render opinions on facts, and for DNA scientists to give the value of
their results. When DNA scientists give their opinion on the alleged facts (or propositions)
based only on the value of their results (i.e., LR), then they are said to transpose the
conditional [26,27]. This is a very common error of logic and appears in many forms [29]. It
has been called the “prosecutor’s fallacy” [30], but it is just as frequently to be found on
the lips of defenders, judges, and journalists. It is more properly known as the “fallacy of
the transposed conditional” because it is a matter of confusion between two conditional
probabilities: the probability of the findings given the propositions and the probability of
the propositions given the findings. One can erroneously transpose the conditional when
giving an opinion on a single probability or on a ratio of probabilities.

5. Avoiding the Transposed Conditional

Not transposing the conditional is difficult, and it would be satisfying if one could
avoid it just by knowing about Bayes’ rule and reporting a LR. It is so natural for the human
mind to want an opinion on (alleged) facts, that it takes time and training to avoid this
fallacy. There are several strategies that one can adopt to avoid this error of logic. Some
of these were developed at the time when the Case Assessment Interpretation team from
the former Forensic Science Service of England and Wales was training all their reporting
officers; these are outlined in [6] and summarised below.

The first thing to investigate is whether the opinion pertains to the DNA results or
to the proposition. The second aspect to check is that the sentence contains a word such
as “if” or “given” and that these are associated with the propositions. If one has pen and
paper, it is always a good idea to use notation, as spotting an error is then easier. Another
coping strategy is to memorise correct and incorrect statements. When in doubt, one should
re-phrase the statement of opinion along the lines of the correct format. Another strategy
to ensure that there is no transposed conditional is to begin one’s sentence with the term
“The DNA results” and add the probabilistic statement and the conditioning.

A lot of practice is needed to avoid inadvertently transposing the conditional: we
discuss examples of incorrect formulations in Table 2. One should remember to state both
propositions, as a LR is relative.

Table 2. Statements with transposed conditionals and their associated correct statement.

Incorrect or Ambiguous Statement (A) Correct Statement (B) Notation

1.
Given the DNA results, it is a billion times
more likely that the DNA is from Ms Jones
than from an unknown unrelated person.

The results are a billion times more
probable if the DNA is from Ms Jones
rather than if it is from an unknown

unrelated person.

A: Pr(Hp|E,I)/Pr(Hd|E,I)
B: Pr(E|Hp,I)/Pr(E|Hd,I)

Note: In A, the use of the term “that”is
always suspicious.

2.

The likelihood ratio calculated the
probability that the DNA evidence

observed in the profile originated from the
applicant, rather than another person
chosen at random from the Australian

Caucasian population. (Sometimes,
scientists will write “the probability that a
randomly selected person would have this
DNA profile is 1 in a billion.”. However,
the alternative source of the DNA is not

“selected at random”, but rather an
unknown person, related or not to the

persons of interest depending on the case).

The likelihood ratio represents the ratio of
two probabilities: the probability of the
result given that the DNA is from the

applicant and the probability of the result
given the DNA is from an unknown

person from the Australian
Caucasian population.

A: Pr(Hp|E,I)/Pr(Hd|E,I)
B: Pr(E|Hp,I)/Pr(E|Hd,I)

Note: a word such as « if » or « given »
should always be present when using

conditional probabilities.
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Table 2. Cont.

Incorrect or Ambiguous Statement (A) Correct Statement (B) Notation

3.

Participants of the proficiency test were
asked whether their DNA results more

probably originated due to the disputed
activity or social interactions. (In the
exercise, it read as “Participants were

required to consider each DNA profile
separately and assess whether they
originated either due to primary or

secondary transfer” however, it is best not
to put the word transfer in the

propositions as transfer/persistence and
recovery are factors that scientists will
take into account in their evaluation.)

Participants of the proficiency test were
asked whether their DNA results were

more probable given the disputed activity
than given social interactions.

A: Pr(Hp|E,I)/Pr(Hd|E,I)
B: Pr(E|Hp,I)/Pr(E|Hd,I)

Note: In A, the absence of the term “if [the
proposition]”or “given [the

proposition]”is a clue that the statement
needs review.

4.
The probability that the DNA comes from

a random unrelated person is one in
a million.

The probability of the results if the DNA
comes from a random unrelated person is

one in a million.

A: Pr(Hd|I)
B: Pr(E|Hd,I)

Note: statement B is correct (not
transposed) but not balanced since

Pr(E|Hp,I) is missing.

5.

Considering the genetic characteristics of
the trace, it is a million times more likely
that Mr S is the source of the DNA rather

than his uncle.

The genetic characteristics of the trace are
a million times more likely if Mr S is the
source of the DNA rather than his uncle.

A: Pr(Hp|E,I)/ Pr(Hd|E,I)
B: Pr(E|Hp,I)/Pr(E|Hd,I)

Note: in statement A, the phrase
“considering the genetic characteristics of

the trace” implies that the DNA
characteristics represent the conditioning
information (thus are present behind the

conditional bar). However, the
conditioning information should be the

propositions and the information; the term
“given” should be associated with the
propositions and information, not with

the results.

6.

As explained by this Court in Tuite [No 1]
for each DNA sample where the suspect

cannot be excluded as a contributor, a
ratio was calculated which shows how

much more likely it is that the suspect was
the source of the DNA (or a contributor to
it) than that some other person chosen at

random from the population was the
source (or a contributor).

As explained by this Court in Tuite [No 1]
for each DNA sample where the suspect

cannot be excluded as a contributor, a
ratio was calculated which shows how

much more likely the DNA results would
be given the suspect were the source of the
DNA (or a contributor to it) than given an

unknown person from the population
were the source (or a contributor).

A: LR defined incorrectly as
Pr(Hp|E,I)/ Pr(Hd|E,I)

B: LR is defined as
LR = Pr(E|Hp,I)/ Pr(E|Hd,I)

7.
The most favoured proposition is that S is

the source of the DNA rather than an
unknown unrelated person.

The DNA results strongly support the
proposition that S, rather than an

unknown unrelated person, is the source
of the DNA.

Note: in A the use the term favour could
be read as saying the first proposition is

most likely.
The term “support” is more appropriate.

All incorrect/ambiguous statements originate from statements, judgements [31], or
scientific communications. The last statement “The most favoured proposition is that S is
the source of the DNA” is ambiguous: it could lead the reader to think that the proposition
which is the most favoured is the most probable. This is not the case, as depending on prior
odds, the most probable proposition might not be the one that is the most supported by the
results. An example is shown in Table 3 using Bayes’ rule. One can see that with a LR of
1 million and very low prior odds of 1 to 10 million, the posterior probability of the first
proposition would be 9% (or 0.09); the most favoured or most likely proposition would be
the alternative.

One can note that, if the prior probability of the first proposition is zero, then whatever
the LR, the posterior probability is zero as well. It would be rare to have this situation.
According to [14], when assigning our probabilities, we should admit the possibility that
we might be wrong. If we do, this rule denies probabilities of 1 or 0. (This rule is called
Cromwell’s rule, named after Oliver Cromwell, who said to the Church of Scotland, “I
beseech you, in the bowels of Christ, think it possible you may be mistaken”. Calling it
Cromwell’s rule is attributed to Dennis Lindley). The probability of an event given K is 1 if,
and only if, K logically implies the truth of E (and of zero if K implies the falsity of E). To
provide an illustration where there can be a prior probability of zero, we revisit the case
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where the issue was whether the urine was from the athlete or not. You will remember that
the DNA was different from the athlete’s DNA, but that the donor and the athlete shared
many alleles. In that case, it was reported that the DNA profile comparison was of the
order of a billion times more likely if the person’s sister was the source of the urine, rather
than if an unrelated person was. The DNA scientist reported that the probability that the
urine originated from the sister was 99.9999999%. In those conditions, they conclude that
it was practically proven that the urine was from the sister. This prompted the athlete’s
lawyer to write a letter to say that there was only a minor problem in that reasoning: the
athlete did not have a sister (but she did have a half-sister). In this case, the probability
of the proposition is zero. This also shows why it is best for scientists to give an opinion
on the results, however large their LR. It is generally not considered the scientists’ remit
to give an opinion on facts (except, as mentioned earlier, in some countries for paternity
cases), which is the case if they give posterior probabilities.

Table 3. Posterior probabilities with the same LR of a million, but different prior odds. In the first
case, although results support the first proposition, the most favoured proposition is the alternative,
with a probability of 91%. When prior odds are equal to the LR, the probability of the proposition is
50%. If prior odds are 1:1, then posterior odds are equal to the LR.

Prior Odds LR Posterior Odds
Posterior

Probability of the
First Proposition

Posterior
Probability of
the Alternative

1 to 10 million 1 × 106 1 to 10 9% 91%

1 to 1 million 1 × 106 1 to 1 50% 50%

1 to 10,000 1 × 106 100 to 1 99% 1%

To calculate posterior probabilities using Bayes’ rule in odds form (Equation (1)), one
multiplies the prior odds by the LR. This gives us posterior odds. If the odds are a to b,
to obtain the probability of the first proposition, one divides a by (a + b). If the odds are,
for example, 1:1, the probability of the proposition is 1 divided by 2, thus 0.50 (or 50%, as
probabilities can also be expressed as percentages).

It should be noted that, when being extra careful about not transposing the conditional,
some think that it is incorrect to say “the results support the first proposition rather than
the second”. The use of the word “support” in this context was proposed in a manner
analogous to H. Jeffreys [32]. It does not indicate that one proposition is more likely than
the other, only that the results are more probable if the first proposition is true than if the
alternative is. Because it is important to indicate what our results mean and do not mean,
we recommend outlining this point in our statements.

6. Hierarchy of Propositions

The concept of a hierarchy of propositions [33] applies to all forensic disciplines. It
was developed initially for evaluative rather than investigative opinions, and one will note
that the examples of propositions given in the early Case Assessment and Interpretation
(CAI) publications were generally suspect-focused. Over time, the CAI development team
found that the concept of a hierarchy of issues and propositions was equally applicable to
investigative issues [16]. The classification of propositions into three main levels (source,
activity, and offence) allows forensic scientists to contextualise the results, to consider the
factors in their evaluation and to communicate to the client the purpose of the proposed
examinations. The demarcation between the levels is not meant to be rigid, and it is
recognised that sometimes levels will be difficult to distinguish. The levels simply provide
a model framework that helps scientists to organise their thinking, actions, and decisions.
The important point to stress to practitioners is: do not try to force all the issues you will
encounter into one of the levels of the framework. Instead, just specify clearly in words the
issue, and hence the propositions to consider. If the issue and propositions then fall neatly
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into one of the categories (i.e., one of the levels), so much the better, but do not worry if the
issue/propositions do not seem to fit one of the categories. The important thing is that you
have clearly specified the issue, with which the examinations can help, both for yourself
and for the factfinders.

The hierarchy of propositions is generally presented from source to offence (see
examples in Table 4). It is structured in a hierarchy as scientists will need more case
information and more knowledge to assess their results given offence- or activity-level
propositions, compared to those of the source level. It is important to outline that when
identifying the level in the hierarchy where they can be the most helpful, experts shall
not stray outside the bounds of their expertise, and value must be added. This is done by
bringing knowledge that is needed for understanding the meaning of the results in the
context of the case and that otherwise would remain unavailable to the court.

Table 4. Evaluative examples of pairs of mutually exclusive propositions at different levels in the
hierarchy that DNA scientists could contribute to addressing provided they have knowledge that is
needed but which otherwise would be unavailable to the court.

Level Question/Issue Results
Example of Pairs of

Propositions

Source Is the POI the source of the
body fluid?

DNA profiling comparison.

Mr A is the source of the blood.
An unknown unrelated person

is the source of the blood.

Sub-source Is the POI the source of
the DNA?

Mr A is the source of the DNA.
An unknown unrelated person

is the source of the DNA.

Sub-sub-source Is the POI the source of the part
of the mixture?

Mr A is the major contributor of
the DNA mixture.

An unknown unrelated person
is the major contributor of the

DNA mixture.

Activity Did the POI do the activity?

Presence/absence of DNA at
different locations.

Quantity/quality of the DNA.
(DNA profiling comparison) *.

Presumptive tests.
Multiple traces from

same activity.

Mr A and Ms B had
penile-vaginal intercourse

Mr A and Ms B only had social
activities as described in the

case information.
Mr Smith was the driver and Mr

Jones the passenger at the
relevant time.

Mr Jones was the driver and Mr
Smith the passenger at the

relevant time.

Offence Is the POI the offender?

Multiple traces possibly
resulting from different

activities compared to Mr A.
Presence/absence of DNA.

Quantity/quality of the DNA.
(DNA profiling comparison) *.

Presumptive tests.

Mr A is the burglar (in the sense
of “Mr A did the specified

activities that the burglar has
allegedly done, as specified in

the paragraph on case
information”).

Mr A has nothing to do with
the burglary.

* In some cases, considering whether or not the DNA is from the POI can have an impact on the evaluation.

6.1. Issue with Which the Forensic Scientist Can Help: Is Mr Smith’s the Source of the
DNA/Biological Material?

When the hierarchy of propositions was first suggested, it was only possible to obtain
a DNA profile from biological fluids present in relatively large quantities. In such cases,
one could reasonably assume that the DNA profile was derived from a known biological
fluid (e.g., blood). This assumption became questionable with the advent of more sensitive
techniques. This led to new levels (still contributing to answering the question of the
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source): the DNA level (or sub-source level) and the DNA contributor level (or sub-sub-
source level [34]), for situations where the issue is whether a person is the source of part of
the DNA mixture (e.g., a major component). We discuss below when it is meaningful to
choose source-level propositions or their associated sub-levels.

6.1.1. Source-Level Propositions

Source-level propositions are adequate given two conditions: first, the issue should be
whether a given person is the source of the material. Second, there should be no risk for
the court to misinterpret the findings in the context of the alleged activities. This would
typically be the case when the material is found in such a quantity that there is (i) no need
to consider its presence for reasons other than the alleged activity (i.e., it will be accepted
by the fact finder that the material is relevant), and (ii) that the nature of the material can be
safely assumed. The following example is adapted from [9], illustrating when considering
the results of a DNA comparison given source-level propositions is not misleading:

“A large pool of fresh red bloodlike material is recovered at the point of entry at a bur-
glary scene and the circumstances suggest it has originated from the offender(s), whomever
they may be. A sample is delivered to the laboratory for DNA analysis. Combination of
a positive presumptive test, large quantity and appearance allows the scientist to safely
assume that it would be agreed that the stain is blood. The defendant, Mr D., says that
he has never been in the premises and denies that the blood at the scene is from him.
The set of propositions can be (1) the bloodstain came from the defendant and (2) the
bloodstain came from an unknown individual.” Assuming that the nature of the material
will not be contested, the same term, “bloodstain”, can be used in both propositions. It is
sometimes believed that source-level propositions can be formulated when the nature of
the material (e.g., blood, semen, saliva, cellular material) is disputed and that this accom-
modates consideration of the probability of presumptive tests. However, it does not as the
probability of observing a positive (or a negative) result for the presumptive test would be
equivalent whether the blood is from Mr D or from someone else. Therefore, if the nature
of the material is disputed, it is, in general, more meaningful to consider activity-level
propositions [11]: these will take into account the results of presumptive tests as well as the
transfer, persistence, and the presence of the material as background (i.e., material from an
unknown source present for unknown reasons).

6.1.2. Sub-Source-Level Propositions

The advent of highly sensitive methods has made it possible to produce DNA profiles
from very small quantities of biological material [35]. With invisible or small stains, the
nature of the material from which the DNA profile is produced is often unknown. In such
cases, if the issue is who is the source of the DNA, one can assess the results of a DNA
comparison given sub-source propositions (i.e., the source of the DNA, not of a given body
fluid). These are especially useful for producing investigative leads. As mentioned in [10],
one can use a LR in both the investigative and the evaluative phase. The main difference is
that in the evaluation phase, there will generally be a suspect/defendant around whom
the issues and propositions will be defined. In this situation, it will be necessary to take
into account an alternative proposition, typically the defence’s view of events, if that has
been communicated to the scientist. This person may, for example, mention that they know
the victim. Again, in such cases, assessing the results given activity-level propositions
will generally be more meaningful. However, the DNA scientist operates in “investigative
mode” where, for example, a database search is carried out because there is no suspect for
the crime. Here, in the initial phase, what is of interest is to provide information about
who could be the source of the DNA. An example of sub-source propositions would be:
“The DNA is from candidate X” or “The DNA is from an unknown person”. If the aim
is to produce a useful lead, the person will not have been arrested yet, and de facto, the
scientist will have been provided with no alternative proposition or information. The
person making the investigative decision (here, for example, to arrest the candidate or not)
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will not be the court but, in some jurisdictions, an investigating magistrate, or in others, a
police investigator. When there is very little case information, the value of the comparison
needs to be much higher for the person making the decision (e.g., to arrest the candidate or
not). In addition, for cost effectiveness, one may also want to avoid investigating many
false leads. This explains why larger LRs will often be needed for investigative purposes.

6.1.3. Sub-Sub-Source-Level Propositions

If the issue is whether a POI is the major (or minor) contributor of a DNA mixture,
then one can consider sub-sub-source propositions [34]. An example of sub-sub-source
propositions would be: “Mr A is the major contributor to the DNA mixture” or “An
unknown person is the major contributor to the DNA mixture”. If it is important that the
POI is compatible with the major component, then this generally is an indication that the
issue lies in the activities and that scientists can add value by considering activity-level
propositions. If the relative quantity is not an important factor, then sub-source propositions
are generally preferred to sub-sub-source, as the former allow accounting for all the results
(and not only part of the mixture).

6.2. Issue with Which the Forensic Scientist Can Help: Did Mr Smith Perform the Activities
Alleged by the Prosecution or Those Alleged by the Defence?

The next level in the hierarchy of propositions is the activity level. The evaluation
of given activity-level propositions generally involves assessment of the extrinsic charac-
teristics (e.g., quality of the DNA profile, relative quantity of DNA, where the DNA was
sampled from) and should be considered when transfer, persistence, or background have
a significant impact on the understanding of the value of the findings in the context of
relevant case circumstances and the alleged activities [9,11,36]. Depending on the case
and the information content of the profile, the source of the DNA might be contested or
agreed. When the source of the DNA is not contested, but the activities leading to the
deposition of the DNA are, one does not necessarily need to consider the source of the
DNA anymore For investigative purposes, the DNA profile of the trace and of the person
still need to be compared. To determine the value of this comparison, one will assign a
LR given sub-source-level propositions. However, if there is no dispute and thus only one
proposition (i.e., the DNA is from the POI), this LR value is not relevant. It is the LR given
activity-level propositions that is meaningful. It is sometimes believed that to consider
activity-level propositions, one needs to agree on the source of the DNA. This is not true:
in this type of evaluation, one can consider both possibilities (i.e., that the DNA is from
the POI or not). If so, one has associated sub-source propositions. However, depending
on the rarity of the DNA profile, this consideration will have little impact on the value of
the findings given activity-level propositions. Indeed, as indicated by the England and
Wales Court of Appeal [37]: “It makes the task of the jury so much easier if they do not
have to plough through and listen to evidence that is simply not in dispute.” Let us look at
an example where the issue is one of activity. Assume a stolen car crashed into a group of
pedestrians, killing one and injuring others. Two people escaped from inside the car and
ran away. Acting on information, the police quickly arrested two men, Mr Smith and Mr
Jones. Both admitted to being in the car at the time of the collision, but both denied being
the driver, instead accusing the other of being the driver. The issue would be: “Did Mr
Smith or Mr Jones drive the car at the relevant time?”. The activity-level propositions would
be: “Mr Smith drove the car at the relevant time and Mr Jones was the passenger.” The al-
ternative would be the reverse: “Mr Jones was the driver and Mr Smith the passenger.”. As
both the driver’s and the passenger’s airbags were activated at the time of the collision, an
examination of the airbags for biological material could help to address the issue. Another
typical case where sub-source-level propositions might not be meaningful, would be when
a person has legitimate access to the object or person on which examinations have been
performed (e.g., a gun found in the POI’s car). In such cases, the source of the DNA (i.e.,
the person) may well not be contested (which does not mean that the DNA does not need
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to be analysed, only that, depending on the results, these may not need to be assessed).
It is worth noting that activity-level propositions allow for the assessment of the absence
of evidence [33,38]. The saying “The absence of (matching) evidence is not evidence of
absence” is not always true. To know when it is, formal evaluation is needed. (As much as
possible we try and avoid the term match for two reasons: first, laypersons believe that
saying there is a match means that the DNA is from the person; second, scientists can at best
state they were unable to see any difference they judge relevant. This does not mean that
the two profiles are identical: indeed, two separate identities cannot be identical because,
given sufficient resolution, all distinct entities are distinguishable from each other, even
when two items come from the same source). Activity-level propositions also facilitate
the combination of DNA results from different items that were touched because of the
same activity (e.g., the two airbags, and possibly the steering wheel, in the example above).
Finally, one should note that sometimes it may be difficult to distinguish offence from
activity. As an example, a proposition such as “Mr A stabbed Mr B.” or “Ms A shot Mr B.”
may be considered either as an offence and/or an activity-level proposition. Remember, as
indicated previously, the lines of demarcation in the hierarchy should not be seen as rigid:
it is meant to organise thinking, actions, and decisions.

6.3. Issue with Which the Forensic Scientist Can Help: Is Mr Smith the Offender or Does He Have
Nothing to Do with the Offence?

The issue for the court is always the offence, which is at the top level of the hierar-
chy. An example of a pair of competing offence-level propositions could be: “Mr Smith
committed the burglary” and “Mr Smith had nothing to do with the burglary”. It should
be remembered that propositions and case information are closely entwined so that in
the case information, more detail would be given indicating, for example, that Mr Smith
visited the jewellery store 3 days prior to the burglary. It is sometimes cautioned that
offence-level propositions are not the domain of the scientist but of the court. Although this
is true, this statement applies to all levels of propositions, as scientists offer their opinion
on the results and not on propositions (or else, they would transpose the conditional).
This is valid whatever the level, and offence level is not special in that sense. However,
the evaluation of findings given offence-level propositions is special in the sense that it
is rare that forensic scientists add value by considering propositions at the offence level,
compared to a level lower in the hierarchy. Indeed, in many cases, the difference between
activities and offence lies in the intent or consent, and in that case, obviously, biological
results cannot help discriminating between these two levels. A typical case where DNA
scientists cannot add value would be if they considered “rape” instead of “vaginal/penile
penetration or consensual sex” [39]. Biological results do not give any information on the
issue of consent, pre-meditation, nor intent, thus DNA scientists cannot help the court
address those issues. In these situations, DNA scientists should not rise in the hierarchy,
as they would not use any specialised knowledge, nor add value, when considering the
offence rather than the activities.

However, the consideration of offence-level propositions allows adding value when
there are multiple forensic findings that need to be combined by a forensic scientist. Such a
case could be a burglary implying multiple activities: for example, breaking glass, jumping
out of window, opening a safe. In this situation, offence-level propositions would enable
combining the different results (e.g., shoe-marks, fibres, and DNA profile comparisons).
The list of the activities would be very similar to what constitutes an offence in that case.
Offence-level propositions have also been proposed to explore the impact of other factors
such as relevance [40,41].

7. Formulation of Propositions

Within a forensic case, people (e.g., the police, the defence, or witnesses) will make var-
ious claims or statements. These are either true or false and can be affirmed or refuted. It is
once they are formalised by the scientist that these claims will be referred to as propositions.
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(Some people use the term hypothesis to designate propositions used for the evaluation
of findings. We prefer to keep this term for situations where scientific experiments are
performed to “test” a hypothesis. As discussed in [3], this enables distinguishing between
both concepts, and it is only when a proposition is formulated for empirical testing that we
will call it a hypothesis). As described in [33], propositions need to be mutually exclusive
(if one is true, the other is false) and formulated in pairs (e.g., views put forward by the
parties to the cases) against a background of information and assumptions. They should
also be amenable to a reasoned assignment of credibility by a judicial body [9]. There
may be more than two propositions, but in the context of a criminal trial there will be
two views. For the formalisation of propositions, the basic criterion is that they should be
formulated in such a way that it is reasonable for the scientist to address a question of the
form: "What is the probability of the observations given this proposition and given the
framework of circumstances?” [12]. There are other important criteria to keep in mind when
formulating propositions. For example, propositions are about causes and as such will be
assessed by the decision maker (e.g., factfinder). If propositions contain factors that are to
be considered in the evaluation, these factors cannot be assessed by the scientists anymore:
being part of the proposition, they will be assessed by the decision maker. Formulation
of propositions needs to adhere to specific criteria and appropriate phrasing. As it is a
difficult task that requires expertise, the DNA scientist is in the best position to formalise
the propositions, and one cannot expect that prosecution or defence formally define the
so-called “Prosecution or Defence propositions” themselves. (The defence proposition may
be compound. For example, if the alternative is that the DNA is from an unknown person,
this unknown person may be unrelated or a sibling or a cousin). These terms are used
to indicate that the propositions represent the views of these two parties as understood
from the case information available (i.e., that the propositions were formulated against
the background of information available from the parties). However, should one of these
not accept the propositions considered by the scientist, a new evaluation will be needed.
Ideally the formulation of propositions should be discussed between the parties and the
DNA scientist before doing the work.

There have been many publications on the formulation of propositions [10,11,18,23,33,42–46].
In Table 5, we give the criteria to which they should adhere and examples of poorly worded
propositions, and their corresponding, more meaningful formulations are discussed in
Table 6. It is important to emphasise that case information and propositions are entwined
and will both appear in a statement. What goes in the information and the proposition will
depend on the case. However, because we repeat propositions in our statements and in
court, it is preferable to keep them short and snappy.

Table 5. Criteria that help spotting whether propositions are formulated in a meaningful way.

Criteria for Propositions Basis of the Criteria

They come in pairs, so there are at least two propositions. To ensure a balanced view representing both parties.

They are based on the views of the parties and
contextual information. So that the evaluation is relevant to the case.

They are formal and relate to inductive inference. To allow scientists logically to assess their findings

They are mutually exclusive. If not, a LR cannot be used.

They represent the positions that prosecution and defence
respectively would be expected to take at court.

So that there is one value of the findings and not several values
(one LR, not several).

Propositions are about “causes”, not results. To enable the scientists to add value and expertise that is
needed for the understanding the case.
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Table 6. Examples of propositions that should be avoided and how to formulate them in a more
meaningful way.

Examples to Avoid More Meaningful Examples Comments

1. Mr Smith was not the passenger. Mr Smith was the driver.
If propositions are vague, it is

difficult to assign a probability, unless
this is specified in the paragraph

summarising task-pertinent
information.

2. The DNA is from someone other than
Mr Smith.

The DNA is from
an unknown person.

3. Mr Smith was in recent contact with
the victim.

Mr Smith visited the victim’s house
as described in the case information.

4. The matching profile comes from
Mr Smith. The DNA is from Mr Smith.

“Matching profile” is a result: it
should not be included in

the proposition.

5. The male DNA is from Mr Smith or
someone of his paternal lineage. The male DNA is from Mr Smith.

Here, it is Mr Smith who would be on
trial, not his paternal lineage. If one
needs to consider a person from the

paternal lineage, this should be done
in the alternative. It is the methods

that depend on the issue and not the
reverse (i.e., propositions do not

depend on methods).

6. Mr A’s DNA was transferred on the
drug package via Officer B.

Officer B arrested Mr A before seizing
the drug package.

As written, the statement says that
“DNA was transferred”. This is
essentially an explanation for the

observations. The probability of the
findings given this explanation is
approaching 1. The probability of

DNA being transferred needs to be
taken into account by the scientist

when evaluating results given
activity-level propositions and the
case information. That transfer has
occurred cannot be included in the

proposition for evaluation.

In the evaluative stage, propositions should not be findings-led, and thus, ideally,
the formulation of propositions should be made without knowing the results. This is an
essential, early component of the recommended process of Case Assessment and Interpre-
tation (mentioned later in Section 11 on Pre-assessment). In DNA casework—especially for
investigative purposes—when considering sub-source propositions, the alternative source
is generally by default an unknown person. If the propositions are standard and if knowing
the findings does not impact the value of the comparison, then it is acceptable. However,
if there is an impact, it is more problematic. An example, of a findings-led proposition
could be “Mr A is the minor contributor of the DNA mixture”, because Mr A happens
to be compatible with the minor contributor. Another could be to change the number of
contributors because there is one exclusion at a locus if the mixture is considered as a two-
person mixture, but not if it is assigned as a three-person mixture. Regarding the number
of contributors to a mixture, one should note that there is no need to consider a specific
number. It is sensible in some cases to consider a variable number of contributors [44,47]. A
last example of findings-led propositions would be the situation where there are two candi-
dates for the same mixture. If one chooses a different set of propositions based on whether
they explain the mixture together or not, then the propositions could be findings-led. In
such cases, a suggested solution is again to consider multiple propositions [48].
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8. Formulation of the Alternative in the Absence of Information from the Person(s)
of Interest

A POI is under no obligation to provide information and may give a no-comment
interview. In such a case, scientists will formulate an alternative that appears the most
reasonable based on what they know [9,12]. The investigation might provide information,
for example that the victim and defendant visit the same gym, suggesting that activity-
level propositions might be appropriate. One can also suggest the negation of the first
proposition (e.g., Mr Smith is not the source of the DNA), provided we are explicit on what
is meant by “not” [46]. This ought to be explained in the paragraph describing the case
information. The implication of adopting such a negation should be set out clearly for the
receivers and users of the opinion—it tends to maximise the value of the observations in
support of the main proposition over the alternative. Some scientists do point this out in
their reports. The important considerations regarding, for example, from whom the DNA
comes (e.g., if not from Mr Smith) will be clearly disclosed. A caveat should indicate that
should these assumptions not be relevant to the case, a new interpretation and perhaps
further analysis will be necessary based on the new case information and new alternative.

9. Distinction between Explanations and Propositions

It is particularly important to distinguish propositions from explanations when the
issue is activity, as these explanations are more and more commonly offered by the parties.
In the context of the Case Assessment and Interpretation model [2,18], explanations have
been recognised as intermediate considerations when exploring less formal alternatives.
Explanations can be very useful in the investigative stage: they provide new leads and
outline what information is needed. Explanations will be generated based on the observa-
tions and generally do not qualify as formal propositions for the evaluative stage. If the
explanation is prescriptive, the probability of the observations given this explanation will
be one. Examples of prescriptive explanations could be “The trace has been contaminated
with the suspect’s DNA”, “The persons were in contact recently and transferred DNA
directly,” or if we want to state the obvious, “The stain came from someone with the same
DNA profile”. Explanations may be speculative or fanciful. Contrary to propositions, they
do not depend on case information and are not necessarily mutually exclusive. Examples
of various types of explanations are given in Table 7.

Table 7. Examples of explanations that can be given as investigative opinions, but not evaluative.

Observations Explanations

DNA profile of Mr Smith is compatible with the DNA profile of
the trace.

The DNA was planted by the police.
The real offender has the same DNA profile

His DNA was transported from his beer can to the door by the
wind.

The government synthesised a DNA profile with the same
allelic designations as him.

The DNA is from his lost twin.
There was contamination.

The DNA was secondarily transferred.
The person was recently in contact with the object.

No semen.

There was no ejaculation.
A condom was used.

There was no intercourse.
There was intercourse but all trace of semen was lost following

a vaginal douche.
The swab taken did not recover the material that was present

because of bad procedures.

In the context of DNA, especially when the issue is how the DNA was deposited, one
should avoid, or at least outline the limitations of, considering explanations in court: in
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this process the scientist cannot assign the value of the results which then could easily be
misunderstood. As indicated in [49], “‘bare’ explanations are likely to be of limited assis-
tance to fact-finders, and might even be regarded as potentially misleading and, sometimes,
pernicious.” We will revisit this aspect in the section on communication and reporting.

10. A Note on Multiple Propositions

While it is not feasible to achieve absolute exhaustiveness, it is important that all
the relevant case information is considered when formulating the propositions. This can
imply having two main propositions, but several sub-propositions. Indeed, if the scientist
omits a proposition that is relevant, it is possible to have results that support a proposition
that would not be supported if all pertinent information had been considered. In the
context of mixtures, one may have to consider different numbers of contributors [44,47],
different persons of interest [48], or different degrees of relatedness between the POI and
the alternative source and/or different populations [50,51]. It has also been shown that for
close relatives, considering multiple propositions (but two views) achieves better sensitivity
and specificity [52]. An example of multiple propositions (two main propositions and
associate sub-propositions) with two persons of interest—Mr A and Mr B—could be for the
evaluation of the comparison of Mr A’s DNA profile with a two-person DNA mixture:

- Mr A is a contributor

- Mr A and Mr B are the source of the DNA mixture.
- Mr A and an unknown are the source of the DNA mixture.

- Mr A is NOT a contributor

- Mr B and an unknown are the source of the DNA mixture.
- Two unknown persons are the source of the DNA mixture.

11. Pre-Assessment

With the segmentation of forensic science and the use of DNA databases for inves-
tigation, it is not always realised how crucial case information is for devising an appro-
priate case strategy and for giving meaningful answers. One important outcome of the
Case Assessment and Interpretation project was to formalise what is known as case pre-
assessment [49,53,54]. Most of the stages described imply thinking and communicating
about the problem before proceeding to examinations and the commitment of resources;
one can argue that it just reflects good forensic practice.

11.1. Revisiting Good Forensic Practices for Evaluative Reporting

To deliver the best service, the first stage will be to define the needs in the case and
explore how one can help with the issue. Once the questions have been clearly identified
and discussed with the mandating authority, an effective examination strategy can be
devised and agreed to with the client, the work can be performed, and the results and
subsequent interpretation reported. This process appears straightforward, but it can be
difficult to apply in practice. First, because the police will not always be taught how
important case information is to help define the best examination strategy, they might not
be aware of some limitations. Moreover, in many cases, the work will first be performed to
provide an investigative lead. Once the lead has been produced, the criminal justice system
might not always be aware that the case information provided by the POI can drastically
change the value of the results.

Efficient case management cannot proceed without task-pertinent information, such as
the allegations that are contested and those that are not, what the persons of interest say (if
available), or where and how the items were recovered (e.g., inside the car of the POI). The
case circumstances help the scientist to understand the issues and identify what types of
opinion (investigative or evaluative) they should offer. Administrative information, such as
the deadline and the budget, will inform the choice of the examination strategy. Thinking
of the case and of one’s expectations before doing the actual work has many advantages,
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including ensuring (i) that the work done is meaningful and cost-effective, (ii) that the
scientist thinks and writes down the expected results given the truth of each proposition,
helping to mitigate post-hoc rationalisation (or bias). Indeed, even the most logical of
scientists, once confronted with the results, will tend to rationalise their expectations; these
will appear more likely once they are observed. Having to think of the range of different
outcomes also ensures that the probabilities assigned are coherent. Pre-assessment is
particularly valuable when DNA scientists need to consider phenomena such as transfer
and persistence.

11.2. An Example of Post-Hoc Rationalisation That Can Be Avoided Using Pre-Assessment

Let us imagine that we have a case where it is alleged by prosecution that Mr S digitally
penetrated Ms J’s vagina. Mr S says that he only spent the night taking care of Ms J as she
had drunk too much alcohol. DNA swabs are taken from Mr S’s nails 3 h after the events.
Assume we did not carry out any case pre-assessment (i.e., we did not set out, broadly,
all the potential outcomes of the examination and, more importantly, their probabilities).
Assume that we now know that a full female DNA profile was produced from the swab
from the right hand, we could be tempted to say that this was an expected outcome (i.e.,
there was a high probability that we would have obtained this outcome if the prosecution
proposition were true) or “within the range of our expectations”. However, if a partial
female profile had been obtained, we could be tempted to say that one needs to consider
the possibility that Mr S has washed his hands. If that were true, then we would have
expected a partial profile. So, whatever the outcome, there is a temptation to rationalise
it. Had we not known the outcome, then we could not be biased by it. The same can be
said for the POI—once confronted with the results, they might be tempted to rationalise
the findings. For this reason, one should ideally: (i) assign the probability of the possible
outcomes without any knowledge of the actual results (this can be done by another scientist
unaware of the findings, or using a previously built Bayesian Network [55]), (ii) ask the
parties their version of events, without mentioning the results. This should theoretically
not be problematic, as the alleged facts should not depend on the results.

12. Communication, Reporting, and Testimony

To exchange information, the messenger (e.g., the DNA scientist) needs to convey
the value of the findings clearly, and the recipient of information (e.g., judiciary, police
investigator) needs to understand the message in the intended manner. This implies that
DNA scientists explain their reasoning and the meaning of the results in an accessible way
to a large audience, who will have different education, backgrounds, languages, and expec-
tations. As discussed in [56], more research is needed to address the effective presentation
of forensic findings. In this section, we briefly explore the topic, but are of the opinion that,
to tackle this challenge, DNA scientists should master the key concepts of interpretation.
This will be easier if they have received formal education in forensic interpretation.

For efficient communication, it is also important to adapt to the audience. As alluded
to earlier, the recipient of forensic information does not come without preconceived ideas:
in one case, they may have the impression that DNA is unique; science is exact, precise,
and gives answers that are independent of human judgement. In another case, they may
think that DNA is too complex and cannot be helpful. There can easily be a disconnection
between prior (mis) knowledge and the reality of forensic DNA interpretation. Another
point is that, if communication takes place in the context of a given case, then according
to [57], “the audience’s pre-existing beliefs or attitudes towards the communicator, topic or
object of uncertainty might influence or change the effects of uncertainty communication”.
Thus, not only will the communicator have a bearing on how the value of the evidence is
perceived, but so will the other case information available to the recipient of information.
For these reasons, formal education outside the courtroom is certainly the best means
to ensure that the nature of forensic opinions is well communicated and understood.
Having forensic interpretation courses in the curriculum of law degrees, as is the case in
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some universities (e.g., Lausanne, Switzerland), helps ensure that the future judiciary and
advocates understand key concepts such as uncertainty, probability, and likelihood ratios.

The provision of a common language contributes to the improvement of communi-
cation: explaining what we mean (with the use of a glossary) as well as what we do not
mean is key. Moreover, one needs to acknowledge that some words (e.g., guess, subjective,
match, assumption) come with a strong connotation and are prone to misunderstandings:
as such, they should be avoided whenever possible or be explained.

12.1. Reporting: General Desiderata

The desiderata, as well as the principles of interpretation, that have been proposed
for evaluation of the results apply to reporting (orally or in writing). In addition, it has
been proposed that the goals of communication should be truthfulness, candour, and
comprehensibility [23]. The pursuit of one goal often requires the sacrifice of the others.
The tension between these three goals can be illustrated by a triangle where each goal
represents an angle (see Figure 1, Buckleton, personal communication). Candour implies
that experts adhere to a code of conduct and only report in their area of expertise.

Figure 1. Triangle representing the tensions between the goals of communication.

12.2. Statement Writing

The exact requirements for statement writing will depend on the jurisdiction, but
guidelines for good practice [9,21] should be followed. These provide suggestions regarding
the content of the statement and caution the reader against certain words and phrases still in
use today (e.g., consistent with, association, link, contact, support or refute. Because refute
is a categorical statement, it is not considered as the converse of support. There are degrees
of support, but not of refutation. Instead of writing “whether the results support or refute”,
one could say “whether the results support one proposition compared to the alternative or
neither proposition”.) Because of their nebulous meaning, these terms generally poorly
convey the value of the findings.

Because the value of the results depends on the scientific knowledge of the DNA
scientist and the task-pertinent case circumstances, statements should include a specific
paragraph describing the information that was provided, as well as the assumptions made.
The issue should be clearly identified, propositions formulated, and scientists should
state their willingness to help address other alternative propositions if the framework
of circumstances changes or if it has been misunderstood. As the case information is
not a collection of “facts”, it is important to indicate that should the case information
change, it will be necessary to review the interpretation. Following the description of the
items, methodological aspects sometimes referred to as “Technical issues” (e.g., methods of
analysis and interpretation, aspects regarding transfer, persistence, and recovery of DNA)
will be described. The results of the analysis will be presented and evaluated. In complex
situations (e.g., when assigning the value of the findings given activity-level propositions)
a paragraph pertaining to the probability of the results given the case information and
given each proposition will allow the reader to understand the basis of the reasoning and
the source of the data. Reporting what a LR is and what it is not should help convey the
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difference between the probability of the findings (given the propositions and information)
and the probability of the propositions (given the findings and the information). The
limitations of the interpretation and the issues considered should also be clearly stated. In
Table 8, we suggest examples of useful caveats.

Table 8. Examples of useful caveats in written statements.

Reason for the Caveat Example

Underline the importance of case information
and propositions.

The evaluation presented in this report is crucially dependent on the information
provided to the examiner and on the propositions addressed. Any change in the

framework of circumstances or in either of the propositions should be seen as
sufficient reason for a new evaluation. If some information were found to be

incorrect, or if new information were made available, I would need to re-evaluate
the value of the findings. Re-evaluation will be more effective if performed in

advance of a trial.

Explain what a LR is and is not.

A likelihood ratio indicates if and to what extent the DNA analysis results support
one proposition over another. It is not possible, on this basis alone, to determine

which is the most probable proposition. To assign the probability of a proposition,
the DNA analysis results should be combined with other information in the case.

This is generally not considered to be the remit of the DNA scientist.

Alert on the difference between source and
activity issues.

This report does not provide any information on the mechanisms or actions that
led to the deposition of the recovered biological material. It only provides

information regarding its origin (e.g., who is the source of the DNA). Should there
be any issue regarding the transfer mechanisms that led to the detection of this

material, the results should be evaluated given the alleged activities.

Delineate the meaning of a verbal scale.

The likelihood ratio is a numerical value. Words can be assigned to brackets of
numerical values and used as a descriptor of the results’ support for a proposition.

Several verbal equivalence tables have been published, and it is above all a
convention.

12.3. The Use of Verbal Equivalents

To communicate the meaning of the LR, verbal equivalents (or verbal scales) have
been suggested [4,58,59]. If a quantitative LR is presented, the LR value shall come first [9]
and can be accompanied by a verbal equivalent [56,59,60]. An example could be: “A
likelihood ratio of the order of 1000 has been assigned, which means that the DNA results
are 1000 times more probable if Mr Smith is the source of the DNA rather than if his
unavailable brother is the source. Therefore, the DNA findings support the proposition
that Mr Smith is the source of the DNA rather than his unavailable brother. The level of
support can be qualified as strong.”. If one understands what a LR is, verbal equivalents
are superfluous. To show how beliefs should be theoretically updated based on the DNA
results, it might be more efficient to include a table with a few examples of prior odds and
the effect of the results (i.e., the LR obtained) on posterior odds. (For persons who are
unfamiliar with odds, it is also possible to transform odds into probabilities.) This also has
the advantage of showing the difference between LRs, prior odds, and posterior odds.

It is sometimes believed that one needs different verbal scales for DNA (more precisely,
for autosomal DNA) because LRs are much larger than those of say mtDNA or another
discipline such as fibres. This is not the case: an explanation of why some DNA scientists
believe that a DNA comparison with a LR of 1000 is uninformative is that DNA scientists
nowadays work mainly in the investigation phase. In such a situation, larger LRs are
generally needed to avoid having too many candidates from the national DNA database
(and too many false leads). In addition, if there is little additional case information, then
the authority may need more discriminative results to decide if a person should be arrested
or not. Another (non-mutually exclusive explanation) could be that DNA scientists are so
used to having very large LRs that they are like billionaires: 1000 could thus be perceived
as “pocket money”. As outlined by several authors [4,9,61], one should adopt the same
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verbal equivalents whatever the discipline and whatever the results (autosomal DNA,
Y-STR, or mtDNA comparisons). It follows that one needs the same verbal scale whether
reporting results given activity- or sub-source-level propositions and whether the results
are to be used for missing persons, paternity, or sibling cases. There has been much
discussion on verbal scales [21,58–60,62,63]. There are three points where there seems to be
a consensus: (1) If the LR value is “one”, then results must be considered as uninformative
(it is the results and not the LR that is uninformative. Similarly, it is the results and
not the LR that provide support for one proposition compared to the other. The LR
indicates the magnitude of the support given by the results to one or the other of the
propositions). Therefore, the observations provide no assistance in addressing the stated
propositions. (2) If LRs are larger than one, the results support the first proposition.
(3) When LRs are smaller than one, the results support the alternative. Because verbal scales
are based on a convention, it is difficult to achieve standardisation: different scales have
been proposed with different resolutions (number of intervals) and terminology. Although
verbal equivalents are unsatisfactory, concentrating on the LR value alone does not look
very promising either, and it has been shown that people have difficulties understanding
the concept of LRs in isolation. While no one has yet identified the ideal method for the
presentation of the value of scientific findings, this does not mean we should change the
method of evaluation (we would not change the methods of analysis because people do
not understand DNA analysis). However, until there is more widespread understanding
of the concepts of LR and probability, if the DNA scientist thinks it is desirable to add a
verbal equivalent, this is not harmful provided that the LR value is given first.

12.4. Testimony

Questions in court relate more and more as to how the DNA was deposited. However,
few DNA experts will prepare a report on this topic and some are tempted to wait and
answer questions in court. This is not ideal [12,64], because evaluation of biological results
is difficult. As such, it should be submitted to the same criteria as any other evaluation
(i.e., be the subject of a written statement that has been peer reviewed and is available to
the defence).

In court, DNA scientists may be asked to report the value of the results given sub-
source propositions, and then answer hypothetical questions, which generally are explana-
tions rather than propositions. An example could be: “What if the defendant had shaken
hands with the real offender, would it not be possible to recover in such a case DNA from
my client?”. One might be tempted to say, yes, this is possible. However, as stated in [65]
“if at the end of the expert’s evidence, the fact-finder is left with, on the one hand, an
impressive big number (the LR given sub-source propositions) and on the other hand, a
list of possible explanations for the transfer (as a result of specific activities), how do they
decide what the DNA evidence means, and how does the evidence impact their decision?”.

Questions about the possibilities of DNA transfer require a more subtle answer. In
general, when a case comes to court, DNA scientists will help the triers of fact in a more
meaningful way if they assess the value of the DNA results in the context of the case.
One must also be aware that if answering questions such as “Is it possible that there was
secondary transfer?”, one would be giving an opinion on the alleged activities implying
secondary transfer. Similarly, if one comments on the origin of the DNA and says that “The
most likely source of the DNA is the vagina” [37], then if one does not specify how prior
odds were assigned, it is unclear if it is a transposed conditional or a posterior probability.
If the nature of the fluid implies an activity (as would be the case for vaginal cells), this is
problematic, as the nature of the material relates directly to the issue that is of the remit of
the court.

If the questions regarding how DNA was transferred appear reasonable to the court, it
is recommended to ask for a recess [12,25] and perform a proper evaluation of the results
given what is alleged.
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If DNA scientists cannot assess the value of the observations, for example, in light of
the proposed activities, because there is no time, a lack of case information, or a lack of
knowledge, then, provided the person is qualified, they should outline that without further
information, the findings should be considered uninterpretable (thus uninformative) and
presumably inadmissible, because of the risk of their being prejudicial.

13. A Discussion on Likelihood Ratios

Now that you are familiar with the main concepts of interpretation, we would like to
discuss aspects relating to what LRs are, if they can be estimated, how precise they should
be, and whether it is problematic to transpose the conditional when LRs are very large.

13.1. Likelihood Ratio and Probability

Scientists should know how to explain what a likelihood ratio is. As described earlier, a
LR is a ratio of two conditional probabilities given competing propositions and conditioning
information. However, what is a probability? A probability is a number between zero and
one that represents our uncertainty with regard to the truth of some aspect of the universe
in the past, present, or future. All probabilities are conditional: they depend on what you
know, what you are told, and what you assume. In some simple situations, such as coin-
tossing, there might be little disagreement between people about the truth of a statement
such as “the coin will land showing a head”. In general, though, the central component of
knowledge means that different people will have different probabilities for the same thing.
We say that probability is personal. In relation to any uncertain event there is no “correct”
probability, so we say that probabilities are “assigned” rather than “estimated”.

Because a likelihood ratio is the ratio of two probabilities, it necessarily follows that a
LR is personal also. Thus, in relation to any particular pair of propositions in a DNA case,
there is no “correct” LR: different scientists will bring different levels of knowledge (and
understanding) to bear. What we require is that the scientist to whom we pay attention is
well calibrated: that is, we expect that the scientist can be relied upon to assign large values to
the LR in cases where the prosecution proposition is actually true and to assign small values
to the LR in cases where the defence proposition is actually true. This concept of calibration
is critical to software systems that are created to assist scientists in assigning LRs and to
the publications supporting advanced DNA probabilistic genotyping calculations, include
extensive studies of ground truth cases. A ground truth case is one that has been artificially
created; in its simplest form, it will consist of two sets of data and the truth with regard
to whether the two are from the same original source (Hp true) or not (Hd true) is known
without doubt. The distribution of LRs from Hp-true ground truth cases should peak at high
values (greater than one); the distribution from Hd-true ground truth cases should peak
at small values (less than one). If considering, for example, the source of a DNA mixture
recovered on a scene, because people can share part of their DNA, it is expected that some
non-donors will share alleles adventitiously and have a LR larger than one fortuitously.
This is even more true when comparing mixed/partial DNA profile with individuals who
are closely related to contributors or due to co-ancestry effects [52]. There are sophisticated
measures for assessing calibration experiments quantitatively, but one simple one is known
as “Turing’s rule”. This follows from a theorem, attributed by IJ Good to Alan Turing [66,67],
that shows that the “expected value of a LR in favour of a wrong proposition is one”. This
implies that the average value of the LR in a large Hd-true calibration experiment should
be approximately one: in practice, this means a highly skewed distribution, with most LRs
close to zero and the odd one or two substantially greater than one. For example, suppose
that a LR of a million is computed given sub-source propositions. It follows that if we
simulated profiles of millions of non-donors, we would expect roughly 1 in every million
non-donor DNA profiles to yield a LR of 1 million when compared to the DNA profile of
the trace. We would also expect 999,999 out of every million non-donor profiles to yield a
LR of 0 when compared to the DNA profile of the trace. The average LR of these ground
truth comparisons is then 1.
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Good (ibid) also showed how he and Turing regarded the logarithm of the LR as a mea-
sure of evidential weight, and this view appears highly relevant to the forensic field. This
notion contributes to the idea of expressing verbal conventions in rough correspondence to
orders of magnitude of the LR [58]. It also suggests the notion that precise values of the
LR are not needed for effective communication of evidential weight to jurors. Hence, our
suggestion is to report LRs to one significant figure. If a LR of 10,256.32 were computed, we
would conclude that the findings are of the order of 10,000 more probable if . . . than if . . .
This allows us to convey that it is the order of magnitude that is important.

For LRs smaller than one (i.e., when results support the alternative), it has been
suggested to reverse the propositions and adopt the same rounding rules. Indeed, numbers
smaller than one are difficult to understand: for example, if our LR is 0.01, shall we say
results are 0.01 times less (or more?) likely if the first proposition were true rather than if
the alternative were true? It is easier to report that results are 100 times more likely if the
alternative proposition were true rather than if the first proposition were true.

Current population genetic models condone the multiplying together of genotype
probabilities across many loci, and this in turn leads to extremely large LRs—billions,
trillions, quadrillions, and still further. When this issue first arose in the UK, Foreman
and Evett [68] argued that the extent of investigations into the independence assumptions
implicit in this process was insufficient to justify the robustness of LRs in excess of one
billion. So, when the Forensic Science Service introduced the ten locus STR system into
casework, the largest magnitude of LR quoted was one billion. This was expected to be a
temporary expedient, but to this day, there still seems to be little in the way of large-scale
between-locus dependence effects. This seems to cause little embarrassment, and it is
common to see LRs of the order 1020 reported in DNA cases (It should be noted that with
very small numbers, there are some analogies that are misleading. An example is the
“several planets earth” or the “galaxy” argument used, for example, in the Jama Case [69].
“The range, it was said, within which the calculation was made was between 1 in 45 billion
and 1 in 14 trillion. [ . . . ] In other words, it would appear to be necessary to search well
beyond this planet and conceivably this galaxy to find a match”. This argument leads
the layperson to think that DNA is sufficient for individualisation, when it is not [70]). In
some countries, for example, the UK [71], it is still current practice to report all LRs that are
computed as greater than 109 to be “of the order of one billion”, even though the number
of loci in routine use is much greater than the original 10 at the time of the Foreman and
Evett study. This seems to cause no problem, but it is a peculiar state of affairs.

In addition, it has been advocated that one should consider the possibility of an
error, [72] as DNA analysis is not error free [73]. When we do, the value of the results will
be largely dominated by this probability [3,7,74].

13.2. With High LRs, Does It Really Matter if One Transposes the Conditional?

Some might advocate that we should not split hairs and that if the LR is very high, then
the effect of prior odds is washed away and it is not a real issue if the scientist transposes
the conditional. Reporting and testimony represent the end-product of the scientist’s job.
Whether or not it would be acceptable in some cases to let the court believe that the results
allow the scientist to assign a posterior probability, is a matter of ethics and code of conduct.
The scientist’s remit is scientific results and their value in the context of the alleged facts,
not the facts themselves. It is the duty of factfinders to consider both the results and the
alleged facts.

14. Conclusions

Understanding and conveying uncertainty is a difficult endeavour. As we cannot
suppress uncertainty, we need to face it and include it in our actions [14]. For DNA
scientists, this involves putting measures in place to ensure that results are appropriately
interpreted and their value well communicated. Identifying the issue with which forensic
science can help and using the framework we presented is the first step: it allows scientists
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to rationally assess and present the value of their results in a transparent way. It ensures that
the LRs assigned given sub-source-level propositions are not carried over to activity-level
propositions [75]. It is important to acknowledge that DNA, although extremely useful, is
not the magic bullet. There will be situations where DNA comparisons alone will not be
helpful. If the person involved has legitimate access to the object or person, and one can
safely assume that the DNA comes from this person, then it does not make much sense to
consider the probability of the results given the DNA is from an unknown person, as this is
not what is alleged. Another example could be a case where the issue is not the person from
whom the DNA comes from, but the activities that led to the deposition of the material: if
the activities alleged by both parties are very similar to each other, the DNA outcome will
not allow discrimination of the propositions. These points need to be conveyed to the trier
of facts.

To help communication, harmonisation, and to raise the standards of interpretation,
several measures could be taken: (1) invest in the formal education of the key players (i.e.,
the messenger and the recipient of the information), (2) provide the forensic community
with appropriate tools and knowledge, and (3) make interpretation part of the scope of
accreditation. Having technical assessors and adequate proficiency tests would allow for
the monitoring of the evaluation of DNA results given both sub-source and activity-level
propositions. It would ensure DNA scientists adhere to the principles of interpretation
as advocated in the Forensic Science Regulator of England and Wales codes of practice
and conduct for evaluative opinions [12]. We note also that in some countries, such
as the Netherlands, there have been initiatives by The Netherlands Register of Court
Experts [76,77] to guarantee and promote the quality of the contribution made by court
experts to the legal process. This is an avenue other countries could pursue to ensure that
experts are fully qualified and certified for both types of reporting.
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Abstract: The top challenges of adopting new methods to forensic DNA analysis in routine labora-
tories are often the capital investment and the expertise required to implement and validate such
methods locally. In the case of next-generation sequencing, in the last decade, several specifically
forensic commercial options became available, offering reliable and validated solutions. Despite this,
the readily available expertise to analyze, interpret and understand such data is still perceived to be
lagging behind. This review gives an introductory overview for the forensic scientists who are at the
beginning of their journey with implementing next-generation sequencing locally and because most
in the field do not have a bioinformatics background may find it difficult to navigate the new terms
and analysis options available. The currently available open-source and commercial software for
forensic sequencing data analysis are summarized here to provide an accessible starting point for
those fairly new to the forensic application of massively parallel sequencing.

Keywords: massively parallel sequencing (MPS); next-generation sequencing (NGS); short tandem
repeat (STR); sequence analysis; software

1. Introduction

Next-generation sequencing (NGS) technologies transformed the field of genetics in
the past decade. Descriptively referred to also as massively parallel sequencing (MPS), this
high-throughput genomics method developed on various platforms provides genome-scale
insights from data for the fields of medical diagnostics [1], epidemiology [2], population
genetics [3], and more recently for forensic genetics [4–7] as well. The generation of mas-
sive datasets creates new challenges in data storage and security, analysis, interpretation,
and comparable reporting, which is required to be consistent with traditional forensic
genetics standards.

The field of forensic genetics often requires its scientists to have widespread knowledge
in related fields such as general genetics, chemistry, physics, physiology, and pathology;
however, bioinformatics was rarely among the skills in demand previously. With the
introduction of MPS to the field came the generation of a greater amount of data. Due
to the lack of readily available user-friendly software, such scarce skills became not just
desirable but necessary for early adopters. In the beginning, software to interpret the
sequencing data was only developed by research laboratories, naturally with none of the
usual emphasis on an attractive graphical user interface (GUI) but focused on functionality
and required the users to comfortably navigate the command line. Most analysts working
in the forensic DNA laboratories are familiar with running software on the Windows
operating system; even those using their Macintosh with the Unix-based operating system
rarely would open their terminals and engage in command line operations. Suddenly,
the need for data analysis required skills in navigating a whole new world of software
running on Unix- and Linux-based computers, and while purchasing such computers was
simple enough, gaining the skills to use the software may seem more challenging [8]. Such
limitations were recognized and, with time, more software options were developed from
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research laboratories for the needs of the forensic community, some even offering versions
run on Windows or more accessible web-based software. To date, several commercial
options also entered the arena, offering to close the gap by providing visual, easy to use
and ready-to-export solutions, which would satisfy those in need of quick answers and no
particular desire to look ‘under the hood’.

Some forensic laboratories already established analysis of the mitochondrial DNA
(mtDNA) using Sanger sequencing, and for those laboratories the introduction of MPS
brings benefits mostly from the upscaling of the sequencing processes, lowering costs
and manual workload, speeding up and automating the analyses. Furthermore, MPS of
mtDNA may allow insight into more nuanced phenomena, such as low-level heteroplasmy,
length heteroplasmy, and better detection of low-level mixtures. Short tandem repeat (STR)
typing, however, had never used sequencing as a standard for forensic analysis, therefore
the analysis of this new type of data introduces challenges. DNA analysts are familiar with
interpreting STR data from capillary electrophoresis (CE) electropherograms from the last
two decades, and many of the CE features are transferable to sequencing, e.g., the length-
based allele names, the electrophoretic peaks, and the stutter artifacts. The application
of sequencing offers an extra dimension of information for the markers, which drives
the ongoing efforts to standardize the nomenclature of the sequence-level data, with the
requirement to be back-compatible with the length-based allele names. Software solutions
developed individual reporting formats that are sometimes difficult to reliably compare;
however, most of these also provide a visual representation of the data, comparable to the
already familiar electropherograms, and detailed counts of coverage read depth, similar
to CE relative fluorescence unit (RFU) values. Despite the variable formats, these efforts
aim to provide a human-readable sequence structure, as well as a sequence string format
for universal comparison of the detected sequence variants. One area of non-consensus is
the degree or range of reporting of the flanking regions surrounding the markers. While
this is mostly influenced by the chemistry used, interpretation of these regions may be
optional, dependent on settings, or may even be omitted; therefore becoming a potential
source of discrepancy between analysis methods. Similar to reporting from CE data, the
analysts will be required to report which kit they used, supplemented with the genomic
range of reporting to avoid such discrepancies. While adjustments to reporting will become
straightforward with nomenclature standardization and the available software options are
increasingly user-friendly, the most critical adaptation for the analysis of STR sequencing
data is reaching a comfort level with this data type, developing some basic bioinformatic
skills to process data and interpret sequence variants routinely or in challenging cases.

Here we provide a short compendium of the various software and algorithm options
available for sequencing data analysis to date with a focus on the forensic context. We aim
to provide an accessible guide for forensic professionals starting to implement these novel
sequencing methods into their standard forensic DNA analysis workflows.

2. Rationale of Massively Parallel Sequencing Data Analysis Methods for STRs

True to the proverbial concept of bioinformatics, that ‘there is more than one way to
solve a problem’, individual algorithms indeed differ, but regardless of which programming
language they use, on which operating systems they run or which sequencing data type, or
platform they can process, the general approach is broadly similar and summarized on the
schematic graph in Figure 1.
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Figure 1. Schematic representation of general forensic MPS data processing steps.

The input files are text files containing sequence data in different formats generated
by the sequencing platforms: files of sequence data with or without quality values for each
base call in each read (FASTQ or FASTA), or sequence alignment files and their indices
(BAM and BAI). The sequencing reads from the input files are parsed by using a defined set
of attributes with characteristics of the targeted markers by which to filter. The terminology
of the software describing these attributes significantly differ, therefore Table 1 compares
not just the software themselves, but the verbiage for the files providing locus definitions
and names for the landmarks of the targeted loci. These files provide configurations for the
analyses in respect to the range and specificity of sequence targeted, by allowing strict or
flexible matching to the short sequences landmarking the targeted loci and their immediate
flanking regions. These landmark sequences anchor the reads to the selected loci, and
often coincide with known or presumed primer regions of the amplicons. The targeted
markers are also described by their repeat motifs and/or structure, which increases the
locus-specificity and allows for the precise recognition of allele variants. Approaches differ
as to whether software only recognizes a predefined set of allele variants aligning reads to
these references, or could recognize and call undefined, novel variants, and furthermore,
capable of creating various possible combinations of expected alleles just from the pro-
vided repeat blocks of the array. Regardless of the approach, the reads of each marker are
tallied and summarized in the form of a read depth value (or coverage) for each allele.
The recognition of a group of reads as alleles are also facilitated by adjustable analytical
thresholds separating signal from noise. The relationship between observed sequences
is often used to categorize calls as true alleles or their derivatives (stutter or reads with
errors). Some software offers options to flag, remove, and/or correct potential artifacts
and errors from sequencing. At the end of the process, allele calls are designated based on
adequate coverage surpassing thresholds for interpretation and being excluded as artifacts.
The common denominator of any software approach is the generation of sequence strings
as the ultimate comparable form of sequence alleles, a requirement [9,10] for publishing
population study sequence variants that allow for concordance checking between methods;
with the caveat of different analysis ranges may still generate discrepancies between differ-
ent methods. While such sequence strings are easily comparable by computer programs,
this is not true for human analysts, therefore the software also reports a human-friendly
format of the sequence alleles in their preferred nomenclature. These usually are presented
in a ‘bracketed’ form with the counts of the repeat blocks summarized using brackets
(e.g., [GATA]8); furthermore, these formats could address the marker, genomic location
analyzed, the length equivalent of the allele and may also include any flanking region
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variation observed when compared to the human reference genome (usually the most
recent version, GRCh38). Most software, apart from the standard outputs of the sequence
strings, read depths and a form of bracketed nomenclature, also provide a visual output: a
graphical representation of the detected alleles in a familiar histogram format, which being
similar to the electropherogram peaks aids the transition of analysts from STR typing by
CE to sequencing.

Table 1. Summary of characteristics of software for the interpretation of MPS data of forensic markers.

Software Versions Author/Vendor Year Accessibility Runs on
Locus

Definition
Landmarks

for Loci

STRait Razor

v1.0 Warshauer et al. [11] 2013 free Unix/Linux

config file ‘anchor’
v2.0 Warshauer et al. [12] 2015 free Unix/Linux
v2s King et al. [13] 2017 free Unix/Linux
v3.0 Woerner et al. [14] 2017 free all platforms

Online King et al. [15] 2021 free online/
all platforms

FDSTools

TSSV Anvar et al. [16] 2014 free Unix/Linux
library file

‘flank’
v1.0 van der Gaag et al. [17] 2016 free Unix/Linux

v1.1.1 Hoogenboom et al. [18] 2017 free Unix/Linux
v2.0 Hoogenboom et al. [19] 2021 free all platforms STRNaming

STRinNGS
v1.0 Friis et al. [20] 2016 on request Unix/Linux configuration

file
‘flanking
sequences’v2.0 Jonck et al. [21] 2020 free Unix/Linux

MyFLq v1.1 Van Neste et al. [22,23] 2014 free online/Unix/Linuxpanels ‘recognition
elements’

toaSTR v1.0 Ganschow et al. [24] 2018 free online allele
database ‘primer’

Altius Cloud Bailey et al. [25] 2017 on request online lookup
table

‘target
regions’

ExactID v2.0 Battelle [26] 2015 commercial Windows config file default

GeneMarker
HTS v1.0 SoftGenetics [27] 2017 commercial Windows default default

MixtureAce v1.0 NicheVision [28] 2018 commercial Windows default default

CLC
Genomics

Workbench
AQME Sturk-Andreaggi et al. [29] 2017 commercial all platforms non STR non STR

Universal
Analysis
Software

v2.3 Verogen [30] 2021 commercial Windows default default

Converge
Forensic
Analysis
Software

v2.2 Thermo Fisher [31] 2019 commercial Windows BED files default

A new phenomenon introduced by using bioinformatic software for forensic DNA
analysis is the occasional appearance of bioinformatic null alleles. These are the bioinfor-
matic equivalents of null alleles in CE where sequence variation underneath the primer
binding sites could impair or prevent amplification of the actual alleles. In the case of
bioinformatic nulls, the amplification is not compromised and the sequencing reads are
present in the raw data files, but there is an unexpected sequence variation underneath the
landmark regions of a locus that a software uses to recognize locus-specific reads. While
most software allows for ‘wobble’ or approximate matching in these landmark regions,
this sequence variation can be significant enough for the software to fail to recognize and
analyze the true reads in the filtering process, thus resulting in a null allele. The best
prevention of bioinformatic nulls being reported in profiles is the use of a secondary data
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analysis method, which can be particularly useful in forensic validations or population
studies. Using a sequencing platform-specific software in combination with another com-
mercial, free or open-source software can largely eliminate the chance of bioinformatic
nulls remaining unrecognized. In the case of the custom loci set developed in-house, where
only open-source software can be used, it is good practice to use multiple software to call
alleles, or at least use the same software with different settings in their locus definition files
specifying different landmark regions, to avoid the occasional bioinformatic nulls.

Analysis of sequencing data requires access to adequate storage and safeguarding of
the generated data. Local protocols need to be developed for the long-term maintenance
and expansion of these resources, considering the size of the data files is not comparable to
those originating from CE, often measured in gigabytes per run. Most of the following tools
can be run on a standard laptop or desktop, but high-performance computing resources
can be beneficial when processing a lot of samples.

3. Freely Available Software

In the early stages of the application of massively parallel sequencing to the forensic
field, most solutions were developed in academic settings as a necessary research tool to
be able to characterize and analyze data generated by sequencing platforms [11,16,20,22].
These approaches often focused on STR markers, occasionally offering options to analyze
mtDNA data as well [18]. These software are freely available but assume the users have
a basic level of bioinformatics skills allowing them to navigate and operate through the
command line. Such basic skills can be obtained either through professional training [32] or
self-taught courses via one of the several available online tutorials on ‘how to Linux’ [33].
Once the basic command-line skills are comfortably obtained, the following software can
be run just as confidently through a terminal window as clicking an icon in a GUI. While
there are a few software options available through web-based interfaces [23–25], some
developers offer [21,34] or transition to [35] providing a version of their software that can
be downloaded as a ‘Docker image’. This is a ‘ready to use’ packet of the program and all
its dependencies required to run the application successfully, regardless of the underlying
resources available locally [36]. A program, the Docker engine, facilitates the use of such
packets on both Linux and Windows-based applications. While similar to virtual machines,
this solution is more flexible and portable, as the isolated environment does not require a
part of the hardware to be closed off, but rather creates such containers on a software level.
This form of software availability improves not only data security, satisfying those who
cannot allow data file exchange outside of their local laboratory but can also make these
applications more accessible for those who are just beginning their journey with software
operated through the command line.

3.1. STRait Razor

This software, designed to analyze reads from sequenced amplicons targeting STRs,
was first published in 2013. Its evolution went through iterations from STRait Razor [11],
v2.0 [12], v2s [13], v3.0 [14], and STRait Razor Online (SRO) [15] improving its processing
speeds and output files, extending its analysis to the flanking regions and providing
secondary analysis tools, such as additional workbooks for visual interpretation of the data
using histograms and reporting sequence alleles following the International Society for
Forensic Genetics (ISFG) early considerations [37].

The software uses FASTQ files as an input and versions prior to SRO required com-
mand line navigation. Detailed help files and guides are available, instructing users how
to run an analysis by entering a command with the desired options. The file that sets the
locus definitions is referred to as the ‘config file’ and the landmarks on each side of the
loci are called the ‘anchors’. These modifiable config files are included for the currently
available main sequencing kits, or custom files can be generated by the user. The output are
simple text files, which can be processed further either by the provided Excel workbooks,
the online platform, or custom scripts for the advanced users. These additional processes
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can summarize the results in a tabular and a visual format and facilitate additional insights
such as allele nomenclature, stutter analysis, or sequencing error profiles. While previous
versions could be run on the command line (using a Mac or a Linux computer), the v3.0
of this software can also run using the Command Prompt in Windows. The latest version
(SRO) introduces the main functionality of the software in an online tool format, suitable
for quick analysis of individual files, without the use of a Unix or Linux environment. The
online format significantly decreases the need for bioinformatics skills; however, for batch
processing a large number of files or for the use of custom settings running the downloaded
command-line version of SRO is more practical.

The software includes config files for the commercially available sequencing kits and
a default set of predefined alleles to call theses from the sequencing reads it analyzes,
therefore any undefined sequence allele by default would require the user to establish an
appropriate nomenclature. In such cases, the software may label the unrecognized variant
as ‘novel’ by default, however, the variant may have been reported in more up-to-date
literature or increasingly available databases [38–40].

The software is a general starting point for those interested in exploring their data
further, specifically to be able to provide an unrestricted reporting of the flanking region
variants [41]. It has proven useful in providing a secondary analysis to commercial software
outputs as a means for eliminating bioinformatic null alleles [42].

3.2. FDSTools

This software is also designed to analyze reads from amplified STRs, with later ver-
sions offering the capability to analyze mtDNA results [43] from sequencing data. The
evolution of the software through its iterations starts with the standalone TSSV tool [16]
recognizing repetitive motifs in the reads, which was integrated into the FDSTools bun-
dles v1.0, later v1.1.1 [17,18]. The latest version (v2.0) was expanded by an integrated
nomenclature package STRNaming [19]. The software is a bundle of several tools to be
used in the analyses of sequencing data from raw FASTQ files. Analyzed loci and their
analysis attributes are defined by a ‘library file’, including their landmark regions referred
to as ‘flanks’. Results include coverage values with options for different outputs including
bracketed and string formats. The package includes several additional tools for stutter
analysis and correction, databasing, and visualizations as well. The addition of the STR-
Naming module eliminates the need for user input on the locus definition files. Instead,
the program now automatically recognizes repetitive sequences in the reference sequence
using these as the preset preferences for bracketing interpretation of the sequence reads
and, as such, automates nomenclature classification of the called alleles. The addition of
this module facilitates the ongoing efforts to reach a unified nomenclature for the standard
human forensic STR markers [37,44,45].

The software is a good starting point as a secondary analysis option with additional
flexibility for those interested in building custom solutions for their more specific needs
beyond standard reports [17,46,47]. The offered modular tools and customization are
ideal for stutter analysis or the visualization of stutter restoration to the respective parent
allele [48]. Those who appreciate graphics generated in a report-ready format will find the
graphical HTML outputs useful [17]. Beyond the standard or custom niche sets of STR
markers of human forensics, the software is an ideal tool for those developing wildlife
forensic markers with the need for flexible software adaptable to species identification from
novel STR multiplexes [49].

3.3. STRinNGS

The software STRinNGS v1.0 [20] was one of the early approaches available on request
developed by researchers. This tool required command-line skills to analyze the data and
use the output files in further scripts to summarize stutter and error profiles observed.
The recently released v2.0. [21] is openly available to download for local use and has been
updated to provide a more refined set of criteria for improved reliability in allele calling

104



Genes 2021, 12, 1739

including error filtering, identifying stutter reads, and flagging unusual sequences for
manual review. STRinNGS accepts FASTQ files as input and runs the settings via its locus
definition file which is referred to as the ‘configuration file’ where it defines the marker
landmarks as ‘flanking sequences’. To accommodate the need for quality control (QC), the
software offers an output format that can be used directly for submission to STRidER [9].
This site (https://strider.online/) is dedicated to the QC of autosomal STR population data
sets, providing unique identification numbers as proof of data passing their checks.

The software is a good alternative as a secondary analysis to eliminate bioinformatic
nulls in the analysis and is now an improved tool that helps the analyst with the manual
review by providing several optional flags and settings. The software reports a format in
line with guidance from the forensic community [9,10,37] as well as its own developed
format for allele nomenclature which is easily comparable with other free software outputs
for concordance. It provides clear indications of the genomic locations, the length-based
alleles, the sequence structures, and the flanking variations [50] and, for the convenience of
the user, includes the sequence strings analyzed.

3.4. MyFLq

One of the earliest software solutions for forensic STR data analysis from MPS was
developed [22] in a form of a web-based user-friendly application using FASTA or FASTQ
files for input. In the past, this was also available as an integrated online tool on BaseS-
pace [23], for use with Illumina sequencing data output. For the practicality of analyzing
sensitive data locally, a desktop version of the software is also available to download [22]
or provided as a Docker-container file [34] to be downloaded as a functional package and
run locally. To help recognize non-predefined true alleles, MyFLq can estimate whether an
unrecognized allele is truly a novel allele or a result of errors. The landmarks defining the
loci analyzed are referred to as ‘primers’, however, this does not necessarily mean that they
completely overlap with the primers in the amplification reaction. The approach uses a
dynamic calculation of the flanking regions and the region of interest (ROI), rather than a
static definition of repeat region and flanking regions. The ROI, the variable part of the
sequence, is compared to the reference alleles and allows an easy interpretation of SNPs
as well as STR length polymorphisms within the analyzed region. The output is a report
of the sequences with their sequence and the derived length alleles as well, including
visualization of the results.

The use of this software can be interesting for those who want an alternative analysis
when comparing methods and those who are interested in viewing their data in a simple,
non-bracketed nomenclature format. MyFLq has the potential to work with SNP and
mtDNA data as well. This approach could also be useful for working with new STRs or
non-human STRs, capitalizing on the flexible approach of locus analysis which can adjust
to a dynamically growing reference allele database.

3.5. ToaSTR

This software offers a user-friendly graphical web-based solution for the analysis of
STR data from sequencing. It does not require bioinformatics expertise from the users as it
provides an intuitive GUI to analyze data from FASTQ or FASTA files. Web-based software
options often face questions about data security and laboratories may be restricted from
uploading sensitive data to the web, therefore the developers currently provide access to
this secure web-based tool upon request [24]. Those who require further assurance will
welcome the recent update that will move the web-based application at the end of 2021 to
a Docker-based format [35], allowing the software to be downloaded as a functional unit
operating securely locally.

ToaSTR defines the analyzed loci together as a ‘panel’ and refers to the landmark
sequences as ‘recognition elements’. The panels to be analyzed are customizable and
therefore independent of the sequencing platforms and kits [51]. The software includes
predictive stutter modeling allowing an automatic classification of the observed sequences
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and the differentiation of artifacts. The reporting nomenclature format of ToaSTR is aligned
to the ISFG considerations [37] and includes graphical visualization of the results.

Until the introduction of the new format of the software, the web-based version can still
prove to be useful for analyzing training data and experiments or mobile demonstrations
that require quick, visually appealing outputs.

3.6. Altius

Altius was developed as an independent secure Cloud-based software optimized for
high-throughput data processing from FASTQ files. As users access this intuitive GUI
through a web browser, it requires no bioinformatic expertise. The software is capable
of processing MPS data of a predefined set of STRs (autosomal, X- and Y-STRs) [52,53]
generated by different platforms, including the MinION. The analysis is robust and is ready
to accommodate batch data processing [25]. The target regions for locus identification
parameters are adapted from STRaitRazor v2.0 [12] and locus definitions are collated in
a lookup table for the software to identify the targeted loci. The results are output to a
MySQL database and exportable reports are provided for the sequences, including full
sequence strings, a visual output of the results, and a format of nomenclature in line with
the considerations of ISFG [37]. Data security for this software is provided by the resources
of Amazon Web Services, allowing users to set their locally required level of access-control
measures. Because Altius is using the secure cloud system, access is provided upon request
and after authentication.

4. Commercial Software

Apart from the freely available academic software, there are several options offered
by commercial companies. These are either provided as a supplement to the vendors’ own
sequencing chemistry and platform or developed as standalone solutions for analyzing
raw data output from various sequencers.

In general, these are user-friendly programs with visually appealing graphical inter-
faces and with limited options to customize processes, all designed to provide a stream-
lined process of hassle-free analysis, familiar graphical output, and presentation-ready
results. Many of these offer options for mtDNA analysis as well as STR data analysis, both
generated on the sequencing platforms. Commercial software is designed to make the in-
troduction of MPS easier to any new user, building confidence working with sequence data;
however, there is less control of the algorithms and occasional troubleshooting requires the
assistance of the companies. For high-throughput routine laboratories, these qualities are
attractive and the reliable convenience offered by these programs could justify the cost.

4.1. GeneMarker HTS (SoftGenetics, State Collage, PA)

GeneMarker HTS [27] offers an integrated solution for analyzing sequencing data
from mtDNA, STRs, and SNPs generated on either Illumina or Ion Torrent platforms. The
software is validated for mtDNA data analysis [54,55]. It can be used to analyze the mtDNA
control region or the whole mtDNA genome, as required [56]. The STR analysis utilizes
an in-built panel for the Promega PowerSeq 46GY kit (Promega, Madison, WI, USA),
using FASTQ files generated from an Illumina MiSeq (Illumina, San Diego, CA, USA),
alternatively, a panel for custom chemistries can be used for analyzing data from other
kits. MtDNA and STR analysis (including flanking region variations) can be performed
individually or simultaneously. GeneMarker HTS reports the length-equivalent of the
sequence alleles, provides sequence strings and a visual interpretation of the results using
histograms. An audit trail of changes and analysis settings are logged, and user access
rights are controlled by its database. Demo and trial versions, training materials, and
product support are available. GeneMarker HTS operates under Windows.
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4.2. ExactID (Battelle, Colombus, OH)

Battelle’s ExactID [26] offers another fully integrated agnostic software solution de-
signed for professional use in government agencies and crime laboratories. The sequencing
platform-independent software analyzes data from FASTQ files generated from various
chemistries targeting forensic markers, such as autosomal, X- and Y-STRs [57,58], SNPs,
microhaplotypes, and mtDNA. The analysis settings are defined in ‘config files’ for the var-
ious marker panels. The user-friendly GUI offers a familiar display of the observed alleles
in a histogram format along with the length-equivalent alleles and the bracketed sequence
alleles in line with the ISFG considerations [37] for STRs. The software can recognize previ-
ously undefined alleles and to report flanking region variation. The results can be exported
in multiple formats: .pdf file with tabular and graphical summaries, .csv files for further
external analysis, and an additional .sef file format for evidence preservation. Furthermore,
ExactID offers additional intelligence leads by interpreting data relating to phenotypic
markers and biogeographical ancestry using the Battelle Avatar plugin. Audit trail and
user access control are provided by the software. ExactID operates under Windows.

4.3. MixtureAce (NicheVision, Akron, OH)

MixtureAce [28] the plugin tool for the ArmedXpert software offers a user-friendly op-
tion to analyze MPS data from FASTQ files for STR (autosomal, X- and Y-STR) markers [59,60]
with the benefit of the integrated hash-based Sequence Identifier (SID) nomenclature [61], a
unique abbreviated format of sequence-based alleles designed to identify the relationships
between sequences. MixtureAce uses the SIDs to recognize reads of stutter or other prede-
fined artifacts using customizable thresholds and thus facilitates the recognition of reads
not filtered out as true alleles. Undefined artifacts still need to be manually curated [60].
The software reports within the ranges of sequences encompassing the STRs following the
UAS flanking region report [44]. This ready-to-use solution can report from a single source
or interpret mixed samples using another ArmedXpert plugin: Mixture Interpretation.
MixtureAce operates under Windows.

4.4. CLC Genomics Workbench (QIAGEN, Hilden, Germany)

CLC Genomics Workbench [62] is a genomic bioinformatic tool collection developed
by and offered from Qiagen for comprehensive sequencing data analysis in general. This
tool allows customization of its collection with plugins, such as the AQME [29], the toolbox
specifically developed in collaboration with AFDIL to accommodate forensic-specific
mtDNA sequence analysis for data generated from any MPS platform. AQME also includes
haplogroup estimation and phylogenetically consistent nomenclature to facilitate reporting
of the results. This specific plugin can be applied within the CLC Workbench framework.

4.5. Universal Analysis Software (Verogen, San Diego, CA)

Universal Analysis Software (UAS) [30] is the custom software of the MiSeq FGx
sequencing platform that can analyze sequencing data from forensic markers using spe-
cific modules for the ForenSeq line of kits. Currently available chemistries target STRs
(autosomal, X- and Y-STRs), SNPs, and mtDNA. Raw data is directly processed from the
sequencer to generate demultiplexed raw sequence output FASTQ files. This is then further
analyzed within the software using alignment to the human reference sequence and variant
calling from the sequences at the range reported by the software. To extend the reported
range outside of the repeat region an additional flanking region report is also available in
the form of an excel file. To further analyze variation outside of expected flanking region
variations, the raw FASTQ files can also be exported and processed by external software
for independent analysis and concordance. The software is validated together with the
platform and chemistry as the MiSeq Forensic Genomics System [63,64] supported by
training and direct product support from the vendor.

The GUI is designed to be intuitive and user-friendly and with default and additional
modules for different forensic genomic applications for the FGx platform, such as the STR
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analysis module or the data analysis for mtDNA sequencing chemistries. A supplementary
analysis generates investigative leads, such as the estimation of phenotypic markers (hair
and eye color) and biogeographical ancestry estimation of the samples [65,66]. Furthermore,
genomic applications can analyze data generated from dedicated SNP panels for SNP-based
identification of degraded remains; or can pre-format the generated data for downstream
use in databases specific to the application of forensic genetic genealogy (FGG). FGG is
an investigative tool for identifying distant kinship of a sample using databases built
from ‘direct-to-consumer’ (DTC) genealogy DNA test results, data volunteered by citizen
scientists. The generated data is formatted to be comparable with the markers in the
database allowing to facilitate the investigation of serious crimes or to identify unidentified
human remains [67].

4.6. Converge Forensic Analysis Software (Thermo Fisher, Waltham, MA)

Converge Forensic Analysis Software [31] is the comprehensive validated software
customized to the HID Ion S5 sequencing platforms of Thermo Fisher. Converge is designed
for this specific sequencing platform and visualizes the analyzed results obtained from the
Torrent Server via the HID Genotyper plugin. It has modules specific to workflows of the
offered chemistries targeting specific forensic markers: STRs including multiple markers
for sex-determination [68], mtDNA control region, or the full mitochondrial genome [69].
Additional modules beyond STR analysis include those interpreting data from kits targeting
selected SNP sets, which can establish identity from degraded samples [70,71] or can
provide investigative leads and estimate biogeographic ancestry [72]. Data organization
in Converge is optimized and streamlined around case management. The software and
chemistries are validated for mtDNA analysis [73] and the users are supported by training
and documentation from the vendor.

Via the HID Genotyper plugin, the generated sequencing reads are demultiplexed and
aligned to the default reference sequence in regions specified by the BED file. The BED files
are specific to the chemistries targeting different marker sets. Both the chosen reference
and the BED files can be customized. The generated data can be downloaded as alignment
files (BAM and BAI) or alternatively can also be generated as FASTQ files to download for
independent analysis and concordance analysis.

The GUI is designed to be intuitive for the sequence-based data and follows the famil-
iar look of the vendor’s CE-based software (GeneMapper ID-X, Thermo fisher, Waltham,
MA, USA) and it can integrate and compare the two data types for casework, paternity, and
kinship calculations. For markers that are not currently supported by the offered kits and
the software (for example chemistry targeting multiple Y chromosomal markers), sequenc-
ing can be performed using a custom set of amplicons [74,75]. The generated raw data then
can be downloaded and analyzed with the available independent software options.

5. Other Software Options for Whole Genome Sequencing (WGS) Data

Without exhausting the list there are other software options available [76,77], and many
were designed to identify and analyze STR markers from genome-wide sequencing data
without a forensic focus. STRs, in general, may be medically relevant or used as markers for
population genetics, and specific software has also been designed to identify other relevant
tandem repeats to facilitate medical diagnosis or genotype of these markers [78–83]. Recent
reviews [84,85] also provided an overview of several alternative software that can generate
STR profiles from whole-genome sequencing data [86–94].

While these may not be the immediate focus of forensic analysts mainly interested
in reporting the sequencing data from the targeted amplification of markers specifically
curated for forensic purposes, WGS data analysis methods could prove useful in exploring
alternative approaches with already available data sources or in research projects.
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6. Tips, Tricks, and More Tools

Despite the evolution of software solutions for forensic MPS data, occasionally data
analysis can come to a halt if suspicious results are observed. This could be an unexpected
null or supernumerary allele, unreasonably low coverage, or confusing sequence structure.
In case of concern, there are always a few options to investigate the reason for discrepancies.
For example, one can investigate the observed coverage values in relation to the expected
inter-locus balance, which can indicate failure to detect an allele in heterozygotes inter-
preted falsely as homozygotes (bioinformatic null alleles). Any software can potentially
generate bioinformatic null calls, i.e., the inability to recognize and report a specific variant.
The best approach to confirm any unexpected instances is to use multiple software (or
at least multiple settings) for the analysis and perform a concordance check-in between
analysis methods.

In-built software of the sequencing platforms (UAS and Converge) can offer investiga-
tive leads using SNP data from some of their chemistries. Additionally, the user can harvest
the relevant SNP data and independently verify certain phenotypic traits: eye and hair color
using the constantly updated and freely available tools (https://hirisplex.erasmusmc.nl/)
hosted at the Erasmus MC University. The website offers options for a manual or au-
tomated upload of the SNP genotype data to verify the prediction of these phenotypic
traits using the established results from relevant studies (IrisPlex [95], HIrisPlex [96],
HIRISPlex-S [97–99]).

Visualizing variants often helps to understand how some nucleotide changes create
unusual sequence structures. A useful tool for visualization is the Integrative Genomics
Viewer (IGV) [100], where alignment and variant calling files can be viewed manually
compared to the reference sequence. If the consensus sequence of the reads is not obvious
by manual revision another tool, VisCoSe, may be of interest that can calculate and compare
consensus sequences of multiple datasets [101].

It is a good practice to perform independent Quality Control of the raw data prior to
analysis, starting by monitoring the main characteristics of the dataset before and after any
additional clean-up steps, which can be done, for example, using the FastQC program [102].
The additional steps of detailed adapter trimming using additional software (for example
Trimmomatic [103], Cutadapt [104], seqtk [105]) or the merging of paired-end reads (using
FLASH [106], BBMerge [107], CASPER [108]) may improve the analysis downstream.
There are instances where using additional clean-up tools on raw data can improve the
analysis. For example, removing erroneous reads and/or low-quality parts of reads specific
to chemistry and platform can lead to unambiguous allele calls and can even improve
retrieved coverage values for the dataset.

Available open datasets are a valuable resource for those not yet engaged in massively
parallel sequencing but interested to learn more about data analysis ahead of establish-
ing a workflow locally. One such source is the Forensic DNA Open Dataset, published
by the NIST Applied Genetics Group [109] at https://doi.org/10.18434/M32157. Open
datasets for WGS data are also available at the 1000 Genomes Project data portal, the Interna-
tional Genome Sample Resource (IGSR) [110–112] (https://www.internationalgenome.org/
home), and the variants found in these projects can be viewed at the 1000 Genome Browsers
hosted at NCBI [113] (https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/).

7. Summary

In this review, the aim was to provide a short, digestible overview of the currently
available software options, acknowledging the challenges for the bioinformatically non-
specialist reporting forensic professionals of this field. DNA analysts already familiar with
the CE-based analysis and software, but inexperienced in high-throughput sequencing, or
those planning to generate sequencing data in the future, would benefit from this review.

All the presented software options perform well and selecting one (or as suggested
here: more) over others may be due to personal preference, financial limits or the compati-
bility to already available equipment. If routine forensic casework laboratories engage in
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exploring these various options, the DNA analysts will better understand the sequence-
level variation of the forensic markers and the advantages of incorporating sequence data
analysis into their workflows. An increased comfort level with basic bioinformatics is a
key step to utilizing the new possibilities introduced by MPS to the field.
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Abstract: Animal forensic genetics, where the focus is on non-human species, is broadly divided
in two: domestic species and wildlife. When traces of a domestic species are relevant to a forensic
investigation the question of species identification is less important, as the material comes from
either a dog or a cat for instance, but more relevant may be the identification of the actual pet.
Identification of a specific animal draws on similar methods to those used in human identification by
using microsatellite markers. The use of cat short tandem repeats to link a cat hair to a particular
cat paved the way for similar identification of dogs. Wildlife forensic science is becoming accepted
as a recognised discipline. There is growing acceptance that the illegal trade in wildlife is having
devasting effects on the numbers of iconic species. Loci on the mitochondrial genome are used to
identify the most likely species present. Sequencing the whole locus may not be needed if specific
bases can be targeted. There can be benefits of increased sensitivity using mitochondrial loci for
species testing, but occasionally there is an issue if hybrids are present. The use of massively parallel
DNA sequencing has a role in the identification of the ingredients of traditional medicines where
studies found protected species to be present, and a potential role in future species assignments.
Non-human animal forensic testing can play a key role in investigations provided that it is performed
to the same standards as all other DNA profiling processes.

Keywords: animal forensics; wildlife forensics; cat STRs; dog STRs; cyt b; COI

1. Introduction

The plight of endangered iconic species, such as tigers, rhino, and elephants, gains
much media attention. Additionally, the affectionate bonds that humans have with domes-
tic pets, particularly dogs and cats, is such that maltreatment of pets ranks highly in the
human psyche. It may therefore seem contrary that the forensic investigation and prose-
cution of alleged cases involving animals (non-human) has always had a lower priority
compared to human identification. As a further example regarding research in this area,
there are often only a few talks in a miscellaneous section of the ISFG congress on DNA in
wildlife crime and non-human DNA profiling compared to many days devoted to human
identification. The reason for this low priority is many-fold, but a prime reason is that in
the past it was perceived that investigations where the focus was on non-human material
required lower standards than those accepted as the norm in human identification. It was
the case that so much of non-human DNA typing has traditionally been performed in
non-accredited laboratories, often at academic institutes, although this is now starting to
change with a number of laboratories gaining full ISO17025 accreditation.

The fact that a review was requested as part of a Special Issue is further evidence
of the continuing acceptance of including non-human DNA typing as a tool in forensic
investigations. This review is in two main sections: section one looks at the parallels with
identification of individual dogs and cats using processes akin to those used in human
DNA profiling; the second section discusses the more traditional wildlife forensic testing
where the key question is what species is present and hence the focus is on mitochondrial
DNA sequence analyses.
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2. Wildlife Forensic Laboratories

Genetic testing to enforce national legislation is rarely performed by the same oper-
ational laboratories that undertake human identification. This is primarily attributable
to time and cost constraints, and the fact that most operational laboratories are accred-
ited to undertake standard operating procedures relevant to human identification only.
Most wildlife forensic investigations are undertaken by universities on an ad hoc ba-
sis and performed by university academics who may not routinely undertake work
for the criminal justice system. Good laboratory practice has been encouraged, and
guidelines have been suggested for Quality Control and Quality Assurance within an
academic-based wildlife forensic laboratory [1]. There are notable exceptions. These in-
clude the US Fish & Wildlife Laboratory in Ashland, Oregon (https://www.fws.gov/lab/
(accessed on 12 March 2021)), the Scotland-based Wildlife DNA Forensics Laboratory
(http://www.sasa.gov.uk/ (accessed on 12 March 2021)) and the Australian Museum in
Sydney (http://www.Australianmuseum.com (accessed on 12 March 2021)); these labora-
tories have attained ISO17025 accreditation.

3. Short Tandem Repeat (STR) Analyses in Animal Forensic Science

Dogs and cats are two pet species that are commonly in close contact with humans.
According to the North American Pet Insurance Association (NAPHIA), 65% of households
in the USA, or 85 million homes, have a dog (https://www.iii.org/fact-statistic/facts-
statistics-pet-statistics (accessed on 12 March 2021)). Equally over 9 million dogs and
8 million cats are owned in the UK (according to statista.com), this is about 25% of all
homes. It is not surprising therefore that hairs from either dogs or cats are found associated
with forensic evidence such as clothing, car seats, and household soft furnishing, an
example is shown in Figure 1.

Figure 1. Showing how easy it is for cat hairs to transfer onto soft furnishing, in this case a cushion.
These cat hairs can be valuable associative forensic evidence. Note also that these hairs can be
transferred to another substrate by secondary transfer.
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Such items onto which cat or dog hairs can be transferred, may themselves be asso-
ciative evidence or be a substrate for secondary transfer to further items that may be of
forensic relevance in an investigation. Therefore, it was with the first case of cat hairs to
identify a person of interest and lead to a conviction.

3.1. Feline STR Typing

Snowball the cat became famous in arena of forensic DNA profiling for aiding in
the resolution of an alleged homicide [2]. The work was initiated by the Royal Canadian
Mounted Police (RCMP) after a 32-year-old woman from Prince Edward Island, Canada,
was reported missing on 3 October 1994. This occurred in a remote wooded area. A man’s
jacket was found close to the abandoned car of the missing person, along with other items.
White hairs clinging to the lining of the jacket were identified by the RCMP’s laboratory to
be from a cat. The only suspect in the case happened to own a white cat called Snowball.

Ten dinucleotide STR loci were used in a comparison of the DNA profiles from the
hairs taken from the jacket to a hair samples that had been taken from Snowball; these ten
loci were found to match. Now the issue was to determine the probability of this match
and therefore a population genetic database was generated from cats in Prince Edward
Island. In addition, a second database was generated from outbred cats from the Eastern
United States [3]. The resulting match probabilities were 2.2 × 10−8 and 6.9 × 10−7 for the
Prince Edward Island and the U.S. population databases, respectively [3].

The cat DNA evidence was accepted by the court, and in combination with additional
human DNA evidence, was presented to the jury at the Supreme Court of Prince Edward
Island. On 19 July 1996, the jury convicted the defendant of second-degree murder [2].

This first case was ground-breaking and showed the real potential of such evidence.
The case required a number of steps: developing microsatellite markers, ensuring that the
loci were variable, developing primer sets, ensuring the loci were not linked, testing to con-
firm that they could be co-amplified, developing an allelic database that was representative
to allow for the use of robust statistics to support any matching DNA types. These steps
are all part of the characterisation of hypervariable STR loci used in human identification,
although the use of commercially available products circumvents this massive undertaking.

The first uses of STR loci used dinucleotide repeat markers, but these suffer from a
number of stochastic effects, particularly increase in stutter peaks. Feline STR testing was
developed further by a group in Germany who characterised 14 hypervariable STR markers,
predominantly tetranucleotide repeats, and developed and allelic ladder [4]. These work
adhered to the recommendations of the International Society for Forensic Genetics [1]. To
allow initial use of these 14 STRs in casework, the authors surveyed 122 unrelated cats
in the local area and created an allelic database. Another key point to this work is that,
with careful primer design, all 14 STR loci produced amplicons smaller than 260 bases; an
important point when working on DNA from hairs and therefore likely to be degraded.
An important aspect of this work is that the authors isolated and sequenced each locus to
report on the underlying repeat structure. This type of work not only shows a model for
the future, but also allowed interlaboratory testing to be performed.

Since this first case, there has been extensive research into increasing the number of
hypervariable loci for both cats and dogs.

3.2. Canine STR Typing

A group based in Portugal characterised nine STR loci, all of which were tetranu-
cleotide repeats, which were combined into one multiplex PCR [5]. The primer design
ensured that the largest allele was still smaller than 350 bases. The authors had also iso-
lated and characterised each of the nine loci so that the repeat sequence could be reported
accurately. The authors had access to 113 dog samples to test the multiplex for all the
standard conditions as expected in human identification. In combination, and based on
the 113 sample set, the authors reported a very high discriminating power (matching
probability = 1.63/1010). This type of work was the foundation for further canine studies.
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This assay was extended by two more loci and used in the identification of wolves
(Canis lupus) [6]. Dogs (Canis lupus familiaris) are a subspecies of the grey wolf and therefore
the authors surmised rightly that the same primers would work effectively on wolf as on
dogs. Wolves in European come into conflict with humans and are frequently blamed for
killing livestock or attacking humans. A case study looked at one such case where a male
had received many injuries to the body and claimed to been attacked by a wolf [7]. DNA
typing showed conclusively that the man was attacked by a guard dog and not a wolf, or
wolf/dog hybrid, as claim; the male later confessed that this was the case [7].

The International Society for Animal Genetics (ISAG) had published a list of putative
dog STRs: these comprised 21 dinucleotide loci and 3 tetra repeats. Due to the issues of
increased stutters with dinucleotide repeats, and that tetra repeats were recommended by
the ISFG [1], a group at UC Davies developed a canine STR test that used 15 unlinked STR
loci combined into one multiplex, entitled DogFiler [8]. A full validation was performed in
accordance with the recommendations of the Scientific Working Group for DNA Analysis
Methods (SGDAM). The authors of this study sequenced alleles to characterise fully
the repeat motifs and also created allelic ladders to allow genotyping. The publication
of DogFiler set a precedent as to how to create an STR multiplex that meets the same
standards as commercially available kits used in human identification.

Often only shed dog hairs are available for analyses. In such instances, amplification
of all the loci to generate a full STR profile might not be possible. To overcome this problem,
the same group developed three mini multiplexes by moving the primers closer to the
amplicons, thus shortening the length of any allele amplified [9]. The result is that no locus
is greater than 205 bases in length. Therefore, called Mini-DogFiler met the same standards
as the full multiplex.

The CaDNAP group based at the Medical University of Innsbruck separately devel-
oped 13 hypervariable microsatellite loci into a multiplex and analysed 1184 dogs [10]. All
the dogs were from either Germany, Austria or Switzerland (the so called DACH coun-
tries). CaDNAP is a working group of the ISFG and members of the CaDNAP group have
extensive experience in human identification and very familiar with the requirements for
full validation prior to publication and use in the criminal justice system. The equipment
required is also that used in any operational forensic science laboratory performing human
identification. The inclusion of such a large number of individual dogs from many breeds
allowed the construction of a dog population sample database. The chance of two dogs
sharing an allele identical by decent could be calculated allowing the same statistics to be
used as performed in human identification.

3.3. Livestock

Cats and dogs are the predominant domestic pets. Livestock such as cattle, horses,
sheep and camel, are also sometimes the subject of forensic investigation. The ISAG is
prominent in standardising genetic testing for parentage (stud or pedigree analyses) that
can also be used in criminal cases if required. Two examples are provided below where
case reports have been published.

There are currently 16 cattle (Bos taurus) STR loci listed on a prominent website
(https://strbase.nist.gov//cattleSTRs.htm (accessed on 15 March 2021)), all of which are
dinucleotide repeats. There is a StockMarks® available from ThermoFisher Scientific
(Waltham, MA, USA) that includes 11 loci. A recent report extended the panel of STRs to
30 [11]. This is largely for parentage studies where many loci are needed for confidence in
associating a bull with calves, but also highly useful in confirming meat in the food industry.

Sheep (Ovis aries) are the most commonly grazed species and breeds such as merino
and mouflon are either highly prized, or protected. A case report used 16 STR loci, that
there amplified in four separate multiplex reactions, to link a carcass of a mouflon to items
sized from a vehicle [12]. This case occurred on the island of Sardinia, used Bayesian
assignment modelling to support this genetic linkage.
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3.4. Wildlife STR Typing

The trade in ivory is leading to the extinction of elephants from many countries
in Africa. An elephant tusk is an over-grown tooth and therefore a potential source of
trace DNA. Linking ivory seizures by DNA typing from this genetic material opens the
possibility to identify the number of elephants slaughtered in any seizure of ivory samples;
such knowledge will aid in forensic investigations, or at least in highlighting the extent of
the illegal trade. A group at the University of Washington led by Professor Sam Wasser
developed a series of STRs from the two species of African elephant [13,14]: the savannah
species (Loxodonta Africana) and the forest dwelling species (Loxodonta cyclotis). The concept
behind the study was to identify the geographic location from which the elephants were
poached. It would be expected that elephants with shared recent ancestors (i.e., distant
family groups), will have more alleles in common at the STR loci tested than individual
elephants with a more distant genetic heritage. Knowledge of the way in which matriarchal
herds roam over either the savannahs or forests of Africa aid in understanding clusters
of STR alleles within a broad geographic area. This pioneering work not only had to
overcome the problems in creating a multiplex of STR loci, but also in being able to isolate
sufficient quality DNA from tusks, particularly when the tusks may have been stored in
poor conditions such that bacterial action might degrade the trace DNA present.

RhODIS® is a comparable system for the linkage of rhino horns to that of elephants [15].
The RhODIS® test is promoted by the University of Pretoria and is comprised of 12 STR
loci plus a gender test. It was developed for the two species of rhino that still live in Africa:
the white rhino (Ceratotherium simum) and the black rhino (Diceros bicornis). A potential
for RhODIS® is that samples from members of the last remaining white and black rhino in
wildlife parks such as Kruger can be collected and then later matched to seized horns taken
from poached rhino. The author of this review was a guest of a World Bank and TRAFFIC
supported visit to Kruger national park in eastern South Africa to witness RhODIS® in
action. Figure 2 is an image of the author attending the poaching of a mother rhino, nearby
was the corpse of the offspring; both killed for their horns.

A panel of STR markers have also been created for the one horned Indian rhino
(Rhinocerosunicornis) [16], as this species has also suffered extreme loss of numbers due
to poaching for their horns. This work is part of the official RhODIS-India program. The
authors of this paper used 14 STR markers—these were all dinucleotide repeats and far
from ideal but had been characterised previously and therefore saved time and resources
rather than trying to find and characterise new tetra-repeats [16].

As is likely to be the case for any species that has suffered a loss in numbers and is
now breeding from a small set of individuals, the frequency of some alleles starts to either
increase as homozygosity increases, and conversely some alleles will decrease or be lost.
As reported in the paper on the Indian rhino, many of the STR loci only have 3 or 4 alleles.
Despite this, a power of discrimination was reported as 1.4 × 10−9 [16].

Elephant and rhino are iconic mammalian species whose body parts are highly traded
internationally. Other mammalian species for which STR multiplexes have been developed
include bears, wolves and badgers. As populations increase in the USA there is greater
encroachment onto territories of the American black bear (Ursus americanus). Such human
bear interactions can lead to injury, and on very rare occasions, death of the human,
so tracking down the bear responsible is needed so that an innocent bear is not shot.
Eleven tetra-nucleotide repeats were selected along with a sex test and made into one
multiplex [17]. The test worked on trace amounts of DNA, down to 78 pg, so it is possible
using this method to generate profiles from hairs and scat. A further example is that of
STR typing for the European badger (Meles meles) [18]. Badgers are still hunted illegally
and therefore the need to link samples from dead badgers or badger parts to items found
in the cars, homes or persons of interest is needed.
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Figure 2. Showing the author at the site of a recently (within 4 days of taking the image) poached mother rhino. The rhino
had been shot and then the horn removed with a chain saw. The image was taken in Kruger National Park, South Africa,
and is one of around 34 poached rhino recorded in the park every month.

Bird species are traded illegally for their use in the pet trade, i.e., parrots and cockatoos,
or persecuted as perceived threats to livestock, i.e., eagles, harriers and hawks. Cockatoos
can be brightly coloured and are also known to be birds that can be caged and then kept as
pets. As so happens, a criminal case spurred this research as there was a need to analyse the
parentage of seized cockatoos, resulting in the application of 20 STR loci to aid in resolving
a dispute as to whether eggs in possession of a person of interest had been taken from
a nest illegally [19]. Hen harriers (Circus cyaneus) were once a very common sight over
northern European moorlands, but now they are extremely rare due to habitat loss and
being shot or poisoned as a perceived threat to grouse and other game birds. In response to
the need to link carcasses of dead birds to biological material (blood and feathers) on seized
items (such as traps and snares) a multiplex of 8 STR markers was created (tetra-repeats
with one tri-repeat locus) and validated for use [20]. A sex test based on the CHD 1 gene
(male birds are Z,Z and females are W,Z) was included and an allelic ladder created.

Reptiles and amphibians have also been the subject of development of STR panels.
The carpet python (Morelia spilota) is common in the pet trade and can be kept in captivity if
bred from pairs that were also captive (i.e., not taken from the wild). However, the number
of known captive snakes appears greater than the expected captive bred population and
therefore it is likely that snakes are collected illegally from the wild. In response to a need
to test this, three separate multiplexes that covered a total of 24 loci, plus allelic ladders for
each locus, was created and called OzPythonPlex [21].

The illegal collection of animals from the wild to fuel the pet trade extends to tortoise.
The slow-moving reptiles are commonly kept as pets as they are easy to look after. A result,
along with habitat loss, is that the number of tortoises in the wild has fallen dramatically.
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An example is Herman’s tortoise (Testudo hermanni), that used to span much of the northern
Mediterranean countries. To ensure that seized tortoise are correctly relocated to their cor-
rect geographical range, a panel of STR markers were applied for geographical provenance [22].

3.5. Finding, Characterising and Applying Short Tandem Repeat Loci

In all the above reports using STRs, there was an extensive amount of research required
to develop a multiplex STR test. For those from the forensic community whose experience
is solely in human identification, the arduous steps to develop such a multiplex assay are
unlikely to be known. The author of this review is from a time when the first STR test was
reported, using four STR loci [23], which then to six STRs plus amelogenin in what was
called ‘second generation multiplex (or SGM) [24]; SGM was made in-house by the UK
Forensic Science Service.

The use of STRs from dogs, elephant, rhino and hen harriers as examples, is based
on previously reported putative loci. More recently, such as from pythons, the entire
genome of the animal was sequenced using massively parallel DNA sequencing (MPS)
technology [21]. From the mass of genetic sequence data, there are software programs
to locate repetitive DNA, then provide a list of putative primers [25]. Having ordered
primer sequences, these need to be tested on DNA from multiple members of the species
to ensure reproducibility and variability at the locus. If still suitable, then homozygotes at
each locus need to be sequenced to confirm the repeat motif. Ideally the primers should
have similar binding temperatures (termed TMs) so that they can all the amplified in the
same reaction. By characterising the loci, an allelic window can be created to determine
the smallest and largest alleles likely to be encountered; this is needed to ensure that
the alleles do not overlap and fit within a size limit using up to 5 dyes. Sampling many
members of the population leads to the creation of allelic ladders, essential for accurate
genotyping. This sample set might form the basis of a frequency data set (typically need
up to 200 individuals from a population). Standard population genetic calculations need
to be undertaken: examining loci for Hardy–Weinberg equilibrium, checking if there is
any genetic linkage, and examining for power of discrimination. Validation steps, akin to
those provided by SGDAM, include: specificity testing to ensure the primers only amplify
from the species/genus for which they were designed; sensitivity tests to determine the
limit of detection and effect of adding sub-optimal mass of DNA; stability to see the effects
of environmental factors; reproducibility to see the effect of running multiple samples for
instance down a column by capillary electrophoresis; interlaboratory testing to ensure the
test works on varying equipment and by different operators; blind trial testing to ensure
the results are not biased by the inadvertent selection of samples; and perhaps finally
publishing the data, as was the case for so many of the papers cited in this review. It is
clear reading the above, that this is not something achieved in a matter of weeks and also
the reason why so few complex multiplex assays exist for species other than humans and
domesticated species such as dogs and cats.

4. Species Assignment in Wildlife Forensic Science

A question raised in wildlife forensic science is ‘which species is this?’. This is because
legislation at a national level is many countries prohibits the trade or ownership products
originating from legally protected species. The illegal trade in protected species is central
to much of wildlife forensic science as tools employed by forensic practitioners can be
applied when called on to determine whether something is, or is not, legal to trade or own.

Interpol recognized wildlife crime as the second most prevalent crime worldwide
after drug trafficking [26]. The value of the trade is often quoted as $20 billion (USD) per
year [26,27] although the exact figure is unknown as very little illegal trade is ever detected.
It is only from intercepting seizures that the true scale be estimated. Furthermore, the
low penalties and potential large financial gain lead to extensive and lucrative trade in
endangered species [28–30]. This figure of USD 20 billion is also only the estimated illegal
revenue from international trade and does not include the illegal trade within countries.
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The scope and range of wildlife crime is wide and encompasses a variety of criminal
activities such as poaching and illegal hunting of mammals [31,32], birds [20,33] and
reptiles [21,34,35], and the use of animal derivatives in traditional medicines [36,37].

Forensic investigations can only be undertaken if it is alleged that legislation has
been breached. Further, the willingness to conduct DNA profiling of suspected illegally
traded/owned samples requires: Approval from prosecuting authorities, availability of per-
sons competent to conduct the work, and funds to compensate that laboratory performing
any wildlife investigation.

4.1. Legislation Covering Wildlife Trade

The international trade in endangered species is monitored and regulated through
recommendations made by Convention on International Trade in Endangered Species of
Wild Fauna and Flora (CITES) [38]. These recommendations are enforced at a national
level by legislation. Normally, this legislation stipulates the names of the species that are
protected. It is for these reasons that much interest at a research level has focused on
methods of species identification [38,39].

Many countries have legislation covering the collection from the wild, breeding,
ownership or international trade in animal parts or whole organisms. An example
repository of information detailing the federal law in the USA can be found at https:
//www.animallaw.info/article/federal-wildlife-law-20th-century (accessed on 15 March
2021). The US Endangered Species Act (ESA) of 1973 is a key piece of legislation for both
domestic (USA), and international conservation. The act aims to provide a framework
to conserve and protect endangered and threatened species and their habitats. Addition-
ally, in the USA, the Lacey Act is central to conservation of wildlife and dates from 1900
when it became the first federal law protecting wildlife. The Act makes it unlawful to
import, export, sell, acquire, or purchase fish, wildlife or plants that are taken, possessed,
transported, or sold: 1) in violation of U.S. or Indian law, or 2) in interstate or foreign
commerce involving any fish, wildlife, or plants taken possessed or sold in violation of
State or foreign law. The Lacey Act covers all fish and wildlife and their parts or products,
plants protected by CITES and those protected by State law; thus regulating international
trade of protected species.

The EU, comprised currently of 27 countries, has the free movement of goods across
internal borders as a core value. It is only therefore trade across the first border of a
member state that is an issue. The EU Council Regulation (EC) No 338/97 deals with the
protection of species of wild fauna and flora by regulating trade of any species covered
by this regulation. It lays down the provisions for import, export and re-export as well as
internal EU trade in specimens of species listed in its four Annexes.

In the UK, the Wildlife and Countryside act of 1981 gave protection to native species,
controlled the release of non-native species, protected sites of special scientific interest,
and made provision for rights-of-way. A devolved Scotland and separately administered
Northern Ireland and Wales resulted in local legislation to protect the environment.

4.2. mtDNA in Species Testing

It may be that the seized material has been processed to create a sculpture, ornament,
item of clothing, food, or supposed medicinal product. DNA can be obtained at trace
levels from ivory [40] where ivory is made into statues, or rhino horn is proceesed into
knife handles [32]. The most traded mammalian species currently is one of the members of
the pangolin family. Pangolins are the only mammals to have scales on the outer surface
and are one of eight species: three of which are critically endangered (Manis culionensis,
Manis pentadactyla and Manis javanica), three are endangered (Phataginus tricuspis, Manis
crassicaudata and Smutsia gigantea) and two (Phataginus tetradactyla and Smutsia temminckii)
are recorded as being ‘vulnerable’ on the Red List of Threatened Species of the International
Union for Conservation of Nature. The threat to pangolins is their misguided use in
traditional medicines, specifically when the scales are used as bogus remedies. DNA can be
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obtained from pangolin scales, even when processed as a soup [41,42]. Performing mtDNA
sequencing can link seizures of pangolins, but also indicates the geographical origin from
where they were taken from the wild to inform authorities about hotspots of poaching.

Ivory, rhino horn and pangolin scales are examples of evidential material where DNA
is at trace levels. This is typical of much of the seizures encountered in the illegal wildlife
trade such that mtDNA is the only genetic material available [28]. Human identification
has centered on a small section of mtDNA that does not encode; termed the hypervariable
regions that constitute less than 1000 of the 16,569 bases that make up the human mito-
chondrial genome. Vertebrate mtDNA has two strands of different densities: the heavy (or
H-strand) and the light (or L-strand). The mitochondrial genome in eukaryotes encodes a
total of 37 genes, 22 of which encode tRNA molecules, two encode rRNA molecules, and the
other 13 encode proteins involved primarily with the process of oxidative respiration [39].
While the number of these genes on the mitochondrial genome does not vary within all ver-
tebrate mitochondrial genomes decoded to-date, the order of the genes may alter [39]. As
an example, the order is different between avian and mammalian mitochondrial genomes.

Although the use of mitochondrial loci in species testing has many benefits, there
are a few disadvantages as well. Part of the benefit of mitochondrial loci is that they are
inherited maternally and as a haplotype with no recombination. Maternal inheritance can
be a problem if hybrid species occur, particularly if the mother is from a nonprotected
species and the father is from a species that is protected [43,44] (see Section 4.5).

4.3. Species Identification Using Loci on Mitochondrial Genome

A classic characteristic for a locus used in species identification is that it should
exhibit very little variation for any member of the same species such that all members
of that species have the same, or very nearly the same, sequence; this is referred to as
intraspecies variation. The second characteristic is that this same locus should exhibit
sufficient differences from any member of the next closest species, being interspecies DNA
sequence variation.

The main locus used in taxonomic and phylogenetic studies until recently was cy-
tochrome b (cyt b) [45,46]. This occurs between bases 14,747 and 15,887 in human mtDNA
and encodes a protein 380 amino acids in length. The cyt b locus has been used extensively
in taxonomic and forensic studies [32,34,35,47].

The cytochrome c oxidase I (COI) mitochondrial gene locus was adopted by the Bar-
code for Life Consortium (BOLD) (www.boldsystems.org (accessed on 15 March 2021)) [48–50].
COI is found between bases 5904 and 7445 in human mtDNA and at a similar position for all
other mammals. COI was used initially in the identification of invertebrate species [51,52]
and became the locus of choice in forensic entomology [53] before being adopted by BOLD.

Currently, there is no standardized locus in species testing, hence a divergence between
cyt b, COI and other locus such as ND5. The Commission for the International Society
for Forensic Genetics (ISFG) recommended that there should be some rationale behind
the choice of the locus used in any analysis [1]. It is most likely that different loci will
exhibit varying inter- and intraspecies similarity depending on whether examining insects,
other invertebrates, fish, reptiles, birds, or mammals. Mammals are the only taxonomic
group where a detailed study has been performed to determine whether cyt b or COI have
fewer false positive and false negative identifications [54]; in this study, cyt b was found to
outperform COI.

It may often be the case, such as for ivory and rhino horn, that the DNA is highly
fragmented and therefore not possible to examine the entire locus of either COI or cyt b;
rather, sections of the loci are used. The first 400 bases section of the cyt b gene is typically
used [46]. For the COI the first 645 bp are used as part of BOLD [48]. The use of either
section of the cyt b or COI loci is aided by the design of universal primers; these are primers
that can be used in PCR to amplify a section of a gene from all the species from which the
specific primers are designed. For instance, up-stream from the cyt b gene is a gene for
a tRNA molecule, and this sequence is highly conserved such that the primers will bind
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to any mammalian species. This is a real benefit if the material is single source and not
contaminated with DNA from another species; as an example, it is all too easy to amplify
human DNA due to external contamination.

4.4. Mitochondrial Sequence Analysis

The standard workflow for species identification is to: (1) isolate DNA; (2) then
quantify the amount of DNA isolated; (3) amplify the section of mtDNA chosen; (4)
confirm that a PCR product has been generated; (5) purify the PCR amplicon; (6) DNA
sequence the amplicon (in both directions); (7) compare the sequence data to a reference
data base such as GenBank or ForCyt [55]. ForCyt was established to remove errors that
do exist in GenBank [56]. When publishing the reference DNA sequence from a species
to which comparisons of unknown material can be made, it is essential that this known
sample comes from a voucher specimen; this is recommended by the ISFG Commission [1].
Software such as the Basic Local Alignment Search Tool (BLAST) compares the target
sequence fragment to the data deposited on the database (GenBank) and produces a
similarity score of the 100 most closely matched sequences. These are listed with the closest
similarity at the top of the list. The ideal is a similarity score of 100% to a known species,
with the next closest being less than a similarity of 95%. This situation rarely occurs with a
similarity score of 98% between the sequence tested and the nearest sequence being more
typical. There is no consensus on how many differences and over what number of bases is
either due to intra- or interspecies variation. It was reported that one base variation per
400 bp sequence is acceptable intraspecies variation [39].

4.5. SNP Testing

Performing a complete DNA sequence analysis from a section of DNA provides the
maximum amount of genetic information. It may be that only a few DNA bases that differ
(are polymorphic), and that much of the DNA sequence is of little value as the species
being considered share much of their DNA. In such instances, if the polymorphic DNA
bases are known, these bases can be targeted specifically. A recent example of this is the
identification of SNPs within the mitochondrial genome of tigers [57]. In this instance,
small parts of the tiger mitochondrial genome are amplified in one reaction using primers
specific for the genus Panthera. The assay is based on SNaPshot®, a process used in ancestry
assignments of human populations [58–60]. As the sections amplified in the first instance
are short, no more than 300 bases, this type of DNA testing works very effectively on highly
degraded DNA, with a recent example being the species assignment from ivory [61]. In
this paper the authors were able to differentiate ivory taken from Asian elephants (Elephas
maximus) compared to either of the African elephants with a 99.92% reported accuracy
based on an impressive 140 samples of ivory. The paper targeted SNPs in either the cyt
b gene or ND5 gene. Additionally, because the SNP detection can be species-specific, the
test works well even when there is a complex mixture of other species. An example was
to identify up to 18 European mammalian species by using universal primers in the cyt b
gene in combination with species specific primers [62]. The size of the resulting species-
specific amplicon is itself specific for each species and with 3 amplicons per species there is
redundancy to cope with one of the tests not working.

4.6. Hybrids

Sequence comparison using regions of the mitochondrial genome has a tremendous
advantage over nuclear markers for sensitivity; this is due to the multiple copy number of
mitochondrial genomes per cell. A potential disadvantage in species testing is the maternal
inheritance of mitochondrial DNA. When the male is from a protected species, but the
female is from species not protected, and viable young are produced, due to the maternal
of inheritance of mtDNA, the offspring will not be recognised as a protected species. This
issue was highlighted in a recent report [43], which is based on a talk at the ISFG congress
in 2019 in Prague. There are in reality only a few examples where hybrids are the result
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of this type of mating as the majority of examples include species that are geographically
isolated, or of little forensic relevance: examples of geographical separation are mating
between an African lion (Panthera leo) and Indian tiger (Panthera tigris tigris) resulting in
either a tigon or liger; and of limited forensic relevance between a horse (Equus caballus)
and a donkey (Equus asinus) to produce a hinny or mule.

An example where hybrids are an issue was highlighted in a case report on the
alleged poaching of protected South American camelids: llamas (Lama glama), vicuñas
(Vicugna vicugna), alpacas (Vicugna pacos) and guanaco (Lama guanicoe) [44]. Wild (vicuña
and guanaco) and domesticated (llama and alpaca) animals roam within Chile freely and
can mate to produce viable young capable of themselves producing young. In Chile it is
illegal to hunt and kill guanaco and llama but hybrids are not protected; this leads to the
potential to sell meat from protected species as from a legally killed animal. The colour of
the coats of the domestic and hybrids are different and specific to the variants. This led to
the group in Chile, who were faced with this problem, to use in addition to cyt b sequence
data, a diagnostic base in the melanocortin 1 receptor (MC1R). The combination of species
assignment with a marker for coat colour resolved this case.

4.7. Traditional Medicines

Seizures of rhino horn, ivory and pangolins usually are of either identifiable using
morphology or by DNA as will be from only one species. An example where multiple
protected species are found in a complex mix, along with other plant and animal derivatives,
is the trade in traditional medicines. Here, the ingredients might not be listed, rather the
spurious cure for while they are taken can be prominent. An example is shown in Figure 3.

Figure 3. Showing examples of a traditional east Asian medicine that was seized by Border Force
officials. The items were later show to contain traces of DNA from endangered species.

These plasters and pills list bear and tiger on the packaging, which is an offence in
many countries, breaching CITES agreements, even if there is no tiger or bear present. It is
likely that the amounts of any genetic material would be at extremely low amounts, and in
a complex mix with potentially other species. This makes standard species testing prob-
lematic. Using universal primers and then amplifying using standard Sanger sequencing
of part of the mtDNA will result in unreadable DNA sequence data. Undoubtedly the
application of massively parallel DNA sequence technology overcomes the issue of any
complex mixtures. The first example of this work on seized traditional medicines identified
a number of protected species along with large numbers of other plant and animal species
not listed on the packaging but with poor health outcomes [37]. A more recent study found
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protected species in traditional medicine products that could be bought in Australia [36],
yet no prosecutions were undertaken even though there is clear evidence of breaching
federal law.

5. Conclusions on Animal Forensic Profiling

This review clearly identifies the need, and the growing use of, non-human animal
DNA for a range of forensic applications. There are a few laboratories dedicated to this
type of analyses and can demonstrate that they work to the same exacting standards
required in human identification. More such facilities are needed and, when it comes to
wildlife forensic science, in countries closer to where seizures happen. The STR typing of
non-human animals, with cats and dogs being prime examples, uses the same equipment
as in human identification and therefore creating Standard Operating Procedures and
adopting the STR typing of dog for example into use in mainstream accredited laboratories
is therefore possible.

There remains no standard locus for species testing. A wealth of data exists on
GenBank for sections of cyt b, COI and other mtDNA regions such as ND5 from a wide
range of animal species. It may be that one locus has fewer false negatives and false
positives than another for different taxonomic Orders, although data only exist in some
mammalian species as a comparison. Intraspecies variation needs to be known for many
more species as currently there are very little data available. One answer would be to use
the power of MPS and analyse multiple loci in one reaction. The common use of MPS is on
the near horizon as prices for consumables and the use of this equipment decreases. MPS
is also seeing acceptance in other areas of non-human DNA typing such as in analyses of
bacteria for post mortem interval [63,64] and now in tracking microbiomes [65,66] and was
the subject of a recent review [67]. If the use of MPS is growing a profile in bacterial work,
then there is every reason to expect the same acceptance and profile from eukaryotic and
in particular vertebrate species.

The application of non-human DNA, now with examples of now bacterial DNA
typing, can add an extra dimension to a forensic investigation. The use of DNA from
species other than humans can add a further dimension to a forensic investigation. It is for
those working in the non-human arena to ensure that their standards meet those expected
and can provide a valuable service to the criminal justice system.
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Abstract: Understanding the factors that may impact the transfer, persistence, prevalence and
recovery of DNA (DNA-TPPR), and the availability of data to assign probabilities to DNA quantities
and profile types being obtained given particular scenarios and circumstances, is paramount when
performing, and giving guidance on, evaluations of DNA findings given activity level propositions
(activity level evaluations). In late 2018 and early 2019, three major reviews were published on aspects
of DNA-TPPR, with each advocating the need for further research and other actions to support the
conduct of DNA-related activity level evaluations. Here, we look at how challenges are being met,
primarily by providing a synopsis of DNA-TPPR-related articles published since the conduct of
these reviews and briefly exploring some of the actions taken by industry stakeholders towards
addressing identified gaps. Much has been carried out in recent years, and efforts continue, to meet
the challenges to continually improve the capacity of forensic experts to provide the guidance sought
by the judiciary with respect to the transfer of DNA.

Keywords: DNA transfer; DNA persistence; DNA prevalence; DNA recovery; activity level evalua-
tion; forensic science

1. Introduction

Awareness and understanding of the transfer, persistence, prevalence and recovery of
DNA (DNA-TPPR), as well as access to relevant data on these issues to support probability
assignments, have become increasingly relevant to forensic scientists to assist with investi-
gations of alleged criminal activities and to provide guidance to the triers of fact [1,2]. The
desire to utilise DNA profiling methodologies is due to the high discrimination power of
the profiles they are able to generate, and thus, their ability to exculpate or inculpate an
individual [3–5]. Further, the sensitivity of these methods allows profiles to be generated
from minute quantities of biological material [6–8]. Knowing that profiles can be readily
collected from objects that have been touched by hands [9,10] or worn [11–14] significantly
broadened the scope of objects and surfaces that are targeted for DNA sampling to assist
investigations [15]. Such items may include weapons, tools, containers, bags, bottles,
personal items, appliances, computers, phones, tie-wraps, ropes and cords, clothing items,
glasses, tape, documents, handles, steering wheels, chairs, tables and benches, windows,
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cartridge cases, circuit boards, stones, etc., that may be associated with any type of criminal
activity including robberies, sex offences, assaults, homicides, drug manufacturing and
trafficking, and a range of other indictable offences as well as items associated with missing
persons cases [6,15–23]. Within many jurisdictions, samples collected from these types
of items form a substantial portion of the samples collected for profiling and are heavily
relied on to assist investigations [16,20,24].

However, two elements have meant that increasingly, the question of relevance to the
trier of fact has shifted from who the DNA is from, to how and when it got to the area
from which it was collected [2,25–27]. The first is the knowledge that DNA can not only be
deposited by a person contacting an object but can also be readily transferred by various
other modes, including (a) from person to person to object; (b) from person to object to
person to object; (c) from person to object to object [1,9]. The second is that many of the
samples collected from touched objects and worn clothing [13,28–30], as well as samples
of small stains of various biological materials such as blood, saliva and semen collected
from various surfaces with pre-existing levels of background DNA [31–34], provide mixed
profiles. Figure 1 depicts a general overview of the many potential sources (including who,
what, when and how) that may contribute to a recovered sample and the DNA profile
generated from it, as well as the many factors that could potentially impact the levels of
transfer, persistence, prevalence and recovery of these contributions.

Figure 1. Potential sources contributing to, and factors impacting, the sample recovered and the
DNA profile generated from it. The variable shading within each box represents that each source and
factor can vary in relative contribution and impact. AOI = Action of Interest. POI = Person of Interest.
* Apart from contamination of evidence by DNA from investigators and their associates during
the investigation process, detection of AOI-related DNA could be due to cross contamination with
another area of the same item or other item of the same case due to direct transfer events (for example,
within packaging) or indirect transfer events (for example, via reused, uncleaned, or inadequately
cleaned, tools, bench and/or gloves).

To provide guidance on the likelihood of DNA findings given competing propositions
of interest with respect to the activities performed requires a thorough understanding
of the factors and variables impacting DNA-TPPR, the availability of data in order to
generate probabilities of particular types of profiles given specific sets of circumstances,
and the knowledge of potential impact of the methodologies, processes and thresholds
applied to generate the available data. In late 2018 and early 2019, three major reviews were
published on elements of these, with each advocating the need for further research and
other actions to support the conduct of DNA-related activity level evaluations. Firstly, van
Oorschot et al. [1] conducted a review of the state of play with respect to DNA transfer in
forensic science and highlighted areas requiring further attention. This was soon followed
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by two additional major reviews relating to DNA-TPPR: Burrill et al. [35] and Gosch and
Courts [36].

In their review, van Oorschot et al. [1] provided a brief history of aspects relating to the
transfer of DNA, indicated why understanding aspects of DNA-TPPR and availability of
related data are important to the forensic and legal fraternity, plus gave a detailed summary
of the many aspects pertaining to the transfer of DNA within the forensic science context.
These included:

• What was known about DNA-TPPR at the time, including in relation to:

� Potential means and complexities of transfer.
� Core factors impacting transfer.
� Prevalence and origins of non-self DNA on various surfaces.
� Persistence of deposited DNA in various circumstances.
� Potential relevance of activities performed between activities of interest.
� Impact of using different recovery and processing methodologies on quantities

of DNA retrieved and the profile types generated.

• Consideration of associated elements, including in relation to:

� Contamination risks.
� Type of sources of information, and tools, to utilise when addressing activity

level questions.
� Readiness of those addressing transfer-related questions, and the adequacies

of training, competency/proficiency testing and accreditation programs.
� Means of creating, gathering, sharing and using data.

The authors also highlighted several areas that could benefit from more
attention/investment, including:

• Research to better understand the effect of the many variables impacting DNA-TPPR,
and build the data necessary to facilitate more accurate probability assignments of
generating particular types of profiles in a wide range of relevant casework situations.
Specific areas of research include:

� Impacts of physical and chemical differences of contacting surfaces, including
those relating to their topography, chemical compositions, fibre type, weave,
thickness, electrical charge, etc.

� Assessment of transfer of primary touch deposits after long time periods.
� Drying patterns and transfer rates of various relevant biological materials, such

as semen, and the impact different substrates may have.
� Effect of duration and/or frequency of use on the accumulation of DNA, and

subsequent changes to profiles, for objects of different types and substrates.
� Awareness of general levels of background DNA (including quantity, origin

and quality), and the impact of factors such as a person’s shedder status and
frequency of item use.

� Understanding of the influence of any background DNA on the interpretation
of mixed profiles.

� Acquisition of more accurate probabilities of finding non-self DNA, and of the
different relative mixture proportions within a deposit made by a hand, by
collecting more samples from random individuals in a wide range of situations.

� Prevalence of non-self DNA on the bodies of both children and adults.
� The quantity and quality of DNA from donors and other individuals in fin-

gernail samples after various known contact activities; acquisition of non-self
DNA during regular social interaction; indirect transfer by occupying another
person’s space for a certain amount of time; the effects of personal habits; and
an individual’s shedder status, on detection of donor and foreign DNA.

� Awareness of contributors to the non-self component of DNA retrieved from
personal objects and occupied spaces.
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� Persistence of the temporary user of an item after use by the original owner
has resumed.

� Probabilities of detection, and relative contribution, of individuals to profiles re-
trieved from a wider array of shared objects and surfaces within confined shared
spaces (e.g., homes, offices, cars) and public spaces, given known histories.

� Impact of handwashing on the amount and quality of DNA deposited from
hands, including factors such as: different methods of washing hands, the
natural accumulation of DNA on hands post-handwashing, and the different
personal habits of individuals, and their effect on the accumulation of self and
non-self DNA on hands.

� Impacts of genetic factors and various non-genetic factors (e.g., behavioural
traits, health situation, and/or environmental conditions), and their potential
interactions, on shedder status, as well as identifying and understanding their
underlying properties.

� Understanding the impact of the absence/presence of the types of information
one relies on that may be gathered by the crime scene attending officer, and
to consider means of improving the gathering of relevant information in an
efficient and consistent manner.

� Studies to help establish more accurate probability distributions for relevant
factors impacting transfer.

� Determining the accuracy of ‘experiential’ assessment (i.e., based on experiences)
relative to ‘experimental’ assessment (i.e., based on data from experiments).

• Enhancement of access to relevant data, including specific areas such as:

� Availability of a quality controlled open access depository of relevant DNA-
TPPR information that can be easily mined for various purposes.

� Inclusion of relevant details of the methods, protocols and thresholds applied
to generate the DNA-TPPR data presented.

• Recognition of DNA activity-associated expertise to be distinct and supported by
dedicated training, competency testing, authorisation and ongoing proficiency testing.

In the review by Gosch and Courts [36], an excellent summary of the existing literature
as of October 2018 was also provided with respect to our knowledge of the core variables
influencing DNA-TPPR. They highlighted the limitations of much of the DNA transfer-
related research studies conducted to date in terms of:

• Underestimating the complexities and multitude of factors needing to be considered.
• Recording relevant information to allow comparisons and appropriate use.
• Identifying the relative weight of different impacting variables.

Regarding the latter, they pointed out that factors such as casework-relevant persis-
tence scenarios or the impact of inter-individual differences in handling an item are among
those receiving limited attention. The authors further highlighted deficiencies in overall
research study designs and documentation, lamented on the lack of agreement on the DNA
analysis output parameters most appropriate to be utilised when comparing studies and
addressing activity level questions and standardisation of recording these, and indicated
a disequilibrium in the degree of studies relating to pertinent factors. Furthermore, they
described and launched a new database (‘DNA-TrAC’) [37] to assist the accessibility of
relevant DNA-TPPR information to aid addressing of activity level questions.

Around the same period, Burrill et al. [35] also provided a review of published research
on aspects of transfer and persistence relating to ‘touch DNA’, including on:

• How much DNA can be recovered from handled items.
• Whether trace DNA can be detected under certain scenarios including varying degrees

of indirect transfer.
• Factors which may influence these results.
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Whilst the authors pointed to similar issues raised by the two above mentioned
reviews, they also explored deeper the current knowledge in relation to the composition of
touch deposits. They concluded that “Further exploration of relative contributions of hand-
endogenous and -exogenous DNA contributions to touch deposits is warranted, along with
more specific localization of DNA sources inside and outside a cellular infrastructure”, and
that “A more comprehensive picture of where the DNA in ‘touch DNA’ comes from will
provide valuable information to practitioners seeking to utilize touch DNA typing results
in a courtroom context, and will contribute to the ongoing effort to understand and predict
the circumstances of DNA transfer in a forensic context more reliably”.

A year prior to the three reviews mentioned above, in their Appendix B, Taylor
et al. [38] identified 17 study areas that, if acted on, would improve our knowledge base and
assist evaluations of evidence in light of propositions that suggest differing DNA transfer
mechanisms. These specific studies related to areas including: efficiencies of different
extraction methods, substrate considerations, environmental conditions, persistence of
DNA in various situations, shedder consistency and shedder propensity determination,
duration and manner of handling/contact, objects used habitually, accumulation of DNA
from multiple contacts, levels of primary user’s DNA on regularly used items, levels of
background DNA, and value of profile degradation information.

Collectively, the aforementioned three reviews [1,35,36] and the research paper by
Taylor et al. [38] acknowledged the importance of DNA-TPPR in investigations of criminal
activity, highlighted the many limitations in our current knowledge and availability of
required data, and provided some guidance on improvement opportunities. In this paper,
we assess the extent to which we are meeting these challenges. This is achieved primarily
by providing a synopsis of publications relevant to DNA-TPPR that have been published
since these reviews. We then reflect on this and some of the actions taken by industry
stakeholders in support of addressing identified gaps. Finally, we provide a general
conclusion in relation to progress towards improving the guidance that experts are able to
provide the courts in relation to the transfer of DNA.

2. Identification and Reporting of Recent DNA-TPPR Publications

Identification of recent relevant publications was achieved through the conduct of a
systematic review. The search was conducted on 30 March 2021 for the period 2018 to the
present within Scopus and Web of Science. Applying the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines [39]. The search commenced
by applying the following:

TITLE-ABS-KEY ((DNA OR “deoxyribonucleic acid”) AND (transfer* OR deposit*
OR contact* OR persist* OR prevalen* OR background OR shedder)
AND (human OR participant OR donor OR volunteer) AND (forensic* OR
crim*)) AND (LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020)
OR LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018)).

One hundred and forty-four papers were identified for inclusion in the synopsis of
relevant publications within the given period presented in Section 3 (Figure 2). As we
may not have captured some relevant publications, or inadvertently excluded some from
further consideration, we advise those seeking publications relating to specific core topics
to conduct additional searches relating to their narrower area of focus.
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Figure 2. Process and outcome of review to identify articles to be included in synopsis. Topic
categorisation of articles was based on their primary area of DNA-TPPR-related focus. Numbers of
articles included/excluded are indicated in parentheses after each topic/exclusion criterion.

Based on the primary DNA-TPPR-related focus and content of the 144 included ar-
ticles, each was assigned to one of the following topic categories: detection and source
identification, recovery, time since deposit, persistence, prevalence and background, man-
ner of handling, shedder status, contamination, microbiomes, evaluating DNA evidence.
Where a paper was deemed to also contain information of relevance to an additional topic
area, this information was also conveyed within the other topic subsection.

A synopsis is provided that gives a general overview of the focus areas and some
general findings of the articles reviewed. The articles included in the synopsis were from
many different journals, with Forensic Science International: Genetics (54) and Forensic Science
International (23) providing the most articles. The majority of papers focused primarily
on various aspects of DNA detection and recovery, with fewer concentrating on various
elements of transfer, prevalence and persistence (Figure 2). The degrees of relevance of the
publications identified vary, yet each is incorporated and referred to in the synopsis. The
scope and depth of some of the presented publications are very limited. Further, some of
the experimental designs within the studies conducted have limitations and while some
acknowledge this, others do not. However, we have refrained from drawing attention to
these and, instead, urge readers to delve fuller into the papers of interest to make their own
assessment of such matters.

The reported findings of conducted research are those determined by the authors of
the research and not our extrapolations. While in general we concur and/or are supportive
of the vast majority of findings, conclusions and recommendations reported in the publica-
tions listed, their inclusion does not necessarily imply that we concur, and we do not make
systematic comparisons of studies to inform a further judgement. For more details of the
experimental designs, methodologies utilised, analyses employed, results obtained, and
associated interpretations and discussion of the studies referred to, we recommend that the
relevant specified references are consulted.
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Several of the reported findings are new and broaden our understanding and/or
improve the availability of relevant data and some produce findings verifying existing
understandings/knowledge with or without making reference to relevant prior studies. We
have chosen not to point out connections to prior studies here, but urge interested parties
to consult the details of the publication of interest as well as any others on the relevant
topic that were published prior to the period of publications bookending in this review
to gain a fuller appreciation of the available knowledge and data. References within the
papers of interest listed here and those listed within the aforementioned review articles can
be a good start in such situations. Further, we are aware of some interesting and relevant
papers that have been published since the cut-off date for inclusion within this review, and
thus, are not included here. A selection of these more recent articles will be highlighted in
the discussion section.

3. Synopsis of Recent DNA-TPPR-Related Publications

3.1. Detection and Source Identification

Twenty papers were identified that primarily addressed detection of biological sources
and/or their identification (Figure 2), plus one additional study that also addressed this is-
sue but was primarily focussed on another topic. Several studies investigated the visualisa-
tion and detection of biological materials. In addition to readily visualising biological stains,
Yano et al. [40] demonstrated the ability of an acid-free p-dimethylaminocinnamaldehyde
solution sprayed on glass slides and clothing and irradiated with blue-light-emitting diode
light to visualise relatively fresh deposited finger and palm prints on clothing. This study
also demonstrated that this technique does not adversely affect STR analyses, thus pro-
viding potentially useful methodology to localise areas on items of interest to assist better
targeting for sampling. A number of other studies also demonstrated the ability of various
treatments to potentially enhance detection of biological materials, including the use of:

• Trypan blue to improve visibility of shed skin flakes collected by adhesive film [41].
• Diamond™ Nucleic Acid Dye (DD) (Promega, Madison, WI, USA) to detect cellular

material in lip-prints [42].
• DD to detect DNA on used swabs to potentially assess if further processing for DNA

profiling is warranted [43].
• Ethidium Bromide to detect small amounts of DNA on swabs to possibly provide

similar pre-screening benefits [44].
• Immunohistochemical staining of skin-expressed proteins to identify exfoliated epi-

dermal cells to screen samples taken from handled/touched objects [45].
• NIR hyperspectral imaging to localise invisible traces of blood, urine and semen on

various substrates [46].
• A test based on the click reaction between serum albumin and tetraphenylethene

maleimide (TPE-MI) to visualise invisible blood stains (and showing that it may
perform better than luminol) [47].

• Fluorescence spectroscopy to localise the presence of saliva stains [48] or detection of
saliva on swab samples of human skin that had been licked [49].

Furthermore, Butler et al. [50] compared four methods that have been previously used
as presumptive tests for the detection of traces of blood on dark materials, finding that
luminol was, overall, the most effective method.

To explore source differences and gain insight into associations with DNA content,
Burrill et al. [51] used flow cytometry and microscopic examination to generate granularity,
size and nucleic acid fluorescence data of washed and unwashed hands, as well as saliva,
nasal and eye wash that could be sources of transferred DNA onto hands. They found that
hand rinses consisted mainly of anucleate corneocytes, many of which also stained positive
for nucleic acids, and suggested the need for further research on the recovery and analysis
of corneocyte DNA, which they report was previously assumed to be negligible.

The potential of a software tool for the automated detection and characterisation of
epithelial cells from fingerprints based on fluorescence intensity across the cell surface and
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size/morphology was demonstrated by Olsen et al. [52]. This study also observed that
trace cell populations from certain individuals may have distinct morphological and/or
structural properties. The authors pointed out that this technique can, therefore, facilitate
investigations into the deposit, transfer, and persistence of both cellular material and DNA
in trace biological samples.

Tests for the detection of human PSA and human α-amylase for the identification of
seminal fluid and saliva, respectively, in forensic samples are commonly used as presump-
tive tests in sexual assault-related cases to aid decisions on further testing procedures. It is
relevant to know how frequent PSA and amylase are detectable by these tests in vaginal
swabs that are void of seminal fluid and saliva. A study by Kishbaugh et al. [53] of 50
vaginal swabs from unique donors over the age of 18 years and relevant history, and a
study by Sari et al. [54] of 20 pre-pubescent (3–9 years), 20 post-pubescent (16–45 years)
and 20 post-menopausal (50–75 years) females, help fill this knowledge gap, and thus,
assist the accuracy of interpretation of immunochromatographic testing results. In addition,
a review of current methods of sperm detection, factors affecting sperm detection, and
recent advances in sperm detection utilising alternative methodologies is provided by
Suttipasit [55].

Traditional identification methods for the nature of the body fluids or tissues present in
a sample collectively cater for a narrow range of biological materials tend to require one test
per target fluid or tissue and may consume material compromising attaining a DNA profile.
New methodologies, especially those utilising mRNA and proteomics approaches, have
shown opportunities to identify a wider range of biological materials that may enhance
forensic examination capacities. Molecular biology techniques continue to be explored
to enhance the capacity to improve source identification. Abbas et al. [56] reported on
the development of a protein microarray chip with enhanced fluorescence for sensitive
identification of semen and vaginal fluid and pointed to the value of further development
of highly sensitive chips for the identification of other biological body fluids. O’Leary
and Glynn [57] highlighted the potential of a selection of miRNAs to identify forensically
relevant body fluids. Hanson et al. [58], using cSNPs in body fluid-specific mRNA tran-
scripts, demonstrated the ability to identify forensically relevant body fluids and skin, as
well as differentiate blood, semen and saliva transcripts from different individuals. Those
authors also indicated that, with further development, one may in the future be able to
assign body fluids to DNA donors, which, in many instances, may provide additional pro-
bative value. Kamanna et al. [59] demonstrated the potential of proteomic analysis, using
mass spectrometry-based approaches, MALDI-ToF MS/MS and n-LC-ESI-qToF MS/MS, to
identify vaginal fluid and blood from only a few fibres plucked from a microswab used to
collect a sample from underneath fingernails. In addition, Watanabe et al. [60] explored the
simultaneous analyses of semen-specific methylated (or unmethylated) CpG markers and
adjacent single nucleotide polymorphisms. By combining methylation-specific polymerase
chain reaction and pyrosequencing technology, the authors developed a method to detect
three semen-specific methylated/unmethylated regions that was able to identify semen-
derived alleles from mixed stains. The authors suggested that this type of methodology
may be a useful approach for genotyping from a mixture of body fluids.

3.2. Recovery

This section includes studies that investigated various aspects of DNA recovery, specif-
ically sampling, storage, extraction, preferential recovery from mixed samples, profiling,
and differences in the methodologies employed. Fifty-six papers are reported (Figure 2),
along with some others that were primarily included in other topics.

3.2.1. Sampling

Several studies continue to elucidate the ability to generate DNA profiles from samples
taken from touched objects [61–64]. Additional studies evaluated means of generating
human DNA profiles from traces of biological material left on various items, includ-
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ing hair [65], bricks [66], dogs [67], bite marks in food [68], paper documents [69], eye
wear [70], superabsorbent polymer-containing products (commonly found in nappies and
sanitary towels) [71], improvised explosive devices [72], rifle magazines [73] and bullet
cartridges [74–78]. Further, Gray et al. [79] demonstrated that STR DNA profiles can be
generated from human blood found in Anopheles mosquitoes, from one or multiple individ-
uals, and that the quality of the profiles declined as the duration between mosquito blood
meal and sample collection increased.

The performance of different swabs on the collection and profiling of DNA continues
to be explored. When considering touch DNA recovery, two studies compared the perfor-
mance of different swabs, with each finding that a specific type of swab performed better
than others [80,81]. A further study indicated that the use of pieces of absorbing paper
moistened with 70% ethanol recovered epithelial cells/touch DNA from various surface
types better than a cotton swab moistened with water [82]. In addition, Sherier et al. [83]
illustrated the potential benefits of using the microFLOQ® Direct Swab (Copan, Brescia,
Italy) for collecting DNA from minute stains, and possibly using it as a pre-screening
methodology (i.e., sampling a small portion of a stain for initial screening and testing for
expeditious processing) while saving the remainder of the stain for later testing. They also
demonstrated that swabbing the centre of stains of blood, semen and saliva provided more
DNA and complete profiles than swabbing the edge of stains.

Investigation also continues into the use of adhesives, such as tapes and gels, for DNA
sampling. Kanokwongnuwut et al. [84] compared the efficiencies of different types of tape
on collecting DNA from fingermarks and the effect of different numbers of applications,
illustrating that particular tapes performed better than others and the benefits of ten
applications compared to just one or two applications. Damsteeg-van Berkel et al. [85]
showed that collection efficiency from textile substrates increased with increasing stubbing
force in a concave down increasing function to a threshold depending on the substrate
material. Zorbo and Jeuniaux [86] illustrated that DNA profiles can also be generated
from cells, particularly those deposited by skin contact, collected using 1:1 tapings that are
conventionally used to obtain microtraces of fibres and hairs prior to sampling for DNA
from a body or clothing. However, the authors recommended taking additional samples
from an area of interest post 1:1 taping using other techniques such as swabbing. Dierig
et al. [41] compared DNA yields and profiles of single skin cells recovered from adhesive
tape versus processing of 1 × 1 cm areas of adhesive tape after the adhesive tape had been
applied to external areas of T-shirts after a period of wearing and where they had been
vigorously grappled for 10 sec to mimic a physical assault. They found the approach of
sampling 1 × 1 cm areas to be superior in regard to DNA yield, profile completeness and
identification of the offender profile. Finally, gels have also been shown to be efficient
methods for the recovery of DNA from fingermarks [87–90].

A few studies point to the potential benefits of applying different collection methods
depending on the type of substrate [91], especially with respect to metal surfaces [80,92].
In addition, Sessa et al. [93] compared three sampling techniques (adhesive tape, cutting
out, dry swab) for the detection of touch DNA from wearers and handlers of brassieres,
and found no difference in the recovery of the handler’s DNA among the three techniques,
even though the cutting out technique showed the greatest recovery. However, recovery
of the wearer’s DNA was best achieved using adhesive tape. Overall, for their sets of
samples, use of the dry swab collection method performed worst. However, for the subset
of samples where in the experimental design the period of contact was shortest, out of
the three techniques, samples collected using the dry swab technique yielded the highest
number of handler profiles. The authors also demonstrated that when targeting for foreign
DNA, the sample area should be narrowed as much as practicable to the smallest area
possible to maximise target DNA recovery.

In addition to its use in visualising areas of cellular deposits, DD has also been used
to determine how many cells are required to generate an informative DNA profile, either
by direct PCR or conventional DNA profiling methodologies [94]. This study found that,
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when using direct PCR, ≥40 buccal cells collected from a saliva sample by either a swab
or tapelift were required, whereas, from a touch sample, ≥800 corneocytes collected by
swabbing or ≥4000 corneocytes collected by tapelift were required. However, more cells
were required for the same DNA profile result when samples were processed through a
DNA extraction workflow: ≥80 buccal cells from a swab and tapelift, ≥4000 corneocytes
collected by a swab, ≥8000 corneocytes collected by a tapelift, illustrating that the use of
direct PCR can be more efficient. The authors also concluded that cell-free DNA forms a
major component of the DNA collected from touched deposits, and that tapelifting is not
as efficient as swabbing in co-collecting this component of the total DNA deposited. Miller
et al. [95] and Burrill et al. [96] also provided evidence that extracellular DNA can represent
a substantial proportion of total DNA recovered from handled substrates. Additionally,
Burrill et al. [96] determined a suitable technique to separate cellular and cell-free fractions
of hand deposits (i.e., one that maintains the representative fraction of cell-free DNA at
the time of collection) and the best of three methods tested to purify the cell-free DNA for
DNA profiling. A separate study by Burrill et al. [97] demonstrated that enhanced lysis
methods using a reducing agent and longer incubation may be valuable for the extraction
of DNA from corneocytes, which make up the majority of the cellular material left in
touch deposits by hands. The authors also showed that the corneocyte DNA is fragmented.
The authors suggested that use of methods that extract the DNA from corneocytes more
efficiently than standard methodologies, and application of profiling techniques more
suitable to fragmented DNA, could enhance the ability to obtain useful profiles from touch
DNA samples.

3.2.2. Storage

Three studies investigated the impact of storage conditions on the preservation of
DNA in biological materials. Kaur et al. [98] looked at the degradation (using UV–visible
spectroscopic profiles) of various types of forensic blood-related casework samples pre-
served under various conditions and different durations. They found that the preservation
techniques had a greater impact on the quality of DNA than the aging of the sample, but not
to the degree that STR profiles could not be generated. Badu-Boateng et al. [99] examined
various storage conditions to determine the most appropriate means of storing crime scene
soil–blood mixed samples prior to analysis at the laboratory, based on DNA quantification,
DNA degradation and DNA profile parameters. They found that storage at −20 ◦C was the
best for this sample type, followed by room temperature and 4 ◦C, respectively. Corradini
et al. [100] showed that buccal cells collected directly on to FTA mini cards (GE Healthcare)
and stored for 11 years still provided good quantities of DNA and good-quality DNA
profiles. In addition to these studies, Suttipasit [55] emphasised the need for appropriate
long-term specimen preservation in order to be able to take advantage of potential future
methodological advances to interrogate samples beyond current abilities.

3.2.3. Extraction

Several studies reported the benefits of using direct PCR methods over processes
that include a magnetic bead extraction step for the generation of DNA profiles from
touched objects, including Kanokwongnuwut et al. [94]. Dierig et al. [41], comparing
different DNA extraction methods, found that direct lysis methods (a Chelex solution
method, Casework Direct Kit (Promega, Mannheim, Germany), Investigator Casework GO!
Kit (Qiagen, Hilden, Germany)) were more suitable than a magnetic bead-based method
(Maxwell RSC Blood DNA Kit (Promega)) for low template traces due to the limited loss
of DNA. Meanwhile, de Oliveira Francisco et al. [101] found that the Casework Direct Kit
(Promega) was much more efficient for processing touch DNA samples than the DNA IQ™
System (Promega), another magnetic bead-based DNA extraction method.

A couple of studies looked toward the future, considering how we might better
understand and improve extraction efficiencies. LeSassier et al. [102] described means of
developing artificial fingerprint samples and advocated their use to assist future studies on
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the efficiencies of various methods of collection and extraction of DNA from fingerprints.
Liu et al. [103] summarised the recent development of magnetic solid-phase extraction in
forensic science applications, including DNA extraction, and pointed out that modifications
of functional materials on the surface of magnetic particles that could lead to potential
improvements (e.g., to better cope with negative impacts of some pre-processing tools,
such as fingerprint powder and tapes) and broadening of their application (e.g., detection
of biomarkers, such as amino acids, peptides, hormones, etc.).

Two studies considered the extraction of non-DNA elements of biological samples
for forensic applications. O’Leary and Glynn [57] identified the best of three methods
investigated for the extraction of miRNAs from body fluids for the purpose of using
miRNAs for body fluid identification. A study to support the potential future application
of genetically variable peptide analysis of touched samples for forensic identification [104]
considered a workflow for the collection, enrichment and fractionation of DNA and protein
in latent fingerprint samples. The authors demonstrated that the workflow provided
sufficient DNA and protein from touch samples for further analysis. Further, the authors
observed that the quantity and quality of protein remained robust, regardless of fingerprint
age, and that the proteomic content of the touch samples was consistent across donors and
fingerprint age.

3.2.4. Preferential Recovery from Mixed Samples

Some studies considered the impact of different sampling and pre-sampling methods
on preferential recovery of DNA from particular donor(s) in mixed samples. Hayden
and Wallin [105], investigating the effectiveness of different methods of sampling from
fingernails to minimise the collected amount of endogenous (female) DNA and maximise
the amount of exogenous (male) DNA, concluded that their swabbing method did this
better than two alternative methods tested. One study compared an automated procedure
to a manual procedure for standard differential extraction of sperm-cell fractions, and found
that similar levels of semen separation efficiency were achieved for sperm-cell fractions
using both automated and manual procedures [106]. Three studies continue to look at
novel means of separating sperm cells from other cells to assist the interpretation of DNA
profiles generated downstream. These include the application of optical tweezers [107],
acoustic differential extraction technologies [108], and capillary zone electrophoresis [109].
Furthermore, using DEPArray™ technology (Menarini Silicon Biosystems, Bologna, Italy),
Anslinger et al. [110] demonstrated the ability to obtain complete DNA profiles from
isolated single white cells from each of the two or three known contributors to mixed stains.
They concluded that this technology opens up new possibilities with respect to mixture
deconvolution, especially for mixtures composed of cells of the same type. However, as
touch samples can contain a substantial proportion of extracellular DNA, Miller et al. [95]
pointed out potential challenges for front-end cell sorting approaches to recovering DNA
from touch samples, which necessitate the presence of cells with sufficient amounts of
intracellular DNA.

3.2.5. Profiling

Two studies demonstrated improvements in the abilities to generate Y-STR profiles
from non-semen sexual assault samples. Henry and Scandrett [111] showed that the
Yfiler® Plus kit (Thermo Fisher Scientific, Melbourne, Australia) significantly outperformed
AmpFlSTR Yfiler® (Thermo Fisher Scientific) in the ability to generate useful profiles from
semen negative sexual assault samples, i.e., swabs that gave negative results to a screening
test for acid phosphatase or ABAcard® p30 antigen test (Abacus Diagnostics, West Hills,
CA, USA) in combination with the absence of spermatozoa by microscopy, and excluding
samples that tested positive for the presence of human salivary amylase using the RSID™
Saliva test (Independent Forensics, Lombard, IL, USA). In contrast, Owers et al. [112]
showed that Powerplex® Y23 (Promega, Madison, WI, USA) significantly outperformed

141



Genes 2021, 12, 1766

Yfiler (Thermo Fisher Scientific, Waltham, MA, USA) in the quality of profiles generated
from vaginal swabs of alleged penetration where no semen was detected.

Two studies also investigated the use of non-traditional DNA profiling systems, specif-
ically field-based systems and Massive Parallel Sequencing (MPS). While rapid field-based
DNA identification systems have their benefits, Dawnay et al. [113] illustrated the limita-
tions of the ParaDNA Field Instrument and Intelligence Test Chemistry (LGC) to collect
viable DNA samples and produce profiles from the surfaces of the skin, exposed tissue or
carrion larvae. The use of MPS in comparison to traditional Capillary Electrophoresis (CE)
techniques to generate DNA profiles from real casework samples obtained from semen,
saliva, blood, and epithelial material on various surfaces, as well as reference oral swabs,
was evaluated by Avila et al. [114]. They found that the biological nature of the samples
impacted various relevant MPS sequencing, and base-calling quality metrics associated
with producing a DNA profile, not apparent when generating DNA profiles using CE;
this was especially so for epithelial samples. The authors advocated for further research
on MPS genotyping of forensic casework samples, including evaluation of DNA transfer
effects, impact of the substrate or deposition surface for each sample and other aspects of
the nature of individual samples.

Interpretation of DNA profiles and mixture deconvolution requires use of software
and laboratory-specific interpretation methods. Mortera [115] reviewed the different
methods and software available to assist in determining whether or not the DNA of a
given individual is present in a sample. The author provided details on a quantitative
method that used Bayesian Networks as a computational device for efficiently computing
likelihoods. This method also allowed the combination of evidence from multiple samples
to make inferences about relationships from DNA mixtures and other more complex
scenarios [115]. Furthermore, Buckleton et al. [116] revisited a previously conducted
interlaboratory exercise (comprising five mock cases, with each case consisting of an
electropherogram file and typed reference profiles from individuals described as victims,
consensual partners, or suspects) (NIST MIX13) to re-evaluate DNA mixture interpretation
using currently available methods, especially several modern probabilistic genotyping
systems. Their analyses demonstrated the benefits of utilising ‘probabilistic genotyping’
over ‘combined probability of inclusion’ methodology.

3.2.6. Methodology Differences

In the studies by Szkuta et al. [117] and Szkuta et al. [118] of DNA quantities and
profiles generated from samples collected from clothing, and by Goray et al. [119] of DNA
quantities and profiles generated from samples collected from items/surfaces within office
spaces, similar sets of samples were processed by different laboratories using different
suites of processing, from sample collection through to the generation and analyses of DNA.
These studies showed that differences in methodologies applied between the laboratories
appeared to impact the quantity of DNA recovered and the composition of the profiles
produced. When determining probabilities using data from various studies, Gill et al. [120]
stressed the need to consider the differences in methodologies used by different studies to
generate the available data.

3.3. Time since Deposition

Five studies were identified that considered how one might determine time since
deposition (TSD) of biological materials (Figure 2), specifically blood, semen and saliva.
Weber and Lednev [121] provided an overview of what is known about the biochemical
mechanisms of blood aging, how these are used to determine the age of a bloodstain, the
current techniques for bloodstain age determination, emerging spectroscopic techniques
and technology, and the limitations of all these methodologies. Stotesbury et al. [122] and
Cossette et al. [123] presented further research on using visible absorbance spectroscopy
and DNA degradation to explore their use in determining TSD of blood, with the latter
publication focusing on the impact of temperature. Bird et al. [124] considered degradation
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patterns of semen-specific mRNA genes to assist with determining TSD of semen. Mean-
while, Asaghiar and Williams [125] evaluated the use of changes in the expression of a
hypoxia-sensitive marker for determining the age of deposited samples of blood, semen
and saliva. Each of these studies demonstrated scope for potential use of the methodolo-
gies they investigated in TSD determination. They also noted the limitations in the scope
of sample types analysed and the accuracy of TSD analyses, and recommended further
research. Additionally, Weber and Ladnev [121] pointed out the need of any methodology
being considered for use in forensic casework to be validated and that this would require
further research into the impacts of environmental and substrate effects.

3.4. Persistence

This section summarises the fourteen papers identified that investigated the persis-
tence of DNA from various biological materials (Figure 2), plus one additional study that
also provided comment on persistence but was primarily categorised in another topic.
Whilst it is possible to generate DNA STR profiles from a 100 year old semen stain [126] and
from fingerprints archived for several years [127], when considering persistence of DNA in
fingermarks left at room temperature for up to just one week, Alketbi and Goodwin [128]
indicated that the quantity of DNA recovered was not influenced by the duration that the
fingermarks were left before sampling, but was influenced by the environmental conditions
(temperature and humidity) and type of substrate on which they were deposited.

When investigating the persistence of DNA from blood and keratinocytes deposited
on a variety of porous and non-porous substrates, as well as a range of mock exhibits with
natural deposits of touch DNA and saliva, under various environmental conditions (indoor
temperature controlled, indoors ambient temperature, outdoors forest area in Singapore
where rainfall is abundant and relative humidity is high) for a duration up to 85 weeks, Lee
et al. [129] found that degradation and persistence of DNA are highly dependent on the
environment. DNA on articles left outdoors degraded rapidly, but most samples collected
from the items kept within indoor environments were less affected and provided good
profiles for long periods after deposition, similar to trends observed in studies performed
in temperate countries.

Several studies investigated the persistence of DNA on surfaces of the body (skin,
beneath fingernails and hands) when immersed or washed in water under varying con-
ditions. Meixner et al. [130] found that DNA profiles can still be generated from blood
stains and ‘touch’ deposits on skin specimens after several days of being immersed in
water (cold, room-temperature or warm water as well as in a stream and a pond). The
duration of persistence was dependent on the temperature and aquatic environment and
was longest when immersed in cold water. Hayden and Wallin [105] demonstrated that
DNA can remain under fingernails (female fingernail donor’s consensual partner) and on
the skin (male sweat donor’s consensual partner) after showering. While Romero-García
et al. [131] noted that samples taken from towels used once to dry hands immediately after
having washed them with neutral pH soap only provided partial profiles of the person
drying their hands. This was the case both after the individual’s hand performed various
daily activities and in separate tests where individuals had held hands with someone else
for 5 min prior to washing their hands.

Other studies looked at the persistence of DNA and biological fluids on various
non-porous and porous items after cleaning or washing. Helmus et al. [132] investigated
whether DNA traces (blood, saliva, epithelial cells) on different objects (knives, plates,
glasses, and plastic lids) can persist on the surface despite cleaning by different methods
(such as washing by hand or use of a dishwasher). They found that small deposits of
biological material often still provided sufficient DNA to generate full profiles after the
item they were on was rinsed or washed by hand, while profiles were not able to be
generated after cleaning in a dishwasher. Further studies showed that sufficient DNA
for STR profiling could be recovered from cuttings of semen stains on polyester and/or
cotton fabric after washing, with the amount of DNA dependent on the type of washing
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applied [133–135]. Noël et al. [133] showed that this was possible even after multiple
washings, and that more DNA was recovered from cuttings than swabbing of stained
cotton bedsheets. Both Noël et al. [133] and Karadayi et al. [134] also showed that the
washed stains were able to be visually detected using a light source and provided positive
prostate-specific antigen test results. Similarly, Hofmann et al. [136] showed that washed
blood stains can generally also be detected using luminol, but the quality of the bloodstains
is dependent on a number of factors including the type of washing machine, the washing
temperature, the filling degree of the washing machine, and the drying conditions of the
blood stain (temperature, duration).

To provide a dataset that may help guide sample targeting and prioritisation, as well
as manage expectations of stakeholders regarding observing positive or negative results,
Fonneløp et al. [137] performed a retrospective study on the transfer, persistence and
recovery of sperm (from internal vaginal swabs, external vaginal swabs, rectal swabs, oral
swabs and skin surfaces) and epithelial cells (from external genital swabs, hand swabs,
skin swabs, penile swabs, internal vaginal swabs, rectal swabs and oral swabs) collected in
sexual assault casework. The samples collected from different areas of the skin to assess
the presence of the person of interest (POI)-derived epithelial DNA included face, lips
and around the mouth, neck/throat, breast/chest, arm, leg, seat, thigh, rest of body. The
authors found that sperm cells had the highest persistence rate in internal vaginal swabs,
and were detected up to 72 h post assault, but the majority of the positive samples (i.e.,
case specific POI DNA profile detected) were collected within 48 h. Analysis of skin and
penile swabs demonstrated the persistence of case-specific POI DNA from epithelial cells
up to 48 h, and the majority of positive samples were within 24 h. The authors also found
that POI-derived epithelial cells were not detected in external genital swabs when collected
beyond 12 h post assault.

In addition to DNA, the persistence of mRNA and miRNA in laundered or cleaned
biological fluid stains has also been investigated. Mayes et al. [138] showed that mRNA
and miRNA markers were able to detect blood and semen from stains exposed to various
laundering conditions. They also tested blood and semen stains exposed to various
environmental conditions relating to temperature, humidity and light for six months,
and found that mRNA targets were observed through six months for some conditions but
undetectable after 30 days for other conditions, whereas their miRNA targets persisted
under all test conditions for the duration of the study. Furthermore, when investigating
the level of blood-derived DNA and miRNA inside firearm barrels after cleaning with
DNA-ExitusPlus™ (AppliChem GmbH, Darmstadt, Germany), Schyma et al. [139] found
that while the DNA had been removed, the blood-specific miRNA was still detectable.

3.5. Prevalence and Background

This section summarises the ten papers identified that investigated the prevalence
of DNA and presence of background DNA (Figure 2), plus one additional study that also
provided comment on this subject matter but was primarily categorised in another topic.
The prevalence of DNA from drivers, passengers and other individuals on a wide range of
locations within vehicles driven regularly by one individual has been explored in three
studies [140–142]. These studies found that DNA was able to be collected from all targeted
sites, and yields and profile compositions varied between sites, with relatively higher yields
retrieved from steering wheels and seats. The authors found that the driver was always
observed as a contributor in DNA profiles from sites on the driver’s side, in most instances
being the sole or a major contributor, and the driver was also observed as a sole or a major
contributor at several sites on the passenger side. They also found that DNA profiles of
known recent passengers, close associates of the driver, and unknown individuals were
observed on many of the sites on both the passenger and driver sides.

The prevalence of DNA from users in an office space was considered by Goray
et al. [119]. They investigated the extent to which DNA, left by a temporary user of the
office space that had been occupied by a regular user for an extended period, is detectable

144



Genes 2021, 12, 1766

when the duration of their temporary occupancy and their general activities are known, as
well as how readily the DNA of the regular user is still detectable after a known period of
occupancy by another person. From samples collected from several items/surfaces within
single use office spaces that had been used temporarily by another occupant for 2.5–7 h,
the authors found that sufficient DNA for profiling was recovered from nearly all areas
sampled. They found that the regular user of the office space was the major or majority
contributor (as defined by the authors) to profiles from most items within the space, even
after temporary use by another person. It was reported that detectability of the temporary
occupier varied among offices and items tested, and whilst the temporary occupier was
not observed on all items they touched, in most instances when detected, it was known
that they had touched the surface at some stage. The authors also observed profiles from
other individuals, including colleagues, family members and unknowns, that were present
on several items, mostly as minor contributors.

The study by Szkuta et al. [143] considered background levels of DNA on common
entry points to homes (rarely contacted external and internal windowsills and edges, and
frequently contacted entrance door handles) occupied by known individuals with some
general knowledge on the history of use. They found that interpretable DNA profiles
were able to be generated from nearly all door handles (all mixed profiles) and internal
windowsills and edges (mostly mixed profiles), but the majority of external windowsills
and edges yielded limited to no DNA profile information. The authors reported that the
individuals living in the house tended to be main contributors to the profiles, and that the
last person to make contact with a door handle was observed as a contributor in most but
not all profiles. The authors also observed unknown contributors in the profiles of many of
the door handle, internal windowsill and edge samples, and in most situations, but not all,
they were a minor contributor.

The study by Albani et al. [144] investigated the extent of male-derived DNA presence
on unused feminine sanitary products (tampons, pads, liners). The authors postulated, but
did not test, that if such DNA was present, it could possibly be transferred onto the wearer
and subsequently be detected in samples taken from intimate areas during a medical
examination. However, the authors found no to very little background DNA present, with
only 4 of the 52 items (1 tampon and 3 liners) exhibiting one or two Y-STR alleles and 1
additional item (pad) exhibiting two alleles using an autosomal STR kit, with all alleles
appearing with low RFU signals.

To elucidate the level and origins of background DNA on worn upper garments,
Szkuta et al. [117] and Szkuta et al. [118] collected samples from several areas (two internal
and six external) of two garments (both owned and previously worn by the participant)
each worn on separate occasions, for 6 to 15 h on a work day and a non-work day, after
being washed. They also recorded details of the history of the garment, and the interactions
and activities during wearing, and collected samples for reference DNA profiles from
participants and their close associates. They found variation in the DNA quantity, profile
composition and inclusion/exclusion of the wearer and their associates, among participants,
garments worn on different occasions and the garment areas sampled. The authors reported
that DNA from the wearer of a garment was found on all internal and external areas
sampled, with the best quality profiles corresponding to the wearer obtained from internal
collars followed by internal cuffs. They also found that DNA from individuals living or
sharing a space with the wearer was frequently detected in samples from external areas
of the garment. In such samples, the contribution of the wearer to the DNA profile was
occasionally absent or minor relative to the presence of the close associate; this was most
frequently observed in samples taken from the external back of the garment.

A further study by Murphy et al. [145] examined the background levels of male DNA
on the inside front of clean, but not new, pairs of underpants worn for a day by a female
who was asked to abstain from sexual intercourse for 48 h prior to taking part in the
study. The authors reported that, of the 103 samples taken after a day of wearing, 83
showed the presence of male DNA to varying quantities (as detected by the Quantifiler
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Trio DNA quantification kit (Thermo Fisher Scientific, Warrington, UK)) and 24 contained
sufficient DNA to proceed to profiling. Of those 24 profiled samples, 12 samples showed
the detection of the Y chromosome and varying numbers of minor alleles (not from the
female wearer) using the autosomal NGM SElect kit (Thermo Fisher Scientific, Warrington,
UK), 5 gave a complete Y-STR profile, and 18 gave incomplete Y-STR profiles. Each of
the samples that gave a complete Y-STR profile was from a female who cohabited with
a male partner and the profile matched that of the partner where a reference profile was
available (four of five). Based on the results of their study, the authors concluded that
the finding of a Y-filer profile on the inside front of underpants worn by a female is not
expected in the absence of sexual contact. Further, in the absence of sexual contact, a Y-STR
profile, if present, is more likely to be obtained from a cohabitating male rather than from a
non-cohabitating male in social contact with a female.

Two studies included investigation of the impact of cleaning on levels and composition
of background DNA on various surfaces. Reither et al. [146] found that domestic cleaning
methods (e.g., vacuuming, mopping with cleaning agents that did not contain cholic acid)
had limited impact on the quantity of DNA recovered from various types of flooring (e.g.,
carpet, tiles), but often altered the DNA profile composition of the samples collected when
comparing the profile from the post-cleaned area with the profile from the corresponding
pre-cleaned area. Similarly, in experiments to determine the impact of a range of cleaning
agents and cleaning actions using DNA-free towel pieces and sponges on small blood
stains, saliva stains and fingermarks on plastic table tops and fabric surfaces, Helmus
et al. [147] found that the DNA was redistributed to other areas of the item by the cleaning
action. They also found that the cleaning agent had little impact on the ability to generate
DNA profiles of the sample collected, with the exception of chloric agents, which the
authors asserted rendered almost everything DNA-free.

3.6. Manner of Handling

This section reports ten studies that investigated manner of handling (Figure 2). We
have broken down this section into further subtopics to categorise the studies into elements
of handling, including time, pressure, and testing of various scenarios. We have also
included studies on non-contact DNA transfer in this section.

3.6.1. Handling Time

In their study of the impact of handling time by a non-wearer of a worn brassiere,
Sessa et al. [93] found that the contact duration does not appear to have an effect on
the amount of DNA deposited and when a major contributor is detected on a garment.
Outcomes of their experiments (which included small specific target areas of known contact
by the ‘handler’) also showed that the person handling the garment last contributed the
most to the recovered DNA, even though they may have touched the garment for only a
few seconds.

3.6.2. Pressure

Examining the effect of deposition pressure (using weights from 0.1 to 10 kg) applied
by fingers on the quality of latent fingermarks and DNA STR profiles, Hefetz et al. [148]
found that as deposition pressure increased, so did the length and width of fingermarks
and the efficiency of DNA profiling from the fingermarks. The latter was based on increases
in the amount of DNA recovered, number of amplified loci, and number of forensically
useful DNA profiles, which were observed for each of the substrates tested (glass, poly-
thene, paper).

3.6.3. Scenario Testing

The transfer of DNA to clothing under a number of case-relevant scenarios was
investigated by Szkuta et al. [118] and De Wolff et al. [149]. Szkuta et al. [118] examined
whether an ‘activity partner’ was discernible on clothing worn by another individual after
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specific interactions: ‘contact’ where the final action during the wearing of the garment
was an embrace with a known other individual; ‘close proximity’ where the final action
during the wearing of the garment was to travel to and from a nearby café to have a meal
with a known other individual; ‘physical absence’ where the wearer of the garment spent
most of a working day in an office of a known other individual, in the absence of the other
individual. The study did not find any DNA from the activity partner on the garments
after the wearer had gone on an outing, even though they had been in close proximity
with each other for a while. However, the study did observe DNA from the activity
partner on several areas of the garments following the embrace and after temporarily
occupying another person’s office. It was reported that particular areas of the garment
were more prone to acquiring DNA from the hugging partner or the office owner than
others, and their detection as a major or minor component was deemed activity dependent.
When investigating DNA transfer to clothing within vehicles, De Wolff et al. [149] found
that in many instances, DNA from a regular driver of a vehicle could be recovered from
samples collected from the external back of the upper garment, and from the seat of the
trousers pants, worn by an incidental driver (30 min) of that vehicle soon after departing
the vehicle. This highlighted a potential avenue of indirect transfer that may be relevant
during investigations of particular types of offences.

DNA transfer within specific scenarios that can occur during sexual assaults was
investigated by Ramos et al. [150]. Their study recorded where underwear was contacted
and how much DNA was transferred by volunteer ‘offenders’ during six types of mock
sexual assault scenarios: removing underwear; removing brassiere; digital penetration of
the vagina from the front; grabbing breasts over the top of the brassiere; digital penetration
of the vagina from the rear; grabbing the breasts under the brassiere from the rear. The
authors found that the pattern of contact varied for different activities and identified the
areas of underwear most commonly contacted from various sexual assault activities. They
demonstrated that some areas corresponded to areas typically sampled during casework
and others less so, thus providing information to help improve sample targeting. They too
observed several instances of a colleague or cohabitating partner of mock offenders being
detected within a DNA sample.

A study by Gosch et al. [151] considered trace DNA characteristics (including DNA
yield, number of contributors, relative profile contribution for known and unknown con-
tributors, LRs) of samples recovered from various surfaces of two types of firearms handled
in four realistic casework-relevant scenarios. In each scenario, the firearm had background
DNA deposited over four days by the mock owner. The four different activities then
undertaken with the firearms included: the mock owner performed a shooting scenario;
a second individual performed the same shooting scenario as the mock owner; a sec-
ond individual imitated a longer and more intensive contact with the firearm; a second
individual performed the same shooting scenario as the mock owner, then wiped the
firearm using a dry cotton towel for 15 s simulating fingerprint removal. The authors
observed a large variability of trace characteristics that was partly attributable to the way
the firearms were handled, the firearm surface types sampled, and factors of inter- as well
as intra-individual variability.

When considering DNA transfer to knife handles, particularly within opportunistic
crimes, Butcher et al. [152] conducted experiments to generate data to help address consid-
eration of questions relating to whether the DNA obtained comes from the regular user, the
last user (ostensibly, the user at the time of the crime) or from indirect transfer events. The
authors found that regularly used knives that were then used for just 2–60 s by a second
person, performing a stabbing action, resulted for three of the four participant pairings
in a decrease in contribution from the regular user’s DNA with simultaneous increase in
contribution from the second user’s DNA. They reported that the trend appeared to be due
to a decrease in regular user DNA via transfer to the second user’s hands, rather than an
increase in DNA deposited from the second user, but a deviation from this general trend
was observed for the fourth participant pairing. While they found a low level contribu-
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tion of the non-handler’s DNA on most knife handles, one volunteer deposited a similar
amount of DNA through regular use as the amount of indirectly transferred unknown
DNA deposited by another volunteer’s hands, leading the authors to indicate that caution
should be taken when relying solely on absolute quantities of DNA to inform evaluative
interpretations and that other parameters, such as profile quality and relative contributions
to mixed profiles, should also be taken into account. However, when also considering DNA
transfer within stabbing scenarios, Samie et al. [153] observed that the quantity of DNA
generally reduced when moving from hand (the quantity collected when sampling directly
from a hand) to primary transfer (the quantity collected from a surface handled by a hand)
and, subsequently, to secondary transfer.

To assist activity level evaluation, Euteneuer et al. [154] investigated the correlation
between shooting distance and the amount of blood backspatter in/on a used firearm. The
authors could not establish any meaningful correlation between backspatter distribution
and DNA yields, the shooting distance and the condition of the wound channel.

3.6.4. Non-Contact Transfer

The first study to consider non-contact transfer with dried biological materials was
published by Thornbury et al. [155]. They investigated the possibility of indirect DNA
transfer without contact from various substrates (two different non-porous hard substrates
and two different porous, soft substrates) after various biological materials (blood, saliva,
semen, vaginal fluid, touch DNA) deposited on them had dried and after applying two
types of agitation (tapping—all substrates; stretching—all fabric substrates). The authors
found that detectable levels of indirect transfer of DNA without contact were possible. They
also demonstrated that the type of biological material and substrate affected the drying time
and characteristics of deposits, and that the rate and percentage transfer appeared to be
dependent on the type of agitation, substrate, biological material and its drying properties.

3.7. Shedder Status

This section summarises the one paper where shedder status was deemed the most
relevant DNA-TPPR aspect (Figure 2), plus seven additional studies that also provided
comment on this subject matter but were primarily categorised in other topics. When
investigating shedder status as a possible factor influencing the extent of secondary DNA
transfer to a crime scene when the offender wears working gloves, Otten et al. [156] initially
determined the shedder status of a group of individuals, finding that good shedders
deposited higher amounts and quality of DNA onto objects compared to bad shedders. The
authors then conducted experiments where participants were paired into groups of various
combinations of good and bad shedders, with the first participant of each pair wearing
working gloves to pack and carry boxes, and then, two days later, the same gloves were
worn by the second participant to break-in using a screwdriver. The study reported that
good shedders, overall, deposited more DNA than bad shedders, both onto the outside and
inside of the gloves regardless of being the first or second wearer and user of the gloves.
The authors also found that a DNA profile of the first wearer was found on the screwdriver
in several instances, and in each of the situations where this was observed, the first user
had been a designated good shedder, confirming the possibility of a person’s DNA profile
being found on an object they never handled.

Several other papers demonstrated or alluded to observing differences in the quantities
of DNA deposited, which was attributed to differences in shedder status, for example [51,
78,150,152]. However, Miller et al. [95] found that individuals who deposited extremely
large amounts of DNA by touch one day may deposit no detectable DNA on another day
despite a restriction on handwashing close in time to deposition, leading the authors to
question the concept that there are consistently good shedders, at least through the palms
of hands. Similarly, Samie et al. [153] noted that while a person could be judged as a
good shedder overall, when considering a single experiment, that same person could be a
very poor shedder. They suggest that when assessing the probability of observing a given
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quantity of DNA, for a given donor, the whole distribution should be accounted for and
not only its mean value. The authors also showed that the ‘transfer proportion’ (quantity
of DNA transferred onto a surface over the initial quantity on the hand) may vary between
participants and will depend on the type of transfer (primary versus secondary), indicating
that the quantification of DNA on one hand cannot be used to infer the shedder status and
asses what will be transferred onto a surface.

Like shedder status determination from finger/hand marks, a study by Kanok-
wongnuwut et al. [42] found that the amounts of cellular material deposited by lip-prints
is consistent for individuals, but different among individuals. The authors were able to
categorise lip shedder status from heavy to light, but they did not observe a correlation
between lip-print shedder status and the shedder status of the individual determined from
thumb prints.

3.8. Contamination

The potential unwanted transfer of DNA during a forensic examination (or contamina-
tion) can also be relevant and has been considered in four of the studies identified (Figure 2).
Three of these studies looked at the potential of DNA contamination via items used during
an examination in the laboratory, specifically gloves and fingerprint brushes [157–159]. In
the study by Goray et al. [157], a number of laboratory-based evidence recovery personnel
were videoed performing a range of examinations and several factors were assessed to
evaluate the risks of DNA loss, addition and redistribution via gloves. The factors included:
what each glove touched and in what sequence; the number, duration and type of contact
made by each glove with the item under examination, tools used and other surfaces; when
gloves were replaced; DNA profiles of samples taken from worn gloves at the time of
replacement against those relating to the item under investigation, the examiner, and other
staff members. The authors observed that many different surface areas are touched by
gloves during examinations, and differences exist among examiners in what they touch
and when they change gloves. They reported that, in many instances, the case-associated
person of interest was observed within the profile generated from DNA retrieved from
outer surfaces of most gloves sampled at time of replacement. They also observed DNA
profiles of the examiner, or other staff members, predominantly in samples taken from the
first and last gloves used during the examination, which were associated with removing the
exhibit from the packaging and repackaging it. Their evaluation deemed that several of the
observed contacts made by the gloves were a high contamination risk event. Furthermore,
Van den Berge et al. [158] performed tests showing that DNA from hands transferred to
various parts of the external side of laboratory gloves while being donned. With respect to
used fingerprint brushes, the study by Nontiapirom et al. [159] produced results verifying
findings that human DNA can persist on fingerprint brushes after use, such that fingerprint
brushes can be a potential contamination risk when reused.

Two of the identified studies also considered the effectiveness of contamination-
minimisation procedures within the laboratory [158,160]. In the above study by Van den
Berge et al. [158], they also performed tests providing outcomes supporting the use of
0.3% sodium hypochlorite solution or commercially available RNase AWAY™ (Thermo
Fisher Scientific, Waltham, MA, USA) as decontamination reagents to clean and subse-
quently dry the exterior of donned gloves prior to entering the laboratory and/or handling
items of evidence. The authors reported that the results precipitated an update to their
laboratory’s contamination risk reduction strategy. The study by Basset and Castella [160]
compared the number of DNA contamination events by laboratory staff before and after
the implementation of additional contamination minimisation procedures (that included:
physical separation between living environments (e.g., offices, cafeteria) and laboratory
zones; personal objects prohibited from laboratory zones; double gloving; use of different
disposable lab coats within different laboratory rooms; lab coats changed daily; stain
collection split among different operators so that the person in contact with the swab does
not touch other surfaces; automation of DNA extraction for standard traces) and found that
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the number of such contamination events declined by more than 70% after implementation
of the procedures.

3.9. Microbiomes

Fourteen studies (Figure 2) delve into the opportunities to identify individuals, or
associate them with a location or an activity, that may be offered from analysing micro-
biomes in the absence of and/or in addition to traditional DNA evidence. These include
investigations into:

• Classification of individuals and the potential to detect sexual contact using the
microbiome of the pubic region [161].

• Bacterial communities associated with cell phones and shoes of the same person [162].
• Microbial communities of a wide range of known body sites and the detection of the

source of different microbial contributions in mixtures of different body sites or with
soil [163].

• Distinguishing microbiome communities of saliva, skin and mixtures of both as a
potential tool for identifying samples of single and mixed biological materials [164].

• Correlations between the presence of certain bacterial species on a donor’s hands and
personal characteristics [165].

• The direct and indirect transfer of microbiomes between individuals [166].
• The ability of several commercial kits to recover sufficient bacterial DNA from finger-

prints to generate a microbiome profile [167].
• Generating both STR profiles and microbial population profiles from the same DNA

extract of each sample to evaluate the sub-source and source questions, respectively
in two forensic cases [168].

• The usefulness of the likelihood ratio approach for the evaluation of source attribu-
tion in microbial forensic cases to facilitate the interpretation of evidence in legal
proceedings [169].

In addition, Young and Linacre [170] provided a review of studies on the potential
and limitations of utilising microbiome analyses in forensic science, especially in relation
to skin microbiome. Meanwhile, Jurkevitch and Pasternal [171] provided a review on
the use of soil bacterial community comparisons to assist investigation of alleged crimes.
Each of these studies and reviews, as well as a review by Neckovic et al. [172], indicated
some positive results and potential useful applications, but also highlighted a range of
limitations of their applicability and the challenges of microbial profiling for forensic
science casework applications. These challenges are further illustrated by investigations
of the presence of microbiomes within forensic evidence recovery laboratories, and the
potential for microbiomes to transfer during examinations [173,174].

3.10. Evaluating DNA Evidence

This final section of the synopsis reports papers that consider the evaluation of DNA
evidence given propositions at different levels within the Hierarchy of Propositions. Ten
papers with a primary focus on this subject matter are included (Figure 2), along with
one other that was primarily included in another topic, and are reported within two
subsections: setting propositions and use of Bayesian Networks, and other activity level
assessment-related matters.

3.10.1. Setting Propositions and Use of Bayesian Networks

When evaluating the value of biological evidence, it is important that the proposi-
tions are formulated appropriately. Gill et al. [120] presented guidelines from the DNA
Commission of the International Society for Forensic Genetics (ISFG) on determining and
formulating the propositions for the evaluation of biological traces, given activity level
propositions. This paper included eleven specific recommendations and provided exam-
ples to illustrate the principles espoused. The authors also noted that suitable propositions
are ideally set before knowledge of the trace DNA evidence, that data relevant to the case in
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question be gathered to assign probabilities, and that Bayesian Networks (BNs) are useful
to help consider all relevant possibilities. Taylor et al. [175] also stressed the importance
of properly constructing the propositions. The authors indicated the need for a clear sum-
mary of propositions representing the views of the prosecution and defence, accompanied
with details on the agreed and contested information and assumptions by the scientist,
to assist in carrying out an evaluation and in understanding by the courts. Furthermore,
Buckleton et al. [176] showed an example where considerations of DNA-TPPR are required
to inform sub-source level proposition setting, specifically to condition the calculation on
the presence of DNA of an assumed contributor. The authors showed this in relation to the
number of contributors, as this is likely to impact on the LR at the sub-source level.

Several studies focussed on the use of BNs to evaluate DNA results given competing
propositions, including Taylor et al. [177], Gill et al. [120], Volgin [178], De March and
Tarino [179], and Samie et al. [180]. Examples of the use of BNs to evaluate biological
traces given activity level propositions are provided in: the supplementary material within
the article of Gill et al. [120] (that is accessible in the online version); and by Volgin [178]
involving the use of a T-shirt as a balaclava. Further, De March and Tarino [179] provided
an insight into the application of BNs to real criminal cases through the assessment of the
probative value of different analyses related to some biological material retrieved from an
object of interest.

Two studies went further to consider the applicability of BNs to the complexities of
issues of DNA transfer. Taylor et al. [177] showed the value of an Object-Oriented Bayesian
Network (OOBN) to tackle cases involving repeating elements of complex and various
DNA transfer mechanisms and indicated that, as new data on DNA-TPPR factors become
available, these can be readily accommodated by the general overall OOBN architecture.
Further, Samie et al. [180] showed that BNs can handle the complexity of variables asso-
ciated with DNA-TPPR to inform activity level assessments. Their study demonstrated
the uses of BNs and simulation methods to identify the variables impacting the value of
evidence assessed under activity level propositions. The authors did so by focussing on
trace DNA evidence recovered from knife handles allegedly involved in stabbing instances,
showing that some variables had greater bearing on the variation of the LR than others. In
the situation they investigated, the authors reported that the identified key variables were
associated with the sampling, the extraction efficiency, the background and the quantity
of DNA on hands, and they asserted that data acquisition should focus mainly on those
variables with the greatest impact.

3.10.2. Other Activity Level Assessment-Related Matters

In his commentary, Gill [181] pointed out that the increased sensitivity of modern
DNA profiling techniques means that DNA may be recovered that is irrelevant to the crime
and stressed the importance of scientists, lawyers and judges to be aware of the limitations
of DNA profiling evidence. This was echoed by Sessa et al. [93], who also pointed out the
need for everyone in the medico-legal community to know the power of touch DNA and
understand the potential limitations associated with it. Gill [181] went on to note that the
presence of DNA does not tell us when or how it got there, so additional context is needed
from other non-DNA evidence, which if ignored could result in miscarriages of justice. He
provided several real case examples to highlight how ignorance of key aspects, such as
background DNA, secondary transfer, and laboratory contamination, can influence case
outcomes. Similarly, Perepechina [182] referred to a retrospective analysis of a case where
consideration of transfer issues was pertinent. Given these issues, he [181] also pointed
out the need to educate stakeholders, including all parties engaged in the criminal justice
system, with respect to the various facets relating to activity level assessments.

An additional concern highlighted by Gill [181] is the occurrence of carryover of the
strength of evidence associated with a DNA ‘match’ to weight of evidence associated with
activity level propositions. He reported that this cannot be done; activity level assessments
are to be undertaken separately using different information and generating a different
statistic. This point is also made by the DNA Commission of the ISFG [120].
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Apart from the few calls for specific further research noted above, many of the other
publications incorporated in this synopsis, in their discussion sections, also incorporate sug-
gestions/recommendations/advocacy for further research to enlighten our understandings
and advance the acquisition of relevant data to improve our abilities to provide activity
level assessments. From challenges encountered in their study, Dunhill and Chapman [183]
encouraged authors to publish results of studies on indirect transfer of DNA in a more
streamlined fashion to allow for systematic analysis of data across studies. Further, De
March and Tarino [179] indicated that while the data available to inform probabilities are
limited and extrapolation from published data for practical use in a case analysis can be
troublesome, this should not prevent the forensic scientist from providing a statement at
the activity level when the circumstances of a case require it.

4. Reflections on the Research Efforts to Meet the Challenges

Based on the focus, scope and depth of the research activities published over the
last few years, we reflect that overall, some progress has been made to meet the many
challenges, but much of the challenges noted in the introduction remain and require
more effort to address them. While several of the recent studies have provided means of
improving the detection and recovery of DNA and DNA profiles of relevance from crime-
related items, more effort will be required to determine the best practices given the specific
circumstances encountered. Of the 144 articles included in the synopsis, relatively few (35)
primarily focus on aspects of persistence, DNA prevalence and background DNA, manner
of handling and shedder status (Figure 2). Of these, few provide the highly desired data to
help assign probabilities of obtaining profile types given particular sets of circumstances,
especially those that are relatively commonly encountered. The latter is partly due to
the relatively recent and increasing need for such data, and the requirement for sufficient
repeats to be conducted to generate robust frequency data, which may place this type
of research beyond the scope of some research groups. The multitude of situations and
associated variables for which probabilities are desired provides scope for conducting
many future research projects to provide welcomed outputs.

Some additional research efforts have been directed at determining and mitigating
risks of contamination of evidence (see Section 3.8). Further research may highlight addi-
tional risk factors and means of mitigating these, thus providing opportunities to enhance
the integrity of the evidence throughout the forensic process and the interpretation thereof.

Some research has been conducted on other elements of information that may be
gleaned from deposits of biological materials to facilitate activity level evaluations (see
Section 3.1, Section 3.3, Section 3.9). Further studies towards improving abilities to accu-
rately determine the TSD of various types of biological material in various circumstances
(preferably even of different components within mixed samples), and into microbiome
profiles that inform on the environment that a sample is associated with, and/or its source,
and/or provide an avenue for identity determination in the absence of human DNA, may
assist future activity level evaluations.

To assist with activity level evaluations, BNs are starting to be utilised more (see
Section 3.10.1), such that any developments towards making BN-related software packages
even more user friendly for forensic practitioners may further facilitate their utilisation
and the standard of the guidance provided to the court. However, there appears to be little
recent human factors-related research effort directed towards facilitating the development
of competencies of those tasked with providing activity level-related guidance and how to
best convey this guidance to other stakeholders. Such research, as well as human factors
research relating to individuals and processes associated with the collection of evidence
and maintaining its integrity, would be welcomed as they may identify improvement
opportunities in the means of training experts and the quality of tasks undertaken and the
services provided.

Encouragingly, very recent publications (i.e., articles published after conducting the
systematic search, or during the search period but not captured) demonstrate the realisation
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of the need for, and the efforts supporting, ongoing research activity towards meeting the
broad range of outstanding challenges. Examples of such publications of studies addressing
identified knowledge and data gaps include:

• DNA profile success of samples from casework-related items [24].
• Impacts of surface roughness and physicochemical interactions on deposits of biologi-

cal materials [184].
• Impacts of chewing gum on drying properties of saliva [185].
• Prevalence and persistence of saliva in vehicles [186].
• Exploring means of determining an individual’s shedder status.
• Consideration of distance and time with respect to accumulation of DNA within

offices on surfaces that are not touched [187].
• Evaluation of profiles retrieved from the outside of gloves after simulating transfer

scenarios related to breaking and entering [188].
• Findings indicating that cities around the globe have distinct microbial taxonomic

signatures [189].
• Development of an LR framework incorporating sensitivity analysis to model multiple

direct and secondary transfer events on skin surfaces [190].
• Highlighting the importance/value of considering common sources of unknown

DNA [191].
• Assigning weight of cell type testing results [192] when evaluating findings given

activity level propositions.

These studies demonstrate the realisation of the need for, and the efforts supporting,
ongoing research activity towards meeting the broad range of outstanding challenges.

5. Industry Actions towards Addressing Challenges

5.1. Research

Many of the reviews and research papers referenced in the previous sections note the
need for more research to better inform our understanding of variables affecting DNA-
TPPR and supplying relevant data to determine probabilities given a set of circumstances.
Meakin et al. [193], apart from also advocating this, urged for better designed research
studies to cater for this need. In particular, they expanded on the recommendation of
Gosch and Courts [36] for different experimental designs to be employed when generating
probabilities for activity level evaluations as opposed to investigating DNA transfer mech-
anisms. They recommended that the former requires iterations of realistic experiments
(e.g., a casework-relevant scenario performed once by multiple participants), whereas the
latter require repetitions of highly controlled and potentially unrealistic experiments (e.g.,
a single participant performing the same action multiple times). Meakin et al. [193] also
directed readers to the ISFG recommendations [120], which provide further advice for
designing experiments to generate activity level probabilities.

Evident from the authorships and their affiliations, forensic laboratories, alone or
in collaboration with other forensic laboratories and/or academic institutions, are major
contributors to much of the published DNA-TPPR-related research. Much of this is being
funded by internal resources. Major research funding bodies are also increasingly sup-
porting DNA-TPPR-related research. For example, the National Institute of Justice (NIJ)
in the United States of America has funded over 60 DNA-related projects to the value
in excess of USD 42 million during 2018–2020 [194,195], which include a wide range of
DNA-TPPR-related research projects, and the European Network of Forensic Institutes
(ENSFI) has recently funded a large multi-institutional collaborative project to generate
accessible DNA transfer rate data [196].

5.2. Education and Training

Apart from the need for research to improve our understanding and generate data to
allow the assignment of probabilities given a set of circumstances, there are other challenges
to be met by relevant industry stakeholders. These include aspects relating to the education
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and training of those tasked with providing expert evidence on DNA-TPPR-related matters,
building of awareness of aspects associated with DNA-TPPR among crime scene attendees
and those within the legal fraternity, availability and utility of published data, and setting
of standards associated with DNA-related activity level evaluative reporting. Steps are
being taken to address these challenges.

DNA-TPPR-related research findings, including unpublished findings, are being
presented and discussed within dedicated sessions and workshops at international forensic
conferences attended by forensic, policing and legal practitioners as well as academia.
For example, Congresses of the International Society of Forensic Genetics [197]; Gordon
Research Conferences: Forensic Analysis of Human DNA [198]; American Academy of
Forensic Sciences (AAFS) conferences [199]; the International Symposium on Human
Identification ((ISHI) [200]; and the symposium on Recent Progress on Forensic Sciences
and DNA Transfer organised by Laboratoire d’Hématologie Médico-Légale [201].

Further education/upskilling of stakeholders on the topic of DNA-TPPR and the
associated activity level evaluative reporting is also being made possible through the
development and availability of dedicated programs such as summer schools on various
aspects of forensic genetics organised by the International Society of Forensic Genetics [202]
and university-based courses such as the Certificate of Advanced Studies on ‘Statistics
and the evaluation of forensic evidence’ run by the University of Lausanne [203]. Freely
accessible courses and webinars have also been produced, such as that on ‘Challenging
Forensic Science: How Science Should Speak to Court‘ made available by the University of
Lausanne [204] and the series of webinars on DNA mixture interpretation and probabilistic
genotyping organised by the Federal Bureau of Investigation (FBI) Laboratory and NIJ’s
Forensic Technology Center of Excellence [205].

The skill set required to become expert at the provision of guidance on DNA-TPPR
at the activity level is distinct from those required to provide guidance at the DNA sub-
source level, biological material source level or non-DNA activity level. Recognition of
this can be an important first step for laboratories to help define the necessary enrichments
and changes to a suite of methodologies, protocols, training units and authorisations.
Introduction of these is then to be managed, such that the increasing demands for such
services can be met at the expected standards. Most forensic DNA experts trained over the
last twenty years have been trained to provide statements at the sub-source level. A forensic
expert solely trained and competent at providing DNA evidence at the sub-source level
should not provide opinion at the activity level without also being trained and authorised
to do so.

An example of a jurisdiction with a competency testing program specific to evaluation
of forensic biology findings given activity level propositions can be found in the Nether-
lands [206]. Experts can submit an application for registration as an expert in the field to
the Netherlands Register of Court Experts (www.nrgd.nl). They are subsequently assessed
by a committee of both scientific experts and legal professionals against a standard that has
been developed by a group of international experts in the field. The standards demarcate
the field of ‘DNA activity’ from ‘DNA source’ and ‘DNA kinship’ and list the minimum
requirements for experts in these fields. These requirements cover training, experience,
methodology, reporting, and knowledge of the Dutch legal system [207]. Registered in-
dividuals must demonstrate their ongoing competency to the Board on a regular (five
year) basis.

5.3. Availability and Sharing of Data

Kokshoorn et al. [208] and Gosch and Courts [36] advocated the need for sharing of
research data associated with DNA-TPPR. They also indicated the type of information
that is relevant when interpreting the generated data and should be made available when
publishing DNA-TPPR-related research (or making it available on sharing platforms).
These included information on: item (type of item, construction and surface composition,
etc.); item history (handling, packaging, etc.); sampling (surface area targeted, sampling
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method, etc.); analysis (DNA extraction, amplification, CE, etc.); and interpretation (allele
calling, statistical model, parameter settings, proposition setting, NoC determination, etc.).
Kokshoorn et al. [208] also advocated for harmonisation and standardisation in how some
of this information should be recorded, to further assist utilisation of the data. Gosch
and Courts [36] constructed a database for entry and accessibility of such data, added the
data from relevant publications and requested researchers to submit the relevant data to
DNA-TrAC [37]. DNA-TrAC contains 311 entries of relevant research articles published in
the period 1993–2017. Detailed information is provided per publication covering a wide
range of aspects relevant to understanding DNA-TPPR and utilising data for activity level
evaluations. It also provides the ability to sort information based on various parameters
including general details of the publications, questions being addressed by the studies,
transfer scenarios in the context of a specific type of activity, categories of study object (e.g.,
primary deposit, further transfer, background DNA, persistence, recovery), and variables
affecting DNA-TPPR. The website also includes a list of 17 review articles published in the
period 2002–2020 with a summary of the topics addressed by each as well as a file listing 33
articles relevant to DNA-TPPR published during the period 2018–2020 for which the details
have not yet been entered into the DNA-TrAC database. The last version fully and actively
curated by the Gosch and Courts was uploaded in December 2019 and a request is issued
for others to assist with the maintenance of the database. DNA-TrAC is a useful portal to
source DNA-TPPR information and data that may be relevant to a range of stakeholders.
Maintenance and upkeep of this database, or the creation of something similar, would be
an asset to the forensic community and thus desirable.

A separate relevant database (‘BDATT-TTADB’), constructed with funding support
from research grants from the Social Sciences and Humanities Research Council of Canada,
has recently become available [209,210]. The database was built with the aim of being
relevant for practitioners to interpret transfer traces at activity level, integrating transfer ex-
periments in an operational situation [209]. It provides information for a wide range of trace
types, including DNA and biological fluids. It allows for easy searching according to type of
trace, type of study (including transfer, persistence, recovery, background, contamination),
key words (as determined by the database custodians, not the ones listed in the associated
publication) as well as aspects such as authors. Apart from the general information regard-
ing the publication (i.e., title, authors, journal), it provides a copy of the published abstract, a
summary statement regarding the studies’ experimental conditions and results, a summary
statement regarding the relevancy of the study for the Canadian environment, and a link to
the publication. The database includes several hundred papers relating to DNA-TPPR and
is updated regularly [209,210]. This database resource provides an excellent means for any
interested parties to identify potentially relevant studies. However, those seeking some of
the finer details often required when conducting activity level evaluations, as described
above, will need to examine the identified literature more closely. An additional source of
relevant data will also be made available in early 2022, when the UK Body Fluid Forum
launches a digital collection of casework-informed research and case reports to facilitate
sharing of experiences and data specifically relevant to informing evaluation of biological
findings given activity level propositions. When available, these articles will be accessible
here: https://www.sciencedirect.com/journal/science-and-justice/special-issues. Further
development and maintenance of databases containing all the relevant information that
allow easy mining of desired finer details, and further efforts towards harmonisation and
standardisation of the data generated and shared as suggested by Kokshoorn et al. [208],
would be welcomed.

5.4. Standards and Guidance

Many standards and guidance on how to conduct DNA-related activity level evalua-
tive reporting are being provided by governing bodies. For example, the Forensic Science
Regulator in England and Wales [211] and the DNA Commission of the ISFG [120,212];
there is also an ISO standard relating to forensic science reporting currently under develop-
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ment [213]. Additionally, some of the fallacies associated with the reporting of DNA-TPPR
matters, that forensic practitioners need be cognisant of and avoid when providing guid-
ance to the triers of fact, are highlighted by Meakin et al. [193].

Forensic laboratories are also investing in developing in-house methods, procedures
and training modules to facilitate the conduct of DNA-related activity level evaluations
and the training of their staff to do so. However, unlike many other forensic disciplines,
independent ongoing proficiency testing in all the relevant elements associated with DNA-
related activity level evaluations for those authorised to provide expert opinion to assist
triers of fact is not readily available. Creation of a good fit for purpose internationally avail-
able proficiency testing program would facilitate the provision of high-quality guidance by
forensic practitioners.

The National Institute of Standards and Technology (NIST) in the USA has very
recently (June 2021) published a draft of a scientific foundation review in relation to
the interpretation of DNA mixtures [214]. It also contemplates several of the points we
raised earlier. It is a wide ranging comprehensive in-depth review that provides an
overview of the past, present and future of DNA mixture interpretation and identifies
challenges and pathways to deal with them. It includes a general introduction; principles
and practices relating to DNA mixture interpretation; sources of data and information;
delving into the issues pertaining to the reliability of DNA mixture measurements and
interpretation as well as the context and relevance of DNA mixture interpretation (with
details on various factors associated with DNA transfer); consideration of the potential and
limitations of new technologies to provide solutions to existing problems. The chapters
and appendices are accompanied with highlighted key takeaways, principal points and/or
future considerations. Takeaways that directly relate to DNA transfer and activity level
reporting, presented in chapter 5 of the review [214], include:

• #5.1: DNA can be transferred from one surface or person to another, and this can
potentially happen multiple times. Therefore, the DNA present on an evidence item
may be unrelated (irrelevant) to the crime being investigated.

• #5.2: Highly sensitive DNA methods increase the likelihood of detecting irrelevant
DNA. When assessing evidence that involves very small quantities of DNA, it is
especially important to consider relevance.

• #5.3: Highly sensitive methods increase the likelihood of detecting contaminating
DNA that might affect an investigation. Contamination avoidance procedures should
be robust both at the crime scene and in the laboratory.

• #5.4: DNA statistical results such as a sub-source likelihood ratio do not provide
information about how or when DNA was transferred, or whether it is relevant to a
case. Therefore, using the likelihood ratio as a standalone number without context
can be misleading.

• #5.5: The fact that DNA transfers easily between objects does not negate the value of
DNA evidence. However, the value of DNA evidence depends on the circumstances
of the case.

• #5.6: There is a growing body of knowledge about DNA transfer and persistence, but
significant knowledge gaps remain.

5.5. Cooperation with Other Scientific Disciplines, the Legal Community, and Police

The compartmentalised nature of the scientific disciplines in many modern forensic
laboratories hampers the proper evaluation of forensic findings [215]. Interdisciplinary
assessments of traces increase the impact of the forensic sciences on the criminal justice sys-
tem (CJS), both improving efficiency by reducing unnecessary examinations and improving
understanding of the combined weight of the findings given case-relevant propositions at
the activity level [216].

Case-relevant information is structured in propositions, assumptions, and other, undis-
puted case information [175]. For any evaluation of findings given activity level propo-
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sitions that a scientist is asked to perform, it is crucial that all parties in the CJS are in a
position to share task-relevant information with the scientist.

Education and training of stakeholders in the CJS is a crucial step to reduce common
misconceptions of what evaluations given propositions at the activity level are, as well as
to achieve the desired communication and collaboration between the scientist and the other
actors in the CJS. Efforts are being made in several jurisdictions, for instance, by providing
guidance documents for legal professionals [217–220].

6. Concluding Remarks

Much progress has been made recently towards addressing identified challenges
concerning the provision of expert guidance in relation to DNA-TPPR-associated activity
level evaluations sought to facilitate just outcomes during legal proceedings. However,
many challenges remain. These include in relation to:

• Quantity and quality of research directed at informing our understanding of DNA-
TPPR and building the data needed to assign probabilities to DNA quantities and
profile types being obtained given a vast range of circumstances.

• Harmonisation, standardisation, and accessibility of available data.
• Development of validated standardised methodologies and protocols to perform

DNA-related activity level evaluations.
• Training and authorisation of experts to perform such evaluations and provide the

guidance when needed as well as recognition of this expertise as a separate discipline.
• Education and cooperation of stakeholders within the legal fraternity.

Continued investment in addressing these challenges will improve the value and
understanding of the data and the guidance given to the triers of fact.
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Abstract: The idea of forensic DNA intelligence is to extract from genomic data any information
that can help guide the investigation. The clues to the externally visible phenotype are of particular
practical importance. The high heritability of the physical phenotype suggests that genetic data can be
easily predicted, but this has only become possible with less polygenic traits. The forensic community
has developed DNA-based predictive tools by employing a limited number of the most important
markers analysed with targeted massive parallel sequencing. The complexity of the genetics of many
other appearance phenotypes requires big data coupled with sophisticated machine learning methods
to develop accurate genomic predictors. A significant challenge in developing universal genomic
predictive methods will be the collection of sufficiently large data sets. These should be created using
whole-genome sequencing technology to enable the identification of rare DNA variants implicated
in phenotype determination. It is worth noting that the correctness of the forensic sketch generated
from the DNA data depends on the inclusion of an age factor. This, however, can be predicted
by analysing epigenetic data. An important limitation preventing whole-genome approaches from
being commonly used in forensics is the slow progress in the development and implementation of
high-throughput, low DNA input sequencing technologies. The example of palaeoanthropology
suggests that such methods may possibly be developed in forensics.

Keywords: physical appearance; human genome variation; DNA-based prediction; investigative
leads; forensic DNA intelligence; forensic genomics

1. Introduction

The information included in genomic data can be used to generate investigative leads
that, when properly used, can speed up the process of human identification in forensic
investigations. Such forensic DNA intelligence can use a variety of methods, including
relatedness testing, the inference of ancestry, the prediction of physical phenotype, and
age estimation [1–4]. As an inherently interdisciplinary science, forensic science today
can benefit from the rapidly developing methods in the areas of genomics and machine
learning, which is particularly beneficial for the further development of forensic DNA
intelligence. Studies of human genome variation conducted today on an unprecedented
scale are revealing how genes control phenotypes. This knowledge has fundamental
meaning for understanding the genome–phenome relationship. Importantly, the growing
knowledge of human genome variation allows for the development of algorithms that can
more accurately predict phenotypes, providing more reliable investigative leads to help
identify an unnamed perpetrator or victim and solve a case. It is worth noting that the
DNA-based predictive tools developed in the forensic field are also useful in evolutionary
anthropology. In this review paper, we will summarise how the advances in understanding
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the genetic architectures of various human physical characteristics, and the progress in
high-throughput genotyping technologies in combination with machine-learning methods,
allow the prediction of physical appearance traits. We will also highlight the evolution of
the approach to the genetic prediction of physical traits, which has moved from building
predictive models based on variables that show genetic association to building models
based on variables that improve predictive performance (Figure 1).

Figure 1. Procedure for the development and application of a phenotype prediction tool. The main
differences in the procedures for developing a predictive model using the standard or alternative
approach concern the selection of variables and the number of variables in the model. Consequently,
the method of acquiring genetic data in the practical forensic applications of the next-generation
predictive models may require whole-genome sequencing methods. Thus: (a) only phenotype-
associated SNPs are included in prediction modelling, the models are not very extensive, and the
methods of data acquisition can be less complex (SNaPshot, targeted MPS); (b) the selection of relevant
variables (SNPs) is targeted towards improving the prediction accuracy of the model, and much
more advanced variable selection methods are required. Some complex models may involve many
thousands of SNPs, which, in biological traces, must be analysed using whole-genome sequencing
methods that are effective for low DNA input samples.

2. Explaining the Heritability of Appearance Traits

A large meta-analysis of twin studies has confirmed that all human traits are heritable
and showed that most of the traits can be explained by an additive genetic variation [5]. The
extreme similarity of physical appearance of monozygotic twins clearly indicates the role of
genes, but their identification is not simple due to the complex nature of appearance traits.
Linkage mapping, which relies on the co-segregation of causal DNA variants with marker
variants (SNP or STR) within pedigrees, has been very successful at identifying the gene
variants affecting simple mendelian traits [6], but mostly failed to identify the DNA variants
involved in the determination of complex traits [7]. The breakthrough in explaining the
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heritability of complex phenotypes has come with the advent of genome-wide association
studies (GWAS), which are effective at discovering common variants with small effect sizes
on traits [7]. GWAS is used to identify associations between genotypes and phenotypes by
testing for differences in the allele frequency of DNA variants between individuals who
differ phenotypically. Technically, the analysis of hundreds of thousands of DNA variants
in the genomes of these individuals enables finding those statistically associated with a
specific phenotype [8].

2.1. Pigmentation Phenotype

GWAS data have been very effective at explaining the heritability of physical appear-
ance traits. The heritability of human pigmentation traits has been assessed to be above 80%
and, thus, provides a good starting point for DNA-based prediction, because it means that
80% of the variation in pigmentation in a population is due to genetic variation between
individuals and that the influence of the environment is relatively small [9–11].

Many candidate genes for human pigmentation were identified before the GWAS era
through animal models and the linkage to diseases with mendelian inheritance modes, such
as oculocutaneous albinism. Genome-wide association scans confirmed the importance
of these genes and identified many of the novel gene variants influencing the variability
of normal human pigmentation. The collected data confirmed a very promising perspec-
tive for the genetic prediction of pigmentation traits. The less complex nature of some
pigmentation phenotypes, such as blue and brown eye colours and red hair colour, and the
availability of DNA variants with relatively large effect sizes, similar to the genetic effects
observed for mendelian traits, were particularly encouraging. The region on chromosome
15, including the OCA2 gene, was implicated in eye colour via linkage and subsequent fine-
mapping analyses [12,13]. The evidence of a relationship between OCA2 genotypes and
eye colour became stronger with additional reports [14–16]. This was an Icelandic GWAS
that implicated the involvement of neighbouring HERC2 in the determination of eye colour
and suggested that this genomic region was responsible for the regulation of OCA2 gene
expression [17]. This speculation was soon confirmed by other studies that showed that the
DNA variant rs12913832 was responsible for brown and blue eye colour in humans [18,19].
The postulated interaction between these two genes in determining eye colour was also
confirmed [20]. Most of the SNP heritability of red hair colour is explained by the single
MC1R gene, which was also discovered long before the genome-wide association scans and
confirmed in various population samples across the globe [21,22]. The effect of this gene
was extended to skin colour and freckling [23,24]. These early genome-wide association
scans for pigmentation also clearly demonstrated their agnostic power to detect novel,
sometimes unexpected genotype–phenotype relationships, as in the case of the IRF4 gene,
which is now an important predictor of pigmentation phenotypes [17,25]. The success
of GWAS was clear, but a significant proportion of heritability remained missing, which
could be attributed mainly to the insufficiently large sample sizes used in genome-wide
association scans, insufficient phenotyping regimes generating heterogeneity, the insuf-
ficient density of the GWA arrays and the significance of non-additive variation [26,27].
Indeed, the improved statistical power to detect small effect-size variants more effectively
in the next series of genome-wide association scans enabled the identification of multiple
new DNA variants involved in the heritability of hair and eye colour. For example, a
large study of 192,986 European individuals from 10 populations identified 50 new loci
for eye colour [28]. The study revealed signals with genome-wide significance for 12,192
SNPs from 52 genomic regions in the discovery set of 157,485 individuals. By combining
discovery and replication sets, the study finally identified 124 independent associations
from 61 genomic regions and concluded that the known variants explain 53.2% of eye
colour variation. Notably, the study also investigated Asian cohorts and found consistency
in the genetic architecture of eye colour in populations from Europe and Asia [28].

Human skin colour is highly variable at continental and intercontinental levels, com-
plicating research on the genetic architecture and heritability of this trait [29]. The rs1426654
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in SLC24A5, discovered thanks to a Zebrafish study, plays an important role in skin colour
differences at the continental level, explaining more than 30% of skin colour differences
between African and European populations [30]. GWAS on skin colour conducted on
various population samples discovered multiple genes and gene variants involved in skin
colour variation at the intercontinental level [25,31–34]. Notably, the studies of African
populations showed large differences in skin colour, revealing the high complexity of the
genetic architecture of skin colour in Africa and the significance of genes unknown to
European studies [35,36].

A meta-analysis that involved almost 300,000 genomes from individuals of European
ancestry included in two different cohorts (23andMe, UK Biobank) discovered 124 loci
relevant to human hair colour, mostly novel associations, including genes with strong effect,
such as SLC45A1, DSTYK, FOSL2, LHX2, EDNRB, SHC4, KRT31, and BCAS1. The study
was highly successful at explaining up to 34.6% (red hair) of the heritability of human hair
colour, despite an imperfect phenotyping regime involving self-reported hair colour in
adulthood [37]. Another study based on UK Biobank resources examined 343,234 genomes
from participants reporting British descent and these were, thus, more homogeneous. This
study assessed that all identified variants explain 90% of the SNP heritability of red hair
colour but, surprisingly, it found that a DNA variant located 97 kb from the 5’ end of the
MC1R gene may be more important for explaining red hair colour than the polymorphism
within the MC1R exon, and it identified an additional eight loci that contribute to the
genetics of red hair colour. This research also revealed 213 variants important to the
determination of blond hair colour, accounting for 73% of SNP heritability. In addition, a
set of 56 DNA variants was found to be important for brown hair colour and was assessed
to account for 47% of SNP heritability of this hair category [38].

2.2. Hair Features

Along with hair colour, other features describing the properties of human hair can be
useful to define the physical appearance of an individual. Research shows that genetics
plays a key role in the determination of hair features. However, the level of heritability
may differ for various hair traits. Very high heritability (85–95%) was estimated for hair
shape [39]. Heritability of around 70% was reported for monobrow and beard thickness [40].
Studies are contradictory in terms of the heritability level of hair loss (~40–80%) [40–43]
and hair greying (~30–90%) [40,44], but the accuracy of the heritability measurement may
be affected by the definition of heritability, the study design and the method of analy-
sis used [45]. It is worth noting that heritability values calculated from the entire SNPs
analysed in GWA studies tend to be underestimated compared to estimates of pedigree
heritability, because the former do not include phenotypic variation due to rare variants that
are not correctly determined by the SNPs genotyped on microarrays or common variants
with small effect sizes that are not correctly identified if the sample size is not large enough.
In turn, pedigree heritability may be biased by the common environmental factors to which
families are typically exposed [43,45]. Notably, heritability estimates may vary due to
changes in allele frequencies in populations caused by different evolutionary mechanisms
and environmental contributions that change with the age of individuals [46]. The genetic
basis of hair loss and hair shape are the most investigated so far. Androgenetic alopecia,
known in men as male pattern baldness (MPB), is the most common type of progressive
loss of hair from the scalp and is particularly frequent among men in Europe. Over the last
>10 years, several GWA studies on hair loss have been carried out, with the vast majority of
research conducted on Europeans [43,47–53]. These studies revealed multiple genes that are
associated with the risk of MPB, with two loci showing the strongest effect of association,
Xq12 (AR/EDA2R) and 20p11 (PAX1/FOXA2). Of these two loci, only 20p11 is known
to act in Asians, indicating the significance of population heterogeneity [54,55]. A long
list of additional loci, representing smaller effect sizes, identified through GWAS and/or
candidate gene approaches, is available in the literature (e.g., HDAC9, WNT10, TARDBP,
EBF1, SUCNR1, AUTS2, FGF5, IRF4, C1orf127, RUNX1, and TWIST2). Studies published in
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2017–2018 led to significant advances in research on the genetics of hair loss. Four large
GWA scans have been conducted on individuals of European descent. The first three of
those studies, which investigated 20,000–50,000 genomes each, detected altogether more
than 300 GWA signals, including 253 novel MPB associations [42,52,53]. The largest study,
which investigated 200,000 genomes, allowed the identification of >600 genome-wide asso-
ciations, explaining altogether 25% of the phenotypic variation observed in alopecia [43].
These large-scale studies not only discovered many new loci involved in alopecia, but also
highlighted the implicated molecular pathways and discovered the genetic links of alopecia
with different traits/conditions, including bone mineral density, puberty, metabolic traits,
and Parkinson’s disease. However, a significant part of MPB heritability remains missing.
Recent studies showed that the use of advanced statistical methods and the incorporation
of functional genomics data prior to association tests may improve the efficiency of SNP
detection in GWAS and these approaches were proved to be successful in MPB research by
increasing the number of SNP hits by an additional ~4% [56,57].

For hair morphology (shape), four GWA studies have been published so far, two of
which were carried out on Europeans, with one study on Latin Americans and one on East
Asians [40,58–60]. Hair shape, usually defined as straight vs. wavy vs. curly, is a highly
distinctive feature of human appearance. As with hair loss, genetic heterogeneity between
populations is observed with different mechanisms and genes underlying straight hair
formation in Europeans and East Asians. The TCHH gene is known to act only in Europeans,
while EDAR is the main contributor to straight hair in East Asians [58,59,61]. However, the
proportion of known heritability attributed to both genes in respective populations was
found to be small (<10%). The TCHH gene was discovered in the first GWA study published
in 2009, which was conducted on three cohorts with a total of more than 4800 individuals
of European descent [58]. TCHH was the only gene in this study that reached genome-wide
significance, but suggestive associations were also disclosed for several additional loci,
including the FRAS1 and WNT10 genes. The role of the EDAR gene in hair straightness
and thickness in Asians was discovered through candidate gene analyses [61,62] and
confirmed in a later GWA study conducted in 2016 on ~2900 Chinese people, with no
additional genes reaching GWA significance in this study [59]. A GWA study conducted
on >6000 Latin Americans discovered a novel association for PRSS53 [40]. The latest
meta-analysis of European GWA studies, exploring a total of more than 16,000 samples,
allowed the identification of 12 hair shape genes, including eight novel association signals
(ERRFI1/SLC45A1, PEX14, PADI3, TGFA, LGR4, HOXC13, KRTAP, and PTK6) [60]. The
study showed that a model consisting of 14 SNPs across novel and literature loci, together
with sex, explains 10% of the total hair shape variability. Further research pointed to the
role of gene–gene interactions in hair shape determination as one of the factors underlying
missing heritability [63]. The RPTN gene has been implicated in straight hair formation in
Europeans and East Asians, but throughout interactions with different previously known
head hair shape genes.

Only a few studies have addressed the genetic basis of other hair traits. In recent
years, the first genes responsible for the thickness of the eyebrows, e.g., EDAR, FOXL2,
LIMS1, TMEM174, SOX2, and FOXD1 [40,64,65], monobrows, e.g., PAX3 and 5q13.2 [40,51],
beard thickness, e.g., EDAR, LNX1, PREP, and FOXP2 [40], and hair greying, e.g., IRF4,
and KIF1A [40,66], have been identified through whole-genome or whole-exome analyses.

2.3. Human Height

Human height is heritable in approximately 80%, but only the single genes associated
with this trait were known before the era of GWA studies. The study of human height
genetics is a good example of the effectiveness of explaining the heritability of complex traits
through the GWAS approach. An important advantage of stature studies is undoubtedly
the ease of measuring this phenotype and thus the homogeneity of the phenotypic data.
The genome-wide association scans for human stature identified gene variants with a
small effect size, clearly confirming the high polygenicity of this trait. The first three GWA
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studies of human height, which collectively included more than 50,000 samples, detected
only 54 loci with a statistically significant association with stature [67–69]. Most of these
loci have not been previously linked to human height and, in many cases, the known
biological function did not make them candidates for the regulation of human stature.
The genes discovered explained only about 5% of the variation in height, which was very
discouraging, especially for predicting this distinctive feature. A huge meta-analysis that
considered GWAS data for more than 180,000 genomes made only a small advance in
explaining the heritability of human growth, enabling the discovery of 180 loci. The work
demonstrated the importance of allelic heterogeneity in explaining the complex genetic
architecture of human stature [70]. At the same time, it has been argued that testing each
SNP individually for an association with a trait, which is typical for GWAS investigations,
leads to missing many real associations, especially when the effect sizes of individual
SNPs on a trait are small. By fitting all SNPs simultaneously, Yang et al. provided an
unbiased estimate of the variance explained by the SNPs in total, and showed that common
genetic variants are able to explain as much as 45% of the variance in human height [71].
However, consistently increasing the number of genomes analysed with high-density
DNA microarrays has proven to be an effective method for elucidating the still-missing
genetic variation responsible for human height. The large meta-analysis that included
700,000 European genomes (250,000 previously investigated [72] and 450,000 from the UK
Biobank) identified 3290 near-independent SNPs associated with human stature which were
found to explain 24.6% of variance of this trait [73]. Still, unpublished data suggest that the
large proportion of missing heritability may be hiding in rare genetic variants (≤0.01) that
can be detected via the whole genome sequencing of a sufficient number of genomes [74].
Notably, Zoledziewska et al. showed that human height can be under pressure from natural
selection, presenting data showing that known height-decreasing alleles were found at
higher frequency in Sardinians than would be expected to be caused by genetic drift [75].
Research on the genetic architecture of human stature, on a smaller scale, is also being
conducted in populations in Asia and Africa. A meta-analysis of 93,926 individuals from
East Asia identified 98 loci, including 17 novel for human height [76]. A GWA study based
on 191,787 Japanese genomes disclosed 573 height-associated variants and assessed that
64 rare (<0.01) and low-frequency (<0.05) variants explain 1.7% of the height variance.
The study revealed genes not previously associated with stature [77]. Eighty-three low-
frequency variants affecting human height have also been reported in [78].

2.4. Facial Morphology

The human face represents a set of correlated complex phenotypes that are highly
variable at inter- and intra-population levels and define what is apparently the most
differentiating human trait [79]. The high similarity of the faces of monozygotic twins
clearly indicates that most of this variability is genetically determined. Despite this, research
into the heritability of facial features has caused quite a few problems, probably due to the
three-dimensional nature of human faces. Only a recent face heritability study performed
on 952 British twins using an advanced phenotyping and landmarking system confirmed
the high heritability (>65%) of many facial traits [80]. Indeed, contrary to some physical
phenotype traits, collecting phenotypic data for faces can be challenging. A self-reported
categorisation is less useful, and measurement ideally requires the involvement of methods
that are able to capture the three-dimensionality of faces. The approaches used to collect
facial appearance data for studying the genetics of craniofacial variation that can be found
in the literature are standard 2D photographs, magnetic resonance imaging (MRI) and
3D scanning. The latter has quickly gained a dominant position in craniofacial genetics
research. It should be noted that the phenotypic assessment of facial variability from
3D images is not an easy task and makes large-scale studies and comparisons between
different studies difficult. Initially, the process relied on a labour-intensive process of the
manual determination of landmarks, and later, several automated landmarking methods
applicable to 3D images have facilitated research on the association of facial phenotype
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with genotype [80–83]. In one of the first works on the genetics of natural craniofacial
variation, 11 DNA variants previously associated with cleft-lip phenotypes were tested
in two European cohorts with the phenotypes captured using 2D photos or magnetic
resonance images [84]. A DNA variant near the GREM1 gene was associated with nose
width, and another near the CCDC26 gene was associated with bizygomatic distance. The
first GWAS scan that was aimed at investigating normal facial variation identified only
a single intronic DNA variant in the PAX3 gene, which showed association with nasion
position. This first study was conducted on a relatively small group of 2185 adolescents.
The study used a 3D laser scanning method to collect phenotypic data. The 22 identified
landmarks were then used to generate 54 3D and 2D distances featuring different facial
characteristics. Additionally, following a previous method, a principal component analysis
enabled the identification of 14 independent groups of correlated coordinates [85]. These
parameters were used in association testing, which identified four associations, but only
PAX3 was replicated in an independent cohort of 1622 participants [86]. A larger GWAS
analysis of almost 10,000 individuals of European origin from several cohorts used 3D
MRI scans and 2D photos, and identified five genes involved in facial variation. PAX3,
PRDM16, and TP63 have previously been linked to craniofacial development, while C5orf50
and COL17A1 were new findings [87]. The strongest signal was again obtained for PAX3,
which soon gained further confirmation in an independent study of about 6000 Latin
Americans investigated in the large CANDELA project [40]. It is worth noting that rare
variants in PAX3, the most replicated gene for natural variation in facial appearance, cause
Waardenburg syndrome, which involves some facial dysmorphism, including a broad nasal
bridge. The phenotyping regime in Adhikari’s study involved a simple approach based
on standard 2D photographs, and the study also implicated DCHS2, RUNX2, GLI3, and
PAX1 in nose morphology and EDAR in chin protrusion [40]. Another GWAS study, which
included 3D images of 3118 individuals of European ancestry that were used to derive 20
facial distance measurements, identified several genomic regions and implicated MAFB,
PAX9, MIPOL1, ALX3, HDAC8, and PAX1 in normal facial variation, including the measures
of eye, nose, and facial breadth. The study also provided additional evidence for the
association between PRDM16 and C5orf50 and facial features [88]. Crouch et al. investigated
the hypothesis that the DNA variants responsible for large effects on facial morphology exist
in the human genome, and focused on individuals displaying extreme facial characteristics
to find them. The study included 3D images of 1832 individuals from the general population
as a discovery set and 1567 3D scans of twins from the TwinsUK databank, plus 33 of East
Asians for replication. The original 3D scans were used to manually mark each face with
14 well-defined landmarks, allowing a mesh of 50,000–150,000 surface points in 3D space
to be transformed into a set of 29,658 surface points for each face. This approach enabled
the identification of three SNPs in PCDH15, MBTPS1, and TMEM163, genes that have
previously been associated with various pathological phenotypes involving craniofacial
dysmorphias [89]. The study by Claes et al. (2018) involved 2329 individuals at the
discovery stage and an additional 1719 at the replication stage, and found associations
for 15 loci with facial features, including four new genes, nine consistently confirmed,
and two linked with pleiotropic facial phenotypic features. The study used an innovative,
data-driven facial phenotyping approach based on structural correlations between about
10,000 3D quasi-landmarks, which enabled the hierarchical (global-to-local) clustering of
the human face into segments [90]. This approach also yielded good results for a meta-
analysis, which included 8246 European individuals and enabled the identification of
203 loci associated with normal facial variation [91] and for a study of facial features in East
Africans, which investigated 2595 3D facial images collected on Tanzanian children [92]. The
latter cohort was previously investigated, with two genes, SCHIP1 and PDE8A, identified
that were associated with measures of human facial size [83]. GWA studies investigating
human facial morphology in non-European cohorts are rare. Worth noting is a GWAS
conducted on an exploratory panel of Uyghurs that identified six loci important for the
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genetic architecture of the human face, four of which were replicated in independent
cohorts of Uyghur or southern Han Chinese [93].

3. DNA-Based Predictive Tools for Forensic Applications

Several factors determine the accuracy of DNA-based predictive methods, including
high heritability of a trait, the identification of appropriate predictors, and the selection
of the best mathematical approach to model development. The forensic community very
early recognised the investigative potential of extracting phenotypes from DNA data. The
practical importance of a simple amelogenin genetic sex test [94], and also of the inference
of biogeographical ancestry [95,96], made it clear that a description of the phenotypic
characteristics of a person of undetermined identity can provide important investigative
leads. The variation of the MC1R gene was soon proposed as an indicator of red hair
colour [97], while the predictive potential of the OCA2 variation was proposed for the
inference of eye colour [14]. The availability of GWAS data has made it possible to develop
tools for predicting human appearance traits more effectively. The research carried out has
made it possible to develop predictive tools with varying performances and practicalities
of application for different physical characteristics (Table 1).

Table 1. Examples of various approaches proposed for genetic prediction of physical traits.

Physical
Trait

Statistical Model
Number of Predictors

in the Model
Prediction Accuracy Parameters Ref.

Eye
colour

Multinomial logistic regression
(IrisPlex) 1 6 SNPs

AUCbrown = 0.93 2

AUCintermediate = 0.72
AUCblue = 0.91

[98]

Likelihood ratio 4 SNPs LRlight-dark depends on genotypes [99]

Multiple linear regression 3 SNPs R2 = 0.764 [100]

No statistical model,
classification based on

genotypes
6 SNPs Overall classification success rate

(blue–green–brown): 98.94% [101]

Likelihood ratio 6 SNPs LRlight-dark depends on genotypes
AUClight-dark = 0.925 [102]

Bayesian naïve classifier
(Snipper) 23 SNPs

Classification success rate:
blue = 98.27%,

green-hazel = 97.81%
brown = 96.67%.

[103]

Multiple response
classification tree 4 SNPs

Classification success rate:
blue = 89%

intermediate = 46%
brown = 94%

[104]

No statistical model,
prediction based on genotypes 5 SNPs Overall classification success rate

(blue–green–brown): 97.64% [105]

Hair
colour

Multinomial logistic regression
+ prediction guide (HIrisPlex) 1 22 SNPs

Classification success rate:
AUCblond = 0.81
AUCbrown = 0.82
AUCblack = 0.87
AUCred = 0.93

[106]

174



Genes 2022, 13, 121

Table 1. Cont.

Physical
Trait

Statistical Model
Number of Predictors

in the Model
Prediction Accuracy Parameters Ref.

Hair
colour

Bayesian naïve classifier
(Snipper) 12 SNPs

Classification success rate:
blond = 92.3%
brown = 76.7%
black = 74.6%

red = 85%
Sex-related prediction accuracy

differences noted

[107]

Multinomial logistic regression 270 SNPs

AUCblond = 0.74
AUCbrown = 0.68
AUCblack = 0.86
AUCred = 0.86

[37]

Skin
colour

Multiple linear regression,
including interaction 3 SNPs R2 = 0.496 [100]

No statistical model,
classification based on

genotypes
5 SNPs

Overall classification success rate
(dark–medium–light): 62%
38% of results inconclusive

[105]

Bayesian naïve classifier
(Snipper) 10 SNPs AUCwhite = 0.999AUCintermediate = 0.803

AUCblack = 0.966 [108]

Multinomial logistic regression
(HIrisPlex-S) 1 36 SNPs

AUClight = 0.97
AUCdark = 0.83

AUCdark-black = 0.96
or

AUCvery-pale = 0.74
AUCpale = 0.72

AUCintermediate = 0.73
AUCdark = 0.87

AUCdark-black = 0.97

[109]

Multiple linear regression 9 SNPs R2 = 0.65 [110]

Freckles

Binomial logistic regression 34 SNPs + sex AUCfreckled = 0.809 [111]

Multinomial logistic regression 20 SNPs + sex
AUCnon-freckled = 0.754

AUCfreckled = 0.657
AUCheavily-freckled = 0.792

[112]

Hair loss

Binomial logistic regression 20 SNPs AUCbald = 0.66
AUCbald = 0.76 in men ≥ 50 years old [113]

Binomial logistic regression 14 SNPs AUCearly-onset baldness = 0.74 [114]

Polygenic scores
(weighted allele sums)

261 autosomal SNPs;
70 X chromosomal

SNPs

AUCsevere baldness = 0.748
(autosomal SNPs)

AUCsevere baldness = 0.621
(X chromosome SNPs)

With autosomal and X SNPs + age
included in the model:

AUCsevere baldness = 0.79;
AUCmoderate baldness = 0.70;

AUCslight baldness = 0.61

[52]

175



Genes 2022, 13, 121

Table 1. Cont.

Physical
Trait

Statistical Model
Number of Predictors

in the Model
Prediction Accuracy Parameters Ref.

Hair
shape

Binomial logistic regression 3 SNPs AUCstraight = 0.62 [115]

Binomial and multinomial
logistic regression

32 SNPs in binomial
modelor33 SNPs in
multinomial model

AUCstraight = 0.66 in Europeans
AUCstraight = 0.79 in non-Europeans

or
AUCstraight = 0.67 in Europeans
AUCwavy = 0.60 in Europeans
AUCcurly = 0.60 in Europeans

AUCstraight = 0.80 in non-Europeans
AUCwavy = 0.61 in non-Europeans
AUCcurly = 0.74 in non-Europeans

[116]

Hair
greying

Binary and multi-class neural
network

10 SNPs + age and sex
in binary model

or
12 SNPs + age and sex
in multi-class model

AUCgreying = 0.87 (mostly based on age)
or

AUCno greying = 0.86
AUCmild greying = 0.79

AUCsevere greying = 0.86

[66]

Height

Polygenic scores
(weighted allele sums) 54 SNPs AUCtall stature = 0.65 [117]

Polygenic scores
(weighted allele sums) 180 SNPs AUCtall stature = 0.75 [118]

Polygenic scores
(weighted allele sums) 689 SNPs AUCtall stature = 0.79 [119]

L1-penalized regression
(LASSO) >20,000 SNPs r = 0.64 [120]

Face

Partial least squares regression
Genomic ancestry

(68 DNA variants) +
sex + 24 SNPs

Genomic ancestry explains 9.6% of the
total facial variation; sex independently

from ancestry explains 12.9%; SNPs make
a small contribution to improving facial

distinctiveness

[82]

Ridge regression

Genomic ancestry
(1000 genomic

Principal Components)
+ sex, BMI and age

Genomic ancestry and sex explain large
proportion of the predictive accuracy of

the model; age and BMI improve the
accuracy of the model

[121]

Simple quantitative method
(principal component analysis

and partial least square
analysis used to extract new

face traits)

277 SNPs

SSA statistic 3:
no difference between SNP-based

prediction and random predictions in
females; SNP-based predictions
significantly better than random

predictions in males

[93]

1 SNaPshot and MPS forensically validated genetic tests for data collection available; 2 AUC—area under the
ROC (receiver operating characteristic) curve, describes the general performance of the model, 1 means perfect
prediction and 0.5 means random assignment; 3 SSA—a shape similarity statistic (shape space angle) developed
to measure the angle between two shapes in the 3D face modelling data space.

3.1. Pigmentation Traits

In particular, the discovery of eye colour markers with large phenotypic effects has
made it easy to develop pretty accurate genetic predictors of this trait. The best-known tool
commonly used in the forensic field today is the IrisPlex predictive system, which includes
both a genetic test for data acquisition and a mathematical algorithm for predicting the
three categories of eye colour [98]. The algorithm was developed based on the systematic
selection of markers made by Liu et al., who reported 24 variants from eight genes, enabling
the prediction of blue and brown eye colour with a prediction accuracy expressed by an
AUC of 0.91 and 0.93, respectively [122]. AUC, which stands for area under the ROC
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(receiver operating characteristic) curve, describes the general performance of the model in
such a way that 1 means perfect classification and 0.5 means random assignment to the
phenotype categories. For forensic purposes, the number of markers from the originally
identified 24 was restricted to the six with the largest effect [98,122]. The six crucial
predictors included HERC2 rs12913832, OCA2 rs1800407, SLC24A4 rs12896399, SLC45A2
rs16891982, TYR rs1393350, and IRF4 rs12203592. The original IrisPlex method implements
a multinomial logistic regression algorithm and a simple single base extension method
based on SNaPshot minisequencing, which allows the PCR amplification and genotyping
of several SNPs in a multiplex reaction. Importantly, the products of primer extension are
analysed using capillary electrophoresis platforms, which are commonly used in human
identification testing laboratories. Other tools based on other mathematical solutions were
soon developed but, essentially, each of these algorithms relied on exploiting information in
the HERC2-OCA2 gene complex. In general, these works were limited to the development
of predictive algorithms using various sets of samples and mathematical approaches, but
did not present specific tools for the collection of genetic data [99–104]. Notably, IrisPlex and
other forensic methods of eye colour prediction can accurately predict blue and brown iris
colours, but have difficulty with the prediction of intermediate eye colours [3]. Moreover,
in some populations, the effect of sex was noted on prediction results [123–125]. The
IrisPlex tool for the genotyping and prediction of eye colour evolved to HIrisPlex [106] and
finally to the HIrisPlex-S tool [109], which were developed based on the same strategy as
IrisPlex. The algorithm for hair colour prediction implemented in HIrisPlex was developed
based on the investigation of a Polish population sample, which enabled the selection of
22 crucial SNPs from 11 genes for hair colour. The study showed a high level of accuracy
for red and black hair colour prediction (AUC ~ 0.9) and a lower prediction accuracy for
blond and brown hair colour (AUC ~ 0.8) [126]. The skin colour predictor was proposed
by Walsh et al. after a systematic study of skin colour candidate variants in a sample of
2025 individuals from 31 worldwide populations. The algorithm predicted skin colour
with very high accuracy, with an AUC = 0.97 for light skin colour, 0.83 dark, and 0.96 for
dark-black skin colour [127]. Notably, it has been demonstrated that the original SNaPshot
protocol can be replaced by the targeted massive parallel sequencing (MPS) method [128],
and the HIrisPlex-S method was also adopted in a tool combining pigmentation prediction
capability with ancestry inference developed by the VISAGE consortium [129]. Other
studies also investigated the possibility of hair and skin colour prediction in the forensic
field [100,105,107,108,110]. The Snipper Application suite deserves more attention because
it provides an online tool that allows the performance of predictive calculations based
on data generated by any genotyping method. The tool was originally developed for
the statistical interpretation of data in ancestry inference studies, but a number of new
functionalities have subsequently been added to enable the prediction of pigmentation
and even age [130]. A more complete prediction of pigmentation will be provided by
the developed algorithms for freckle prediction [111,112]. It is worth noting that the
use of extended DNA variant sets for prediction has begun to be explored, which may
lead to the development of next-generation prediction tools. For example, the previously
described association work of Hysi et al. was extended to predictive modelling. Hair
colour prediction was compared in two independent cohorts using prediction models
based on the 258 associated SNPs and the original HIrisPlex method, and these new models
outperformed the previous HIrisPlex model [37]. Further development of pigmentation
predictors may also require the use of sex information, and age will naturally be needed for
the final interpretation of the data [37,123]. This issue is also addressed later in the article,
as sex in particular can be important for predicting other appearance traits.

3.2. Hair Loss

Numerous association studies conducted for MPB raised questions about the pre-
dictive ability of the discovered genetic variants. In 2015, a compact regression model
was developed based on analysis of five SNPs from five genomic regions (Xq12, 20p11,
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EBF1, TARDBP, and HDAC9), trained and validated on >600 samples from six European
populations [113]. The model was shown to enable the prediction of hair loss in Europeans
at an acceptable level, but only in two extreme phenotype categories, i.e., young men with
significant alopecia vs. older men without symptoms of alopecia with AUC of 0.76. In
the same study, Marcińska et al. also pointed to the potential role of allelic heterogeneity
in determining scalp hair loss. Expanding the number of DNA variants in both crucial
regions, i.e., Xq12 and 20p11, improved the accuracy of prediction, suggesting that there
might be more functional variants in these loci. The extended 20-SNP regression model
predicted hair loss with an AUC of 0.66 in all samples of all age categories and had the
highest AUC value for the age category of ≥50 years old (AUC = 0.76; sensitivity = 67.7%;
specificity = 90%), where the sensitivity refers to the ability of the model to correctly classify
individuals with the particular phenotype (here baldness), while the specificity refers to
the ability of the model to correctly classify individuals without this phenotype [113].

Liu et al. conducted a parallel study on the prediction of MPB in >2700 Europeans
and developed a 14-SNP model that was found to predict early-onset MPB cases with a
cross-validated AUC of 0.74 [114]. The accuracy of hair loss prediction status in elderly and
middle-aged individuals was lower, with an AUC of 0.69–0.71. In 2017, Hagenaars and
colleagues developed a polygenic predictor based on the genome-wide data generated for a
large cohort of 40,000 individuals and showed that it can discriminate individuals with no
signs of hair loss from those with severe baldness, with an AUC = 0.78, sensitivity = 0.74,
and specificity = 0.69 [52].

3.3. Hair Shape and Other Hair Features

The first preliminary model for head hair shape was developed as a follow-up to the
first GWA study conducted on hair characteristics [58], and included an analysis of three
SNPs in three genes (TCHH, WNT10A, FRAS1), and was trained on data generated for
528 samples from Polish individuals [115]. The model was reported to predict straight hair
with high accuracy but low specificity (cross-validated AUC = 0.622, sensitivity = 93.2%,
specificity = 15.4%). The application of the model on an independent test set consisting of
samples from six European populations and using a 65% probability threshold allowed for
higher sensitivity (81.4%) and improved specificity (50.0%) of prediction, but at the same
time with a very high rate of inconclusive results (66.9%). In 2018, a large-scale prediction
study for hair shape prediction was conducted with more than 9600 samples used for
predictor selection and model development and more than 2400 samples used for prediction
model validation, collected from both European and non-European populations [116]. The
binomial logistic regression model was developed to predict hair shape, defined as straight
vs. non-straight, based on 32 informative SNPs from 26 loci. The model was reported
to explain ~12% of hair shape variation and can predict straight vs. non-straight hair
in European populations with an accuracy of AUC of 0.66, a sensitivity of 84.1% and a
specificity of 34.2%. It was shown that the same set of SNP markers can predict hair shape
with significantly different accuracies in Europeans and non-Europeans. For non-European
samples, the AUC value was 0.79, sensitivity = 82.9%, and specificity = 49.8%. The higher
prediction accuracy obtained for non-European populations compared to Europeans is due
to the effect of the EDAR gene, which has a significant effect on the determination of straight
hair in non-European populations, primarily East Asian. In addition to the binomial model,
a multinomial logistic regression model was developed to allow for a higher resolution of
hair shape prediction, considering three categories—straight, wavy and curly—based on
an analysis of 33 SNP positions. There are few or no prediction studies of the remaining
hair features. In 2016, Adhikari et al. predicted different hair traits using the GWAS data
generated for Latin Americans and reported the highest accuracy of prediction for beard
thickness and the lowest for hair greying, with ~18% and ~7% of the phenotypic variation
explained by the associated SNPs, respectively [40]. Interestingly, for both of these traits, a
large effect of age and sex on prediction was observed, explaining the additional ~11% and
~20% of the phenotypic variation, respectively, for beard thickness and greying. Age was
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found to be a main predictor of hair greying in a study conducted in 2020, explaining around
48% of the variation observed in hair greying in a cohort of 849 people from Poland [66]. A
binary neural network model for greying vs. no greying prediction was developed in this
study based on information relating to age, sex, and 10 SNPs selected using whole-exome
sequencing data analysis (e.g., KIF1A rs59733750, SEMA4D rs45483393) and literature
resources (IRF4 rs12203592, FGF5 rs7680591). The model achieved a high accuracy of
prediction with a cross-validated AUC = 0.87 (sensitivity = 0.73; specificity = 0.85) but most
of the prediction information was driven by age itself, while SNPs were found to explain
merely ~7% of the variation in hair greying. As mentioned earlier, age is a very important
factor in predicting hair loss. Sex and age were also shown to slightly improve the accuracy
of prediction of hair shape [116].

This implies that there is a need to determine the sex and age of an individual from the
analysed biological sample. Information on a person’s sex is usually available in criminal
investigations due to the inclusion of marker for the amelogenin gene located on the X and
Y chromosome in standard STR DNA profiling, as previously mentioned, whereas age can
be estimated via epigenetic analysis [131].

3.4. Human Stature

Attempts at forensic human height prediction have not been particularly numerous
and have been limited to the development of predictive algorithms that are not equipped
with data collection tools. The reasons are related to the limitations of DNA analysis
technology and stem from the need to analyse too many DNA variants. While the 5%
heritability explained by the 54 DNA variants identified by the initial GWAS scans for
human height was unlikely to predict the full range of human height, Aulchenko et al.
tested whether it would allow the reliable prediction of extreme height. However, this
turned out to be possible with only limited accuracy. Tall stature prediction was possible
at AUC of 0.65, thus only moderately improving the accuracy resulting from a random
hit (AUC = 0.5) [117]. Using the 180 height markers identified in the Lango Allen et al.
paper improved the prediction of tall stature to AUC of 0.75 [118]. The study suggested the
importance of allelic heterogeneity for the prediction of human stature. Further increasing
the number of predictors to 697 reported in the paper by [72] enabled the prediction of tall
stature with an AUC of 0.79 [119]. The possibilities of human height prediction have also
been explored outside the forensic mainstream using a non-standard approach that has
nevertheless yielded very promising results, enabling the prediction of the full range of
human height at a good level of accuracy [120]. Based on the results obtained, the authors
suggested changing the approach to phenotype prediction, pointing out the benefits of also
including as predictors polymorphisms that do not show an association with a given trait,
but only on the basis of the improved prediction accuracy obtained after their inclusion in
the prediction model [132].

3.5. The Human Face

Drawing a forensic sketch based on the instructions of a witness in a criminal case is a
tool that has been used for years to identify the perpetrator of a crime. People recognise each
other through the high variability of facial features. Therefore, having a good understanding
of the genetics of human facial variation and being able to predict this complex phenotype
is a very exciting prospect for forensic DNA intelligence. The small amount of explained
heritability for craniofacial traits does not bring good prospects for the prediction of human
facial phenotypes. Nevertheless, attempts have been made to develop models that would
allow the prediction of facial appearance. The proposed methods are based on the indirect
prediction of facial phenotypes, with ancestry and sex prediction DNA data playing a key
role in this regard. The method by Claes et al. implements a bootstrapped response-based
imputation modelling that makes use of information on genomic ancestry and sex first
to create a sketch called a base-face. At the second stage, the information in 24 SNPs
associated with facial variation is used to improve the prediction outcome [82]. A similar
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strategy was proposed by Lippert et al., who used the whole genome sequencing data
to gain information about the sex and ancestry proportions of the individual [121]. The
data on genetic face predictors did not improve facial appearance predictions, but the
study showed a positive effect on the prediction of age and body mass index. The genetic
prediction of facial features was also explored by Qiao at el., who developed a quantitative
model based on multiple SNP loci and tried to simulate 3D face models. The study suggests
that epistasis is part of the genetic architecture of facial features and concludes that the
model developed should be treated as an exploratory basis for future, more advanced
predictive models [93].

4. Appearance Prediction in the Era of Big Data

4.1. Appearance Trait Predicition as a Supervised Learning Task

The prediction of human externally visible characteristics using DNA markers can be
treated as a supervised learning problem in which the considered appearance trait corre-
sponds to a response (target) variable, whereas genetic markers correspond to explanatory
variables (also known as features or predictors). The supervised learning models are fitted
using training data, which consist of observations for which the value of the target variable
is known. Depending on the type of the target variable, three tasks can be distinguished:
regression (for a quantitative trait, e.g., human height), binary classification (for a binary
trait, e.g., the presence of freckles), and multi-class classification (for a categorical trait,
e.g., eye colour).

The specificity of the problem and the greatest challenge lies in the large number
of potential features (genetic markers), which may significantly exceed the number of
observations in the training data. Due to this, the use of traditional models and estimation
methods (such as the maximum likelihood method in logistic regression) is not feasible.
The simplest solution is to use some initial filtering method to reduce the total number
of markers. However, simple filters only assess the marginal dependence between the
variable and the trait; they may exclude variables that are potentially useful for the model,
for example, variables that contribute by interacting with already selected ones. Therefore,
there is a need to apply the estimation methods as well as feature selection approaches
specially tailored to high-dimensional settings. This is one of the greatest challenges in
designing learning models for appearance trait prediction.

Finally, it is important to note that traditional genome-wide association studies focus
on detecting the genetic variants associated with the trait with high statistical confidence,
which, in particular, includes controlling the probability of at least one rejection via multiple-
testing procedures. When the prediction is the main task, the paradigm shift is needed,
because focusing on the accuracy of the model becomes the main objective [133]. This
approach requires the careful selection of variables. On one hand, unlike in GWAS, it is
allowed to include a certain number of non-significant variables in the model, since the
excessive pruning of SNPs, which may result in the discarding of some significant variables,
can negatively affect prediction accuracy [132]. On the other hand, including too many
spurious variables may cause the overfitting of the model and decrease its accuracy [134].

4.2. Linear Easily Interpretable Models

Despite its simplicity, the linear model and its generalisations are powerful tools for
appearance trait prediction. The theory [135] and empirical evidence [136,137] suggest that
in many cases the dependence between the trait and genetic markers can be captured using
linear models. Several studies indicate that they frequently work on par or even better than
more complex models, such as ensemble methods or neural networks [120,132,135–137], as
they are not liable to overfitting. A distinct advantage of the linear models is their inter-
pretability; the parameter value indicates how the given variable influences the dependent
variable for fixed values of the remaining variables. Within the linear models, there are
many methods of parameter estimation, among which the regularised (also known as
penalised) maximum likelihood methods play the most prominent role in modern genetic
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data analysis. First, for the regularisation methods, there are theoretical guarantees that
the solution of the related optimisation problem exists and is unique, even for a high-
dimensional setting. Second, some forms of the regularisation, such as lasso, ensure the
sparsity of the vector of estimated coefficients, meaning that a majority of coefficients will
be zero. Under some unfortunately stringent conditions, this majority will correspond
to non-significant variables in the model. Thus, the selected regularisation techniques
can be seen as methods of simultaneous parameter estimation and feature selection. Be-
low, we discuss the three most important generalised linear models (linear regression,
logistic regression, and multinomial regression) and the methods of parameter estimation
within them.

In the case of the quantitative trait, it is natural to consider the linear regression model,
which assumes that for an i-th observation, we have yi = β0 + xT

i β + εi, where yi is the
value of the target variable, β0 is an intercept, β = (β1, . . . , βp)

T is the coefficients vector,
εi is noise, and xi = (xi,1, . . . , xi,p)

T is a vector of features. Coordinates xi,1, . . . , xi,p denote
the genetic markers for the i-th observation. They can be coded numerically as 0, 1, or
2, where 0 indicates the homozygosity of the major allele, 1 the heterozygosity and 2 the
homozygosity of the minor allele. In the penalised least squares method, we solve:

β̂0, β̂ = arg min
b0∈R,b∈Rp

n

∑
i=1

(yi − b0 − xT
i b)

2
+ λpen(b),

where λ > 0 is the regularisation parameter that controls the penalty strength and pen(b)
is the penalty. For example, in the lasso method, pen(b) = ||b||1 = ∑

p
j=1

∣∣bj
∣∣, we discuss

other choices below. In the case of a binary trait, the logistic regression model is usually
used in which the posterior probability is modelled as:

P(yi = 1|xi) =
exp

(
β0 + xT

i β
)

1 + exp
(

β0 + xT
i β

)
and parameters are estimated using the penalised maximum likelihood method:

β̂0, β̂ = arg max
b0∈R,b∈Rp

n
∑

i=1
[yi log

(
σ
(
b0 + xT

i b
))

+ (1 − yi) log
(
1 − σ

(
b0 + xT

i b
))
] + λpen(b),

where σ(s) = exp(s)/(1 + exp(s)) is the sigmoid logistic function. The multinomial
logistic regression (MLR) extends the logistic model when the number of categories of
the dependent variable K > 2. This is the most commonly used model, as usually the
considered trait has multiple categories (eye colour, skin colour, hair type, etc.). The
posterior probability for the k-th category is:

P(yi = k|xi) =
exp

(
β0k + xT

i βk
)

1 + ∑K−1
k=1 exp

(
β0k + xT

i βk
) ,

for k = 1, . . . , K − 1, where βk is a coefficients vector corresponding to the k-th category and
P(yi = K|xi) = 1 − ∑K−1

k=1 P(yi = k|xi). In this model, we have K × p parameters, which
are estimated using the penalised maximum likelihood method. The interaction terms
xi,j × xi,k can be included in the above models, at the cost of a significant increase in the
number of parameters. In addition to linear models, additive models are an important
class of models in which, instead of the linear combination β0 + xT

i β , the combination
of M non-linear base functions β0 + ∑M

m=1 βmhm(xi) is used. In this group, the notable
approach is the MARS method (multivariate adaptive regression splines; see Section 9
in [134]) in which the functions hm are constructed as products of so-called hinge functions
in a forward stage-wise manner. Importantly, the functions hm in MARS can capture non-
linear dependencies as well as interactions between variables. Note that the considered
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model is linear in predictors hm(xi) and is an important example of the transformation of
predictors method.

Regarding regularisation in the above models, the lasso penalty pen(b) =||b||1 is the
most popular choice, which was successfully used in appearance trait prediction, e.g., in
prediction of human height [120] or eye colour [137]. The lasso method selects features
with non-zero estimated coefficients, and the number selected depends on parameter
λ > 0. A small value of λ will result in a larger number of features included in the model,
whereas for a larger λ, we obtain a more parsimonious model. The optimal value of λ is
chosen using cross-validation or by minimising the prediction error with a validation set.
An alternative to the lasso is ridge penalty pen(b) =||b||2 which, instead of performing
feature selection, only shrinks the estimated parameters towards zero. The ridge penalty
facilitates a reduction in the variance of the estimators, especially when the variables are
highly correlated, and thus may yield an even higher accuracy for the prediction than the
lasso method.

Although the lasso method has many excellent properties and high predictive power,
in recent years, several modifications have been proposed in statistical and machine learning
literature. For example, it has been noticed that the lasso method produces biased estimators
for truly significant variables with large coefficients, and this bias does not necessarily
disappear for a large sample size. To overcome this drawback, non-convex penalties, such as
SCAD (smoothly clipped absolute deviation) [138] or MCP (minimax concave penalty) [139]
have been proposed and effective algorithms for solving the related optimisation problems
have been developed [140]. Another important line of research is focused on controlling
the false discovery rate (FDR) (the expected fraction of non-significant variables that are
selected for the model) instead of the much stronger control of probability that at least one
non-significant variable is selected (familywise error rate). Unfortunately, the standard
lasso does not control the FDR, which means that, among the selected variables, we can
expect a significant portion of spurious variables. The problem is exacerbated by the fact
that there is no known way of testing the significance of a specific feature based on its
estimated lasso coefficient that would allow the application of one of multiple testing
approaches, such as the Benjamini-Hochberg procedure [141], to control the FDR.

A notable alternative approach is the knockoff filter method [142]. It can be seen
as a refinement of randomisation methods [143,144] that, by permuting the values of a
studied predictor (which renders the resulting artificial predictor non-significant), creates
a benchmark situation in which its usefulness can be checked. The basic idea in [142] is
to construct extra variables called ’knockoff’ variables, which are noisy copies of original
ones but which have a certain similar correlation structure, as they allow for FDR control
when standard variable selection methods (such as lasso) are applied. Namely, the lasso
method is run using both the original variables and knockoff variables (thus there are 2 × p
variables in total). The original variable is deemed useful when its pertaining estimated
coefficient is significantly larger than that of the corresponding knockoff.

The nonconvex penalties, as well as the randomisation methods, seem to be worth-
while alternatives to the lasso method for predicting human traits. The above methods
are implemented, e.g., in R software, see packages glmnet (lasso and ridge), ncvreg (MCP,
SCAD), knockoff (knockoff filter), and earth (MARS method).

4.3. Complex Black-Box Models

The black-box model is a class of predictive models that are able to recover complex
dependencies between explanatory variables and the dependent variable, including in-
teraction terms, and which can potentially achieve higher accuracy then linear models.
The main limitations are the high computational complexity, the difficulty in interpreting
the model, and the necessity of parameter tuning. In this group, ensemble methods and
neural networks play the leading role. The former are usually based on decision trees [145]
and overcome two limitations of single trees: their instability and tendency to overfitting.
The simplest approach is bagging (bootstrap aggregating) [146] in which each tree in the
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ensemble is trained using a bootstrap sample, i.e., a sample drawn with replacements from
the original training data. In order to classify a new instance, each decision tree provides
the classification for the input data. The majority vote classification is then chosen as the
final prediction. In the case of regression, the predictions from individual tress are averaged.
Another important class of models are random subspace methods (RSM), in which each
base classifier is learnt using the randomly selected subset of variables [147,148]. One of
the most successful and commonly used methods is random forest (RF), which can be seen
as a combination of bagging and RSM. The RF uses a modified tree learning algorithm
that selects, at each candidate split in the learning process, a random subset of the features
of size m, where m is a hyper-parameter. Making m smaller helps to avoid the danger of
overfitting. Nowadays, the most powerful class of ensemble methods are gradient boosting
(GB) algorithms (Section 10 in [134]). In GB, the subsequent models F1(x), . . . , FM(x) are
learned sequentially, and the last model FM(x) serves as a final model. The main advantage
of GB algorithms is that they are able to optimise different loss functions, depending on the
considered task. The classifier in step m + 1 (usually a decision tree) is learnt using current
training data, in which the residuals from the previous model are treated as the current
target variable (where the squared loss is considered, and the residuals are yi − Fm(xi)). The
residuals are related to the so-called functional gradient of the loss function and, therefore,
GB methods can be seen as gradient descent algorithms, which take steps in the direction
of the steepest descent and converge to the minimum of the loss function. The common
property of all boosting algorithms is that the current model zooms in on samples where its
predecessor failed. Usually, some regularisation techniques are used in boosting algorithms
to prevent overfitting. There are many versions of gradient boosting algorithms, among
which XGB (extreme gradient boosting) is considered to be one of the most powerful vari-
ants [149]. The ensemble methods are controlled by different parameters, whose optimal
choice may significantly improve the performance: the number of trees, the size of the
random subspace (in RF and RSM), as well as the regularisation and pruning parameters.

The ensemble methods described above (RF and XGB) are often used to assess the
importance of the features. The simplest approach is based on a permutation scheme and
is very similar to the randomisation feature selection described above. The first method
(called mean decrease accuracy) involves fitting two ensemble models (e.g., RF or XGB):
the first is based on the original training data and the second is based on training data in
which the values of the j-th variable are randomly permuted. The variable importance
measure for the j-th variable is defined as the difference in accuracies corresponding to
these two models. A large value of the difference indicates the significance of the variable.
The second measure (called mean decrease impurity) is based on observing how well the
given variable separates the classes. The Boruta algorithm [150], based on the above two
measures, contains a testing procedure that allows the rejecting of the noisy variables.
Other more sophisticated variable importance measures are also advocated for, e.g., the
MCFS method [151], in which one of its major advantages is that the predictive power of
each tree in the ensemble is taken into account in the measure definition.

The second important group of black-box models is artificial neural networks
(ANN) [152]. The latest advances in computational and optimisation methods have made it
possible to train networks with very complex architectures corresponding to large families
of functions, such as convolution networks (in image recognition) and recurrent networks
(in text analysis). The deep networks used today may consist of hundreds of hidden layers
and can model very complex dependencies [153]. In appearance trait prediction, the feed-
forward neural network is usually used. In such networks, the input signal (the vector of
features for the i-th observation) is transmitted from the input layer to the output layer,
which yields the prediction of the response. The hidden layers consist of artificial neurons
in which the linear combination of the signals from the previous layers is computed and
the signal is passed through the activation function as the input for the following layers.
The models are trained using gradient algorithms (the ADAM algorithm [154] is now the
state-of-the-art method) and the back-propagation algorithm is used to effectively compute
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the gradient of the considered risk function [153]. A number of parameters need to be tuned
in ANN, such as the number of layers, the number of neurons in each layer, and the value of
the learning rate. Other spectacular advances with ANN, such as variational autoencoders
(VAE), which enable latent feature analysis (see [155]), are of potential interest in appearance
trait prediction. For the methods described here, see R packages randomForest, xgboost,
rmcfs, Boruta, and tensorflow.

4.4. Feature Selection

Feature selection is an essential element when building predictive models, as it pre-
vents overfitting and allows discovering the dependency structure between variables and,
in particular, recovering the features that affect the target variable. In the models described
above, feature selection is usually embedded in learning algorithms. For example, in linear
models as well as neural networks, selection is performed via regularisation, whereas in
tree-based methods, the relevant features are selected when building the tree. However,
including too many potential features may significantly increase the computational cost of
fitting the model. Thus, very often in practice, there is a need to apply some fast prelimi-
nary filtering method. In the machine learning community, methods based on information
theory have gained the most popularity in recent years [156]. They are fast, model free,
and are able to detect non-linear dependencies and interactions between variables, as well
as take into account redundancies. The basic quantity used in such methods is mutual
information (MI):

I(Y, Xk) = ∑
x,y

P(Xk = x, Y = y) log
P(Xk = x, Y = y)

P(Xk = x)P(Y = y)

which is a non-parametric measure of dependence between some feature Xk and target
variable Y. Moreover, analogously defined, the conditional mutual information I(Y, Xk|Z)
quantifies the dependence strength between Xk and Y given the possibly multivariate
variable Z. It is commonly used in feature selection of a new predictor Xk when Z consists
of predictors already chosen. Another important quantity used in genome-wise interaction
studies (GWIS) is interaction information (II):

I I
(
Y, Xj, Xk

)
= I

((
Xk, Xj

)
, Y

)− I(Y, Xk)− I
(
Y, Xj

)
which measures the interaction strength between Xk and Xj for the prediction of Y. The pos-
itive value of I I indicates a synergistic interaction, whereas a negative value indicates redun-
dancy. I I has been successfully used in many genetic studies to detect epistasis [157,158],
and also in the context of appearance trait prediction, such as human pigmentation [159]. It
has been shown that the methods based on I I are able to detect interactions that remain
undetected by the logistic regression model [160].

The existing filters based on MI are forward sequential procedures that, in each
step, add a candidate feature Xk to the set of already selected features S. The quality
of a candidate feature can be assessed using various criteria, and the representative one
is CIFE (conditional infomax feature extraction) [156,161]. It adds candidate Xk, being
the maximizer of I(Y, Xk) + ∑

j∈S
I I
(
Y, Xk, Xj

)
. The CIFE takes into account the marginal

dependence between a candidate feature and the target variable, as well as interactions
between the candidate feature and the previously selected features. Methods taking into
account higher order interactions are also considered [162]. In practice, it is important to
decide at which step to stop the procedure of adding new candidate variables, with the
possible solution based on the approximate distribution of the criterion function when a
candidate feature is not significant, as proposed in [163].
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5. The Need for a High-Throughput, Low-Input DNA Sequencing Method in
Forensic Science

The limitations of DNA sequencing technologies used in the forensic field are in-
creasingly problematic because they are hindering the implementation of new methods
that can improve law enforcement and justice, and which are therefore important for the
safety of society. The lack of a suitable method for generating large amounts of SNP data
from degraded DNA, validated for use in forensics, was considered to be a barrier to the
forensic implementation of investigative genetic genealogy, an approach that was very
successful at solving a number of criminal cases [1,164]. Such a method also seems to
be essential for developing next-generation tools for the DNA-based prediction of ap-
pearance traits, which requires information derived from hundreds or even thousands
of SNPs. It may be argued that the optimal method for all the applications developed
for forensic DNA intelligence would be whole-genome sequencing (WGS). Notably, WGS
that uses high-throughput methods (massively parallel sequencing) has revolutionised
the studies of ancient DNA and enabled a better understanding of human evolutionary
history. Similarities between forensic genetics and palaeogenetics, especially in terms of
the specificity of research material with a high content of inhibitors and small amounts
of highly fragmented DNA, and the enormous success of palaeogenetics in the analysis
of such samples, prompts a closer look at the methods developed in this field. Several
technological advancements were crucial for the effective analysis of ancient DNA, includ-
ing the very efficient extraction of short ancient DNA fragments, the implementation of
the uracil-DNA glycosylase (UDG) protocol for the selective removal of damaged sections
of ancient DNA, improved protocols for library preparation, and, finally, progress has
also been made in high-throughput DNA sequencing [165,166]. The major advantage for
ancient DNA research brought about by high-throughput sequencing technology is the
ability to sequence very short DNA fragments. Research material analysed in forensic
DNA laboratories is not as degraded as ancient samples, and current DNA extraction
methods are efficient and effective at removing inhibitors. Therefore, the transfer of DNA
analysis protocols from palaeogenomics to forensic genomics should perhaps primarily
focus on library preparation methods that work well with low-input DNA. Standard library
preparation protocols are optimised for large amounts of DNA and perform poorly in the
case of samples containing degraded DNA. However, a number of modified protocols have
been proposed to reduce the requirement for DNA inputs to be at subnanogram quantities.

One category of protocols involves library construction based on double-stranded
DNA. A first protocol was described by Meyer and Kircher in 2010, and this was labo-
rious and had limitations that resulted in the losses of ancient DNA sequences due to
incompatible adapter combinations and three purification steps prior to amplification [167].
Double-stranded library preparation protocols involve the blunt-end repair of the degraded
DNA fragments, the non-directional blunt-end ligation of two adapters and the fill-in of
the nicks formatted between adapters and the DNA fragment [168]. A more advanced
alternative of double stranded library preparation method is the protocol proposed by
Carøe et al., named blunt-end-single-tube. As the name suggests, the protocol is carried
out in a single tube and relies on heat denaturation instead of purification between the
subsequent steps of end-repair, the ligation of double-stranded adapters to the 5′ ends, and
adapter fill-in [169].

The second approach for library preparation from samples containing low amounts of
degraded DNA is particularly interesting, as it implies a process of library construction
based on single-stranded DNA, allowing the use of DNA that was preserved in a single-
stranded state and which is considered to be more efficient compared to double-stranded
approaches. The original protocol for single-stranded library preparation, although it
recovered more endogenous DNA, was very expensive and laborious [170]. However, the
protocol evolved to a simplified version proposed in Gansauge et al., 2017 [171]. This is a
method that involves the dephosphorylation of the template DNA, the splinted ligation of
a biotinylated adapter to the 3′ end, bonding to streptavidin beads, annealing an extension
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primer to allow the synthesis of a second strand, and the ligation of the 5′ end of a double-
stranded adapter to the 3′ end of the newly synthesized strand. The authors also proposed
an automated version of this protocol [172]. An interesting modification of the single-strand
library preparation method was recently proposed by Kapp et al. (2021). The advantage of
the method, named the Santa Cruz Reaction, relies on simplicity and cost effectiveness. The
method converts single-stranded DNA into sequencing libraries using a single enzymatic
reaction, enabling the simultaneous directional splinted ligation of Illumina’s P5 and P7
adapters [173]. Technological improvements in ancient DNA analysis have resulted in
significant progress in sequencing efficiency. Whole-genome data from ancient hominin
material were generated with an average sequence coverage of only 1.3-fold in 2010 [174]
and 30-fold in 2012 [175]. The usefulness of these protocols was also confirmed in clinical
research of problematic biological material, including formalin-fixed paraffin embedded
tissues [176]. The future will show whether the protocols developed in palaeogenomics can
be easily transferred to forensic genomics. This would undoubtedly be extremely helpful
for the further development of forensic DNA intelligence methods.

6. Concluding Remarks

Research on the genetic architecture of natural variation in the human physical pheno-
type is growing in scale and involves different human populations. The genetic prediction
of physical appearance traits occupies an important place in forensic research, although
the available tools are limited to the least complex traits, mainly pigmentation. Notably,
there are examples of using predictive methods that have been developed by the forensic
community in ancient DNA research, and which have been carried out in the field of
molecular anthropology [177–179] and in the identification of historical figures [180–182],
which is further evidence that molecular anthropology and forensic genetics have a lot in
common. Some DNA-based predictive tools developed by the forensic community have
been implemented in commercial kits. The most famous ForenSeq kit allows the analysis of
HIrisPlex SNPs and therefore the prediction of eye and hair colour [183]. The HIrisPlex-S
variants are also available in the Ion AmpliSeq™ PhenoTrivium Panel [184]. Predicting
reliable sketches in forensic science is highly desirable at the investigation stage. For this
reason, there are reports of police using private companies offering services in this regard,
particularly for facial appearance prediction. For example, the Snapshot Forensic DNA Phe-
notyping System offered by Parabon NanoLabs claims to facilitate the accurate prediction of
genetic ancestry, eye colour, hair colour, skin colour, freckling, and face shape [185]. Further
research offers the opportunity to better understand the evolutionary and genetic basis
of human appearance traits. The prospect of future studies on the heritability of complex
traits and the exploration of the importance of rare DNA variants, as well as epistatic inter-
actions of the second and higher orders, seems interesting. The explanation of heritability
will consequently enable a more reliable prediction of physical phenotype. Undoubtedly,
however, the application of next-generation predictive methods, which must rely on much
larger sets of predictors and more sophisticated statistical and machine learning algorithms,
will require improvements in the technology of DNA polymorphism analysis used in the
forensic field. Proper interpretation of the data requires knowledge of age, which is best
determined via DNA methylation analysis. However, DNA methylation analysis requires
the largest amounts of DNA, so in studying biological traces for intelligence purposes, it
would be beneficial to develop more sensitive age prediction methods. The application
of novel predictive approaches will also require answers to important ethical questions
arising from the use of high-throughput DNA analysis methods.
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116. Pośpiech, E.; Chen, Y.; Kukla-Bartoszek, M.; Breslin, K.; Aliferi, A.; Andersen, J.D.; Ballard, D.; Chaitanya, L.; Freire-Aradas, A.;
van der Gaag, K.J.; et al. Towards broadening Forensic DNA Phenotyping beyond pigmentation: Improving the prediction of
head hair shape from DNA. Forensic Sci. Int. Genet. 2018, 37, 241–251. [CrossRef]

117. Aulchenko, Y.S.; Struchalin, M.V.; Belonogova, N.M.; Axenovich, T.I.; Weedon, M.N.; Hofman, A.; Uitterlinden, A.G.; Kayser, M.;
Oostra, B.A.; van Duijn, C.M.; et al. Predicting human height by Victorian and genomic methods. Eur. J. Hum. Genet. 2009, 17,
1070–1075. [CrossRef] [PubMed]

118. Liu, F.; Hendriks, A.E.; Ralf, A.; Boot, A.M.; Benyi, E.; Sävendahl, L.; Oostra, B.A.; van Duijn, C.; Hofman, A.; Rivadeneira, F.; et al.
Common DNA variants predict tall stature in Europeans. Hum. Genet. 2014, 133, 587–597. [CrossRef]

119. Liu, F.; Zhong, K.; Jing, X.; Uitterlinden, A.G.; Hendriks, A.E.J.; Drop, S.L.S.; Kayser, M. Update on the predictability of tall stature
from DNA markers in Europeans. Forensic Sci. Int. Genet. 2019, 42, 8–13. [CrossRef]

120. Lello, L.; Avery, S.G.; Tellier, L.; Vazquez, A.I.; de Los Campos, G.; Hsu, S.D.H. Accurate Genomic Prediction of Human Height.
Genetics 2018, 210, 477–497. [CrossRef]

191



Genes 2022, 13, 121

121. Lippert, C.; Sabatini, R.; Maher, M.C.; Kang, E.Y.; Lee, S.; Arikan, O.; Harley, A.; Bernal, A.; Garst, P.; Lavrenko, V.; et al.
Identification of individuals by trait prediction using whole-genome sequencing data. Proc. Natl. Acad. Sci. USA 2017, 114,
10166–10171. [CrossRef]

122. Liu, F.; van Duijn, K.; Vingerling, J.R.; Hofman, A.; Uitterlinden, A.G.; Janssens, A.C.; Kayser, M. Eye color and the prediction of
complex phenotypes from genotypes. Curr. Biol. 2009, 19, R192–R193. [CrossRef] [PubMed]

123. Martinez-Cadenas, C.; Peña-Chilet, M.; Ibarrola-Villava, M.; Ribas, G. Gender is a major factor explaining discrepancies in eye
colour prediction based on HERC2/OCA2 genotype and the IrisPlex model. Forensic Sci. Int. Genet. 2013, 7, 453–460. [CrossRef]

124. Pietroni, C.; Andersen, J.D.; Johansen, P.; Andersen, M.M.; Harder, S.; Paulsen, R.; Børsting, C.; Morling, N. The effect of gender
on eye colour variation in European populations and an evaluation of the IrisPlex prediction model. Forensic Sci. Int. Genet. 2014,
1, 1–6. [CrossRef] [PubMed]
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Abstract: We detail the development of the ancestry informative single nucleotide polymorphisms
(SNPs) panel forming part of the VISAGE Basic Tool (BT), which combines 41 appearance predictive
SNPs and 112 ancestry predictive SNPs (three SNPs shared between sets) in one massively parallel
sequencing (MPS) multiplex, whereas blood-based age analysis using methylation markers is run in a
parallel MPS analysis pipeline. The selection of SNPs for the BT ancestry panel focused on established
forensic markers that already have a proven track record of good sequencing performance in MPS,
and the overall SNP multiplex scale closely matched that of existing forensic MPS assays. SNPs
were chosen to differentiate individuals from the five main continental population groups of Africa,
Europe, East Asia, America, and Oceania, extended to include differentiation of individuals from
South Asia. From analysis of 1000 Genomes and HGDP-CEPH samples from these six population
groups, the BT ancestry panel was shown to have no classification error using the Bayes likelihood
calculators of the Snipper online analysis portal. The differentiation power of the component ancestry
SNPs of BT was balanced as far as possible to avoid bias in the estimation of co-ancestry proportions
in individuals with admixed backgrounds. The balancing process led to very similar cumulative
population-specific divergence values for Africa, Europe, America, and Oceania, with East Asia being
slightly below average, and South Asia an outlier from the other groups. Comparisons were made of
the African, European, and Native American estimated co-ancestry proportions in the six admixed
1000 Genomes populations, using the BT ancestry panel SNPs and 572,000 Affymetrix Human Origins
array SNPs. Very similar co-ancestry proportions were observed down to a minimum value of 10%,
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below which, low-level co-ancestry was not always reliably detected by BT SNPs. The Snipper analysis
portal provides a comprehensive population dataset for the BT ancestry panel SNPs, comprising a
520-sample standardised reference dataset; 3445 additional samples from 1000 Genomes, HGDP-
CEPH, Simons Foundation and Estonian Biocentre genome diversity projects; and 167 samples of
six populations from in-house genotyping of individuals from Middle East, North and East African
regions complementing those of the sampling regimes of the other diversity projects.

Keywords: bio-geographical ancestry; massively parallel sequencing; ancestry informative markers;
SNPs; 1000 Genomes; Human Origins SNP array

1. Introduction

In the last ten years, forensic DNA analysis has been extended beyond identification
tests that link a suspect to crime-scene evidence using STR profiling, into areas of genetic
analysis designed to predict a range of physical characteristics of unidentified trace donors,
mainly defined by single nucleotide polymorphisms (SNPs). Such SNP tests, applicable
when no suspect has been identified by investigators, have been termed forensic DNA
phenotyping (FDP), and until recently, consisted of tests to infer bio-geographical ancestry
(BGA) [1], or to predict certain externally visible characteristics (EVCs) [2]. These SNP-
based tests have now been supplemented with DNA analyses that measure the methylation
status of carefully chosen CpG sites showing age-correlated methylation patterns in order
to estimate a donor’s chronological age from the same DNA samples used for BGA and
EVC tests [3]. The array of FDP tests now being adopted can serve to progress a major
criminal investigation lacking strong leads, resurrect cold cases by providing new genetic
data about old crime-scene DNA samples, and aid in the identification of the missing
or historical remains [4]. While FDP tests have been gaining traction as supplementary
analysis regimes available to forensic laboratories, the emergence of massively parallel
sequencing (MPS) now provides major enhancements for forensic DNA analysis, including
improved sensitivity to analyse minimal amounts of evidential material, larger multiplexes
that can combine conventional identification STRs with SNPs for FDP analysis, and greater
detail about the detectable variation within a sequence. The VISible Attributes through
GEnomics (VISAGE) Consortium was initiated in 2017 to develop new MPS-based tools
for predicting the BGA, appearance based on common EVCs, and age of an unidentified
crime-scene DNA donor.

VISAGE adopted a two-step program to create MPS tools for FDP: developing a
Basic Tool as a pilot assay, followed by the development of an Enhanced Tool with more
markers and extended capabilities. The VISAGE Basic Tool (herein BT) is the first forensic
MPS test combining markers for predicting eye, hair, and skin colour with those for BGA
inference in a single assay, along with a saliva-blood focused age estimation assay requiring
a parallel assay and workflow due to the bisulphite conversion steps needed to measure
methylation. The VISAGE BT was founded on marker panels which have been shown to
be informative for the three pigmentation traits [5–7] and for continental-scale population
differentiation [8–12]. The level of multiplexing necessary to accommodate sufficient SNPs
to yield optimum predictions of both EVCs and continental BGA was in part dictated
by experience of building multiplexes for forensic MPS analysis [8,12,13]. Therefore, for
the BT assay, which acts as a pilot test, we decided to design a moderate PCR scale of
150 to 160 SNPs by combining the 41 well-established HIrisPlex-S markers, which have
been successfully applied in previous SNaPshot and MPS assays [5–7,13], with up to
120 ancestry-informative marker (AIM) SNPs. A panel of 120 AIM SNPs represents a
reduced multiplex size compared to the one commercially available forensic ancestry panel
for MPS, i.e., the Thermo Fisher Precision ID Ancestry Panel, comprising 165 AIMs [14],
although similar in scale to another panel of 127 AIMs [8]. For this reason, we selected
markers with the maximum possible ancestry informativeness for any given population,
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and then balanced these to ensure the major population groups had broadly comparable
levels of differentiation. In contrast to the previous development of the 127-SNP Global
AIMs panel (gAIMs [8]), South Asians, i.e., individuals from the Indian subcontinent, were
treated as a separate population group.

This paper describes the compilation of component SNPs into the ancestry informative
marker set forming the major portion of the VISAGE Basic Tool for appearance-ancestry.
The development of the AIMs set and its evaluation involved four stages: i. Selection
of markers and balancing of their relative population informativeness proportions in the
multiplex to ensure comparable levels of continental population group differentiation;
ii. Generation of a large-scale reference dataset built on open-access, genome-wide variant
datasets, plus our own MPS genotyping of in-house population samples from which to
apply the statistical analysis pipelines accompanying the BT assay; iii. Genotype concor-
dance studies and an audit of existing genome-wide variant datasets for the selected AIM
SNPs by analysing whole-genome sequence data released by the 1000 Genomes Project
in 2020 [15–17]; and iv. Evaluation of the panel’s capacity to make efficient population
differentiations using existing likelihood-based ancestry inference tests.

2. Materials and Methods

2.1. Selection and Balancing of Component Ancestry Informative SNPs

The BT assay design targeted an AIMs panel of approximately 120 SNPs, based on the
fact that ~25% of the full multiplex would be occupied with the 41 markers of HIrisPlex-S,
and shared use of key SNPs rs16891982 (in SLC45A2 gene), rs1426654 (SLC24A5), rs12913832
(HERC2) for both ancestry and appearance predictive purposes. Because tri-allelic SNPs
have been found to be useful for the detection of mixed DNA [18], but when carefully
selected have also been informative for ancestry to comparable levels as binary SNPs [19],
we expanded their number in the multiplex above those of the previous gAIMs panel
(which had six tri-allelic SNPs of a total 127 loci [8]). Twenty tri-allelic SNPs showing the
highest levels of population divergence were selected from a very large candidate pool
created from a genome-wide compilation of this type of human variation [20].

Careful consideration was made to balance the differentiation of the five main conti-
nental population groups of sub-Saharan Africa, Europe, East Asia, Oceania and America
(herein, AFR, EUR, EAS, OCE and AMR) with differentiation of the South Asian sub-group
(SAS). We decided to target 60–70 SNPs for continental differentiation, plus 20 SNPs to
distinguish South Asia from the neighbouring population groups of Europe and East Asia.

SNPs for continental differentiation were compiled from four well-established AIM
sets: i. the 127-SNP gAIMs ancestry panel; ii. the 446-SNP LACE (Latin American Cancer
Epidemiology) ancestry panel [21]; iii–iv. the 165-SNP Thermo Fisher Precision ID Ancestry
Panel (PIAP) [14], which includes the widely used 56-SNP Kiddlab ancestry panel [22].
SNPs differentiating South Asian and European populations were compiled from the above
panels and three dedicated AIM sets for such geographic distinctions: v. the best European
differentiating SNPs from the EUROFORGEN NAME panel [23]; vi. the Shriver group’s
US admixture mapping panel, with many highly European-informative loci [24]; and vii.
the Eurasiaplex South Asian informative panel [9].

The continental SNPs in BT were balanced in terms of their individual population
differentiation power to equilibrate as far as possible the five continental groups, ensuring
that no one population group had excessive numbers of indicative SNPs, which could
potentially bias calculations of co-ancestry proportions in persons with admixed back-
grounds (e.g., excessive numbers of African-informative SNPs in such a small panel could
overestimate this co-ancestry compared to the others). For each SNP, this process records
the population specific divergence (In AFR; In EUR; In E ASN; etc., the metric divergence is
capitalised and measures the degree of differentiation per marker) to guide the removal
or addition of SNPs for a specific population comparison in order to improve overall In
balance. To reach this balance, the Snipper online ancestry analysis portal [25] was used to
estimate cumulative In values, as previously described for the development of the gAIMs
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panel [8]. As BT had a smaller number of SNPs than gAIMs, we did not expect to reach a
comparably narrow range of finely balanced In values.

2.2. Compilation of a 4132-Sample Population Dataset

A comprehensive population dataset for the BT ancestry SNPs was generated by
compiling online whole-genome-sequencing variant data from 3965 samples and adding
in-house genotyping of 167 samples from six populations, chosen to cover geographic
gaps in data for several under-represented regions, i.e., 30 from Eritrea, 16 from Somalia,
32 from Morocco, 32 from Central Iraq, 28 from the Kurdistan region of Iraq and 29 from
Turkey (Turkish resident in Germany). An additional 277 DNA samples from the HGDP-
CEPH human diversity panel were genotyped with the BT assay with the goal of further
extending the geographic coverage of Oceanian, Native American and Middle East (herein
ME) population variation, i.e., regions not covered by 1000 Genomes Phase 3 populations.
However, the 1000 Genomes Consortium completed whole-genome-sequencing of the full
HGDP-CEPH panel in 2019 soon after our in-house genotyping had been completed, so
we compiled the complete dataset from 1000 Genomes and used the overlapping sample
data to measure the MPS genotyping concordance of BT. This was accomplished for the
whole marker set of BT (i.e., including the 41 appearance markers) to gauge sequencing
performance across the complete multiplex.

Of the total 4132 SNP genotype profiles compiled, 520 were used as a standardised six
population group reference dataset for uploading as training sets to the Snipper ancestry
analysis portal, with the aim of providing the closest possible equivalence of sample sizes
amongst the continental and South Asian regions. The standardised reference dataset
consisted of: sub-Saharan Africans represented by 108 1000 Genomes 30X sequence cover-
age (1KG-30) Yoruba from Nigeria (YRI); Europeans by 99 1KG-30 CEPH Europeans from
Utah (CEU); East Asians by 103 1KG-30 Han Chinese from Beijing (CHB); South Asians by
103 1KG-30 Gujarati from Houston (GIH); Oceanians by 28 HGDP-CEPH Papuans from
Bougainvillea and Papua New Guinea; Native Americans by 79 samples, comprising 61
HGDP-CEPH samples from Maya, Pima populations, Colombians and Amazonian Surui
and Karitiana populations, supplemented by 18 1KG-30 Peruvians from Lima, Peru (PEL)
which we had previously analysed and showed no detectable non-American co-ancestry
(in-silico analysis of 572,743 Affymetrix Human Origins SNPs, see Table 10.5 of [26]).

Although we established the above standardised reference dataset, the additional pop-
ulations compiled can be flexibly included in Snipper or can replace those in the reference set
at the user’s discretion by adjusting the Excel-based training set file uploaded to the ‘multi-
ple profiles’ classifier portal (http://mathgene.usc.es/snipper/analysismultipleprofiles.
html, accessed on 20 August 2021), which generates a Bayes likelihood ratio statistical test
for ancestry and a matched 2D principal component analysis (PCA) plot. For maximum
flexibility, the other population data was arranged into a series of worksheets in the same
core Excel reference file, allowing the end-user to select alternative reference populations
from 1000 Genomes or HGDP-CEPH (e.g., HGDP-CEPH Pakistani South Asian samples
rather than 1KG-30 Gujarati, or other populations from the Indian sub-continent). The
same user-driven options apply to the VISAGE in-house population samples provided in a
separate worksheet. The admixed populations in 1000 Genomes, comprising 96 African
Caribbean individuals in Barbados (ACB), 61 Americans of African Ancestry in SW USA
(ASW), 64 individuals with Mexican Ancestry from Los Angeles USA (MXL,) 94 Colom-
bians from Medellin, Colombia (CLM), 104 Puerto Ricans from Puerto Rico (PUR), 67 of
85 PEL (i.e., with detected co-ancestry) were also compiled in a separate worksheet but
would not be expected to be useful as training set data from which representative allele
frequency estimates could be obtained, given their high levels of individual admixture.

Genome-wide variant data from Simons Foundation human genome diversity project
(herein SGDP) has been available for several years [27], and offers additional information on
geographic areas outside of those covered by 1000 Genomes or the HGDP-CEPH sampling
regimes, in particular, Northeast Asia (broadly, Eastern Siberia east towards the Bering

198



Genes 2021, 12, 1284

Straits); Southeast Island Asia; and Central South Asia (broadly, the Caucasus’ east towards
the central Asian Steppe immediately north of South Asia). There are 278 genome-wide SNP
datasets, of which 22 overlap with 1000 Genomes and 126 overlap with the HGDP-CEPH
panel samples, leaving 130 unique samples, from 67 populations. The small sample size of
SGDP highlights the very limited number of 1, 2 or 3 samples per region. Nevertheless, we
compiled the 130 SGDP-unique BT AIM profiles into a dedicated worksheet and completed
population analyses using the standardised reference set.

Genome-wide variant data from the Estonian Biocentre genome diversity project
(herein, EGDP) largely mirrors the sampling regimes of SGDP [28], with a maximum of
16 samples per region, but mainly 1, 2 or 3 per region. EGDP has 402 whole-genome
datasets from the sampling of 126 populations that almost all complement those of SGDP
and provides extensive coverage of regions in Siberia, Northeast Asia, Eastern Europe,
and Central South Asia. As with SGDP, the 402 EGDP BT AIM profiles were compiled
into a dedicated worksheet and population analyses made with the standardised reference
set. Note that the tri-allelic SNPs forming part of the BT AIMs panel are not reported by
EGDP and an additional four ancestry SNPs do not have genotypes, so data completeness
is ~83.5% (96/115 SNPs).

2.3. Genotyping Concordance amongst MPS Sequence Data and Online Databases

Genotyping concordance for the BT SNPs was assessed in two ways. First, a direct
comparison was made between the MPS genotypes generated during developmental runs
genotyping 277 HGDP-CEPH DNA samples for all 153 SNPs in BT, and the SNP genotypes
reported by 1000 Genomes for the same DNA samples [16], providing 42,381 comparisons.
Second, the genotypes listed by 1000 Genomes Phase 3 database for 2504 worldwide
population samples (and available in the Ensembl browser at: http://www.ensembl.org/
Homo_sapiens/Info/Index, accessed on 20 August 2021) were compared to the high
coverage re-sequencing dataset for the same samples, released in early 2020 by the New
York Genome Centre [17]. The high sequence coverage genotypes correspond to an average
30X coverage, while the current Phase 3 genotypes were produced from an average 2-3X
coverage. We considered the high coverage data to represent more reliable genotype calls
for the SNPs of BT, so these were compiled as the major part of the reference population
data we used for statistical analysis of ancestry, as described above.

The Coriell control DNA samples originally used as the genotyping concordance
standards in the inter-laboratory evaluations of the BT assay [29] were also run as positive
controls on each sequencing run performed for the in-house population studies.

2.4. Evaluation of Ancestry and Co-Ancestry Inference Efficiency of the BT AIMs

The efficiency of the BT AIMs to infer ancestry was assessed for a six-group differenti-
ation of African, European, East Asian, South Asian, American and Oceanian ancestries.
To measure classification error, one-out cross-validation of the standardised reference
dataset of 520 samples was performed using the verbose cross validation option in Snipper
(http://mathgene.usc.es/Snipper/analysispopfile2_new.html, accessed on 20 August
2021). For all other samples, STRUCTURE, PCA and neighbour joining tree (NJT) anal-
yses were performed on each of the separate population sets, comprising admixed and
unadmixed 1000 Genomes samples not used as reference data; HGDP-CEPH samples not
used as reference data (i.e., no Oceanian, American population data); SGDP samples, with
the six in-house populations included in the same analysis run; and EGDP samples (for
100 binary SNPs of 115 ancestry SNPs in BT). STRUCTURE v.2.3.4 [30] was used for runs
consisting of five iterations per K (genetic cluster values K:2 to K:8 evaluated) consisting of
100,000 burnin steps and 100,000 MCMC steps, using correlated allele frequencies under
the Admixture model. The optimum ‘K’ cluster number was inferred by plotting log
probability of K and magnitude of ΔK, following the analyses of Evanno et al. [31]. Allele
frequencies were updated only using individuals marked POPFLAG = 1 at the optimum
genetic cluster number of K:6. Cluster membership proportion plots were constructed

199



Genes 2021, 12, 1284

with CLUMPAK v.1.1 [32]. Multi-dimensional scaling (MDS) analysis and construction
of neighbour-joining trees was implemented using R software v.3.5.0 [33] over an allele-
distance matrix computed with the pegas R package [34].

The reliable identification of co-ancestry in DNA donors with admixed backgrounds
can be considered important information that can be reported to investigators. Although
there is likely to be some imprecision in the estimation of co-ancestry ratios when using
relatively small-scale AIMs panels like BT, if the markers have been carefully balanced,
they are more likely to be free of bias towards one particular co-ancestral population group
and therefore match more closely the actual co-ancestry proportions in such individuals.
To measure the reliability of co-ancestry estimation from identifying genetic clusters using
the BT AIMs, we ran all 504 admixed 1000 Genomes samples described above (including
all 85 PEL), together with the unadmixed populations from AFR, EUR, AMR and EAS, to
keep the identified genetic clusters simple (K:4). The ACB and ASW samples represent
typical African Caribbean and African American co-ancestry patterns of majority African
co-ancestry and 0–30% European co-ancestry. The MXL, CLB, PUR and PEL samples
represent more complex three-way co-ancestry patterns of major European co-ancestry,
with Native American and African co-ancestries at varied ratios, with a few PEL individuals
showing detectable East Asian co-ancestry [15]. We compared the BT data to the co-ancestry
ratio estimates from the detailed genetic cluster analysis of the same 1000 Genomes-CEPH
populations using 572,743 Affymetrix Human Origins SNPs (see Section 2.2. Although the
parallel analyses with the Human Origins SNPs used the ADMIXTURE algorithm [35] to
identify clusters, because data input for this algorithm uses only binary variant data, we
applied STRUCTURE to ensure the tri-allelic SNP genotypes were assessed. Co-ancestry
ratios were grouped into 10-percentiles (i.e., bins of one tenth of the samples from any one
population) and the mean ratios of each of these 10-percentile groups in both analyses were
assessed for goodness-of-fit using linear regression. Finally, we included a comparison with
the genetic distance algorithm (GDA) co-ancestry estimator available in Snipper, developed
from the work of Cheung et al. 2017 [36].

2.5. Evaluation of Ancestry and Co-Ancestry Inference Efficiency of the BT AIMs

The current gnomAD version 3.1 genome database compiles variation in almost
100,000 individuals from ten populations, so it provides a very efficient system for the
detection of rare variation which could be potentially population informative. We screened
the gnomAD 3.1 database to make a genomic audit of rare variations associated with the
selected BT ancestry SNPs, comprising two types: i. rare, but potentially informative
‘flanking’ SNPs present on the same amplified fragment as the target SNP; and ii. addi-
tional polymorphic alleles in the binary ancestry SNPs, in the form of a third nucleotide
substitution—creating a tri-allelic SNP where the allele-3 is either very rare or linked to
a specific population group and hitherto undetected. Cataloguing rare third nucleotide
substitutions is an important MPS quality control step, as it forewarns the user that the
detected nucleotide at the target site is not a spurious sequencing result, but has been
detected as a low frequency allele. We confined out searches for flanking SNPs within an
arbitrary +/− 25 nucleotides of the target SNP position.

3. Results and Discussion

3.1. Ancestry Informative SNPs in BT

One hundred binary SNPs were compiled into the final BT ancestry panel, comprising
7 SNPs informative for sub-Saharan African populations, 15 European, 16 East Asian,
20 South Asian, 13 Oceanian and 17 American populations. The extra 12 ancestry SNPs
of the total 100 loci were selected as they showed a high level of differentiation between
European and other Eurasian population groups, namely East and South Asian and Middle
Eastern populations. Table 1 outlines the source of each of these binary SNPs from the
previous forensic AIMs panel studies described in Section 2.1 [8,9,21–24], with just one
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OCE-informative SNP added from a separate study that developed the Pacifiplex panel [11].
Over a quarter of SNPs (28 of 100) have been selected as forensic AIMs in multiple panels.

Balancing population specific divergence (PSD) values (excluding the 12 Eurasian
divergent SNPs) was successful to a large extent and the cumulative PSD values for each of
the six population groups are shown in Figure 1 (individual values per SNP in Table S1).
AFR, EUR, OCE and AMR were well balanced with cumulative PSD values of 13.54,
13.30, 11.99 and 11.8, respectively. EAS with a cumulative value of 9.43 did not have
enough informative SNPs to reach these levels of divergence, while SAS, with much less
differentiation from EUR and EAS, only reached a cumulative value of 2.7. It is noteworthy
that two BT appearance SNPs, rs6437783 (in MYH15 gene) and rs1800414 (OCA2), shown in
Table 1, had been selected for previous forensic ancestry panels as an EAS-informative SNP
in gAIMs and Kiddlab AIM sets, respectively. Given the lower cumulative PSD value for
EAS compared to other population groups, these two markers would be worth considering
as joint ancestry-appearance SNPs along with the three already used in this way.

 
Figure 1. Accumulating population specific divergence values for each of the main population groups and the six sets of
SNPs informative for their differentiation. The cumulative values are shown obtained from 88 binary SNPs (i.e., excluding
12 Eurasian-informative SNPs) and from the addition of the 15 tri-allelic SNPs in BT (VISAGE Basic Tool).

From a candidate list of 20 tri-allelic SNPs, rs11238577, rs11990024, rs9845503, rs7853487
and rs809540 were rejected from the assay design, bringing the total number of AIMs in
BT to 115, including the three shared appearance SNPs. When the 15 tri-allelic SNPs
were added to the cumulative PSD plot of Figure 1 the balance was marginally improved
for EAS with a cumulative PSD value of 11.01 closer to the average value for the other
population groups.
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Allele frequency estimates of the 115 BT AIMs based on the standardised reference
grid outlined in Section 2.2 (YRI, CEU, CHB, GIH, plus HGDP-CEPH Americans and
Oceanians) are given in File S1. Middle East allele frequency estimates are included based
on 134 HGDP-CEPH samples from the Israeli Bedouin, Druze and Palestinian populations.
Figure S1A–G summarise in simple bar charts the allelic variation in each binary AIM,
arranged in sets of the AIMs informative for each population group and ranked by a
simple delta allele frequency differential calculation comparing the informative-allele
frequency in each target population against the average frequency in the other populations
(except SAS-informative SNPs, ranked by SAS-EUR delta values). Figure S1G shows
the allele frequencies of 12 Eurasian-informative SNPs in the relevant population groups.
For comparison purposes we included North African (NAF) allele frequency estimates
based on HGDP-CEPH Mozabite from Algeria, and delta values were estimated for EUR
compared to a NAF-ME-SAS average).

3.2. Compilation of Reference and Test Population Datasets

File S2 contains all the Excel worksheets necessary for generating Bayes likelihood
calculations and linked PCA analyses by uploading the BT ancestry SNP genotype data to
Snipper. The active worksheet of reference and query SNP profiles uploaded to Snipper is
in position 1 in Excel and has the label ‘1’ applied to all reference population profiles in
the rightmost column, and ‘0’ to unknown profiles such as those compiled from a forensic
sample. The values in cells A1, B1, C1 provide numbers of reference/query profiles,
markers, and populations in the worksheet, respectively. All other SNP profiles compiled
in the six supporting worksheets can be treated as test samples (i.e., marked with a ’0’),
or used as alternative or additional reference population datasets (e.g., the HGDP-CEPH
or VISAGE in-house ME population genotypes can be added to the reference profiles as a
seventh population group).

3.3. Genotyping Concordance
3.3.1. HGDP-CEPH in-House BT Genotypes vs. 1000 Genomes Whole-Genome-Sequence Data

File S3A lists all the pairwise genotype comparisons between in-house data for HGDP-
CEPH samples and the data from 1000 Genomes published in 2020 [16]. This file examines
all SNPs in BT except for one appearance marker, rs796296176, which did not have genotype
data from the in-house analyses of HGDP-CEPH samples. Five HGDP-CEPH Middle East
samples had excessive numbers of data gaps from in-house sequencing and were not
included in genotype comparisons. Of the 153 total markers in BT, two ancestry SNPs had
higher than average discordancy rates, indicating a problem with genotyping either from
1000 Genomes sequence analysis, or the BT MPS assay. First, tri-allelic SNP rs2737126 had
15/277 (5.4%) genotype discordancy, seemingly arising from failure to detect a G allele,
when present as a GT or CG heterozygote, but not for all such genotypes. This phenomenon
was not explained by detailed scrutiny of sequence data at this variant site. Second, the
binary SNP rs3804030 had a disproportionately high genotype discordancy rate of 29/277
(10.47%), which appeared to be due to a failure to detect the rare, OCE-indicative C allele
outside of Oceanian populations examined by 1000 Genomes. Interestingly, no discordances
were seen for this SNP amongst pairwise comparisons of 27 HGDP-CEPH Oceanians.

File S3A shows that for the 151 SNPs of BT without apparent problems, the geno-
typing concordance was very high, reaching 99.96% concordance with 17 discordances
largely appearing at random across the data grid, rather than systematically as detected
in the above two SNPs. This high level of genotype concordance between the BT assay
developed vs. 1000 Genomes whole genome sequence-based variant detection indicates
the robustness of the MPS method and the BT multiplex developed by VISAGE. The no-call
rate (unreported genotypes) was also low at 0.2% for 1000 Genomes, and 0.6% for our
MPS genotyping.
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3.3.2. 1000 Genomes Phase 3 Genotypes vs. 1000 Genomes High Sequence Coverage Genotypes

File S3B gives the pairwise comparisons for all BT SNPs between the current 1000 Genomes
Phase 3 genotypes listed online by Ensembl, and the genotypes published following high
coverage sequence analysis of the same samples by the New York Genome Centre [17].
As we have relied extensively on the online genotype data produced by 1000 Genomes
Phase 3 for several years, the cross-checks of genotype calls comparing 30X and 2-3X
sequence coverage that this concordance analysis provides are important. Amongst all
153 BT SNPs, 73 had zero genotype discordances and 66 showed largely inconsequen-
tial discordances numbering 1–5 genotype differences between each sequencing dataset
(a locus-specific concordance of 99.96–99.8%). However, 14 SNPs had higher levels of
six or more discordances, comprising 11 ancestry SNPs. Three ancestry SNPs: rs2789823,
rs9522149 and rs2196051 had concordance rates ≤ 98.2% due to 25, 27 and 46 discordances,
respectively. The BT ancestry SNPs genotype discordances of two or more in number are
summarised in Figure 2. It can be assumed that higher sequence coverage provides more
secure genotyping for a small, but significant proportion of SNPs in the 1000 Genomes
variant database, of which 14 with higher-than-average levels of discordancy are part of BT.
For this reason, all reference population data compiled from 1000 Genomes for VISAGE
ancestry analyses with BT are based on the high coverage (30X) genotype datasets, which
have yet to be made available in the Ensemble variant browser for 1000 Genomes.

 

Figure 2. The 38 BT ancestry SNPs with the highest numbers of discordant genotypes between
1000 Genomes low coverage vs. high coverage sequence data. An additional 29 had only one
discordant genotype. The full set of genotype comparisons for all BT SNPs and all 1000 Genomes
samples are given in File S3B.
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3.4. Ancestry Inference Efficiency of the BT Ancestry SNPs

One-out cross validation of the reference dataset gave 100% correct classification in all
cases, i.e., all 520 reference profiles were successfully assigned to their true population of
origin. The likelihood ratio values produced by cross validation were consistently high and
most samples gave likelihoods greater than ‘The profile is more than 1 billion times more
likely to be from the true population of origin than another population’ (data not shown).

Figure 3A shows the STRUCTURE analysis K:6 cluster plots for the reference popu-
lations (1–6) in worksheet 1 of File S1. Figure 3B shows the accompanying probability of
data and Delta K statistical analyses indicating an optimum cluster number of 6 for these
analyses. Figure 3C shows colour-matched MDS plots for the same samples for coordinate
1 vs. 2 (left plot), 1 vs. 3 (mid) and 2 vs. 3. Only a small degree of overlap between the
OCE and EAS MDS clusters-of-points remains when comparing all three coordinate plots.
Figure 3D shows the Neighbour Joining Tree (NJT) distance matrix results, which indicate
a clear arrangement of branch lengths and spatial separation, apart from two SAS outliers
close to the OCE set. The summary of cross-validation classification results in Figure 3E
completes the ancestry analysis of these sample sets.

Figure 3. Ancestry analysis with 115 BT ancestry SNPs of the six populations of the standardised reference dataset (AFR:
brown; EUR: blue; SAS: yellow; EAS: pink; OCE: green; AMR: purple), with consistent colours across three statistical
analyses of A, C and D. (A) STRUCTURE cluster membership proportions at K = 6, indicated to be the optimum K number
of genetic clusters by: (B) the mean L(K) (log probability of data) and ΔK plots from STRUCTURE runs, following the
analyses of Evanno et al. [31]. (C) Multi-dimensional scaling (MDS) analysis showing principal component (PC) 1 vs. PC2
coordinates, PC1 vs. PC3 and PC2 vs. PC3 two-dimensional plots. (D) Neighbour joining tree (NJT) analysis. (E) Summary
classification success table of cross validation of the standardised reference set.

Figure S2.1 summarises the same type of population analyses as Figure 3 applied
to unadmixed (8–11, 14–25) and admixed (12–13, 26–29) 1000 Genomes samples (30X
coverage genotypes) analysed against the reference population set. In nearly all cases,
unadmixed samples show low levels of joint cluster membership. The admixed African
populations give similar patterns to those found in other studies (but see Section 3.5)
with European co-ancestry ranging from 5–30% K2 cluster membership. The admixed
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American samples from 1000 Genomes also show the expected proportions from K:2 and
K:6 in the STRUCTURE analysis, with K:1 cluster membership forming the third African
co-ancestry component, most evident in Puerto Ricans. The carefully curated Peruvian
reference Native American samples are clearly discernible on the left of the columns of
the K6 cluster. Equally consistently, admixed samples occupy the middle ground between
the MDS clusters-of-points formed by the unadmixed samples, depending on the degree
of their separation in coordinates 1 vs. 3 or 1 vs. 2 MDS plots, particularly the admixed
Africans in 1 vs. 2.

Figure S2.2–S2.4 show identical analysis output and using the same reference popu-
lations for HGDP-CEPH samples, SGDP-VISAGE in-house samples and EGDP samples,
respectively. The HGDP-CEPH samples show a degree of joint cluster membership pro-
portions in regions whose populations occupy continental margins, e.g., Mozabite show
African-European co-ancestry patterns (joint membership proportions) and Pakistani pop-
ulations show some European co-ancestry. The SGDP and EGDP sample analyses are
the most varied, reflecting the more widespread sampling locations and emphasis on
continental margin regions such as Central South Asia. The SGDP-EGDP Oceanian and
American samples give clear, unequivocal cluster memberships, underlining the careful
choice of informative SNPs for these population groups. However, it should be noted that
BT and all other equivalent MPS ancestry panels show Oceanian ancestry to be only a small
proportion of the STRUCTURE cluster patterns in the single SGDP Maori and Hawaiian
samples, indicating that AIMs selected from analysis of Melanesians (i.e., HGDP-CEPH
Papuans) are not sufficiently informative to infer Polynesian ancestry.

3.5. Co-Ancestry Analysis of Known Admixed Individuals in 1000 Genomes with BT Ancestry SNPs
3.5.1. Comparison of Co-Ancestry Patterns Obtained with the Human Origins Panel and BT

Figure 4 shows a direct pairwise comparison of the co-ancestry patterns (cluster
membership proportions) of 504 admixed samples from 1000 Genomes (see File S1C),
analysed in combination with the standardised reference set with the >572,000 Human
Origins array SNPs (using ADMIXTURE due to SNP data density) and the 115 ancestry
SNPs of BT (using STRUCTURE). File S4 gives the genetic cluster proportions from both
analyses on which the Figure 4 cluster plots are based. These plots show a very good
match of co-ancestry patterns in the two African admixed ACB and ASW populations. The
correlation analysis and r2 values aligned below the cluster plots in Figure 4 indicate high
levels of correlation between Origins and BT co-ancestry proportion estimates for ACB and
ASW, notably for the AFR proportions (although they are combined with AMR co-ancestry
in these assessments). The EUR co-ancestry proportions tend to be slightly underestimated
by BT SNPs or go undetected when very small. The four admixed populations with AMR
co-ancestry are arranged in descending overall proportions of this co-ancestry and all show
the same tendency for BT SNPs to underestimate the EUR proportions, but the PEL, MXL
and CLM patterns still show a good match and relatively high r2 values for both main
EUR and AMR co-ancestries. When three co-ancestries are detected, the BT SNPs have less
precision to detect AMR and AFR co-ancestry at levels below 25%, particularly evident
in the PUR non-EUR co-ancestry proportion estimates. Overall, the patterns match very
well for simple two-way co-ancestry across most ratios, with BT only failing to detect very
minor co-ancestry when it falls below 5%. The match of patterns only tends to reduce when
3-way co-ancestry is more prevalent, notably when the two minor co-ancestries are both
below 10%. BT SNPs can detect two-way co-ancestry using STRUCTURE with sufficient
accuracy for proportions to be reliably reported down to about 10% minor co-ancestry,
although when three-way co-ancestry is detected, more caution would be required in
reporting minor ratios below this 10% threshold and the lack of accuracy in such cases
should be highlighted in the report.
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Figure 4. Pairwise comparison of individual co-ancestry proportions (cluster membership proportions) in 504 admixed
samples from 1000 Genomes, analysed using the standardised reference set with Human Origins array, comprising
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>572,000 SNPs (using ADMIXTURE) and 115 VISAGE BT ancestry SNPs (using STRUCTURE). Co-ancestry proportions in
four genetic clusters representing, African, European, Native American and East Asian, ancestries are given in File S4. The
r2 correlation analysis plots of each admixed population group are shown below the corresponding cluster patterns.

3.5.2. Using GDA as a Simple Snipper-Based Evaluation of Admixture

From the STRUCTURE analysis of the BT SNPs, co-ancestry proportion estimates
were compared to equivalent proportions provided by GDA in Snipper. This intended to
test the efficiency of GDA to detect admixture and alert the user to the need to perform
STRUCTURE analysis, if this initial analysis of the sample data does not suggest straight-
forward unadmixed ancestry. Figure S3A shows cluster plots for the STRUCTURE run
and for the co-ancestry proportions based on GDA values, with r2 plots below arranged
as in Figure 4. The r2 values indicate a good match between each approach, but GDA
underestimates the EUR co-ancestry to a significant degree in ACB and ASW, to the point
where GDA did not detect this co-ancestry in a large proportion of individuals, and it was
underestimated by more than 50% of the true value (from Human Origins SNP array data)
in most of the others. The trend of GDA underestimating European co-ancestry continues
across all the PEL, MXL, CLM and PUR samples, where additionally, AFR co-ancestry
is consistently overestimated in each population. The EUR underestimation is partly ex-
plained by detection of significant proportions of EAS co-ancestry by GDA, likely to be
falsely created by a close relationship between AMR and EAS population groups, which
STRUCTURE differentiates more efficiently as distinct genetic clusters compared to GDA’s
measure of distance between EUR and both AMR and EAS.

3.5.3. Comparisons of 10-Percentile Co-Ancestry Ratio Patterns

A final visual comparison of co-ancestry patterns was made by plotting the mean
co-ancestry ratios per 10-percentile group of individuals to smooth the data and allow
easier assessment of trends in both the use of the small-scale BT ancestry panel to detect co-
ancestry and GDA as an initial measure of the presence of admixture. Mean STRUCTURE
co-ancestry proportions obtained with Origins SNPs and BT SNPs, plus GDA proportions,
are plotted in Figure S3B. When admixture patterns are summarised into percentile groups,
it is much easier to see the very close match in estimated co-ancestry ratios between
Origins and BT SNP-based STRUCTURE runs. This is particularly evident in the 10th
ASW percentile with a three-way co-ancestry pattern, and the 10th PEL percentile with a
fourth EAS co-ancestry. However, co-ancestry proportions below 10% regularly fail to be
detected by BT (1st ACB percentile, 3rd–5th PEL, 1st–2nd MXL, 9th–10th CLM percentiles).
Therefore, it remains prudent to recognise that BT will not consistently detect co-ancestry
ratios ≤10%. The presence of EAS co-ancestry at very small proportions in many of the
MXL-CLM-PUR BT percentile groups indicates this component should be ignored when
it is less than 10% and AMR co-ancestry is present above this ratio at the same time.
The percentile group patterns in GDA emphasise that it is not an efficient technique for
detecting admixture accurately when co-ancestral ratios are below 20%, so it does not
provide an accurate measure of individuals with these proportions and STRUCTURE
would be required in all cases, particularly as the bulk of the PEL-MXL-CLM percentile
groups show spurious EAS co-ancestry ratios above this threshold value).

3.6. Audit of Additional Variation in BT SNPs from the GnomAD 3.1 Database

File S5 lists the co-amplified flanking SNPs and extra third-substitution alleles amongst
both ancestry and appearance binary BT SNPs detected in the gnomAD 3.1 database.
Twelve ancestry SNPs and three appearance SNPs had a third substitution allele, which
reached the highest allele frequency of only 0.0002 in rs2302013 and rs917115 (both in
East Asians). Ancestry SNP rs1063677 and appearance SNP rs12821256 showed all four
substitution alleles, with the highest frequency for allele T of 0.0005 in Europeans in the
GC SNP rs1063677.
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The power of gnomAD to detect low frequency variants across the genome enabled
sequence screens that indicated a large number of flanking SNPs within 25 nucleotides
of the target site of many BT SNPs. Amongst the 115 ancestry SNPs, 49 had flanking
SNPs, while in the 41 appearance (EVC) SNPs, there were 23, notably markers targeted
in the SNP-rich MC1R gene. Four ancestry SNPs showed informative combinations of
alleles in close proximity which show unlinked allele frequencies between the two loci—in
other words, forming population-informative 2-SNP microhaplotypes (i.e., diplotypes).
These four are detailed in Figure S4. The Chr-3 pair rs1169671-rs76444263 (target SNP in
bold), Chr-8 pair rs75064826-rs13280988 and Chr-19 pair rs2337025-rs2337024 all show SAS-
informative diplotypes, while the Chr-20 pair rs4809578-rs310644 has a range of diplotypes,
which are most differentiating for AFR and EAS population groups. Microhaplotype
rs1169671-rs76444263 combines a tri-allelic and binary SNP, but the latter has low levels of
polymorphism so is less informative than the other binary SNP pairs. Diplotype SNP allele
combinations can be analysed in Snipper by assigning A, C, G, T allele nomenclature to the
alphabetic arrangement of diplotypes, which, for the above binary SNP pairs, would be
A=AA, C=AG, G=CA, T=CG combinations; A=AA, C=AG, G=GA, T=GG combinations;
and A=AC, C=AT, G=TC, T=TT combinations, respectively. While the phase of each SNP
pair’s alleles needs to be detected from the sequence data to do this, it indicates the potential
extra variant information, which is accessible from MPS analysis of forensic SNPs.

4. Concluding Remarks

The primary aim of the VISAGE Consortium of creating an all-in-one forensic intelli-
gence tool based on MPS technology requires the development of a full analytical pipeline.
This should include population reference data and predictive algorithms for the inference of
age, ancestry and appearance characteristics associated with the genotyped SNPs, plus an
optimum sequencing protocol which is applicable to the two main forensic MPS platforms
in current use. The strategy of starting with a prototype tool of simple age predictors in one
multiplex, and established pigmentation phenotype and continental ancestry predictors
in the second, allowed us to build a strong foundation on which to develop the more
ambitious VISAGE Enhanced Tool (ET). ET represents substantial expansion of all three
‘AAA’ predictive systems in the same parallel MPS multiplex setup as BT (i.e., separate
DNA workflows dedicated to methylation analysis and SNP genotyping). The ancestry
panel of BT therefore took the best ancestry informative SNPs from several well-established
forensic ancestry panels, with particular regard to known MPS sequence reliability as
well as optimum ancestry informativeness. For this reason, BT has provided very good
sequencing performance with forensic DNA [29,37], and enables ancestry inferences to
be made for populations of continental and South Asian origin with the highest levels of
statistical likelihood.

Although we dedicated considerable resources to genotyping BT SNPs in popu-
lations addressing several geographic gaps in coverage left by large-scale genomic se-
quencing projects, many global regions remain to be characterised with new studies.
The dynamic system in Snipper, i.e., compiling the largest possible array of population
data and allowing the end-user to select which samples extend or modify the standard-
ised reference set, provides flexibility for statistical analyses of BT SNP data. It also
allows new population data to be uploaded to the webpages holding reference sets
(http://mathgene.usc.es/snipper/forensic_mps_aims.html, accessed on 20 August 2021)
and the additional populations shown in File S1. Although genetic cluster analyses using
STRUCTURE can be challenging for forensic practitioners analysing population data for
the first time, in our view, it is the best way to detect and analyse individual co-ancestry in
persons with admixed backgrounds. The comparisons of GDA and STRUCTURE made
in this study indicate that GDA is not accurate enough to evaluate low level co-ancestry
when admixture patterns are complex and an individual has more than two co-ancestries.
However, when the BT ancestry SNPs are compared to the much larger panel of Human
Origins SNPs, the level of detail obtained using STRUCTURE is well matched and indicates
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BT SNPs are informative enough to accurately detect co-ancestral components present
above 10% proportions.

Lastly, the care taken in selecting the BT ancestry SNPs based on their recorded relia-
bility and sensitivity in previous MPS-based forensic ancestry panels [8,12,18,20,23] has
helped to ensure predictable performance going forward with evaluation of both forensic
MPS platforms. This extends to the sequencing chemistry, library preparation and sequence
read balance (between strands, between alleles, within loci, between loci) observed so
far in the forensic validations the VISAGE Consortium has made following SWGDAM
guidelines for newly developed forensic DNA techniques (AmpliSeq chemistry [29], Pow-
erSeq chemistry [37], and ForenSeq chemistry with a manuscript in submission). These
same principals have been applied to the development of the ET ancestry panel, providing
the means to increase the overall multiplex size of the tool and extending the range of
populations among which ET ancestry SNPs can differentiate.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12081284/s1, Files S1: Allele frequency estimates in seven population groups for the
115 ancestry SNPs of BT; S2A: Snipper Reference Grid; S2B: 1KG Unadmixed Populations; S2C: 1KG
Admixed Populations; S2D: HGDP-CEPH Populations; S2E: VISAGE In-house Populations; S2F:
SGDP Test Samples; S2G: EGDP Test Samples, S3A: Genotype comparisons of 1000 Genomes HGDP-
CEPH data (red) vs VISAGE in-house HGDP-CEPH data (black); S3B: Genotype comparisons of
1000 Genomes Phase III low-coverage data based on 2-3X sequence coverage (black) vs. 1000 Genomes
high coverage data based on New York Genome Centre’s 30X resequencing of the same samples
(blue); S4: Genetic cluster membership proportions from the four major contributing populations
to American admixture with 572K SNPs of Human Origins array analyses using ADMIXTURE vs
115 BT SNPs using STRUCTURE, for 1511 unadmixed and 504 admixed 1000 Genomes samples;
S5: Screen of all 153 BT SNPs of gnomAD genome database information for current GRCh37-38
positions, gene identifiers, third alleles and high frequency flanking SNPs (present on the same
sequence strand as the target site within +/− 25 nucleotides). Figures S1A: 7 African-informative
SNPs; S1B: 15 European-informative SNPs; S1C: 16 East Asian-informative SNPs; S1D: 20 South
Asian-informative SNPs; S1E: 13 Oceanian-informative SNPs; S1F: 17 American-informative SNPs;
S1G: 12 Eurasian divergent SNPs, S2.1: Bio-geographical ancestry analysis based on the six reference
populations (1–6, summarised in Figure 1) plus unadmixed (8–11, 14–25) and admixed (12–13, 26–29)
populations available from 1000 Genomes 30X high coverage data (1KG-30); S2.2: Bio-geographical
ancestry analysis based on the six reference populations presented in Figure 1, plus populations
available from HGDP-CEPH Whole Genome Sequencing Data; S2.3: Bio-geographical ancestry
analysis based on the six reference populations presented in Figure 1, plus populations available
from in-house genotyping with the VISAGE BT tool and SGDP data; S2.4: Bio-geographical ancestry
analysis based on the six reference populations presented in Figure 1, plus populations available
from EGDP data, with ~85% (95/115 SNPs) profile completeness. S3.1: (A) Co-ancestry proportions
sample-by-sample in 504 1000 Genomes admixed individuals based on STRUCTURE and GDA
analyses. (B) Correlation analyses and r2 values comparing the combined African-American and
European co-ancestry proportion estimates with both techniques. S3.2: Mean co-ancestry proportions
summarised as 10-percentile columns (10 bins of 10% of each set of individuals), of varyingnumbers
per bin: ACB: 10, ACB: 10, ASW: 6, PEL: 8, ACB: 10, MXL: 6, CLM: 9, PUR: 10. S4: Four BT ancestry
SNP target sites and population informative flanking SNPs within 25 nucleotides (nt) on the 5’ or
3’ side. Table S1: Individual and cumulative population specific Divergence (PSD) values for the
115 ancestry SNPs arranged in descending order of PSD value per population.
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Appendix A

Centres and investigators of the VISible Attributes through GEnomics (VISAGE)
Consortium, Website: http://www.visage-h2020.eu/ (accessed on 20 August 2021).

• Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands: Manfred
Kayser, Vivian Kalamara, Arwin Ralf, Athina Vidaki

• Jagiellonian University, Krakow, Poland: Wojciech Branicki, Ewelina Pośpiech, Alek-
sandra Pisarek

• Universidade de Santiago de Compostela, Santiago de Compostela, Spain: Ángel Car-
racedo, Maria Victoria Lareu, Christopher Phillips, Ana Freire-Aradas, Ana Mosquera-
Miguel, María de la Puente

• Medizinische Universität Innsbruck, Innsbruck, Austria: Walther Parson, Catarina
Xavier, Antonia Heidegger, Harald Niederstätter

• Universität zu Köln, Cologne, Germany: Michael Nothnagel, Maria-Alexandra Kat-
sara, Tarek Khellaf

• King’s College London, London, UK: Barbara Prainsack, Gabrielle Samuel
• Klinikum der Universität zu Köln, Cologne, Germany: Peter M. Schneider, Theresa E. Gross,

Jan Fleckhaus, Elaine Cheung.

• Bundeskriminalamt, Wiesbaden, Germany: Ingo Bastisch, Nathalie Schury, Jens Teodoridis,

Martina Unterländer

• Institut National de Police Scientifique, Lyon, France: François-Xavier Laurent, Caroline

Bouakaze, Yann Chantrel, Anna Delest, Clémence Hollard, Ayhan Ulus, Julien Vannier

• Netherlands Forensic Institute, The Hague, Netherlands: Titia Sijen, Kris van der Gaag,

Marina Ventayol-Garcia

• National Forensic Centre, Swedish Police Authority, Linköping, Sweden: Johannes Hedman,

Klara Junker, Maja Sidstedt

• Metropolitan Police Service, London, United Kingdom: Shazia Khan, Carole E. Ames,
Andrew Revoir

• Centralne Laboratorium Kryminalistyczne Policji, Warsaw, Poland: Magdalena Spólnicka,
Ewa Kartasinska, Anna Woźniak
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Abstract: Body fluid and body tissue identification are important in forensic science as they can
provide key evidence in a criminal investigation and may assist the court in reaching conclusions.
Establishing a link between identifying the fluid or tissue and the DNA profile adds further weight
to this evidence. Many forensic laboratories retain techniques for the identification of biological
fluids that have been widely used for some time. More recently, many different biomarkers and
technologies have been proposed for identification of body fluids and tissues of forensic relevance
some of which are now used in forensic casework. Here, we summarize the role of body fluid/ tissue
identification in the evaluation of forensic evidence, describe how such evidence is detected at the
crime scene and in the laboratory, elaborate different technologies available to do this, and reflect real
life experiences. We explain how, by including this information, crucial links can be made to aid in
the investigation and solution of crime.

Keywords: forensic; review; body fluid; organ; tissue; identification; mRNA; DNA methylation;
activity level

1. Activity-Level Evaluations: The Context of Body Fluid and Tissue Identification

Body fluid and tissue identification can add evidence in criminal investigations by
establishing a crucial link between the donor, the cell type and the activities that occurred.
In this review, we first provide the forensic context of body fluid and tissue identification
which resides in activity-level evaluations, then we discuss methods to locate body fluids
at the scene or in the laboratory, which is followed by the major marker methodologies to
analyze them. One of these methods is mRNA profiling, and we take a retrospective look
at casework details and verdicts for mRNA cases in the Netherlands. This leads us to a
criminalistic view on targets that can be accommodated in assays and the interpretation of
cell typing results for instance, in mixed stains, which needs a very different approach from
the interpretation of DNA results. Lastly, we consider possible other marker types that
have been suggested, and practical aspects when introducing cell typing into a forensic
laboratory.

1.1. Prosecution and Defense Scenario

Increasingly, cases come to court in which the presence of cellular material of a person
is not disputed but the activity that caused the deposition is. The debate then centers around
the question ‘how did his/her DNA get there’? Forensic scientists approach such questions
by performing activity-level evaluations [1–8]. Figure 1 shows activity-level evaluation in
the context of forensic human biology analyses. Generalizing, activity-level evaluations
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weigh the likelihood of the forensic evidence under one scenario (hypothesis 1; H1, also
known as prosecution scenario) versus an alternative scenario (hypothesis 2; H2, also
known as defense scenario). The two hypotheses need to be formulated well, describe
the alleged activities and be mutually exclusive. In the evaluation, the probability of
the findings given the propositions is considered (not the probability of the propositions
themselves) [1].

Figure 1. Stain identification in the context of the forensic process showing the link between ‘who’,
‘what’ and ‘how’.

The ‘findings’ in the case can relate to cellular material matching victim or suspect
which under H1 is indicative of an offensive activity (e.g., blood matching the victim on
the blade of a knife indicative of the victim being stabbed; cellular material matching the
suspect on the handle of a knife supporting the proposition that the suspect carried out
the stabbing). Under H2, this questioned cellular material on the evidentiary item may
result from a number of scenarios: (1) the cellular material was deposited not during the
offense but at an earlier or later time (the suspect did not stab but picked up the knife
after the stabbing); (2) the cellular material was not deposited by direct contact but was
the result of secondary (or tertiary or further) transfer (the suspect shook hands with the
real perpetrator who then handled the knife in the stabbing); (3) the item on which the
cellular material was deposited belongs to the suspect but was used in the offense by
another person (the knife (owned by the suspect who uses it to cut food) was handled by
the real perpetrator in the stabbing); (4) the cellular material was deposited on the knife in
a different way (the victim fell into the knife).

1.2. Addressing Alternative Scenarios

Forensic studies aim to develop approaches to assist in addressing offensive and
alternative scenarios. To address deposition during the offense or during an earlier or
later encounter, inferring the time since deposition (TSD) may be helpful. For bloodstains,
various spectroscopic and chemometric TSD methods have been proposed that rely fore-
most on changes to hemoglobin [9–13]. An approach that would be applicable to more
body fluids than blood is based on differences in the degradation over time of distinct
RNA molecules outside the human body. Determining relative expression ratios may
allow inference of TSD, although robustness is not yet at the level needed for forensic
casework [14–19]. Recently, microbes were explored for TSD purposes of saliva samples
with some success, but the high inter-individual variation can surpass the time-dependent
variation [20].

To address the question of primary deposition or secondary transfer, TPPR (transfer,
prevalence, persistence and recovery) issues are studied [21–31]. The aspect of transfer
appears the most complex among TPPR issues and many studies have gained information
on transfer rates, and the various aspects that influence transfer rates such as wet or

216



Genes 2021, 12, 1728

dried state, application of friction and pressure, smooth or rough surface and size of
the stain [32–38]. Generally, probabilistic frameworks are used to guide the evaluation,
and Bayesian networks are appreciated for their graphical strength in this evaluative
process [39,40].

Inferring the body fluid(s) present in stains is, in the context of secondary (or more)
transfer, important for two reasons: (1) to assess the cellular content of the primary stain in
relation to the DNA recovered from the evidentiary sample as some fluids have very high
cellular content (for example nasal secretion), whilst others contain much fewer cells (for
instance urine) and (2) to assess whether the body fluid involved is likely to occur in what
is suggested) to be the primary location [41]. For example, intimate body fluids (vaginal
cellular material, menstrual secretion, semen) can be found in underpants of the wearer,
but are less expected on hands or touched items [42–44]. Saliva and nasal secretion, on the
other hand, can reside on hands or items, and blood could occur when people have (small)
wounds. Organ tissues (for instance, CNS (central nervous system), heart, or adipose
tissue), on the other hand, are not expected on hands or on items.

The scenario that another person and not the suspect utilized an item (belonging to the
suspect) on which cellular material was deposited in the offense, can relate to objects (e.g., a
knife used for stabbing or a bottle that was inserted vaginally) or clothing/ shoes that
appear to have been worn during the offense for instance because blood spatter or organ
tissue matching the victim found on them. Cell typing of samples from such items may
provide the crucial link of the evidentiary item to the alleged crime (the knife carries muscle
tissue matching the victim on the blade; the bottle contains vaginal material matching the
victim on the bottle neck; the shoe carries CNS tissue matching the head-kicked victim),
but the link to the perpetrator needs to be provided by other means. This may be addressed
for instance through fingerprint analysis (e.g., on the bottom of the bottle or the handle of
the knife), DNA-analysis (e.g., of the shoelaces or the insides of the neck and collar areas of
the sweater) or CCTV-footage or witness reports on the suspect acting in the stabbing or
wearing the shoes or clothing at the time of the attack.

When a different way for the deposition of the cellular material is proposed (e.g.,
shooting out of self-defense, intercourse with consent), the evaluation is often at the offense
level, which means the domain of the court [2,45,46]. With such scenarios, DNA nor cell
typing add value in most of the cases.

1.3. Contextualizing Evidentiary Traces

Not only the type of body fluid or organ tissue, but also the location, pattern and
amount of cellular material can be relevant for activity-level evaluations or contextualizing
the scene. For example, trousers of a suspect may carry multiple bloodstains matching
the DNA profile of a deceased person. Bloodstain pattern analysis may reveal a mist-
like pattern and diluted bloodstains. RNA analysis of multiple stains could indicate the
presence of blood, saliva, and nasal mucosa in various combinations. Together, the location,
pattern, amount, and type of detected body fluids indicate expirated blood. Pathology may
reveal injuries to the lungs or airways, which could have triggered the victim to expel blood
mixed with air from the lungs through the nose or mouth. The combination of identified
body fluids, location/ pattern and amounts would support the suspect being in the vicinity
of the dying victim expelling blood and would provide less support for a scenario in which
the suspect would visit the scene of the crime a day later.

2. Locating Biological Forensic Evidence

Locating and identifying body fluids and tissues is important for two main reasons:
(1) to find traces related to the alleged crime which can then be collected and from which
the identity of the perpetrator may be revealed by further testing; (2) to contextualize the
traces as explained in Section 1.3 to provide information about what activities may have
taken place. This can be done at the scene, where time is limited, using techniques that are

217



Genes 2021, 12, 1728

mostly presumptive and visual in nature, or in a forensic laboratory (using samples and
items collected at the scene) where more detailed analysis is possible.

2.1. At the Scene of the Crime

Here we describe technologies for locating latent biological evidence for use at the
scene that can also be used in the laboratory. These include chemiluminescent sprays
such as those based on luminol, safer and non-invasive alternative light sources and
spectroscopic methods using handheld instruments. Handheld devices, and technologies
that are non-destructive to the sample offer the greatest potential as these can be used to
rapidly direct investigations and the collection of evidence.

2.1.1. Chemical Sprays for Blood and Semen

Sometimes blood at crime scenes is difficult to see, perhaps there is a very small
quantity of diluted blood (cleaning may have taken place), the blood is on a surface that
makes it difficult to find (like a dark substrate or upon repainting) or there is a trail of
blood-stained shoeprints leading from the scene which are no longer visible. Luminol and
the more user-friendly, luminol-derived Bluestar (Bluestar Forensic, Monaco) reagent [47],
are often used to detect haemoglobin and its derivatives resulting in a blue fluorescence
which is captured by photography [48]. One disadvantage of such methods includes that
the luminescence produced can be faint and short-lived, and in the case of luminol the visu-
alization must be carried out in near darkness [48]. Different formulations exist and those
that maximise the brightness and longevity of the fluorescence and that have few adverse
effects on subsequent tests for blood or on DNA profiling are preferred [48–51]. A more
recent development is the proposed use of a click reaction [52] between serum albumin and
tetraphenylethene maleimide. The reaction is less harsh than that of luminol and BlueStar
and produces a stable and sensitive response and shows promise for further development.

To locate semen, alternative light sources (ALS; see Section 2.1.2) and acid phosphatase
tests are used that suffer from limitations in sensitivity and toxicity, respectively. In 2017,
STK Sperm Tracker™ was introduced to the market by AXO Science (Lyon, France) as a
human semen-specific test [53]. Sperm Tracker is available as a spray for crime scene use
and in impregnated sheets for use on larger items. Detection requires a UV light source,
that the room or space be darkened, and it must be used before luminol or BlueStar.

2.1.2. Alternative Light Sources

ALS refers to the use of light of different wavelengths, including infrared, to de-
tect forensic evidence in a non-destructive manner, and are often used to assist in the
reconstruction of events. The detection of biological evidence is possible because they
contain autofluorescent components which allow them to be visualized when illuminated
at specific wavelengths.

An early study comparing different laser and ultraviolet light sources for the detection
of biological fluids [54] has been followed by the development of many commercially
available light sources such as the Polilight® series (Rofin Australia Pty Ltd., Melbourne,
VIC, Austraila) and the LED-based Crime-lite® series (Foster and Freeman Ltd., Evesham,
UK). A selection of illustrative articles is presented here.

In an examination of the utility of the Polilight® [55] stains of blood, semen and
saliva, not visible to the eye, were able to be detected and Polilight® performed well when
compared to other presumptive screening tests.

As different body fluids and substrates fluoresce at different wavelengths, selecting
the best combination of lightsource (wavelength) and filter used for detection is important.
By comparing results obtained from five body fluids applied to 29 different materials,
the Lumatec Superlight 410 (Lumatec GMBH, Deisenhofen, Germany) was used on fresh
stains [56] and the same stains after two years [57] using different filters. Their findings
show that for every combination of substrate, fluid, light source, and filter, except one,
there was a specific combination that was best. In general though, stains could still be

218



Genes 2021, 12, 1728

visualised two years later, using a light source between 415 nm and 460 nm in combination
with a yellow or orange filter.

To improve the utility of light sources and photography at crime scenes, a study was
conducted [51] combining a blue Crime-lite XL light source in combination with a 360◦
camera to capture semen and saliva stains on a number of different substrates. This study
was carried out in a mock crime scene indoor setting using volunteers to examine the
images and locate the stains. The colour of the substrate was found to have an effect on the
ability to see the stains, however, in general, the combination of light source and camera
was effective.

A side by side comparison of the Crime-lite® 82S, Polilight® PL400 and Polilight®

PL500 [58] was recently carried out, comparing the sensitivity and performance of each
on dilutions of saliva and semen on different fabrics. The LED light source used in the
Crime-lite® 82S provided better detection of dilutions of saliva and overall performed
better as a screening tool.

Recent developments include combined handheld, UV/Vis/IR multi-wavelength
light sources and camera combined, with automatic filter selection all controlled from
an integrated touch screen for example the Crime-lite AUTO. This handheld instrument
appears to offer a number of advantages for crime scene use, the most obvious of which is
the combined handheld unit. See also Section 2.2.3 for an alternative.

2.1.3. Spectroscopic Methods at the Scene

Spectroscopic techniques for locating and identifying body fluids are available, with
handheld devices for crime scene use as well as methods requiring laboratory-based equip-
ment [59]. Handheld NIR (near infrared) spectrometers have been tested [60] with blood
and potential applications to other fluids including age estimation [13]. NIR spectroscopy
is quick and non-destructive with no sample preparation and background fluorescence
encountered with [61]. In the most recent example [60], the instrument is paired with a
mobile phone and software containing the necessary tools to train a variety of statistical
models to interpret test data based on machine learning. The best of these models could
correctly identify blood in 94% of cases, albeit with a false positive rate of 14% for blood-like
substances such as red wine, tomato sauce, and coffee.

Hyperspectral imaging (HSI) is also a non-destructive spectroscopic technique and
can be used to “map” large geographical areas as well as smaller items [62]. HSI records,
as a continuous measurement, electromagnetic spectra over a wide range of wavelengths
for every pixel in an image, and from this creates unique spectra. Since 2012 when first
proposed as a tool to characterise forensic evidence [63,64] HIS has emerged as a potential
tool for bloodstain detection.

The identification of blood by HIS is based upon the visualisation of haemoglobin and
its components in the 400 to 700 nm range. Changes in the Soret peak observed at 415 nm
are used to detect aging of the sample. In a set of fingerprints, aged over a 30 day period,
HSI enabled the identification of the blood as well as aging of the prints [65].

When comparing a Crime-lite® ML2 ALS instrument (Foster and Freeman Ltd., Eve-
sham, UK) and HIS-NIR imaging using an SWIR3 hyperspectral camera working in the
1000–2500 nm spectral range (Specim Ltd., Oulu, Finland) [66], the resultant images ob-
tained from the HIS-NIR imaging were shown to be superior at revealing the location of
body fluid staining in known reference samples, simulated casework samples and on un-
known staining on forensic exhibits. Using blood samples and different substrates, spectra
were generated [67] that were used to train different classifiers to detect aged bloodstains
and most recently a “blood detection dataset” was produced [68] specifically to assist in
the challenging task of algorithm development for this new technology.

2.2. At the Forensic Laboratory

In the previous section, we described approaches for locating biological evidence
at crime scenes, particularly latent evidence that may not be visible to the naked eye.
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These methods can also be employed in a forensic laboratory when transportable items are
involved. In the remainder of this section, we discuss methods that are primarily laboratory-
based for locating biological fluids. These chemical, immunological, and spectroscopic
tests are often used to presumptively identify biological fluids before conducting further,
more specific testing where necessary.

2.2.1. Chemical and Immunochromatographic Tests

With the exception of microscopic identification of spermatozoa, forensic scientists
often rely on sensitive but non-specific chemical tests, based primarily on the activity of
enzymes in the target body fluid. Although easy to use, they are not human-specific and
are largely presumptive in nature with many examples of false positive reactions reported.
For reviews covering this area, see [69–71].

To supplement these chemical tests, laboratories may use immunochromatographic
assays, which include tests for saliva, semen, urine, blood and menstrual blood. Despite
advantages of speed, cost and ease of use, these assays are not as suitable for crime scene
deployment as they require an extract of a sample to be made and are not an integral part
of the DNA profiling process. To date, there is only one report of combining such tests into
a format amenable to detecting body fluids in mixtures [72]. The more recent emergence
of proteomics in the forensic literature (see Section 7.1.2) and the identification of new
candidate markers [73] is likely to drive the development of immunologically-based assays
based on multiplexing in a single assay that may be amenable for use at the crime scene.

Immunochromatographic methods can also be used to detect DNA amplicons and
direct PCR of Streptococcus sanguinis and Streptococcus salivarius specific to saliva has been
successfully integrated with an immunochromatographic strip detection method [74].

Improvements to the technology for detection have allowed for the development of
a protein microarray sensor [75] for the detection of semen and vaginal cellular material.
Antibodies to semenogelin-2 and anti-17 beta estradiol were immobilised on an array
surface. To enhance the signal achieved and increase the sensitivity of the assay, a metal
enhanced fluorescence (MEF) approach was taken. The sample containing body fluids
was itself labelled with a fluorescent dye and after hybridisation and washing steps the
fluorescence signals are detected.

2.2.2. Spectroscopic Techniques

Raman spectroscopy, for which less sensitive handheld devices are available, relies
upon the scattering of light by biological compounds. The outputs are complex spectra
built up of the multiple components of each fluid. Statistical tools are available and needed
to determine the unique spectroscopic profile of the molecular structure of each. Such
profiles have been determined for a range of body fluids and tissues of forensic interest,
such as blood [76], semen, saliva, vaginal fluid and sweat [77,78].

Early evaluations [76] considered factors of forensic interest such as the substrate,
within-person variability and time since deposition in blood samples. Blood was able to
be detected on luminescent fabrics by first removing the stained area from the substrate.
Variability was observed as bloodstains aged and also between and within people. The
changes in spectra as a bloodstain ages were further explored [79] over a period of 2 years
with age predicted with an accuracy of approximately 70%. Statistical models were further
improved [80] to accommodate environmental factors.

Fourier transform infrared (FT-IR) spectroscopy, routinely used in forensic chemistry,
has also been evaluated for biological fluids with an important consideration that any
environmental contamination is accounted for. Attenuated total reflectance (ATF) FT-IR
spectroscopy [81,82] has been used to characterise a number of body fluids, accommodating
the age of the stain and excluding unexpected non-target components. Similar studies
have also been undertaken on semen [83,84], with methods developed to identify and
avoid interference from a number of environmental factors; on dried urine [85] where the
gender of the donor was able to be deciphered; and to distinguish between menstrual and
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peripheral blood [86]. The alternative modification, external reflection FT-IR spectroscopy,
has also been proposed [59] to specifically identify body fluids associated with sexual
assault. The effects of different fabric colours and commonly used household substances
on identification were also assessed. These instruments are not handheld and, therefore,
not compatible with examinations at the crime scene.

2.2.3. A Practical Example

The utility of combining ALS detection with an immunochromatographic test for
the presence of prostate-specific antigen (PSA, also known as gamma-seminoprotein,
kallikrein-3 or P-30 antigen), on laundered clothing [87] followed by DNA profiling has
been demonstrated. In this example, semen stains were located using a Forenscope Mobile
Multispectral UV-VIS-IR Imaging System® (Grimed Ltd., Voor, The Netherlands) which,
like the Crime Lite AUTO described in Section 2.1.2, combines light source, filters, camera
and software in one handheld instrument. Semen stains could be detected and confirmed
using both the Forenscope system and the PSA test. High washing temperatures had the
biggest impact on the ALS detection, polyester fabric had the biggest detrimental impact
on the PSA test. DNA profiling however was successful on all semen samples regardless of
washing temperature, detergent or fabric.

3. Major Types of Markers and Technologies Employed to Detect Them

3.1. RNA Markers

RNA is the link between the genome and protein content of each cell and its expres-
sion or its effect on expression of cell type-specific proteins has been widely adopted as a
laboratory-based approach for body fluid identification [69,71,88] for forensic purposes.
Alongside mRNA, small non-coding RNAs have generated significant interest [89] to
date, which will be described in Section 7.1.1. RNA analysis has also been suggested for
other forensic applications such as post mortem interval and age of a stain determina-
tion [17,19,90].

3.1.1. Messenger RNA

There are many examples, over more than twenty years, of messenger RNA (mRNA)
being proposed as a confirmatory test for body fluid and tissue identification with an early
example being the identification of menstrual blood [91]. A selection of the numerous
papers published are included here and will assist in directing the reader to further studies.

The stability of RNA in stains of forensic interest was described in 1999 [92] with
a demonstration of the detection of skin epithelial cells in dried blood cells. This was
followed by studies describing stability studies in vaginal swabs, blood, semen and saliva
stains [93], stains up to 23 years old [94] and transcriptome studies showing the persistence
of regions of RNA of interest in samples deliberately degraded [95–97].

To minimise sample loss during testing and optimise the efficiency of the laboratory
process, it is important to recover DNA and RNA from the same sample [98–100]. A recent
paper compared a number of different approaches [101] and found methods with small
modifications to [98,99] remained the best. Equally important in minimising sample loss
and optimising the laboratory process is the creation of multiplex assays each containing
mRNA markers of known specificity [98,102–107] that can be selected from the literature
and online databases [98,107] and whole genome expression analysis [108–110]. Once these
factors are considered, then casework and casework applications follow [111–115].

Most of the published work depends upon the detection of mRNA markers by reverse
transcription PCR (RT PCR) and capillary electrophoresis (CE) [92,102,103,106,116]. Real
time PCR (qPCR) has also been used [116,117] but is somewhat limited by the number of
markers that can be multiplexed together (restricted by the availability of fluorescent dyes)
and the difficulty in identifying appropriate housekeeping genes, applicable to all included
body fluids of interest. More recently, massively parallel sequencing (MPS) has been
used to detect multiplexed markers [118–120] reflecting a shift towards this technology in
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forensic science [121]. The main advantages of MPS is the high multiplexing capacity, that
amplicons can have overlapping (small) sizes and that nucleotide variation is detected.
These first two features are of importance with forensic traces as they are often of minute
amounts and suffer from degradation due to external factors. The forensic importance of
analysing sequence variation in RNA amplicons will be discussed in Section 6.4. Other
techniques for detecting markers are given in Section 3.1.3.

3.1.2. Circular RNA

Circular RNAs (circRNAs) are highly expressed [122,123] and as they share sequence
with the mRNA equivalent to which they are related can also be body fluid/ tissue-
specific [124]. Because these molecules are closed circular structures, they are very stable
and this makes them promising candidates for body fluid identification. In the first
report [125] of their inclusion for forensic application, microarray expression profiles of
circRNAs of venous blood, semen, saliva, vaginal cellular material and menstrual blood
samples were produced. Although semen, saliva and venous blood could be distinguished
from each other vaginal cellular material and menstrual blood could not.

A further study [126] combined mRNA markers with circRNA markers for the same
genes (ALAS2 and MMP7), which were markers already used for body fluid identifi-
cation [106,127,128], and demonstrated improvements in the sensitivity and stability of
the assay compared to mRNA alone. This was also found in a similar study of circRNA
markers in blood, menstrual blood, saliva, semen, urine and vaginal cellular material,
using gene targets well known in the mRNA profiling community (for example HTN3
for saliva and CYP2B7P1 for vaginal material) [129]. Further investigation resulted in an
18 plex multiplex assay combining circRNAs, mRNAs and housekeeping genes, with good
sensitivity and specificity and the potential to identify fluids in degraded samples due to
the stability of the circRNA molecules [129].

3.1.3. Alternative Techniques to Analyse RNA Markers

Many of the methods and much of the research described above use either RT PCR
and CE, qPCR and/or increasingly RNA sequencing to detect the markers under study.
These have been described in more detail in a recent review [88]. Some examples of newly
proposed techniques follow.

Loop mediated isothermal amplification (LAMP) [130] can provide higher specificity
than PCR because of the use of multiple primers and the higher temperatures at which
amplification occurs. In 2015, the first reports of applying LAMP to mRNA body fluid
identification [131] detected hemoglobin beta as a marker for blood and was followed by
similar studies using a direct RT LAMP method to detect the expression of the statherin
gene in saliva [132] The same markers and the TGM4 gene marker for semen were targeted
in the design of an assay for the identification of blood, semen and saliva [133]. Extending
the format to include vaginal cellular material and azoospermatic semen in a microtitre
plate with a metal dye indicator and colorimetric detection, significantly improved the
utility of the approach and may make it more suitable to laboratory requiring a higher
throughput [134].

High resolution melt (HRM) curve analysis measures the melting temperature (Tm)
and generates a distinct and characteristic melt curve for each amplicon in a sample. It has
been proposed for a number of applications such as a detection method for SNPs [135], to
detect sequence differences in the hypervariable regions of mtDNA [136], to characterise
the oral microbiome of different people using 16SrRNA [137], as a technique to analyse
methylation sensitive sites for body fluid determination [138] and as a method to identify
mRNA markers in body fluids [139] in a multiplex format due to the high resolution of
each distinct melt curve for each amplicon.

Since two publications some time ago [108,140], the NanoStringR nCounter system
(nanoString, Seattle, WA, USA) [141] has received little forensic interest. This is somewhat
surprising given the strengths of the platform that include a direct assay not involving PCR
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and measurement of gene expression of up to 800 mRNA candidates in a single multiplex
reaction in a semi-automated fashion. These studies successfully tested 18 and 23 markers
for body fluids, respectively. [108,140]

Similarly, HyBeacon probes [142], used for the detection of SNPs and STRs in areas
such as clinical diagnostics and food authentication, have received some but not extensive
interest. The ParaDNA Body Fluid ID test comprising RT PCR and melt curve detection was
successfully evaluated for the detection of mRNA in body fluids of forensic interest [143]
in combination with the now withdraw/ unavailable ParaDNA system (LGC Forensics
Teddington, Middlesex, UK) [144] for STR detection.

3.2. Epigenetic Markers

Body fluid identification can also be accomplished at the DNA level by examining
epigenetic modifications to specific sites on the genome, primarily methylation at the
5′ position of cytosine in a CpG dinucleotide. These sites are known as tissue-based
differentially methylated regions (tDMRs) and have been specifically examined for body
fluids of forensic interest such as blood, semen, saliva, skin, urine, and vaginal secretions.

Whilst the initial application of epigenetics in forensic science was the identification of
body fluids and tissues, methylation analysis has also been proposed for age estimation and
differentiation of twins [145–147]. A range of methods have been applied for identifying
appropriate markers, detecting the epigenetic modifications, and assessing the results. A
comprehensive review [146], describes many of these approaches in more detail.

3.2.1. Marker Selection and Assay Design

With the increasing availability of freely available methylation data, researchers can as-
sess many thousands of CpG sites simultaneously to find candidate markers. For example,
the human methylation bead array system (Illumina) was used to screen over 450,000 CpG
sites in samples of blood, saliva, and vaginal cellular material [148,149]. More recently,
overexpressed genes in genome wide expression datasets were combined with heavily
methylated gene body CpG islands (CGI) from methylation datasets [150]. Further in
silico analysis of one of these datasets [149] was undertaken and four new markers able
to discriminate blood (2 markers), vaginal cellular material (1 marker) and buccal cells
(1 marker) were found [151].

Once identified, primers are designed and ideally markers are multiplexed enabling
the simultaneous identification of different fluids/tissues. An example is a PCR multiplex
combining CpG sites in the DACT1, USP49, PFN3, and PRMT2 genes to identify spermato-
zoa and differentiate between menstrual blood and vaginal cellular material from blood and
saliva [148,152]. This multiplex has been extended to include amplicons for the 16S rRNA
gene of bacteria specific oral and vaginal origin, Veillonella atypica and/or Streptococcus
salivarius, and Lactobacillus crispatus and/or Lactobacillus gasseri respectively [153].

3.2.2. Techniques to Analyse Epigenetic Modifications

Early research focused on the use of methylation-sensitive/ dependent restriction
enzymes followed by PCR and CE [154]. The advantage of this approach was the ability to
co-amplify STRs at a similar level of sensitivity, but drawbacks included incomplete restric-
tion and template degradation, which can distort the methylation ratios that are critical
to the interpretation of the results, which was particularly pronounced in low template
samples. More recent assays [155], therefore, use amplicons with multiple restriction sites.

There are multiple methods to determine the relative methylation levels achieved, and
they all start with bisulfite conversion of the DNA and amplification using primers designed
to anneal to the converted DNA. Examples are qPCR with HRM [138,151] often confirmed
with pyrosequencing [156], sequencing of cloned products [150] and changes in mobility
of the PCR amplicons [157]. A multiplex methylation SNaPshot approach has been used to
identify blood, saliva, semen and vaginal cellular material, and produced successful DNA
methylation profiles in aged and mixed samples [148]. In a separate study it was successful
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in the identification of semen, saliva, venous blood and menstrual blood in body fluid
mixtures and in crime scene stains [158]. Methylation state specificity was achieved using
the single-base extension primers of the SNaPshot assay. Amplification refractory mutation
system-PCR (ARMS-PCR), otherwise known as allele-based PCR [159], in combination with
CE was used as an alternative method to test 22 possible markers for venous blood, saliva,
semen, menstrual blood, and vaginal cellular material in multiplexes [160]. A random
forest model was employed and performed well in predicting single source body fluids
with high prediction accuracy (99.66%).

The multistep process of bisulfite conversion, PCR and detection by CE or sequencing
is vulnerable to variation due to poor sample quality and quantity and especially degrada-
tion during the bisulfite conversion step. A new multiplex quantitative RT PCR method
to measure the amount of genomic and bisulfite-converted DNA, and the degradation
level of the conversion step as well as the conversion efficiency has been described [161].
Besides, natural variation in methylation status has been found between individuals, and
some tissue-specific differentially methylated regions are susceptible to change due to
environmental factors and age. For example, methylation of a CpG site in PRMT2 in blood
samples was found to be an age-associated marker, whereas no significant difference based
on age was observed for three spermatozoa-specific hypomethylated markers DACT1,
USP49, and PRMT2 in men of different ages [149,152]. Others have demonstrated that
within-person variation in methylation ratios was not observed, but variation was observed
between people in an assay designed to identify vaginal cellular material [157].

3.3. Microbial Markers

Microbiomes are comprised of the bacterial, archaeal, viral and fungal microbial taxa
communities present in/on a location of interest, such as the human body. Microbes have an
advantage of high abundance and stability. Microbiomes can be considered as a whole (the
human microbiome) or more specifically relating to a more defined location, for example
the skin microbiome of humans where different bodily locations (moist armpit, sebaceous
facial areas, dry forearm) can be dominated by different species [162]. A subset of markers
and target organisms can be chosen to represent the fluid/ body site of choice [153,163] but
it should be noted that different species may perform the same biological function (such as
the production of lactic acid in the vagina) and may not function in all individuals [164,165].
Even human blood, previously considered to be sterile in a healthy person, may not be
so [166].

More routine analysis of microbiomes has been made possible by developments
in sequencing and related technology. Despite early promise, some challenges remain
in adopting this technology for forensic science. In addition to variations between and
within people [164,167–170] a key consideration is that microbial communities are strongly
influenced by many external factors such as geography, time, season, health, diet, genetic
factors, anti-inflammatory drugs and lifestyle [171–176], and even the presence of pets [177].
Consideration of these factors is necessary for any evaluation of microbiomes whether
they “match” or not. Many of these factors relating to the human skin microbiome are
neatly summarized in [178,179] and can be directly applied to all microbiome research and
applications. In particular, the potential effects of the presence of contamination in the
reagents and consumables used has been highlighted [180].

3.3.1. Microbial Markers for Body Fluid Identification

Many possible applications of the analysis of microbiomes are described in a recent
review [181]. These include the identification of people [182–184]; establishing links with
personal possessions such as phones and shoes [185–187]; forensic botany (including
environmental DNA), in which analysis of the phyllosphere and soil can provide links
between people and crime scene locations [171,188–190]; and the identification of microflora
specific to different body locations such as saliva [191].
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Many studies have focused on specific body sites/ fluids for example the microbiomes
of saliva [192,193], faeces [194], the vagina [164,195] with recent publications focusing
on distinguishing between different sources of blood (menstrual, venous, fingerpick and
nasal) [196,197] and semen [198]. Lactobacillus species have been incorporated into mRNA
multiplexes and collaborative exercises [163,199] and in multiplexed methylation -sensitive
restriction enzyme PCR assays [153]. Interpretation of the presence of such markers
should proceed with care as microorganisms can be detected on non-target body locations,
probably either from their high abundance and/or carry-over [104].

Unsurprisingly, vaginal samples and menstrual blood are unable to be distinguished
and share metagenomic profiles [196,200], and in one study, samples taken from the penis
the vaginal markers responded while no female DNA was detected [168].

In an extension from simply identifying bacteria representative of the oral cavity, it
was [201] recognized that identifying them could be used to distinguish between expirated
bloodstains (such as those forced by airflow out of the nose or mouth) and impact spatter,
providing what could be an additional crucial piece of information for an investigation
(see Section 1.3).

3.3.2. Technologies to Analyze Microbial Markers

For the identification of microbial profiles specific to body locations, sequencing of the
16S rRNA gene is typically carried out, with the profiles found to be diagnostic of the area
sampled. Saliva, skin, peripheral blood, menstrual blood, faeces and semen have all been
tested in this way [169,200,202]. Whole genome shotgun sequencing has been suggested
to outperform 16S rRNA analysis because of higher accuracy [203], but this comes with
higher costs.

Not all assays are based on the 16S rRNA gene or on sequencing. For example
microarrays targeting multiple genes across a range of known microorganisms have been
described [164,168] and a qPCR assay [193] has been developed to detect three bacteria
(Streptococcus salivarius, Streptococcus sanguinis, and Neisseria subflava) known to be present
in the oral cavity. A similar microarray-based method has been described [194] for targeting
the 16S rRNA, GroEL and 18S rRNA genes of a number of microorganisms present in
faeces and other forensically relevant fluids.

4. Retrospective Analysis of RNA Typing in Forensic Casework

4.1. Requests and Results for RNA Typing in Casework

Forensic casework comes in great diversity, and questions can be put forward that
cannot be addressed with existing methodologies. This feeds the development of new
methods, like RNA typing assays which were especially triggered by the limitations
for the tests for vaginal cellular material and menstrual secretion [72,204–207] and the
difficulties to apply immunohistochemical staining for organ tissues to samplings from
bullets where the tissue tends to reside in the grooves [208]. It is interesting to reflect, in a
retrospective manner, on which forensic questions RNA typing assays are applied in actual
forensic casework, and whether this corresponds to the questions that initially triggered
the development of the assays.

RNA typing has been applied regularly at the Netherlands Forensic Institute since
2012. RNA was extracted in 452 cases and in 238 of these cases, RNA typing was performed
(in the other 214 cases, RNA was extracted but RNA typing was not (yet) requested by
police or prosecution). In 178 cases (75%) body fluid typing was performed and in 60 cases
(25%) organ typing. On average, RNA is extracted for four samples per case. To study the
context and details of cases in which RNA typing was performed, the details of 27 body
fluid cases analyzed in 2020 were examined. All 27 cases were sexual assaults, of which
25 questioned the presence of vaginal cellular material (note that at the NFI presumptive
tests are used to assess the presence of blood, saliva, and seminal fluid). The 26th case
aimed to discern menstrual or peripheral blood in a vaginal sampling of an assaulted female
and the 27th case questioned the presence of semen or seminal fluid on the genitals of an
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adolescent female (generally the presence of semen is not assessed through RNA typing
but microscopic analysis and differential extraction is used). Thus, in the Netherlands,
RNA body fluid typing is mostly applied in sexual assault cases to assess the presence of
vaginal cellular material.

In the 25 cases that assessed vaginal cellular material, 56 samples were analyzed
of which 19 resulted in vaginal cellular material detected (13 cases). In nine samples
(four cases), saliva was detected (one of these samples, a penile swab, was also positive
for vaginal cellular material; the other saliva-positive samples were all finger/nail dirt
samplings). The corresponding DNA profiles of 53 of these 56 samples were mixed
male/female profiles, while three showed no male (amelogenin Y) DNA and a full female
profile (samplings from paper tissue, condom, or finger). The male/female ratio at the
amelogenin locus in these mixed samples varied from 0.8 to 178, but this bore no relation
to whether vaginal cellular material was seen or not. This is not unexpected as these are
casework specimens, not ground truth data, and the female component may derive from
other cells, for example skin cells, which are no longer included in the NFI body fluid RNA
assay used in 2020.

4.2. RNA Typing Results in Verdicts

The ultimate value of RNA typing is best assessed by regarding verdicts after trial
procedures (the proof is in the pudding). In the Dutch registry of verdicts [209], 21 cases
can be found in which RNA typing was actively considered in the verdict by the judge
(note that not all verdicts are taken up in the registry and that the judge decided on the use
of the RNA results in the context of all evidence presented, in most cases without data on
prevalence of such RNA results in alternative scenarios).

Ten cases were sexual assaults and 11 cases were not. For the sexual assaults, in nine
cases the presence of vaginal cellular material was of importance; in one case menstrual
secretion. These body fluids were found four times on a penis, three times on a finger/nail
dirt, once in underpants of a male, once on the outside of a condom and once on an inserted
item (in this case a piece of ginger; a cultural punishment by a father). In eight of these
ten cases, the defense presented alternative scenarios: once the timing of deposition was
questioned (“the forensic report does not state when the menstrual secretion was deposited
on the penis”). In six cases, secondary transfer was suggested: Three times vaginal material
was supposedly picked up from either an item carrying vaginal material, or from being
nearby the victim’s vagina or from an unspecified source and then transferred to the
penis. Vaginal cells on fingers of the suspect were suggested to originate from the victim
touching her vagina and then shaking hands with the suspect, or from an unspecified
activity. Vaginal cells in male underpants were suggested to originate from assisting the
victim during vomiting after which her cellular material was transferred to his penis and
underpants after a toilet visit (RNA typing was performed much later so the alternative
scenario focused on explaining the female DNA). For a case with the presence of vaginal
cells on the outside of a condom, the alternative scenario was that the father masturbated
using a condom and that the results of vaginal cells and DNA-match with the adolescent
daughter should be ignored as the mother was not included in the comparison (note that
the DNA-profile fully matched the daughter).

These alternative scenarios follow three of the four general scenarios proposed in
Section 1.1. These were: (1) ‘time of deposition’, (2) ‘secondary transfer’ and (3) ‘innocent
explanation’; ‘another person performed the crime’ was not proposed. This makes sense as
most of the evidentiary items involved body parts such as finger/nail dirt or penis.

In the remaining 11 verdicts considering RNA typing results, the evidentiary items
included two bullets, two knives, a baseball bat, five pieces of clothing and a bed sheet. The
cellular material found on these items matched the victim(s) in all 11 cases. Of the 11 cases,
nine cases were analyzed for organ tissues and two for body fluids. Both multiplexes
contain markers for blood, and in all 11 cases, blood was present in the stains analyzed. In
four cases, CNS tissue was found as well (not necessarily in all evidentiary stains analyzed
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within a case; all four cases involved samplings taken from clothing). In five cases, skeletal
muscle was detected (both cases that involved a knife, one of the cases involving a bullet
and two cases involving clothing: for these latter two cases, CNS was observed in stains
analyzed within the case as well). In one of the two cases analyzed for body fluids, besides
blood, saliva was found in a mist-like pattern indicating expirated blood (this case was
analyzed using a body fluid assay not yet carrying nasal mucosa markers).

The alternative scenarios put forward by the defense fall into three categories: once
the time of deposition was questioned (this was for the case in which expirated blood was
implied; the suspect was suggested to have visited the scene a day later when the victims
had already died). Five times it was suggested that another person was involved (twice
handling the knife, three times wearing the clothing that contained CNS material matching
the victim). Five times another explanation was given (the suspect shot at a car not at the
victim; the victim started shooting first so it was self-defense; the victim fell of the stairs
(for the case in which blood was found on a baseball bat); the injuries were self-inflicted
and the large puddles of blood on the bed sheets were staged by using animal or menstrual
blood (this was the second case analyzed by body fluid typing); the CNS and blood on the
clothing of the suspect are not shown to be the result of violence (no suggestion was given
how CNS did end up on trousers and a shirt).

For these cases, the alternative scenarios follow three of the four general scenarios
proposed in Section 1.1. These were: (1) ‘time of deposition’, (2) ‘another person performed
the crime’ and (3) ‘innocent explanation’; ‘secondary transfer’ was not proposed. This
makes sense, as in these cases, generous amounts of cellular material matching the victim(s)
were found for which it is more difficult to invoke secondary transfer.

5. A Criminalistic View on Targets to Be Included in a Cell Typing Assay

Basically, there are two main reasons to include markers for a body fluid or an organ
tissue in a cell typing assay: (1) the cell type can be questioned in forensic cases and (2) the
cell type can be informative to an alternative, innocent explanation.

5.1. Cell Types Questioned in Forensic Cases

From the case descriptions in Section 4.1, it is evident that in sexual assault allegations,
most often the presence of vaginal cellular material and menstrual secretions is questioned.

Semen (spermatozoa and/or seminal fluid) can be involved as well, generally in three
circumstances: (1) as questioned body fluid in a sample in which semen is expected to be
the predominant body fluid such as in a ejaculation stain on the body or clothing of the
victim or inside a condom; (2) as a questioned body fluid in a sample containing a surplus
amount of other cellular material such as in a vaginal, oral or rectal sample taken from the
victim; or (3) as a background body fluid in a penile swab or finger/nail dirt sample that is
examined for the presence of, for example, vaginal cellular material.

Under circumstance (1), semen will be the predominant cell type, and, in most cases,
microscopic analysis will suffice to show presence of spermatozoa and generate a DNA
profile for the semen donor. In circumstance (2), when a surplus amount of cellular material
of the victim is present, differential extraction (DE), (in which a mild lysis to extract nucleic
acids from non-spermatozoa cells, followed by a strong lysis to extract nucleic acids of the
spermatozoa) is likely performed. Since the presence of semen is questioned, most often this
DE method will suffice and produce a sperm fraction from which a DNA profile informative
for the semen donor is derived. When confirmation of the presence of spermatozoa in the
sperm fraction is needed, various methods can be applied such as microscopic analysis or
MSRE analysis [154,155,210,211] on DNA extracted from the sperm fraction [212]

This is different in circumstance (3), where semen may be present in such amounts
that it masks the presence of other body fluids. Here, it would be useful to apply a DE
method that not only extracts DNA but also RNA and analyze the non-sperm RNA fraction
for cell types other than spermatozoa (note that seminal fluid RNA will end up in this
non-sperm RNA fraction as well). However, DE is hard to combine with RNA extraction
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as RNases are active during the mild lysis step unless an ample amount of strong RNase
inhibitors is used [104].

Other body fluids of which the presence may be questioned, are saliva and peripheral
blood. For blood, molecular analyses are mostly applied for discerning peripheral blood
and menstrual secretion. Saliva may be assessed in allegations of licking, which means
that often body locations are sampled (breasts, genitals, mouth), and mixed DNA profiles
are expected.

To assess allegations of anal penetration, the identification of a rectal mucosa marker
was described recently [213]. A rectal mucosa marker is to be preferred over markers for
fecal matter as rectal mucosa provides a more direct link to invasive activities. Finding a
marker specific for rectal mucosa is challenging since many body cavities and tubular or-
gans in the human body are lined by mucous membranes (for instance, along the respiratory,
digestive, and urogenital tract), an epithelial tissue that secretes mucus. Thus, specificity
of mucous membrane genes may be an issue, they may prove general mucosa markers or
cross-react with some other body fluid derived from a mucous membrane [98,214].

5.2. Cell Types Informing on an Alternative Scenario

The second reason to include markers for a specific body fluid in a cell typing assay
is to inform an alternative, innocent explanation for the findings. Nasal secretion has a
high cellular content and may therefore leave detectable amounts after secondary transfer,
which may be proposed as an alternative scenario (H1: vaginal penetration by penis; H2:
victim sneezes in hand, shakes hand of the suspect, suspect touches his penis during toilet
visit). Thus, nasal secretion markers have been identified and included in body fluid typing
assays [104,215]. In addition, the presence of nasal secretion and blood in a sample may
indicate nosebleed blood, that can be a spontaneous occurrence not connected to a crime.
Occasionally, nasal secretion may be among the questioned body fluid such as in case of
expiration of blood (here saliva markers will also be informative) or when a nosebleed is
caused in a fight.

Other body fluids for which markers have been identified are urine and sweat [128,216–218].
These two body fluids have a relatively low cellular amount and are likely of limited impor-
tance. Urine may contribute some cellular material in underpants; sweat can be deposited
together with skin. Skin was one of the earlier cell types for which mRNA markers were
identified [98,219–222], probably because contact traces are frequently submitted for foren-
sic analyses. However, forensic practice in the Netherlands has shown that there is hardly
any value in showing the presence of skin, as skin residues reside in almost all submitted
samples. The presence of skin and DNA of a person of interest may be regarded mistakenly
as an indication of direct contact, and due to the abundance of epithelial material in public
and private items [42], secondary transfer is within the bound of possibility.

For the assessment of cases of violence, various tissue types can be included. CNS
tissue (brain and spinal cord) is highly important to include in the assays because of the
often-lethal consequences. Other organs such as liver, heart, kidney, lung, trachea, intestine,
stomach, spleen can be included for chest and abdominal injuries, but blood, muscular
tissue and/or adipose are informative for injuries anywhere on a body [223–225].

5.3. Fluids and Tissues Carry Multiple Cell Types

In a human body, there are ~210 cell types [226], and body fluids and organs contain
several types of cells (semen may be an exception as semen carries besides spermatozoa
only few other cell types).

As evidentiary stains may be minute, not all cell types may be represented in a sample,
so it can be opportune to include markers for various cell types from one tissue or fluid
in an assay. For example, CNS tissue comprises two major tissues: grey matter and white
matter. Grey matter (~10% of the tissue in the brain volume) consists mainly of neuronal
cell bodies (and unmyelinated axons and glial cells), while white matter (the deeper layer)
mainly contains myelinated axons (and astrocytes and oligodendrocytes that produce
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myelin) [227]. Whether an evidentiary stain carries predominantly grey or white matter,
will affect which markers can respond.

With body fluids, samplings may have a more even distribution of cell types, due to the
liquid constitution. These have different biological functions that affect their localization.
For example, red blood cells function within the blood (amongst others for carriage of
oxygen) while white blood cells act mostly outside of the bloodstream (immune system).
As a consequence, white blood cells crawl into the lymphatic system by a process denoted
extravasation [228]). The lymphatic system is an extensive drainage network and several
other forensically relevant body fluids may thereby carry white blood cells (e.g., nasal
secretion [228]).

It is crucial to understand the biological function and performance on other body
fluids or tissues for markers included in a cell typing assay.

6. Interpretation of Cell Typing Results

Generally, an evidentiary stain that is subjected for cell type analysis is also submitted
for DNA profiling as one wishes to infer what cell type is donated by which person. This
invokes a three-way interpretation: (1) the DNA profile; (2) the cell typing data and 3) the
combination aiming to associate donor and cell type. The interpretation of DNA profiles
has progressed tremendously through the application of probabilistic software [229–233]
that use information on the number of contributors, allele frequencies, peak height, drop-in,
dropout, degradation and more to provide a weight of evidence in the form of a likelihood
ratio (LR). The LR includes a person of interest under H1 (H2 generally calculates the
likelihood for an unknown, unrelated person). With the interpretation of cell typing
data, several issues are to be considered: (1) limitations in sensitivity; (2) constraints for
specificity; (3) degradation in evidentiary stains; (4) complications in case of a mixture of
cell types and (5) providing an evidential value. These issues are discussed below, followed
by developments on the association of donor and cell type.

6.1. Sensitivity, Specificity and Degradation Issues Affecting Interpretation

Ideally, a cell typing method has similar sensitivity for all cell types assessed in an
assay, and a similar sensitivity as DNA profiling so that for all donors that give DNA
information cell type information is derived as well. Over time, DNA profiling has become
more and more sensitive and a full DNA profile can be generated from DNA amounts
that equate to a few cells. The sensitivity of cell typing depends greatly on the type of
marker that is used. DNA-based markers (those assessing methylation status) will at best
be as sensitive as DNA profiling as both analyze features of the two genomic DNA copies.
MSRE analysis [154,155,210,211] indeed approaches the sensitivity of DNA profiling, but
methods that rely on a bisulfite conversion are much less sensitive as a large portion of
DNA is lost during the conversion [146,147].

RNA and protein/ enzyme markers are expressed and translated from DNA and
may be several folds more abundant than DNA although expression levels can vary
highly for different genes, and abundance is further influenced by stability/ turnover rates.
Environmental and physiological factors may cause variation between people and over
time (an infection will increase the number of white blood cells and the mRNAs these cells
contain). Thus, it appears inevitable that the sensitivity of markers targeting either the
same or different body fluids will vary [121] despite careful marker selection and assay
optimization. An extreme example is semen from an azoospermic male, which will provide
RNA and proteins for seminal fluid but little DNA (or spermatozoa mRNAs/ proteins).
Thorough validation by which understanding of marker performance is obtained is of
pivotal importance.

Specificity issues can relate to human-specificity or tissue-specificity [234]. Methods
that analyze nucleic acids, can most often be designed to be human (or at least primate)-
specific, which is less feasible for tests based on enzyme activity or antibodies. Processes
such as readthrough or spurious transcription giving rise to non-specific background
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expression of mRNAs may result in signals above the detection threshold for the assay,
especially when samples are over-amplified (by using too much input or too many am-
plification cycles). Technological imperfections can also cause non-specific signals like
remnants of DNA in RNA assays (this is only an issue when it is not possible to design
cDNA-specific amplicons with for instance one primer spanning an exon-exon boundary)
or incomplete bisulfite conversion in methylation-based assays. The most difficult form
of non-specificity is when markers cross-react with cell types other than the intended cell
type. This occurs more with body fluids than with organs. For instance, saliva, nasal
secretion and vaginal material are produced in body cavities (oral, nasal, vaginal) that
are all lined with mucous membranes. These can, as previously mentioned, give rise to
expression of the same mucous markers in these body fluids (denoted general mucosa
markers [98]). These non-specific responses can show inter-individual variation: mRNA
vaginal markers were detected in nasal secretions in many donors, with no relation to
gender or having a cold [104]. As with sensitivity, thorough validation with different
donors is highly important to understand marker performance.

Outside the human body, factors such as high humidity, UV radiation and/or high
temperature can invoke degradation of nucleic acids, especially when stains have not
fully dried. DNA is more resistant to hydrolysis than RNA, as the 2’-OH group can attack
the 3’-phosphate, leading to hydrolytic cleavage of the phosphodiester bond, which may
lead to samples providing a DNA but no or hardly an RNA profile [97]. Amplicons in
RNA assays are therefore generally shorter (preferably under ~150 base pairs) than in
DNA typing (up to ~450 base pairs). Intramolecular base pairing within RNA molecules
(not only G:C and A:U but also G:U) may result in secondary and tertiary structures that
provide more stability to certain regions, and amplicons targeting such stable RNA regions
(StaRs) [95,235] may enhance RNA profiling. DNA methylation assays have the advantage
of using the same nucleic acid as used for DNA profiling, so there is no difference in
stability (the methylation marks remain stable also in body fluids deposited outside a
human body [236]).

6.2. Interpretation of Mixed Samples

RNA casework has shown that most evidentiary samples contain multiple fluids/
tissues, particularly with body fluid typing and less so with organ typing. One cause is that
many samplings are taken from body locations (penis, fingers) or fabrics (clothing, bedding)
that are likely to carry skin and other body fluid depositions. Moreover, the contributions
may be highly unbalanced. To work on mixtures, markers should best respond in on-off
modus meaning that a signal is obtained when the body fluid is present and not when
a body fluid is absent. This can be achieved with RNA-based assays when markers are
selected that show a large difference in expression between target and non-target tissues.
Over-amplification needs to be avoided and detection thresholds need to be set.

For methylation-based assays, application to mixtures depends on the technology
that is chosen. With MSRE, CpG targets are selected that are only methylated in the target
tissue (this does not need to be a 100% methylation). PCR product can only be generated
when the restriction enzyme is unable to cut the DNA due to methylation of the restriction
site [237].

When methylation levels are assessed quantitively, for instance by sequencing bisulfite-
converted DNA, it is highly complex to set interpretation guidelines for mixed samples.
For example, when a chosen marker shows on average a 50% methylation rate in vaginal
mucosa and 10% in other cell types, a 20% methylation level for the marker in an evidentiary
sample can occur in different ways: (1) no vaginal mucosa is present and the methylation
level of the other cell types (skin and/or semen) turns out higher than the average of 10%;
(2) vaginal mucosa is present and no other cell types and the 20% methylation rate is an
outlier for vaginal mucosa; (3) vaginal mucosa is mixed with other cell types for which a
ratio of 1:3 would nicely explain the methylation rate of 20%. In this example, the DNA
profile may be informative as a female donor will correspond to vaginal mucosa and the
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male donor to semen (if detected), but assumptions may need to made, for example, that
no saliva from either one of the donors is present. When choosing a methodology for
casework application, its suitability for mixed samples needs to be considered to enable
appropriate interpretation.

6.3. Reporting Cell Typing Results

In expert reports, cell typing results are generally given as ‘indication for the presence
of’ when genetic markers or tests for a body fluid or organ tissue are observed. With RNA
typing, interpretation thresholds are applied as both drop-in and dropout may occur, due
to limitations in sensitivity and specificity described above. These interpretation thresholds
can include a numerical scoring [238], or a strategy of using replicates and a 50% rule in
which at least half of the markers over all replicates need to be detected [111]. All have the
drawback that they represent a ‘fall-of-the-cliff’ method, which means that the detection of
one marker more or less may change the interpretation of the results.

Nowadays, the general trend in forensic reporting is to provide an evidential value,
for example by presenting a likelihood ratio; the probability of the evidence given two
competing hypotheses, H1 and H2. Formulating H1 can be straightforward (‘the sample
contains vaginal cellular material’); formulating H2 is more complex as it could be ‘the
sample does not contain vaginal cellular material’ or ‘the sample contains another body
fluid’. These hypotheses follow the simplifying assumption of one body fluid per sample.
More realistic hypotheses consider mixtures and could be formulated as H1: ‘the sample
contains vaginal cellular material, and possibly other body fluids’ and H2: ‘the sample
does not contain vaginal cellular material, but other body fluids’ (note that one could also
specify these other body fluids). Conditioning on cellular material assumed to be present
(for instance, because the sample is a penile swab) would generate hypotheses like H1: ‘the
sample contains vaginal cellular material, and penile skin and possibly other body fluids’
and H2: ‘the sample does not contain vaginal cellular material, but penile skin and possibly
other body fluids’.

Some statistical approaches have been proposed for body fluid typing; for organ
typing, a multivariate statistical model was trained [120,239–242]. The basis of such
models is an experimental dataset consisting of ground truth data, that should be casework
representative. This is challenging as casework includes a wide range of samples for which
the true composition is not known. It is not trivial to prepare such a dataset, and the LR
should be calibrated to suit the size of the dataset (note that for DNA datasets the allele
frequencies are used, while with RNA datasets an RNA profile is considered in its entirety).
Reporting the LR in a verbal scale rather than a numerical value, seems more appropriate.
Clearly, further development is needed, although the developments are promising.

6.4. Associating Donor and Body Fluid

A challenge for any forensic RNA typing method is the association of donor and
body fluid. Complications are that one body fluid can be given by multiple donors
and/or one donor can give multiple body fluids. Even with simple mixtures of two
donors each giving one body fluid, it was shown that peak heights in DNA and RNA
profiles cannot be used straightforwardly [97]. Only with gender-specific body fluids
(vaginal cellular material and semen) and the involvement (or assumption) of one donor
of that gender, is association of donor and body fluid possible. This introduces the risk
of an association fallacy [2,243]. Thus, alternative procedures are being developed like
SNPs (single nucleotide polymorphisms) in transcribed regions (RNA-SNPs) [242,244–246].
The concept is that the RNA indicates which cell type is present and that, as the RNA
is transcribed from DNA, the genetic variation within this transcribed region provides
information on the identity of the donor. First, which cell types are present is assessed, then
the genotype for the RNA-SNPs of the donors that are assumed to be present are derived
by genotyping their reference DNA (since this is DNA, there is no need to provide the
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body fluid questioned) and lastly the RNA of the stain is sequenced to see what SNPs are
present in the transcribed mRNA to see if/ who of the donors matches this sequence.

This is a developing area with multiple challenges at hand: (1) SNPs can affect the
stability or transcription level of RNAs, so the genotypes at the DNA and RNA level may
not align (for instance one appears heterozygous at the DNA level but since the presence
of a SNP affects RNA stability or expression level, one appears homozygous at the RNA
level; (2) linked SNPs should be regarded according to their genetic phase (equivalent to
a microhaplotype), which may be complicated when different SNPs reside in different
amplicons; (3) the approach is only to be explored for samples in which all donors can be
assumed as there is no clear strategy/consensus yet on how to deal with unknown donors.
It is probably best to limit the approach initially to two-person mixtures.

CpG-SNPs (SNPs nearby CpGs indicative of cell types) have also been described [247,248].
Methods not depending on bisulfite conversion (such as MSRE) may be most practical
to use to detect these as the bisulfite conversion will affect all non-methylated cytosines
complicating SNP detection and primer design. A MS-HRM assay targeting DACT1 that
is hypomethylated in semen was used [249] to determine if it was possible to associate
semen with a DNA profile in a mixture. Some progress was made, and it was possible
to determine whether the semen compromised the majority, almost half, or was in the
minority of the components in a mixed fluid.

7. Further Considerations

7.1. Other Marker Types and Technologies That Have Been Explored
7.1.1. Non-Coding RNAs

Various non-coding RNAs have been explored as markers for body fluid and tis-
sue identification.

miRNAs are a class of small RNA molecules, 18–25 nucleotides in length, which are
involved in the regulation (repression) of mRNA translation and stability [69,71]. with
various forensic applications including body fluid identification [250].

Adult-specific roles for miRNAs (adult physiology, cancer development or suppres-
sion) have been described in various stem cell populations [251] and show continuous/
steady expression. This means these markers may be less specific for body fluid and tissue
identification than might be suggested by the highly specific expression patterns seen in
embryos [252]. Additionally, since human miRNAs generally interact through limited base
pairing of only a few bases in the 5’ part of the miRNA, a miRNA can bind to many targets.
Conversely, an mRNA may be targeted by several (different) miRNAs. For these reasons, a
key limitation of miRNAs is their specificity. Nonetheless, many studies have proposed
miRNAs for body fluids such as blood, saliva, menstrual blood and semen [253–257] and
body tissues including brain, liver, skeletal muscle and skin [258]. miRNAs are stable [259]
and have been shown to be detectable in forensic-like samples when treated to a range of
environmental conditions [218,260] after laundering [261].

Methods to analyze miRNAs primarily include miRNA expression profiles to iden-
tify candidate markers, followed by qPCR to test specificity [253,255,256,258,262]. Some
approaches include the extraction and analysis of miRNA and DNA together [263] and
multiplexed miRNA panels [264] able to discriminate between venous blood, menstrual
blood, semen, and saliva. High throughput sequencing of miRNAs from body fluid sam-
ples has also been used to identify new candidates [265]. Statistical methods and reference
(endogenous) miRNA markers [262] are needed to measure miRNA expression with qPCR.
Recently classification algorithms have been applied to the interpretation of miRNA profiles
as detection is not a simple yes–no answer [259].

The longest known class of small non-coding RNA are the piwi-interacting RNA (piRNA),
26–31 nucleotides in length. Their role is in the transcriptional and post-transcriptional si-
lencing of transposable elements which may be differentially expressed in different body
fluids making them suitable candidates for identifying body fluids (although transposon
silencing is foremost important in the germline where piRNAs were initially found [266]).
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Two papers [267,268] describe the characterization by RNA sequencing of piRNA expres-
sion profiles and the selection of three piRNA markers (piR-hsa-27622, piR-hsa-1207 and
piR-hsa-27493) that distinguish between venous blood and menstrual blood and a further
two (piR-hsa-27493 and piR-hsa-26591) to distinguish between saliva and vaginal material,
implemented as TaqMan RT-qPCR assays.

Short interfering RNA (siRNA) are another class of small non-coding RNA with a role
in gene expression [269]. To date there are no reports of their use as markers in forensic
science, perhaps because their role is to interfere with the expression of specific genes, by
degrading RNA after transcription, rather than to promote the expression or modification
of specific transcripts.

Long non-coding RNAs (lncRNAs) are RNA transcripts not translated into proteins
that appear to be involved in the regulation of gene expression. Approximately 78%
of them are tissue-based compared to approximately 18% of mRNA transcripts. One
of the best studied is the X-inactive-based transcript (XIST) involved in X-chromosome
inactivation [270,271]. To date, XIST has been incorporated into an assay [272] to positively
identify male and female cell material in forensic samples with a second study [273] further
testing the assay on forensic type samples.

7.1.2. Proteome

All body fluids and tissues contain unique proteomes, derived from the expression of
mRNAs (see Section 3.1.1) in turn derived from the genome. In the past, unique proteins
of each body fluid or tissue type have been detected and presumptively identified by
determination of the enzyme activity (acid phosphatase for example) or immunological
properties (RSID tests (Independent Forensics, Lombard, IL, USA) for example). More
recently technological developments in proteomics, as for genomics, have highlighted
potential benefits for forensic identification purposes and useful reviews of the forensic
potential have been published [274–276].

Mass spectrometry (MS) is the analytical method of choice with advantages including
high sensitivity and specificity [277]. Generally, candidate markers are found by de novo
analysis or from reference proteomes, then validated by testing on known samples. By
detecting multiple peptides in a single assay from more than one protein per fluid, the assay
can be considered not only confirmatory but also human-based and suitable for mixtures.
Sensitive and specific assays have been developed including blood, semen, seminal fluid,
saliva, vaginal/ menstrual fluid and urine [277–280] using methods such as matrix-assisted
laser desorption/ionization (MALDI) MS [277], quadrupole time-of-flight MS [278,279]
MALDI MS Profiling and Imaging [281] and MALDI time-of-flight MS [282] from samples
as diverse as blood-stained finger marks [281] and blood and vaginal cellular material
under fingernails [282], although difficulties in identifying urine recovered from substrates
and semen samples that had been mixed with lubricants were found [280]. A challenge
to be addressed is that the protein content of each fluid/ tissue varies considerably, and
whilst it is possible to detect very small amounts of blood in saliva, the opposite was not
true [277–279].

MS methods tend to be destructive to the sample, however in a recent report [283]
a new approach, sheath-flow probe electrospray ionisation MS was used, which allows
stains to be sampled with no preparation or sample destruction bar the initial small amount
taken. In the research which examined blood, saliva and urine, alterations were observed
in the spectra over time suggesting that this approach could also be used to age a stain.

The relationship between the proteome and the genome offers the possibility for
proteomic “genotyping” [284,285] in a similar manner to the suggested RNA SNP and
CpG SNP approaches described in Section 6.4. This has clear advantages when DNA in a
sample is compromised in quality and quantity such as in a hair shaft, as proteins are more
stable and resistant to damage and decay than DNA. Genetic variations in human DNA
can be linked to mutations found in hair proteins (genetically variant peptides (GVPs)
referred to as single amino acid polymorphisms, SAPs, which in turn can be associated
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with their DNA counterparts (missense SNPs). GVPs containing SAPs can be identified
by mapping these peptide sequences using MS and results have been obtained from short
lengths of human hair [275,286]. Not only could this approach be used to “identify” and
link individuals, but it can also be used to infer ancestry as SNP profiles varied between
ancestral groups.

7.1.3. Aptamers

Aptamers are single-stranded oligonucleotides or peptides that are selected using
SELEX (systematic evolution of ligands by exponential enrichment) in a sequential process
to bind their target molecules in a highly specific and sensitive manner. Initial studies used
RNA aptamers [287,288], with the first description of a DNA aptamer in 1992 [289] and
the first XNA aptamer capable of binding to a small molecule (ochratoxin A) in 2018 [290].
Aptamers have a number of advantages over assays such as the immunochromatogenic-
based methods described in Section 2.2.1. Consistent aptamer synthesis methods, more
straightforward functionalization, equivalent binding affinities and cheaper long term and
stable production are all factors.

Aptamers are now widely used as biosensors in a large number of fields [291,292]
with significant and recent examples seen for the rapid detection of SARS-CoV-2 [293,294]
and have potential for the use in forensic science [295]. Aptamers have been developed
to detect PSA [296], hemoglobin [297] and more recently, aptamers to detect spermatozoa
have been described using a combination of Cell-SELEX and massively parallel sequencing
technologies [295]. Once suitably specific and sensitive aptamers are obtained, they can be
built into a range of sensors for detection many of them suitable for field deployment.

8. Concluding Remarks

Preferably, body fluid typing and DNA profiling (to answer the what and the who
question) are analyzed on the exact same sample. This can be achieved when the DNA
extract is used for cell type inference (as with methylation analysis) or when RNA is
extracted from a fraction normally discarded during DNA extraction (like a flow through
fraction when binding DNA to a silica column). Case reports have been published for
both methylation [298] and RNA-based assays [299]. The advantage of using DNA for
body fluid typing is that no additional extraction procedure is needed; the disadvantage is
that less DNA remains for further analyses such as Y-STR profiling, mtDNA analysis or
the prediction of age, ancestry, appearance. Microbiome analysis can use either DNA or
RNA. The global COVID-19 pandemic has stimulated the development of assays that may
find their use in forensic analysis such as multiplexed and extraction-free amplification
assays [300], which may provide RNA-based tests prior to DNA extraction and analysis
that may present the opportunity of triage. Such extraction-free methods [301] present
pioneering opportunities beyond advancements such as one-step RT-PCR methods that
simplify current methodology [302].

Introducing cell typing methodologies in a forensic laboratory requires extensive
validation, implementation of interpretation and reporting, and explaining results for
judiciary. This comes with additional costs (also because the technique itself may ask quite
some hands-on laboratory work) and it has been suggested that it is best performed or
outsourced to specialized laboratories.
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Abstract: The inference of ancestry has become a part of the services many forensic genetic labora-
tories provide. Interest in ancestry may be to provide investigative leads or identify the region of
origin in cases of unidentified missing persons. There exist many biostatistical methods developed
for the study of population structure in the area of population genetics. However, the challenges
and questions are slightly different in the context of forensic genetics, where the origin of a specific
sample is of interest compared to the understanding of population histories and genealogies. In this
paper, the methodologies for modelling population admixture and inferring ancestral populations
are reviewed with a focus on their strengths and weaknesses in relation to ancestry inference in the
forensic context.

Keywords: ancestry; biostatistics; clustering; classification; distance based; likehood; hypothesis tests

1. Ancestry Informative Markers

The increased availability of whole human genome sequences in the public domain is
an invaluable data resource in many genomics, biomedical, and anthropological research
areas. In particular, the data repositories focusing on the genomic diversity among human
populations (e.g., HapMap Project [1], 1000 Genomes Project [2], Simons Genome Diversity
Project [3], and more recently curated in the Genome Aggregation Database Project, gno-
mAD [4]) have contributed to the understanding of human evolution, migration histories,
waves, and patterns.

Typically, genetic samples from populations with different geographical locations,
cultural backgrounds, tribal memberships, and linguistic groups constitute the data used
to identify genomic differences among the derived populations. These genomic differences
are the result of a mixture of causes: mutations, recombination, genetic drift, selection, and
migration [5]. The variations in the human genome can be observed both in tandemly
repeated DNA sequences (e.g., short tandem repeats, STRs) and in single-nucleotide poly-
morphisms (SNPs) but are also manifested in sequence variations in lineage markers (e.g.,
Y-chromosome and mitochondrial DNA) and structural variations (e.g., copy-number
variation) [6].

The geography of human populations (ancestry) and genetic polymorphisms are
closely related [7–12]. Hence, identifying ancestry informative markers (AIMs) can be
accomplished by analysing the publicly available genome sequences. Several measures of
informativeness has been derived in order to rank candidate markers [13,14].

In forensic genetics, STRs are presently the standard markers used for identification
and relationship testing. Furthermore, variation in allele frequencies may be used to infer
an individual’s ancestry [15,16]. Other types of AIMs are microhaplotypes [17], which are
groups of closely located SNPs (often positioned within 500 bp), and insertion–deletion
polymorphisms (indels) [18,19]. However, SNPs are more commonly used for ancestry
analysis [20,21], where several commercial assays have been developed for ancestry inves-
tigations. The selection of SNPs to be included in commercial kits depends both on their
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biochemical properties (e.g., allele balances and primer site location) and their informa-
tiveness regarding specific continental and regional populations. Hence, the companies
focused on specific population structures (e.g., intracontinental differences) may result in
poor resolution in other regions and among populations of close proximity. Consequently,
all results obtained from the genotyping and subsequent analysis are conditioned on the
specific SNPs included in the analysis. This is important to bear in mind when interpreting
the results of an analysis, as general patterns and expectations to population variability
may not be contained on a narrowly selected set of markers.

2. Biostatistical Methods

The study of population structure from genomic data has a long history within the
genetic and statistical literature. The increasing complexity and availability of data from
ancestry informative markers on multiple populations have required the development
of appropriate methodologies to model and capture the subtle genetic structures in the
data: from the first studies of a few hundred markers and individuals to more recent
studies with thousands of individuals genotyped on highly dense assays or from whole
genome sequences.

This progress, driven by biotechnological advances, has been challenging not only
from a methodological point of view but increasingly so from a computational perspective.
Where independence between the markers was ensured by their genetic distance, the closer
proximity of genetic markers results in statistical dependence (e.g., due to linkage disequi-
librium, LD). This increases the complexity of the analysis since such dependencies must be
adequately modelled and their dependence structure learned from the data. Some methods
incorporate the structure into their modelling framework, either by identifying stretches
supposedly inherited as a complete block (e.g., [22]) or attempts to learn the association
structure using graphical models [23]. Others operate by removing the dependence among
markers by pruning or thinning the data based on LD (e.g., [24]) or using the residual signal
after successively regressing the markers on each other (e.g., [25]).

The most widely used methodologies for analysing genetic structure can broadly be
divided into four different groups: principal components analysis, model-based clustering,
classification and likelihood-based, and hypothesis test-based methods. In addition, tree-
based and distance/dissimilarity clustering methods are used but not included in this
review. Most of the development in the study of population structures is driven by interests
in medical genetics or population genetics, where controlling for population stratification
may be vital for some applications or where the study of population dynamics on its own
is the main purpose. Hence, few methods have been developed with the applications
of forensic genetics in mind. In the subsequent sections, the various methodologies are
discussed with references to key publications in their domain.

To demonstrate and visualise the results from the various methods, data from [26] are
used in the following sections. The data consist of samples from six reference metapop-
ulations (comprised by a total of nref = 3453 samples) and ntest = 517 test samples all
genotyped on the 164 ancestry informative SNPs included in the Precision ID Ancestry
Panel (excluding marker rs10954737 due to a high degree of missingness). The reference
samples are known to originate from the indicated metapopulation, are of high sequencing
quality, and used to estimate the metapopulation’s allele frequencies. The 517 test samples
were harvested online, where their alleged metapopulation of origin was derived from the
sampling location and other available meta information [26]. Both the reference and test
samples originated from six regional areas, where the regional specific nref/ntest counts
are: Sub-Saharan Africa (668/37), North Africa (283/49), Europe (1014/173), Middle East
(377/52), South/Central Asia (489/85), and East Asia (622/121).

2.1. Principal Components Analysis

Principal components analysis (PCA) has a long history of application in the study
of population structure. The usage of PCA in the analysis of population structure was
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pioneered by [27], as an efficient way to capture the underlying structure for visualisation
purposes. PCA is able to capture continuous admixture between populations, implying that
admixed populations typically falls on the lines between its parental populations. More
recent PCA-based methods for inference include SMARTPCA [25] and EIGENSTRAT [28].
These methodologies provide further insight as to how many PCs are required to capture
detectable population structures by the use of hypothesis testing on the magnitude of the
PCA’s eigenvalues. For the reference samples (cf. above) from [26], there are four significant
PCs according to EIGENSTRAT. The first three PCs are plotted in Figure 1 (plots including
the fourth PC do not visually separate the metapopulations). The often detected triangle
spanned by Sub-Saharan Africa, Europe, and East Asia is cleary visible in the plot of PC1
and PC2.
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Figure 1. Plot of the first three PCs from the PCA of the reference samples.

Besides being an efficient tool for visualising high-dimensional (genetic) data, PCA
also yields the best linear low-dimensional approximation of the data in terms of Euclidean
distance. This, together with the orthogonality of the principal components (PCs), implies
that population substructures can be detected by the discriminant analysis of the PCs,
DAPC [29]. Primarily relying on linear algebra, DAPCis computationally much faster than
STRUCTURE and gives comparable results. However, several papers discuss some of the
known pitfalls when using PCA [30–33]. The most important issue to be aware of is PCA’s
sensitivity to the sampling of individuals and populations. An unbalanced sampling of
some populations forces the PCs to account for the variation caused by the majority groups.
Since most models and methods try to minimise a loss function, this implies that in the
estimation of the unknown quantities (e.g., model parameters, here, the PCs) emphasis is
given to the majority groups in the data [30,31]. The loss function is typically proportional
to the deviation between the observed data and the model’s predictions (or expectation),
e.g., measured by the model’s likelihood or squared distance of the residuals. For PCA, the
loss function is inversely proportional to the fraction of explained variance of the first PCs,
with DAPC’s loss also depending on the intracluster variances as a function of the numbers
of cluster K (measured by a Bayesian Information Criterion, BIC). Another property shared
by several methods and statistical models is that they provide a compression of the data,
in the sense that the methods are trying to retrieve as much information from the data as
possible and discard a nonsignal as noise. Taken a bit further, one may interpret the model
output and parameter estimates as data summaries (some more informative, advanced,
and interpretable than others). Consequently, some of these summaries (e.g., the PCs
and STRUCTURE as discussed next) are similar or even identical for different population
genealogies [31].
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2.2. Model-Based Clustering Methods

The seminal STRUCTURE paper [34] introduced a population genetics methodology
based on a statistical finite mixture model. Using a Bayesian approach, the posterior proba-
bilities for cluster memberships and cluster-specific allele frequencies are estimated using
an MCMC-algorithm (MCMC: Markov chain Monte Carlo). STRUCTURE has been used
in numerous studies and has, according to Google Scholar, more than 30,000 citations,
which indicates its enormous influence in the field of population genetics [35]. Forensic
applications were mentioned as one of motivations for STRUCTURE ([34], p. 945) in order
to identify cryptic population structures and assess their influence on the detection of im-
migrants and calculation of match probabilities [36–38]. In essence, the initial STRUCTURE
model is a simple Hardy–Weinberg model with the relaxation that subpopulations have
different allele frequencies and individuals may inherit alleles from several subpopulations,
i.e., being admixed [35]. Following the initial publication, several modifications both on
the population genetic model (allowing for, e.g., linked markers and null alleles) [22,39]
and computational aspects (faster and more efficient algorithmic schemes) [40–42] have
been suggested. See [35,43] for further references and remarks.

Despite the many successful applications of STRUCTURE (including variants and
similar methodologies, e.g., FRAPPE [40] and ADMIXTURE [41]), to population genetic data
and research questions, no model is better or more general than its underlying assumptions.
Similar stories apply to simple linear regression models, where the assessment and evalua-
tion of the residuals is part of any analysis. However, because of STRUCTURE’s complexity,
it is harder to conduct the assessment of the model fit. A recently published instructive
tutorial [44] provides a critical view on how to assess the outcome of STRUCTURE analysis
using the tools badMIXTURE [45], GLOBETROTTER [46], fineSTRUCTURE, and CHRO-
MOPAINTER [47]. In particular, the authors highlighted the fact that different population
scenarios (e.g., recent admixture, bottleneck, and admixture contribution from untyped
populations) result in similar STRUCTURE barplots [7,48] (the typical data summary from
a STRUCTURE analysis). Supplementing the STRUCTURE analysis by residual plots based
on badMIXTURE, patterns were detected enabling these scenarios to be distinguished [44].
Similar to PCA, STRUCTURE is sensitive toward biased sampling and population sample
sizes. Specifically, imbalances between the analysed populations may influence how and
which of the sampled populations that exhibit patterns of population admixture ([44], Case
Study 3, pp. 5–8). However, choosing the appropriate (or in a sense, correct ) value for K, the
number of population clusters, is not a well-defined problem, i.e., only heuristic methods
exist for guiding the specification of K [34,35,43,44]. Different choices of K may result in
rather different results and interpretations of the population stratification and history.

In Figure 2, the estimated STRUCTURE admixture components, q = (q(1) , . . . , q(K) ), for
the reference samples (cf. above) are shown for K = 4. There is a clear visual distinction in
the distribution of qi across the 3453 reference samples.

Figure 2. Barplots of the STRUCTURE admixture components (K = 4) for the reference samples from
six metapopulations. There is a clear visual difference between the admixture components for the
six metapopulations

The four clusters of Figure 2, K = 4, may be associated with Sub-Saharan African,
European, South/Central Asian, and East Asian components. The samples from North
African and Middle Eastern regions show the strongest admixture of these four components.
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2.3. Classification and Likelihood-Based Methods

The statistical problem solved by STRUCTURE [34] and the related methodologies
(e.g., ADMIXTURE [41]) is a rather complex one: Assign individuals to populations while
estimating the unknown populations’ unknown allele frequencies. As discussed above
(Section 2.2), this is performed by finite mixture models, where the assignment of indi-
viduals and updating of population allele frequencies are conducted iteratively (either
by Bayesian MCMC methods [34] or using efficient variants of expectation–maximisation
algorithms [41]). However, if analysis of population structure is not the purpose and
the allele frequencies are known for a set of populations, the assignment of individuals
is simpler.

In this case, the assignment of nonadmixed individuals can be conducted by a Bayes
classifier, where the individual is assigned to the most probable population among the
ones included in the reference database. As such, the population assignment problem can
be solved by several types of classification algorithms known from the machine learning
literature (e.g., classification trees, random forest, support vector machines, multinomial
regression, partial least squares, discriminant analysis, nearest neighbours, gradient boost-
ing, and other ensemble learners). Common to most of these methods is their ability to
account for interaction effects between the explanatory variables on the outcome (here,
the marker interactions when predicting the population of origin). Furthermore, similar
to the methods of Sections 2.1 and 2.2 (e.g., PCA and STRUCTURE), sample sizes and
imbalanced training data typically influence the tuning and therefore performance of the
machine learning methods. When training a classification algorithm on a specific dataset,
the objective is to drive the overall loss function downwards. Typically, the loss function in
classification contexts decreases with more samples being accurately classified (e.g., the
misclassification rate or smooth functions, thereof). However, if some populations have low
proportions in the sample, the classifier gains little from classifying these correct compared
to the frequently occurring populations. Hence, the relative composition of the populations
in the data may impact the trained classifier quite substantially. In the context of forensic
genetics, the risk of incomplete AIMs profiles obtained from, e.g., crime scenes, makes some
methods less applicable to samples with some or more untyped markers (e.g., due to low
signals or marker drop-out). Some methods (e.g., naïve Bayes classifiers and classification
trees using surrogate splits) may readily deal with partial profiles, whereas in particular
regression, models are susceptible to missing data.

From a forensic perspective evaluating the weight of the evidence is typically con-
ducted using the likelihood ratio principle. For multiple propositions (in this case, multiple
populations), this approach generalises to several ratios assessing the pairwise agree-
ment between data and the alleged populations of origin. The predicted population
of origin is the population where the profile is most probable. The likelihood function
typically assumes a specific population genetic model, e.g., within each population assum-
ing Hardy–Weinberg equilibrium and independent genetic markers. This corresponds
to a naïve Bayes classifier assuming a Binomial distribution for each marker given the
population specific allele frequencies. Two forensically relevant implementations includ-
ing several reference populations and AIMs panels are freely available online (FROG-kb
(http://frog.med.yale.edu/FrogKB/, accessed on 13 December 2021) [49,50] and Snipper
(http://mathgene.usc.es/snipper, accessed on 13 December 2021) [51]). Other approaches
toward classification have been considered and compared (e.g., multinomial regression
and genetic distances) [52]. These methods are in particular relevant in the case of admixed
individuals, where the single population likelihoods do not suffice [53,54].

2.4. Hypothesis Test-Based Methods

An underlying and important assumption for both clustering and classification is that
of exhaustive populations. This means that for clustering the admixture components must
sum to one, indicating that all the genetic admixture of an individual can be explained
by contributions from the K clusters. However, the Ghost admixture example of ([44],
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p. 3) shows that the noninclusion of important branches of a genealogy may result in
misleading results. In that case, the contribution from the unsampled reference population
to the admixture was replaced by the reference population most similar to the unsampled
one. This scenario may easily occur in the forensic setting, where only major popula-
tions are included in the reference material, but where conclusions are wanted on a finer
(sub)population scale.

For classifications, an underlying assumption is that an observation belongs to exactly
one class (i.e., one and only one). Hence, this forced classification means that even when
all the possible classes are (highly) unlikely, the DNA profile under classification must be
assigned to precisely one of the populations (typically the least unlikely population).

This issue was the main motivation for the derivation of the GenoGeographer method-
ology [55,56]. Rather than forcing an observation to be classified to any of the prespecified
populations in the reference material, it was assessed whether the sample could originate
from each of the reference populations. Logically, this implied that the sample was tested
for being an outlier in each of the possible populations, and this was formally conducted by
testing the hypothesis of the DNA profile sample and database sample originated from the
same underlying population or not [55]. This outlier test is equivalent to a Fisher’s exact
test and thus enjoys many of the same statistical properties, e.g., increasing power with in-
creasing sample size and robustness toward missing observations. Other hypothesis-based
methodologies include a likelihood ratio test for recent admixture [57].

For each reference sample i = 1, . . . , 3453, STRUCTURE estimates the admixture
components, qi = (q(1)

i , . . . , q(K)
i ), where ∑K

k=1 q(k)
i = 1 by definition. From these, the

average admixture component is calculated for each of the reference metapopulations,
by the average over the admixture components for reference samples belonging to this
metapopulation:

q̄j = (q̄(1)
j , . . . , q̄(K)

j ), with q̄(k)
j = n−1

j ∑i∈Rj
q(k)

i , k = 1, . . . , K,

where Rj is the set of the nj samples from metapopulation j.
As for the training samples STRUCTURE admixture components ql was calculated for

the test samples, l = 1, . . . , 517. The closer ql is to q̄j for some test sample l and referece
metapopulation j, the more likely it is to assume l to originate from metapopulation j.
However, how (dis)similar should these admixture components be to declare l (not) to
originate from j? Moreover, how should this similarity be measured? One possible measure
of proximity could be to use a Brier-like score, Blj, which is the sum of squared admixture
components differences between test sample l and reference metapopulation j:

Blj =
1
K

K

∑
k=1

(q(k)
l − q̄(k)

j )2.

The closer Blj is 0, the more similar is sample l to metapopulation j in terms of STRUCTURE
admixture components [Supplementary materials of 26]. The maximal value of Blj is 2/K,

which happens if q(k)
l = 1 and q̄(k′)

j = 1 for k �= k′. In Figure 3, the boxplots of the Brier scores
for each of six metapopulations are grouped according to the test samples’ status inferred
by the GenoGeographer methodology (in colours) [55]. Added to plot in grey boxplots
are the Brier scores for the reference samples, which are the samples used to compute q̄j.
Thus, the grey boxplots are expected to show lower Brier scores compared to those of the
coloured boxplots.
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Figure 3. Boxplots of the Brier scores, Bij, with K = 4 in the STRUCTURE analysis and j running
through the metapopulations of [58]. Reference: Samples constituting the metapopulations (and used
to calculate q̄j). Concordant: A sample is accepted in the metapopulation coinciding with its sampling
region (with a likelihood value significantly larger than any other metapopulation). Discordant: A
sample is accepted in a metapopulation different than its sampling region (with a likelihood value
significantly larger than any other metapopulation). Ambiguous: A sample’s likelihood value is not
significantly different in two or more of the accepted metapopulations. Rejected: A sample is rejected
in all metapopulations. The concordant test samples (green) have similar Brier scores as those of the
reference samples (grey). Discordant samples (red) tend to have the largest Brier scores, followed by
the rejected samples (blue) with the ambiguous (yellow) in between (see text for definitions). The
horizontal dashed and dotted lines in the top of the plot indicates Bij = 0.5 and 0.25, respectively
([26], inspired by Supplementary Figure 8).

The Brier scores, Bij, in Figure 3, tend to be larger for discordant, ambiguous, and
rejected samples (see definitions in caption of Figure 3). However, from the visual inspection
of the STRUCTURE barplots (data not shown), it is often rather hard to judge when a sample
deviates substantially from a given metapopulation to declare it extreme compared to the
other samples. The advantage of GenoGeographer is that such visual inspections or ad
hoc defined thresholds for dissimilarity (e.g., using a Brier score) are not required. The
conclusions are based solely on a hypothesis test and a predefined significance level.

The model formulation of STRUCTURE implies that any spurious and complex type
of admixture can be modelled. For the GenoGeographer framework, however, only specific
admixtures can be assessed. Currently, first-order admixtures can be accounted for [56],
but the admixture approach can be generalised to handle outlier tests for higher-order
admixtures (e.g., second-order where the parents themselves may be admixed). However,
the ancestry SNPs may not be sufficiently informative to distinguish between certain
admixture configurations (e.g., two pedigrees with different founder populations may be
equally likely).

One solution to this may be to use linked markers as these typically are more infor-
mative for pedigree analyses [59]. In order to handle linked markers in the framework
of hypothesis tests, e.g., microhaplotypes [17], the interactions between the markers was
modelled using decomposable graphical models, where association structures between the
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SNPs could be different among the reference populations [23] (e.g., the linkage between
SNPs was allowed to be different between continental regions). For a microhaplotype with
K biallelic SNPs, there exist 2K different alleles, implying that many samples are needed
to obtain accurate allele frequency estimates for moderate values of K. By exploiting the
conditional independence structures, the framework of graphical models provides a more
data efficient modelling of the microhaplotype frequencies and thus requires fewer samples.

3. Discussion

STRUCTURE remains to be a valuable methodology and approach for analysing
population structure in forensic genetics. There exist several guides and tutorials for how to
prepare the population data and choosing parameter settings for STRUCTURE (e.g., [60,61],
with some emphasis on forensic applications). However, as warned by [44], the resulting
barplots should not be overinterpreted. The badMIXTURE approach [45] provides the
means to reduce the risk of being mislead by the summaries provided by STRUCTURE and
supporting software (e.g., [7,48]).

However, STRUCTURE’s popularity in the field of population genetics to study popu-
lation structure is well deserved. It complemented PCA with a quantitative method that
assigns sample specific weights to each of the K populations specified in the study. This is
a powerful way to summarise the data in terms of cluster membership probabilities and
the estimated allele frequencies for the identified populations. Both PCA and STRUCTURE
are valuable for exploratory analysis, where encoding errors (e.g., of missing data) and
warnings about misspecification of origin may be detected by visual inspections of the
results. From a forensic point of view, the results from both PCA and STRUCTURE are
hard to report in terms of a weight of evidence calculation. The similarity (or dissimilarity)
between the sample and reference materials can be reported but typically only in terms of
their visual appearance. By contrast, classification and likelihood-based methods are able
to give weight to the evidence. This may be in terms of a posterior probability or likelihood
ratio, where the assignment would be to the most probable population. However, none of
these methods take into account the risk of assigning the profile to the least unlikely popu-
lation in the case where none of the populations are representative for the true population
of origin.

Inferring a DNA profile’s geographic region or population of origin has been an active
field of research in forensic genetics for several years. The vast collections of publicly
available databases of whole-genome sequences provide a unique resource for researchers.
Rather than spending time and consumables on collecting samples, these DNA profiles
can now be harvested online. However, in doing so, one relies on the quality of the
data provided by others, which includes the genetic typing and base calling but also the
metadata regarding sampling location and ethnic information.

In the case of forensic genetics, the finer resolutions are often of interest. In order to
increase the specificity, it may be necessary to supplement the selected AIMs with more
locally informative markers, specific to separating the local and often related populations
of interest. In the search for such markers, the publicly available datasets are of immense
importance as they can be used to screen for candidate AIMs. In particular, the sam-
ples from regions close to the specific populations of interest are essential for selecting
potential markers.

Combining the flexibility of STRUCTURE with the appealing visual features of PCA
(e.g., using EIGENSTRAT to determine the number of significant components) is essential
in the exploratory phase of ancestry inference. However, the forensic questions related to
ancestry is typically different from those of population genetics, where the focus may be
on population specific patterns (e.g., bottleneck and expansion events or migration). The
typical forensic use case focuses on a specific individual (or human remains), for which the
most likely population of origin needs to be identified. In such cases, likelihood ratio or
classification methods can be used. However, the fundamental assumption of the existence
of an appropriate population in the reference material may very often be violated. Hence,
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DNA profiles are assigned to the population that is most similar to the sample, which due
to human evolution and history may geographically and culturally be very far away from
the true population. The GenoGeographer methodology attempts to overcomes this logical
problem by using statistically based outlier tests.
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Abstract: Greater scrutiny and demands for innovation and increased productivity place pressures
on scientists. Forensic genetics is advancing at a rapid pace but can only do so responsibly, usefully,
and acceptably within ethical and legal boundaries. We argue that such boundaries require that
forensic scientists embrace ‘ethics as lived practice’. As a starting point, we critically discuss ‘thin’
ethics in forensic genetics, which lead to a myopic focus on procedures, and to seeing ‘privacy’ as the
sole ethical concern and technology as a mere tool. To overcome ‘thin’ ethics in forensic genetics, we
instead propose understanding ethics as an intrinsic part of the lived practice of a scientist. Therefore,
we explore, within the context of three case studies of emerging forensic genetics technologies, ethical
aspects of decision-making in forensic genetics research and in technology use. We discuss the
creation, curation, and use of databases, and the need to engage with societal and policing contexts
of forensic practice. We argue that open communication is a vital ethical aspect. Adoption of ‘ethics
as lived practice’ supports the development of anticipatory capacity—empowering scientists to
understand, and act within ethical and legal boundaries, incorporating the operational and societal
impacts of their daily decisions, and making visible ethical decision making in scientific practice.

Keywords: ethics; forensic genetics; ethics as lived practice; decision-making; genetic databasing;
forensic DNA phenotyping; forensic genealogy; forensic epigenetics; communication; database

1. Introduction

Ethical principles and their application in practice have come to matter to many
individual forensic geneticists, working to ensure that, while the scientific foundation
of the techniques they are developing and deploying for casework is reliable, they are
also contributing to a just society. Yet forensic genetics as a discipline and a community
of practice—research scientists, laboratory practitioners, journals, industry, professional
bodies, and users of forensic genetic analyses in policing and elsewhere—continue to face
scrutinize new and emerging forensic genetic technologies for their social, ethical, and
legal ramifications, alongside their scientific and technical dimensions. For example, the
German Government led an inquiry into forensic DNA phenotyping and biogeographic
ancestry testing between 2017 and 2019, leading to the legalisation of the former in 2019,
but not of the latter, due to concerns around racial profiling [1]. The Law Commission of
New Zealand reported on new and emergent forensic genetics in 2020, recommending the
comprehensive revision of legislation; increased oversight; and greater consideration of
concerns surrounding privacy and discrimination [2]. The Law Commission of Ontario

Genes 2021, 12, 1868. https://doi.org/10.3390/genes12121868 https://www.mdpi.com/journal/genes259



Genes 2021, 12, 1868

reviewed Artificial Intelligence (AI) and probabilistic genotyping DNA tools in June 2021,
suggesting that inherent biases in these technologies challenge the notion of DNA pro-
filing as a “gold standard” and requires that there is continuous scrutiny as well as new
legislation [3]. The Scottish Government and the UK House of Lords have commenced
parallel enquiries into developments in technologies for policing in 2021 [4,5], scoping
opportunities, and challenges arising for policing from new technologies.

While these enquiries are undertaken, reports published, and debates held, demand
continues for the utility of databases (including genetic ones) to be maximised, and the
promise of forensic genetics—often portrayed as the greatest crime-fighting tool since
fingerprinting—be realised and capitalised upon. Meanwhile, new techniques are being
developed and debated. Despite remaining contentious, internationally, the use of genetic
‘phenotyping’ in police investigations is growing. The Swiss Parliament is the latest to
prepare legislation to allow for forensic DNA phenotyping amidst, both, supportive and
critical debate [6]. Similarly, since 2018, forays into forensic genetic genealogy have been
spreading since the successful detection of the perpetrator with the help of the technique
in the ‘Golden State Killer’ case in the USA [7–10].

In these areas, as well as generally, forensic scientists face institutional pressures, both
from casework and their scientific community (including employers/funders), which must
be met with scientific professionalism and ethical practice. Yet it was not long ago that
scientists themselves conceded that forensic science ‘is not sufficiently well developed as
a profession’ (p. 523, [11]). Within the scientific community, there is increased scrutiny
regarding the way that data are sourced and shared, informing both forensic research and
casework analysis [12]. The intensification of external scrutiny, and productivity pressures
demand the highest levels of professionalism, which must include a strong, internalized
code of ethics that has not yet been proven to be universal [13].

In some parts of the world, forensic genetics research and casework have become an
important aspect of policing, criminal justice, and victim identification. In multiple ways,
forensic genetics contributes to rendering these domains more agile vis-à-vis existing and
emerging demands and challenges. Novel technologies are developed in response to scien-
tific insights and practical problems while remaining subject to the same responsibilities
that scientists and users have towards their specific institutions, disciplines, and to society
as a whole.

Therefore, in this paper, we offer an approach through which the forensic genetics
community can reflect on their daily decisions in both scientific research and casework
as part of their professional and ethical forensic practice. While we cannot, nor do we
aim to, provide technical or legal solutions, we offer a framework for ethical conduct.
We consider the problem of ‘thin’ ethics in forensic genetics and propose understanding
ethics as an intrinsic part of the lived practice of a scientist. We aim to support scientists in
developing anticipatory capacity [14]—to understand the wider operational and societal
impacts of their daily decisions around forensic genetics—by making visible the ethical
decisions in both their scientific practice and in the application and implementation of
forensic technologies. We do so by exploring ethical aspects of decision-making in forensic
genetics and illustrating the discussion by way of three case studies of emerging forensic
genetics technologies.

2. Materials and Methods

This paper builds on literature analysed in three previous reviews of social and
ethical aspects of scientific, technological, and operational developments in forensic ge-
netics [15–17], adding consideration of scholarship published since 2017, and focusing on
three technologies currently being debated: forensic DNA phenotyping (FDP), forensic
genetic genealogy (FGG), and forensic epigenetics (FEpi). In this endeavour, the concept
of the “social life of DNA,” proposed by Corinna Kruse [18], which captures the different
social relationships observed in the processing of DNA as it moves from crime scene to
courtroom, resonates. As such, we analyse the different life stages of advanced forensic
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DNA technologies. While DNA profiling is a relatively widely accepted technology, having
stabilized and been implemented across different contexts, the three technologies we focus
on are yet to reach such a point of stability. In reviewing these examples, we highlight key
ethical concerns to assist forensic practitioners in expanding their anticipatory capacity
and thus work towards ethically sound decision making. By anticipatory capacity, we
refer to antecedent considerations in science, and in real-world application of science, set
within a wider context of liberal-democratic social and cultural norms and values. These
three technologies were selected, firstly, due to controversy concerning their utility and
reliability/validity specifically, and their ethics more generally [19,20]. Secondly, these
technologies present opportunities to engage with ethics as lived practice, as they pose
ethical dilemmas. Thirdly, debates are ongoing over their use, and measures in place to
regulate these technologies differ across countries. Finally, each of these technologies is
currently at different life stages. Forensic DNA phenotyping, although still the subject
of complex politics of legitimation and contestation [20–23], is currently regulated and
applied in some countries such as Slovakia and Germany. Forensic genetic genealogy is
under intense scrutiny in many jurisdictions and upcoming regulation can be expected
(see for example recent initiatives in the USA and in Australia). Forensic epigenetics is
being developed and has not (yet) been considered widely with respect to regulation
and/or application.

3. The Limitations of “Thin” Ethics in Forensic Genetics

Controversies surrounding advances in forensic genetics could (at least in part) be a
consequence of a structural deficiency in comprehensive, systematic understandings of
what ethics is—or should be—in forensic genetics and related technological innovations.
Let us explain what we mean by a “thin” understanding of ethics.

Firstly, forensic geneticists will encounter ethics as part of an administrative process
to be followed to enable research, innovation, and implementation: following codes of
practice, completing forms, attending training, and submitting authorizations to some form
of the institutional oversight body. Such administrative tasks and tools are clearly essential
in ensuring forensic scientists navigate the most basic rules of research and technology use.
However, the main thrust of this ‘procedural ethics’ [24] is to comply with administrative
and legal procedural requirements, with ethics conceived of as ‘passive’, lending itself
to the interpretation of ethics as a hurdle to research, innovation, and (positive) societal
impact that forensic genetics could otherwise make. Consequently, exclusive adherence to
this “thin” procedural ethics can extinguish the light that a (pro-)active approach can shine
on the complex environment within which forensic work takes place. It also ‘disengages’
forensic geneticists (both in research and casework) from ethics to the detriment of forensic
genetics, and more widely to science in the criminal justice system.

Secondly, within this “thin” understanding of ethics, ‘privacy’ tends to be perceived
as an interpretable legal concept, addressed by compliance with the law. Moreover, ‘data
protection’ is often used as a proxy for ‘privacy’, whereby observance with principles
of data protection will suffice, yet ‘privacy’ is far more expansive and manifold than
mere data protection (pp. 33–50, [25,26]). A reductionist understanding of ethics as
privacy obscures other vital aspects of ethical practice, including attending to justice and
fairness, human dignity (and its cultural values, see, e.g., recommendations by the Law
Commission of New Zealand vis-a-vis forensic genetics and the Māori), and the physical
and informational integrity of a person and/or a group of persons (community). A focus
on privacy also misdirects debate into a cul-de-sac of arguments over balancing ‘personal
privacy’ with ‘public security’ since this dichotomy is erroneous; privacy and security are
symbiotic [27,28].

Thirdly, technology may be perceived as a mere tool, process, or method. However, as
several years of consolidated scientific research have shown (particularly in social studies of
science and technology in health research, and more recently in the social studies of forensic
science), technology is a product of social, cultural, and moral facets of society. Technology
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is always technology-in-practice [29] resulting from, and shaping social interactions and the
organisation of social life. As Greenhalgh and Swinglehurst (p. 3, [30]) suggest, considering
technology as social practices “moves us on from studying either people or technologies”
towards a rich, inclusive analysis of technology as an aspect of social life, considering
technology-in-use as well as the discourses and practices of technology [31].

Reducing technology to its instrumental aspects conceals many ethical decisions that
shape technology, from its conception to application and maintenance as well as to its
oversight. Thus, we consider “thin” or ‘procedural ethics’ insufficient in forensic research
and application, with privacy as just one ethical concern. Nor is technology a mere tool or
method but should be viewed as social practice. Thus, we propose an approach to ethics as
intrinsic to the lived practice of forensic geneticists, making deliberate decisions about daily
practices and procedures, acting in light of these decisions, while continually reflecting
upon their broader impacts now and in the future.

4. Ethics as Lived Practice

Ethics as lived practice extends throughout the life cycle of science: from development
and implementation to regulation and oversight. Regardless, then, of the role(s) that
professionals fulfil—whether as research scientist engaged with the laboratory-based
development of forensic applications; as a forensic practitioner working on criminal cases;
as an expert advising on casework or giving evidence in court—ethical engagement is
inalienably part of professional practice. Such ethical engagement is inescapable because
(i) the development of forensic technologies will affect human beings; (ii) those conducting
forensic casework, and working with forensic data and information, are, as all other
human beings, subjective, open to influence, and fallible; and (iii) forensic casework builds
upon and contributes to selecting, categorising, and curating data and data repositories as
reference points, thus making choices that will affect future forensic research and casework,
and as such, many more humans.

Our understanding of ethics as lived practice stands in contrast to the notion of ethics
as a necessary evil and to the “thin” ethics discussed above—where ethics only arise
at bounded points in time when the ethics ‘hurdle’ is jumped. Ethics as lived practice,
instead, recognises that decision-making is ongoing, and an intrinsic part of the practice.
Continual reflection, then, becomes central: taking time, sometimes briefly, sometimes for
a longer period; alone or as a team; discipline; or community, to (re)consider the basis and
motivations on which decisions are being taken, as well as their consequences. This also
calls for serious engagement with others, including those from outside the laboratory (such
as criminal investigators, social scientists, policymakers forging legislation and regulation,
as well as the civil society), to discuss research, analysis, and future application, within
their wider social and cultural contexts. We call upon the forensic genetics community
to build on emerging strengths here by making ethical reflection—as a way of building
anticipatory capacity—an integral part of forensic genetics work.

The remarkable potential of forensic science, to not only contribute to the pursuit
of justice, but to shape and direct society, is highly valued, but comes with enormous
responsibility. Acknowledgment of the wider impact of forensic work means that ethics
ought to be reflected in scientists’ and practitioners’ training, in their daily decision-
making, and in contributions to scientific and public debates about forensics. Guillemin
and Guillam [24] explain that ethics work occurs in researchers’ daily practice beyond
procedural ethics. Such a practice-related understanding of ethics has been suggested
as a way of incorporating principle-based reflections about the impact and implications
of scientific design and work into everyday decisions [32]. Furthermore, Guillemin and
Guillam suggest that researchers may encounter ethically relevant moments, where the
approach taken or decision made has important ethical ramifications, but where researchers
do not necessarily feel themselves to be on the horns of a dilemma. In fact, in some cases,
it might be clear how the researcher should respond or proceed, and yet there is still
something ethically important at stake (p. 265, [24]). While the scientist or practitioner
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might not perceive this moment as particularly vital or difficult, the decisions made at this
moment can have significant long-term implications and impacts: on the person making the
decision and their forensic specialism; on forensic science more widely and its perception
among users, policy and publics; on the domains using forensic science services; and, via
these domains, on ethical issues such as: social justice; equality; equity; dignity; privacy;
integrity, and so forth. In these ‘ethical moments’ (for a look at ethical moments in forensic
genetics, see e.g., [33]) different perspectives are brought together, to identify and resolve
disagreements, making visible ethical reasoning about scientific practice and the use of
scientific knowledge [20].

Consider, for example, the forensic scientist tracing a partial DNA match indicative
of a familial relationship between a suspect DNA profile and that of a dragnet/mass test
volunteer. If permitted by law, the modus operandi is clear, and the practitioner should
always follow what the law prescribes. However, the law does not, and cannot, provide
for every situation practitioners will come across in their daily practice. If the law has not
explicitly provided for a situation, there is a significant decision to be made: should the
expert report a partial match and thus a potential familial relationship, even though familial
searching is not explicitly regulated in their jurisdiction? In pursuit of a perpetrator, it may
be legitimate to report, even if such analyses are not formally accepted practice (e.g., not
regulated by law, nor a laboratory accredited for), thus shifting the ultimate ethical decision
to others, such as the investigating judge (in predominantly inquisitorial systems) or the
police and prosecution (in more adversarial systems). Nonetheless, the forensic geneticist
is required to make an ethical decision about their practice at this point, and procedures to
support them in doing so—perhaps by calling on them to reflect upon their decision—may
often be non-existent or very limited. This example, like many others occurring daily in
forensic genetics, clearly demonstrates that ethics cannot be limited to an initial passing
of a procedural ethical hurdle, but relies on many decisions around reliability, utility, and
legitimacy [20] that an individual or their team take in forensic research and casework.

Ethics as lived practice demands more attention, while a “thin” understanding of
ethics, anchored, for example, in ‘procedural ethics’, is insufficient for responsible (and as
such also accountable) forensic genetics practice. We argue that ethics as lived practice,
therefore, means that forensic researchers and practitioners identify and understand the
need to address opportunities as well as limitations of their work set within an institutional
and societal context—e.g., in criminal justice, migration management, or disaster victim
identification. In the next section, we discuss ethical decision-making in forensic genetics
practice using the example of data repositories because their creation, curation, and use are
vital to forensic genetics research and can play a significant role in investigative work and
law enforcement.

5. Building upon Strong Foundations: Ethical Decision-Making in
Genetic Databasing

Central to forensic genetics is the data collected from individuals from diverse groups
and curated for use by the scientific community. However, as we show in the example of
forensic genetic genealogy below, data collected and curated for non-forensic purposes
are also increasingly of interest to forensic geneticists and law enforcement agencies. Data
collection and curation in repositories form a key life stage of genetic data and ethical
considerations in forensic genetics, as with any human genetics field, therefore begin with
the sampling design for DNA data for research and for databases such as EMPOP or YHRD.
Since some forensic genetics services depend on population data, genetic data from diverse
populations have been widely collected from individuals across the globe for decades. Since
the 1970s, the fields of human and medical genetics have developed and adopted a number
of ethical standards and procedures, including, most notably, requirements for informed
consent and approval by ethics committees [34]. Such processes have been continuously
refined and upgraded, and yet ethical debates around genetic data continue [35–39].

In contrast, the forensic genetics community’s leading journal, Forensic Science Inter-
national: Genetics, introduced statements about these basic ethical standards (informed
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consent and ethics approval) as a publication requirement as late as 2010 [40]. In 2020,
guidelines were updated and extended, with a specific focus on population data from
minorities or indigenous communities [38]. Until 2010, there were no ethical standards
for authors to meet when publishing DNA data; and data collected before 2010 without
informed consent and ethical approval is still used, shared, and uploaded. Furthermore,
forensic genetic databases usually require the publication of data in peer-reviewed journal
articles before such data can be uploaded, along with ethical approval and/or evidence of
informed consent. However, in some databases, data can be uploaded without meeting
these criteria [41]. Notably, such databases are not only used for research, but also for
investigation by law enforcement authorities. Ethical debates around these databases have
only now begun.

In human genetics, the demands of obtaining consent for samples from sufficiently
large numbers of individuals requires the building of an ethical regime of institutional and
personal infrastructures in order to enable the legal and ethical use of samples and profiles
(e.g., [42]). Numerous ethical decisions, consciously or not, are inevitably made when
recruiting donors: whom to include or exclude, how to frame the research to donors about
why samples and data are requested, what to give back to donors and their community,
and so forth. In forensic genetics the stakes are higher, as persuading individuals to donate
their DNA is challenging. Willingness to donate DNA for forensic purposes used to be
considerably lower than for health purposes [43]; albeit more recently there has been an
increase in voluntary offers of existing genetic profiles or donation of new genetic data
to enable the forensic use of ancestry, health, and research databases [8]. Such donations
place a particular responsibility upon researchers and analysts to be very clear about the
potential uses of such data, not only at the time of sample collection but also afterwards, as
data moves along different life stages.

For such data repositories to serve law enforcement, data acquisition needs to be
as extensive as possible to represent diverse populations. Previous resolutions to this
problem have attracted criticism: E.g. some forensic practitioners have argued that over-
representation of marginalised minorities on databases means they are more likely to be
exonerated, but this theory has yet to be supported with evidence while emerging database
uses for biogeographic ancestry testing and capacities to de-anonymize profiles increase
the riskiness of overrepresentation [12]. Another example is that in China, but also in
numerous other countries, police and security forces have been involved in collection
efforts, nullifying any supposed ‘consent’ [1,41,44,45]. Recent discussions focus upon
the reuse of data and samples previously collected under unclear ethical conditions, or
without any demonstrable adherence to ethical principles [1,12]. Some of these datasets
have been obtained from vulnerable populations and shared by, and between researchers
from forensic, medical, and population genetics, raising serious questions about whether
such data transfers violate general ethical standards.

Even if data have been sampled ethically and safely stored in databases, to be used as
training and test data in calibration exercises, or as reference data for criminal investigative
application, social and ethical issues may still arise. A key issue is whether the data is
representative of the ‘target’ population [1]. Yet rarely discussed are potential problems
arising from non-representative data collection. For example, if the training data for an FDP
application has been sampled too selectively (e.g., [46]) and hence is very homogeneous,
probability calculations might be overly optimistic. Then, in a criminal investigation, the
technology will overestimate its own reliability against the backdrop of a local population
that is not as homogeneous as the training data. In biogeographic ancestry testing (BGA),
so-called “mixed populations” in training and reference data lead to erroneous test results
and overly optimistic reliability estimates [47]. However, “mixed ancestries” will most
likely be more commonplace in real life but, in a worst-case scenario, the technology will
produce erroneously high probability estimates, and yet these are more likely to be trusted
than other evidence-based on perceptions of scientific objectivity and DNA’s standing as
“biological witness”—and thus risk leading investigations astray [45].
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It is critical, therefore, that ethics as lived practice commences at the very first life
stages of DNA data: when collecting and curating data and establishing repositories. As
this DNA data is then utilised by forensic practitioners within the context of the criminal
justice system, the next vital life stage of forensic genetic data, further ethical decision-
making is required.

6. Challenges of Context and Communication: Ethical Decision-Making as
Forensic Expert

Forensic DNA technologies have been framed by metaphorical affirmations of DNA
as representing a “truth machine” [48] or the “gold standard” of evidence [49], reflecting
high expectations based upon unrivalled (alleged) levels of validity, certainty, reliability,
and objectivity. Besides disregarding issues arising during the “social life of DNA” [18], as
it moves from crime scene (or database) to court, such metaphors eclipse the challenges
of communicating probabilistic DNA evidence to non-experts [50,51]. These challenges
occur at many different contact points: in the regulatory process leading up to new or
amended laws or regulations; in the training of geneticists and investigators; in public
communications during police investigations; during and after a trial; and in the aftermath
of a solved case when the efficiency of different investigative tools is compared and
highlighted. In addition, as DNA analysis becomes more sensitive (entailing the analysis
of mixed traces, DNA transfer, etc.), and more open to interpretation, it becomes yet more
challenging to report [52], with scientists deciding whether to apply a probative value to a
result, or provide an inconclusive result that neither includes or excludes the suspect [53].

A rational assessment of what advanced DNA profiling techniques can bring to a
police investigation is essential but rare. For example, in the UK, ‘familial searching’ has
been available since 2012 and utilised in 120 cases, with just nine reported ‘successes’ [54],
perhaps challenging proportionality equations over its use. A realistic appraisal must
particularly consider how ‘results’, once outside of a laboratory or research setting such
as in forensic validation, are applied during real-life criminal investigations. A host of
confounding variables and diverse considerations come into play during the criminal
process, which may distort or nullify laboratory results: “while a forensic technique
may have a valid scientific basis and prove reliable in a laboratory setting, how can it
be ascertained that it remains reliable when applied in the present case? What are the
error rates associated with the technique, and are there any pertinent factors that could
jeopardise the reliability of the testing in this particular instance?” (p. 240, [13]). A forensic
scientist engaged in ethics as the lived practice may be required to inform these more
‘realistic’ appreciations of what forensic genetics can and cannot achieve within the context
of police investigations, particularly when asked to deploy advanced techniques. Both
law enforcement and the public should not be ‘oversold’ benefits that may never be
realised outside of a research laboratory [33,55]. Our three case studies below address
intelligence-related uses of forensic genetics in investigations, when arguably, the dangers
of over-selling capacities by forensic scientists and service providers as well as the ready
acceptance of such leads by investigators in order to progress a complex case, are high.

Assuming that DNA science moves from investigation onto a later life stage: forensic
intelligence from genetic genealogy, but perhaps also from other techniques, may lead to
requests by police for arrest warrants. This potential outcome would require such forensic
intelligence to be carefully articulated and to take into account the context in which it may
be used, including institutional policing cultures and wider political debates, e.g., about
migration and criminality. In inquisitorial systems (but highly unlikely ever in adversarial
systems), forensic intelligence may even make it into the report submitted to the investigat-
ing judge. At some point, if rarely, forensic experts may be called as witnesses to explain
the intelligence.

We know for forensic evidence that the judge may be required to take on a “gatekeeper”
role to ensure that “junk science” remains inadmissible at trial. This role and its fulfilment
has been highly criticized already for adversarial systems where mechanisms are in place
for contestation [56,57], with conclusions drawn that “scientific illiteracy on the part of
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the legal profession, when coupled with the flaws in forensic science, forms a ‘toxic
combination’” (p. 82, [56]). The trial process rarely affords even the scientifically literate
much opportunity to interpret and apply ‘correctly’ complex tests (assuming there is a
‘correct’ application) for whether scientific evidence is ‘sufficiently reliable’ [58]. In addition,
such admissibility testing may come too late in the criminal process. Consider, too, that in
the inquisitorial system forensic expertise is very rarely challenged. Even where challenges
to scientific information exist, decisions to admit such information at trial can appear
arbitrary, or inconsistent, with decisions based upon non-scientific criteria [59].

Scientists, in providing intelligence as well as in giving testimony, are called upon
to make ethical decisions about which information to present and how it should be best
communicated. Much work has gone into, e.g., developing verbal scales as equivalents
of reporting numerical values and effectively interpreting probabilities [60–62]. Forensic
geneticists’ adherence to ethical principles and practices in giving testimony, is a key aspect
of their responsibility as practitioners (see, e.g., [63]), yet can be complicated by different
scientific, investigative, and juridical pressures and demands on the scientific expert. A
key responsibility is avoiding ‘over-egging the pudding’. As such, scientific experts have
personal and disciplinary responsibility for their communication, and thus at least in part, a
wider responsibility for the role of intelligence in investigations and for scientific evidence
in court.

In response to the exposure of mistakes, misrepresentations, and misunderstandings
of DNA evidence that have led to failed investigations or miscarriages of justice, there
have been efforts to regulate forensic science [64]. Political crises induced by a wrongful
conviction or scandal have most often proven necessary to provoke regulatory intervention,
but this may come too late for an individual who cannot be adequately compensated
for their loss of liberty or diverse publics whose trust in the administration of justice is
irreparably damaged. In addition, the implementation of such regulation, including the
writing of standards and operating procedures not underpinned by rigorous research, has
been criticised [65]. It also remains the case that error rates and limitations of techniques
often remain sufficiently unarticulated, or even undetermined. Yet even assuming extra
resources are provided to produce robust error rates, it is questionable whether risks
can be meaningfully quantified, given the inherently contextual nature of forensic DNA
evidence. As we argue, many questions are not purely scientific but include ethical
considerations from the very outset of the social life of DNA. Acceptability of DNA evidence
thus turns, in part, upon the criminal justice system’s values and public tolerance of error,
but classic regulatory risk analysis typically takes little (if any) account of sociological,
economic, ethical, or even legal considerations. The countervailing difficulty of encouraging
innovation and development within regulatory parameters, demands innovative solutions
operating within an ‘ethics as lived practice’ framework. This will require embedded
ethical practice, as well as regulatory flexibility and pluralism, to avoid stagnation, and
setting forensic science ‘in aspic’ [66].

Such flexibility to innovate is especially critical when also facing the challenges of
commercialization, leading to the confluence of competition and profit-oriented practices
with those of scientific endeavour and of the criminal justice system. This confluence
can lead most obviously to conflicts of interest, which can affect the portrayal of valid-
ity/reliability and utility of forensic technologies, but also directly impact the quality
of forensic analyses undertaken; the reporting of these forensic analyses, and also the
scientifically robust development of existing and emerging forensic technologies [67–69].
Forensic scientists constantly make ethical decisions in this context, as discussed above
for scientific and evidentiary reasons. In the commercial context, additionally, forensic
practitioners make ethical decisions around accreditation for services; negotiating access
to contracts; customer satisfaction; access to material and financial means in order to
conduct research; contestations around other service providers, etc. [33]. Many scientists
work together with companies in developing forensic technologies, equipment, and also
at times, services. They may be delivering services for commercial providers, or they
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may be in direct competition. Due to the potential conflicts of interest, the commercial
context makes it even more important for forensic scientists and practitioners to reflect on
their decision-making in order to ensure responsible and accountable delivery of forensic
genetics analyses and interpretations.

7. Case Studies

Our call to adopt ethics as lived practice in decision-making processes throughout key
stages in the life of forensic DNA is underscored by three case studies. These vignettes
explore ethical decision-making in forensic DNA phenotyping, forensic (or: investiga-
tive) genetic genealogy, and forensic epigenetics. The three fields share a common basis:
they are presented by forensic scientists and users as providing intelligence for investi-
gations without apparent leads by generating data on a group of suspects, and they are
portrayed to facilitate even cold case investigations, based on probability calculations and
human (epi)genetics.

7.1. Forensic DNA Phenotyping (FDP) and Biogeographic Ancestry Testing (BGA)

FDP and BGA have provided intelligence to criminal investigations that, at times, have
resulted in the detection of suspects. To date, in the USA, hundreds of investigations have
drawn on intelligence from FDP and BGA analyses since 2015. In Europe, these techniques
(especially BGA), have found application in cases since at least 1999, including in the
Marianne Vaatstra case [70]; the investigation of the Madrid train bombings of 2004 [71];
the Phantom of Heilbronn investigation in 2008 [72]; and the detection of the murder of Eva
Blanco Puig in Spain in 2015. In the Vaatstra case in 1999, an early form of BGA was used
to the effect of taking public pressure off asylum seekers who had been considered prime
suspects. In the Madrid investigation, the BGA analysis contributed some intelligence to
the investigation. In the case of the Phantom of Heilbronn, the results did not contribute to
the detection of perpetrators; rather, they seemed to fuel the bias of investigators. While
the case of the Phantom was widely debated, unsuccessful applications of FDP or BGA
tend not to be discussed publicly. Yet insight into limitations can assist the wider forensic
genetics community of scientists and users, but also the public, in understanding the
effective parameters of these techniques.

A more recent case is the rape and murder of Maria Ladenburger, on 16 October 2016,
in the German city of Freiburg im Breisgau, Germany. At the start of the investigation,
suspicion quickly fell on the large migrant community of approximately one million
people who had come to Germany in 2015/16. Representatives from politics, policing
and forensic genetics suggested that expanded DNA technologies would contribute to
faster detection of the perpetrator if only analyses of the perpetrator’s (1) appearance,
using FDP, and (2) continental origin, via BGA, would have been permitted. While many
German experts, including the German Spurenkommission (trace commission), initially
argued that the Ladenburger murder would have been an ideal test case for application
of FDP in a criminal investigation, senior German forensic geneticists working on FDP
later commented that this specific case would not have benefitted from its use [73–75].
Yet, the raised expectations of audiences and investigators remained unrealistically high,
leading to the legalization of FDP in Germany in 2019. Yet the Maria Ladenburger case
was solved through traditional police investigative techniques, resulting in the arrest of
Hussein Khavari, an Afghan migrant, previously convicted in Greece.

The discussion of FDP and BGA, in this case, has raised several questions, specifically
around the communication of the utility and reliability of these emerging technologies,
but also about the implications of using technology that aims to identify categories of
people rather than individuals [20,76]. Overall, FDP and BGA raise a number of ethical
questions for forensic scientists, questions that need to be reflected upon time and again in
order to deliver responsible and accountable science. While we focus on the estimation of
externally visible characteristics in this case study, we do acknowledge that the testing of
biogeographic ancestry (BGA) has its own technical and ethical pitfalls, some of which it
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shares with FDP and some of which are specific to BGA. For example, there are significant
incongruities between ‘population’ labels used by the forensic laboratory and those used by
police forces which risk miscommunications, while opening up casework to being highly
susceptible to bias (e.g., [72]).

First, FDP works on the basis of attribution rather than identification. However, defin-
ing visible/external attributes, e.g., hair/eye/skin colour, must be couched in ambiguity
because they are subject to individual evaluation, e.g., colour perception, but also culturally
informed perception of such traits (see further [15]). These individual attributions are
then compared to non-uniform standards. Here also, as mentioned earlier, the choice of
reference data has a fundamental influence, requiring forensic scientists to reflect on the
biases that go into defining reference data. In many cases, DNA analysis results might
be meaningless or even misleading. Articulating such crucial limitations and distinctions
to users is central to ensuring the reliability and utility of FDP in an investigation, even
if reporting forms seem to leave scant space for such important information. Space and
time must be made for communicating these aspects since they can significantly impact
the understanding investigators develop of intelligence generated via FDP analyses.

Second, the investigative value of forensic genetics arises from the capacity of tech-
nology to either deliver evidence or intelligence to detect crimes and perpetrators. In the
case of FDP, intelligence is produced only in as far as the genetic analysis can either point
towards (or away from) a group of shared attributes/characteristics a perpetrator may have.
FDP is about shared characteristics and as such applies suspicion to groups, collectivising
suspicion [77]. However, since FDP deals in probabilities, the extent to which a group can
be excluded can never be 100% certain. A key issue here is that the technology works best
on minority groups (of an appearance distinctly different to that of a majority population)
to deliver on its aim of directing the next steps in an investigation (e.g., [78]). It is thus
vital to reflect when using technologies such as FDP, on their investigative value, which is
reduced when the analysis points towards a majority group as then the expected ‘reduction’
in suspect populations is not achieved. Effectively, this may lead to minority groups being
implicated in active investigations more often because the investigative tools work less
well in the case of majority populations [79]. At the same time, forensic technologies such
as FDP do not work in isolation from policing practices and institutional cultures [21].
Therefore, forensic scientists need to reflect on the discriminatory power of the technol-
ogy that lies at its heart-both at policing and at public levels. This was the case in the
Ladenburger investigation where non-European migrants were associated with criminal
behaviour because of the way that FDP was, for a long period of time, communicated as
the key technological solution to violent crime investigations.

Third, and this may be the most apparent element to forensic scientists, FDP remains
an emerging technology. While pigmentation analyses may be well advanced for darker
and lighter aspects of the continuum, medium levels of pigmentation remain more difficult
to test for reliably (e.g., [80]). Furthermore, public debates between politicians, police, and
scientists around the Ladenburger case confused the technology readiness level of FDP:
while scientists were talking about lab-based levels of testing and aspirations for future
analytical capacities, perhaps even up to “facial composites”, publics, politicians and police
representatives perceived of these capacities as already realised and ready for use. Key
messages around the reliability and utility of FDP were mixed up. This may yet result
in a significant loss of trust in the technology and forensic science in policing should its
legalisation in Germany in 2019 not lead to any significant positive results in investigations
in the near future.

7.2. Forensic Genetic Genealogy (FGG)

From 1974 to 1986 in California, USA, crimes including murder and rape, were
committed by the same unknown individual. In 2018, investigators uploaded genetic
information derived from crime scenes onto the public-access genetic ancestry database,
GEDmatch. This database aggregates genetic information from citizens who upload
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the results of their direct-to-consumer genetic tests from genealogy companies, such as
AncestryDNA, 23andMe, MyHeritage, and FamilyTreeDNA. Investigators found partial
DNA matches assumed to belong to distant relatives, which enabled the creation of a ‘family
tree’, primarily based on online genealogy database records, and including information
from sources such as social media and other records. The data of these records sit outside of
the forensic domain, and their use in policing raises a number of legal and ethical questions,
including on the level of appropriate consent; dual/unintended use of data; and whether
the capacity exists or can be introduced for blocking or deleting data from such sources
if data subjects disagree with law enforcement uses of their data. Consequently, Joseph
James DeAngelo, 72 years old, was identified as a suspect, and his “abandoned” DNA
collected to facilitate confirmatory DNA analysis. Although the Golden State Killer was
not the first case in which this technique has been used, it has become what Prainsack
and Toom [81] term a “founding myth” and is being enthusiastically explored by police
globally, and several cases have now been solved through FGG internationally. According
to Kling et al. [82], FGG has been used to generate investigative leads in nearly 200 cold
cases and some active investigations (see also [10,83,84]). In Sweden, prosecutors have
allowed investigators to use consumer genealogy databases to solve cold cases: missing
persons and a criminal case [85]. In Canada, two cold cases have been solved through
forensic genealogy [8]. In the UK, a study has assessed the likely effectiveness of long-range
familial searches through GEDmatch [86]. The Golden State Killer also sparked interest
in this procedure among citizens and the companies offering these services, with existing
databases now allowing for and, in some cases, encouraging law enforcement searches,
as in the case with GEDmatch (recently acquired by commercial forensic service provider
Verogen which raises further ethical issues which we do not have the space to explore
here) and FamilyTreeDNA. In addition, services exclusively dedicated to law enforcement
searches, e.g., DNASolves, DNA.Land, Geneanet, and Geni, are emerging [82] and some
law enforcement agencies are setting up their own FGG services.

The ethical implications of FGG are wide-ranging. First, this technique increases
acutely the amount of information that can be garnered from DNA data, as it makes use of
a significant number of markers and uses SNPs, instead of a relatively reduced number of
markers and STRs, as used in ‘traditional’ forensic DNA testing and databases. Genetic
genealogy also allows users to identify distant relatives [34,35] and disease predispositions.

Second, FGG challenges the notion of what constitutes a DNA database used for law
enforcement. Until recently, forensic DNA databases were solely constituted of DNA pro-
files of individuals with some degree of involvement with the criminal justice system [36].
Yet suspects are now being searched for in databases consisting of voluntarily uploaded
genetic data from citizens who wish to know more about their health, ancestry, and/or
search for relatives: a clear example of ‘function creep’. Such repurposing of DNA data
requires a discussion of (informed) consent [33], data ownership, and the accountability of
genealogy companies and law enforcement in relation to human rights.

Third, the genetic databases being used/created for FGG usually have a significantly
different composition than “traditional” forensic databases, the latter over-representing
groups that are most likely to interact with the criminal justice system, such as racial
and ethnic minorities [87] while genetic genealogy databases are mainly composed of
an economically privileged and a European-descent population [51]. This leads to the
expansion of affected populations as involvement with the criminal justice system is no
longer a prerequisite to inclusion in law enforcement searches and follows broader patterns
of surveillance expansion that encompasses ever more citizens. FGG, therefore, brings
individuals whose profiles are in a recreational DNA database, under the ‘genetic surveil-
lance’ gaze, making them suspects by association [88]. This ‘function creep’ illustrates
the potential for wider ramifications of decisions that are particularly risky when impacts
cannot be known and their diffusion across society remains uncharted. However, it should
be noted that different databases have varying policies in terms of making genetic data
available for law enforcement searches [89] GEDmatch and FamilyTreeDNA encourage
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such searches. GEDmatch offers users to opt-in while FamilyTreeDNA, in 2019, instituted
an opt-out policy that automatically opens up users’ data to law enforcement searches.
However, under the jurisdiction of the European Union’s General Data Protection Regu-
lation (GDPR), users from current and recent European Union member states who have
profiles on FamilyTreeDNA have been automatically opted out. This means that European
Union citizens must opt-in if they wish to have their DNA profile included for criminal in-
vestigation purposes [8,54]. Adopting a different stance, companies such as AncestryDNA
and 23andMe have categorically denied access for law enforcement agents to such data,
unless subpoenaed by a court order to do so [89].

7.3. Forensic Epigenetics/-Genomics (FEpi)

Imagine: A woman is found dead, and DNA samples collected from crime scenes do
not provide any investigative leads. After making a genetic estimation of appearance traits
and biogeographic ancestry (see case 1), it is decided to conduct epigenetic prediction of
chronological age [90], as well as epigenomic prediction of lifestyle and environmental
factors through the DNA samples. Results indicate that the presumed suspect is approxi-
mately twenty years old, smokes tobacco, has a high alcohol intake, and probably belongs
to a specific “socioeconomic status”(p. 7, [91]). Based on these results, police investigative
work will be prioritised towards a more specific suspect pool. While hypothetical, this is
the aspiration of forensic epigenetics.

Until recently, despite the enormous interest in post-genomics research, forensic appli-
cations of epigenetics were mainly restricted to body fluid identification, differentiating
between monozygotic twins, and age prediction [90,92,93]. The potential uses of epigenetics
in forensic research have only recently expanded, with expectations that the understanding
of how environmental factors impact our DNA might be useful ‘intelligence’, by identifying
suspects’ lifestyle, such as smoking habits, alcohol intake, other drug use, diet, body shape
and size, physical exercise, zone of residence, and socioeconomic status [91,94]. As with
FGG, the potential ramifications of FEpi are extensive and impossible to fully predict, when
technology is still in an embryonic life stage. It is thus critical that potential consequences
are contemplated to develop anticipatory capacity.

First, revealing lifestyle and environmental characteristics directly interferes with the
right to privacy of individuals and populations. Despite arguments—already expressed
and disputed [15]—that “the genetic prediction of obvious appearance traits [such as
smoking] because their external visibility cannot be considered private” (p. 8, [91]), it is
clear that inferring smoking, drinking and drug and food consumption habits indirectly
correlates with health information and medical conditions, further blurring the distinction
between forensic and medical uses of genetic data.

Second, we might question how useful information about smoking and drinking habits
might be for investigators since the indication that a suspect smokes and/or consumes
alcohol does not significantly advance a criminal investigation without any suspects.
Similar to FDP (case 1) and FGG (case 2), FEpi casts suspicion across entire groups by
clustering ‘suspect’ populations that share certain lifestyles.

Third, epigenetic markers are, to a considerable extent, established in early develop-
ment, potentially transmissible to subsequent generations, and sensitive to environmental
factors and lifestyles [95–97]. If we look back to the hypothetical criminal case and fo-
cus upon the information that the presumed suspect is approximately twenty years old,
smokes, has a significant alcohol intake, we must take into consideration (i) that maternal
smoking and alcohol consumption during pregnancy could cause epigenetic changes in the
offspring; (ii) passive smoking also might impact the epigenome; (iii) alcohol-dependent
epigenetic signatures are partly reversible upon abstinence [91,94]. This suggests that the
variability of epigenetic markers does not constitute reliable or consistent predictors for
identifying suspects. Although FEpi is still being developed in terms of scientific validation,
an approach that is anchored in ethics as lived practice implies that issues around reliability,
utility, and legitimacy [20] must be considered focal points to be addressed and discussed.
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8. Concluding Remarks

As science is afforded a particularly powerful role in knowledge production and meaning-
making in the criminal justice system, could this lead to a ‘technological tyranny’ [98] in
which individuals and communities have to prove their innocence against probabilities?
Might forensic scientists inadvertently contribute to creating new kinds of inequalities and
insecurity when it comes to policing and criminal justice? (p. 365, [99]). In response to
such questions, particularly facing forensic geneticists, in this paper we propose a move
from the dominant “thin” ethics approach, to one of ethics as lived practice. We argue that
forensic scientists are ethical agents, that is, they make ethical decisions daily and not just
at procedural moments such as requesting ethics approval or reporting to an institutional
review board. Rather, they have the agency and power to make decisions with far-reaching
impacts. Such decision-making can be more apparent at some points than others and
must go some way to building ‘anticipatory capacity’ for the governance of reliable and
responsible forensic genetics. In this paper, we have articulated some of the key stages in
the life of forensically relevant (epi)genetic data at which ethical decision-making takes
place, and where it is vital to take the time to reflect on ethical principles and practices. Our
aim has been to raise awareness of the need for continuous reflection upon ethical decisions
and to articulate some of those key instances in which such reflection is clearly vital.

Key lessons:

1. Anticipatory capacity and ethics as lived practice are vital components of the work of
forensic scientists. This implies the need to be able to anticipate how technology use
will impact individuals and groups of people potentially drawn into investigations,
as well as wider community relationships, and criminal justice more generally. Our
first key point is that forensic geneticists need to engage with ethics in all stages of
the sample and data life cycle.

2. There is an urgent need to address the power of forensic (epi)genetics to cast suspicion
over a wide range of individuals and communities who may share visual charac-
teristics, common family ancestry, and/or lifestyle habits. This poses several issues
that forensic genetics should be aware of when developing and/or applying such
technologies, as we move towards a society where individuals and even communities
are increasingly called upon to prove their innocence. Our second key point, therefore,
is that forensic geneticists need to be aware of the active role that their research and
technologies can play in either strengthening or threatening such fundamental legal
principles as the presumption of innocence, equality of arms, and the legal burden
of proof.

3. Our third key point is that clarity and open communication about real-world ca-
pacities of technologies such as FDP, FGG, and FEpi (as well as BGA which is not
discussed in depth in this paper) must be at the core of discussions around their
use. Their reliability and effectiveness outside the laboratory, and their utility for
specific cases, must be reflected upon, and openly and clearly articulated to users and
commissioners of such technologies in order to build legitimacy, including public
trust, responsible innovation and practice, and accountability.
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Abstract: Single-cell sequencing is a fast developing and very promising field; however, it is not
commonly used in forensics. The main motivation behind introducing this technology into forensics
is to improve mixture deconvolution, especially when a trace consists of the same cell type. Successful
studies demonstrate the ability to analyze a mixture by separating single cells and obtaining CE-
based STR profiles. This indicates a potential use of the method in other forensic investigations, like
forensic DNA phenotyping, in which using mixed traces is not fully recommended. For this study,
we collected single-source autopsy blood from which the white cells were first stained and later
separated with the DEPArray™ N×T System. Groups of 20, 10, and 5 cells, as well as 20 single cells,
were collected and submitted for DNA extraction. Libraries were prepared using the Ion AmpliSeq™
PhenoTrivium Panel, which includes both phenotype (HIrisPlex-S: eye, hair, and skin color) and
ancestry-associated SNP-markers. Prior to sequencing, half of the single-cell-based libraries were
additionally amplified and purified in order to improve the library concentrations. Ancestry and
phenotype analysis resulted in nearly full consensus profiles resulting in correct predictions not only
for the cells groups but also for the ten re-amplified single-cell libraries. Our results suggest that
sequencing of single cells can be a promising tool used to deconvolute mixed traces submitted for
forensic DNA phenotyping.

Keywords: forensic DNA phenotyping; FDP; HIrisPlex-S; DEPArray; ancestry prediction; phenotype
prediction; massively parallel sequencing; next-generation sequencing; single-cell genomics; single-
cell sequencing; mixture deconvolution; low template DNA; ltDNA

1. Introduction

A single human cell contains around six pg of DNA, which is translated to approx-
imately 2 × 3.3 billion base pairs. Sequencing of this amount of genomic data became
possible thanks to the rapid development of next-generation sequencing (NGS) [1]. The
progress in the field has recently been called, by Nature, one of the technologies to watch
in 2021 [2]. The efficacy of single-cell sequencing in medicine cannot be overestimated,
and it demonstrates the possibility for implementation in forensics, where it is not com-
monly used. The main motivation behind introducing this technology into forensics is the
potential to improve mixture deconvolution workflows and interpretation methods. If a
trace is a mixture of different biological materials (for example, sperm and epithelium),
there are methods to separate cell pools to investigate them separately [3–10]. Problems
arise when the mixed trace is too complex or if it consists of the same cell type, such as
blood-blood mixtures [11]. Implementing single-cell analyses can improve the efficacy
of mixture deconvolution and, therefore, has already gained interest in the forensic com-
munity. A cell separation solution is the DEPArray™ N×T System from Menarini Silicon
Biosystems, which is widely used in clinical research [12–15] and is suitable for forensic
purposes. Current forensic studies focus on single cell separation followed by STR amplifi-
cation and detection using capillary electrophoresis [11,16–19]. Mixtures are commonly
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analyzed with STR typing, but when using different, still new forensic applications, it
requires a special approach. Since forensic DNA phenotyping (physical appearance and
ancestry predictions) is becoming popular, as observed with legislation expansion in more
countries [20], it is assumed that in some cases, a mixture might be the only trace submitted
for phenotyping. Phenotyping workflows and prediction methods still need comprehen-
sive research performed before they can be a fully recommended method for mixed trace
analysis [20–23]. Here, we present an alternative approach to dealing with mixed traces
submitted for forensic DNA phenotyping that introduces single-cell separation in order to
deconvolute the mixture prior to genotyping and phenotyping.

2. Materials and Methods

For the study, a fresh blood sample (female) was collected during an autopsy per-
formed in the Institute of Legal Medicine Munich. The sampling was approved by the
Bioethical Commission from the Ludwig Maximilian University of Munich. The blood
was used as a reference sample (1 ng DNA input, prepared as described in Section 2.3), for
which the white blood cells were separated and used.

2.1. Staining and Counting the Cells

In order to conduct cell separation, the biological material was first stained with
the DEPArray™ Forensic SamplePrep Kit (Menarini Silicon Biosystems, Bologna, Italy),
which enables the staining of epithelial cells, leucocytes, and sperm cells. Following the
manufacture’s protocol, 5 μL of blood was used, from which the white blood cells were
marked with PE (Phycoerythrin) conjugated CD45 antibody as well as with DAPI (4′,6-
diamidino-2-phenylindole; to stain the nuclei). The maximum cell input for the DEPArray™
N×T System (Menarini Silicon Biosystems) is 6000 cells; therefore, the sample was analyzed
with the Countess™ II FL (Thermo Fisher Scientific, Waltham, MA, USA) automated cell
counter and diluted to the recommended concentration.

2.2. Sorting the Cells

The DEPArray™ N×T System’s (Menarini Silicon Biosystems) forensic protocol was
used to separate the white blood cells. Only highly evaluated (of typical size, morphology,
and staining) cells were chosen for the experiment. The selected cells were moved auto-
matically by the DEPArray™ platform and placed in dedicated tubes as follows: 5 groups
of 20 cells, 10 groups of 10 cells, 10 groups of 5 cells, and 20 single cells (groups and single
cells were collected in two separate experiments).

Preventing Contamination

Due to working with a special type of material (single cells), ensuring that there
is no contamination is extremely important for the interpretation of the data. Since the
DEPArray™ N×T System is a closed system, contamination within is not possible. In order
to exclude its potential occurrence in the next stages of laboratory work, all steps were
carried out with a negative control included.

2.3. Library Preparation and Sequencing

For all samples used in the study, genomic DNA (gDNA) was extracted with the
DEPArray™ LysePrep Kit (Menarini Silicon Biosystems) directly from the cell separation
tubes to make sure the input corresponds with the number of collected cells. All sample
extracts were subjected to manual library preparation using the Precision ID Library Kit and
IonCode™ barcode adapters using the validated Ion AmpliSeq™ PhenoTrivium Panel [24].
The amplification of the targets was carried out in the same tubes as the extraction to avoid
changing the DNA input. The target amplification cycle number and annealing/extension
time were 23 cycles and 4 min, respectively. Libraries prepared from cell groups and half
of the collected single cells were quantified using the Ion Library TaqMan Quantitation
Kit (Thermo Fisher Scientific), diluted (except for libraries of <30 pM concentration), and

278



Genes 2021, 12, 1362

pooled equimolarly to 30 pM for template preparation on the Ion Chef using the Ion S5™
Precision ID Chef & Sequencing Kit (Thermo Fisher Scientific). The remaining half of
the single-cell-based libraries were quantified and rescued by library amplification (see
Section 2.3.1). A range of 12–24 libraries were pooled per 530 chip and sequenced on the
Ion S5 [25].

2.3.1. Library Amplification

Half of the undiluted single-cell-based libraries were submitted for library ampli-
fication. A 25 μl sample of the previously eluted samples was combined with 72 μL of
Platinum™ PCR SuperMix HiFi and 3 μL of Library Amplification Primer Mix from the
Precision ID Library Kit (Thermo Fisher Scientific). The PCR products were purified
in a two-round clean-up with the Agencourt™ AMPure™ XP Reagent according to the
manufacturer’s manual. The amplified libraries were quantified, diluted, and pooled for
automated template preparation.

2.4. Data Analysis

Primary sequence analysis was performed on Torrent Suite™ Software (TSS) 5.10.1
(Thermo Fisher Scientific) with Torrent Mapping Alignment Program (TMAP) alignment
of sample reads against the hg19 genome assembly. SNP genotyping and tertiary analysis,
in the form of ancestry prediction, were performed using the HIDGenotyper–2.2 plugin
and Converge v2.2 (Thermo Fisher Scientific). Low-quality results were double-checked
by running VariantCaller v5.10.0.18 on TSS and reviewing the raw data in IGV 2.7 (Inte-
grative Genomics Viewer) [26]. Tertiary analysis was separated into two parts: phenotype
prediction (which cannot be performed within Converge v2.2) and ancestry prediction by
the bootstrapping admixture analysis with Converge. For the cell groups, the coverage
thresholds were adjusted as follows: for the SNPs corresponding with the HIrisPlex-S
panel, the analytical coverage thresholds were set based on the HIrisPlex-S panel validation
for MPS platforms [22]; for the remaining autosomal ancestry markers, the minimum
coverage to call an SNP was set to 100 reads. For the single cells, the coverage threshold
was lowered to 50 reads for all markers. The heterozygote balance threshold was set to
65%/35% for heterozygotes and 90%/10% for homozygotes.

2.4.1. Phenotype and Ancestry Prediction

For phenotype (HIrisPlex-S: eye, hair, and skin color) prediction, SNP genotypes
were exported from Converge and used to manually generate single profiles, as described
in Section 2.4.2, which were later converted into the input file format required by the
HIrisPlex-S Webtool (https://hirisplex.erasmusmc.nl/ accessed date 29 April 2021). The
HIrisPlex-S SNP set contains an indel SNP (rs796296176) in the form of an A insertion that
was manually reviewed and called using IGV 2.7. Predictions were interpreted according
to the PhenoTrivium validation paper [24]. For ancestry prediction, called genotypes
were merged into a consensus single SNP profile using Converge, and the prediction was
performed with the bootstrapping admixture analysis [27] feature of Converge using the
75% resampling size, 1000 replications, and the Precision ID Ancestry Panel Ancestry
Frequency File v1.1. The PhenoTrivium Panel contains the 145 Precision ID Ancestry SNPs
used for bootstrapping admixture analysis. In the bootstrapping admixture analysis feature
of Converge, admixture predictions are made based on a maximum likelihood approach
used to predict the most likely admixture proportions across seven root populations (herein
referred to as the core admixture algorithm): Africa (AFR), East Asia (EA), South Asia
(SA), Southwest Asia (SWA), Europe (EU), America (AME), and Oceania (OCE). The
predictions are bootstrapped across a random subset of sequenced SNPs, specified by the
user in %, with each bootstrapping replication ran through the core admixture algorithm
N times using a different subset of SNPs for each replication to capture uncertainty in
the predictions. The results are displayed as an average of the bootstrapping replications
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for each population group and a 95% confidence interval reflecting the probable range of
variability of the estimated ethnicity percentages.

2.4.2. Interpretation Models

The consensus genotypes from cell groups and single cells were used to generate a
single SNP profile for tertiary analysis. Two different interpretation models were used
to build the profiles: “basic”, which compromised genotypes detected at least twice, and
“conservative”, for which genotypes were included only if detected at least four times. The
cell groups were interpreted using only the “basic” approach (following the interpretation
pipeline from PhenoTrivium validation), and the profiles from the single cells were gener-
ated using both models. Additionally, the tertiary analysis was performed based on single
profiles obtained from single cells with the highest coverage.

3. Results

3.1. Cell Groups

The cell groups were collected to evaluate the performance of the workflow combining
single-cell separation using the DEPArray™ N×T System with Next Generation Sequencing
using the Ion S5. The results obtained in this study were compared to the data from a
previously performed validation study [24] of the PhenoTrivium assay. The collected cell
groups approximately corresponded to 100, 50, and 25 pg DNA, which were similar to the
DNA input used in the sensitivity study (125, 62, and 31 pg).

3.1.1. Coverage, Allele Frequency, and Genotype Calling

The study consisted of 5 groups of 20 cells, 9 groups of 10 cells (one sample was
excluded due to a library prep error), and 10 groups of 5 cells, for a pool of 24 libraries total
(one group of cells corresponds to one library), which was sequenced on a 530 Chip. Marker
coverage across the 200 autosomal markers included in the panel ranged between 309,357
and 736,887 total reads for 20 cells, 216,401–549,980 reads for 10 cells, and 106,865–367,782
reads for 5 cells. The obtained values were comparable with the ones observed in the
sensitivity study, where the total number of reads across the triplicates was 340,461–698,760,
374,692–637,041, and 94,120–395,664 for 125, 62, and 31 pg respectively [24]. The coverage
for each marker is presented in Supplementary Materials, Table S1.

Allele frequencies were calculated for 43 out of 45 heterozygote loci. Markers rs1470608
and rs10756819 (from HIrisPlex-S) were not called among all the samples due to low
coverage. Frequencies were calculated by dividing the number of reads obtained for the
reference allele by the total number of reads per locus obtained for both reference and
alternative allele. For 20 cells, the frequency varied between 45% and 57% (average 50%),
for 10 cells between 47% and 55% (avg. 51%), and for 5 cells between 43% and 58%
(avg. 50%). The allele frequency for loci classified as homozygote was between 92–100%
for 20 cells (avg. 99.8%), between 90% and 100% for 10 cells (avg. 99.6%) and between 87%
and 100% for 5 cells (avg. 99.5%).

Previously described coverage and heterozygote balance thresholds were used to call
genotypes in Converge using the HID Genotyper–2.2 plugin. For 20 cells, between 94 and
99.5% of genotypes across all 200 autosomal loci met all the thresholds. For ten cells, the
values were 84–98.5%, and for five cells, 64.5–98.5%. The percentage of called genotypes
in the sensitivity study was 95–98.5% for 125 pg, 88.5–90% for 62 pg, and 72–81.5% for
31 pg. All the called genotypes were in concordance with the reference sample, no incorrect
genotypes were observed. In comparison, the data from the previous study showed that
allelic dropouts and drop-ins occurred among the replicates with a 31 pg DNA input, which
caused incorrect genotype calling. The detailed genotyping results for all the samples are
presented in the Supplementary Materials, Figure S1.
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3.1.2. Phenotype and Ancestry Prediction

Phenotype and ancestry predictions were performed for the reference sample and for
‘basic’ consensus profiles generated for cell groups. From 41 markers associated with eye,
hair, and skin color prediction, for all cell groups, 39 SNPs were recovered, and two loci
were not called due to low coverage, namely rs1470608 and rs10756819 (similar as in the
sensitivity study). Observed area under curve (AUC) accuracy loss (0.001 for very pale,
0.004 for pale, and 0.001 for intermediate skin) did not affect the final phenotype prediction,
which was predicted to be the same as the reference, with the following p-values: brown
eyes (0.998), black hair (0.661 for black and 0.995 for dark), and dark skin (0.696). From
145 markers used by Converge for ancestry analysis, the maximum number of SNPs was
obtained from 5 cells while the profiles for 20 and 10 cells included one locus not called
due to low coverage (rs2196051). The bootstrapping admixture analysis for all cell groups
revealed an admixture of Southwest Asia and Europe (ratio ca. 70/30%), and the reported
individual’s place of birth was Iraq (no further details available). The detailed prediction
results for all the samples are presented in Table 1.

Table 1. Phenotype and ancestry prediction summary for cell groups and consensus profiles from single cells. p-values and
admixture proportions were compared with the results obtained for reference (ref.) sample (italic indicates identical values).

Ref.
Cells–Consensus

20 10 5 1 “basic” 1 “conservative”
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e
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r blue 0.000 0.000
inter 0.002 0.002

brown 0.998 0.998

H
ai

r
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r
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d
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ad

e

blond 0.003 0.003
brown 0.337 0.337

red 0.000 0.000
black 0.661 0.661
light 0.005 0.005
dark 0.995 0.995

Sk
in

co
lo

r

very pale 0.001 0.001
pale 0.008 0.008
inter 0.275 0.275 0.284
dark 0.696 0.687 0.676

dark to black 0.021 0.029 0.030
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ix
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3.2. Single Cells
3.2.1. Coverage, allele frequency, base misincorporation rates, and genotype calling

For the unamplified libraries (NA), the number of mapped reads varied between
11,979 and 58,536, of which approximately 60% were on target (Figure 1a). Total coverage
across all the markers analyzed in Converge ranged between 1891–26,400 (avg. 8889)
reads, and the mean marker coverage ranged between 9 and 132 reads (avg. 44). For the
amplified libraries (AMP), the number of mapped reads increased to a range of 44,445 to
186,402 reads, of which ca. 60% were on target (Figure 1b). This resulted in total coverage
between 13,735 and 113,398 reads (avg. 49,642) and mean marker coverage between 69
and 567 reads (avg. 248). The coverage for each marker is presented in Supplementary
Materials, Table S1. To visualize the coverage difference between the unamplified and
amplified libraries, the percentage of amplicons with a very low and very high number of
reads were compared (Figure 2).

 
(a) (b) 

Figure 1. Comparison of the total mapped reads obtained for the unamplified (a) and amplified libraries (b), together with
the number of the reads on target for both groups. The latter was comparable and reached around 60% for both unamplified
and amplified libraries but the total number of mapped reads for the amplified libraries was much higher and therefore
resulted in higher total coverage. Red dots represent the average coverage per marker for each sample (coverage threshold
was set as 50 reads).

Due to a significant number of missing loci observed among the NA libraries, the allele
frequency was estimated for the heterozygote loci (except for rs1470608 and rs10756819,
which were not called due to low coverage) only among the AMP samples. The mean
value per locus varied between 43% and 63%, and the detailed allele distribution across
the loci is presented in Figure 3. For most of the markers, the mean heterozygote balance
stayed between the accepted threshold of 35% and 65%, and only three markers (rs8035124,
rs917115, rs4821004) showed imbalance. The average allele frequency for the remaining
expected homozygotic loci was 100%, but for each sample, loci with frequencies below that
were observed (Figure 4). The few loci per sample that did not meet the thresholds were
marked as imbalanced, which did not result in an incorrect genotype being called.
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Figure 2. The minimal coverage of at least one read was observed for over 99% of all amplicons
across the amplified libraries (AMP), whereas for unamplified libraries (NA), the value was 96%.
At least 20 reads were reached by little less, namely 94% of the AMP libraries, while across the NA
libraries, it was noticeably less, namely 70% of the amplicons. Over 75% of the amplicons across the
AMP libraries had coverage of at least 100 reads, but less than 20% of the NA libraries reached the
coverage. The 500X coverage was observed for almost 20% of the amplified libraries and 1% of the
NA libraries.

 
Figure 3. Allele frequency distribution across 43 heterozygote loci (rs1470608 and rs10756819 not
called due to low coverage) among ten single-cell based libraries (AMP); red lines correspond to
expected (50%), upper (65%), and lower (35%) thresholds.

Due to the special materials used, which were single cells, sequencing errors could
be expected, like non-specific base misincorporation. When reviewing the genotypes in
Converge, unexpected nucleotides were detected for two loci, namely rs7722456 (reference:
C, variant: T, observed: A with maximum 20% frequency, resulting in incorrect genotyping)
and rs8113143 (reference: C, variant: A, observed: G with maximum 3% frequency, dis-
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carded). The incorrect nucleotides were not observed after running the variantCaller plugin
on Torrent Suite™ Software (TSS) 5.10.1 and when reviewing the raw data with IGV 2.7
(Integrative Genomics Viewer). Incorrect genotypes called in rs7722456 were discussed
before [28] and can be explained by the homopolymer region flanking the SNP (as well as
for the other SNP discussed, rs8113143). The genotypes for rs7722456 in Converge were
called manually.

Previously described heterozygote balance and lowered coverage thresholds (50×)
were used to call genotypes in Converge using the HIDGenotyper-2.2 plugin. For NA
libraries, only between 2,5% and 48,5% (avg. 26%) genotypes across all 200 autosomal loci
met all the thresholds, and for the AMP samples, the range was between 49,5% and 96%
(avg. 78%) (Figure 5). Among the dropouts, most were loci with low coverage (78-185 loci
for NA and 3-94 loci for AMP), and the remaining were imbalanced (max. 25 per sample for
NA and 13 per sample for AMP). Across all samples, no genotype was called for one marker
(rs10512572) despite passing the coverage threshold. After running the variantCaller plugin,
the genotyping for this locus also failed. Upon reviewing the sequencing data in IGV 2.7, it
was observed that leftover primer reads were misaligned, resulting in no call. Genotypes
for this locus were called manually. Single incorrect genotypes were observed for both
groups, all due to allelic dropouts. The detailed genotyping results for all the samples are
presented in the Supplementary Materials, Figure S2.

 

Figure 4. Allele frequency distribution across 155 homozygote loci among ten single-cell-based
libraries (AMP). Grey dots represent the homozygotic loci with less than the expected 100% frequency,
which is marked with blue lines. Red line corresponds to lowest (90%) accepted threshold. The
minimum number of loci per sample below threshold was one; the maximum was five.
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Figure 5. Genotyping rate per each sample across all 200 markers for unamplified and amplified
single-cell-based libraries.

3.2.2. Data Interpretation–“Basic” and “Conservative” Models

Due to a significant number of missing loci observed among NA libraries (the Fisher
exact test statistic value is < 0.00001), only the profiles from the AMP libraries were
submitted for further interpretation. For the “basic” and “conservative” models, consensus
profiles from a maximum of 41 phenotypes and 145 ancestry SNPs were generated as
described in Section 2.4.1 and Section 2.4.2. All single cells had the same genotype called
for 13 out of 41 phenotype-associated markers (concordant with the reference), while for
ancestry, there were 50 out of 145 markers (Figure 6). Only three incorrect genotypes were
observed across all the SNPs, all once per marker, which did not affect the prediction.

The final “basic” profile consisted of 39 phenotype SNPs (rs1470608 and rs10756819
not called due to low coverage) and 145 ancestry SNPs, which resulted in the same p-values
for the phenotype prediction and the same admixture (calculated by Converge) as the cell
groups (Table 1). The “conservative” model required a genotype to be called at least four
times across all the single cells, which left 38 phenotypes and 139 ancestry markers used in
the final profile. The one additional missing loci among the phenotype markers, namely
rs1545397 (low coverage), caused an insignificant change in the p-values obtained for the
skin color but overall did not affect the final phenotype prediction (Table 1). The ancestry
analysis performed by Converge showed an admixture of Southwest Asia and Europe with
a proportion of ca. 60/40%.

3.2.3. Data Interpretation-Single-Cell Based Predictions

From the ten sequenced single cells, six were selected for tertiary analysis due to
their high genotype calling rate of ca. 90% (Figure 7). All profiles used for the phenotype
prediction were partial with 33–38 SNPs; therefore, the obtained predictions were reported
together with calculated AUC loss as recommended by prediction models [29] (Table 2).
For eye color, all cells resulted in the correct brown color prediction, where one sample
showed a slightly different p-value than expected. The correctness of eye color predictions
is strongly dependent on the rs12913832 marker [30,31], and this locus was correctly
genotyped among all the single cells. For hair color, the obtained p-values were identical
or almost identical as for the reference for all except one cell. For the sample named ID4,
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the highest p-value was brown with 0.521, while black was 0.465. The profile missed the
rs16891982 marker (imbalanced), for which the correct CC genotype is strongly associated
with black hair color [32,33]. Despite the difference, the final prediction was black hair color
for all samples. The biggest variance was observed for skin color due to several markers
relevant for prediction missing. Furthermore, skin color is the most complex phenotypic
trait to predict, and incomplete profiles make it even more difficult [34,35]. For only three
cells, the final prediction would be the same as the reference, namely dark skin with 70%
probability. For samples ID4, ID7, and ID10, the p-value for dark skin was only around 0.5,
and for the last two samples (ID7 and ID10), the second-highest was dark to black, which
would incorrectly suggest the skin color to be darker.

Table 2. Phenotype and ancestry prediction summary for selected single cells (with calling rate of at least 90%). p-values
and admixture proportions were compared with the results obtained from reference (ref.) sample (italic indicates identical
values; * indicates different values that affected the interpretation of the results). AUC-Area Under Curve.

Ref.
Single Cells AUC Loss

ID4 ID5 ID7 ID8 ID9 ID10 ID4 ID5 ID7 ID8 ID9 ID10

Ey
e

co
lo

r blue 0.000 0.000 0.003 0.000
inter 0.002 0.012 0.002 0.012 0.000

brown 0.998 0.988 0.998 0.003 0.000

H
ai

r
co

lo
r

an
d

sh
ad

e

blond 0.003 0.014 0.003 0.006 0.000 0.004
brown 0.337 0.521 * 0.337 0.378 0.337 0.343 0.007 0.000 0.003

red 0.000 0.000 0.028 0.000 0.027
black 0.661 0.465 * 0.661 0.619 0.661 0.654 0.002 0.000 0.001 0.000 0.001
light 0.005 0.018 0.005 0.003 0.005 0.001 0.000
dark 0.995 0.982 0.995 0.997 0.995 0.001 0.000

Sk
in

co
lo

r

very pale 0.001 0.003 0.000 0.000 0.001 0.012 0.004 0.002 0.003 0.002 0.002
pale 0.008 0.030 0.004 0.005 0.007 0.009 0.005 0.007 0.015 0.004 0.005 0.004 0.011
inter 0.275 0.418 * 0.153 0.172 0.252 0.278 0.187 0.003 0.012 0.001 0.002 0.001 0.008
dark 0.696 0.520 * 0.700 0.509 * 0.710 0.689 0.430 * 0.002 0.000 0.001 0.005 0.001 0.000

dark to black 0.021 0.029 0.143 0.315 * 0.030 0.024 0.377* 0.001 0.001 0.002 0.001 0.000 0.002

A
dm

ix
tu

re

       

The profiles used for ancestry prediction were also incomplete, which compromised
120 and 140 SNPs. For all the samples, the analysis performed by Converge revealed an
admixture of Southwest Asia and Europe, and for all except one sample, the proportion
was close to what was detected for the reference. The result obtained for sample ID4
suggested more European than Southwest Asian ancestry and was caused by missing
genotypes for rs16891982 and rs2196051, which are strongly associated with South Asian,
not European, populations.
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Figure 6. Genotyping rate per each locus used for ancestry prediction (max. 145 SNPs, upper part)
and phenotype prediction (max. 41 SNPs, lower part). The x-axis shows the number of single cells
with correct, incorrect or no genotype. Solid line: “basic” profile; dotted line: “conservative” profile.
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Figure 7. Genotyping summary for the selected single cells (with calling rate of at least 90%); left–41
SNPs used for the phenotype prediction, right–145 SNPs used for ancestry prediction.

4. Discussion

Mixture deconvolution is one of the most engaging topics in forensics. Over previous
years different methods have been developed to assist the process, both prior to [3–10]
and after, DNA typing of a mixed trace [36–38]. The DEPArray System, which uses a
dielectrophoresis grid to isolate single cells, is a promising cell separation technology
for forensic analysis. It was demonstrated that the DNA from the collected cells can
successfully be processed with STR amplification kits and detected using capillary elec-
trophoresis [11,17,18,39]. Single cells are considered ltDNA (low-template DNA), and
handling such material is not uncommon in forensics, where specialists are often faced
with low-quantity and low-quality DNA. Since such samples are treated with special lab
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protocols (e.g., increased number of PCR cycles), it makes them prone to stochastic effects
(drop-ins and dropouts) and increased stutter ratios, the interpretation of ltDNA profiles
is a common topic of discussion [40–45]. An alternative to traditional fragment analysis
is to sequence the bi-allelic SNPs, which are less prone to artifacts and are characterized
by smaller amplicons. The analysis of SNP markers is becoming more and more popular
in forensics, especially thanks to the rapid development of massively parallel sequencing
(MPS), which is not only more sensitive, but also features the use of high multiplex panels
consisting of hundreds of markers. Successful single-cell-based STR experiments suggest
additional applications in other forensic investigations. A combination of single-cell anal-
ysis and SNP sequencing could be especially useful for forensic DNA phenotyping and
serve as an alternative solution for the analysis of mixed samples, for which the current
interpretation of the phenotype and ancestry predictions can be complicated or impossible.

Panels containing SNPs associated with phenotype [22,46–48] and ancestry [21,49–51]
have been introduced, and recently assays combining those have been published [23,24,52].
Forensic DNA phenotyping is now legislated in different European countries [20], and
it is expected that police investigators will seek expert opinions on samples of interest.
The desirable interpretation of phenotypic features should be based on traces derived
from single individuals because mixed samples might not provide reliable results. The
collection of single-source traces may not always be possible; therefore, published studies
on phenotypic/ancestry SNPs should also discuss the analysis of mixtures. The first and
basic indication of a mixed SNP profile is an overall increase in the number of heterozygotic
loci [21,53]. This statement cannot easily be applied for individuals originating from
admixed populations (or having biparental co-ancestry) where the number of heterozygotes
is naturally higher. However, as presented in the study by Eduardoff et al. [21], the allele
read frequencies (ARF) differ between unmixed and mixed samples. Mixtures exhibit a
higher number of heterozygotes not meeting the balance threshold. Although the authors
were able to successfully detect the major and minor contributors for all tested mixture
ratios (from 1:1 to 1:9), they recommend careful data analysis, especially for extreme
mixtures. The authors of the HirisPlex-S MPS validation paper [22] designed a calculator
to aid an interpretation of 2-person mixtures, which is based on known major/minor
contributor ratios obtained from STR typing done prior to SNP analysis. The ratios are used
to separate read counts obtained during sequencing. The approach was tested on mixtures
with different ratios (from 1:1 to 1:9) and using contributors with distinguishable genotypes
and phenotypes. The exercise shows that the variants for 28 of the 41 SNPs included in
the HirisPlex-S were successfully separated into individual profiles. The validation study
of the comprehensive assay combining markers for appearance and ancestry predictions
from the VISAGE consortium [23] also mentions mixture deconvolution, similarly of
two contributors with different phenotypes and biogeographical ancestries, where the
analysis was based on allele frequencies. A publication from Ralf and Kayser [54] presents
the first actual crime scene trace of a mixed source submitted for phenotype prediction.
The 2-person mixture sample of interest had almost 500 pg DNA. The phenotyping was
done using the MPS-based HirisPlex-S Panel, and the sequencing included both the trace
and reference material obtained from the victim. The authors were able to extract the
probable suspect’s genotype for all the SNP markers (one with an alternative genotype
considered) and obtained distinguishable phenotypes with high probability values for all
predicted traits. They also performed mixture deconvolution by using the aforementioned
tool by Breslin et al. [22] and revealed concordance for 36/41 tested SNPs. The remaining
genotypes were interpreted differently using both approaches. Overall, discussed studies
show that the interpretation of the mixed samples must be made with caution, and the
approach should be further evaluated, especially for low input samples or mixtures of
individuals with indistinguishable phenotype/ancestry.

The advantage of implementing mixture deconvolution methods prior to the sequenc-
ing of the phenotypic/ancestry SNPs is being able to perform the predictions based on
single-source profiles. In the case of single cells, the reliability of those predictions will
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depend on the quality of the obtained sequencing results. As already discussed before,
the ltDNA requires careful and cautious analysis, and even though SNPs are less prone to
stochastic effects, the following issues are expected when sequencing low template material:
allelic drop-ins and dropouts, locus dropouts, imbalanced genotypes, and increased base
misincorporation rates. The sensitivity studies of the large SNP assay suggest that the
threshold for two of the most popular MPS platforms used in forensics, namely MiSeq FGx
System and Ion S5, lies around 100 pg DNA [22–24,52]. In all studies, inputs as low as
5–7 pg were assessed, which roughly corresponds to one human cell. As expected, with
such a low input, the obtained results consisted largely of no calls, drops in/out, and incor-
rect calls. Different forensically relevant SNP panels were tested for their efficacy in typing
ltDNA, both using the golden forensic detection standard, namely capillary electrophore-
sis [55] and MPS [56,57]. Assuming that the DNA input is low, additional changes might
be introduced to enhance the standard protocols to boost the coverage. The most common
adjustment is to significantly increase the number of PCR cycles used to amplify the targets.
The expected positive effect is a higher coverage, but some issues can also occur, like allelic
drops in/out causing imbalances or incorrect calls [55,56]. When working with MPS and
the AmpliSeq pipeline library, amplification might be applied in order to improve the read
depth. The libraries which yielded low quants might be amplified with a high-fidelity PCR
supermix. This step in the library preparation was previously implemented when using the
AmpliSeq workflow in other molecular fields [58–61], but it does not seem to be a common
practice in forensics. A study by Meiklejohn and Robertson mentions the amplification of
libraries, but only in order to quantify them after using Qubit and Bioanalyzer [62]. The
potential effect of the library amplification on the low-template samples is presented by
Turchi et al. [63]. The authors performed a comprehensive validation of the Precision ID
Identity Panel by Thermo Fisher Scientific by sequencing challenging forensic samples
on the Ion PGM. The libraries from their study with less than 30 pM were amplified and
again purified, similarly to our single cell-based libraries discussed in this paper. It was
observed that the library amplification step helped to obtain a higher level of repeatability
and improved the values of sequencing parameters. Our study shows that introducing
this step resulted in over five times higher total coverage of the single cell-based libraries.
The number of no-calls per sample decreased from an average of 70% for the unamplified
libraries to 18% for the amplified ones. The highest number of imbalanced genotypes per
sample was also half as low, and a maximum of two incorrect genotypes per sample were
observed after the libraries were amplified.

The goal of sequencing a trace submitted for forensic DNA phenotyping is to obtain
reliable genotypes which will be used for predictions. Incorrect phenotype and ancestry
predictions might be caused by incorrect genotypes [64] and incomplete profiles [29,65].
The authors of the HirisPlex-S Panel explain that different genotypes missed from the
profile will have different influences on the prediction model and that the incomplete
data has to be reported as a probability of each trait predicted together with AUC (area
under curve) accuracy loss [22,29,35]. We tested an approach of using incomplete single
profiles generated by single cells to observe how they will affect the predictions. The
calculated AUC loss would not be considered significant, but the missing genotypes
resulted in p-values notably different than for the reference samples, causing even incorrect
predictions for the skin color. In their paper, Cheung et al. tested how different percentages
of genotypes missing from a profile will affect the ancestry prediction when analyzed with
different classifiers [65]. Their study shows that an increasing number of missing markers
can affect the predictions, especially in the case of admixed samples. Our method to
perform the ancestry analysis was not mentioned in the paper, but our results show similar
observations. We used bootstrapping admixture analysis based on a maximum likelihood
approach to predict the most likely admixture proportions across seven root populations.
The SNP profiles were bootstrapped using a varying number of replications, where each
replication selected a random subset of SNPs to capture uncertainty in the predictions [27].
For the analysis of the single profiles obtained from the single cells, the number of SNPs
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available for bootstrapping differed between 123 and 139 out of 145. However, the number
of markers missing had less impact than which markers were missing. For samples
ID4 and ID8, almost the same number of SNPs were used for the analysis (123 and 125
respectively), but the prediction outcome was an admixture of Southwest Asia and Europe
with a difference of 30%. For both phenotype and ancestry, the most accurate predictions
in comparison to the reference sample were obtained for the “basic” consensus profile built
from single cell-based libraries with the highest genotyping rate.

5. Conclusions

This study is a proof of concept demonstrating that single-cell sequencing can ob-
tain the correct phenotype (HIrisPlex-S) and ancestry prediction, and therefore, can be
considered a viable mixture deconvolution method for challenging samples submitted
for forensic DNA phenotyping. The presented workflow combined single-cell separation
with the DEPArray™ NxT System and sequencing of phenotype and ancestry-associated
SNPs with the Ion S5 platform. The DNA typing was done using a previously validated
custom Ion AmpliSeq™ PhenoTrivium Panel. The study was based on testing groups of 20,
10, and 5 cells, for which the results were comparable to DNA sensitivity tests performed
in a previous validation study, showing the potential of the combined workflow. The
number of tested single cells was 20, where half of the libraries were ’rescued’ with library
amplification prior to sequencing. Introducing this step helped to significantly increase
the total coverage obtained for the 10 amplified libraries, which resulted in recovering
more genotypes. More than half of the rescued single cells had a genotyping rate close
to, or greater than, 90%. Additionally, different interpretation approaches were evaluated.
The predictions for single cells were based on a “basic” and a “conservative” consensus
profile (genotype called two or four times, respectively) and on single profiles themselves.
The most reliable predictions were obtained when using the “basic” consensus profile, for
which almost no dropouts were observed. The results suggest that collecting single cells
from a mixed sample prior to forensic DNA phenotyping can be used as an alternative
way of performing phenotype and ancestry predictions of the mixture’s contributors. This
approach will be further evaluated by sequencing mock mixtures with different ratios
using contributors not only with distinguishable phenotype/ancestry but also similar ones.
Additional changes to the workflow will also be evaluated, like increasing the number of
PCR cycles prior to amplification, adjusting library inputs, and improving the genotyping.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12091362/s1, Figure S1: Summary of genotype calling for all 200 autosomal markers
across the cell groups; Figure S2: Summary of genotype calling for all 200 autosomal markers across
the single cells, for both the unamplified and the amplified libraries; Table S1: Summary of coverage
for all 200 autosomal markers across all tested samples.
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Abstract: When DNA from a suspect is detected in a sample collected at a crime scene, there can
be alternative explanations about the activity that may have led to the transfer, persistence and
recovery of his/her DNA. Previous studies have shown that DNA can be indirectly transferred via
intermediate surfaces and that DNA on a previously used object can persist after subsequent use
of another individual. In addition, it has been shown that a person’s shedder status may influence
transfer, persistence, prevalence, and recovery of DNA. In this study we have investigated transfer
persistence and recovery on zip-lock bags and tape, which are commonly encountered in drug cases
and how the shedder status of the participants influenced the results. A probabilistic framework
was developed which was based on a previously described Bayesian network with case-specific
modifications. Continuous modelling of data was used to inform the Bayesian networks and two
case scenarios were investigated. In the specific scenarios only moderate to low support for Hp was
obtained. Applying a continuous model based on the profile quality can change the LRs.

Keywords: transfer; persistence; activity; Bayesian networks

1. Introduction

In criminal cases, when DNA from a suspect is detected in samples collected from
drug wrappings, there can be alternative explanations about the activity that may have led
to the transfer, persistence, and recovery of his/her DNA. Often these explanations involve
indirect transfer from an object they have used (e.g., bag or clothing), or perhaps the suspect
has been in contact with the object in a situation not related to the crime. The hierarchy of
propositions describes the different levels of evaluation of the evidence given propositions
at sub-source, source, activity, and offence level [1–3]. The guidelines from the International
Society for Forensic Genetics (ISFG) DNA commission provide advice on evaluation and
the formulation of propositions and recommend the evaluation of results at activity level
in the light of the alternative propositions of the case and calculating a likelihood ratio
(LR) [2]. A recommended tool to aid in the evaluation of evidence is Bayesian networks
(BNs) [4] and examples of how they can be constructed and used are widely available [5,6].
To construct a BN, the relevant variables and their respective probabilities are required.
Extensive research on transfer persistence, prevalence, and recovery (TPPR) of DNA has
been conducted over the past 10 years [7], although knowledge bases that can be utilised
for routine casework are currently lacking.

The indirect transfer of DNA is dependent upon several variables including: the
amount of DNA present, time since initial contact, number of contacts and the type of
surface of the objects involved [8–10]. DNA from a person who previously handled an
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object can be detected for some time after the object has been handed to a new user [10].
However, it is more likely that DNA from the most recent user of the object will become the
major contributor over time [11,12]. Van Oorschot et al. [12] observed an average 50% drop
in the DNA from the previous user immediately after handling by a new user when the
surface was hard and non-porous. Mayuoni-Kirshenbaum et al. [13] studied the persistence
of DNA from a person cutting aluminium foil when the foil was subsequently used for lock
picking by another individual and only detected DNA from the cutter in 1/25 cases while
the lock-picker was detected in 9/25 samples.

It has previously been demonstrated that individuals have a different propensity to
transfer DNA to handled items (shedder status); shedder status is consistent over years,
and it can influence transfer probabilities [14–16]. However, the classification method has
been debated and a need to introduce an intermediate shedder category (between high and
low) has been demonstrated [15–17].

The aim of this paper is to provide a dataset along with a probabilistic framework
to interpret DNA evidence at activity level. We present two specific scenarios related to
DNA evidence in drug related cases. The first considers direct and indirect transfer to a
zip-lock drugs bag that has been stored in a personal bag, whilst the second considers the
persistence of DNA from a previous user of tape which was used to pack drugs by a second
individual (the cardboard drug wrap experiment). The results from both experiments
were examined in the light of the participant’s shedder status. A probabilistic framework
was developed which was based on a previously described Bayesian network [5] with
case-specific modifications. Previous work has usually applied discrete models to measure
simple presence/absence of DNA that may be attributed to a person of interest (POI). A
continuous model was demonstrated by Gill et al. [6], based upon sub-source likelihood
ratios, and this was recently complemented with a method using mean RFU (peak height)
instead of sub-source likelihood ratio [18]. Here we provide a demonstration of continuous
modelling of indirect and direct transfer with two case examples. Continuous models are
the preferred method with mixture analysis [19] because they take more information into
account. It is natural that activity level assignments should take the same route.

The paper is structured as follows: in Sections 3.1–3.4 there is an empirical descrip-
tion of the data analysis, followed by probabilistic analysis using Bayesian networks of
the zip-lock drugs bag experiment (Section 3.5.1), and the tape/cardboard drug wrap
experiment (Section 3.5.2).

2. Materials and Methods

This project was approved by the data protection officer at Oslo University Hospital,
all participants have given informed consent prior to participating in the experiments.
Twenty participants were recruited and participated in all experiments.

2.1. Direct and Indirect Transfer to Zip-Lock Drugs Bags

Each participant was provided with a kit for the experiments containing two DNA-free
(exposed to UV light for 10 min on each side) zip-lock bags (16.7 × 10 cm). One of the
zip-lock bags contained a 15 mL centrifuge tube (VWR) filled with water to function as
a weight.

2.1.1. Direct Transfer

Participants were instructed to wait at least one hour after washing hands/using
antibacterial hand wash, after which they touched the upper surface of the zip-lock bag for
about 30 s by opening and closing it. They were then asked to repeat this process with the
same bag two more times (total of three handlings). When the procedure was completed,
participants were instructed to place the zip-lock bag into a new labelled envelope. The
dataset generated is labelled E1 and is available in the Supplementary Material S2.
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2.1.2. Indirect Transfer

Participants were instructed to use their own personal bag/purse/backpack for this
experiment. They were instructed to put on a pair of new disposable gloves before placing
the zip-lock drugs bag containing the weight into their personal bag (which did not contain
anything else during the experiment) and leave it there for 24 h; they were also instructed to
move the personal bag during this period, e.g., carry it with them to work and home. After
the 24 h had passed, the zip-lock drugs bag was removed, whilst wearing clean gloves, and
placed into a new labelled envelope. The dataset generated is labelled E2 and is available
in Supplementary Material S2.

2.2. Persistence and Detection of DNA from a Previous User of a Tape Roll

In this experiment participants were divided into pairs. Participant B was given a
DNA-free (treated with UV light for 20 min on each side) roll of tape. The participants were
instructed to wait at least 1 h after washing hands/using antibacterial liquid; then the tape
was handled for 1 min by passing it from one hand to another, stroking the sides of the tape
roll towards the palm of the hands; use of the tape was mimicked by tearing off a small
piece. The roll of tape was placed in a labelled envelope and passed to participant A after a
minimum 10 days in storage. Participant A was provided with a piece of clean cardboard
(approx. 6 × 10 cm) (UV treated on each side for 20 min), to mimic a pack of drugs. He/she
was instructed to wrap the piece of cardboard with the tape (previously handled by B). The
“drug wrap” was placed in a new labelled envelope. Each of the 20 participants contributed
twice to the experiments swapping the roles of A and B, giving a total of 20 wrapped
cardboards. The data generated is available in Supplementary Material S2.

2.3. Shedder Status

Participants were asked to hold a plastic tube (15 mL centrifuge tube high performance
tube, VWR) for 10 s in their dominant hand, at least one hour after washing hands/using
antibacterial liquid. The experiments were repeated 3 times, with a new clean tube; there
was a gap of at least three hours between each experiment. The data generated is available
in Supplementary Material S2.

2.4. Sample Processing

Samples were collected with a moistened (one drop of water) swab (Tubed Sterile
Dryswab, Medical Wire). The sampling was performed on: (a) zip-lock bags: the top 3 cm
of the outside and inside (including lock) of the zip-lock bags; (b) wrapped cardboard: the
full outside and edges of the tape around the cardboard; (c): tubes: the full body of the
15 mL centrifuge tubes (not lids). One negative control sample was collected from all items
(tape, cardboard, zip-lock bag and tube). For the samples collected from zip-lock bags and
wrapped cardboard, the tips of the swabs were cut, placed in 1.5 mL Eppendorf tube and
stored at −20 ◦C until further processing to avoid degradation. Samples collected from
tubes were stored in ventilated evidence bags to dry before the tips of the swabs were cut
directly into single PCR-tubes for a direct PCR analysis.

Samples collected from zip-lock bags and wrapped cardboard were extracted by the
5% Chelex procedure [20] (no prior incubation with water) where 200 μL Chelex (Bio-Rad,
Hercules, CA, USA) was added to swabs. All samples were quantified with PowerQuant
(Promega, Madison, WI, USA) on the 7500 Real-Time PCR system (ThermoFisher, Waltham,
MA, USA) using the manufacturers’ recommendations. PCR amplification was carried out
using the PowerPlex Fusion 6C System kit (Promega, Madison, WI, USA) as recommended
by the manufacturer (1 ng template, 25 μL reaction volume and 29 amplification cycles).
Samples that had lower concentrations than the recommended template amount were
amplified with the maximum template volume of 15 μL. For the shedder experiment, the
PCR reaction mix was added directly to the tube containing the swab tips. Amplification
was carried out using a Veriti 96-Well Thermal Cycler (ThermoFisher, Waltham, MA, USA).
Samples were injected on the Applied Biosystems 3500 xL Genetic Analyzer at 1.2 kV
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for 24 s. The results were analysed using the GeneMapper ID-X Software version 1.6
(ThermoFisher, Waltham, MA, USA). The analytical threshold (AT) for alleles was set to
100 RFU.

2.5. Data Analysis

Results were analysed using R version 4.0.3 with the package tidyverse version 1.3.0.
Likelihood ratios and mixture proportions were calculated using EuroForMix version 3.2.0
using propositions shown in in Equation (1), where U corresponds to unknown contributors,
necessary to explain all alleles present. The average RFU (RFU) for a contributor was
calculated by dividing the total RFU (RFUtot) by the number (n) loci (23, except amelogenin),
Equation (2). If the sample was a mixture, the contribution from the POI was found by
multiplying RFU for the sample by the mixture proportion (Mx). If a sample was diluted
then the result was multiplied by a dilution factor (dl).

LR =
Pr

(
E
∣∣Hp : POI + U1

)
Pr(E|Hd : U1 + U2)

(1)

RFUPOI = Mx × RFUtot

n
× dl (2)

2.5.1. List of Variables

We follow the notation used by Gill et al. [6] (Section 4), summarised here:

t is the probability of direct transfer, persistence and recovery of DNA from the POI (under
Hp only).
t’ is the probability of direct transfer, persistence and recovery of DNA from an unknown
contributor (under Hd only).
b is the probability of background DNA, based on observations, and is applied under both
Hp and Hd. Background DNA is present from unknown sources and unknown activities. It
can be described as “foreign” (non-self). For further details we refer to Section 3.2 in [6].
s is the probability of transfer, persistence and recovery; in experiment 1, this is indirect
transfer under Hp and Hd, and in experiment 2, it is direct transfer under Hd only.
Suffixes are applied to described probabilities of an event given a particular contributor,
e.g., tA refers to the probability of direct transfer, persistence and recovery of DNA from
contributor A.

2.5.2. Notation Relating to the Experiments

Experiment 1: zip-lock drugs bag
E1dbag: Dataset from the zip-lock drugs bag; direct transfer
E2pbag: Dataset from the personal bag experiment; indirect transfer
RFUE1dbag: Lognormal distribution of mean RFU from E1dbag data; direct transfer
RFUE2pbag: Lognormal distribution of mean RFU from E2pbag data; indirect transfer
Experiment 2: Tape/cardboard drug wraps
C1pack: Dataset from drugs wrapper; direct transfer
C2tape: Dataser from the tape handler; direct transfer
RFUC1pack: Lognormal distribution of mean RFU from C1pack data; direct transfer
RFUC2tape: Lognormal distribution of mean RFU from C2tape: data; direct transfer
General
RFUA: the observed RFU value from contributor A
RFUB: the observed RFU value from contributor B
RFUunknown: the observed RFU value from an unknown contributor

2.5.3. Distribution Fitting

Log-normal distributions were fitted to the data using the R package fitdistrplus using
function lnorm. The method is described in detail in Supplementary Material S1. The

298



Genes 2022, 13, 18

probability of background for experiment 1 was modelled using the same lognormal pa-
rameters calculated for indirect transfer data RFUE2pbag, as described in the Supplementary
Material S1 (Section S4.4.1). To carry out sensitivity analysis, 1000× bootstraps (with re-
placement) were taken of datasets (Supplementary Material S2). For each bootstrap, a new
set of log-normal parameters (mean log and SD log) were calculated using the fitdistrplus R
package using the lnorm function. The probability distributions were used to substantiate
the Bayesian networks described in Sections 3.5.1 and 3.5.2. The programming of these
networks was carried with R-code using the formulae described in Sections 3.5.1 and 3.5.2.

3. Results

3.1. Direct and Secondary Transfer to Zip-Lock Drugs Bags

The DNA from the POI could be detected in the samples collected after direct handling
of a zip-lock drugs bag and after indirect transfer to the drugs bag from storage in a
previously used personal bag. More alleles matching the POI along with higher DNA
quantities were generally observed in the direct transfer experiment (E1dbag) compared
with indirect transfer from inside a personal bag (E2pbag). Generally, the RFUPOI was higher
in E1dbag, but a few occurrences of higher RFUPOI were observed in E2pbag (Figure 1).

Figure 1. Boxplots displaying (a) the measured DNA concentrations (ng/μL in 200 μL), (b) the
number of detected allele’s matching the POI and (c) the RFUPOI for the samples in the E1dbag (direct)
and E2pbag (indirect) data.

In the direct transfer experiment four full and seven partial profiles were detected,
while six samples only displayed six or less alleles and four samples had no results. Only
one sample contained (two) unknown alleles. From the indirect transfer experiment three
full and two partial profiles corresponding to the POI were detected. Four samples only
displayed five or less alleles and ten samples had no profiling results. One sample was
a mixture with 21 unknown alleles, and one sample was a partial profile with alleles
corresponding to a child of the participant. The most frequently used type of personal bag
used was a backpack but a large proportion of these samples (7/11) had no results. The full
dataset can be found in the Supplementary Material S2. The highest RFU values on the
zip-lock drugs bags were observed after storage in a personal purse/handbag, (Figure 2).
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A few participants (1 and 2, respectively) used a personal PC and shopping bag to store
the zip-lock drugs bags. Most participants reported using the personal bag frequently or
every day, while two participants reported rarely using their personal bags. No alleles were
detected on zip lock bags after storage in rarely used personal bags.

Figure 2. Dot plot displaying the log 10RFU values detected in the samples collected from zip-lock
drugs bags after storage in a previously used personal bag (backpack, PC bag, purse/handbag or
shopping bag).

3.2. Persistence and Detection of DNA from a Previous User of a Tape Roll Used to Wrap Drugs

In samples collected from wrapped cardboard, DNA from both the person who
previously handled the tape (C2tape) and the person who packed the tape around the
cardboard (C1pack) could be detected. However, the quality of the profile, peak heights of
detected alleles and mixture proportions varied between the cardboard wrapper and the
tape handler (Figure 3).

Figure 3. Boxplot displaying (a) proportion of unique alleles, (b) the mixture proportion and (c) RFU
values corresponding to the wrapper (C1pack) and the handler (C2tape) of the tape.
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Three samples had no profiling results and for an additional three samples only four
alleles were detected. Seven samples were full or partial profiles corresponding to the drugs
wrapper (C1), five samples were mixtures of C1 and C2. For three of these mixtures, C1 was
the major contributor, whilst in the last two, the contributions were of equal proportions.
Two samples were partial profiles with alleles corresponding to C2. The full dataset can be
found in the Supplementary Material S2.

3.3. Shedder Status

The total RFU values (RFUtot) from the direct PCR analysis varied from 0 to 458,705,
variation was greater between individuals than within the samples from one individual
(ANOVA, p = 0.04), Figure 4. However, some individuals, especially those that deposited
low amounts of DNA, displayed lower variation. Individuals were classified as low,
medium or high shedders based on the criteria defined by Johannessen et al. [15] with
the following adjustments according to the observed values of the current dataset: high
shedder class was assigned to participants that had two out of three samples above the
average RFUtot (62,520) and two out of three samples with 20 out of 24 full loci. Low
shedder class was assigned to participants where all samples were below 8000 RFUtot and
two out of three with negative or partial profiles. The rest were classified as medium
shedders. This resulted in 4 high, 11 medium and 5 low shedders (Figure 3). The full
dataset can be found in the Supplementary Material S2.

Figure 4. Scatter plot showing the total RFUtot values (multiplied by Mx if sample was a mixture) for
each sample collected from each participant and according to their shedder status, high (red circle),
medium (blue square) low (green triangle). The average RFUtot (6.25E+04) and low shedder limit of
8.00E+03 RFUtot are represented with the dotted and straight lines, respectively.
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DNA from unknown contributors was detected in 30/90 samples, the average Mx
proportion from unknown contributors was highest for low shedders, Table 1.

Table 1. Detection of unknown alleles in the shedder samples and the proportion of unknown DNA
detected for the three different shedder classes.

Number of Samples
Average Mx Unknown

Contrib.

High 4/12 (33%) 7.1
Medium 19/33 (58%) 8.5

Low 7/15 (47%) 52.0

3.4. Transfer in Relation to Shedder Status

Data from experiment 1 (direct transfer to zip-lock drugs bag) showed highest transfer
rates with high shedders (Figure 5). More variation was observed in the medium shedder
group, than for the low and high shedders. The trend is not as obvious for experiment 2
(indirect transfer from personal bag to zip-lock drugs bag). In fact, the best quality profile
was detected in a sample from a low shedder participant. Based on the number of samples
in each group, there were insufficient data to evaluate the effect using Bayesian networks
described in Section 3.5.1.

Figure 5. Boxplot displaying the log10 RFU detected in the direct transfer experiment (E1dbag) and
indirect transfer from personal bag (E2pbag) according to the participants’ shedder classification.

Data from persistence and detection of DNA from a previous user of a tape roll
experiment showed that low shedders only provided low quality profiles and that higher
quality profiles were provided by high shedders. Medium shedders provided both high
and low quality results. (Figure 6).
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Figure 6. Boxplot displaying the log10 RFU for the drugs wrapper (C1pack) and the previous handler
(C2tape) of the tape according to the shedder classification of the participants.

3.5. Case Examples

To demonstrate the potential use of the datasets obtained, we will use two fictive case
examples that are based on actual experiences from case work, using a Bayesian network
to evaluate the evidence.

3.5.1. Potential DNA Transfer from Storage in a Personal Bag
Case Circumstances

1. A large depot of drugs was found at a hideout;
2. The drugs were packed in zip-lock bags and placed in a black gym bag;
3. Upon questioning, person A claims to have no knowledge of the drugs. However,

he recognizes a gym bag that the drugs had been stored in and claims that it used to
belong to him but it was lost or stolen two weeks previously.

DNA Analysis

DNA samples were collected from the outside and opening of the zip-lock bag

4. Example 1: Result is a full DNA profile of a single individual. There is a candidate in
the national DNA database who is identified as person A;

5. Example 2: Result is a mixture of two individuals. There is a candidate in the
national DNA database who is identified as person A but there is no candidate for the
second individual.

Propositions

Sub-source likelihood ratios were calculated for both contributors using EuroForMix [21],
although this information was not used in any further analysis. To proceed with activity
level analysis, it is assumed that the sub-source LR is sufficient for a court to agree the
identity of a POI [2].

The alternative activity level propositions (for both examples) are as follows:
Hp: The suspect packed the drugs;
Hd: The suspect has no relation to the drugs but was the owner of the gym bag which

was stolen two weeks previously. An unknown individual packed the drugs.
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The BN used to instantiate probabilities is identical to that described by [6] (Sup-
plement S1), except that the title of the nodes are changed to represent the case circum-
stances (Figure 7). Log-normal distributions were used to calculate drug bag (direct)
and personal bag (indirect) TPR probabilities, conditioned upon values of RFUA mod-
elled with RFUE1dbag and RFUE2pbag distributions respectively. RFUunknown was modelled
with RFUE2pbag distribution (Table 2), the assigned probabilities (Figure 8) were subse-
quently used in the BN (Figure 7) to calculate the results. To carry out sensitivity analysis,
1000× bootstraps (with replacement) were taken of the RFUE1_dbag and RFUE2_pbag data
(Supplementary Material S2) to provide 1000 new sets of data. For each bootstrap, a new
set of log-normal parameters (mean log and SD log) were calculated using the fitdistrplus R
package and the variation was represented by percentiles in Table 3.

Figure 7. Bayesian network for the “drugs stored in gym bag” example showing data sets and models
used to instantiate the nodes.

Table 2. Relationship of probabilities of DNA transfer from individuals A (POI) and U (unknown),
showing the datasets that were used to calculate probability distributions, along with the BN nodes
instantiated. See nomenclature Section 2.5.1 for definitions of probabilities.

Probability Description Contributor
Data used to Inform

Probability Distribution
BN Nodes

tA Packing transfer A RFUE1dbag A DNA transferred during packing
t’ Packing transfer U RFUE1dbag DNA from unknown transferred during packing
s Bag transfer A RFUE2pbag A DNA transferred from bag
b Background U RFUE2pbag Background DNA
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Figure 8. Comparison of probabilities of direct, indirect and background TPPR for the zip-lock drugs
bag example. Direct transfer was modelled from RFUE1dbag; personal bag (indirect transfer) was
modelled from RFUE2pbag data and background was also modelled from RFUE2pbag data, with
adjusted k = 0.95 (the proportion of observations with no background) in order to scale results as
described in Supplementary Material S1.

Table 3. Activity level likelihood ratios where only contributor A is recovered, with sensitivity
analysis, showing 2.5–97.5 percentiles. The median (50 percentile) values are those that are reported.
Results for the discrete model are shown in the top row; continuous models conditioned upon
RFUA > x are shown in remaining rows.

RFUA > x 2.50% 5% 10% 25% 50% 75% 90% 95% 97.50%

0 5 5 6 8 11 17 27 39 6 × 101

200 5 5 7 9 14 23 47 82 2 × 103

400 4 5 6 9 13 24 52 122 1 × 104

600 4 5 6 8 12 24 52 153 4 × 104

800 4 5 6 8 12 24 53 196 9 × 104

1000 4 4 5 8 12 24 54 218 2 × 105

2000 4 4 5 7 11 24 63 448 3 × 106

4000 3 4 4 6 10 23 77 1016 6 × 107

6000 3 4 4 6 9 21 87 1752 4 × 108

Derivation of the formulae used in the calculations are the same as those described in
Supplementary Material S1 of Gill et al. [6]. Likelihood ratios were calculated as shown in
Formulae 3–5 (nomenclature in Table 2):

(a) Only the POI (A) is observed

LR =
(s(1 − tA) + tA)× (1 − b)

s × (1 − Pr(Ud))
(3)
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(b) POI (A) and unknown is observed

LRa =
(s(1 − tA) + tA)× b

s × Pr(Ud)
(4)

(c) Probability of recovery of DNA from an unknown contributor

Pr(Ud) = t′b + t′(1 − b) + b
(
1 − t′

)
= t′ + b

(
1 − t′

)
(5)

There were only three observations of background (datasets E1dbag and E2pbag). Back-
ground is from indeterminate (unknown) sources and can comprise both direct and indirect
transfer. Here, it was modelled using RFUE1pbag > x data (where x is a threshold value;
first column in Table 3), except that the model was scaled relative to k = 1 − Pr(b) as de-
scribed in the Supplementary Material S1; where k is the proportion of observations where
no background was observed. From experimental observation Pr(b) = 0.05 and k = 0.95.

Two possible outcomes of the DNA results were analysed in detail. Either a profile
from the POI individual A is recovered, or A is recovered in combination with an un-
known contributor which forms the basis of the proposition under Hd, else the unknown
contributor is background under Hp.

Contributor A Recovered Alone

When contributor A is recovered alone, Table 3 shows that the median (50 percentile)
LRs always favour the proposition that he/she packed the drugs; the evidence provides
moderate support. If a discrete model is used where allele peak height is not consid-
ered, then LR = 11 (top row of Table 3). Taking peak height into account has little effect
in this example. The sensitivity analysis shows the evidence always favours Hp at the
2.5 percentile.

Unknown and Contributor A Recovered

A different result is obtained when a mixture of unknown and contributor A is recov-
ered. For the discrete model (top row of Table 4) the LR ≈ 0.1, favouring the proposition
that an unknown contributor wrapped the drugs. When allele peak height is considered,
similar results are obtained (Table 4).

Table 4. Activity level likelihood ratios where contributor A and an unknown are recovered, with
sensitivity analysis, showing 2.5–97.5 percentiles. The median (50 percentile) values are those that are
reported. Results for the discrete model are shown in the top row; continuous models conditioned
upon RFUA > x and RFUunknown > x are shown in remaining rows.

RFUA > x RFUUnknown > x 2.50% 5% 10% 25% 50% 75% 90% 95% 97.50%

0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2
100 2000 0.1 0.1 0.1 0.2 0.3 0.6 1.1 1.5 2
100 7000 0.1 0.2 0.2 0.3 0.6 1.1 1.8 2.4 4
2000 100 0.1 0.1 0.1 0.1 0.1 0.2 0.5 1.4 24
7000 100 0.1 0.1 0.1 0.1 0.1 0.1 0.6 3.6 307
1000 2000 0.1 0.1 0.2 0.2 0.3 0.5 0.9 1.5 20
1000 7000 0.2 0.2 0.2 0.3 0.5 0.9 1.3 2.7 35
2000 1000 0.1 0.1 0.1 0.1 0.2 0.3 0.7 1.8 45
7000 1000 0.1 0.1 0.1 0.1 0.2 0.3 1.0 4.2 717

3.5.2. Cardboard Drug Wrap Experiment
Case Circumstances

A large depot of drugs was detected by the police during a house search of A’s house.
The drugs were wrapped in cardboard and covered by packing tape;
Person A admits that he packed the drugs and does not implicate anyone else;
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Person B claims to have no knowledge of the drugs. However, he worked for a moving
agency and often handles packing tape. Remains of packing tapes are often left behind and
could be picked up and used by others.

DNA Analysis

DNA samples were collected from the wrappings. The results of the DNA analysis
were a mixture of person A and an unknown contributor. A candidate was identified as
person B from a national DNA database search.

Propositions

Sub-source likelihood ratios were calculated for both contributors using EuroForMix [20],
although this information was not used in any further analysis. To proceed with activity
level analysis, it is assumed that the sub-source LR is sufficient for a court to agree the
identity of a POI [2].

The prosecution and defence activity level propositions are as follows:
Hp: A and B packed the drugs together and B did not previously handle the tape;
Hd: A packed the drugs alone; B had previously handled the tape
From the case information, a Bayesian network incorporating the relevant nodes was

prepared (Figure 9). See Supplementary Materials S1 for details. Since both Hp and Hd
agree that contributor A packed the drugs, his/her presence or absence of DNA has no
effect upon the likelihood ratio. Only contributor B has an effect.

Figure 9. Bayesian network for the evaluation of evidence in the case where DNA evidence was
collected from cardboard drug wrap.

Statistical Analysis

The data are provided in Supplementary Materials S2. In the experiment, contributor
B previously handled the tape as described in Section 3.5.1, and contributor A packed the
drugs. The mean RFU of the observed DNA profile was split per contributor (RFUA and
RFUB), based upon their respective mixture proportions (Mx): i.e., RFUA = RFUtot × MxA
and RFUB = RFUtot × MxB, where Mx was calculated using EuroForMix [20]. Log-normal
distributions were fitted to each set of data using the fitdistrplus R package (Figure 10).
Distributions for the BN node “B DNA transferred when handling tape” (Figure 9) were
modelled from RFUC2tape; distributions for BN nodes” (solo) A DNA transferred during
packing” and “(joint) B DNA transferred during the packing” were both modelled from
RFUC1pack (Table 5).
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Figure 10. Lognormal distributions of RFUC1pack and RFUC2tape.

Table 5. Relationship of probabilities of DNA transfer from individuals A and B, showing the
datasets that were used to calculate probability distributions, along with the BN nodes instantiated.
Nomenclature is described in Section 2.5.1.

Probability Description Contributor
Data Used to Inform

Probability Distribution
BN Nodes

tA Packing transfer A RFUC1pack
(solo) A DNA transferred during packing
(joint) A DNA transferred during packing

tB Packing transfer B RFUC1pack (joint) B DNA transferred during packing
s Tape transfer B RFUC2tape B DNA transferred when handling tape

Likelihood ratios were calculated as follows (see Table 5 for context):

(a) A DNA is recovered: LR = (1−tB)
(1−s)

(b) B DNA is recovered: LR = tB/s
(c) A and B DNA are recovered: LR = tB/s

(d) no DNA is recovered: LR = (1−tB)
(1−s)

The formulae are derived in Supplementary Material S1. Note that likelihood ratios
of (a) and (d) are the same, as are (b) and (c). This is because both Hp and Hd condition
upon contributor A, hence his/her presence is cancelled out. To carry out sensitivity
analysis, 1000× bootstraps (with replacement) were taken of the RFUA and RFUB data
(Supplementary Material S1). For each bootstrap, a new set of log-normal parameters
(mean log and SD log) were calculated using the fitdistrplus R package.

Results of Analysis

Log-normal distributions were used to calculate the tape handling and drug packing
TPR probabilities, conditioned upon values of RFUB > x from simulated profiles and
subsequently used in the BN (Figure 8) to calculate the results (Table 6).
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Table 6. Activity level likelihood ratios, with sensitivity analysis, showing 1–99 percentiles. The
median (50 percentile) values are those that are reported. Results for the discrete model are shown in
the top row; continuous model conditioned upon RFUB > x shown in remaining rows.

RFUB > x 1% 2.50% 5% 10% 25% 50% 75% 90% 95% 97.50% 99%

0 0.8 0.8 0.9 1.0 1.2 1.4 1.7 2.0 2.3 2.6 3.0
100 1.2 1.4 1.5 1.7 2.1 2.7 3.9 5.6 7.3 10.0 16.2
200 1.3 1.5 1.7 2.0 2.6 3.7 6.6 12.9 20.5 34.0 90.5
300 1.3 1.5 1.7 2.1 2.8 4.5 10 23 43 93 282
400 1.3 1.5 1.7 2.0 3.0 5.1 13 39 78 190 953
500 1.2 1.4 1.6 2.0 3.1 5.5 17 65 147 371 2152
600 1.1 1.3 1.5 1.9 3.0 5.9 20 97 238 603 4441
700 1.0 1.2 1.4 1.8 3.0 6.1 24 133 360 1157 8454
800 0.8 1.1 1.3 1.7 3.0 6.4 29 179 563 1872 15,118
900 0.7 1.0 1.3 1.6 3.0 6.7 35 227 833 2951 27,012
1000 0.6 1.0 1.2 1.6 2.9 6.9 40 291 1176 5202 52,019

Likelihood ratios, along with sensitivity analyses are calculated against a range of
RFUB > x values (Table 6). If a profile is obtained where only contributor A is present
and there is no DNA present that can be attributed to contributor B, then the LR = 0.6, i.e.,
supports the proposition that suspect B did not package the drugs. If DNA is present that
can be attributed to B, then the LR > 1, favouring the proposition that suspect B did package
the drugs. The presence/absence of individual B as a contributor to the evidence can be
described either as discrete: Pr(RFUB > 0) vs. absence, or as a continuous distribution
where Pr(RFUB > x), where x is a threshold value. With a discrete model, LR=1.4 (first row
of Table 6). Taking the value of RFUB > x, with the continuous model in subsequent rows
of Table 6, a higher LR is achieved, reaching a maximum median LR=6.9 if RFUB > 1000
(the limit of observations in Supplementary Materials S2), although the evidence can only
be described as “weak” following the ENFSI verbal scale [22]. The sensitivity analysis
shows the observed range between 1–99 percentiles from 1000× bootstraps of the data. The
variation increases greatly as RFUB increases—a reflection of the small size of the datasets.
In conclusion, the discrete model understates the value of the evidence, compared with the
continuous model.

4. Discussion

4.1. Zip-Lock Drugs Bag Experiment

The DNA from the POI was detected more frequently on a zip-lock drugs bag if the
bag was directly handled. However, the best quality profile observed in the study was
collected from a zip-lock drugs bag stored in a personal bag (purse). From the literature,
indirect transfer to a sleek surface such as the zip-lock drugs bag is expected to be low [8].
Most of the personal bags used in the experiments had previously been frequently used
by the participants, although there are few observations in each class of bags, there is an
indication that larger quantities of DNA can be detected on a zip-lock drugs bag after
storage in purses. More DNA could be accumulated from the user on the inside of a
purse as several personal items (e.g., phone, hairbrush, wallet) containing owner DNA
are frequently stored there. In addition, the surface of the inside of the bag will influence
accumulation and further transfer [8,23]. In the case example, it is shown that personal
bags that are used to store everyday items, such as clothing or personal effects that are
frequently handled, accumulate amounts of DNA that may be indirectly transferred to other
objects. This resulted in low likelihood ratios (moderate evidence to support Hp) when
DNA from only the POI was recovered. There was little difference between the discrete
model and the continuous model, the latter takes the allele peak height into account. With
mixtures, both discrete and continuous models favour Hd (LR ≈ 0.1; Table 4). In the
experiment, only low amounts of background (DNA from unknown contributors) were
detected. Combined with the relatively low difference between indirect and direct transfer
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probabilities (Figure 8), especially when RFU > 1000, this has an impact of reducing the
LR if the sample is in admixture with an unknown contributor, so that it always favours
the defence proposition (Hd).

4.2. Cardboard Drug Wrap Experiment

In this study, the persistence of DNA from previous handlers of a roll of tape was
investigated. As the top surface of the tape is hard and non-porous, the expectation is that
low amounts of DNA would be transferred and detected after direct contact, in addition
to a rapid removal of DNA from the previous user [8,12,13]. The findings of this study
generally correlate with these expectations: a large proportion of samples produced no
results or only a few alleles. The packer (last handler) was the only contributor or the
one contributing a larger amount of DNA in most of the samples that gave results. Some
exceptions were observed with two profiles showing results that only corresponded to the
tape handler (person B). The sides of the tape have a rougher surface where more DNA is
expected to be transferred upon initial contact [9,23]. In addition to DNA from the previous
user persisting on the surface of the tape, it is possible that some of the DNA deposited on
the side of tape could be transferred to the new user’s hands and to the cardboard during
the wrapping of the drugs. As no other items were touched in between handling the tape
and performing the wrapping, there was no opportunity for the loss of person B’s DNA to
other surfaces. We did not monitor the wrapping procedure and recognise that the manner
of contact during the procedure could influence the result. However, information regarding
this will rarely be known in casework.

In the Bayesian network case example, we considered that an individual B claims
that he/she handled tape which was later used to prepare drug wraps. Individual A has
admitted the offence, hence, his/her presence of DNA on the drug wrap has no bearing
on the value of the evidence. If contributor B’s DNA is recovered, without taking account
of RFU in the discrete model, the evidence is close to neutral LR = 1.4, whereas if RFU
is taken into account, the value of the evidence increases with RFU, although it does not
exceed LR = 7 where RFU > 1000 (the upper limit of experimental observations), i.e., the
evidence would be described as weak using the ENFSI scale [22]. However, if B’s DNA is
absent, then this favours the defence proposition LR = 0.6.

The experimental set up is similar to that used in [13] where the question was if the
POI previously cut an aluminium foil or used this foil in lock picking. The activity LR in the
lock-picking study, calculated with a discrete model (7.4) was greater than that observed in
the current study (1.4). However, the LR was in the same range as the maximum (median)
level of the continuous model employed (LR = 6.9). Some of the differences could be
explained by the difference in transfer to and persistence on aluminium foil vs. tape.

4.3. Shedder Status and Transfer Probabilities

A person’s shedder status has previously been shown to influence the probability of
transfer, persistence, and detection of DNA [14,24]. Fonneløp et al. [14] demonstrated that
DNA was more frequently detected in samples collected from the T-shirts of a victim if
the attacker was a high shedder and that the probability of detection increased further if
the victim was a low shedder. While Otten et al. [24] observed a correspondence between
shedder stratus and DNA transfer to gloves. The correspondence between shedder status
and the amount of DNA transferred is further demonstrated by our findings when it comes
to direct transfer to zip-lock drugs bags (Figure 11), direct transfer during wrapping with a
tape and transfer and persistence after touching a role of tape. On the other hand, when
indirect transfer from the inside of a personal bag was considered, no clear association with
shedder status was observed, and the best quality profile was detected after storage in a low
shedder’s personal bag. We hypothesised the amount of previous use and the surface of the
inside of the bag could be of higher importance for this type of transfer. The low number of
samples collected in each category is also a limitation and a clearer correspondence may be
seen with a larger collection of data. Shedder status was not incorporated into the Bayesian
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networks because dividing the results into three categories would lead to too few data in
each group to analyse. Secondly, it would also be important to properly characterise the
effect of shedder status on indirect transfer before applying this variable to the model.

Figure 11. Effect of high/medium/low shedder status on direct transfer (E1) data.

The LRs calculated in this study are comparable to other studies where DNA trans-
ferred by hands is considered [6,13,25]. It is likely that including more information—
especially shedder status, would, to some degree, change the LR calculations [14].

4.4. Detection of Unknown DNA

This experiment was performed during the COVID-19 pandemic where a general
recommendation to keep a social distance of at least two meters and to wash hands
frequently or use antibacterial liquid was given. It is likely that these measures could have
had an impact on the detection of unknown DNA in the samples, which was low compared
to previous studies [9,16,26].

5. Conclusions

We have created datasets on direct and indirect transfer to zip-lock bags and transfer
and persistence to tape and further shown how the data can be used to inform Bayesian Net-
works. As the indirect and persistence scenarios tested are realistic under the circumstances
utilised in this study, only moderate to low support for Hp was obtained. We have shown
that applying a continuous model based on the profile quality can alter LRs compared
to a discrete model and is preferable. There are challenges with limited datasets, and we
were not able to implement shedder status into our models. More data on the influence of
shedder status are required when indirect transfer is considered.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes13010018/s1, Supplementary Material S1: Derivation of formulae from experiment
2: Cardboard drug wraps, Supplementary Material S2: Supplementary table 2.1 Results from the
direct and indirect transfer to zip-lock bags experiment; Supplementary table 2.2 Results from the
persistence and detection of DNA from a previous user of a tape roll experiment; Supplementary
table 2.3 The results of the shedder status experiment.
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Abstract: Wet-lab based studies have exploited emerging single-cell technologies to address the
challenges of interpreting forensic mixture evidence. However, little effort has been dedicated to
developing a systematic approach to interpreting the single-cell profiles derived from the mixtures.
This study is the first attempt to develop a comprehensive interpretation workflow in which single-cell
profiles from mixtures are interpreted individually and holistically. In this approach, the genotypes
from each cell are assessed, the number of contributors (NOC) of the single-cell profiles is estimated,
followed by developing a consensus profile of each contributor, and finally the consensus profile(s)
can be used for a DNA database search or comparing with known profiles to determine their
potential sources. The potential of this single-cell interpretation workflow was assessed by simulation
with various mixture scenarios and empirical allele drop-out and drop-in rates, the accuracies of
estimating the NOC, the accuracies of recovering the true alleles by consensus, and the capabilities
of deconvolving mixtures with related contributors. The results support that the single-cell based
mixture interpretation can provide a precision that cannot beachieved with current standard CE-STR
analyses. A new paradigm for mixture interpretation is available to enhance the interpretation of
forensic genetic casework.

Keywords: DNA forensics; DNA mixture; mixture interpretation; single-cell; clustering algorithm;
number of contributors; consensus profile

1. Introduction

Interpreting DNA mixtures is one of the most challenging problems in forensics
genetics. The current standard workflow and mixture interpretation processes are used
to extract DNA from a crime scene sample (e.g., swabs), quantify the extracted DNA
(although in some protocols this step can be skipped), amplify targeted Short Tandem
Repeat (STR) regions, detect DNA fragments through Capillary Electrophoresis (CE), call
alleles with accompanying software, and interpret or deconvolve the contributors’ DNA
profiles as best as is possible from the collection of allelic peaks in an electropherogram
primarily by a DNA analyst(s) based on training and experience with or without the
assistance of probabilistic genotyping software programs (such as STRmix [1], LRmix [2],
TrueAllele [3]). With this generalized CE-STR analysis process—although the DNA may
still be contained in individual cells when collected—during extraction the cells, and thus
the DNA, are pooled. If there is more than one contributor to the sample, a mixture is
obtained. Subsequent to generating the mixture profile, an analyst(s) attempts to decipher
the information to determine, for example, the number of contributors (NOC) in a mixture,
the genotypes of individual contributors, if a particular individual is or is not a contributor
of a mixture, and so forth. Given the available information generated through this standard
process, the mixture profile is usually interpreted by indirect methods, such as inferring
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the NOC by counting the observed allelic peaks or evaluating the weight of the evidence
assuming a person as being a contributor vs. an unknown person being a contributor by a
likelihood ratio (LR) approach. The LR compares the likelihoods of observing the same
evidence given two or more competing hypotheses (e.g., the mixture is composed of the
victim and the suspect vs. the mixture is composed of the victim and a random person
in a population). At times, the deconvolution of the contributing genotypes can be very
challenging because of overlapping alleles, allele drop-out (ADO), allele drop-in (ADI), and
uncertainty in the NOC. All forensic genetic methods to date, and likely for the foreseeable
future, suffer from these phenomena. For example, it can be formidable with the current
standard analysis to determine the NOC of a three-person mixture formed by two parents
and their child, since both alleles of the child are shared with the parents. In addition, it is
difficult to determine if a peak in a stutter position of a major contributor allele is composed
of an allele from a minor contributor and stutter or solely a stutter product. Thus, some
details of a mixture may not be able to be ascertained with a high degree of certainty.

To reduce the limitations of current standard mixture analyses, alternate methods
have been proposed, such as enzymatic digestion differential extraction [4,5], reducing the
allele overlap by using sequence-based alleles instead of traditional length-based alleles [6],
employing probabilistic genotyping software [1–3], and so forth. While these alternate
methods have added some value for mixture interpretation, the recent single-cell detection
and analysis technologies may also reduce the challenges of DNA mixture interpretation.
In theory, no mixture is generated as each cell is independently analyzed and thus the
data from a single cell are derived from a single contributor. The DNA quantity of the
contributors of a mixture can be more precisely determined by counting the isolated cells
and cell types; the mixture ratio can be easily determined even though ratios may not be
necessary anymore; and the alleles of each single cell can be called independently. The
interpretation of these results is fundamentally different from the current interpretation
approaches but should be much simpler. In other words, the computational intensive
probabilistic genotyping methods, which are notably superior to previous manual methods,
“guess”, and often quite well, the possible genotypes of the contributors [1–3]; instead,
single-cell profiles can be directly compared with the reference/known profiles to support
whether or not an individual is a contributor of a mixture, if a good quality profile is
obtained. However, due to technology limitations, a single-cell DNA profile usually
contains ADO and/or ADI; in such scenarios, the consensus profiles from clustered cells can
be used in single source profile comparisons or database searches. The consensus methods
have been successfully used in single cell RNA studies [7,8] and forensic applications [9,10].
Therefore, this approach can reduce uncertainty regarding the profiles contributing to a
mixture and thus provide stronger support for investigative leads and the judicial processes.

In a single-cell analysis workflow, cells are individually isolated from forensic samples.
There are several methods developed that are capable of isolating single cells, such as man-
ual micromanipulation [11–17], Laser Capture Microdissection (LCM) [18,19], Magnetic
Activated Cell Sorting (MACS) flow cytometry [20], Fluorescent Activated Cell Sorting
(FACS) flow cytometry [21–25], and a dielectrophoresis system (e.g., DEPArray) [26–28].
After isolation, the single cells can be individually amplified for the targeted regions (e.g.,
STRs) or subjected to Whole Genome Amplification (WGA) before amplification to enrich
the DNA targets [17,29–33].

Li et al. [34] used the Identifiler kit (Thermo Fisher Scientific, South San Francisco,
CA, USA) to amplify 15 autosomal STRs from 20 single sperm cells from one donor, and
Han et al. [19] performed a similar study on 37 single sperm cells (from three donors)
typing ten autosomal STRs with amplicon sizes <300 bp. In both studies, the consensus
genotypes were consistent with the known donor genotypes. In Li et al. [34], the ADO
rate was 25% and the ADI rate was 1.3%. In Han et al. [19] the ADO rate was lower
(15%), possibly because the overall amplicon sizes were shorter, and the ADI rate was
similar (1.4%). In these studies, the ADIs did not all reside at stutter positions of the true
alleles. Some ADIs may have been due to DNA fragments from the other lysed cells which
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were co-amplified with a single cell and/or some ADIs might be due to genotype errors
or low-level contamination. Anslinger et al. [27] collected 11 white blood cells with the
DEPArray and genotyped 16 autosomal STRs using the PowerPlex ESXfast kit (Promega
Corp., Madison, WI, USA). They found that 82% of alleles were obtained (i.e., 18% ADO
rate), only one ADI was observed at a stutter position (i.e., 0.3% ADI rate), and the full
profile was recovered by consensus. Even with ADO and ADI, full profiles of the donors
were obtained by consensus of the single-cell profiles.

A recent study by Chen et al. [33] employed a WGA kit (Qiagen REPLI-g single cell
kit, Hilden, Germany) and subsequently typed the products with both the GlobalFiler
kit (Thermo Fisher Scientific, South San Francisco, CA, USA) on the CE platform and the
ForenSeq DNA Signature Prep kit (Verogen, San Diego, CA, USA), on a Massive Parallel
Sequencing (MPS) platform (i.e., MiSeq FGx, Verogen, San Diego, CA, USA). For the
three single cells analyzed with the GlobalFiler kit only four STR alleles dropped out (i.e.,
3.2% ADO rate), and no ADI was observed. For the three single cells amplified with the
ForenSeq kit, all autosomal STR alleles were successfully recovered without any ADI. The
better performance of the ForenSeq kit, compared with that of the GlobalFiler kit, may
be due to the overall shorter amplicon sizes of the STR alleles and/or a different way
noise is presented with MPS data. Deleye et al. [31] recently compared four commercial
WGA kits, Ampli1 (Menarini Silicon Biosystems, Castel Maggiore, BO, Italy), DOPlify
(PerkinElmer, Waltham, MA, USA), PicoPLEX (Takara Bio, Kusatsu, Japan), and REPLI-g
(Hilden, Germany) with single B-lymphoblastoid cells and found that the REPLI-g had the
lowest ADO rate for STR profiling (i.e., 8.33%), while the other kits had ADO rates varying
from 35.71%–60.71%. According to Chen et al. [35], the major commercial WGA kits yield
various genome coverages (41%–92%) and ADO rates (25%–65%). Thus, it is reasonable to
assume that substantial ADO and ADI would be observed with single-cell WGA per cell if
a larger number of single cells are sampled.

All these studies demonstrate that single-cell technologies can recover the STR alleles
of single cells with a high success rate. However, to date, no study has provided a sys-
tematic approach to interpret the STR data from single-cells derived from mixtures. This
study is the first attempt to develop and assess performance of interpretation methods
for characterizing multiple donors from single-cell profiles of mixtures. The study herein
evaluates these interpretation methods by a simulation approach with various mixture
scenarios and reasonable ADO and ADI rates, and provides data in terms of the number of
cells, NOC, and ADO and ADI rates. Through this study, the potential of the single-cell
technology workflow was evaluated for the probabilities of not detecting a minor con-
tributor during cell sampling, the accuracies of estimating the NOC with single cells and
sampling, the accuracies of recovering the true alleles by single-cell profile consensus, and
the capabilities of single-cell approach for deconvolving mixtures with related contribu-
tors. The results convey the high precision that a single cell workflow could achieve for
mixture interpretation.

2. Methods

2.1. Simulation Methods

The autosomal STR genotypes of the single diploid cells (e.g., epithelial cells) were
simulated using the method described in [36,37] for mixtures with unrelated and related
contributors. In the simulation, the genotype of each marker of an individual was randomly
simulated based on the allele frequencies and the population substructure correction
(i.e., Fst) following Balding et al. [38]; the markers were assumed to be independent; the
genotypes of related individuals were simulated assuming the parents transmit with equal
probability a single allele at each locus to their children; the Two-Phase mutation model [39]
was employed in the parent–child allelic transmissions; the mutation rates in the AABB
report [40] were used. First, the genotype profile of each contributor in a mixture was
simulated for the 21 autosomal STR loci in the GlobalFiler PCR amplification kit [41]
using Caucasian population allele frequency data [42] and a Fst of 0.01. Second, based on
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the simulated genotype profiles of the contributors, ADO and ADI were incorporated to
simulate the profiles of every single cell with a given number of cells of the contributors
(e.g., 20 cells of contributor A and 20 cells of contributor B). Third, a mixture was formed
by pooling the single-cell profiles of the contributors (e.g., a mixture with 40 cells in total
from contributors A and B). Multiple mixtures with various mixture ratios were simulated,
including mixtures with either unrelated (UR) or related contributors, namely, parent-child
(PC), full-sibling (FS), and standard family trio (Table 1). Supplementary Table S1 gives
an example of a simulated mixture with two unrelated contributors (20 cells each) in the
ARFF format defined by WEKA [43], in which one attribute represents one allele of a locus
(i.e., two attributes for a diploid genotype). The smaller allele was always assigned as the
first allele for a heterozygous genotype, and alleles were listed in a defined attribute order.

Table 1. Accuracies of estimating the NOC with the EM algorithm and Silhouettes method for the various mixture scenarios.
UR = unrelated, PC = parent-child, and FS = full-sibling. D = 0.2; e = 0.01; 10,000 simulations for each mixture scenario.

No. of
Cells

2-Person Mixture 3-Person Mixture

Mixture
Diploid Haploid

Mixture
Diploid Haploid

UR PC FS UR PC FS UR Trio UR

160

80,80 100.00% 100.00% 99.90% 99.90% 98.04% 92.16% 53,53,53 99.96% 88.32% 96.55%

106,54 100.00% 99.98% 99.74% 99.88% 96.53% 89.27% 32,32,96 99.69% 85.64% 81.79%
128,32 100.00% 99.85% 98.87% 99.16% 91.35% 81.70% 16,48,96 98.60% 78.46% 52.55%
144,16 99.97% 98.54% 94.86% 95.97% 87.64% 81.28%
152,8 99.55% 91.59% 86.12% 92.43% 87.98% 83.97%

80

40,40 100.00% 99.93% 99.91% 99.93% 98.73% 96.32% 26,26,26 99.97% 87.94% 96.44%
53,27 100.00% 99.94% 99.78% 99.87% 98.17% 94.40% 16,16,48 99.68% 86.51% 82.47%
64,16 99.99% 99.96% 99.53% 99.71% 94.37% 87.68% 8,24,48 98.36% 80.54% 54.15%
72,8 99.96% 98.99% 96.55% 95.56% 85.95% 81.09%
76,4 99.67% 93.47% 88.56% 88.91% 83.54% 79.10%

40

20,20 100.00% 99.99% 99.93% 99.72% 95.25% 92.41% 13,13,13 99.96% 88.29% 91.81%
26,14 100.00% 99.93% 99.87% 99.76% 94.56% 90.23% 8,8,24 99.79% 86.06% 76.22%
32,8 100.00% 99.89% 99.22% 99.18% 89.52% 81.95% 4,12,24 98.44% 79.79% 46.55%
36,4 99.90% 98.03% 95.37% 93.40% 76.58% 71.13%
38,2 95.49% 78.98% 74.69% 84.31% 68.47% 65.89%

20

10,10 100.00% 99.54% 99.02% 97.21% 82.30% 79.50% 6,6,6 99.81% 85.59% 69.19%
13,7 99.98% 99.48% 98.84% 97.30% 82.77% 79.09% 4,4,12 99.52% 82.22% 51.34%
16,4 99.96% 99.62% 98.92% 95.34% 73.85% 70.30% 2,6,12 89.80% 72.16% 21.69%
18,2 99.61% 97.00% 94.29% 81.92% 59.54% 58.65%
19,1 98.51% 86.74% 82.46% 60.82% 53.45% 53.40%

10

5,5 99.95% 96.77% 94.02% 82.78% 56.59% 55.61% 3,3,3 97.16% 66.81% 33.58%
6,4 99.84% 96.65% 93.90% 80.38% 55.79% 53.41% 2,2,6 99.05% 76.26% 38.63%
8,2 99.68% 94.61% 91.60% 78.59% 49.60% 48.24% 1,3,6 59.31% 37.65% 12.44%
9,1 98.91% 89.19% 85.09% 65.71% 41.74% 42.05%

The ADO model described in Balding et al. [44] was used in the simulation, in which
D represents the probability of drop-out of one allele at a heterozygous locus, and D2
represents the probability of drop-out at a homozygous locus, with D2 ≈ 1

2 D2. The rare
scenarios that a locus of a diploid cell or a haploid cell presents more than two alleles or
more than one allele, respectively, were ignored in this study (i.e., only up to two alleles
or one allele with strongest signal(s) for diploid and haploid cells, respectively, would
be called), allele size dependent degradation was ignored, and somatic mutations (i.e.,
the genotypes of the diploid cells from the same contributor may be different) were also
ignored. The ADI was incorporated as a random genotyping error (with an ADI rate of e);
namely, one allele may be randomly called as any other allele at this locus in the population
data with equal chance. For example, changes to genotypes 10,10 → 10,15 or 10,11 → 10,15
for a homozygous and heterozygous locus, respectively, for diploid cells were produced to
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approximate ADI. Thus, a heterozygous locus with ADI has to have one ADO involved.
However, the ADO and ADI events in general were assumed to be independent for the
purposes of this study. When the ADO and ADI rates are 0, the genotype profiles of single
diploid cells from the same contributor should be identical.

For the profiles of the single haploid cells the interpretation is slightly different be-
cause only one allele out of two at each autosomal locus is randomly distributed in the
haploid cells. Therefore, the interpretation of haploid single-cell mixture profiles may be
more complicated than that of diploid cells, even without ADO or ADI. In the haploid
profile simulations, the alleles were generated by randomly selecting one allele of the
two simulated diploid alleles at each locus and assuming independence among the loci.
The same population data, parameters, ADO model, and ADI model as in the diploid
simulations were used in simulating the haploid single-cell profiles.

2.2. Clustering Single Cells

To estimate the NOC of a mixture and allele consensus of each contributor, the single
cells need to be grouped into clusters (or contributors). There is a large number of clustering
algorithms that may serve this purpose. This study tested two classic clustering algorithms,
Expectation–Maximization (EM) [45,46] and K-Means [47]. The EM algorithm assigns a
probability distribution for the latent variables to each instance in the dataset (i.e., each
single cell), which indicates the probability of it belonging to each of the clusters (i.e.,
each contributor in a mixture), computes parameters to optimize the likelihood of the
model, and then repeats these two steps until convergence [43,45]. The EM algorithm
implemented in WEKA uses multivariate Gaussians with diagonal covariance matrices as
mixture components [46]. The EM algorithm does not explicitly require a distance measure
between the instances. The K-Means algorithm randomly chooses an initial centroid for
each cluster, each instance is assigned to its nearest centroid to form clusters, the centroids
are updated with the instances in the same clusters, and these two steps are repeated
until convergence [47]. The K-Means algorithm requires a distance measure between
instances, which is Euclidean distance by default. The EM and SimpleKMeans algorithm
implementations with default setting in the WEKA software package [43] were used in
this study.

The clustering algorithms usually require a predefined number of clusters. To deter-
mine the best number of clusters, the Silhouettes method [48] implemented in Cluster-
Maker [49] was used. For a given number of clusters, the Silhouettes coefficient measures
how similar an instance is to its own cluster compared to other clusters. The maximum
value of the Silhouettes coefficient indicates the most likely number of clusters for a given
range of the number of clusters [50]. For the mixtures in Table 1, the Silhouettes coefficients
of two to six clusters were calculated and compared, and the number of clusters with the
highest Silhouettes coefficient was determined as the NOC.

2.3. Single-Cell Profile Visualization

Multidimensional Scaling (MDS) was used to visualize the clustering of single-cell
profiles. The three-dimensional (3D) MDS coordinates of every single-cell profile of a
mixture were calculated using MDSJ [51], in which the distance between two profiles was
measured as the number of mismatched alleles normalized by the total number of alleles.
Then, the 3D coordinates were visualized by JTableSaw [52].

2.4. Consensus Method

For the single-cell profiles clustered into the same cluster, the genotype profiles of these
single cells were determined by consensus and then compared with the true genotypes
to assess the accuracies of recovering the true alleles by the clustering approach. For both
diploid and haploid cells, the consensus of each allele was determined independently
(i.e., alleles at the same position defined in the order as described in Section 2.1 and
Supplementary Table S1). The consensus allele at a position (e.g., the first allele of the vWA
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locus in a diploid cell, or the only allele of the vWA locus in a haploid cell) in a cluster was
defined as the most frequent allele at this position among the single-cell profiles in this
cluster. The missing data due to ADO were ignored during consensus.

3. Results

3.1. The Probability of Not Detecting a Contributor during Sampling

The current standard CE-STR mixture analysis process may not be able to provide a
precise estimate of the DNA input quantities of the contributors, nor the probability that
a minor contributor is not observed in a mixture. The limitations are due in part to only
the contributors with sufficient input quantities showing allele peaks above a detection
threshold, and allele sharing may mask a minor contributor; these phenomena become
more exacerbating as the number of contributors increases. Thus, a minor contributor may
not be detected through this process. With the single-cell analysis, however, the quantity of
a sample can be directly determined by counting the cells in a sample, although sampling
error can occur during cell isolation. Therefore, the probability of not detecting a minor
contributor can be estimated with the single-cell profiling.

Assuming a large number of cells are available in a forensic sample (i.e., the sampling
process follows a binomial distribution) and each cell has an equal chance to be sampled,
the probability that none of the cells from a contributor with a mixture proportion of p
is sampled in the total sampled n cells is (1-pn). Table 2 estimates these probabilities for
various mixture proportions of a contributor(s) and different total numbers of sampled
cells, either diploid or haploid cells, with 6.6 pg DNA for a diploid cell and 3.3 pg DNA for
a haploid cell [53]. The mixtures containing both diploid and haploid cells (e.g., a mixture
of epithelial cells and sperm cells) were not considered (but can be readily determined if
desired); these cellular mixtures can be separated either by counting the number of alleles
across the loci or by technologies (e.g., DEPArray) to select cells from different tissues.

Table 2. The probability of not detecting a minor contributor in a set of single-cell samplings.

No. of
Cells

DNA Quantity (pg) The Mixture Proportion of a Contributor

Diploid Haploid 1% 5% 10% 20% 50%

1 6.6 3.3 99.00% 95.00% 90.00% 80.00% 50.00%

5 33 16.5 95.10% 77.38% 59.05% 32.77% 3.13%

10 66 33 90.44% 59.87% 34.87% 10.74% 0.10%

15 99 49.5 86.01% 46.33% 20.59% 3.52% 0.00%

20 132 66 81.79% 35.85% 12.16% 1.15% 0.00%

40 264 132 66.90% 12.85% 1.48% 0.01% 0.00%

80 528 264 44.75% 1.65% 0.02% 0.00% 0.00%

160 1056 528 20.03% 0.03% 0.00% 0.00% 0.00%

500 3300 1650 0.66% 0.00% 0.00% 0.00% 0.00%

In general, as more cells are sampled the chance of not detecting a contributor de-
creases. For example, if 80 diploid cells are sampled (~528 pg DNA in total, close to the
recommended DNA input of some commercial CE-STR kits, that is, 500 pg), there is a
44.75% chance that none of the cells from a 1% minor contributor is sampled; however, for
a 5% minor contributor there is only a 1.65% chance of not detecting the minor contributor.
For a low quantity DNA sample with only 15 cells (~99 pg), there is a 46.33% chance that a
5% minor contributor would not be detected. To obtain a high confidence of detecting a
minor contributor with 1% or lower proportion, ≥500 single cells may need to be sampled.
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3.2. The Accuracies of NOC Estimation
3.2.1. NOC Estimation by Clustering

The two-person and three-person mixtures were simulated with various numbers
of cells, various mixture ratios, unrelated or related contributors, and both diploid and
haploid cells (Table 1). In the simulation, the ADO and ADI rates were set as 0.2 and 0.01,
respectively, which were similar to the estimations of several studies [19,27,34] and reflected
the current performance of single-cell studies. For each mixture scenario, 10,000 cases
were simulated, and the NOC for each case was estimated by the EM and K-Means
clustering algorithms, together with the Silhouettes method. Table 1 shows the accuracies
of estimating the NOC for the simulated mixture scenarios with the EM algorithm, which
provides higher accuracies compared with the K-Means algorithm. The NOC accuracies
estimated by K-Means are listed in Supplementary Table S2.

For diploid cells, in general, higher accuracies were achieved with more cells and/or
more balanced mixture ratios. If contributors were unrelated, almost all scenarios had
>98% accuracy, except for three-person mixtures with a very few number of cells sampled
and severely imbalanced mixture ratios (e.g., 2,6,12 and 1,3,6). Almost 100% accuracies
were obtained if the contributors were unrelated, and there were more than 20 cells in total
sampled. For PC and FS pairs, most of the estimated accuracies were higher than 98%,
although, as expected, lower than those of UR pairs. Estimating the NOC for a mixture
composed of a family trio can be particularly challenging with CE-STR analyses as well as
with MPS; however, the accuracies with single cell analyses and the EM algorithm together
with Silhouettes method were mostly >80%, except for scenarios with an extremely low
number of sampled cells (e.g., ten cells) or highly imbalanced mixture ratios (e.g., 1:3:6).

The NOC accuracies with haploid cells were lower than those of diploid cells, because
the same contributor may have many different haploid profiles due to meiosis, and the
ADO and ADI would add more variants making the clustering of haploid cells more
challenging. However, even with these limitations, high accuracies were achieved when
the mixture ratios were relatively balanced and the number of sampled cells was high (e.g.,
98.17% accuracy with a (53,27) Parent-Child mixture). Even for highly imbalanced mixtures
(for example, 72,8), NOC accuracies were 95.56% and 85.95% for UR and PC contributors,
respectively, which were still reasonably high.

3.2.2. Impact of ADO and ADI on NOC Estimation by Clustering

The accuracies of estimating the NOC can be impacted by the ADO and ADI rates. To
investigate the impact of ADO and ADI, the same simulations as above were conducted for
three mixture examples (Figure 1) with the same number of contributor cells (two, six, and
12 cells) for a three-person mixture, with different relationships among the contributors,
different cell types, and various ADO and ADI rates.

For diploid unrelated cells (Figure 1a), the accuracies with lower ADO rates are higher
and decrease with increasing ADO rates (e.g., 99.16% with D = 0.05 and e = 0.01, compared
with 89.88% with D = 0.2 and e = 0.01). The ADI had less impact with the NOC accuracies
due to the relatively low ADI rates (i.e., at the level of 0.01) compared with relatively
high ADO rates (i.e., at the level of 0.1). The accuracies dropped more so with family
trio mixtures (Figure 1b), likely because the related contributors share at least half of
their alleles (assuming no mutation), and ADO and ADI could contribute to some cells
from a different contributor sharing more alleles than expected, and eventually blur the
boundaries between contributors (see Figure 2a as an example). The haploid mixtures,
as expected, had a lower estimation of NOC accuracies. Even with no ADO or ADI, the
accuracy was low (i.e., 41.38%), which is mostly due to the varied haploid profiles from
each cell of the same contributor, a small number of sampled cells, and poor performance
of the EM algorithm for imbalanced mixtures. Sampling more cells, as well as algorithms
better designed specifically for imbalanced single-cell genotype data, should improve
the accuracies.
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Figure 1. Cont.
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Figure 1. The accuracies of NOC estimation for 3-person mixtures with 2, 6, and 12 single cells with
various ADO and ADI rates in three scenarios: (a) Diploid cells with three unrelated contributors, (b)
Diploid cells with three family trio contributors (father, mother, and child), and (c) Haploid cells with
three unrelated contributors. D = 0.2; e = 0.01; 10,000 simulations for each mixture scenario.

3.2.3. NOC Estimation by Visualization

Among these tested mixtures, the accuracies dropped substantially when the mixture
ratios were extremely imbalanced (i.e., 9:1 and 19:1), which is mostly because the classic
clustering algorithms do not perform well with imbalanced data (i.e., large sample size
differences between or among clusters) [54]. The related contributors (i.e., the data points
are closer to each other), haploid data (i.e., genotype uncertainty), and small numbers of
cells (i.e., clustering with sparse data) can further reduce the accuracies. In such scenarios,
particularly when the number of sampled cells is small, visualization of the distance
between and among single-cell profiles may facilitate human judgement on the NOC.
Visualization has been shown to be an effective way to estimate the NOC and differentiate
cell types in single-cell applications [55,56].

Figure 2 displays several examples of 3D MDS plots. In Figure 2a, the EM algorithm
and Silhouettes method together incorrectly determined a family trio mixture as a two-
person mixture, because many cells of two specific contributors (i.e., one of the parents
and the child) were very close to each other and the algorithm considered them as one
contributor. However, with visualization, the NOC most likely could be determined as
three. Figure 2b is an example with a correct NOC estimation, in which all contributors
were clearly separated. In Figure 2c, two contributors (2 and 12) were incorrectly clustered
into a single contributor, but with the MDS plot they appear separated. In Figure 2d, a
three-person mixture was incorrectly determined as a four-person mixture. In one of the
minor contributors, one single-cell profile was distant from the other three single-cells,
which led to an incorrect NOC estimation. Even with MDS plot, it was challenging to
determine the NOC, as both three and four clusters appeared possible.
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Figure 2. Cont.
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Figure 2. Mixture visualization examples with 3D MDS plots: (a) A family trio diploid cell mixture (53,
53, 53) incorrectly clustered with the EM algorithm and Silhouettes method as two contributors. (b)
A family trio diploid cell mixture (8,24,48) correctly clustered with the EM algorithm and Silhouettes
method as three contributors. (c) A 3-person haploid cell mixture (2,6,12) incorrectly clustered with
the EM algorithm and Silhouettes method as two contributors. (d) A 3-person diploid cell mixture
(4, 4, 12) incorrectly clustered with the EM algorithm and Silhouettes method as four contributors.
Each color represents each cluster. Rotatable plots of these figures can be found in Supplementary
Figure S1.

3.2.4. NOC Estimation by Identity-by-State (IBS) Distance Measure

Another way to estimate the NOC is to measure the distances between single-cell pro-
files using predefined IBS thresholds. Figure 3 shows the IBS distributions of unrelated and
related pairs of individuals (UR, PC, and FS) and pairs of the known alleles of a contributor
versus the consensus alleles with a given number of sampled cells, assuming the clustered
profiles were from the same contributor. Apparently, there was no overlap between the IBS
distribution of the unrelated and one cell with diploid cells, which means two unrelated
diploid cells can be clearly separated simply by a reasonable IBS threshold (e.g., IBS ≤ 24
for the scenario of D = 0.2 and e = 0.01). This simple approach can readily determine
if a group of single cells is from one contributor or multiple unrelated contributors (i.e.,
single source or mixture), as well as if a cell profile and a known profile from an unrelated
individual may be from the same source. Thus, the NOC can be precisely determined by
measuring the IBS distance between every pair of diploid cell profiles and a predefined
maximum IBS distance for cells within the same cluster (e.g., IBS ≤ 24), assuming all
contributors are unrelated. However, this approach may not work well for haploid cell
profiles, because the consensus diploid profile relying on a single haploid cell would be
homozygous across the loci. There would be a good proportion of the IBS distributions of
UR and 1 haploid cell profile that would overlap. For example, 9.6% of unrelated pairs had
IBS ≥ 16, and 9.7% of the consensus profiles from one haploid cell had IBS ≤ 17 (Figure 3b).

325



Genes 2021, 12, 1649

Figure 3. IBS distributions of unrelated and related pairs (UR, PC, and FS, in dotted lines) and pairs
of the true profile versus the consensus profile with a given number of cells (in solid lines) based on
(a) diploid cells and (b) haploid cells. D = 0.2; e = 0.01; 1,000,000 simulations for each distribution. The
IBS of “n cell(s)” is the IBS between true genotypes and the consensus genotypes from n cell(s). These
distributions are based on 21 GlobalFiler markers and thus the maximum IBS is 42. The consensus
profile might contain missing alleles, and these missing alleles were excluded in counting IBS.

If the contributors are related, the IBS measure may not reach 100% accuracy to
differentiate two unrelated cells from two related single cells (i.e., there were overlaps
between the “one cell” distribution and the FS or PC distributions (Figure 3)). However, if
multiple cells could be associated by either clustering, measured distances, or visualization,
the consensus profile could differentiate a profile from his/her parent or full-siblings simply
by IBS counting (e.g., a false rate less than 0.05% with a consensus profile from five cells
for both PC and FS, and almost no error with ten cells (Figure 3)), which was similar to
haploid cells (Figure 3b).
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3.3. Accuracies of Consensus
3.3.1. IBS Distributions with Consensus

Once the NOC is estimated for a mixture, the consensus profile of each contributor can
be generated by common alleles of the clustered single cells. As shown in Figure 3a, one
single diploid cell as a single contributor mostly shared at least 28 alleles (with an average
of 35 alleles) with the true profile, and the mismatches were mostly due to the high ADO
rate (i.e., 0.2). Thus, there is sufficient precision to differentiate one single-cell profile from a
random person profile (~0.03% average error rate with a threshold of IBS ≤ 24; the average
error rate was the average of the false positive rate of determining a consensus profile and
an unrelated profile as from the same source, and the false negative rate of determining
the two profiles as being from different sources).With more cell profiles clustering in the
same contributor, more shared alleles are found between the consensus profile and the
true profile.

The consensus of haploid cell profiles would be more challenging, but would have
more success than the current standard process. It is unlikely to determine the source of a
single haploid cell profile (Figure 3b). However, the consensus profile of two haploid cells
in a cluster, if they truly belong to the contributor, could be differentiated from a random
person (<0.13% average error rate with a threshold of IBS ≤ 21), even though, on average,
~30% of the consensus alleles might not be correct (i.e., different from the true alleles or
missing). For a contributor with ≥1 haploid cells, the consensus profile most likely would
have ≤3 inconsistent alleles compared with the true profile. In general, these results were
consistent with the simulation study by Lucy et al. [57], although ADO and ADI were not
included in their study.

In addition, the results in Figure 3 indicated that the mixture ratio estimation of the
sperm samples with the current CE-STR analysis might not be accurate for the extremely
low quantity DNA samples, even if there is no ADO, ADI, or degradation. Each sperm cell
has only one allele at a locus, and a contributor with a few sperm cells may have highly
imbalanced allele sampling. For example, three out of four sampled sperm cells may share
one particular allele of a heterozygote and the other sperm could have a different allele,
which could make this contributor appear as a 3:1 mixture with two homozygotes. The
mixture ratio at different loci may randomly vary when the number of sampled haploid
cells is small, which likely could lead to an incorrect interpretation or more alternate
genotypes to consider with the CE-STR mixture analysis.

3.3.2. A Suspect or His/Her Close Relatives as Contributors

In certain cases, it may be necessary to determine if a suspect or one of the suspect’s
close relatives is a potential contributor to a mixture. Based on the IBS distributions in
Figure 3a, with only a few diploid cell profiles, an IBS threshold of ≤34 can precisely
differentiate the related individuals if a consensus profile is from a known profile or a full-
sibling of this known profile. With only three diploid cell profiles, 0.68% of the consensus
profiles would have an IBS ≤ 34 (i.e., false negatives), 0.18% of the FS pairs would have IBS
≥ 35 (i.e., false positives or more appropriately adventitious associations). Sampling more
cells can reduce the false rates. For haploid mixtures, if the same threshold is used (i.e.,
IBS ≤ 34), five haploid cell profiles would be needed to achieve high accuracy (i.e., 0.64%
false negative rate). Thus, it only requires a consensus accuracy as low as 83.3% (35/42) to
precisely differentiate if a consensus profile is from a known individual (e.g., suspect) or
this individual’s first-degree relative(s).

The average accuracies of consensus for all diploid mixtures and most haploid mix-
tures with balanced contributors were higher than 83.3% (Table 3). Therefore, except
for minor contributors with ≤2 diploid cells or ≤4 haploid cells sampled, the consensus
profiles of each contributor in the mixtures should be able to determine the source of the
profile with very high accuracies (Table 3). Again, more cells sampled would increase
these accuracies.
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3.3.3. Accuracies of Consensus by Clustering

The distributions in Figure 3 assumed the cells clustered into contributors were truly
the cells from this contributor. In fact, cells may be clustered to an incorrect contributor.
However, the incorrectly clustered cells should be overwhelmed (assuming a sufficient
number) by the cells correctly belonging to a contributor and the incorrect alleles should
be filtered out by consensus, if a good clustering algorithm is used and there are enough
cells clustered to this contributor.

To test this hypothesis, the consensus accuracies of clustering results were estimated
using the same simulations conducted as in Table 1, and the average accuracies of consensus
alleles were calculated for each simulated mixture. For example, a mixture with two
contributors may have consensus accuracies of 0.8 and 0.9, respectively, and the average
accuracy would be 0.85. For mixtures with an imbalanced mixture ratio (e.g., 1:3:6), the
minor contributor(s) usually had lower consensus accuracies, mostly due to the small
numbers of sampled cells. Table 3 shows the average of 10,000 simulations for the average
accuracies of the consensus profile. Only the cases with the correct NOC estimation were
included in these calculations.

As expected, given the correct NOC estimation, mixtures with a relatively high number
of cells have very high consensus accuracies. Full profiles can be precisely obtained by
consensus of the cells in the same clusters, if there are enough sampled diploid cells for
a mixture with relatively balanced contributor ratios. The mixtures with relatively low
consensus accuracies were mainly due to the low accuracies of the minor contributors
with really low numbers of sampled cells. For example, the mixtures with (152,8) had an
average accuracy of 98.01%, but the average consensus accuracy of the major contributor
(i.e., 152) was 100%, but the minor contributor (i.e., eight) had a lower accuracy (i.e., ~96%).

Even with imbalanced contributors, all mixtures with at least five diploid cell profiles
for the minor contributors achieved >96% average consensus accuracy, mostly greater than
97.6% (i.e., one allele mismatch or missing, 41/42). Particularly, the individual profiles of
the family trio mixtures could be recovered even with only 40 sampled cells and imbalanced
contributors, if one allele mismatch or missing was allowed. These observations were
consistent with those in Figure 3, which indicates that consensus was able to filter out most
incorrect alleles, if not all, caused by either ADO and ADI or incorrect clustering. These
consensus profiles with just a few mismatched or missing alleles should be precise enough
to generate reasonable partial matches (or hits) in a forensic DNA database (e.g., CODIS)
search and support the potential identities of the contributors.

The consensus accuracies of the haploid cell mixtures, in line with expectations, were
lower than those of diploid cell mixtures. However, the accuracies were still high for
mixtures with enough sampled cells (e.g., ≥20 cells) and relatively balanced contributors,
even with related contributors (e.g., 94.51% for FS mixtures of 13:7). Similar to the NOC
estimation with haploid cell profiles, the accuracy dropped substantially for extremely
imbalanced contributors. This observation is most likely because the EM algorithm does
not perform well for imbalanced data. When the number of cells of a cluster is few
(e.g., ≤4), together with ADI and relatively high ADO, 1 or 2 incorrectly clustered cells
may dramatically change the consensus alleles. Better clustering algorithms specifically
designed for imbalanced data may be able to improve the consensus accuracies.

Moreover, the relationships between the contributors appear to have little impact on
the consensus accuracies when the number of cell profiles of each contributor is high (e.g.,
≥16) or the contributors are relatively balanced; the consensus accuracies of unrelated and
related contributors of the mixtures were almost identical for diploid cells (Table 3). In
other words, the relationships between the contributors could impact the NOC estimation,
but once NOC was correctly estimated, the consensus within each cluster solely relied on
the profiles in the same cluster. However, when the number of cells from a contributor is
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small, the consensus accuracies vary more so, since a few incorrectly clustered cells may
change the consensus alleles.

In addition, the two-person mixtures with 1:1 ratio were used as examples to investi-
gate the consensus accuracy as a function of the number of cells in the cluster (Figure 4),
for both diploid and haploid cells. The accuracies increase fastly with more cells added
into the same clusters when the number of cells in a cluster is relatively small. With these
balanced mixtures, a cluster with ≥5 diploid cells or ≥7 haploid cells had ≥97.6% accuracy
(i.e., one allele mismatched or missing), which was consistent with the results in Table 3.
For the extremely imbalanced mixtures, the consensus accuracy of the minor contribu-
tor can fluctuate more due to the EM algorithm’s poor performance with imbalanced
mixture ratios.

Figure 4. Consensus accuracy as a function of the number of cells in the cluster, with 1:1 ratio mixtures. D = 0.2; e = 0.01;
10,000 simulations for each mixture. The bars represent the 95% confidence intervals.

3.3.4. Impact of ADO and ADI on Consensus Accuracies

The above analysis used the typical ADO and ADI rates as an example (D = 0.2
and e = 0.01) to investigate the performance of consensus. The consensus accuracies are
expected to be higher with lower ADO and ADI rates. Figure 5 shows the IBS distributions
of the consensus profiles from one diploid cell (Figure 5a) and four haploid cells (Figure 5b),
as examples, compared with the IBS distributions of UR, PC and FS. The IBS distribution
of two diploid cell profiles was only slightly higher than that of one diploid cell profile,
particularly when the ADO and ADI rates were low. Therefore, only one diploid cell
profile scenario was used here to assess whether one diploid cell profile can provide high
accuracies of determining the sources of contributors. If D = 0 and e = 0, the IBS should
always be 42 for diploid cells. Thus, this scenario is not included in Figure 5a.
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Figure 5. IBS distributions of unrelated and related pairs (UR, PC, and FS, in dotted lines) and pairs
of the true profile versus the consensus profile with a given number of cells (in solid lines) for (a) 1
diploid cell and (b) 4 haploid cells. 1,000,000 simulations for each distribution. Missing alleles are
excluded in counting IBS.

As expected, lower ADO and ADI rates provided higher IBS values on average. ADO
had a larger impact on the distributions, mostly because the ADO rates were much larger
than ADI rates in the simulated scenarios. Same as shown in Figure 3a, with D = 0.2
and e = 0.01, one diploid cell profile would be good enough to differentiate if it is from
a known reference person or an unrelated person. If contributors are related, D ≤ 0.05
may be required to precisely differentiate a known individual from his/her full-siblings
(i.e., ~0.15% average error rate with a threshold of IBS ≤ 34), although D = 0.1 may also
be acceptable (i.e., ~0.8% average error rate with a threshold of IBS ≤ 32). With more cells
sampled and clustered, the consensus accuracies are expected to be higher, which would
tolerate higher ADO and ADI rates to obtain similar accuracies.

With four haploid cells, even without ADO and ADI, the full profile may not be
able to be recovered in most cases. However, the consensus profile, even partial, can be
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differentiated from an unrelated person, even with an ADO rate of 0.2. To differentiate a
known individual from his/her full-siblings, with four haploid cells in a single cluster, it
would be desirable to have an ADO ≤ 0.05 (i.e., ~0.35% average error rate with a threshold
of IBS ≤ 34).

Additionally, the same examples as in Figure 1 were simulated to assess the consensus
accuracies with potential incorrectly clustered cells even with correct NOC estimations
(Figure 6). The accuracies decrease with either increasing ADO or ADI rates. As expected,
the accuracies of diploid cell mixtures decrease slower than those of haploid cell mixtures,
because haploid cells have half the alleles of diploid cells. The ADI seems to have a bigger
impact on haploid mixtures compared with diploid mixtures. Therefore, for genotyping
mixture samples comprised of sperm, it would be better to have a low ADI rate, while a
relatively high ADO rate may be acceptable.

Figure 6. Cont.
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Figure 6. The accuracies of consensus for 3-person mixtures with 2, 6, and 12 single cells with various
ADO and ADI rates in three scenarios: (a) diploid cells with three unrelated contributors, (b) diploid
cells with three family trio contributors (father, mother, and child), and (c) haploid cells with three
unrelated contributors.

In addition, similar to the data in Table 3, the unrelated and family trio diploid
mixtures had almost identical consensus accuracies for diploid cells. In other words,
although clustering may provide better NOC estimations for mixtures with unrelated
contributors than family trio mixtures (i.e., 89.80% vs. 72.16%, respectively), if the NOC
is correctly estimated, clustering performs similarly for the unrelated and family trio
contributor mixtures.

4. Discussion

4.1. A Paradigm Shift of Mixture Interpretation

With the emergence of single-cell technologies, a number of studies have employed
these technologies for forensic applications, mostly on the wet-lab work to generate geno-
type profiles from single cells. The simulation studies herein are the first one to provide
guidance on a comprehensive interpretation workflow for single-cell mixture profiles,
evaluate the capabilities of single-cell profiles for mixture interpretation, and support that
the single-cell based mixture interpretation can provide a precision that cannot be achieved
by manual or the probabilistic genotyping interpretation approaches with DNA profiles
generated by standard CE-STR analyses.

Figure 7 illustrates the general mixture interpretation workflow with the single-cell
mixture profiles. First, with the single-cell profiles generated from a mixture, the NOC of
the single-cell profiles is estimated, either by clustering (e.g., EM algorithm and Silhouettes
method), distance measure (e.g., IBS), or visualization. Second, the consensus profile of
each cluster/contributor is generated from the single-cell profiles in each cluster. Then,
the consensus profile(s) would be either directly searched against a DNA database(s) for
partial or full matches (or hits), or compared with known profiles (e.g., suspect’s profile) to
determine if these profiles, or these profiles’ relatives, potentially could be the contributor(s)
of the mixture. In cases in which a full, or close to full profile, is obtained from a single
cell(s), the profile may be directly compared with a known reference profile(s) or searched
in a DNA database(s).
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Figure 7. The interpretation workflow of single-cell profiles generated from a mixture.

With single-cell technologies, a DNA mixture is not formed during the DNA extraction
process. Thus, the interpretation is simplified and based on single source profile compar-
isons. Therefore, the need for methods, such as probabilistic genotyping, that indirectly
determine the genotypes of the contributors, may not be required in some cases. Instead,
the single-cell based approach can directly determine the profiles of the contributors from
single-cell profile clusters or from the single source profiles of the individual cells.

For the single source comparisons to confirm or exclude individuals, IBS counting can
be employed to determine the potential source or relationship between a consensus profile
from single cells and a reference profile to be compared by a predefined IBS threshold as
shown in Figures 3 and 4. A LR based approach still can apply in these comparisons [58].
Let A be the consensus profile and B be a reference profile (e.g., a suspect’s profile). The
hypotheses can be framed, for example, as A and B are from the same source or from
different and unrelated sources. Then, the following equation can be used to calculate an
LR, with ADO and ADI incorporated to explain the allele difference between A and B, if
there are any. However, the ADO and ADI rates of the consensus profile are different from
the rates for single cell profiles. These rates should be calculated by consensus similar to
the methods of estimating quality scores in MPS [59].

LR =
Pr(A, B|A & B are from same source)

Pr(A, B|A & B are unrelated)
. (1)

In Equation (1), the numerator is the product of the transition probabilities in Table 1
of [60] and the genotype frequency of B, and the denominator is simply the product of the
genotype frequencies of A and B. When all alleles of A and B are identical and there is
no ADO and ADI, this equation reduces to the inverse of the traditional Random Match
Probability (RMP) of A or B.

In cases when a relative of, for example, the suspect is hypothesized as the contributor,
both IBS and LR approaches can still apply. For the IBS approach, a different threshold can
be used, as shown in Figures 3 and 4. For the LR approach, the denominator hypothesis
would be different (Equation (2)). The numerator can be calculated by expanding Table 1
in [61] with the incorporation of ADO and ADI, using a similar model to that described
in [60].

LR =
Pr(A, B|A & B are related as a specific relationship)

Pr(A, B|A & B are unrelated)
. (2)
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If there is no known profile to compare, the consensus profile (full or partial) may
be searched against a forensic DNA database(s) (e.g., CODIS). If a consensus profile is
generated from a cluster with a good number of sampled cells (e.g., ≥10), the partial
matches (or hits) highly likely belong to family members of the sample donor or the
sample donor.

4.2. The Capabilities and Limitations

This study supports that, based on the single-cell technologies, the DNA mixtures can
be precisely deconvoluted with proper interpretation methods. With the single-cell profiles
of any DNA mixture, the chance of missing a minor contributor can be quantified, and the
proportion of each contributor in the mixture can be determined at the level of single cells
or chromosomes through the single-cell profile clusters. These proportions may not reflect
the true proportions in the whole mixture sample before cell isolation, particularly when
the proportion is small or the number of sampled cells is small, because of cell extraction
efficiency and sampling error, as only a small percentage of the cells may be isolated for
genotype profiling. However, depending on the case scenario, mixture proportions may
not be important or relevant compared with just identifying the cells that are present.

The probabilities of not detecting a minor contributor estimated in Table 2 assume a
large number of cells are available for analysis. For low-quantity DNA samples, which
may contain a few cells, hypergeometric distribution may be a better model to estimate
these probabilities. However, the hypergeometric distribution requires knowing the total
number of cells in a forensic sample, which may not be possible or precisely determined. In
contrast, binomial distribution does not require the total number of cells in the estimation,
and thus it may still be a good option in low-quantity DNA samples.

NOC estimation is the key component in this interpretation workflow. If the NOC is
overestimated (e.g., a two-person mixture is determined as a three-person mixture), most
likely the single cells of a contributor(s) are separated into two or more clusters, and the
consensus profile of each cluster may still be valid. However, if the NOC is underestimated,
cells from multiple contributors would be merged into one cluster, which could lead to
an incorrect consensus profile. Nevertheless, by the clustering approach, the NOC of a
mixture can be precisely determined for the mixtures with a high number of cells and
relatively balanced mixture ratios, even for mixtures with related contributors.

In this study, for the tested classic clustering algorithms, EM performed better than
K-Means in general, but K-Means performed better in some mixtures, such as the (5,5)
mixture with unrelated contributors. Both of these classic algorithms do not perform
well with imbalanced mixture ratios [54]. The EM algorithm does not explicitly require a
distance measure, and the Euclidean distance was used in the K-Means algorithm. While
the Euclidean distance measure may not be the best distance for this application, it was used
herein as a proof of concept. Specifically designed distances for STR alleles, such as counting
the number of step differences between STR alleles, only counting the heterozygous loci
to mitigate the impact of ADO, or allele or genotype matching based measures (e.g., IBS),
could be better choices for algorithms which require a distance measure. The Silhouettes
method was used in this study to determine the number of clusters, but it does not work
for the scenarios when NOC = 1 and is not necessarily the best method for single-cell
STR data. Other methods, such as the Davies–Bouldin index, the Dunn index, and the
Akaike information criterion (AIC), may help determine the number of clusters and may
be tested in the future. Overall, better clustering algorithms (such as t-SNE clustering [62],
semi-supervised and self-supervised learning [63,64]) and better methods of determining
the number of clusters should be pursued for the single-cell profiles with imbalanced
mixtures. In addition, similar to that of other single-cell applications, visualization can be
helpful to estimate the NOC, as human judgment may do better deciding the NOC when
the number of instances is small (e.g., few to hundreds), which is the case for many forensic
mixture samples. However, human judgment can be subjective; different individuals may
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reach different conclusions. Thus, visualization is more of a tool to assist the users to decide
NOC or limit the range of possible NOCs.

With a correct NOC, a high precision consensus profile can be obtained through the
clustered cell profiles. The sources of these consensus profiles can be precisely determined
by comparing them with the known profiles or considering the untyped relatives. The
accuracy relies on the number of cell profiles in the clusters, as well as the ADO and ADI
rates. But even with D = 0.2 and e = 0.01, the consensus accuracies of all contributors
approach 100% for mixtures with ≥40 cells and relatively balanced mixture ratios. Par-
ticularly, the family trio mixtures can be deconvoluted to recover the genotypes of the
individual contributors, even though related, which in theory is more challenging with
CE-STR analysis without conditioning on one of the contributors [65]. This study did not
investigate the consensus accuracies when the estimated NOC was incorrect. It was mainly
because, if the number of the true profiles (e.g., two) and the number of consensus profiles
(e.g., three) are different, it is not easy to decide which consensus profiles should compare
with which true profiles. The accuracies with NOC overestimation and underestimation
will be investigated in future studies.

The success of the single-cell mixture interpretations was based on the assumption
that a reasonable number of intact single cells can be isolated from a DNA sample, there are
no doublets or triplets of cells during cell isolation, and most of the alleles of these isolated
single cells can be successfully genotyped or sequenced. Although these assumptions
may not be held, low quality data per call could be filtered out using a threshold or with
algorithms. For example, doublets can be detected by an outlier detection algorithms [66]
or simply counting the number of alleles (i.e., triplet and/or quadruplet allele genotypes
per locus) or heterozygotes. Regardless, the interpretation methods developed in this study
allowed for imperfect data, such as small sample sizes, ADO, and ADI.

For some degraded forensic samples, many of the cells may be lysed, and thus
isolating intact cells may be difficult. Additionally, if extracellular DNA is present, the
DNA fragments released from the lysed cells may be isolated with an intact cell(s), which
could cause extra alleles to appear for some of the single-cell profiles. Validation studies
should be able to determine the impact of such events occurring. However, the impact may
be small because the extracellular fragments are a small subset of the genome; forensic
applications currently target only a very small percentage of the human genome (i.e., ~10k
bp out of 3 billion bp). In addition, if the NOC is estimated correctly and the consensus
works well, the drop-in alleles still may be able to be filtered out.

Even if a good number of cells are isolated, genotype profiling of the single copy alleles
in each single cell can be challenging, depending on the ADO and ADI rates. The ADO and
ADI rates can have a substantial impact on the analysis, such as NOC estimation and allele
consensus. The current ADO and ADI rates observed in various studies [19,27,34] may
still be high for each single-cell profile compared with the profiles generated from bulk
cells. However, WGA could help enrich targets [31,33] for higher accuracies of genotype
profiling, and single-cell isolation and amplification technologies are likely to become
more robust.

Generating consensus profiles from multiple single cells that are clustered can mitigate
the effects of high ADO and ADI rates, as described in Section 3.3. If there are ≥10 cell pro-
files in a cluster, with D = 0.2 and e = 0.01, a full consensus profile can be generated with no
mismatched alleles or only one mismatched allele on average, with up to three mismatched
alleles, in ~99.96% of the diploid mixtures and ~99.7% of the haploid mixtures. The process
is also highly successful for developing the consensus profile among related profiles.

In addition, the NOC estimation and allele consensus with single-cell profiles do not
need to assume independence among the tested alleles and markers, since the machine
learning algorithms by nature are able to accommodate dependent variants. Therefore,
in contrast to the complexity of current practices to incorporate dependence among the
markers, the single-cell based mixture interpretation can directly use the genetically linked
markers and markers in Linkage-Disequilibrium (LD) together, as well as the dependence
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among the alleles at the same locus, without any statistical corrections. This feature makes
the single-cell based interpretation readily able to include as many markers as possible to
increase the discriminating power and better identify individual contributors. However,
current methods, including the current probabilistic genotyping approach, do not readily
address dependent markers.

4.3. Future Improvements

As a proof-of-concept, this study only simulated the 21 STR loci in the GlobalFiler
kit by simplified but reasonable ADO and ADI models to demonstrate the capabilities of
using single-cell profiles to deconvolve mixtures. The same principles should apply for
other autosomal markers as well, either more STRs, Single Nucleotide Polymorphisms
(SNPs), or Insertion-Deletions (InDels). With more markers typed, the accuracy of NOC
estimation should increase. ADO may have a higher impact on performance using SNPs
than using STRs, since most of the SNPs have only two alleles at a locus and three possible
genotypes at each locus. But the huge numbers of SNPs in the human genome should be
able to overcome this limitation quite well. Indeed, whole genome sequencing (WGS) of
single cells has been described for other applications [67].

The lineage markers on mitochondrial DNA (mtDNA) and the Y chromosome can
be very useful for NOC estimation and allele consensus due to their unique features. The
diploid cells from the same contributor should have the same Y chromosome markers (if a
male contributor) and mtDNA haplotype (except for heteroplasmy or somatic mutations).
Use of Y markers in the haploid cells is more complicated. Half of all sperm from a
male contributor should have the same Y chromosome barring mutation, and the other
half of the sperm should carry the same X chromosome barring mutation. Therefore, an
interpretation process could be designed that first clusters profiles based on Y chromosome
markers, followed by autosomal or X chromosome markers. X chromosome markers have
been useful in certain cases, such as incest cases. However, mixture interpretation using
X chromosome markers with CE-STR analysis has been problematic. With single-cell
profiling, X chromosome markers could be used routinely for mixture deconvolution,
especially when combined with Y markers.

The ADO model employed in this study did not consider degradation due to different
allele and locus sizes. Accuracies could increase if degradation was included in the ADO
model, such as including the pattern of the ADO rates for different sizes of alleles could
improve the modeling of ADO rates for different alleles. A detection threshold still needs to
be determined to differentiate alleles from noise. The ADI model used in this study assumed
a random genotyping error while a large proportion of the ADIs are likely exaggerated
stutters for specific STR alleles. It would be desirable to incorporate a stutter model, which
should increase the accuracies of NOC estimation and allele consensus; less distinctly
different alleles would be observed in each cluster with a stutter model allowing the
profiles to cluster more effectively. However, not all wet-lab technologies would generate
stutters. For SNPs and Indels, there is no stutter. For STRs, the stutters may be minimized
by the recently developed Unique Molecular Index (UMI) technology [68]. There are many
factors that may impact ADO and ADI, such as types of markers, sequencing platforms,
library preparation kits, amplification kits, sequencing kits, protocols, software programs to
call alleles, detection thresholds, and so forth. Thus, technology and marker specific ADO
and ADI models may be the better options. In addition, the independence of the ADO
and/or ADI events among the cells may not be assumed with real samples [69]. Therefore,
more sophisticated ADO and ADI models that incorporate the underlying dependence
between the cells may be better refracting the actual scenarios. Furthermore, this study
used all single cells in analysis. In real casework, a filter should be implemented to remove
the single cells with the number of missing alleles or loci beyond a certain threshold, and
thus, only good quality data would be used in clustering and profile comparisons, which
in general should improve interpretation accuracies.
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Another improvement in accuracy could be to use clustering algorithms with a better
performance on imbalanced data [70]. Particularly, when a minor contributor is represented
with an extremely small number of sampled cells (e.g., one or two), outlier detection
algorithms (e.g., Isolation Forest [71]) or self-supervised learning [72], instead of the classic
clustering algorithms, may be used to select the single cell(s) of the minor contributor(s).
Improving accuracies of determining the number of clusters, other NOC methods, such as
Davies–Bouldin index, Dunn index, Akaike information criterion (AIC), and so forth, may
also be considered. The current allele consensus method treats two alleles at the same locus
independently. Performance may be improved if consensus is performed at the genotype
level. With such improvements, it is reasonable to expect that this single-cell interpretation
workflow should be able to interpret mixtures with a higher number of contributors (i.e.,
NOC ≥ 4).

In addition, the measures of several different NOCs may be very close to each other,
and multiple alleles may be close likely being the consensus allele in the consensus profile.
Picking one among multiple similarly likely NOCs or alleles could lead to error. Thus,
the interpretation methods may allow multiple possible scenarios with estimated weights,
similar to the continuous probabilistic genotyping approaches. These scenarios may be
evaluated, compared, and combined in a Bayesian or LR fashion.

4.4. Costs

The whole mixture interpretation workflow with the current routine methods includes
wet-lab work, data interpretation, judicial proceedings, law enforcement investigation, and
so forth, and a cost benefit analysis should be considered in a systems fashion as opposed
to solely the laboratory cost. The cost of the wet-lab workflow may be $50–100 per sample
currently (including sample collection, DNA extraction, quantification, amplification,
genotyping, but not including the labor), depending on the costs of the reagents and local
infrastructure. There are more costs that tend to occur after the DNA mixture profile is
generated, such as DNA interpretation (including software and hours of work interpreting
mixture profiles), evidence presentation in the court, and so forth. Additional costs may
also occur, including the law enforcement investigation, reanalyzing samples/aliquots,
hiring external reviewers for complex mixture interpretation, and so forth.

Compared with the current routine methods, the single-cell based mixture interpreta-
tion methods will add more costs to the wet-lab workflow, depending on the number of
cells to be analyzed and the reagents used in the workflow. In general, the more cells that
are analyzed, the higher are the costs. However, the cost increase may not be linear to the
number of cells to be tested, as the volume of reagents may be reduced in many steps (such
as amplification), and some steps of the workflow will not be needed (such as extraction
and quantification). More importantly, the single-cell based methods provide a much more
simplified interpretation with higher precision. Thus, the costs of the subsequent work
(such as data interpretation, additional wet-lab analysis, law enforcement investigation,
external review, judicial proceedings, etc.) may be substantially reduced, and the overall
costs of mixture cases, at a systems level, may be reduced.

Thus, while sampling multiple single cells will be more costly for the wet lab work
than analyzing one mixture (i.e., pooled cell) sample, costs of analyses, such as MPS, con-
tinue to drop, and more facile single-cell technologies are likely to be developed. However,
more importantly, the cost of analysis should be weighed against the value of reducing
uncertainty in mixture interpretation, saving time and resource for law enforcement inves-
tigations and saving costs of judicial proceedings, which in turn would save the overall
costs of an investigation by the government.

5. Conclusions

Overall, this study has demonstrated that the single-cell based mixture interpretation
can provide a precision that cannot be achieved with current standard CE-STR analyses.
A new paradigm for mixture interpretation is available to enhance the success of forensic
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genetic casework. More effort should be dedicated to improving the details of the inter-
pretation methods, as well as the single-cell isolation and genotype profiling methods. In
addition, as we see with other recent advances (such as familial searching or investigative
genetic genealogy), this single-cell profiling approach could also be used after other ap-
proaches have not been able to achieve a desired outcome, assuming a sufficient sample
for additional testing or by preserving part of the biological evidence to repeat the analyses
with a different approach.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12111649/s1, Supplementary Table S1. A simulated mixture example with two unrelated
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out allele. Supplementary Table S2. Accuracies of NOC with K-Means algorithm and Silhouettes
method for various mixture scenarios. UR = unrelated, PC = parent-child, and FS = full-sibling.
Supplementary Figure S1, which includes the rotatable plots of Figure 2.

Author Contributions: Conceptualization, J.G.; Methodology, J.G.; Software, J.G.; Data Analysis, J.G.;
Visualization J.G. and J.L.K.; writing—original draft preparation, J.G.; writing—review and editing,
J.G., J.L.K., A.S. and B.B. All authors have read and agreed to the published version of the manuscript.

Funding: Internal funds from Center for Human Identification.

Institutional Review Board Statement: Not applicable, as this study used simulation data.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data to report.

Conflicts of Interest: A patent application in pending.

References

1. Bright, J.-A.; Taylor, D.; McGovern, C.; Cooper, S.; Russell, L.; Abarno, D.; Buckleton, J. Developmental validation of STRmix™,
expert software for the interpretation of forensic DNA profiles. Forensic Sci. Int. Genet. 2016, 23, 226–239. [CrossRef] [PubMed]

2. Gill, P.; Haned, H.; Eduardoff, M.; Santos, C.; Phillips, C.; Parson, W. The open-source software LRmix can be used to analyse
SNP mixtures. Forensic Sci. Int. Genet. Suppl. Ser. 2015, 5, e50–e51. [CrossRef]

3. Perlin, M.W.; Legler, M.M.; Spencer, C.E.; Smith, J.L.; Allan, W.P.; Belrose, J.L.; Duceman, B.W. Validating TrueAllele DNA mixture
interpretation. J. Forensic Sci. 2011, 56, 1430–1447. [CrossRef]

4. Gill, P.; Jeffreys, A.J.; Werrett, D.J. Forensic application of DNA ‘fingerprints’. Nature 1985, 318, 577–579. [CrossRef] [PubMed]
5. Voorhees, J.C.; Ferrance, J.P.; Landers, J.P. Enhanced elution of sperm from cotton swabs via. enzymatic digestion for rape kit

analysis. J. Forensic Sci. 2006, 51, 574–579. [CrossRef] [PubMed]
6. Novroski, N.M.; King, J.L.; Churchill, J.D.; Seah, L.H.; Budowle, B. Characterization of genetic sequence variation of 58 STR loci

in four major population groups. Forensic Sci. Int. Genet. 2016, 25, 214–226. [CrossRef] [PubMed]
7. Gan, Y.; Li, N.; Zou, G.; Xin, Y.; Guan, J. Identification of cancer subtypes from single-cell RNA-seq data using a consensus

clustering method. BMC Med. Genom. 2018, 11, 117. [CrossRef]
8. Cui, Y.; Zhang, S.; Liang, Y.; Wang, X.; Ferraro, T.N.; Chen, Y. Consensus clustering of single-cell RNA-seq data by enhancing

network affinity. Brief. Bioinform. 2021, bbab236. [CrossRef]
9. Kling, D.; Tillmar, A.O.; Egeland, T. Familias 3-extensions and new functionality. Forensic Sci. Int. Genet. 2014, 13, 121–127.

[CrossRef] [PubMed]
10. Vullo, C.M.; Catelli, L.; Rodriguez, A.A.I.; Papaioannou, A.; Merino, J.C.Á.; Lopez-Parra, A.; Gaviria, A.; Baeza-Richer, C.;

Romanini, C.; González-Moya, E. Second GHEP-ISFG exercise for DVI: “DNA-led” victims’ identification in a simulated air crash.
Forensic Sci. Int. Genet. 2021, 53, 102527. [CrossRef]

11. Budowle, B.; Eisenberg, A.J.; Van Daal, A. Validity of low copy number typing and applications to forensic science. Croat. Med. J.
2009, 50, 207–217. [CrossRef]

12. Li, C.; Qi, B.; Ji, A.; Xu, X.; Hu, L. The combination of single cell micromanipulation with LV-PCR system and its application in
forensic science. Forensic Sci. Int. Genet. Suppl. Ser. 2009, 2, 516–517. [CrossRef]

13. Huffman, K.; Hanson, E.; Ballantyne, J. Recovery of single source DNA profiles from mixtures by direct single cell subsampling
and simplified micromanipulation. Sci. Justice 2021, 61, 13–25. [CrossRef] [PubMed]

14. Xu, C.; Feng, L.; Yang, F.; Jia, J.; Ji, A.-Q.; Hu, L.; Li, C.-X. Mucosal cell isolation and analysis from cellular mixtures of three
contributors. J. Forensic Sci. 2015, 60, 783–786. [CrossRef] [PubMed]

15. Brück, S.; Evers, H.; Heidorn, F.; Müller, U.; Kilper, R.; Verhoff, M.A. Single cells for forensic DNA analysis-from evidence material
to test tube. J. Forensic Sci. 2010, 56, 176–180. [CrossRef] [PubMed]

339



Genes 2021, 12, 1649

16. Schneider, C.; Müller, U.; Kilper, R.; Siebertz, B. Low copy number DNA profiling from isolated sperm using the aureka®-
micromanipulation system. Forensic Sci. Int. Genet. 2012, 6, 461–465. [CrossRef] [PubMed]

17. Theunissen, G.M.; Rolf, B.; Gibb, A.; Jäger, R. DNA profiling of sperm cells by using micromanipulation and whole genome
amplification. Forensic Sci. Int. Genet. Suppl. Ser. 2017, 6, e497–e499. [CrossRef]

18. Vandewoestyne, M.; Deforce, D. Laser capture microdissection in forensic research: A review. Int. J. Leg. Med. 2010, 124, 513–521.
[CrossRef] [PubMed]

19. Han, J.-P.; Yang, F.; Xu, C.; Wei, Y.-L.; Zhao, X.-C.; Hu, L.; Ye, J.; Li, C.-X. A new strategy for sperm isolation and STR typing from
multi-donor sperm mixtures. Forensic Sci. Int. Genet. 2014, 13, 239–246. [CrossRef]

20. Xu, Y.; Xie, J.; Chen, R.; Cao, Y.; Ping, Y.; Xu, Q.; Hu, W.; Wu, D.; Gu, L.; Zhou, H.; et al. Fluorescence- and magnetic-activated cell
sorting strategies to separate spermatozoa involving plural contributors from biological mixtures for human identification. Sci.
Rep. 2016, 6, 36515. [CrossRef] [PubMed]

21. Schoell, W.M. Separation of sperm and vaginal cells with flow cytometry for DNA typing after sexual assault. Obstet. Gynecol.
1999, 94, 623–627. [CrossRef]

22. Verdon, T.J.; Mitchell, R.J.; Chen, W.; Xiao, K.; van Oorschot, R.A. FACS separation of non-compromised forensically relevant
biological mixtures. Forensic Sci. Int. Genet. 2015, 14, 194–200. [CrossRef]

23. Miller, J.M.; Brocato, E.R.; Yadavalli, V.K.; Greenspoon, S.A.; Ehrhardt, C.J. Testing hormone-specific antibody probes for
presumptive detection and separation of contributor cell populations in trace DNA mixtures. bioRxiv 2019. [CrossRef]

24. Stokes, N.A.; Stanciu, C.E.; Brocato, E.R.; Ehrhardt, C.J.; Greenspoon, S.A. Simplification of complex DNA profiles using front
end cell separation and probabilistic modeling. Forensic Sci. Int. Genet. 2018, 36, 205–212. [CrossRef]

25. Dean, L.; Kwon, Y.J.; Philpott, M.K.; Stanciu, C.E.; Seashols-Williams, S.J.; Cruz, T.D.; Sturgill, J.; Ehrhardt, C.J. Separation of
uncompromised whole blood mixtures for single source STR profiling using fluorescently-labeled human leukocyte antigen
(HLA) probes and fluorescence activated cell sorting (FACS). Forensic Sci. Int. Genet. 2015, 17, 8–16. [CrossRef] [PubMed]

26. Williamson, V.R.; Laris, T.M.; Romano, R.; Marciano, M.A. Enhanced DNA mixture deconvolution of sexual offense samples
using the DEPArray™ system. Forensic Sci. Int. Genet. 2018, 34, 265–276. [CrossRef]

27. Anslinger, K.; Graw, M.; Bayer, B. Deconvolution of blood-blood mixtures using DEPArrayTM separated single cell STR profiling.
Rechtsmedizin 2019, 29, 30–40. [CrossRef]

28. Fontana, F.; Rapone, C.; Bregola, G.; Aversa, R.; de Meo, A.; Signorini, G.; Sergio, M.; Ferrarini, A.; Lanzellotto, R.; Medoro, G.;
et al. Isolation and genetic analysis of pure cells from forensic biological mixtures: The precision of a digital approach. Forensic
Sci. Int. Genet. 2017, 29, 225–241. [CrossRef] [PubMed]

29. England, R.; Nancollis, G.; Stacey, J.; Sarman, A.; Min, J.; Harbison, S. Compatibility of the ForenSeq™ DNA signature prep kit
with laser microdissected cells: An exploration of issues that arise with samples containing low cell numbers. Forensic Sci. Int.
Genet. 2020, 47, 102278. [CrossRef]

30. Lim, H.H.; Srisiri, K.; Rerkamnuaychoke, B.; Bandhaya, A. A comparative study of whole genome amplification and low-template
DNA profiling. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 509–511. [CrossRef]

31. Deleye, L.; Plaetsen, A.-S.V.; Weymaere, J.; Deforce, D.; Van Nieuwerburgh, F. Short tandem repeat analysis after whole genome
amplification of single B-lymphoblastoid cells. Sci. Rep. 2018, 8, 1–6. [CrossRef]

32. Schneider, P.; Balogh, K.; Naveran, N.; Bogus, M.; Bender, K.; Lareu, M.; Carracedo, A. Whole genome amplification—the solution
for a common problem in forensic casework? Int. Congr. Ser. 2004, 1261, 24–26. [CrossRef]

33. Chen, M.; Zhang, J.; Zhao, J.; Chen, T.; Liu, Z.; Cheng, F.; Fan, Q.; Yan, J. Comparison of CE- and MPS-based analyses of forensic
markers in a single cell after whole genome amplification. Forensic Sci. Int. Genet. 2020, 45, 102211. [CrossRef]

34. Li, C.-X.; Han, J.-P.; Ren, W.-Y.; Ji, A.-Q.; Xu, X.-L.; Hu, L. DNA profiling of spermatozoa by laser capture microdissection and low
volume-PCR. PLoS ONE 2011, 6, e22316. [CrossRef] [PubMed]

35. Chen, C.; Xing, D.; Tan, L.; Li, H.; Zhou, G.; Huang, L.; Xie, X.S. Single-cell whole-genome analyses by linear amplification via.
transposon insertion (LIANTI). Science 2017, 356, 189–194. [CrossRef] [PubMed]

36. Ge, J.; Budowle, B.; Chakraborty, R. Choosing relatives for DNA identification of missing persons. J. Forensic Sci. 2011, 56, S23–S28.
[CrossRef] [PubMed]

37. Ge, J.; Budowle, B. Kinship index variations among populations and thresholds for familial searching. PLoS ONE 2012, 7, e37474.
[CrossRef] [PubMed]

38. Balding, D.J.; Nichols, R.A. DNA profile match probability calculation: How to allow for population stratification, relatedness,
database selection and single bands. Forensic Sci. Int. 1994, 64, 125–140. [CrossRef]

39. Ge, J.; Budowle, B.; Chakraborty, R. DNA identification by pedigree likelihood ratio accommodating population substructure and
mutations. Investig. Genet. 2010, 1, 8. [CrossRef]

40. AABB. Relationship Testing Annual Reports; AABB: Bethesda, MD, USA, 2008.
41. Wang, D.Y.; Gopinath, S.; Lagacé, R.E.; Norona, W.; Hennessy, L.K.; Short, M.L.; Mulero, J.J. Developmental validation of the

GlobalFiler® express PCR amplification kit: A 6-dye multiplex assay for the direct amplification of reference samples. Forensic Sci.
Int. Genet. 2015, 19, 148–155. [CrossRef]

42. Moretti, T.R.; Moreno, L.I.; Smerick, J.B.; Pignone, M.L.; Hizon, R.; Buckleton, J.S.; Bright, J.-A.; Onorato, A.J. Population data on
the expanded CODIS core STR loci for eleven populations of significance for forensic DNA analyses in the United States. Forensic
Sci. Int. Genet. 2016, 25, 175–181. [CrossRef]

340



Genes 2021, 12, 1649

43. Eibe, F.; Hall, M.A.; Witten, I.H. Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques; The WEKA
Workbench; Morgan Kaufmann: Burlington, MA, USA, 2016.

44. Balding, D.J.; Buckleton, J. Interpreting low template DNA profiles. Forensic Sci. Int. Genet. 2009, 4, 1–10. [CrossRef]
45. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B

1977, 39, 1–22.
46. Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; Elsevier/Morgan Kaufmann:

San Francisco, CA, USA, 2011. [CrossRef]
47. Kanungo, T.; Mount, D.; Netanyahu, N.; Piatko, C.; Silverman, R.; Wu, A. An efficient k-means clustering algorithm: Analysis

and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 881–892. [CrossRef]
48. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987,

20, 53–65. [CrossRef]
49. Morris, J.H.; Apeltsin, L.; Newman, A.M.; Baumbach, J.; Wittkop, T.; Su, G.; Bader, G.D.; Ferrin, T.E. ClusterMaker: A multi-

algorithm clustering plugin for cytoscape. BMC Bioinform. 2011, 12, 436. [CrossRef]
50. Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley and Sons: Hoboken, NJ,

USA, 2009.
51. Pich, C. MDSJ: Java Library for Multidimensional Scaling (Version 0.2). 2009. Available online: http://www.inf.uni-konstanz.de/

algo/software/mdsj (accessed on 21 October 2020).
52. Java Data Frame and Visualization Library. Available online: https://jtablesaw.github.io/tablesaw/ (accessed on

21 October 2020).
53. Cairns, P. Gene methylation and early detection of genitourinary cancer: The road ahead. Nat. Rev. Cancer 2007, 7, 531–543.

[CrossRef] [PubMed]
54. Xuan, L.; Zhigang, C.; Fan, Y. Exploring of clustering algorithm on class-imbalanced data. In Proceedings of the 2013 8th

International Conference on Computer Science & Education, Colombo, Sri Lanka, 26–28 April 2013; pp. 89–93.
55. Wang, B.; Zhu, J.; Pierson, E.; Ramazzotti, D.; Batzoglou, S. Visualization and analysis of single-cell RNA-seq data by kernel-based

similarity learning. Nat. Methods 2017, 14, 414–416. [CrossRef]
56. Amir, E.-A.D.; Davis, K.L.; Tadmor, M.D.; Simonds, E.; Levine, J.H.; Bendall, S.C.; Shenfeld, D.K.; Krishnaswamy, S.; Nolan, G.P.;

Pe’Er, D. ViSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat.
Biotechnol. 2013, 31, 545–552. [CrossRef] [PubMed]

57. Lucy, D.; Curran, J.; Pirie, A.; Gill, P. The probability of achieving full allelic representation for LCN-STR profiling of haploid cells.
Sci. Justice 2007, 47, 168–171. [CrossRef] [PubMed]

58. Council, N.R. An Update: The Evaluation of Forensic DNA Evidence; National Academies Press: Washington, DC, USA, 1996.
59. Wall, J.D.; Tang, L.F.; Zerbe, B.; Kvale, M.N.; Kwok, P.-Y.; Schaefer, C.; Risch, N. Estimating genotype error rates from high-

coverage next-generation sequence data. Genome Res. 2014, 24, 1734–1739. [CrossRef] [PubMed]
60. Ge, J.; Budowle, B. Modeling one complete versus triplicate analyses in low template DNA typing. Int. J. Leg. Med. 2013, 128,

259–267. [CrossRef] [PubMed]
61. Ge, J.; Chakraborty, R.; Eisenberg, A.; Budowle, B. Comparisons of familial DNA database searching strategies. J. Forensic Sci.

2011, 56, 1448–1456. [CrossRef] [PubMed]
62. Kobak, D.; Berens, P. The art of using t-SNE for single-cell transcriptomics. Nat. Commun. 2019, 10, 1–14. [CrossRef]
63. Chen, L.; He, Q.; Zhai, Y.; Deng, M. Single-cell RNA-seq data semi-supervised clustering and annotation via. structural

regularized domain adaptation. Bioinformatics 2021, 37, 775–784. [CrossRef]
64. Chen, L.; Zhai, Y.; He, Q.; Wang, W.; Deng, M. Integrating deep supervised, self-supervised and unsupervised learning for

single-cell RNA-seq clustering and annotation. Genes 2020, 11, 792. [CrossRef]
65. Lin, M.-H.; Bright, J.-A.; Pugh, S.N.; Buckleton, J.S. The interpretation of mixed DNA profiles from a mother, father, and child trio.

Forensic Sci. Int. Genet. 2020, 44, 102175. [CrossRef]
66. Stoeckius, M.; Zheng, S.; Houck-Loomis, B.; Hao, S.; Yeung, B.Z.; Mauck, W.M.; Smibert, P.; Satija, R. Cell hashing with barcoded

antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 2018, 19, 1–12. [CrossRef]
67. Zhang, L.; Dong, X.; Lee, M.; Maslov, A.Y.; Wang, T.; Vijg, J. Single-cell whole-genome sequencing reveals the functional landscape

of somatic mutations in B lymphocytes across the human lifespan. Proc. Natl. Acad. Sci. USA 2019, 116, 9014–9019. [CrossRef]
68. Woerner, A.E.; Mandape, S.; King, J.L.; Muenzler, M.; Crysup, B.; Budowle, B. Reducing noise and stutter in short tandem repeat

loci with unique molecular identifiers. Forensic Sci. Int. Genet. 2021, 51, 102459. [CrossRef]
69. Sheth, N.; Swaminathan, H.; Gonzalez, A.J.; Duffy, K.R.; Grgicak, C.M. Towards developing forensically relevant single-cell

pipelines by incorporating direct-to-PCR extraction: Compatibility, signal quality, and allele detection. Int. J. Leg. Med. 2021, 135,
727–738. [CrossRef] [PubMed]

70. Lin, W.-C.; Tsai, C.-F.; Hu, Y.-H.; Jhang, J.-S. Clustering-based undersampling in class-imbalanced data. Inf. Sci. 2017, 409–410,
17–26. [CrossRef]

71. Liu, F.T.; Ting, K.M.; Zhou, Z.-H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data
Mining, Washington, DC, USA, 15–19 December 2008; pp. 413–422.

72. Yang, Y.; Xu, Z. Rethinking the value of labels for improving class-imbalanced learning. arXiv 2006, arXiv:2006.07529 2020.

341





genes
G C A T

T A C G

G C A T

Article

Cross-Amplification in Strigiformes: A New STR Panel for
Forensic Purposes

Patrizia Giangregorio 1,*, Lorenzo Naldi 1,2, Chiara Mengoni 1, Claudia Greco 1, Anna Padula 1, Marco Zaccaroni 3,

Renato Fani 3, Giovanni Argenti 2 and Nadia Mucci 1

Citation: Giangregorio, P.; Naldi, L.;

Mengoni, C.; Greco, C.; Padula, A.;

Zaccaroni, M.; Fani, R.; Argenti, G.;

Mucci, N. Cross-Amplification in

Strigiformes: A New STR Panel for

Forensic Purposes. Genes 2021, 12,

1721. https://doi.org/10.3390/

genes12111721

Academic Editor: Niels Morling

Received: 5 October 2021

Accepted: 25 October 2021

Published: 28 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Conservation Genetics Area, Institute for Environmental Protection and Research, Via Ca’ Fornacetta 9,
Ozzano dell’Emilia, 40064 Bologna, Italy; lorenzonaldi95@gmail.com (L.N.);
chiara.mengoni@isprambiente.it (C.M.); claudia.greco@isprambiente.it (C.G.);
anna.padula@isprambiente.it (A.P.); nadia.mucci@isprambiente.it (N.M.)

2 Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle
Cascine 18, 50144 Florence, Italy; giovanni.argenti@unifi.it

3 Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence,
Italy; marco.zaccaroni@unifi.it (M.Z.); renato.fani@unifi.it (R.F.)

* Correspondence: patrizia.giangregorio@isprambiente.it

Abstract: Strigiformes are affected by a substantial decline mainly caused by habitat loss and
destruction, poaching, and trapping. Moreover, the increasing trend in bird trade and the growing
interest in wild-caught rather than captive-bred birds are expected to encourage illegal trade. The
biomolecular investigation represents a valuable tool to track illegal trade and to explore the genetic
variability to preserving biodiversity. Microsatellite loci (STRs) are the most used markers to study
genetic variability. Despite the availability of species-specific microsatellite loci in Strigiformes,
a unique panel permitting the description of the genetic variability across species has not been
identified yet. We tested 32 highly polymorphic microsatellite markers to evaluate the reliability of
a unique microsatellite panel in different species of Strigiformes and its use for conservation and
forensic purposes. We included in the study 84 individuals belonging to 28 parental groups and
11 species of Strigiformes. After screening polymorphic microsatellite loci, the description of genetic
variability, and the kinship assessment, we characterized a final panel of 12 microsatellite loci able to
identify individuals in 9 Strigiformes species. This STR panel might support the authorities in the
forensic investigation for suspected smugglers and false parental claims; moreover, it can be useful
to evaluate relatedness among individuals in captive-bred populations and to implement research
projects finalized to the description of the genetic variability in wild populations.

Keywords: cross-amplification; microsatellites; Strigiformes; forensic; illegal trade; kinship;
nocturnal raptors

1. Introduction

Habitat loss and fragmentation represent the main threats to the survival of wildlife
species. Several studies have well documented their effect on biodiversity loss [1]. More-
over, also international wildlife trade contributes to the depletion of natural resources;
hence, the over-exploitation of natural populations, such as the withdrawal of individ-
uals from the wild, is considered one of the leading causes driving the species into
extinction [2–4]. It is known that seafood, furniture, and fashion are the main categories
requested from the international trade; in addition to this, the commerce of pets affects
many individuals. At least 5% of the import/export requests regards parrots and bird of
prey (raptors and owls), a quote that equals the sum of all other commercialized birds [1].

Baker and colleagues [5] calculated that animals’ demand for pets and entertainment
purposes contributed to at least one-fifth of the wildlife trade [6–8], and they showed
that the removal of wild individuals from native populations was accounted in migrating
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species for the second threat that pushes species into extinction, lower only to the habitat
loss [9].

Species over-exploitation increases the negative effects produced by habitat unsuitabil-
ity, causing the reduction of individuals in wild populations that, in turn, can produce a fast
loss of genetic variability in a short timescale. Domínguez et al. [10] showed that decreasing
populations and pet trade could have generated a bottleneck, reducing genetic variability in
the yellow cardinal, Gubernatrix cristata, an endangered passerine from the southern region
of South America. Harris et al. [11] found that 14 species routinely traded in Indonesian
wildlife markets had undergone population decline differently from the other 22 untraded
species, which did not suffer any number reduction. Evans and Sheldon [12] found a
correlation between the decline of mean heterozygosity with an increasing extinction risk
and identified the smaller population sizes as the main cause of this correlation.

Valuable tools to rule or forbid the trade of threatened species to save them from extinc-
tion have been provided since the application in 1976 of the Washington Convention. All
the countries belonging to the European Community joined the convention that has been
applied through several Council (EU) Regulations. Species subjected to maximum protec-
tion are listed in Annex A that includes most of the species listed in Appendix I and several
species of Appendix II recorded as critically endangered in the European Community.

One of the orders suffering a strong decline in Europe is Strigiformes, which includes
two main families: Tytonidae and Strigidae. While the first family is split into two subfami-
lies, each of which including one genus (Tyto and Phodilus), the taxonomy of Strigidae is
quite controversial [13]. Differently from traditional systematics, Wink et al. [14] recognized
the existence of three subfamilies (Ninoxinae, Striginae, Surninae) with several tribes in the
last two through a molecular phylogenetic approach. Concerning the substantial decline of
Strigiformes in Europe, it is caused mainly by pesticides, changing agricultural techniques
with the loss of the structures for nesting and lower rodent availability than in traditional
farming, and caught of individuals from the wild. Several main factors threatening owl
survival in the Gaza Strip were identified by Abdel Rabou [15], including habitat loss
and destruction, poaching and trapping, myths and superstitions, secondary poisoning,
road kills, and fence agricultural lands. Wan et al. [16] found a negative influence of frag-
mentation on the population size and genetic diversity. Despite their inclusion in CITES
Appendix II, they enjoy the greatest protection and are listed in Annex A. As for other
species included in the CITES Appendix II, only individuals imported into the EU before
the Convention of Washington entered into force can be traded. This permission is also
applicable to these individuals’ descendants, but only if their birth in captivity is proved.

The demand for pets among birds gradually increased in the past decades [17]. Panter,
Atkinson and White [7] recorded a wild-caught export of 18,948 individuals belonging to
86 owl species from 1975 to 2015. In 2019, Ribeiro and colleagues [18] denounced a future
trend in legal bird trade driven by sociocultural motivations with an increased demand
that will interest wild-caught rather than captive-bred birds. This preference is expected to
drive towards an increase in the illegal trade of the rarest or more popular species. Also,
the reduced number of wild individuals increases their commercial value, encouraging,
even more, their illegal trade. Remarkably, the illicit traffic involves the smuggling of eggs
and the laundering through captive breeding facilities of wild-caught animals [7].

Owls trade increased in the last decades and has also been influenced by a change
in habits; for example, Nijman and Nekaris [19] recorded an increased owl trade, from
<0.06% before 2002 to >0.43% post 2008, in wildlife markets in Java and Bali and suggested
a delayed “Harry Potter effect”. Siriwat and colleagues [20] identified the same increasing
trade in Thailand without finding a correlation with the “Harry Potter effect”; nevertheless,
they found an association between the increasing owl request, the novel online market and
more popularity of owls as a pet. Moreover, they related the higher market price of some
species to lower individual availability.

Even though the main actions aim to prevent and hamper over-exploitation and illegal
trade represent the first steps in preserving biodiversity, a biomolecular investigation can
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give valuable hints for either verifying the depletion of genetic variability or tracking
illegal trade. This can be carried out through individual identification using molecular
techniques and kinship analyses. One of the most used genetic markers to study genetic
variability is microsatellite loci (i.e., short tandem repeats or STRs). They are multiallelic
and PCR multiplexable, allowing the description of genetic variability with reduced costs.
Although the comparability between different laboratories has often proved to represent a
limit for their use, this hampering can be easily resolved by using an allelic ladder for each
marker—that identifies the position of all the alleles—and by sharing reference samples.

Despite the availability of species-specific panels of microsatellite loci in
Strigiformes [21–26] and the cross-amplification of some markers in species lacking their
markers [27], a unique panel permitting the description of the genetic variability across
species has not been found yet. Such a protocol would permit the recording of comparable
variability indices among different species and speed the process, reducing molecular
analyses costs; it could also be informative in detecting illegal trade of individuals collected
from the wild.

Thus, we tested 32 highly polymorphic microsatellite markers available from literature
in 11 species of Strigiformes with the following aims:

• To evaluate the reliability of a unique panel of microsatellite loci for several species of
Strigiformes;

• To test its use for conservation and forensic purposes;
• To assess the use of the panel in confirming phylogenetic relationships among species.

2. Materials and Methods

The overall experimental strategy used in this work was based on the following steps:
(i) Thirty-two microsatellite markers selected from the literature were tested on two

unrelated individuals of a restricted panel of three species (Athene noctua, Strix aluco, Bubo
bubo) (Table 1).

Table 1. List of species and individuals used in each step: family groups from 1 to 9 were tested in the first and second
screening; additional species and family groups (from 10 to 28) were tested in the third step.

Family Subfamily Tribe Species ID Gender Relationships Family Group

Strigidae Striginae

Strigini Strix aluco

S_al 1 Male Father 1

S_al 2 Female Mother

S_al 3 unknown Offspring

S_al 4 Male Father 2

S_al 5 Female Mother

S_al 6 unknown Offspring

S_al 7 Male Father 3

S_al 8 Female Mother

S_al 9 unknown Offspring

Bubonini Bubo bubo

B_bu 1 Male Father 4

B_bu 2 Female Mother

B_bu 3 unknown Offspring

B_bu 4 Male Father 5

B_bu 5 Female Mother

B_bu 6 unknown Offspring

B_bu 7 Male Father 6

B_bu 8 Female Mother

B_bu 9 unknown Offspring
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Table 1. Cont.

Family Subfamily Tribe Species ID Gender Relationships Family Group

Strigidae

Surninae Athenini Athene noctua

A_no 1 Male Father 7

A_no 2 Female Mother

A_no 3 unknown Offspring

A_no 4 Male Father 8

A_no 5 Female Mother

A_no 6 unknown Offspring

A_no 7 Male Father 9

A_no 8 Female Mother

A_no 9 unknown Offspring

Striginae

Strigini

Strix nebulosa

S_ne 1 Male Father

10S_ne 2 Female Mother

S_ne 3 unknown Offspring

S_ne 4 Male Father

11S_ne 5 Female Mother

S_ne 6 unknown Offspring

S_ne 7 Male Father

12S_ne 8 Female Mother

S_ne 9 unknown Offspring

Strix uralensis

S_ur 1 Male Father

13S_ur 2 Female Mother

S_ur 3 unknown Offspring

S_ur 4 Male Father

14S_ur 5 Female Mother

S_ur 6 unknown Offspring

Bubonini Bubo scandiacus

B_sc 1 Male Father

15B_sc 2 Female Mother

B_sc 3 unknown Offspring

B_sc 4 Male Father

16B_sc 5 Female Mother

B_sc 6 unknown Offspring

B_sc 7 Male Father

17B_sc 8 Female Mother

B_sc 9 unknown Offspring
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Table 1. Cont.

Family Subfamily Tribe Species ID Gender Relationships Family Group

Strigidae

Striginae

Otini Otus scops

O_sc 1 Male Father

18O_sc 2 Female Mother

O_sc 3 unknown Offspring

O_sc 4 Male Father

19O_sc 5 Female Mother

O_sc 6 unknown Offspring

O_sc 7 Male Father

20O_sc 8 Female Mother

O_sc 9 unknown Offspring

Asionini Asio otus

A_ot 1 Male Father

21A_ot 2 Female Mother

A_ot 3 unknown Offspring

A_ot 4 Male Father

22A_ot 5 Female Mother

A_ot 6 unknown Offspring

Surninae Surnini

Surnia ulula

S_ul 1 Male Father

23S_ul 2 Female Mother

S_ul 3 unknown Offspring

S_ul 4 Male Father

24S_ul 5 Female Mother

S_ul 6 unknown Offspring

S_ul 7 Male Father

25S_ul 8 Female Mother

S_ul 9 unknown Offspring

Glaucidium
passerinum

G_pa 1 Male Father

26G_pa 2 Female Mother

G_pa 3 unknown Offspring

G_pa 4 Male Father

27G_pa 5 Female Mother

G_pa 6 unknown Offspring

Tytonidae Tytoninae Tyto alba

T_al 1 Male Father

28T_al 2 Female Mother

T_al 3 unknown Offspring

(ii) Microsatellite markers giving polymorphic profiles in all the species tested at step
(i) were used for genotyping three family groups per species (Table 1).

(iii) Microsatellite primers giving polymorphic amplification patterns at step (ii) were
then used to evaluate the STR panel for forensic purposes on a larger panel of family
groups, comprising different subfamilies, tribes and species, aiming at identifying a unique
shared panel of polymorphic loci (Table 1). The selected species are the most commonly
traded in the Italian market.
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According to the manufacturer’s instructions, DNA was isolated from feathers using
DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany). After digestion in 180 μL
ATL buffer, 20 μL proteinase K and 20 μL DTT and incubation overnight at 56 ◦C, the
lysate was loaded in a QIAcube HT robotic station (Qiagen, Hilden, Germany) for further
purification steps.

DNA was amplified in an 8 μL final volume reaction. The PCR reactions were carried
out as follows: in 8 μL of the final volume, we added 1x reaction buffer, 0.02% BSA, 1.5 mM
MgCl2, 0.125 mM of dNTPs, Hot Start Taq Polymerase 0.025 U (Qiagen, Hilden, Germany),
0.125 mM primer (forward and reverse), 1 μL DNA template and nuclease-free water to
reach the final volume.

Twenty-five out of 32PCR primers used in this work were originally isolated from five
species of Strigidae (Bubo bubo, Otus elegans, Strix occidentalis, Strix nebulosa, Glaucidium
brasilianum), one from the goshawk (Accipiter gentilis). Six were previously designed to
and/or shown to display high cross utility throughout many genetically distant passerine
and shorebirds and were found polymorphic in Tyto alba. (Table 2); each forward primer
was labelled with fluorescent ABI dyes. Amplification reactions were performed in simplex
to test for the right allelic range and no specific amplification. According to melting
temperature and reference bibliography, we chose the following thermal profile: 94 ◦C for
15′, followed by 35 cycles at 94 ◦C for 40′′, 60 ◦C for 40′′, ending with a final extension at
72 ◦C for 10′.

Table 2. Loci chosen from literature and tested for the cross-species amplification study.

Primer ID Forward Primer Sequence Reverse Primer Sequence Original Species References

54f2 GAGAGATGTTGGGCTCTTGTG TGTTAATTGCATTGAATGTCAGC Passerine and
shorebird species [25]

BOOW19 GGAAACTTACTAGAAAATAAATGACTGG CTTTCTAACTTTCCCATGCAAC Passerine and
shorebird species [25]

Calex05 TCCAGCTGAAGTCTTCCGTGAAT TCCACACCTGTTCGACAGTTCAATA Passerine and
shorebird species [25]

HvoB1 AAGCAAGGACTTTCCTTCCAG TCTCAAATTGGAACAGAGAAAGG Passerine and
shorebird species [25]

Tgu06 CGAGTAGCGTATTTGTAGCGA AGGAGCGGTGATTGTTCAGT Passerine and
shorebird species [25]

TG04-061 GACAATGGCTATGAAATAAATTAGGC AGAAGGGCATTGAAGCACAC Passerine and
shorebird species [25]

BbuS027 TCATGAGGAACTTTCAGTGCTC GAAGAAAGGCAGCTCTCACC Bubo bubo [28]

BbuS102 AACTGATTTGGAAACCACCATC CTGGAACACCCAGTGTTTGTC Bubo bubo [28]

Bbus116 GTTTCTGCAGCTGGGTCAG AAACAGTTTCCATGCCTTACG Bubo bubo [28]

BbuS132 TCATTGTAGGTCCCATCCAAC CCATATCTATCAAGCAACCTTGG Bubo bubo [28]

Oe050 AGAGTTGTCCTTGGTTGG TTCTAGTAACCTCATCTGC Otus elegans [29]

Oe054 TCAGAAAGAAAACTTCAGCAACC CATATATGTATACACAGGCACATGC Otus elegans [29]

15A6 ACCTCAGAAGCAGACAGAACC CCTTTGCGATTGCTGTAAC Strix occidentalis [30]

Age5 ACGTTACAGACACCGATTACTTCC AGCCACGCGTCTGATACTTT Accipiter gentilis [31]

Bb101 AATAACCCCAATAGAAGC ACCAGAAGGAGATGAGACC Bubo bubo [21]

Bb126 TCTCCAGAAGGGTTGTCATC TGCTAAAACCTTACAGAATAACAG Bubo bubo [21]

Oe142 TGAATCAGCAAACCTGTGCCTG AGCTAACCTAGAGTCAGCCAGC Otus elegans [29]
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Table 2. Cont.

Primer ID Forward Primer Sequence Reverse Primer Sequence Original Species References

Oe171 TTTTACAAACTACTAGTGCATGTCTCC AGATGTTGTATTTCAGTGTCAG Otus elegans [29]

Oe3-21 GATTAGAGACCCGATTCCACA TTATCTGAGTGGAAGGGTAGTGC Otus elegans [29]

Oe3-7 GTGGGTTTATTGCCCCCTCG CAGATGAATGAATGGATAGATGG Otus elegans [22]

Oe149 CACACATCCATTTTGGGGTGC GGATGCTGGAACTGACCTGC Otus elegans [22]

Oe081 GTAAGGGAAGTAGACGTCTGTTGG CAACTTTGTGTCATCTGAAAGG Otus elegans [22]

Oe084 GGGCATAGTTAGACCTTTGCAG CACATCTGTTGTTCTCCGTGTTACC Otus elegans [22]

SneD105 AGCCTTGGGAGGTTAAGTCCT ACACGCAATCACTGAAGCAGT Strix nebulosa [24]

SneD113 AGCTCTTTCCCGACAGTGTCTA GCCAAAAAACCCCATATCCTAG Strix nebulosa [24]

SneD202 GCTGGGCTTAGAAATTACATGG CTCTGCCCTAATCAGGAACACT Strix nebulosa [24]

SneD211 TAGCCCTGTGGATTTGCATTAG TCACCAGAAGTTCAAAGCAGGTAG Strix nebulosa [24]

SneD218 GGGTGTGAGAATGACCTACCTG AGCAGACAGGAGATGGCTTTTA Strix nebulosa [24]

Fepo42 CGTATACATCGAAATAAATACC CGAATAAAACATCCCTAACC Glaucidium
brasilianum [23]

Oe053 CTCTGCATCTTAACGCACAGGAC CCTCCAAGTGGACAGGAAAAGC Otus elegans [29]

Oe128 CGTTGTAAATGATGAATCGCCTAGTGC ATGCATGTATACATACAAACCTGG Otus elegans [29]

Oe129 GTCACCTCTTGACATCCGAGTAGC GCTAAGAGTCCATTTGCCCATCTG Otus elegans [29]

Amplicons were separated through capillary electrophoresis in an ABI 3130xl genetic
analyzer (Thermo Fisher Scientific); alleles were scored in GeneMapper 4.0 using GeneScan
500 ROX size standard (Thermo Fisher Scientific, Waltham, MA, USA). An allelic ladder
was constructed in Genemapper, merging the sample electropherograms at each locus.
Scoring has been reported for each peak, allowing the data comparison among laboratories
(Supplementary Material Figure S1: allelic ladders).

Genotypes resulting from the screening were analyzed for the selected loci. Allele
number (NA), effective allele number (NE), number of private alleles, observed and ex-
pected heterozygosities (Ho, He) were computed using GenAlEx 6.41 [32]. Gimlet 1.3.3 [33]
was used to evaluate the probability of identity (PID) among individuals of each clus-
ter species, to calculate the minimum number of markers necessary to achieve a reliable
individual genotyping for unrelated (PID) and related samples (PID_sib, sibling).

A factorial correspondence analysis (FCA) was carried out in Genetix 4.05 [34] to
check the genetic distances between species, tribes and subfamilies.

Parentage relationships among individuals within the family cluster were recon-
structed in Colony 2.0 [35]. This analysis allows to check if an individual that is claimed
to be bred in captivity truly descends from the declared parents. A single analysis was
performed including all genotypes of all species together. We used non-inbreeding data and
monogamy models, and set the genotyping error rate value 0.0001. The same analysis was
conducted in Cervus [36,37] and the LOD score was computed using a proportion of loci
typed = 0.60 and mistyped = 0.01. An additional computation with the same parameters
was performed using the Delta score defined as the difference in LOD scores between the
most and the second most likely candidate parents. The confidence levels were set to 80%
(relaxed) and 95% (strict) in both analyses.

3. Results

3.1. Preliminary Screening of STR Polymorphic Loci

Thirty-two microsatellite markers were chosen to evaluate their cross-species amplifi-
cation potential on three species (Athene noctua, Strix aluco, Bubo bubo) (Table 1), belonging
to two different sub-families, Striginae and Surninae, and three tribes (Strigini, Bubonini,
Athenini) respectively [14].

Two unrelated individuals per species were selected from the CITES sample database
(managed since 1995 by the Italian Institute of Environmental Protection and Research
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–ISPRA-on behalf of the Italian Environmental Ministry). Data obtained revealed that
twenty-one out of 32 markers used (15a6, Age5, Bb101, Bb126, BbuS027, Bbus116, Calex05,
Fepo42, Oe054, Oe128, Oe129, Oe142, Oe149, Oe321, Oe53, Oe81, Oe84, SneD113, SneD202,
SneD218, Tgu06) gave amplicons in A. noctua, S. aluco and B. bubo DNA samples. The
remaining 11 microsatellites were discarded because they either did not give any amplifica-
tion product or led to unreliable PCR amplicons.

3.2. Evaluation of the STR Potential in Family Groups

Three family groups (father, mother and one offspring) for each species (n = 9, Table 1)
were chosen from the CITES database and analyzed at the twenty-one loci selected in the
previous section.

Data obtained revealed that 12 of them resulted polymorphic in at least 2 species (15a6,
Fepo42, Oe053, Oe054, Oe128, Oe129, Oe142, Oe149, Oe321, SneD113, SneD218, Tgu06) and
were retained for further analyses. Fepo42 and Oe054 resulted monomorphic in S. aluco,
and Oe129 did not give any amplification product in B. bubo but were retained.

3.3. Evaluation of the STR Potential in Other Subfamilies of Strigidae

In order to evaluate the potential application of the STR panel for forensic purposes,
the 12 microsatellites were used on a larger panel of samples (Table 1), which included:

1. Additional species belonging to the already analyzed tribes of Bubonini and Strigini
(Bubo scandiacus, Strix uralensis, Strix nebulosa);

2. Two species belonging to the tribes of Asionini (Asio otus) and Otini (Otus scops);
3. Two species belonging to the Surninae subfamily, Tribes Surnini (Surnia ulula,

Glaucidium passerinum).
4. Tyto alba, belonging to the Tytonidae family, subfamily Tytoninae.
Three family groups were chosen for each species except for A. otus, S. uralensis and

G. passerinum because only two confirmed parental nuclei were available in the database.
The final dataset consisted of 81 individuals belonging to 27 families.

The DNA of each of the 81 individuals was amplified using the twelve primer sets.
Data obtained revealed that the DNA from the additional species included in the analysis
(O. scops, A. otus, B. scandiacus, S. ulula, S. uralensis, S. nebulosa, G. passerinum, T. alba) was
amplified at the examined loci with the following exceptions:

1. S. ulula showed fixed genotypes at four loci (Oe054, Oe129, Oe053, Oe321);
2. Ten loci were amplified in G. passerinum. However, only four loci were polymorphic.

Because of lack of variable loci, G. passerinum was removed from the further analysis;
3. S. uralensis and S. nebulosa showed no polymorphisms at Oe321 and Oe054 loci;
4. In A. otus, a unique fixed allele was recorded at locus Oe142;
5. Six loci were amplified in T. alba (FePo42, Oe54, Oe128, Oe129, Oe321, Tgu06),

but only 2 were variable (FePo42, Tgu06). Thus, this species was discarded from further
analyses because two loci are too few to be able to distinguish individuals reliably.

All the percentage values of polymorphic loci per species varied between 100% (n = 12
in A. noctua and O. scops) and 66.67% (n = 8 in S. ulula), if we do not take into account the
value in G. passerinum and T. alba (Table 3).
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Table 3. Variability indices: Allele number (NA), effective allele number (NE); observed heterozygosity (HO), expected
heterozygosity (HE), unbalanced expected heterozygosity (uHE), percentage of polymorphic loci (P%). Standard errors are
shown in brackets.

Species NA NE HO HE uHE P%

Strix aluco 3.6 (±0.5) 2.8 (±0.4) 0.528 (±0.091) 0.525 (±0.083) 0.556 (±0.087) 83.33%
Strix nebulosa 3.0 (±0.3) 2.2 (±0.2) 0.565 (±0.096) 0.471 (±0.074) 0.499 (±0.079) 83.33%
Strix uralensis 3.0 (±0.5) 2.3 (±0.4) 0.528 (±0.119) 0.429 (±0.092 0.468 (±0.100) 75.00%

Bubo bubo 4.2 (±0.6) 2.6 (±0.4) 0.539 (±0.090) 0.545 (±0.068) 0.578 (±0.072) 91.67%
Bubo scandiacus 3.3 (±0.4) 2.6 (±0.3) 0.515 (±0.092) 0.550 (±0.061) 0.584 (±0.065) 91.67%

Otus scops 6.3 (±0.6) 4.6 (±0.5) 0.733 (±0.049) 0.750 (±0.027) 0.798 (±0.030) 100.00%
Athene noctua 4.1 (±0.5) 3.3 (±0.5) 0.620 (±0.061) 0.604 (±0.060) 0.641 (±0.064) 100.00%

Asio otus 3.2 (±0.4) 2.5 (±0.3) 0.681 (±0.097) 0.529 (±0.062) 0.590 (±0.070) 91.67%
Surnia ulula 2.2 (±0.3) 1.70 (±0.21) 0.356 (±0.088) 0.318 (±0.074) 0.338 (±0.079) 66.67%

Mean 3.7 (±0.2) 2.8 (±0.14) 0.566 (±0.030) 0.525 (±0.025) 0.561 (±0.026) 87.04 (±3.70)%

3.4. Genetic Variability between and within Species

Statistical analysis was carried out on 9 species at 12 loci (Table 3). The mean allele
number (NA) was 3.7 (±0.2), with the highest values recorded respectively in O. scops
(6.3 ± 0.6) and the lowest one in S. ulula (2.2 ± 0.3). Mean expected and observed heterozy-
gosity (He and Ho) ranged from 0.750 ± 0.027 and 0.733 ± 0.049 in O. scops to 0.318 ± 0.074
and 0.356 ± 0.088 in S. ulula with an average value of 0.525 ± 0.025 and 0.566 ± 0.030,
respectively. The probability of identity resulted in different thresholds depending on the
species and if it was estimated for unrelated or related individuals (Figure 1). A PID value
lower than 0.001 was reached in all the species using an average of 3.9 markers, while
the same value was achieved with PID_sib using at least an average of 9.2 loci. S. ulula,
S. nebulosa and S. uralensis were not included in this last computation because their thresh-
old resulted higher using all the loci (minimum values respectively of 0.0155, 0.00162 and
0.00246) (Table 4).

 

Figure 1. Graph of the PID_sib trend in the species.
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Table 4. PID and PID_sib values: In the table, values lower than 0.001 were bold-evidenced. In the PID_sib columns, this
threshold wasindicated with (*). The PID_sib never reached this value in Surnia ulula (0.0155), Strix nebulosa (0.00162)
and Strix uralensis (0.0246). When PID or PID_sib values stop decreasing it means that the markers are not variable and
informative (underlined).

Strix aluco Strix nebulosa Strix uralensis

locus PID PID_sib locus PID locus PID PID_sib

Oe149 8.16 × 10−02 3.78 × 10−01 15a6 1.40 × 10−01 4.33 × 10−01 Oe128 8.16 × 10−02 3.82 × 10−01

15a6 6.98 × 10−03 1.46 × 10−01 Oe53 2.38 × 10−02 1.99 × 10−01 Oe53 9.28 × 10−03 1.57 × 10−01

SneD218 7.10 × 10−04 5.87 × 10−02 SneD218 4.82 × 10−03 9.54 × 10−02 Oe142 1.25 × 10−03 6.72 × 10−02

Oe53 7.22 × 10−05 2.36 × 10−02 Oe149 1.01 × 10−03 4.68 × 10−02 Oe149 1.86 × 10−04 2.96 × 10−02

Oe142 7.77 × 10−06 9.59 × 10−03 Fepo42 2.28 × 10−04 2.35 × 10−02 SneD218 3.23 × 10−05 1.38 × 10−02

Oe128 1.45 × 10−06 4.56 × 10−03 Oe142 5.18 × 10−05 1.18 × 10−02 15a6 7.33 × 10−06 6.93 × 10−03

Oe129 3.52 × 10−07 2.42 × 10−03 SneD113 1.24 × 10−05 6.07 × 10−03 Oe129 2.14 × 10−06 3.82 × 10−03

SneD113 9.97 × 10−08 1.33 × 10−03 Oe129 3.17 × 10−06 3.20 × 10−03 Fepo42 1.20 × 10−06 2.87 × 10−03

Oe321 3.77 × 10−08 7.97 × 10−04 * Oe128 1.14 × 10−06 1.99 × 10−03 Tgu06 8.74 × 10−07 2.46 × 10−03

Tgu06 2.11 × 10−08 5.99 × 10−04 Tgu06 7.53 × 10−07 1.62 × 10−03 Oe054 8.74 × 10−07 2.46 × 10−03

Fepo42 2.11 × 10−08 5.99 × 10−04 Oe054 7.53 × 10−07 1.62 × 10−03 Oe321 8.74 × 10−07 2.46 × 10−03

Oe054 2.11 × 10−08 5.99 × 10−04 Oe321 7.53 × 10−07 1.62 × 10−03 SneD113 8.74 × 10−07 2.46 × 10−03

Bubo bubo Bubo scandiacus Otus scops

locus PID PID_sib locus PID PID_sib locus PID PID_sib

SneD218 7.65 × 10−02 3.74 × 10−01 Oe53 8.79 × 10−02 3.86 × 10−01 Oe054 2.99 × 10−02 3.22 × 10−01

Oe53 7.26 × 10−03 1.46 × 10−01 SneD218 8.94 × 10−03 1.55 × 10−01 Oe149 1.18 × 10−03 1.08 × 10−01

15a6 8.09 × 10−04 6.01 × 10−02 SneD113 1.01 × 10−03 6.48 × 10−02 SneD113 4.70 × 10−05 3.60 × 10−02

Oe142 9.11 × 10−05 2.56 × 10−02 Oe142 1.36 × 10−04 2.76 × 10−02 15a6 2.73 × 10−06 1.28 × 10−02

Fepo42 1.48 × 10−05 1.16 × 10−02 Oe128 2.52 × 10−05 1.31 × 10−02 Fepo42 1.85 × 10−07 4.70 × 10−03

SneD113 2.70 × 10−06 5.77 × 10−03 Oe054 5.84 × 10−06 6.70 × 10−03 Oe142 1.48 × 10−08 1.79 × 10−03

Oe128 8.03 × 10−07 3.16 × 10−03 Tgu06 1.50 × 10−06 3.49 × 10−03 SneD218 1.47 × 10−09 7.19 × 10−04 *

Oe149 2.23 × 10−07 1.78 × 10−03 Oe149 4.68 × 10−07 2.03 × 10−03 Oe128 1.48 × 10−10 2.93 × 10−04

Oe054 6.17 × 10−08 1.00 × 10−03 Fepo42 1.68 × 10−07 1.26 × 10−03 Oe53 2.49 × 10−11 1.34 × 10−04

Tgu06 2.33 × 10−08 5.98 × 10−04 * 15a6 6.83 × 10−08 7.92 × 10−04 * Oe321 4.46 × 10−12 6.45 × 10−05

Oe321 1.55 × 10−08 4.89 × 10−04 Oe129 2.78 × 10−08 4.99 × 10−04 Tgu06 8.29 × 10−13 3.13 × 10−05

Oe129 \ \ Oe321 2.78 × 10−08 4.99 × 10−04 Oe129 1.76 × 10−13 1.54 × 10−05

Surnia ulula Athene noctua Asio otus

locus PID PID_sib locus PID PID_sib locus PID PID_sib

SneD218 1.34 × 10−01 4.26 × 10−01 SneD113 3.94 × 10−02 3.34 × 10−01 Tgu06 1.14 × 10−01 4.10 × 10−01

Oe142 3.56 × 10−02 2.27 × 10−01 Oe149 2.42 × 10−03 1.20 × 10−01 SneD218 1.36 × 10−02 1.72 × 10−01

15a6 1.34 × 10−02 1.35 × 10−01 Oe129 1.51 × 10−04 4.30 × 10−02 Fepo42 1.62 × 10−03 7.20 × 10−02

Fepo42 4.63 × 10−03 8.06 × 10−02 SneD218 1.46 × 10−05 1.71 × 10−02 Oe129 2.41 × 10−04 3.17 × 10−02

Oe128 1.77 × 10−03 4.86 × 10−02 Oe142 1.96 × 10−06 7.27 × 10−03 Oe128 4.70 × 10−05 1.50 × 10−02

SneD113 5.87 × 10−04 2.95 × 10−02 15a6 3.66 × 10−07 3.38 × 10−03 15a6 9.91 × 10−06 7.33 × 10−03

Tgu06 2.86 × 10−04 2.06 × 10−02 Fepo42 6.59 × 10−08 1.59 × 10−03 Oe149 3.24 × 10−06 4.31 × 10−03

Oe149 1.60 × 10−04 1.55 × 10−02 Oe321 1.34 × 10−08 7.88 × 10−04 * SneD113 1.24 × 10−06 2.60 × 10−03

Oe054 1.60 × 10−04 1.55 × 10−02 Oe054 5.22 × 10−09 4.80 × 10−04 Oe321 5.04 × 10−07 1.64 × 10−03

Oe129 1.60 × 10−04 1.55 × 10−02 Oe128 2.59 × 10−09 3.39 × 10−04 Oe054 2.00 × 10−07 1.06 × 10−03

Oe321 1.60 × 10−04 1.55 × 10−02 Tgu06 1.36 × 10−09 2.50 × 10−04 Oe53 9.20 × 10−08 7.18 × 10−04 *

Oe53 1.60 × 10−04 1.55 × 10−02 Oe53 7.63 × 10−10 1.87 × 10−04 Oe142 9.20 × 10−08 7.18 × 10−04
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A principal component analysis was then carried out, revealing that, as expected, the
three species of the genus Strix (S. uralensis, S. nebulosa, S. aluco) overlapped in the PCA
graphic (Figure 2). A. otus and O. scops showed a low distance from each other and resulted
not very distant from the Strix species. S. ulula exhibited the greatest genetic distance from
the other species while A. noctua was in a mid-range position (Figure 2). B. scandiacus and
B. bubo did not overlap, but the genetic distance of the two species is low.

 

Figure 2. Principal Component Analysis plot obtained using Genetix and visualized in Excel. Strix sp. overlapped while
Bubo bubo and Bubo scandiacus plotted very closed each other. Surnia ulula individuals diverged consistently from other
species. Ovals in different colors represent the distribution of individuals belonging to six tribes of Striginae and Surninae,
in the blue and green squares, respectively.

3.5. Evaluation of the STR Potential Panel for Parentage Analysis in Family Groups

The paternity test yielded inconsistent results and different reliability values depend-
ing on the species (Tables 5 and 6). In Colony, the correct parent pair was assigned with the
maximum probability value (1.00) but decreased in S. nebulosa (0.992 and 0.907), S. uralensis
(0.997), and S. ulula (0.983 and 0.753) when the computation has been limited to association
with putative mother or father. In two individuals, respectively, of S. uralensis (S_ur6) and
S. ulula (S_ul3), the probability of assignment to the right parent is reduced to 0.500.

In Cervus, using the LOD computation, all the individuals have been correctly as-
sociated with the right parents with trio confidence values higher than 95%, except for
S_ul3 that has been associated with the wrong father (S_ul5 instead of S_ul2). In S. uralensis
(S_ur6), the assignment to the right mother did not reach a significant value. Using the
Delta calculation, the probability values decreased in S. nebulosa, S. uralensis and S. ulula
(see Table 6 for more details). Again, S_ul3 was associated with the wrong father.
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Table 5. Parental assignment values from Colony: the lowest values were recovered when the one-parent assignment was
tested. In the table, misallocation or low assignment probabilities are highlighted in bold.

Parent Pair Probability Single Parent Probability

Offspring Father Mother
Probability

Value
Main Probability

Second
Probability

S_al 3 S_al 1 S_al 2 1.00

S_al 6 S_al 4 S_al 5 1.00

S_al 9 S_al 7 S_al 8 1.00

S_ne 3 S_ne 1 S_ne 2 1.00 S_ne 2 0.907 S_ne 8

S_ne 6 S_ne 4 S_ne 5 1.00 S_ne 4 0.992 S_ne 1

S_ne 9 S_ne 7 S_ne 8 1.00

S_ur 3 S_ur 1 S_ur 2 1.00 S_ur 2 0.997 S_ur 5

S_ur 6 S_ur 4 S_ur 5 1.00 S_ur 5 0.500 S_ur 2

B_bu 3 B_bu 1 B_bu 2 1.00

B_bu 6 B_bu 4 B_bu 5 1.00

B_bu 9 B_bu 7 B_bu 8 1.00

B_sc 3 B_sc 1 B_sc 2 1,00

B_sc 6 B_sc 4 B_sc 5 1.00 B_sc 6 0.999

B_sc 9 B_sc 7 B_sc 8 1,00

O_sc 3 O_sc 1 O_sc 2 1.00

O_sc 6 O_sc 4 O_sc 5 1.00

O_sc 9 O_sc 7 O_sc 8 1.00

A_no 3 A_no 1 A_no 2 1.00

A_no 6 A_no 4 A_no 5 1.00

A_no 9 A_no 7 A_no 8 1.00

S_ul 3 S_ul 1 S_ul 2 1.00 S_ul 1 0.500 S_ul 4

S_ul 6 S_ul 4 S_ul 5 1.00
S_ul 4 0.983 S_ul 7

S_ul 5 0.753 S_ul 2

S_ul 9 S_ul 7 S_ul 8 1.00

A_ot 3 A_ot 1 A_ot 2 1.00

A_ot 6 A_ot 7 A_ot 8 1.00

Table 6. Parentage analysis in Cervus using the LOD and Delta computation. The different confidence values are indicated
by the following codes: * = confidence level higher than 95%. In the table, misallocation or low assignment probabilities are
highlighted in bold.

LOD Delta

Offspring
Candidate

Mother
Pair Con-
fidence

Candidate
Father

Pair Con-
fidence

Trio Con-
fidence

Offspring
Candidate

Mother
Pair Con-
fidence

Candidate
Father

Pair Con-
fidence

S_al 3 S_al 1 * S_al 2 * * S_al 3 S_al 1 * S_al 2 *

S_al 6 S_al 3 * S_al 4 * * S_al 6 S_al 3 * S_al 4 *

S_al 9 S_al 7 * S_al 8 * * S_al 9 S_al 7 * S_al 8 *

S_ne 3 S_ne 1 * S_ne 2 * * S_ne 3 S_ne 1 * S_ne 2 *

S_ne 6 S_ne 4 * S_ne 5 * * S_ne 6 S_ne 4 * S_ne 5 *

S_ne 9 S_ne 7 * S_ne 8 * * S_ne 9 S_ne 7 * S_ne 8 *

S_ur 3 S_ur 1 * S_ur 2 * * S_ur 3 S_ur 1 * S_ur 2 *

S_ur 6 S_ur 4 S_ur 5 * * S_ur 6 S_ur 4 S_ur 5 *

B_bu 3 B_bu 1 * B_bu 2 * * B_bu 3 B_bu 1 * B_bu 2 *
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Table 6. Cont.

LOD Delta

Offspring
Candidate

Mother
Pair Con-
fidence

Candidate
Father

Pair Con-
fidence

Trio Con-
fidence

Offspring
Candidate

Mother
Pair Con-
fidence

Candidate
Father

Pair Con-
fidence

B_bu 6 B_bu 4 * B_bu 5 * * B_bu 6 B_bu 4 * B_bu 5 *

B_bu 9 B_bu 7 * B_bu 8 * * B_bu 9 B_bu 7 * B_bu 8 *

B_sc 3 B_sc 1 * B_sc 2 * * B_sc 3 B_sc 1 * B_sc 2 *

B_sc 6 B_sc 4 * B_sc 5 * * B_sc 6 B_sc 4 * B_sc 5 *

B_sc 9 B_sc 7 * B_sc 8 * * B_sc 9 B_sc 7 * B_sc 8 *

O_sc 3 O_sc 1 * O_sc 2 * * O_sc 3 O_sc 1 * O_sc 2 *

O_sc 6 O_sc 4 * O_sc 5 * * O_sc 6 O_sc 4 * O_sc 5 *

O_sc 9 O_sc 7 * O_sc 8 * * O_sc 9 O_sc 7 * O_sc 8 *

A_no 3 A_no 1 * A_no 2 * * A_no 3 A_no 1 * A_no 2 *

A_no 6 A_no 4 * A_no 5 * * A_no 6 A_no 4 * A_no 5 *

A_no 9 A_no 7 * A_no 8 * * A_no 9 A_no 7 * A_no 8 *

S_ul 3 S_ul 1 * S_ul 5 * * S_ul 3 S_ul 1 * S_ul 5 *

S_ul 6 S_ul 4 * S_ul 5 * * S_ul 6 S_ul 4 * S_ul 5 *

S_ul 9 S_ul 7 * S_ul 8 * * S_ul 9 S_ul 7 * S_ul 8 *

A_ot 3 A_ot 1 * A_ot 2 * * A_ot 3 A_ot 1 * A_ot 2 *

A_ot 6 A_ot 7 * A_ot 8 * * A_ot 6 A_ot 7 * A_ot 8 *

4. Discussion

International wildlife trafficking today is recognized as one of the largest organized
transnational crimes [38], which equals the trafficking of drugs, arms and humans (World
Wildlife Report, United Nations: Office on Drugs and Crime).

Genotyping assays through microsatellites are a quick, informative and low-cost
approach for linking items of evidence to crimes in forensic investigations [39]. Since
microsatellites have high mutation rates, they are used within the context of monitoring
illegal wildlife trade primarily to identify individuals, assign individuals to specific popu-
lations or for relatedness testing. Oklander et al. [39] generated a multilocus microsatellite
genotype reference database of the black and gold howler monkey (Alouatta caraya), a
neotropical primate threatened by habitat loss and capture for illegal trade in Argentina,
to assign confiscated individuals to localities of origin, illustrating the applicability of
genotype databases for inferring hotspots of illegal capture. Potoczniak et al. [39] de-
veloped a STR genotyping assay able to associate a biological sample to Asian elephant
(Elephas maximus) or African elephant (Loxodonta africana). Fitzsimmons et al. [40] designed
a panel of 26 microsatellite loci for Crocodylus spp. to answer questions regarding pop-
ulation assignment, mating system and geneflow. Jan and Fumagalli [41] isolated DNA
microsatellite markers in seven parrot species threatened with extinction and subjected
to illegal trafficking, characterized a total of 106 polymorphic microsatellite markers and
tested them for individual identification and parental analyses. Mucci and colleagues [42]
developed a panel of 16 de novo sequenced microsatellites (STRs) for Testudo graeca and
tested its effectiveness for parentage analysis in two other species of endangered tortoises,
T. hermanni and T. marginata.

Given the utility of STR-based approaches to answer questions related to wildlife
crime investigations as forensic genetics, efforts should be devoted to the characterization
of microsatellite primers for species threatened by illegal trafficking. However, while in hu-
man forensics, the selection of around 20 core STR loci allowed the standardization around
the globe for human identity testing [43,44], accomplishing this same achievement is more
challenging for the hyper-diverse animal assemblage encountered in wildlife forensics [38].
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The lack of species-specific molecular markers or their inadequate representation in genetic
databases is major limitation in wildlife forensics [45].

Cross-amplification is a widely used approach permitting to avoid investing time and
money in the development of new markers, and many studies have proven the efficiency
of microsatellite loci developed in closely related species [42,46–49].

The first aim of this study was to test for the presence of a minimum number of
microsatellite loci reliable for individual identification and parentage analysis for forensic
purposes in 11 species of Strigiformes listed in the CITES Appendix II and regularly traded
in the Italian national market.

Literature data show that cross-species transferability is unevenly distributed across
taxa. Barbará et al. [50] reviewed 64 primer notes and found more than 40% transfer success
in mammals, more than 25% in fishes and more than 10% in birds. Our results permitted
to define a unique panel of 12 out of 32 highly polymorphic microsatellites (37%), able
to identify individuals in nine species of two subfamilies of Strigiformes (Striginae and
Surninae) belonging to Family Strigidae (A. otus, A. noctua, B. bubo, B. scandiacus, O. scops,
S. aluco, S. nebulosa, S. uralensis, S. ulula).

The test was non-efficient in individuals of T. alba in which only six markers yield a
positive result but four of them resulted monomorphic. Such results could rely on the fact
that T. alba is the only species of this study belonging to a different family [51]. The two
monophyletic families of Strigiformes, Tytonidae and Strigidae, diverged in the middle
of the Eocene [52]. The phylogenetic divergence of Tytonidae from Strigidae could be
justified by the retrieved inefficiency of markers panel tested on species. Since only two
subfamilies represent Tytonidae family with a single genus each [53]—Tytoninae with Tyto
and Phodilinae with Phodilus—it is not possible to verify the discriminant power of tested
markers on other species of the same taxon.

The common barn owl T. alba is one of the most cosmopolitan species and represents a
taxon-rich species complex with several subspecies [54]. The interest in its conservation
status clears the need for integrating this set with more polymorphic loci for this species.
Twenty-one microsatellite loci already isolated and characterized in T. alba [26] could be
tested for cross-amplification in CITES species to implement this panel.

The principal component analysis results reflect the most recent knowledge about
taxonomy and systematics of Strigiformes [53].

A slightly better but similar result was obtained for G. passerinum, for which only
4 markers were polymorphic. The high number of monomorphic loci in this species could
be due to several cumulative factors: the low number of related individuals analyzed, the
high inbreeding of captive-bred individuals, or the inefficiency of the selected markers for
this species. Unlike T. alba, microsatellites were developed only for a species of the same
genera: Glaucidium brasilianum [23].

Evaluating the STR panel potential in identifying family groups, we found that in two
out of the nine species analyzed (S. uralensis and S. ulula), the probability value associated
with parent pairs was reduced. The PID_sib almost reached the 0.001 threshold value in
S. ulula, S. nebulosa and S. uralensis (see Table 4: Probability of identity values, PID and
PID_sibs). However, PID and PID_sib values are subjected to bias due to the low number of
tested individuals per species and bottleneck in captive breeding facilities. For these three
species, it could be helpful to increase the number of samples and markers to obtain a more
confident individual identification and association to parent pairs.

Besides reducing time and costs when adopting a cross-amplification approach, an-
other advantage of using a shared panel among several species is the possibility of com-
paring genetic variability values among species. Nevertheless, even if microsatellites loci
are very useful genetic markers in studying the mating system, population genetics, and
conservation of owls, many studies focus on species belonging to the same genus. Dial
et al. [55] screened many markers developed in strigids but found only four polymorphic
pairs in the great horned owl (Bubo virginianus), short-eared owl (Asio flammeus) and the
snowy owl (Bubo scandiacus). In addition, another eight reliably amplified polymorphic
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fragments only in the great horned owl, eleven in the short-eared owl, and ten in the
snowy owl.

Hsu et al. [22] developed six new microsatellite markers containing tetranucleotide
repeat motifs (GATA/CTAT) for Lanyu scops owl (Otus elegans botelensis). They tested them,
and additional further microsatellite primer pairs previously developed from O. elegans
on four other species of owls (O. lettia, O. spilocephalus, O. scops and Ninox scutulata).
Data obtained showed a reduced degree of polymorphism with most of the loci resulting
polymorphic in the three Otus owls but only five in N. scutulata.

Our study gives a valuable tool to implement research involving most Strigidae
threatened by illegal trafficking, habitat loss and fragmentation in Italy and other countries.

Delport et al. [56] tested 19 loci originally developed for Vidua and Geospiza for
cross-amplification in Nesospiza buntings. They detected a degree of polymorphism
and heterozygosity lower in loci developed for Vidua than those explicitly developed for
Nesospiza. These data demonstrate that microsatellite markers isolated in the reference
species are frequently less variable in related species. Moreover, cross-species amplification
is usually limited to the loci that were found polymorphic in the referent species. In this
study, we selected from the literature the most variable loci in each reference species: most
polymorphic loci were discarded only when they were found monomorphic or did not give
amplification products in all the target species, with only three exceptions as mentioned
in Results (Paragraph ii), because of their utility in other species. We are aware that this
a priori selection can cause an ascertainment bias, as suggested by Delport et al. [56];
however, we found high levels of polymorphisms in nine out 11 analyzed species.

Variability indices found in different species using this panel were not discordant
from the ones found in the natural populations with different markers: Pellegrino et al. [57]
found in the A. noctua European populations an average and an effective number of
alleles = 5.6 and 3.5, respectively, and observed and expected heterozygosities equal to
0.59 and 0.61, respectively. Pertoldi et al. [58] found lower alleles in the Danish population
(effective number of alleles = 2.8; Ho = 0.51 and He = 0.60), probably caused by a population
bottleneck in the last decades.

Microsatellite loci represent reliable molecular markers to describe genetic variability
or its drastic reduction, as demonstrated by Macías-Duarte et al. [59] that found different
values in three different populations of Athene cunicularia, with the average number of alle-
les varying from 2.7 in Clarion Islands to 5.1 in Florida and 22.5 in Western North America.

Though their high polymorphism makes them adequate for conservation and forensic
genetics purposes, the main difficulties are represented by comparing samples between
laboratories.

This problem that has been resolved through the exchange of reference samples has
been recently fixed by the set-up of an allelic ladder [60]. According to these authors, we
constructed an allelic ladder for each locus to standardize a protocol between laboratories
for conservation and forensic purposes.

Comparability between laboratories is now also possible thanks to high-throughput
sequencing (HTS) technologies [61]. This application that has been developed and used
in human forensics [62–64] has been already applied also in conservation genetics [65–68].
This method permits the sequencing of STRs, allowing the identification of the correct
number of repeats. The possibility of multiplexing several dozen of markers from a single
individual will allow cost and time reduction. De Barba et al. [69] used this protocol in the
study of a brown bear population yielded reliable results of parentage analysis also from
low quality DNA, confirming a broader application in conservation genetics and forensics.

5. Conclusions

The newly optimized 12 loci can provide the authorities with the ability to investigate
suspected smugglers and false parental claims or establish a link between evidence and an
individual (e.g., identifying when a bird is illegally transferred between different breeding
facilities). In addition to this, the selected markers can be used to assess relatedness among
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captive-bred individuals, which can be crucial in designing optimal breeding protocols
to avoid genetic variability loss and minimize inbreeding. Moreover, these markers are
useful for applications in research projects on wild populations where individual genotype
identification allows to describe the mating system, genetic variability, population structure
and geneflow among nine different species of Strigiformes with conservation concern.
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Abstract: Forensic investigation is important to analyze evidence and facilitate the search for key
individuals, such as suspects and victims in a criminal case. The forensic use of genomic DNA has
increased with the development of DNA sequencing technology, thereby enabling additional analysis
during criminal investigations when additional legal evidence is required. In this study, we used next-
generation sequencing to facilitate the generation of complementary data in order to analyze human
evidence obtained through short tandem repeat (STR) analysis. We examined the applicability and
potential of analyzing microbial genome communities. Microbiological supplementation information
was confirmed for two of four failed STR samples. Additionally, the accuracy of the gargle sample
was confirmed to be as high as 100% and was highly likely to be classified as a body fluid sample. Our
experimental method confirmed that anthropological and microbiological evidence can be obtained
by performing two experiments with one extraction. We discuss the advantages and disadvantages
of using these techniques, explore prospects in the forensic field, and highlight suggestions for
future research.

Keywords: next-generation sequencing; short tandem repeat; forensic microbiology; identification;
microbiome

1. Introduction

Evidence analysis helps to support the alibis of individuals involved in legal cases and
is crucial in the courtroom for scene reconstruction and suspect tracking. Evidence obtained
regarding the victim or suspect is important in an investigation. Finding traces of a person
who meets certain conditions at the scene is critical to forensic investigation because this
evidence makes a connection with the perpetrator or victim and helps solve the case. There
are various properties of important trace evidence, and the most prominent is evidence of
human origin. Most of this evidence contains human DNA, which is useful for forensic
judgment. Additionally, other types of evidence, such as unidentified and post-mortem
traces, body hair, and behavior traces on the body of the victim or human-derived materials,
can be collected. Based on the analysis, the results can be used to identify the crime scene
and as proof of alibi. Such DNA evidence connects the case, victim, and suspect [1].

Short tandem repeat (STR) analysis is effective when there is clear evidence of human
DNA. Human genetic material can be identified through DNA typing, thus providing
proofs regarding individuals involved in the case [2,3]. Securing human DNA and analyz-
ing STRs are important to identify comparable suspects and victims. Therefore, laboratories
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worldwide are studying the most efficient and effective way to acquire DNA evidence.
Additionally, studies on evidence generated from low-level DNA profiles from trace DNA
suggest that trace DNA can lead to successful case resolution [4,5]. However, some labora-
tories do not analyze trace DNA evidence because of low biomass of trace DNA or touch
DNA samples [6].

STR analysis cannot guarantee a 100% success rate, and the assay success varies with
the sample quantity and quality. Human DNA is considerably affected by environmental
factors. The STR analysis may not be possible because DNA is damaged by high tem-
perature, humidity, UV light, and microbial activation [7]. Therefore, low copy number
(LCN) samples subjected to STR analysis sometimes render uninterpretable or inconclusive
results [8]. Additionally, other results cannot be inferred from the results of LCN samples
alone. Even if a sample contains non-existent or non-identifiable human DNA, it is likely
that other substances or genes are present, as samples are collected from various sites and
situations. Thus, other analytical methods may supplement information from low-quality
STR results.

The human body hosts numerous microorganisms, and the human microbiome is
influenced by the human body. For example, the microbiome is affected by various factors
such as living environment [9], eating habits [10], age, sex [11,12], race [13], and the exis-
tence of a distinct microbiome field [14]. Thus, studies investigating whether individuals
can be identified using microbiome characteristics that differ from one individual to another
are being actively conducted [15–17]. Analysis of the microbiome has progressed to the
point that the microbiome can be traced using biodiversity analysis. Furthermore, the
microbiome is unique to an individual or a group and can reveal characteristic features
known as the “microbial fingerprint.” Individual microorganisms are used in the forensic
field and in research related to individual identification during the progression of a case.
Studies have included object and owner tracking [17,18], environmental tracking using soil
microbes [19], bloodstain tracking [20], post-mortem interval tracking [14], and oral saliva
identification [21–23]. By examining the characteristics of microorganisms (bacteria, fungi,
and viruses) and linking them to individuals and case evidence, forensic microbiology can
help obtain clues that can help resolve the case. Additionally, analyzing the microbiome
makes it possible to montage trace DNA from suspects or victims and provides information
on background tracing and scene reconstruction. Microorganisms are ubiquitous, and their
quantity is considerably greater than that of human DNA. Proofs found at the scene may
include those that do not have visible features, such as blood. The discovery of human DNA
at crime scenes alone may not lead to prosecution based on genetic evidence. In fact, the
prosecution of a case in Korea was canceled, despite the fact that the suspect was identified
using Y-STR (STR on the Y chromosome) analysis [24]. Therefore, additional analysis is
needed to supplement human genetic information and reveal the case background, proof
of alibi, and connection of evidence.

Herein, we propose a human bacterial profiling method using next-generation se-
quencing to collect secondary information. In this study, using bacterial profiling, we
investigated whether additional information can be obtained from samples of failed STR
assays (Figure 1). Furthermore, we devised a method to classify and identify samples of
unknown origin.
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Figure 1. Schematic of the application of Bacterial profiling. Human DNA analysis and microbial
DNA analysis are possible simultaneously through one DNA extraction.

2. Materials and Methods

2.1. Sample Collection and DNA Extraction

Samples were collected from student volunteers of Eulji University (Republic of Korea,
Daejeon). The study protocol was approved by the internal review board of Eulji University
(IRB No. EUIRB 2020-13). All volunteers were healthy adults in their 20s, with one male
and nine female university students, and samples were collected from each individual
during the same visit. A questionnaire was used to determine if the participant was under
treatment with antibiotics or if there was environmental contamination, such as alcoholic
disinfection of the hand or mobile phone. If a volunteer was administered antibiotics
or had disinfected the hand or mobile phone within 2 h before sampling, sampling was
discontinued (Table S1).

We used sterile, DNA-free cotton-tipped applicators (Puritan Medical Products Co.,
Guilford, ME, USA) to swab individual mobile phones and surface skin of the fingertip
of the ventral joint. The tip of the applicator was then cut with sterile pair of scissors and
collected in a 1.5 mL collection tube. Oral gargle and urine samples were collected in sterile
8 mL collection tubes. To obtain gargle samples, the volunteers were provided drinking
water to swirl the floor of their mouths 10 times. The samples were stored at −80 ◦C until
DNA extraction. Each sample swab was mixed with 700 μL of phosphate-buffered saline
and 12 glass beads (2 mm) in a 1.5 mL Eppendorf (Ep) tube. The mixture was vortexed for
15 min and centrifuged at 8000 rpm for 5 min. The supernatant was removed, and the pellet
was mixed with 20 μL of egg white lysozyme (Amresco, Solon, OH, USA) and incubated
at 37 ◦C for 1 h. Subsequently, the total DNA was extracted using a QIAamp® DNA Mini
Kit (Qiagen, Hilden, Germany). The DNA was eluted with 80 μL of elution buffer. The
extracted DNA samples were stored at -80 ◦C until library preparation and sequencing.
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2.2. STR Analysis

The extracted DNA samples were quantified using a Quantifiler Trio Quantification kit
(Thermo Fisher Scientific, Waltham, MA, USA) and an Applied Biosystems 7500 Real-Time
Polymerase Chain Reaction (PCR) System (Thermo Fisher Scientific, Waltham, MA, USA).
The cycling parameters were set and data analysis was performed in accordance with the
recommendations of the manufacturer. The samples were amplified in triplicate. The DNA
concentration was adjusted to 1.0 ng/μL in a final PCR mixture volume of 25 μL. The
samples with higher DNA concentrations were diluted to 1 ng/μL.

The PCR product (1 μL) was added to 8.5 μL of highly deionized (Hi-Di) formamide
(Applied Biosystems, Zug, Switzerland) and 0.5 μL of 600 LIZ (20–600 nucleotide range, Ap-
plied Biosystems) Size Standard (Applied Biosystems). STR amplification was performed
using 1 ng of template DNA and an AmpFLSTR Identifiler PCR Amplification Kit (Thermo
Fisher Scientific). Amplification was performed using an ABI Prism 310 Genetic Analyzer,
and the data were analyzed with GeneMapper ID software v3.2.1 (Thermo Fisher Scientific,
MA, USA).

2.3. Library Preparation of 16S rRNA Amplicons

Forty samples were analyzed by high-throughput 16S rRNA gene amplicon sequenc-
ing on an Ion GeneStudio S5 platform (Thermo Fisher Scientific). The V3–V4 regions of
the 16S rRNA gene from each sample were amplified using the following primers: 341F
(5′-CCTACGGGNGGCWGCAG-3′), which contained a sample-specific 6–8-base pair tag
sequence, and 805R (5′-GACTACHVGGGTATCTAATCC-3′). PCR amplification was per-
formed using Platinum PCR SuperMix High Fidelity master mix (Invitrogen, Carlsbad, CA,
USA) with 2.5 ng of template DNA and 50 nmol of each primer in a 27-μL reaction mixture
volume. The PCR conditions were as follows: 94 ◦C for 3 min, followed by 30 cycles at
94 ◦C for 30 s, 50 ◦C for 30 s, and 72 ◦C for 30 s. To remove residual primer dimers and
contaminants, the amplicon libraries were purified using an Agencourt AMPure XP DNA
purification kit (Beckman Coulter Life Sciences, Indianapolis, IN, USA). The samples were
eluted with 15 μL of low Tris-EDTA (TE) buffer. The DNA concentration and quality were
assessed using the dsDNA High Sensitivity Assay Kit on a Qubit 4 Fluorometer (Thermo
Fisher Scientific, Waltham, MA, USA). The fragment size and quality of the pooled DNA
were assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA,
USA). The enriched particles were loaded on to an Ion 530 chip (Thermo Fisher Scientific)
and sequenced using an Ion GeneStudio S5 instrument [25].

2.4. Analysis of 16S rRNA Amplicon Sequences

Reads were excluded from the analysis if they were shorter than 500 bp or were
inappropriately paired. The sequence data were analyzed using EzBioCloud 16S rRNA
gene-based microbiome taxonomic profiling (MTP) and the PICRUST algorithm (ChunLab,
Seoul, Korea) with “Bacteria” as a target taxon in the prokaryotic 16S rRNA gene database
PKSSU4.0. Sequences processed using the EzBio Cloud 16S rRNA gene-based MTP pipeline
were clustered into operational taxonomic units (OTUs) using a 97%-similarity cut-off and
identified using QIIME-MOTHUR algorithms.

2.5. Statistical Analysis

To examine differences in the bacterial community diversity, Microbiome Analyst
software (www.microbiomeanalyst.ca, accessed on 25 January 2021,) [26] was used to
evaluate α and β diversities and to conduct group comparison and classification. The
Shannon index was used to evaluate α diversity. Principal coordinate analysis (PCoA)
was conducted using Jensen–Shannon divergence and evaluated using the permutational
multivariate analysis of variance (PERMANOVA). The microbial composition among
groups was compared using linear discriminant analysis (LDA) effect size (LEfSe), and the
relative abundance of the core microbiome taxa was assessed at the genus level. Kruskal–
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Wallis H test correction was performed using SPSS ver. 20.0 to evaluate the inter-group
significance at the genus and species levels.

3. Results

3.1. STR Analysis

The samples were subjected to STR analysis. The concentration of DNA isolated
from the gargle, urine, finger, and mobile phone samples was 16.67, 2.16, 0.85, and 0.42
ng/μL, respectively. In the case of fingertip and mobile phone samples, four undetected
concentrations of DNA (under 0 ng/μL low concentration) were analyzed.

The STR analysis results are shown in Table 1. For actual individual identification,
statistical analysis should be performed for each gene peak. However, in this study, the
number of samples to be confirmed was not large enough for a statistical approach, and the
general approach of simply counting the number of matching loci was able to distinguish
them from each other [27]. The urine and gargle fluid samples provided a full profile
that could identify individuals. For both fingertip and mobile phone samples, 8 of the 10
samples were confirmed identifiable full profiles. Two fingertip and two mobile phone
samples from two subjects could not be used to identify individuals.

Table 1. Results of STR analysis.

Sample (n = 40) Full Profile (Loci = 24)
Partial Profile

Mixed Full + Minor
1~10 11~19 20~23

Fingertip 10 4 1 1 1 1 2
Mobile phone 10 7 1 1 0 0 1

Urine 10 9 0 0 0 0 1
Gargle 10 9 0 0 0 0 1

Mixed = although mixed with other genes, the degree to which an individual profile can be identified.

3.2. Microbiome Analysis
3.2.1. Overview of Taxonomic Diversity

The samples were classified into gargle, urine, mobile phone, and fingertip according
to the collection site. Among the 40 samples, 5 were discarded during quality control pro-
cessing. Thus, 35 samples were used in the study. We obtained 660,095 valid 16S rRNA reads
after quality filtering. For each group, 340,525 (gargle), 103,510 (urine), 112,877 (fingers),
and 103,183 (mobile phone) reads were obtained.

The composition of the bacterial community of each sample was examined for relative
abundance at the genus level. The genera that accounted for the highest proportion in the
gargle samples were Streptococcus, Rothia, Gemella, Heamophillus, Neisseria, and Granulicatella.
The genera that accounted for the highest proportion in the urine samples were Lactobacillus,
Gardnerella, Streptococcus, and Prevotella. The genera with the highest proportion in the
fingertip samples were Streptococcus, Rothia, Cutibacterium, and Staphylococcus. Finally,
the genera that accounted for the highest proportion in the mobile phone samples were
Streptococcus, Rothia, Porphyromonas, and Neisseria. The average number of OTUs in each
sample was 643 for gargle, 229 for urine, 520 for finger, and 400 for mobile phone.

3.2.2. α and β Diversities

α-Diversity analysis was performed to determine the abundance of each species
(Figure 2). The analysis was performed at the species level and tested using the Kruskal–
Wallis method. The overall p-value was less than 0.05, which indicated significant diversity
of all species. In the α-diversity analysis, the samples with high abundance, diversity,
and uniformity were the gargle, fingertip, and mobile phone samples. Urine had lower
diversity than the other three sample types.
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Figure 2. Results of α and β diversity, which reveal the total strain abundance and type (a) α

diversity with Observed (left) and Shannon (right) index and (b) β diversity with Jensen-Shannon
divergence index.

β-Diversity analysis using Jensen–Shannon divergence demonstrated bacterial com-
munity clustering for each sample type. Urine samples had a few overlapping parts with
the other sample types, indicating differences in the bacterial community composition
from other sample types. Several communities in the fingertip samples were similar to
the bacterial communities from the gargle and mobile phone samples, suggesting that the
fingers share bacterial species through contact with other body parts.

3.2.3. Creation of a List of Strains and Matching Assessment

Next, a list was prepared using the representative markers reported for each site and
the sample analysis method used in the study (Table 2). This list was prepared at the genus
level using LEfSe, the core microbiome, and the reported general microbiome from previous
studies (see Table S2 and references therein). LEfSe was used to analyze gargle, urine, and
finger metagenomics data. The linear discriminant analysis (LDA) score was derived using
a Kruskal–Wallis rank sum test, where the significant LDA scores were more than 2.0. The
false discovery rate (FDR) was set to 0.05. In the core microbiomes, the relative abundance
of the bacteria in each group was determined using a relative abundance cut-off value of
0.01. The LEfSe and core microbiome data were analyzed by selecting the most abundant
strain present in each body part and a representative species present in the urine and gargle
samples. The detailed strain-selection methods are included in Table S2.
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Table 2. Ten representative strains at the Genus level for each region, constructed using the micro-
biome or indicative bacteria reported in previous studies and sample analysis conducted within
the study.

Gargle Urine Fingertip

Streptococcus Escherichia Corynebacterium
Veillonella Staphylococcus Streptococcus
Prevotella Finegoldia Staphylococcus
Neisseria Atopobium Micrococcus

Haemophilus Lactobacillus Veillonella
Porphyromonas Corynebacterium Dermacoccus

Rothia Gardnerella Cutibacterium
Actinomyces Campylobacter Enhydrobacter

Campylobacter Peptoniphilus Sphingomonas
Tannerella Anaerococcus Lawsonella

Table S3 shows the results of verification of the presence or absence of microbial
species in each sample compared to the reference list. For the mobile phone samples, the
classification was based on the fingertip panel, as contact with the hand was common.

We observed that gargle samples had the highest probability of confirming the micro-
biome composition, followed by the fingertip and mobile phone samples. For the urine
samples, the average agreement rate was 66%, which was lower than that of the gargle and
finger samples. Unlike the microbiome of other body parts, the number of bacteria present
in urine is small and is classified using strains originating from the genital tract according
to sex [28]. Identification of the strains from mobile phones was confirmed using the list of
fingertip strains. The average coincidence rate was approximately 60%. Among the eight
target samples, six matched the fingertip strain by more than 60%. Thus, it was inferred
that the corresponding sample is related to the skin.

By confirming 10 genera in the gargle samples, significant differences were observed
in the gargle and urine samples compared, thereby making it possible to discriminate body
fluids (p < 0.05). However, for Streptococcus and Prevotella, there was no significant difference
because these strains are commonly found in urine and the mouth [28,29]. Among the
remaining eight strains, Tannerella was the most different compared with the other strains.
There was no significant difference in the gargle samples compared to the finger and mobile
phone samples, which is consistent with the findings of a previous study, showing that a
large number of oral bacteria are introduced via exposure to external environments such as
fingers and mobile phones or by personal habits and behaviors [30].

In urine samples, Staphylococcus, Finegoldia, Corynebacterium, and Campylobacter showed
significant differences compared with those in the other groups. For the fingertip samples,
no significant differences were observed compared to the mobile phone samples. Similarly,
no significant differences were found when compared with the gargle samples. However,
there were strains with significant differences between the urine and gargle samples and
the mobile phone samples. Staphylococcus, Dermacoccus, Cutibacterium, and Enhydrobacter
were specifically identified on mobile phones. Sphingomonas was the most frequent in urine.

The possibility of final classification was investigated by applying our classification
method to the selected sample using the strain reported as the major microbiome compo-
nent at the species level. The strains observed in the gargle samples were Streptococcus
salivarius, S. sanguinis, and Neisseria subflava [31], whereas those in the urine samples were
Lactobacillus spp. and Gardnerella vaginalis [32]. There are three strains in the fingertip
samples: Cutibacterium acnes, Corynebacterium tuberculostearicum, and Micrococcus lutes [33].
Using our classification method, three strains were identified in all gargle samples and
Lactobacillus species were found in all urine samples. Among them, G. vaginalis was found
in only 5 of 10 samples. Gardnerella vaginalis is found in females and is increased in the
presence of bacterial vaginosis [21]. In fingertip and mobile phone samples, C. acnes was
found in all samples on the fingers, C. tuberculostearicum was found in eight out of nine
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samples, and M. luteus was detected in six out of nine samples. In the mobile phone
samples, C. acnes was found in all individuals, whereas the other two bacterial species were
not detected in mobile phone samples. Thus, by identifying skin-related microorganisms,
it can be inferred whether the sample is directly related to humans or was obtained from a
surface where primary or secondary transfer occurred.

3.3. Personal Feature Tracking and Unique Bacterial Features

The bacterial strains present in each sample type were as follows. First, numerous
strains derived from microorganisms in the human upper respiratory tract, oral cavity,
feces, and intestines were found in the gargle samples [22,29]. Additionally, microorgan-
isms related to the environment, such as plant roots, sea water, and soil were observed.
Avibacterium, which is found in chicken beaks, and Bombiscardovia, which is found in the
digestive tract of bees, were also detected [23,34]. Among environmental microorganisms,
Skermanella, which is found in Korean aerial environments, was observed [34]. In the case
of urine, microbes associated with the intestines, urethra, vagina, and cervix, as well as oral
bacteria, were found [21,31]. By matching samples with female subjects, we confirmed that
the sex-related information was consistent.

3.4. Bacterial Analysis of Failed STR an Analysis Samples

We performed 16S rRNA bacterial profiling by NGS on samples of failed STR analysis
(Figure 3). All samples of failed STR analysis showed valid results in bacterial sequencing.
The bacterial profiles were different between mobile phone and finger samples. Therefore,
the bacterial sequencing results were compared with the results of an earlier study in which
the mobile phone and hand of individuals shared a similar microorganism profile [16].
Sample No. 12, 25, 34, and 44 from finger tips and mobile phones, which had failed STR
analysis, were combined and subjected to bacterial profiling. These samples were analyzed
using Jensen–Shannon divergence to determine the degree of similarity between samples.
We confirmed that the samples that failed STR analysis could be distinguished from each
other at different sample locations.

Figure 3. β diversity and relationship of failed STR samples with fingertip-mobile phone (Jensen-
Shannon divergence). The correlation is confirmed by measuring the similar distance between
each sample using a two-dimensional distance measurement expression. The red circle means
nearest sample).
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4. Discussion

DNA extracted for forensic analysis is often contaminated with non-human DNA. The
study objective was to confirm that additional microbiome analysis can be performed when
STR analysis fails. We also showed that sample classification and tracking of individual
characteristics are possible using microbiome analysis. The origin of the sample could be
determined based on the bacterial composition of each sample. In experimental samples
that do not return valid results in the STR analysis, additional NGS analysis can supple-
ment information on the relationship between the samples. Additionally, by analyzing
bacterial strains in each sample according to partial microbial characteristics, it is possible
to obtain information regarding the sex, environment, or physical condition of the source
of the sample.

Owing to the wide distribution of microorganisms, complete individual results were
not obtained through microbial profiling, although tracked information could be obtained
about the surrounding environment, sex, or physical condition of the subject using sur-
vey and subject information matching. In gargle samples, we observed strains derived
from various communities such as those from feces and intestines, in addition to human
oral microbes. Furthermore, the observed environmental microorganisms were derived
from various environments, such as plant roots, sea water, soil, and deep mineral water.
Therefore, we were able to observe whether bacteria were included because of respiration
through the mouth. However, unlike oral bacteria, periodontal and upper respiratory tract
bacteria were present in small proportions and excluded from the oral microbiome com-
position. Using these strains, environmental tracking was possible. Of the bacteria found
in the oral cavity, Skermanella is found in the air of Korea [35], suggesting that individuals
with this species in the gargle samples currently reside in Korea.

In urine, bacteria related to the intestines, urethra, cervix, vagina, soil or water envi-
ronment, and outdoor air were found to be similarly diverse. Urine is particularly likely to
be contaminated by contact with the hand of the subject at the time of collection, and the
distribution of bacteria may vary depending on the collection environment and method.
Additionally, urine is a body fluid that is linked to health status and sex-related information.
In females, the perineum is shorter than that in men, and intestinal microbes found in the
anus or large intestine are found in the female genitalia. Thus, not only urinary-tract-related
bacteria but also anal-, fecal-, and intestinal-related bacteria are found in urine-related
samples with high abundance. Thus, sex can be predicted using this method. Females
may suffer from bacterial vaginosis, and the associated bacteria may be detected in large
amounts [36]. In this study, many Lactobacillus species were found in the urinary tract. Ad-
ditionally, G. vaginalis, the causative agent of bacterial vaginosis, was frequently observed.
However, the volunteers were not questioned regarding vaginitis. Our results indicate
that the biological environment or sex of the volunteers can be inferred by analyzing the
bacterial profile.

Generally, specific strains were found related to the sample collection site, such as the
mouth and urinary tract, although this was not the case for skin sites. The existence of skin
microbes related to the genus Cutibacterium, as reported in other studies, was confirmed
in this study [19]. However, as the fingers are most exposed to the external environment
and often come into contact with other surfaces, the bacterial community composition is
complicated by various environments [37]. Thus, it is possible to find a characteristic bacte-
rial community related to the contact environment, although contrarily, it is appropriate to
interpret skin microbiome analysis results with the possibility of contamination in mind.
At the time of sample collection, it was recommended not to wash hands for 3 h before
sample collection, although no specific precautions were taken. Thus, the volunteers may
have been in contact with each other or other college students, for example, by touching or
unconscious contact. DNA transfer can occur by two routes: primary and secondary; it has
been reported that human DNA as well as bacterial DNA can be transferred [38]. These
external factors may have attributed to the difficulty in identifying tracing microorganisms
using skin samples.
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Owing to the outbreak of COVID-19 at the time of sample collection, the Korean
government recommended the regular use of disinfectants. Hence, hand sanitizers were
actively used. Any subjects who disinfected and washed their hands more than a certain
number of times a day were excluded. As bacteria are vulnerable to alcohol-mediated
degradation, if disinfection is carried out several times a day there is a high possibility
that characteristic bacteria will be killed [39]. As these habits are related to social changes,
it may be helpful to consider the variables for changes according to social aspects when
conducting skin microbiome studies of the hand. Additionally, although there are microbes
on surfaces such as the skin and mobile phones, they do not necessarily share all strains
because of different biological and nutritional conditions [38]. Therefore, when performing
a microbiome-wide analysis, it is necessary to confirm the characteristics of the possession
identified from the owner. The method by which information of the object surface is
analyzed can also help the investigation.

In the case of sample information derived from a single person, profiling can be
integrated with information of other samples. In the case of volunteer 7, Mobiluncus, a
bacterium found in the male partner of a woman with bacterial vaginosis, was found in the
gargle sample [40]. Additionally, numerous Lactobacillus species were found in the urine of
volunteer 7, and it was confirmed through the questionnaire that the subject was a man with
a girlfriend. In the case of volunteer 21, Neiserria sicca was found in all collection sites. This
bacterium is found in patients with weakened immunity or atopy [41]. Volunteer 21 was
confirmed to have atopic skin disease using the questionnaire. In the case of volunteer 2,
Massilia aerilata and Corynebacterium kreppenstedtii, which are commonly found on the hands,
mobile phones, plant-related substances, or plant roots, were observed [42,43]. Volunteer
2 confirmed the presence of companion plants at home in the survey. Volunteer 20 had
Lactobacillus iners, Gardnella vaginalis, and Atopobium vaginae on the mobile phone. These
bacteria are found in the vagina and urinary tract of females, suggesting that the owner of
the mobile phone was a woman [16]. Additionally, as volunteer 20 did not disinfect the
mobile phone, there is a high probability that the microbiological composition is associated
with the owner. Our results suggest that individual profiles can be obtained by microbial
analysis through information matching between multiple samples and confirmation using
questionnaires.

Microbiome analysis of samples from human sources has potential for forensic ap-
plications by providing information on the identification of individuals at crime scenes.
However, the analysis range of the microbiome is wide and there are many variables, such
as the distribution and composition of bacteria, environment, and differences among indi-
viduals. Considering that the above results showed a concordance rate of approximately
80% or more, the STR analysis is the best test for human-derived samples. However, only
human genetic information can be obtained, and additional environmental or circumstan-
tial information cannot be completely obtained [27]. As with human DNA, there are no
specific marker loci such as STR. Hence, it is difficult to perform specific tests. However,
this study suggests that sample-derived tracking and sample-related information tracking
are possible using NGS, by preparing a panel list using specific bacteria in a manner similar
to the STR analysis. As the bacterial abundance is different for each sample type, it is
better to determine the abundance for each cluster rather than use a specific marker for
feature tracking. The use of a single strain is risky as the strain may exist extensively in
other sites [16]. Accordingly, we prepared lists using various microbiomes and presented
a proposal to selectively select strains using these lists. Using this approach, additional
analyses can be employed for samples of unknown origin. Furthermore, samples that fail
STR analysis can be analyzed using a secondary method.

An era has arrived when human DNA alone cannot be used as valid evidence in court.
In an actual case, although DNA of the suspect was found and the Y-STR was matched, the
evidence used in the case did not contain the suspect’s fingerprint. Furthermore, the DNA
of the police personnel involved in the case at the time matched the Y-STR of the suspect,
thus invalidating the sentence of the perpetrator [14]. This indicates that oral descriptions
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of the victim and the human DNA profile applicable to suspects are not valid in court, and
additional evidence must be presented. Therefore, for a clear trial and fair judgment, not
only the main body of evidence but also additional evidence supporting and/or linking
the suspect or victim to the case is inevitable. For example, supplemental information can
be provided by identifying oral bacteria in bite marks that occur in sexual assault cases. In
this regard, we would like to emphasize that information of forensic microorganisms that
can identify human traces is also necessary for creating secondary profiles and collecting
additional evidence. In addition, the method used for DNA extraction is important. Since
analyzing traces of microbial genes and human genes via a single sample collection can
be applied in a forensic approach, it has the advantage of securing more evidence in
case resolution.

In this study, only the V3–V4 region was analyzed using 16S rRNA sequencing.
Analysis of other V regions could identify more microbial communities and individual
strains. The classification of the V region compared to the actual analyzed region is also
different. In addition, if the sample itself is not of acceptable quality, the number of bacteria
that can be analyzed is small, and complete information according to individual tracking
may not be available. Moreover, high-quality DNA can be obtained using various tools
and swabbing solutions in the DNA collection method [44,45].

5. Conclusions

In forensic analysis, samples collected are often of variable quality. Evidence not
belonging to humans is also found, and even if clear human evidence such as blood is
detected, human DNA can be destroyed or can be difficult to recover and extract. Our
findings indicate that by creating a list of microbial classifications according to each site, site
tracking can be achieved. Moreover, through microbiome analysis, a selective experimental
method could be performed even with a single extraction step; secondary analysis of
samples that failed STR analysis can be performed as well. We believe that the findings of
this study lay a foundation for the development of methodologies in forensic microbiology
for analyzing low-quality evidence.
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Abstract: This study describes an optimized DNA extraction protocol targeting ultrashort DNA
molecules from single rootless hairs. It was applied to the oldest samples available to us: locks of
hairs that were found in relics associated with the Romanov family. Published mitochondrial DNA
genome sequences of Tsar Nicholas II and his wife, Tsarina Alexandra, made these samples ideal
to assess this DNA extraction protocol and evaluate the types of genetic information that can be
recovered by sequencing ultrashort fragments. Using this method, the mtGenome of the Tsarina’s
lineage was identified in hairs that were concealed in a pendant made by Karl Fabergé for Alexandra
Feodorovna Romanov. In addition, to determine if the lock originated from more than one individual,
two hairs from the locket were extracted independently and converted into Illumina libraries for
shotgun sequencing on a NextSeq 500 platform. From these data, autosomal SNPs were analyzed to
assess relatedness. The results indicated that the two hairs came from a single individual. Genetic
testing of hairs that were found in the second artifact, a framed photograph of Louise of Hesse-Kassel,
Queen of Denmark and maternal grandmother of Tsar Nicholas II, revealed that the hair belonged to
a woman who shared Tsar Nicholas’ maternal lineage, including the well-known point heteroplasmy
at position 16169.

Keywords: Romanov family; next generation sequencing (NGS); hybridization capture; mitochon-
drial DNA; heteroplasmy; single nucleotide polymorphism (SNP); kinship analyses; biological sexing;
ancient DNA

1. Introduction

The fate of the Romanov family was considered one of the greatest mysteries of the
20th century and generates interest and speculation to this day. While official written
records are scarce, reports indicate that Tsar Nicholas and his family were held prisoner and
shot in July 1918 by a Bolshevik firing squad in the Ipatiev House (Ekaterinburg, Russia).
According to accounts, the bodies were then buried in a superficial, hastily dug pit [1,2].

In 1991, nine skeletons were recovered from a shallow grave in Ekaterinburg and
tentatively identified by Russian authorities as the Tsar, the Tsarina, three of their five
children, and four family retainers. Subsequent DNA testing confirmed the identification of
the five Romanovs [3]. The testing included mitochondrial DNA (mtDNA) analysis of the
purported Tsarina and three of her daughters. Their mtDNA profile was compared to the
profile of one of the Tsarina’s living grandnephews, Prince Philip, Duke of Edinburgh, who,
belonged to the same maternal lineage. Testing also included biological sex determination
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and autosomal short tandem repeats (STR) analyses and all the DNA results established the
presence of a family group consistent with the Romanovs. Additionally, mtDNA testing of
the putative remains of the Tsar yielded a sequence that was consistent with the mtDNA
profiles of two living maternal relatives of the Tsar as well as the mtDNA profile of the
exhumed remains of the Tsar’s brother, Grand Duke George Romanov [3,4]. After 16 years
following the discovery of the first grave, the missing son and daughter were accounted
for when a few small bone fragments were discovered close to the site of the previous
recoveries. Anthropological as well as mitochondrial and nuclear DNA analyses of these
bone fragments confirmed the presence of the two Romanov children that were missing
from the first grave [5,6].

Recently, the DNA Support Unit (DSU) of the FBI laboratory was made aware of two
artifacts containing biological material believed to be associated with the Romanov family.
The items are part of a collection owned by Mr. Nikolai Bachmakov, an expert restorer in
Fabergé collectibles. The first item was a pre-1899 locket purchased by Mr. Bachmakov
from another dealer. The locket, a Karl Fabergé pendant, was decorated with three precious
stones (Figure 1A). Inside and under glass, was an old black and white photograph of
Empress Alexandra Feodorovna Romanov (Figure 1B). On the other side, also under glass,
was a lock of light-colored hairs.

 

Figure 1. (A) Closed Fabergé locket showing precious stones. (B) The open locket showing a picture
of Tsarina Alexandra Feodorovna Romanov. The stamped initials from Karl Fabergé can be seen on
the jump ring. Photographed by Richard Walker. Courtesy of the Russian History Museum.

Shortly after, Mr. Bachmakov informed the DSU that he was also in possession of a
framed photograph of Queen Louise of Hesse-Kassel (1817–1898), wife of King Christian IX
of Denmark and maternal grandmother of Tsar Nicholas II (Figure 2). Positioned between
the glass of the frame and the photograph was a large lock of light hairs that were presumed
to belong to Queen Louise.

Although genetic characterization seemed to be the only way to confirm the prove-
nance of the hairs, it was well understood that DNA recovery from such aged and degraded
hairs would be challenging. MtDNA, which is sometimes targeted in forensic casework,
is increasingly difficult to recover with increasing sample age. In 2005, Melton et al. [7]
showed that the likelihood of obtaining a full hypervariable region I/hypervariable region
II (HVI/HVII) mtDNA profile decreased from 90% in single shed hairs 0–5 years old to
~60% in hairs greater than 20 years old. Similarly, in a 2017 study, mtDNA averaged only
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61 bp in human hairs that had been collected 50 to 100 years ago [8]. For older samples,
next generation sequencing (NGS) techniques that do not rely on predefined amplicons
have proven necessary for DNA recovery [9–11]. In these particular cases, it is likely that
the quantities of hair that were used (between 20 mg and 2 g), the beneficial conditions of
preservation, and/or the presence of some hair roots contributed to successful DNA typing.

 
Figure 2. Picture frame containing a picture of Queen Louise of Hesse-Kassel after restoration.
Courtesy of M. Perekrestov, from the Russian History Foundation.

We recently employed NGS to develop DNA data from the types of hair samples
that are routinely encountered in forensic casework: single shed hairs that are generally
comprised of less than 1 mg of biological material [12]. Here, we extended this work by
testing even older (i.e., more degraded) rootless hairs that were believed to be associated
with Russian royalty. We first assessed the feasibility of recovering DNA from hairs believed
to be over a century old. Multiple hairs were pooled together for DNA extraction to improve
the likelihood of DNA recovery and to optimize DNA recovery methodologies. We then
applied these optimized protocols to the analysis of the types of single hair shafts that are
routinely encountered in forensic DNA casework. Overall, the results not only shed light
on the hypothesis that the hairs may have originated from members of the Russian Royal
family, but also demonstrate the potential value of low coverage sequence data in resolving
investigative questions from single decades-old-shed hairs.

2. Material

2.1. The Fabergé Locket

The Fabergé pendant is shown in Figure 1A,B. It is a 14 karat yellow gold heart locket
that weighs 8.7 g and measures 24.75 mm × 19.84 mm × 7.15 mm. On the front side, a
floral pattern is entwined over the heart and is embellished with three stones: one old-cut
round diamond stone of ~0.10 carat (ct), one Cabochon-shaped ruby stone of ~0.12 ct, and
a small rose-cut diamond of 0.001 ct (Figure 1A).
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On the back, the Russian monogram A ( being an old Cyrillic equivalent to the letter
F) is engraved as well as the great Imperial crown of Russia (Supplementary Figure S1C).
The initials of the locket’s maker, stamped on the loose jump ring, are KΦ, as in Karl
Fabergé (Figure 1B). The interior of the locket is fitted with two oval-shaped glazed picture
frames and on the right side, the scratched inventory number 15,650 means that the locket
was made between late 1897 and early 1898. One side contained a black and white portrait
of the Empress Alexandra Feodorovna (1872–1918) and on the other side was a lock of light
brown/dark blond hairs (Supplementary Figure S1A–E).

2.2. The Picture Frame

The frame, made of silver 925 standard, is covered with red enamel, and decorated
with silver ribbons. The size of the black and white cabinet card of Queen Louise is 6.7 cm
by 4.3 cm (Figure 2).

A picture of the pre-restored frame containing the lock of hair can be found in Supple-
mentary Figure S2A.

2.3. Hair Samples

The hair samples tested from both the locket and the frame are described in Table 1.
In addition to DNA testing, three hairs from the locket and one hair from the frame were
examined microscopically by an FBI trace analyst examiner. These hairs were mounted on
slides and permanently stored in the FBI hair reference collection.

Table 1. Description of the hair shaft samples that were used in this study and purification methods
that were used during DNA extraction.

Associated Item Hair Shafts Tested Experiment Purification Protocol

Single hair of ~5 cm (light brown). Lo1a Microscopic examination
NASingle hair of ~2.5 cm (light brown). Lo1b Microscopic examination

Single hair of ~3.8 cm (light brown). Lo1c Microscopic examination
Fabergé Locket 5 hairs for a total of ~16 cm. Lo5h DNA MinElute column

Single hair of 4 cm (light brown). Lo2 DNA Magnetic silica beads
Single hair of 3.2 cm (light brown). Lo3 DNA Magnetic silica beads

Single hair of 6 cm (white). Q3 Microscopic examination NA
Frame 6 hairs for a total of ~27 cm. Q6h DNA MinElute column

Single hair of 5.5 cm (white). Q1 DNA Magnetic silica beads
Single hair of 7 cm (brown). Q2 DNA Magnetic silica beads

To maximize the chances of DNA recovery, initial experiments were performed with
multiple hairs. From the locket, and under the assumption that all the hairs shared the same
mtDNA lineage, five hairs totaling ~16 cm were extracted (Locket 5 hairs: Lo5h). Similarly
for the frame, six hairs totaling ~27 cm were tested (Queen 6 hairs: Q6h). Following
extraction protocol optimization involving the replacement of MinElute columns with silica
coated magnetic beads, and successful results when co-extracting multiple hairs at once,
DNA extraction from single hair shafts was attempted for both historical items.

3. Methods

3.1. Microscopic Examination

A total of four hairs were prepared on glass microscope slides using Permount mount-
ing media (Table 1; hairs Lo1a, Lo1b, Lo1c, and Q3). The hairs were examined using a high
magnification transmitted light microscope (Leica DM4000B with a Leica FS4000 optical
bridge) and photographed with a Leica MC190 HD.

3.2. DNA Extraction Protocols

DNA extraction and library preparation were performed in a laboratory dedicated
to low-quantity and low-quality DNA samples with limited personnel access. Personal
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protective equipment to minimize the risk of contamination included Tyvek® IsoClean®

single-use garments (frocks, sleeves, masks from DuPontTM, Wilmington, DE, USA), gog-
gles, and double gloving. The reagents were aliquoted and irradiated before the samples
were introduced and all plastic consumables were irradiated in a cross-linker prior to use.

A total of three DNA extracts were generated from both the locket hairs and the frame
hairs, for a total of six extracts. Of these six extracts, two were developed from multiple hairs
(Lo5h and Q6h), and four were developed from single hair shafts (Lo2, Lo3, Q1, and Q2).

Two different purification methods were used. Protocol B from Brandhagen et al. [12]
was applied first for the extractions of multiple hairs samples (Lo5h and Q6h). In brief,
DNA was extracted using a lysis buffer optimized for hair digestion and then purified
with MinElute silica columns from the Qiagen PCR purification kit (Qiagen, Germantown,
MD, USA) using large volumes of binding buffer. To accommodate the large volumes of
solution, the MinElute columns were fitted with Qiagen extension columns and placed on
a vacuum manifold (VacConnector, Qiagen).

DNA from single strands of hair was extracted using the same optimized digestion
buffer and volumes as in protocol B, but instead of using MinElute columns, DNA was
purified with magnetic beads coated with silica (cat#: 786–915, G-Bioscience, Maryland
Heights, MO, USA) as recommended by Rohland et al. [13]. A detailed description of the
new protocol can be found in Supplementary Material #1.

DNA quantification via qPCR was not performed on the extracts, as previous experi-
ments had demonstrated that DNA fragments present in hair samples of considerable age
are generally too small to yield a 105 bp amplicon with the mtDNA qPCR assay routinely
used in DSU [12,14]. Although fluorometric quantification was attempted using a QubitTM

Fluorometer and a dsDNA High Sensitivity Assay Kit (Invitrogen, Waltham, MA, USA),
no dsDNA could be detected. The final concentration of the adapters was arbitrarily set
at 300 nM.

3.3. Library Preparation

A total of 50 μL from all six DNA extracts (Lo5h, Lo2, Lo3, Q6h, Q1, Q2) and four
reagent controls (RB1 to RB4) were converted into double stranded DNA Illumina libraries
using the NEBNext® UltraTM II DNA Library Prep Kit for Illumina® (NEB, Ipswich, MA,
USA) and looped adapters from the NEBNext® Multiplex Oligos for Illumina® kit (NEB).
Illumina libraries were prepared according to the manufacturer’s instructions except for
ligation which used highly diluted adapters and was performed overnight at 7 ◦C. Follow-
ing ligation, the ligated looped adapters were converted into Y-shaped adapters with the
USER® Enzyme kit (NEB). The libraries were then purified with 1.8× AMPure XP beads
(Beckman Coulter, Sykesville, MD, USA). All the libraries were dual indexed with primers
from the NEBNext® Multiplex Oligos for Illumina® kit and subsequently amplified for
25 cycles with the NEBNext® Q5® Hot Start HiFi PCR Master Mix (NEB). Purification
of the amplified libraries was performed using 1.5× AMPure XP beads. The libraries
were then shotgun sequenced on an MiSeq Forensic Genomics System (FGxTM) instrument
(Illumina Inc., San Diego, CA, USA) with a v2 cartridge and 2 × 151 cycles and/or on
a NextSeq 500/550 (Illumina) with a High Output kit v2.5 and 2 × 75 cycles in order to
obtain additional data.

3.4. Hybridization Capture

Mitochondrial DNA enrichment via hybridization capture was performed on all RBs
and on four libraries, one from the locket (Lo5h) and three from the frame (Q6h, Q1, and
Q2), using biotinylated RNA baits (myBaits Mito Human, Modern Global, Daicel Arbor
Biosciences, Ann Arbor, MI, USA). Each hybridization capture was performed at 62 ◦C
for 24 h using 100 ng of 80 bp long RNA baits. The captured product was then amplified
for 16 to 19 cycles and purified with AMPure XP beads. DNA from the purified enriched
libraries was successfully quantified using a QubitTM Fluorometer and the QubitTM dsDNA
Broad Range Assay Kit (Invitrogen), then diluted and analyzed on a 2100 Bioanalyzer with
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the High Sensitivity DNA Kit (Agilent, Santa Clara, CA, USA). Following quantification,
libraries were pooled and sequenced on a MiSeq FGxTM instrument with a v2 cartridge
and 2 × 151 cycles. The very first capture library that was sequenced, Lo5h-mt, was also
sequenced on the NextSeq 500 with 2 × 75 cycles. The comparison of the data from both
instruments showed that a MiSeq run was sufficient to accurately sequence the small
mtGenome. As a result, all the subsequent capture libraries were only sequenced on the
MiSeq FGxTM.

3.5. Data Analyses

Raw Fastq reads were first imported as paired-end reads, quality trimmed, and the
overlapping pairs were merged in the CLC Genomics Workbench, version 12.0 (CLC
Bio/Qiagen, Aarhus, Denmark). Merged reads were then mapped to the human genome
by a supercomputer using the Burrows-Wheeler Aligner (BWA aln, v0.7.17–r1188) with
seed disabled [15] and SAMTools v.1.11 [16]. BWA aln was chosen over CLC because this
algorithm is more efficient at mapping very short reads (i.e., reads under 50 bp). Reads
with mapping quality below 30 were removed and, to circumvent the fact that BWA can’t
map reads to a circular reference, a chimeric mtDNA reference was created to allow reads
that overlap the mtGenome origin to map. The 33,152 bp sequence was developed by
combining the sequence of the standard revised Cambridge reference (rCRS) 16,569 bp
genome, followed by 14 N and a second mtGenome sequence starting at position 8284
and ending at position 8283. This chimeric mtDNA reference also replaced the mtDNA
reference ChrM in the human genome reference hg19 (a.k.a GRCh37). Duplicate reads
were removed using Picard v.2.23.8 [17]. Mappings were imported back into CLC as
bam files and the mtDNA reads were extracted and re-mapped to the standard 16,569 bp
circular rCRS reference. Duplicate mtDNA reads were removed and CLC was used to
develop variant calls, DNA size distribution, and read depth. The shotgun data from
single hair extracts were used to assess biological sex using the RX method published by
Mittnik et al. [18]. This method compares the number of sequences originating from the
X chromosome to the number of sequences originating from the 22 autosomes. A male
assignment is made if the upper bound of the 95% CI is less than 0.60, while a female
assignment is made if the lower bound is greater than 0.80.

Next, the shotgun data were used to analyze ~1.3 million nuclear SNPs that were
covered by at least one read. From the SNP results, a “forced haploid” approach was used
to assess relatedness between the two locket hairs, Lo2 and Lo3 (Figure 3).

In brief, relatedness was assessed by comparing allele mismatch proportions between
the two locket hairs to expected allele mismatch proportions for unrelated, parent-child,
sibling, and same individual relationships. Specifically, the shotgun datasets from Lo2
and Lo3 were first reduced to 1.3 million SNPs that include the SNPs generally typed by
genetic genealogy companies and used in GEDmatch [19,20]. The number of SNPs was
then further reduced to SNPs that overlapped between the two hair samples. Next, using a
custom R script, the datasets were forced into pseudo-haploid genomes for which the allele
mismatch proportion was calculated. The resulting SNP marker set (i.e., SNPs with allele
calls in both samples) was used as the input in the mismatch proportion simulation method.
To obtain expected mismatch proportion distributions, pseudo-haploid datasets for various
degrees of relatedness (i.e., same individual, parent/child, full siblings, or unrelated
individuals) were simulated using the European allele frequencies of the Genomes Project
Consortium [21] and SNP-nexus [22,23] for the specific set of SNPs that were included in
the sample comparison. In addition, a simplistic error model was included to account for
the possibility of different genotype errors such as deamination, depurination, PCR error,
sequencing error, and mapping error, that may occur for low-quality and low-quantity
DNA samples. An error rate of 0 to 2% was used in our simulations. As controls, shotgun
data from two 50 year-old-sourced hair samples, completely unconnected to this project
and that were known to originate from the same individual (189A and 189B) were analyzed
and compared. In addition, data from hair samples 189A and Lo2, which were known to
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originate from two unrelated individuals, were compared (a more detailed description of
the method can be found in Supplementary Material #2).

Figure 3. Simulation approach applied to infer the degree of relatedness between low coverage DNA
datasets based on allele mismatch proportions.

Finally, some of the unmapped reads were analyzed using the Metagenomics RAST
(MG-RAST) server [24] in an effort to identify the source of the non-human reads.

4. Results

4.1. Histology Examination

The four microscopically-examined hairs were very well preserved overall
(Figures 4A–C and 5) as characteristics of decomposition, insect damage, or fungal damage
were not observed. Nor was there any indication of artificial treatment, such as dyeing
or bleaching. Based on pigment arrangement, pigment density, overall diameter, cross-
sectional shape of the hair shaft and the cuticle thickness, the examiner determined that all
four hairs were most likely human head hairs of European ancestry.

Figure 4. Photographs taken from three different hairs that were found in the Fabergé locket.
(A) Magnification 100×. (B) Magnification 200× shows that the proximal end of the hair appears cut.
(C) Magnification 200× shows that the proximal end of the hair appears broken.
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Figure 5. Magnification: 200×. Photograph taken from a white hair that was found in the picture
frame. The proximal end of the hair appears cut.

Based on microscopic examination, it was established that no root was present on any
of the samples examined.

4.2. Illumina Sequencing Results from the Fabergé Locket Hairs

Three libraries were produced with the locket samples. From sample Lo5h (ex-
tract/library from five hairs), a shotgun DNA library (Lo5h-sh, a library not enriched
for any marker) as well as a mtDNA-enriched library (Lo5h-mt) were sequenced on a
MiSeq FGxTM. The mtDNA-enriched library Lo5h-mt was also sequenced on a NextSeq
500 to compare the data that were obtained from both instruments. For single hair ex-
tracts/library Lo2 and Lo3, shotgun libraries were only sequenced on a NextSeq 500 and no
hybridization capture was performed. Sequencing statistics for the hair samples that were
found in the locket are presented in Table 2 and more detailed information can be found in
Supplementary Table S1. Shotgun library Lo5h-sh was only sequenced on a MiSeq FGxTM

since our focus for the multi-hair extracts was to establish that DNA could be recovered
from hairs of this age, and that is best addressed by targeting the mtGenome. In addition,
since the locket had a picture of Tsarina Alexandra, it was conceivable that it contained
hairs from herself and/or from some of her children. As a result, all the individuals would
share the same mtGenome and data analysis would not be compromised by mixtures.
Analysis of nuclear DNA, however, would have presented a challenge. Consequently, high
throughput sequencing of Lo5h-sh for nuclear DNA analysis was not attempted on the
NextSeq 500 platform.

Table 2. Sequencing statistics from the Fabergé locket hairs.

Shotgun Libraries
Platforms

Used
Number of

Mapped Reads
Percentage of

Mapped Reads
Number of

Unique Reads

Lo5h-sh (5 hairs) MiSeq FGxTM 6,229,985 48% 5,500,712
Lo2-sh (1 hair) NextSeq 500 199,948,284 66.54% 38,036,020
Lo3-sh (1 hair) NextSeq 500 151,630,120 78.91% 33,388,550

mtDNA-Enriched
Library

Platforms
Used

Number of
Mapped Reads

Percentage of
Mapped Reads

Number of
Unique mtDNA

Reads

Lo5h-mt (5 hairs) NextSeq 500 21,109,044 97.50% 35,188

The percentage of endogenous human reads in the Lo5h-sh library was 48%. This
percentage was a bit lower than expected considering that all hairs had been thoroughly
decontaminated via Terg-a-zyme sonication before digestion. When unmapped reads of
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75 bp or longer were analyzed with MG-RAST, close to 63% of the sequences remained
unknown and most of the sequences that matched a sequence in GenBank belonged to the
Proteobacteria phylum (Supplementary Material #2).

The percentage of endogenous human DNA was, however, higher when single hairs
were extracted with the optimized protocol (66.54% for Lo2-sh and 78.91% for Lo3-sh).
Additionally, as a precaution, purification reagents remained stored at 4◦C between use
to avoid potential mold growth. In this case, since both Lo2 and Lo3 were single source
samples, high throughput sequencing of the libraries was carried out on the NextSeq 500
platform to collect as many DNA sequences as possible.

4.2.1. Mitochondrial DNA Results

MtDNA-enriched library Lo5h-mt produced 35,188 unique mtDNA reads representing
>3.2 million bases. The entire mtGenome was successfully sequenced at an average depth
of 198× (range: 159–273×; standard deviation (SD): 11.38). Shotgun sequencing of the
Lo5h-sh produced 29,879 mtDNA reads representing >1.9 million bases. Once again, the
complete mtGenome was sequenced at an average depth of 119× (range: 5–173×; SD:
17.77). The DNA length distributions of Lo5h-sh and Lo5h-mt are presented in Figure 6A.

 

 

Figure 6. Length distribution of (A) mtDNA reads in Lo5h-sh and Lo5h-mt, and (B) nuclear DNA
reads in Lo5h-sh.
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Shotgun libraries Lo2-sh and Lo3-sh yielded 27,058 and 32,099 unique mtDNA se-
quences with an average depth of 111× (range: 22–148×; SD:13.08) and 164× (range:
26–219×; SD:12.06) respectively. MtDNA enrichment of the Lo2 and Lo3 libraries via
hybridization capture was deemed unnecessary since there was sufficient coverage of the
mtGenome in the shotgun data that were produced by the NextSeq.

The average mtDNA fragment length varied between 66.04 bp and 93.46 bp, depend-
ing on the library and the reference used for mapping (Tables 3 and S5). Interestingly, the
hybridization capture library that was developed from Lo5h (Lo5h-mt) yielded an average
mtDNA fragment size that was much larger than the one that was observed in the Lo5h
shotgun library (Lo5h-sh).

Table 3. Average length of the mtDNA molecules in the locket libraries when mapped to hg19 (left)
or to rCRS (right).

Library Mapped mtDNA Reads Average Length (bp)

Lo2-sh 67.82/67.89
Lo3-sh 84.99/85.17
Lo5h-sh 66.04/69.16
Lo5h-mt 93.46

At 93.46 bp, the mean length of the mtDNA reads in the enriched Lo5h-mt library
was substantially higher than the mean mtDNA length that were observed in the shotgun
libraries (Table 3). This pattern between the shotgun and enriched libraries has been
observed in several other studies involving ancient DNA [25–27]. Our hypothesis that the
noticeable disparity in average length could be caused by a preferential binding of larger
mtDNA molecules during hybridization capture was confirmed by Krasnenko et al. [28]
who stated that “[ . . . ] insert size crucially impact(s) enrichment results” and that “the
maximum efficiency of enrichment (>90%) is achieved with 250–330 bp insertion length”.
Of note, average DNA length estimates should be viewed with the following caveats in
mind: they can be greatly influenced by factors such as DNA extraction protocol, library
preparation protocol, number of sequencing cycles, and bioinformatics pipelines (trimming
in particular).

Shotgun libraries Lo2-sh and Lo3-sh also showed substantial variation in mean
mtDNA fragment length (67.82 versus 84.99 bp). These differences could be the result of
a number of factors, including sample variability between individual hairs or variability
resulting from the distance between the tested section and the root [12].

All the locket hair libraries produced the same mtGenome profile: 263G, 315.1C,
524.1A, 524.2C, 750G, 1438G, 3010A, 4137T, 4769G, 8860G, 15326G, 16111T, 16357C, and
16519C. The sequence belongs to haplogroup H1af2 and is identical to the mtGenome of
Empress Alexandra’s maternal lineage published as “Queen Victoria’s profile” by Rogaev
et al. [6], (GenBank # FJ656214). Detailed variant tables can be found in Supplementary
Table S2.

4.2.2. Nuclear DNA Results

Sequencing of the shotgun libraries produced 38,008,962 (Lo2-sh), 33,328,275 (Lo3-
sh), and 5,470,833 (Lo5h-sh) unique human nuclear sequences representing 1,256,322,853
(Lo2-sh), 1,104,095,334 (Lo3-sh), and 174,843,798 (Lo5h-sh) nucleotides, respectively. The
average read depth was 0.40× (Lo2-sh), 0.35× (Lo3-sh) and 0.06× (Lo5h-sh), and the
average nuclear DNA fragment length was 33.05 (Lo2-sh), 33.13 (Lo3-sh) and 31.96 bp
(Lo5h-sh) (Table 4). In every library, at least 98.9% of the human DNA that was sequenced
belonged to the nuclear genome.
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Table 4. Average length of the nuclear DNA molecules in the locket libraries.

Library Mapped Nuclear DNA Reads Average Length (bp)

Lo2-sh 33.05
Lo3-sh 33.13

Lo5h-sh 31.96

As has been previously observed in Brandhagen et al. [12], the average length of
nuclear DNA fragments tends to be smaller than the average length of mtDNA fragments.

4.2.3. Biological Sex

The two single hairs that were shotgun sequenced (Lo2-sh and Lo3-sh) were assessed
for biological sex. In both cases, the lower bound of the Rx confidence interval was >0.8,
resulting in a biological sex of female (Table 5). This result excludes the Romanov’s son,
Tsarevich Alexis, as a possible source of these two hairs.

Table 5. Determination of the biological sex of the donor of the hairs that were found in the Fabergé
locket using Rx as described in [18]. SD: standard deviation. CI: Confidence interval. The values
indicating a biological sex of female are in bold.

Library Rx SD CI CI Low CI Sup

Lo2-sh 0.965 0.231 0.097 0.869 1.062
Lo3-sh 0.935 0.229 0.097 0.838 1.031

4.2.4. Relatedness Estimates

In addition to being assessed for biological sex, hairs Lo2 and Lo3 were tested for
relatedness. Only reads >35 bp were used for this analysis to avoid spurious mapping of
bacterial sequences, as recommended by Meyer et al. [29]. Out of 1.3 million SNPs, 15,331
and 33,591 were covered by at least one read for Lo2-sh and Lo3-sh, respectively, and 1196
of these SNPs were covered in both samples. The proportion of allele mismatches was
calculated to 0.11 after forcing the Lo2-sh and Lo3-sh datasets into pseudo-haploid genomes.
Assuming a non-zero genotype error rate, such a proportion is expected among samples
originating from the same individual and is, at the same time, unexpected for parent/child,
siblings, and unrelated individuals (Figure 7). As controls for the forced haploid simulation
approach, the mismatch proportions for the two known samples originating from the
same individual as well as two samples originating from two known unrelated individuals
were determined. The observed mismatch proportions for those comparisons fit well
with the expected mismatch distributions for same individual and unrelated individuals,
respectively (Supplementary Material #2). Based on the observed forced haploid mismatch
proportion as evaluated against the simulated data and considering the error rate that is
most appropriate for the given comparison, the data indicate that Lo2 and Lo3 originate
from the same individual.
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Figure 7. Observed mismatch proportion for the Lo2 vs. Lo3 comparison (red dashed line) in relation
to the expected mismatch proportions for various degrees of relatedness and different genotype
error rates.

4.3. Illumina Sequencing Results from the Picture Frame Hairs

Sequencing statistics for the hair samples that were found in the frame are shown
in Table 6. The low percentage of endogenous human DNA in the library derived from
six hairs (Q6h-sh) (21.17%) is even lower than the 48% that was observed with the library
from five locket hairs (Lo5h-sh). However, as with the locket hairs, the percentage of
human DNA improved substantially in the libraries that were derived from single hair
shafts. Sample Q1-sh produced 70.12% human DNA, while Q2-sh produced 89%. The three
hybridization capture libraries, not surprisingly, yielded the highest percentages of target
DNA. In all three cases, ≥88% of the human reads were mtDNA sequences. Further details
can be found in Supplementary Table S1.

Table 6. Sequencing data from libraries made with DNA extracted from hair shafts found in the
picture frame.

Shotgun Libraries
Platforms

Used

Number of
Mapped Raw

Reads

Percentage of
Raw Mapped

Reads

Number of
Unique Human

Reads

Q6h-sh (6 hairs) MiSeq FGx 2,072,278 21.17% 1,817,968
Q1-sh (1 hair) MiSeq FGx 267,392 70.12% 239,692
Q2-sh (1 hair) NextSeq 500 278,531,240 89% 56,390,706

mtDNA-Enriched
Libraries

Platforms
Used

Number of
Mapped Raw

Reads

Percentage of
Raw Mapped

mtDNA Reads

Number of
Unique mtDNA

Reads

Q6h-mt (6 hairs) MiSeq FGx 7,059,775 90.68% 26,038
Q1-mt (1 hair) MiSeq FGx 3,586,989 96.69% 14,514
Q2-mt (1 hair) MiSeq FGx 8,104,414 88% 24,636

Among the shotgun libraries, the number of endogenous molecules in Q1-sh was
noticeably lower than in the other samples (Table 6). The high quantity of damage in this
sample, exacerbated by an over- amplification of the DNA, resulted in a high percentage
of noise in the data. As a result, the Q1-sh library was not sequenced on the NextSeq 500
instrument and fewer unique human reads were, therefore, recovered.
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4.3.1. Mitochondrial DNA Results

Since the frame hairs seemed more degraded than the locket hairs, every Q library
was enriched for mtDNA to produce the highest possible data quality.

For Q6h-mt, 26,038 unique mtDNA reads were obtained (>1.2 million bp) and the
entire mtGenome was sequenced at an average depth of 74× (range: 27–117×; SD:11.45).
At 47.26 bp, the average length of the DNA fragments was significantly shorter than the
93.08 bp average mtDNA size that was observed with Lo5h-mt.

For Q1-mt, a total of 14,514 unique mtDNA reads, spanning 563,192 bp were sequenced.
In this case, the average read depth was 34× (range: 1–100×; SD: 14.98) and the average
mtDNA length was 38.80 bp.

Finally, for Q2-mt, 24,636 unique reads totaling >1.1 million bp were recovered. Reads
spanned the entire mtGenome, with an average read depth of 67× (range: 13–125×; SD:
15.49) and an average fragment length of 45.33 bp.

Mitochondrial DNA was also analyzed from the shotgun sequence data of Q6h-sh and
Q2-sh (Table 7).

Table 7. Number of unique mitochondrial DNA reads and mean mtDNA lengths in the shotgun and
capture libraries.

Sequencing
Platform

Library
Number of Unique

mtDNA Reads
Average mtDNA

Size (bp). hg19/rCRS

MiSeq FGxTM Q6h-sh 11,052 45.78/45.56
MiSeq FGxTM Q6h-mt 26,038 47.26
MiSeq FGxTM Q1-sh 1281 NA
MiSeq FGxTM Q1-mt 14,514 38.80
NextSeq 500 Q2-sh 15,267 42.32/43.9
MiSeq FGxTM Q2-mt 24,636 45.33

The 1281 mtDNA reads obtained with Q1-sh were insufficient to produce reliable
variant calls. Similar to what was observed with the locket hairs, the average mtDNA
fragment size in the capture libraries was larger, although the magnitude of the difference
was relatively small (Figure 8). This is likely due to the fact that the range of the average
lengths for the mtDNA fragments in the frame hairs was smaller than the range that
was observed with the locket hairs. Capture library Q6h-mt and shotgun library Q6h-
sh both produced the following mtDNA profile: 73G, 263G, 315.1C, 709A, 750G, 1438G,
1842G, 1888A, 2706G, 2850C, 4216C, 4769G, 4917G, 6257A, 7022C, 7028T, 8697A, 8860G,
10463C, 11251G, 11719A, 11812G, 13368A, 13965C, 14233G, 14687G, 14766T, 14905A, 15326G,
15452A, 15607G, 15928A, 16126C, 16169Y, 16294T, 16296T, 16519C. The profile belongs to
haplogroup T2a1a and is identical to the published sequence of Tsar Nicholas Romanov,
including position 16169 which is characterized by a point heteroplasmy in the Tsar and
his brother’s mtGenome [3–6], (GenBank # FJ656215). Position 16169 had a read depth of
75× with 57 Ts and 18 Cs (76% T). In the shotgun data, the percentage of T versus C varies
between 80% and 81% depending on the reference used for mapping. The reference can
cause bias as a result of pseudogenes in the human genome. If data are mapped against
hg19, which includes both the nuclear and the mitochondrial genome, unspecific sequences
will be randomly mapped to one genome or the other, and true mtDNA sequences may be
erroneously mapped to nuclear pseudogenes. On the other hand, if the data are mapped
only to the rCRS, pseudogene sequences (although rare in these types of degraded samples)
could erroneously map to the mtGenome. For this reason, the shotgun data were mapped
to both references.

Since the Q6h library was prepared using six hairs, it is not possible to determine
whether individual hairs were heteroplasmic or homoplasmic. That is, the mixed position
at 16169 in both the shotgun and capture libraries could be the result of individual hairs
being homoplasmic for the two variants.
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Figure 8. Length distribution of (A) mtDNA reads in Q6h-sh and Q6h-mt, and (B) nuclear DNA
reads in Q6h-sh.

The mtGenome profile that was produced by Q1-mt is similar to the Q6h-mt profile
with one exception: position 16169 appeared homoplasmic for thymine, with 27 out of 27
reads exhibiting a T.

In contrast to Q1-mt, position 16169 in library Q2-mt reflected primarily cytosine bases,
with 53 C and 1 T. Since hydrolytic deamination is one of the most abundant forms of
damage in ancient molecules, it is possible that the thymine base that was detected in the
data was a deaminated cytosine [30,31]. In fact, in the shotgun library, all 25 reads have a C
which supports 16169 being homoplasmic for cytosine.

4.3.2. Nuclear DNA Results

Sequencing of the library Q6h-sh produced 1,806,916 nuclear reads representing close
to 60 million bases, an average read depth of 0.02× (range: 1–109×; SD: 1.04), and a mean
nuclear DNA length of 33.18 bp. Sequencing of library Q1-sh on a MiSeq FGxTM produced
238,411 unique human nuclear sequences for a total of 8.4 million bases. The average read
depth was <0.01× and the mean DNA length was 35.51 bp.

Finally, sequencing of library Q2-sh on a NextSeq 500 platform produced 56,375,439
unique human nuclear reads representing a total of 1.8 billion nucleotides. The average
read depth was 0.58× (range: 1–184; SD: 4.65) and the median nuclear read length was
32.06 bp.

Unfortunately, the number of quality reads that were recovered from Q1-sh was
insufficient to perform a relatedness analysis between Q1 and Q2. However, the biological
sex could be assessed.
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For both hairs, the lower bound of the confidence interval was >0.8 (Table 8), resulting
in a biological sex of female, the expected result if the hairs belonged to Queen Louise.

Table 8. Determination of the biological sex of the donor of two hairs that were found in the frame
using Rx as described in [18]. SD: standard deviation. CI: Confidence interval. The values indicating
a biological sex of female are in bold.

Library Rx SD CI CI Low CI Sup

Q1-sh 0.903 0.201 0.084 0.819 0.987
Q2-sh 0.964 0.228 0.095 0.868 1.059

5. Discussion

The primary goal of this study was to explore the origin of the hairs in the locket and
the frame using techniques and, more importantly, sample sizes that are relevant to forensic
casework. By using these historical samples as a proxy for evidentiary material, protocols
for extremely limited and compromised samples could be further optimized for routine
casework. Overall, the results demonstrate that this method can successfully recover both
full mitochondrial genomes and nuclear DNA data from the types of single, aged, and
degraded hair samples that are routinely encountered in forensic casework. Furthermore,
the results illustrate that limited genetic information can be useful for answering questions
that are relevant to DNA identification. Specifically, the comparison between the single
strands of hair that were tested from the locket indicate that despite partial SNP information
for any given hair sample and limited overlapping data between any two hair samples,
valuable information can be acquired. Typical forensic samples rarely, if ever, meet or
exceed the suspected age and degradation states of the hairs tested here, yet the integrity of
DNA in older cases with hairs recovered from less optimal storage conditions or that were
originally collected from harsher environmental settings than those that were encountered
here may make these studies directly applicable to some casework scenarios. Hence, the
development of protocols for samples that challenge or exceed the lower detection limits of
the currently employed methods demonstrates potential for the utility of the protocols in
even the worst, or at least the vast majority of casework scenarios.

5.1. DNA Extraction Modifications

To maximize DNA recovery from the hair shafts, modifications were made to the
purification step of the DNA extraction. Previous work has shown that both mtDNA
and nuclear DNA can be obtained from single shed hairs up to 60 years old with a DNA
extraction protocol that employed the MinElute PCR purification kit [12]. This particular
protocol/purification method was used as a starting point to assess the feasibility of
recovering DNA from hair this old, and extractions were performed with five (Lo5h) and
six (Q6h) hairs to maximize the chances of detecting DNA.

When these two libraries were evaluated with the 2100 Bioanalyzer, the electrophero-
grams of the reagent blanks showed a large curve that was similar to the ones that were
observed with the hair libraries (Figure 9A).
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Figure 9. Bioanalyzer electropherograms of reagent blank libraries when DNA purification was
performed using (A) MinElute columns, or (B) magnetic beads from G-Biosciences.

The sequencing of these reagent blank libraries produced data but the reads did not
map to the human genome reference. These results suggest that the MinElute columns are
contaminated with trace amounts of non-human DNA. For most human DNA identification
applications, this type of very low-level contamination would have little impact on the
final sequence data. Given that the contaminant is non-human and present only in trace
quantities, the ratio of target human DNA to contaminant DNA would be high enough
for the contaminant to go undetected. However, when the number of PCR cycles is high
and when only a few target molecules are present in the extract, such as in the aged and
degraded single hair shaft extracts that were tested here, the ratio of endogenous DNA to
non-human contaminant DNA drops substantially. The MinElute columns were, therefore,
replaced first with the Ultraclean Production (UCP) MinElute columns (cat # 56204, Qiagen).
Though Bioanalyzer profiles of hair libraries that were purified with the UCP columns did
not reflect the presence of any DNA, the columns were not used on the samples that were
presented in this study for two reasons: (1) the use of a vacuum and extender columns
was cumbersome and contamination-prone and (2) use of the columns resulted in a near
doubling of library purification costs from ~$6 USD per sample to over $11 USD per
sample. The columns were thus replaced with silica beads from G-Biosciences. These
beads produced the same library purity as the UCP columns, but at a cost of ~$5 USD per

392



Genes 2022, 13, 202

sample. In addition, experiments that were performed on other aged hairs showed that the
average size of DNA molecules that were collected by silica beads was slightly smaller than
the DNA that was purified with MinElute and UCP MinElute columns. As a result, the
columns were replaced by the more practical and cost-efficient DNA-free silica magnetic
beads for all subsequent experiments.

The sequencing results of the bead-purified hair extracts demonstrated a substantial
increase in the percentage of human DNA that was recovered (Tables 2 and 6). For the
locket hairs, the recovery of human DNA improved from 48% in the MinElute-purified
library (Lo5h-sh) to 66.54% (Lo2-sh) and 78.91% (Lo3-sh) in the two bead-purified shotgun
libraries. Similarly, for the frame hairs, human DNA recovery increased from 21.17%
(Q6h-sh) to 70.12% and 89% in Q1-sh and Q2-sh, respectively. Finally, unlike the Bioana-
lyzer electropherograms from the MinElute-purified libraries, the bead-purified RB library
electropherograms exhibited only a single 140 bp peak of adapter dimers (Figure 9B).

In Brandhagen et al. [12], the previous version of our protocol had been tested as
a way to save ultrashort DNA fragments that were lost during a wash step from the
PrepFiler Kit protocol (Applied Biosystems, Waltham, MA, USA). We confirmed that the
optimized silica beads protocol works equally well, or better, than the previous one in small
fragment retention.

5.2. Authenticity of the Items

DNA testing is often employed to authenticate items of historical significance [32].
However, successful DNA testing is dictated by the type of item, its age and condition,
how it has been stored, whether it has been handled/contaminated, etc. Items that can
be decontaminated, such as hairs and calcified tissues, generally offer the best chance of
success. Yet, even in cases for which the target DNA can often be recovered, authentication
can still prove difficult, particularly when the direct or familial references that are required
for identification are not straightforward to establish or acquire [33]. Fortunately, for
historical items that are believed to be associated with the Romanov family, sufficient DNA
reference information exists. Thus, on top of the historical evidence tying the locket and
frame artifacts to the Romanov family, the DNA data that were recovered from the hairs
may also prove useful.

5.2.1. Fabergé Locket
Historical Evidence of Authenticity

The photograph of Princess Alexandra displayed in the locket comes from a cabinet
card, a type of photography mounted on a piece of cardboard that was very popular in
the 1860s. It could be confidently identified as a copy of a photograph that was made in St
Petersburg in 1895 by Alexander Pasetti, the photographer of the Imperial Russian court
(see the original photograph in Supplementary Figure S4).

The pendant was crafted by the famous Russian jeweler and goldsmith, Karl Gus-
tavovich Fabergé (also known as Peter Carl Fabergé; 1846–1920). Karl was the son of Gustav
Fabergé, a German jeweler who moved to St. Petersburg in 1842 and opened the House
of Fabergé. The association between Karl Fabergé and the Russian Imperial family is well
documented. On Orthodox Easter of 1885, Tsar Alexander III Romanov offered his wife,
Empress Maria Feodorovna, a jeweled Eastern Hen egg that was made by Fabergé [34]. The
Empress liked it so much that Alexander named Fabergé goldsmith by special appointment
to the Imperial crown and commissioned an Easter egg every following year. After Alexan-
der’s death in 1894, his son, Tsar Nicholas II, took over the tradition and asked Fabergé to
create two unique eggs each year, one for his mother, the Dowager Empress Maria, and
one for his wife Alexandra Feodorovna [35]. While Easter eggs made the House of Fabergé
famous, they only represent a fraction of the Fabergé creations that were made for the Tsars
and their families [34].
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Genetic Evidence

The Tsarina’s mtGenome was characterized in 2009 [6]. Hence, it was possible to
directly compare the mtGenome haplotype that was developed from the locket hairs to
the reference haplotype for the Tsarina; the two sequences are identical. The haplotype
belongs to haplogroup H1af2 [36], which is characterized by a C4137T transition. To
understand the rarity of the haplotype, three different mtDNA datasets were searched: the
public FamilyTreeDNA© mitochondrial DNA Haplotree database [37], GenBank, and the
European DNA Profiling Group mtDNA Population database (EMPOP, [38]). Sequence
level data could not be compared in the FamilyTreeDNA© dataset. However, only ten of
170,000 complete mtGenome sequences were reported to belong to the H1af2 haplogroup.
When the complete mtGenome sequence is compared to the GenBank database, no match
is returned besides the profiles of the Tsarina, Alexei, and Maria, that were published by
Rogaev et al. [6]. In fact, of more than 52,000 mtGenome profiles present in GenBank, only
38 sequences have a C4137T, and only five of those (including the three profiles mentioned
above) belongs to haplogroup H [39]. H1af2 sequences are not currently present in EMPOP.
While it is not possible to establish the identity based on mtDNA, the rarity of this profile
increases the odds that the hairs that were found in the locket belonged to the Tsarina or a
member of her maternal lineage.

To gain further insight into the source of the hairs and, in more general terms, explore
the potential probative value of the nuclear DNA data that were recovered, autosomal
SNPs were also analyzed. Autosomal SNP reference data was not available for the Tsarina
or her relatives, so our goal with the SNP analysis was not source identity. Instead, the
SNP results were used to assess if the strands of hair in the locket originated from the same
individual or from multiple individuals from the same maternal lineage. Assuming the
hairs belong to the Tsarina or one of her immediate maternal relatives (i.e., her children),
the hairs would be over 100 years old. If this is indeed the case, the presence of mtDNA
fragments that were larger than 90 bp in both the shotgun and the enriched library of Lo5h
suggests that at least a portion of the molecules was well preserved.

In previous studies, hairs of somewhat similar age have yielded average mtDNA
fragment sizes of approximately 60 bp [8], while younger hairs (between 40 and 60 years
old) were shown to harbor mtDNA fragments averaging 70–80 bp [12]. There could be at
least two explanations for the great preservation of the locket hair DNA. First, according to
the locket owner, Mr. Bachmakov, the locket was extremely difficult to open and required
specialized tools to do so. In Mr. Bachmakov’s expert opinion, the locket had not been
opened for years, perhaps even decades, and it is likely that the hairs remained safely
sealed and protected from oxygen, light, and humidity. Second, saw dust that was found
inside the locket may have acted as a desiccant. In the 19th and 20th centuries, jewels that
were made of gold were treated with acid to enrich the proportion of gold on the surface
and to change the color from a pink to a yellow gold [40]. After being rinsed with water, the
objects were dried and saw dust was used to absorb moisture. In some cases, as in the case
of this Fabergé locket, small amounts of saw dust remained inside the jewels. Unbeknown
to the maker of the pendant, the desiccant properties of the saw dust may have played a
key role in preserving the hairs and their genetic material.

5.2.2. Picture Frame
Historical Evidence

The origin of the framed picture of Queen Louise of Hesse Kassel is supported by
documents that were provided to Mr. Bachmakov when the object was purchased. The
paperwork indicates that the framed photograph had originally belonged to Maria Feodor-
ovna (known as Princess Dagmar of Denmark prior to her marriage), one of Louise’s
daughters. It was passed down to one of Maria Feodorovna’s daughters, Grand Duchess
Xenia (1875–1960), and then again through various family members to a living descendant
who kept it in his/her possession until 2017 when it was purchased by Mr. Bachmakov. The
picture also comes from a cabinet card and the initials on the back show that the photograph
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was taken by Mary Steen, a famous Danish photographer who, in 1896, was appointed
court photographer to Alexandra, Princess of Wales (1844–1925), later Queen Alexandra
(Supplementary Figure S5).

Given the picture of Queen Louise and the fact that the strands of hair were white, it is
presumed that they came from the Queen and were collected from her in her senior years.
If these assumptions are correct, the hairs would be at least 120 years old.

Genetic Evidence and mtDNA Heteroplasmy

Mitochondrial DNA sequencing was performed to test the hypothesis that the frame
hairs are from Tsar Nicholas’ maternal grandmother, Queen Louise of Hesse-Kassel. For-
tunately, the mtDNA sequence of the Tsar’s maternal lineage is well documented. His
control region (CR) haplotype was first reported in a study on the DNA analysis of skeletal
remains that were discovered in Russia in 1991 and attributed to Nicholas II. The profile
was compared to the CR of two living relatives who served as maternal references: James
George Alexander Bannerman Carnegie, 3rd Duke of Fife (1929–2015), the Tsar’s first cousin
twice removed and Countess Xenia Cheremeteva Sfiris (b. 1942), his great grandniece [3]
(Figure 10). The profile of Tsar Nicholas revealed a C/T point heteroplasmy at position
16169 that was not present in the two references CR profiles that only had the 16169T
variant. Since little was known about the occurrence of mitochondrial DNA heteroplasmy
variants in the early 1990s, the mixed C/T position was originally viewed by skeptics as
a “mismatch” between the tsar’s remains and his living relatives. However, two studies,
both published in 1996, settled the debate. Ivanov et al. [4] analyzed the skeletal remains of
the Tsar’s brother, Grand Duke George (1871–1899) and the study revealed once more, the
presence of a point heteroplasmy at position 16169, albeit with opposite ratios. While C was
the predominant base in Nicholas’ DNA, T was the dominant allele that was observed in
his brother’s profile. Concurrently, the CR from Tikhon Nikolaevich Kulikovsky-Romanov
(1917–1993), one of Tsar Nicholas nephews, was also Sanger sequenced and, in this case,
only cytosines were observed at position 16169, adding credence to the presence of an
heteroplasmic variant in the Tsar’s DNA [41].

The point heteroplasmy in the Tsar’s lineage was again confirmed in 2009, following
the discovery of skeletal remains that were believed to be the two missing Romanov
children. Additional genetic analyses of all the skeletal remains that were found in 1991
not only confirmed that the two sets of newly discovered skeletal remains were the two
missing Romanov children [5], but also re-established the presence of point heteroplasmy
in the Tsar’s remains [6].

In this study, the 16169 point heteroplasmy was not observed in skeletal remains, but
in hair shafts. The occurrence of mtDNA heteroplasmy in human hairs has been extensively
characterized [42,43]. Studies show that different levels of heteroplasmy can be observed
in hairs from a single individual, as was seen in [44–47] and even along the length of a
single hair shaft [48]. Our study followed the transmission of heteroplasmy through six
generations. Interestingly, while it endured between the two generations that separate the
Tsar from his grandmother, it seems to have rapidly evolved towards homoplasmy in the
three different branches of the family that were studied. The perfect match between the
sequence of the Tsar’s mtGenome and the sequence from the frame hairs, as well as the
presence of a point heteroplasmy at position 16169 are consistent with the hairs coming
from Louise of Hesse-Kassel, Queen of Denmark or another individual that is maternally
related to Tsar Nicholas II.
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Figure 10. Family tree of the Romanov family showing the major allele (T or C) at heteroplasmic
position 16169.

6. Conclusions

We have previously shown that nuclear DNA can be recovered from single rootless
hair shafts [12]. Here, we extend that work by demonstrating that both mitochondrial
and nuclear DNA can be recovered from single rootless hairs of substantial age when
an extraction protocol that is designed for highly fragmented DNA is employed. Fur-
ther, by optimizing the extraction protocol to eliminate/reduce low level contaminating
DNA from the reagents and supplies, we improved both DNA yields and downstream
sequencing results.

Given that traditional nuclear and mitochondrial DNA typing assays generally target
DNA fragments larger than 100–150 bp, extraction protocols optimized for the retention
of smaller fragments may often be unnecessary. For the most compromised specimens,
however, this type of specialized extraction coupled with shotgun sequencing, may offer the
best and perhaps only chance of recovering probative DNA data. With an average mtDNA
and nuclear DNA fragment sizes of approximately 40–85 bp and 33 bp, respectively, the
hair samples tested here would have failed to produce DNA results with even the smallest
mtDNA amplicons routinely used in operational casework. In addition, standard extraction
protocols would likely have discarded much or most of the endogenous target DNA. By
combining an optimized extraction protocol and next generation shotgun sequencing, it
was possible to recover complete mtGenomes from hair samples that are most likely older
than any evidence or reference hair sample that is generally submitted to a crime laboratory.
These very old samples not only produced 14-times more mtDNA sequencing data than
the control region would, they also produced enough nuclear DNA to assess the biological
sex and, in one case, relatedness among samples.

Our results further demonstrate that probative nuclear DNA can likely be recovered
from the types of single rootless hair shafts encountered in casework and generally tested
for mtDNA only. By extension, the results suggest that aged hair from keepsake lockets,
hairbrushes, and other aged sources may serve as alternative direct or familial reference
material for missing persons cases that are requiring nuclear DNA and for which hair
samples are the only available material. Finally, it is likely that this or similar extraction
protocol(s) can be useful on any type of highly degraded sample. Indeed, we have also
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used this protocol for samples that were not hairs and can confirm that it can be extremely
successful with any sample type that contains highly degraded DNA molecules.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13020202/s1. Supplementary Material #1: Description of
the optimized DNA extraction protocol for hair shafts; Supplementary Material #2: Description of
the forced haploid and simulation method; Table S1: Sequencing statistics for all the hairs that were
analyzed in this study. Table S2: Variant calls for the hairs found in the Fabergé locket. Table S3:
Variant calls for the hairs found in the picture frame. Table S4: Data from reagent blanks. Table S5:
Nuclear and mitochondrial DNA length observed in all the libraries. Figure S1: Pictures of the
Fabergé locket. A. Locket and items that were recovered inside the right side of the jewel. B. Open
locket showing the engraved number 15,650. C. Back of the locket showing the Tsarina’s initials and
the imperial crown of Russia. D. Jump ring from the locket showing the stamped initials of Karl
Fabergé. E. Lock of hairs that were found in the locket; Figure S2: Picture frame A. before and B.
after restoration by Mr. Bachmakov; Figure S3: RAST results for Lo5h-sh. Figure S4: A. Cabinet
card showing a photograph of Tsarina Alexandra made by Alexander Pasetti. B. Close up view of
the Tsarina’s face. C. Picture that was found in the locket; Figure S5: Picture of Queen Louise of
Hesse-Kassel taken in 1863 (source: Wikipedia). B. Back of the cabinet card found in the picture frame
partially showing the name of Danish photographer Mary Steen. C. Front of the picture found in the
picture frame.
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Abstract: Description of a perpetrator’s eye colour can be an important investigative lead in a
forensic case with no apparent suspects. Herein, we present 11 SNPs (Eye Colour 11-EC11) that are
important for eye colour prediction and eye colour prediction models for a two-category reporting
system (blue and brown) and a three-category system (blue, intermediate, and brown). The EC11
SNPs were carefully selected from 44 pigmentary variants in seven genes previously found to be
associated with eye colours in 757 Europeans (Danes, Swedes, and Italians). Mathematical models
using three different reporting systems: a quantitative system (PIE-score), a two-category system
(blue and brown), and a three-category system (blue, intermediate, brown) were used to rank the
variants. SNPs with a sufficient mean variable importance (above 0.3%) were selected for EC11. Eye
colour prediction models using the EC11 SNPs were developed using leave-one-out cross-validation
(LOOCV) in an independent data set of 523 Norwegian individuals. Performance of the EC11 models
for the two- and three-category system was compared with models based on the IrisPlex SNPs and
the most important eye colour locus, rs12913832. We also compared model performances with the
IrisPlex online tool (IrisPlex Web). The EC11 eye colour prediction models performed slightly better
than the IrisPlex and rs12913832 models in all reporting systems and better than the IrisPlex Web in
the three-category system. Three important points to consider prior to the implementation of eye
colour prediction in a forensic genetic setting are discussed: (1) the reference population, (2) the SNP
set, and (3) the reporting strategy.
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1. Introduction

Prediction of physical traits (externally visible characteristics) from DNA can be im-
portant in criminal cases with no apparent suspects. Multiple assays for forensic prediction
of eye colour, hair colour, skin colour, and biogeographic ancestry have been developed
with varying accuracies [1–5]. Prediction of biogeographic ancestry can give an indirect
indication of a person’s appearance. However, for individuals of European ancestry, there
are large variations in eye colour. A direct description of the eye colour of a perpetrator
could aid police investigators in focusing on a smaller group of individuals. The most
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widely known system for eye colour prediction is the IrisPlex assay [3], which is based on
six SNPs in six genes (HERC2, OCA2, SLC24A4, SLC45A2, TYR, and IRF4) that are associ-
ated with eye colour variation. The IrisPlex predicts eye colour in three categories: blue,
intermediate, and brown [3,6]. It is well known that a single SNP in HERC2, rs12913832, is
almost perfectly associated with blue and brown eye colour [7,8]. The SNP is located in the
promoter region of OCA2 and strongly associated with OCA2 expression [9]. In 2012, Visser
and co-workers demonstrated that the OCA2 expression was increased in melanocytes
carrying the rs12913832: A allele and decreased in melanocytes carrying the rs12913832:
G allele. Hence, individuals carrying a rs12913832: A allele (genotypes rs12913832: AA
and rs12913832:AG) are expected to have brown eye colour, and individuals carrying the
genotype rs12913832:GG are expected to have blue eye colour. Eye colour prediction using
the IrisPlex relies heavily on rs12913832 [10]. Thus, the IrisPlex prediction shows high
accuracies for blue and brown eye colour but low accuracy for intermediate eye colour [3].
Some individuals do not follow the expected genotype–phenotype patterns of rs12913832,
and for these individuals, the IrisPlex eye colour predictions are incorrect [10,11]. We
previously performed in-depth sequencing analyses of individuals with incorrect IrisPlex
eye colour predictions and identified variants in OCA2, TYRP1, TYR, and SLC24A4 that
may explain the incorrectly predicted eye colours [11,12]. In this study, we typed those
variants and the IrisPlex SNPs in 757 European individuals and selected 11 SNPs for a
new eye colour prediction model, named Eye Colour 11 (EC11). We modelled and tested
the EC11 in an independent data set of 523 Norwegian individuals and compared the
predictions with a model solely based on the rs12913832 SNP and a model based on the
six IrisPlex SNPs (called IrisPlex Norway) using different reporting systems. Lastly, we
compared the results with those obtained with the IrisPlex online prediction tool (IrisPlex
Web) [3].

2. Materials and Methods

2.1. Samples and DNA Extraction

A total of 757 healthy individuals residing in Denmark, Sweden, or Italy comprised
the variant discovery data set. The model data set included 523 healthy individuals living
in Tromsø and Bodø (Norway). Blood samples were collected from employees and students
at universities, residents and employees at health care centres, employees at hospitals,
and through the Danish Blood Donor Study as described elsewhere [10,13,14]. DNA was
extracted using the QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany), the QI-
Asymphony DNA Midi Kit (Qiagen, Hilden, Germany), or the PrepFiler™ Express DNA
Extraction kit (Thermo Fisher Scientific, Waltham, MA, USA) following instructions from
the manufacturers. The use of material was approved by the Danish Ethical Committee (M-
20090237, H-4-2009-125, and H-3-2012-023), the Ethical Committee of Azienda Ospedaliera
Ospedal Sant’Anna di Como (U.0026484.23-11-2012), the Ethical Committee of the Univer-
sity of Milan-Bicocca (P.U. 0033373/12), and the Faculty of Health Sciences, UiT–The Arctic
University of Norway (2021/2034). All participants gave signed and informed consent and
all samples were anonymised.

2.2. Quantitative Eye Colour Measurements and Eye Colour Categorisation

A digital photograph of one of the eyes of each participant was taken as described
previously [13]. The pixel index of the eye score (PIE-score) was calculated from jpeg
images 639 × 426 pixels as: (number of blue pixels–number of brown pixels)/(number
of blue pixels + number of brown pixels) using the Digital Iris Analysis Tool (DIAT) [13].
The PIE-scores ranged from −1 to 1; eye colour photos with a PIE-score of 1 had only
blue pixels, and eye colour photos with a PIE-score of −1 had only brown pixels. Eye
colour was also categorised in a two-category (blue and brown) and a three-category (blue,
intermediate, and brown) system. The categorisation was based on the PIE-score and our
recent study on the perception of blue and brown eye colours [15]. In the two-category
system, eye colours with PIE-score > 0.2 were categorised as blue, and eye colours with
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PIE-score ≤ 0.2 were categorised as brown. In the three-category system, eye colours with
PIE-score > 0.8 were categorised as blue, eye colours with PIE-score ≤ 0.8 and ≥−0.5 were
categorised as intermediate, and eye colours with PIE-score < −0.5 were categorised as
brown. The number of individuals in each eye colour category and the mean PIE-score in
the discovery data set and the model data set are shown in Table 1.

Table 1. Eye colour variation in the variant discovery and model data sets.

Quantitative
System 1 Two-Category System 2 Three-Category System 3

Mean
PIE-Score

Blue Brown Blue Intermediate Brown

Discovery
data set (n =

757)
0.24 447 (59%) 310 (41%) 368 (49%) 148 (20%) 241 (31%)

Model data
set (n = 523) 0.44 376 (72%) 147 (28%) 293 (56%) 123 (24%) 107 (20%)

1. Statistically significant difference in mean PIE-scores between the two data sets (p < 0.05). 2. PIE-score > 0.2: blue, and PIE-score ≤ 0.2:
brown. 3. PIE-score > 0.8: blue, PIE-score ≤ 0.8 to ≥−0.5: intermediate, and PIE-score < −0.5: brown.

2.3. Variant Typing (Discovery Data Set)

A total of 44 pigmentary variants were investigated. The variants included all six
IrisPlex SNPs [3], five variants in OCA2 found to be associated with blue eye colour in
individuals with the rs12913832:GA genotype [11], as well as 33 variants in IRF4, TYRP1,
SLC24A4, and TYR, associated with brown eye colour in individuals with the rs12913832:
GG genotype [12]. We included three variants in TYRP1 (rs201447946, rs74606098, and
rs79586719, r2 ≥ 0.91) to tag one large haploblock associated with eye colour [12]. Two vari-
ants in TYR were also in strong LD (rs1126809 and rs1393350, r2 = 0.92). rs1393350 was part
of the IrisPlex [3], and rs1126809 was found to be of importance in individuals with brown
eye colour [12]. The 757 individuals in the variant discovery data set were previously
typed for the IrisPlex SNPs and the five OCA2 variants [10,11]. The 33 variants in IRF4,
TYRP1, SLC24A4, and TYR were typed using two multiplexes, a 24 plex and an 11 plex,
respectively (Table S1). The 24 plex included rs12913832 and 23 variants in SLC24A4 and
TYRP1 (rs10131374, rs12590749, rs12880508, rs12894551, rs17128288, rs17128324, rs34755843,
rs35617057, rs4904887, rs4904891, rs4904897, rs4904927, rs59977926, rs7144273, rs7152962,
rs7401792, rs10491745, rs1408799, rs201447946, rs62538950, rs62538956, rs74606098, and
rs79586719). The 11 plex comprised rs1393350 from the IrisPlex and 10 variants in IRF4
and TYR (rs1393350, rs1050976, rs10530949, rs12211228, rs9378807, rs11018509, rs1126809,
rs2047512, rs34749698, rs7120151, and rs9919559). Samples were typed with the iPLEX™
Assay (Agena Bioscience, Hamburg, Germany) and analysed with matrix-assisted laser
desorption-ionization time of flight mass spectrometry (MALDI-TOF MS) using the Mas-
sARRAY Analyzer 4 System (Agena Bioscience, Hamburg, Germany). The PCRs contained
0.5 μL 10X PCR buffer, 0.4 μL MgCl2 (25 mM), 0.1 μL dNTP mix (25 mM), 0.2 μL PCR
Enzyme, 1 μL primer mix (1 μM of each primer), and 1 μL DNA (≥1 ng). Thermal cycling
comprised initial denaturation for 2 min at 94 ◦C followed by 45 cycles of denaturation
at 94 ◦C for 20 s, annealing at 56–58 ◦C for 30 s (56 ◦C for the 11 plex and 58 ◦C for the
24 plex), and extension at 72 ◦C for 1 min. A final extension step at 72 ◦C for 3 min was in-
cluded. Shrimp alkaline phosphate (SAP) treatment, single-base extension (SBE) reactions,
and preparation for mass analysis was carried out following the manufacturer’s recom-
mendations. In the MassARRAY Nanodispenser RS1000, 5–15 nl sample was robotically
spotted onto a SpectroCHIP® II (Agena Bioscience, Hamburg, Germany). Mass analysis
was carried out using the MassARRAY Analyzer 4, and the mass spectra were analysed
with the Typer 4.0 software (Agena Bioscience, Hamburg, Germany). The Hardy–Weinberg
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equilibrium (HWE) and pairwise r2 values for linkage disequilibrium (LD) were calculated
with HaploView version 4.2 [16].

2.4. Selection of Variants for Eye Colour Prediction Model (Discovery Data Set)

Eye colour was considered in three different reporting systems, the quantitative
system (PIE-score), the two-category system, and the three-category system. For numerical
reasons (statistical modelling and stability), the PIE-score (values from −1 to 1) in the
quantitative system was transformed to resemble unbounded values. The transformation
had an inverse, such that any real number could be transformed into a PIE-score. The
PIE-score, r, was transformed by:

y = f(r) = logit (0.5 + r*0.499)

Genotypes were coded as 0, 1, or 2 according to the number of minor alleles, where
the minor alleles were determined based on the allele frequencies in all samples. Due to
low allele frequency, the two variants rs121918166 and rs74653330 were combined [11].
rs12913832 was considered dominant with AA and AG as 0 and GG as 1. For stability, the
discovery data set (757 individuals) was randomly divided into a training set (2/3) and
a test set (1/3). This was repeated 100 times. If a training set resulted in fixed variants
(i.e., only one genotype observed at a base position), a new set was randomly selected.
In the quantitative system (transformed PIE-score) and in the two-category system, data
were analysed with three different mathematical models: (i) LASSO model with main
effects [17,18]; (ii) LASSO model (with the distribution family depending on the system;
Gaussian for the quantitative system and binomial for the two-category system) with main
effects and all pairwise interactions between rs12913832 and all other variants (still obeying
the hierarchical principle such that the main effects must also be included); and (iii) a
regression tree [19]. In the three-category system, data were analysed with a classification
tree [19]. All seven mathematical models were fitted on the training set, which was also
used to compute variable importance of the top 20 variables (variants). The test data were
used for testing and estimating the test error. For LASSO regressions, the variables were
standardised (such that all had a standard deviation of (1)), and the tuning parameter
was chosen by cross-validation with 10 folds to get the most regularised model with an
error within one standard error of the minimum error amongst the folds. For LASSO
regressions, the absolute value of the estimated effect was used as variable importance. For
regression and classification trees, the variable importances provided by the R package
rpart version 4.1–15 were used [19]. Variable importances were standardised by dividing
the importance of each variant with the sum of importances within each model. The mean
variable importance (across all models) was used to rank variables (i.e., the variants). The
top 12 performing variants were selected for an eye colour prediction model.

2.5. Variant Typing (Model Data Set)

The 12 selected variants and two non-selected SNPs from the IrisPlex [3] were typed
with SNaPshot (rs12913832, rs12896399, rs16891982, rs1800407, rs10131374, rs1126809,
rs121918166, rs1408799, rs1800401, rs4904927, rs7120151, rs74653330, rs12203592, and
rs1393350) in the model data set comprising 523 Norwegian individuals (Table S2). DNA
was amplified in one multiplex reaction (14-plex) using the Qiagen Multiplex PCR kit
(Qiagen, Hilden, Germany) in a final reaction volume of 10 μL. The PCR comprised
denaturation for 15 min at 95 ◦C followed by 35 cycles of 94 ◦C for 30 s, 58 ◦C for 30 s,
72 ◦C for 30 s, and a final extension step of 72 ◦C for 10 min. A total of 5 μL amplified
DNA/PCR product was treated with 2 μL ExoSAP-IT™ (Thermo Fisher Scientific, Waltham,
MA, USA) for 60 min at 37 ◦C and 15 min at 75 ◦C. Single-base extension was performed
with 1 μL cleaned PCR product, 2 μL SNaPshot™ Multiplex Ready Reaction Mix, 1 μL
nuclease-free water (G-Biosciences), and 1 μL SBE primer mix (Table S2). Thermal cycling
comprised 30 cycles of 96 ◦C for 10 s, 55 ◦C for 5 s, and 60 ◦C for 30 s. SBE products
were treated with 1 μL SAP (Thermo Fisher Scientific, Waltham, MA, USA) for 60 min at
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37 ◦C and 15 min at 75 ◦C. Separation and detection of SBE products were carried out on
an ABI 3500 Genetic Analyser (Thermo Fisher Scientific, Waltham, MA, USA) using the
FragmentAnalysis36_POPxl run module (POP-4™ polymer, 36 cm capillary, Dye Set E5).
Capillary electrophoresis was performed with 1 μL SAP-treated SBE products and 20 μL
Hi-Di formamide mixed with GeneScan™-120 LIZ® Size Standard (200:1). The results were
analysed with GeneMapper® ID-X v.1.5 (Thermo Fisher Scientific, Waltham, MA, USA).
One of the selected variants, rs7120151, could not be typed and was excluded. Hence, we
used 11 selected variants for the eye colour prediction model (EC11).

2.6. Eye Colour Prediction Modelling (Model Data Set)

Eye colour prediction models were modelled with leave-one-out cross-validation
(LOOCV) using the model data set (523 Norwegian individuals) and the selected variants.
For observation number i, all observations except number i were used to train the model.
The model was used to predict the eye colour of observation i, and the predicted and
observed values were compared. Three different reporting systems were used (quantitative
system, two-category system, and three-category system), and thereby three different ways
of measuring the prediction error were employed. For the quantitative system, a linear
regression model was used where the prediction error was the mean squared error. For the
two-category system, a logistic regression model was used where blue was chosen as 1 and
brown as 0 (without loss of generality). The prediction error for a predicted probability (p)
was log(p) if the true eye colour was blue, and log(1-p) if the true eye colour was brown.
For the three-category system, a multinomial logistic regression model was used [20]. The
prediction error was the Kullback–Leibler divergence between the observed distribution
(the observed eye colour has probability 1, and the other two categories probability 0) and
the estimated probabilities. All prediction errors were out-of-sample prediction errors. For
each reporting system, the modelling was performed with three different variant (SNP)
sets: the six IrisPlex SNPs, the 11 SNPs selected in this study (EC11), and rs12913832 alone.
This resulted in a total of nine models. Lastly, we used the IrisPlex online tool (model called
IrisPlex Web) (https://hirisplex.erasmusmc.nl/, accessed 1 July 2020) to predict eye colour
in three categories.

3. Results

3.1. Allele Frequencies of 44 Variants in the Discovery Data Set

We investigated 44 pigmentary variants in our discovery data set of 757 individuals. In
this work, we typed 33 variants [12] in two multiplexes using single-base extension. Eleven
variants were typed in previous studies [11,13]. The allele frequencies of the 44 variants are
shown in Table 2. The allele frequencies were similar in the Danish, Swedish, and Italian
populations with small discrepancies between the Scandinavian (Danish and Swedish)
and Italian populations, especially in rs12913832 and rs1800407 (Table S3). Moreover, two
variants, rs12913832 and rs16891982, deviated significantly from the Hardy–Weinberg
equilibrium (HWE) (p-value < 0.001) in the discovery data set. This could be explained
by positive selection in the European population or a lack of random mating between the
Scandinavian (Danish and Swedish) and the Italian populations.
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Table 2. Allele frequencies of 44 variants typed in the discovery data set and 13 variants typed in the model data set.

Gene Variant 1 Reference
Allele

Variant Allele

Variant Allele Frequency

Discovery Data
Set (n = 757)

Model Data Set
(n = 523)

HERC2 rs12913832 * A G 0.74 0.83
IRF4 rs1050976 C T 0.44
IRF4 rs10530949 TCT - 0.43
IRF4 rs12211228 G C 0.14
IRF4 rs9378807 C T 0.49
TYR rs11018509 T A 0.29
TYR rs1126809 G A 0.24 0.24
TYR rs1393350 * G A 0.23 0.23
TYR rs2047512 T C 0.35
TYR rs34749698 T C 0.23
TYR rs7120151 2 A G 0.74 NA
TYR rs9919559 T C 0.33

SLC24A4 rs10131374 G A 0.14 0.15
TYRP1 rs10491745 T C 0.82

SLC24A4 rs12590749 C A 0.37
SLC24A4 rs12880508 C T 0.74
SLC24A4 rs12894551 T C 0.65
TYRP1 rs1408799 T C 0.68 0.69

SLC24A4 rs17128288 A G 0.30
SLC24A4 rs17128324 C T 0.17
TYRP1 rs201447946 T TA 0.06

SLC24A4 rs34755843 CGACTCT - 0.16
SLC24A4 rs35617057 G T 0.41
SLC24A4 rs4904887 C G 0.36
SLC24A4 rs4904891 G C 0.35
SLC24A4 rs4904897 C T 0.22
SLC24A4 rs4904927 A G 0.87 0.89
SLC24A4 rs59977926 T C 0.18
TYRP1 rs62538950 A T 0.10
TYRP1 rs62538956 T C 0.11

SLC24A4 rs7144273 C T 0.49
SLC24A4 rs7152962 G A 0.23
SLC24A4 rs7401792 G A 0.62
TYRP1 rs74606098 C T 0.06
TYRP1 rs79586719 G A 0.06
OCA2 rs1800407 * C T 0.07 0.03
IRF4 rs12203592 * C T 0.08 0.09

SLC24A4 rs12896399 * G T 0.49 0.52
SLC45A2 rs16891982 * C G 0.93 0.95

OCA2 rs1800401 G A 0.04 0.05
OCA2 rs1800414 T C <0.01
OCA2 rs62008729 C T 0.09
OCA2 rs121918166 2 C T <0.01 0.01
OCA2 rs74653330 2 C T <0.01 0.02

1 Variants in bold were part of the EC11 SNPs and typed in the model data set. rs7120151 was not included in the final prediction modelling.
2 The combined frequency of rs121918166 and rs74653330 was 0.01 in the discovery data set. * Part of the IrisPlex prediction model [3]. NA:
not analysed.

3.2. Selection of Variants for Eye Colour Prediction (Discovery Data Set)

The discovery data set with information on eye colour and the 44 pigmentary variants
was analysed with seven different mathematical models. Variants were ranked according
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to the mean variable importance across the mathematical models (Table 3 and Table S4).
rs12913832 was the top-performing SNP in all seven mathematical models and ranked
number one (Table 3). The mean variable importance for rs12913832 was 74.6% (Table 3).
rs121918166 and rs74653330 were combined as one variable and ranked second (Table 3).
We saw a drop in mean variable importance after rank 11 (Table S4). Hence, we selected the
top 11 performing variables (comprising 12 variants) for a new eye colour SNP set (Table 3).
These variants had mean variable importances of at least 0.3% (Table 3 and Table S4).
Four of six variants in the IrisPlex assay [3] were among the selected variants (rs12913832,
rs16891982, rs1800407, and rs12896399), whereas the TYR variant rs1393350 (ranked 18)
and the IRF4 variant rs12203592 (not in top 20) from the IrisPlex were not selected.

Table 3. Twelve variants selected for the EC11 SNP set.

Rank Gene Variant
Mean Variable

Importance

1 HERC2 rs12913832 * 74.63%
2 OCA2 rs121918166 + rs74653330 8.54%
3 SLC45A2 rs16891982 * 6.23%
4 OCA2 rs1800407 * 5.26%
5 TYRP1 rs1408799 1.54%
6 SLC24A4 rs4904927 1.19%
7 SLC24A4 rs12896399 * 0.68%
8 TYR rs1126809 0.47%
9 TYR rs7120151 1 0.46%

10 SLC24A4 rs10131374 0.32%
11 OCA2 rs1800401 0.32%

1 Variant not included in the final prediction modelling. * Part of the IrisPlex prediction model [3].

3.3. Typing of Selected Variants and IrisPlex SNPs (Model Data Set)

The 12 selected variants (SNPs) were typed with single-base extension in an indepen-
dent data set, the model data set of 523 Norwegians (bold in Tables 2 and 3). To enable
comparison with the IrisPlex, we included two SNPs from the IrisPlex assay, rs12203592
and rs1393350, in a multiplex comprising 14 SNPs. One SNP, rs7120151, that was ranked as
number 9 (Table 3), was excluded due to poor amplification of the A allele. We obtained 523
complete profiles, including the 11 selected SNPs (EC11) (Table 2) and the two additional
IrisPlex SNPs.

3.4. Eye Colour Prediction Models with EC11, IrisPlex SNPs, and rs12913832

We constructed nine different eye colour prediction models based on the model data
set with 523 Norwegians by using three different reporting systems and three different
SNP sets (Tables 2 and 3). We also used the IrisPlex Web for eye colour prediction using
the three-category system. Prediction errors for each eye colour prediction model are
presented in Table 4. Since we used three different reporting systems, the models within
each system have their own measure of prediction error. Therefore, the performance of
SNP sets (including prediction errors) can only be directly compared within the same but
not across different reporting systems. The EC11 models had the smallest error under all
reporting systems, followed by IrisPlex Norway and rs12913832. Under the three-category
system, the IrisPlex Web resulted in the highest prediction error (Table 4).
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Table 4. Prediction errors for the nine eye colour prediction models (three reporting systems modelled
with three SNP sets) and the IrisPlex online tool (IrisPlex Web).

Eye Colour
Prediction Model

Quantitative System 1 Two-Category
System 2

Three-Category
System 3

EC11 5.07 0.26 0.59
IrisPlex Norway 5.90 0.30 0.66

rs12913832 6.96 0.32 0.69
IrisPlex Web * NA NA 0.80

1 Prediction error is the mean squared error. 2 Prediction error for a predicted probability, p, is log(p) if the true
eye colour was blue, and log(1-p) if the true eye colour was brown. 3 Prediction error is the Kullback–Leibler
divergence. * The IrisPlex Web predicts eye colour according to a three-category system. NA: not analysed.

The sensitivity and specificity of eye colour prediction models in the two-category
and the three-category reporting systems were determined without applying a probability
threshold (pmax) (Tables 5 and 6). Hence, the predicted eye colour was the eye colour with
the highest probability value. The rs12913832 and IrisPlex Norway models showed the
same sensitivity and specificity (0.92 and 0.84, respectively) in the two-category system.
The EC11 was slightly more sensitive (0.96), and in turn, slightly less specific (0.82) (Table 5
and Table S5).

Table 5. Sensitivity and specificity of eye colour prediction models in the two-category reporting
system modelled with three SNP sets. No probability threshold was applied (pmax).

Two-Category System Sensitivity 1 Specificity 1

rs12913832 0.92 0.84
IrisPlex Norway 0.92 0.84

EC11 0.96 0.82
1 Reference is blue eye colour.

Table 6. Sensitivity and specificity of eye colour prediction models in the three-category reporting
system modelled with three SNP sets and the IrisPlex Web model. No probability threshold was
applied (pmax).

Three-Category
System

Sensitivity 1 Specificity 1

rs12913832
Blue 0.95 0.61

Intermediate 0.00 1.00
Brown 0.95 0.87

IrisPlex Norway
Blue 0.94 0.61

Intermediate 0.10 0.97
Brown 0.86 0.90

EC11
Blue 0.95 0.59

Intermediate 0.15 0.95
Brown 0.88 0.96

IrisPlex Web
Blue 0.95 0.60

Intermediate 0.00 1.00
Brown 0.95 0.88

1 Reference is blue eye colour.

In the three-category system, the sensitivity was highest for blue and brown eye
colours and lowest for intermediate eye colour with all three SNP sets and the IrisPlex Web
(Table 6). The rs12913832 and IrisPlex Web predictions resulted in the highest sensitivity for
brown eye colour: 0.95, whereas the IrisPlex Norway and EC11 models had slightly lower

408



Genes 2021, 12, 821

sensitivities (Table 6). For blue eye colour, the sensitivities were similar for all models.
No individuals were predicted to have intermediate eye colour with either rs12913832 or
the IrisPlex Web. Hence, the sensitivity was 0, and the specificity was 1 (Table 6). Of the
individuals with intermediate eye colours, 69% and 72% were incorrectly predicted to have
blue eye colours with the two models, respectively (Table S6). In contrast, intermediate eye
colour predictions were obtained with IrisPlex Norway and EC11. However, only 48% and
46% of the predictions were correct (Table S6). Thus, the sensitivity was low (0.10 and 0.15,
respectively), and the specificity was high (0.97 and 0.95, respectively) (Table 6).

Figure 1 shows the percentages of correct, incorrect, and inconclusive predictions
for prediction models in the two-category reporting system. Using pmax, 89% of the
predictions with both rs12913832 and IrisPlex Norway were correct (Figure 1, Table S5).
The EC11 model resulted in 92% correct predictions (Figure 1). Here, 93% of the blue eye
colour predictions and 90% of the brown eye colour predictions were correct (Table S5).
We also evaluated the prediction with a probability threshold of 0.7 in the two-category
reporting system (Figure 1). If the highest prediction value was below 0.7, the prediction
was defined as inconclusive. No eye colours were inconclusive with rs12913832 (Figure 1).
The IrisPlex Norway and EC11 resulted in 9% and 5% inconclusive predictions, respectively
(Figure 1). With the IrisPlex Norway, 62% of the inconclusive eye colours were brown
according to the PIE score. With EC11, it was only 46% (Table S5).

 

Figure 1. Performance of eye colour prediction models in the two-category reporting system modelled with three SNP sets:
rs12913832, IrisPlex Norway, and EC11. Bars represent the percentage of correct, incorrect, and inconclusive predictions
with no probability threshold (pmax) and a probability threshold of 0.7 (p > 0.7).

In the three-category reporting system, we tested the prediction with pmax, a proba-
bility threshold of 0.5, and a probability threshold of 0.7 (Figure 2). With no probability
threshold, the rs12913832, IrisPlex Norway, and IrisPlex Web models all resulted in 72%
correct predictions (Figure 2, Table S6). The EC11 model resulted in a slightly higher
number of correct predictions (75%) (Figure 2, Table S6). When applying a probability
threshold of 0.5, predictions with rs12913832 were unchanged compared with predictions
without probability threshold (Figure 2). Predictions with the IrisPlex Web tool were also
similar though 3% of the total predictions were inconclusive. There was a slight decrease
in the number of correct and incorrect predictions with EC11 and IrisPlex Norway as both
models resulted in 2% inconclusive predictions (Figure 2). When applying a probability
threshold of 0.7, blue eye colour was correctly predicted in 95% of the blue-eyed individuals
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with rs12913832, but no individuals were predicted to have brown eye colours (Table S6).
Thus, the total number of correct predictions with rs12913832 was only 53%. The number
of correct predictions using the 0.7 probability threshold was highest with IrisPlex Web
(Figure 2). However, the IrisPlex Web also resulted in the highest percentage of incorrect
predictions (20%) and resulted in 15% inconclusive predictions (Figure 2). The IrisPlex
Norway model resulted in only 8% incorrect predictions but a high number of inconclusive
predictions (51%) (Figure 2). Prediction with EC11 resulted in 12% incorrect predictions,
32% inconclusive predictions, and only 54% correct predictions (Figure 2). Of the 32%
inconclusive eye colour predictions, 49% had blue eye colour, 39% had intermediate eye
colour, and only 12% had brown eye colour based on the PIE-score (Table S6). Especially
the percentage of brown-eyed individuals with inconclusive predictions was much lower
than compared with rs12913832, IrisPlex Norway, and IrisPlex Web. For these models, the
percentages were 32–65% (Table S6).

 

Figure 2. Performance of eye colour prediction models in the three-category reporting system modelled with three SNP sets:
rs12913832, IrisPlex Norway and EC11, as well as performance of the IrisPlex Web prediction model. Bars represent the
percentage of correct, incorrect, and inconclusive predictions with no probability threshold (pmax), probability threshold of
0.5 (p > 0.5), and probability threshold of 0.7 (p > 0.7).

4. Discussion

In this study, we selected 11 SNPs (EC11) for eye colour prediction and developed
new eye colour prediction models for a two-category and a three-category system that
performed better than the corresponding IrisPlex and rs12913832 prediction models. The
11 SNPs in EC11 were selected from a group of 44 pigmentary variants that were originally
identified in eye colour association studies [3,6] and from detailed sequence analyses of
individuals with eye colours that deviated from the expected eye colour based on the
genotype of rs12913832 [11,12]. The 44 variants were typed in 757 Europeans whose eye
colours were quantitatively determined. Seven different mathematical models were used
to rank the variants according to informativeness, and all variants with more than 0.3%
mean variable importance were selected. Four of the six SNPs in the IrisPlex assay [3]
were included in EC11. However, the TYR SNP, rs1393350 (ranked 18), was replaced
by another TYR SNP, rs1126809 (ranked 8), and the IRF4 gene represented by the SNP
rs12203592 (not in top 20) from the IrisPlex, was not included in EC11. For the selection
of SNPs, we combined individuals of Scandinavian (Danish and Swedish) and Italian
descent and treated these as one population. We are aware that we may had selected

410



Genes 2021, 12, 821

different SNPs if the selection was performed solely on either the Scandinavian or the
South European population. We typed the EC11 SNPs and the two additional IrisPlex
SNPs in an independent data set of 523 Norwegians whose eye colours were determined
with the same quantitative method as the 757 individuals in the discovery data set. We
modelled nine different eye colour prediction models on the Norwegian population using
the LOOCV method. Each eye colour prediction model consisted of a combination of one of
three reporting systems: the quantitative system (prediction of PIE score), the two-category
system (blue and brown), and the three-category system (blue, intermediate, brown), and
one of three SNP sets: EC11, IrisPlex SNPs, and rs12913832. We also evaluated the IrisPlex
Web model for prediction of eye colour in three categories. Based on the analysis of error
rates, sensitivity, and specificity of the different eye colour prediction models, there are
three main points to consider prior to implementation of eye colour prediction in a forensic
genetic setting: (1) the reference population, (2) the SNP set, and (3) the reporting strategy.

4.1. The Reference Population

The rs12913832, IrisPlex Norway, and IrisPlex Web models showed almost identical
results in the three-category system (Figure 2, Table 6). Nevertheless, a detailed comparison
between the three-category IrisPlex Norway and the IrisPlex Web models highlights the
importance of the reference population. The two models were based on the exact same
SNPs. However, the IrisPlex Norway model was developed on the Norwegian population,
which was the intended target population, whereas the IrisPlex Web model was developed
on 9466 individuals of primarily European descent [6,21,22]. The two models resulted
in the same number of correct predictions (72%) when no probability threshold was ap-
plied. With probability thresholds, inconclusive results were possible, and the IrisPlex Web
model resulted in a higher number of correct predictions than the IrisPlex Norway model
(Figure 2). However, when applying the recommended threshold for the IrisPlex Web
model (p > 0.7) [21], the number of incorrect predictions was also higher (Figure 2). The
two models showed similar sensitivities and specificities for blue and brown eye colour
but differed for the intermediate eye colour category (Table 6). A total of 123 Norwegian
individuals had intermediate eye colours according to the PIE-score (Table 1). Intermediate
eye colour predictions were obtained with the IrisPlex Norway model using both pmax and
p > 0.5 (Table S6), whereas no individuals were predicted to have intermediate eye colours
with the IrisPlex Web model (Table S6). Hence, the IrisPlex Norway model showed an
overall lower prediction error than the IrisPlex Web model (Table 4), and this emphasises
the importance of modelling a prediction model on the appropriate reference population.
This is in agreement with previous evaluations of the IrisPlex model which showed that
prediction models based on the intended target population (the reference population)
performed better than the IrisPlex Web tool [23,24]. However, it is important to note that
the differences between the IrisPlex Web and the IrisPlex Norway models may not only be
due to the different reference populations. Different strategies on phenotyping and cate-
gorisation of eye colour may also have contributed here. In our study, we determined the
eye colour quantitatively, and the eye colour prediction models were modelled accordingly.
For the IrisPlex Web model, the eye colour was evaluated by a medical researcher who
categorised eye colours in blue, brown, and non-blue/non-brown (called intermediate)
categories [3,6,21,22].

4.2. The SNP Set

The eye colour prediction models based on EC11 had the lowest prediction error
rates in all three reporting systems and consistently performed better than the rs12913832,
IrisPlex Norway, and IrisPlex Web models in the Norwegian population (Table 4). In the
three-category reporting system, only EC11 and IrisPlex Norway were able to predict
intermediate eye colours (Table 6, Table S6). For the EC11 model, intermediate eye colour
predictions were even obtained with a probability threshold of 0.7 (Table S6). We did
expect the prediction errors to decrease when the number of loci increased. However,
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the prediction errors obtained with EC11 (11 SNPs) were only slightly smaller than with
IrisPlex Norway (six SNPs), closely followed by rs12913832 (one SNP) and IrisPlex Web (six
SNPs) (Table 4). This shows that a single SNP, rs12913238, may be sufficient for prediction
of eye colour. This SNP was ranked as number one across all mathematical models with
a mean variable importance of 74.6% (Table 3). We modelled rs12913832 in a dominant
matter and acknowledge that it is unreasonable to predict eye colour in three categories
with a predictor variable containing only two levels (AA/AG and GG). However, even in
the three-category reporting system, prediction with rs12913832 showed a lower prediction
error than prediction with the IrisPlex Web (Table 4). In both the three-category reporting
system and the two-category reporting system, prediction with rs12913832 and IrisPlex
Norway performed almost identically (Figure 1, Figure 2). This stresses the importance
of rs12913832 for prediction of eye colour and shows that the remaining five SNPs in the
IrisPlex SNP set have very small effects on the outcome of the eye colour prediction in the
studied population.

4.3. The Reporting Strategy

In this work, we tested three different eye colour categorisation systems: the quantita-
tive system (prediction of PIE score), the two-category system (blue and brown), and the
three-category system (blue, intermediate, and brown). Although it is possible to report
the predicted eye colour in the form of a PIE-score, this likely requires that the end-user or
the reporting laboratory translate the PIE-score into an eye colour category. Therefore, the
use of a quantitative system for reporting is not relevant in a forensic genetic setting. The
difference between the two- and three-category system is the definition of the intermediate
eye colour, which is very difficult to perceive. When multiple individuals were asked
to evaluate eye colours categorised as intermediate, they often disagreed, whereas they
agreed much more frequently when eye colours were blue or brown [15]. Intermediate eye
colour is predicted as the most likely eye colour (without any probability threshold) for
only 8% (60 out of 729) and 14% (7.508 out of 52,488) of the possible genotype combinations
in the IrisPlex Web and EC11 models, respectively [10] (Table S7). For the IrisPlex Web, the
maximum probability value for prediction of intermediate eye colour is 0.62 [10]. With
EC11, it is 0.94 (Table S7). In this study, we did observe intermediate eye colour predictions
with EC11 with high probability values (maximum: 0.82). However, the intermediate eye
colour predictions were incorrect more than half of the time (Table S6). Overall, eye colour
prediction in two categories resulted in more correct predictions than eye colour prediction
in three categories (92% vs. 75% for EC11; 89% vs. 72% for IrisPlex Norway and 89% vs.
72% for rs12913832) (Figures 1 and 2). Hence, the definition of an intermediate eye colour
category is counterintuitive, as it is both difficult to identify and predict. A recent study
discusses the need for standardised methods for reporting forensic DNA phenotyping
predictions to the police [25]. Reducing the complexity of eye colour predictions to only
two categories results in only two hypotheses (H1: The person has brown eyes and H2:
The person has blue eyes). Hence, it is possible to report the weight of the evidence with
a single likelihood ratio, which resembles standard STR-profiling reports. The likelihood
ratio could be supplemented with picture examples of eye colours represented by each
category. This may overcome any misunderstandings or subjective opinions of eye colour
interpretation, especially for eye colours that may appear non-blue and non-brown.

4.4. DNA Phenotyping in Forensic Genetics

The Section of Forensic Genetics in Denmark recently began offering eye colour pre-
diction to the police using the two-category system based on the genotype of rs12913832.
Prediction of EVCs can cause ethical concerns as discussed in [26]. This is especially
apparent if the genetic markers used for prediction a certain trait are also linked to
diseases [26]. That is not the case for rs12913832. The SNP is included in the Pre-
cision ID Ancestry Panel (Thermo Fisher Scientific, Waltham, MA, USA), which has
already been validated for case work [5,27,28]. The weight of the evidence for both
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ancestry and eye colour predictions are reported as likelihood ratios. For eye colour
predictions in the Danish population, LR = (rs12913832:GG|H1/rs12913832:GG|H2) =
0.1, LR = (rs12913832:AG|H1/rs12913832:AG|H2) = 19, and LR = (rs12913832:AA|H1/
rs12913832:AA|H2) = 54 [15], where H1: The person has brown eyes and H2: The person
has blue eyes. The EC11 model may be implemented at the Section of Forensic Genetics in
Denmark in the future once the EC11 markers are included in a validated massively parallel
sequencing (MPS) assay. The most important shortcoming of the rs12913832 two-category
prediction model is the lack of information gained when including the two OCA2 variants,
rs121918166 and rs74653330. These variants were previously shown to be of importance
for blue eye colour in Scandinavians with the rs12913832:AG genotype [11]. The variants
had low frequencies in Danes and Swedes and were completely absent in Italians [11]
(Table S3). These variants combined were ranked as second most important, with a mean
variable importance of 8.5% (Table 3). In the Norwegian data set, 30 individuals with the
rs12913832:AG genotype had blue eye colours according to the PIE-score. Seventeen of the
30 individuals had at least one of the OCA2 variants and were correctly predicted to have
blue eyes using the EC11 two-category model. By contrast, only one of the 30 individuals
was correctly predicted with the IrisPlex Norway model, and none were correctly predicted
with rs12913832. Moreover, two Norwegians with the rs12913832:AA genotype had blue
eye colours according to the PIE-score. One of the two individuals was correctly predicted
to have blue eye colour with the EC11 two-category model. This individual was homozy-
gous for the rs74653330 variant. We hypothesise that the second individual has other
variants in or around the OCA2 gene that could explain the formation of blue eye colour
in the rs12913832:AA genotype background. Both individuals were incorrectly predicted
to have brown eye colours with the IrisPlex Norway and rs12913832 models. Lastly, 10
Norwegians with the rs12913832:GG genotype had brown eyes according to the PIE-score.
Only one of them was correctly predicted to have brown eyes with the two-category EC11
and IrisPlex Norway models. This shows that we do not fully understand the formation of
brown eye colour in rs12913832:GG individuals and that the EC11 model may have to be
expanded further.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
425/12/6/821/s1; Table S1: Primer sequences and primer concentrations for 24 plex and 11 plex
typed in the variant discovery data set; Table S2: Primer sequences and primer concentrations
for 14 plex typed with SNaPshot in the model data set; Table S3: Allele frequencies of 44 variants
typed in the discovery data set comprising Danish, Swedish, and Italian individuals (DK/SWE/ITA)
and 13 variants typed in the model data set comprising Norwegian individuals (NO); Table S4:
Mean variable importance of top 20 variants; Table S5: Confusion matrices for two-category system
prediction models; one for each SNP set and each threshold (pmax and p > 0.7); Table S6: Confusion
matrices for three-category system prediction models; one for each SNP set and each threshold
(pmax, p > 0.5, and p > 0.7); Table S7: Eye colour prediction outcomes for 52,488 possible genotype
combinations using the EC11 three-category model.
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Abstract: Decontamination strategies and their efficiencies are crucial when performing routine
forensic analysis, and many factors influence the choice of agent to use. In this study, the effects of
ten different cleaning strategies were evaluated to compare their ability to remove contaminating
DNA molecules. Cell-free DNA or blood was deposited on three surfaces (plastic, metal, and
wood) and decontaminated with various treatments. The quantities of recovered DNA, obtained
by swabbing the surfaces after cleaning using the different strategies, was analyzed by real-time
PCR. Large differences in the DNA removal efficiencies were observed between different cleaning
strategies, as well as between different surfaces. The most efficient cleaning strategies for cell-free
DNA were the different sodium hypochlorite solutions and Trigene®, for which a maximum of 0.3%
DNA was recovered on all three surfaces. For blood, a maximum of 0.8% of the deposited DNA
was recovered after using Virkon® for decontamination. The recoveries after using these cleaning
strategies correspond to DNA from only a few cells, out of 60 ng of cell-free DNA or thousands of
deposited blood cells.

Keywords: DNA molecules; decontamination; cleaning strategies

1. Introduction

DNA analysis of trace evidence can present many challenges in a forensic investigation,
such as samples that contain low quantities of biological material and degraded DNA.
However, improved typing kits for forensic analysis may allow STR profiling on DNA
extracted from only a few cells [1,2]. In addition, using mitochondrial DNA (mtDNA)
instead of nuclear DNA (nDNA) markers allows testing of even lower DNA input amounts,
due to the high copy number of mtDNA in each cell [3,4]. Another challenge, especially
when analyzing mtDNA, is that exogenous DNA can be present in the samples and cause
ambiguous or erroneous results. Contaminating DNA may be introduced to a sample by
the first responding officers, rescue workers, or crime scene investigators present at the
crime scene, archaeologists during excavations or later by laboratory personnel during
DNA analysis [5–7]. Contamination may also originate from other samples processed at
the same laboratory (cross-contamination) [6,8] or even from disposables and consumables
contaminated during manufacturing [9,10].

Several preventive measures should be taken to reduce the risk of contamination in
order to assure a high quality of DNA profiling results. Contamination is monitored by
establishing elimination databases with DNA profiles from staff [11], periodic wipe tests,
and the use of no template control (NTC) reactions [8]. Moreover, personal protective
clothing, disposable consumables, aerosol resistant tips, and dedicated instruments are
used to prevent the introduction of contaminating DNA into the laboratory environment
and casework samples. A laboratory construction with designated pre- and post-PCR
rooms equipped with dead-air cabinets and a unidirectional workflow is also important. In
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addition, several decontamination strategies (e.g., chemical cleaning agents and ultraviolet
radiation [UV]) can be used for the decontamination of laboratory surfaces and equipment.
While decontamination agents have various DNA damaging mechanisms, UV radiation is
destructive because it oxidizes bases to introduce single- and double-strand breaks in the
DNA molecules [12–18].

This study evaluates the decontamination efficiency of ten different cleaning strategies:
ethanol, UV radiation, ethanol in combination with UV radiation, fresh and stored house-
hold bleach, DAX Ytdesinfektion Plus, Rely+OnTM Virkon®, Trigene®, DNA Remover®,
and sodium hypochlorite. Most forensic materials have a majority of the DNA present
within cells, but it also exists in free form, so-called cell-free DNA. As cells deteriorate
with time and in challenging environments, the cell walls become disrupted, resulting in a
release of cell content, including the DNA [19,20]. Therefore, both cell-free (extracted DNA)
and cell-contained DNA (blood) were placed on three different surfaces (plastic, metal, and
wood) in the experiments. The artificially contaminated surfaces were cleaned with the
different treatments and then swabbed for residual DNA. Real-time PCR quantification of
mtDNA extracted from the collected samples was thereafter used to compare the efficiency
of the different cleaning strategies.

2. Materials and Methods

Human male DNA in a 10 μL volume (6 ng/μL, PE Biosystems, Foster City, CA, USA)
was deposited on different surfaces. The applied DNA solution consisted of 60 ng DNA,
with approximately 18 million mtDNA copies, assuming 2000 mtDNA copies per cell.
The mtDNA and nuclear DNA (nDNA) ratio for the DNA sample used in this study was
estimated previously (by comparison to a plasmid clone of mtDNA) [21]. As cell-contained
DNA, 10 μL of whole blood (unknown DNA concentration) from one anonymous donor
was deposited on several surfaces. The sample solutions were deposited in marked 25 mm-
wide circles on plastic, metal, or wood surfaces. The wood consisted of a skirting board
with one layer of water-based transparent white base paint, the metal of aluminum foil
and the plastic of plastic document folders. These surfaces were chosen to mimic common
types of material in surfaces of workbenches and equipment in the laboratory environment.
The liquid was spread with a pipette tip within the circle and left to dry for two hours.

The different decontaminating strategies to be evaluated were chosen following an
informal survey of the most commonly used treatments among European forensic laborato-
ries. The ten strategies selected are described in detail in Supplementary Materials, Table S1.
Briefly, the strategies consisted of 70% aqueous ethanol, UV radiation (20 min at a distance
of 60 to 70 cm, 254 nm), 70% aqueous ethanol in combination with UV radiation, 15%
freshly diluted Klorin Original household bleach (Colgate-Palmolive AB, New York, NY,
USA), (3.6% sodium hypochlorite diluted to 0.54%), 15% stored Klorin household bleach
(2.7% sodium hypochlorite diluted to 0.4%), DAX Ytdesinfektion Plus, 1% Rely+OnTM

Virkon®, 10% Trigene® Disinfectant Cleaner, DNA Remover®, and 0.4% freshly diluted
sodium hypochlorite. The commercial cleaning agents were prepared according to the
manufacturers’ instructions. The stability of diluted sodium hypochlorite for longer peri-
ods has been discussed as the concentration of available chlorine decreases with time [22].
Therefore, both diluted household bleach stored in a dark refrigerator at 8 ◦C for 80 days
and freshly made dilutions were evaluated.

The liquid cleaning agents were administered to the artificially contaminated surfaces
by one spray from a calibrated spray bottle. The calibration was performed by weighing
five replicates of sprayed volumes followed by adjustments when needed. The cleaned
areas were wiped in three circular movements in a similar manner and were performed
by the same person using dust-free paper. The cleaned areas were thereafter left to dry
for 120 min, with the exception of areas cleaned with Trigene®, which was sprayed with
a single spray of water before wiping, and then left for 10 min. The entire marked area
for each sample was swabbed with a cotton swab (Selefa, OneMed, Danderyd, Sweden)
moistened in 0.9% sodium chloride. Five replicates were collected for each test parameter
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(surface and treatment). No-treatment controls, consisting of the addition of DNA or
blood without any decontamination treatment, were collected in three replicates for each
surface. The no-treatment controls revealing a maximum DNA yield were used to estimate
the ability of the cleaning strategies to remove DNA contamination by comparing the
percentage of recovered DNA for the different cleaning strategies. Negative control swabs
(background controls) were obtained by sampling three replicates from surfaces without
addition of DNA or blood. Thus, at least three replicates were available and analyzed for
all different tests.

DNA extraction was performed using the DNeasy Blood and Tissue kit (Qiagen,
Hilden, Germany), with the final extracts being eluted in a total volume of 100 μL. Mito-
chondrial DNA was quantified using a real-time PCR based assay described by Andréasson
et al. [21]. This assay was chosen in order to achieve a highly sensitive DNA quantification
allowing determination of trace residues of DNA left after cleaning. The PCR reaction
consisted of 2X SsoAdvanced™ Universal SYBR Green Supermix (Bio-Rad Laboratories
Inc., Hercules, CA, USA), 400 nM each primer (mt-8294F/mt-8436R), and 5 μL DNA extract
in a total reaction volume of 25 μL [21]. Real-time PCR was performed using the Bio-Rad
CFX96™ Real-Time System (C1000 Touch Thermal Cycler, Bio-Rad Laboratories, Hercules,
CA, USA) and Bio-Rad CFX Manager 2.1 software. The PCR conditions consisted of 98 ◦C
for 2 min followed by 40 cycles at 95 ◦C for 5 s, 60 ◦C for 20 s, and 95 ◦C for 5 s. Negative
controls were included in all extraction (no swabs added) and quantification (water instead
of DNA added) steps.

Data analysis was performed using Microsoft® Excel (version 2019). The 1.5 × interquar-
tile rule was applied to the five biological replicates for each condition to identify potential
outliers. Data with and without removal of outliers are presented in Tables S2 and S3. The
efficiencies of the cleaning strategies were calculated as a percentage of the positive con-
trols. RStudio® (version 1.3.1093) was used to produce Figures 1 and 2 using the following
packages: stats [23], tidyverse, dplyr, ggpubr, ggplot2, and bibtex.

Figure 1. The amount of mtDNA recovered from cell-free DNA deposited on the different surfaces
following cleaning with the different strategies. The results are presented as the mean of mtDNA
copies (and standard deviations) for a minimum of three replicates recovered from each surface after
using the cleaning treatments. The agents are displayed according to the mean recovery for the three
surfaces from the highest to the lowest recoveries.
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Figure 2. The amount of mtDNA recovered from blood deposited on the different surfaces following
cleaning with the different strategies. The results are presented as the mean of mtDNA copies (and
standard deviation) for a minimum of three replicates recovered from each surface after using the
cleaning treatments. The agents are displayed according to the mean recovery for the three surfaces
from the highest to the lowest recoveries.

3. Results

An evaluation of the decontamination efficiency of ten cleaning strategies was per-
formed by quantifying the amount of mitochondrial DNA (from both cell-free DNA and
cell-contained DNA) recovered after the cleaning of contaminated plastic, metal, and wood
surfaces. The mtDNA quantification results for each combination of cleaning treatment and
surface are illustrated in Figures 1 and 2 and Supplementary Materials, Tables S2 and S3.
In general, there were large differences in the efficiency of DNA removal between the tested
cleaning strategies.

For the cell-free DNA, recoveries of approximately 52, 32, and 27% of the total 60 ng
DNA deposited were observed for the no-treatment controls on the plastic, metal, and
wood surfaces, respectively. These quantities were used to compare the recovery after the
different cleaning strategies. The background controls generated less than 400 mtDNA
copies (out of 18 million copies deposited) and were, therefore, ignored in the further
evaluation. The recoveries expressed in mtDNA copies and the percent of recovery relative
to the no-treatment controls are shown in Table 1.

The cleaning procedures of ethanol and UV were quite inefficient when used alone,
with DNA recoveries of up to 11% and 73%, respectively, from all surfaces. However, the
combination of both treatments was much more efficient, with recoveries between 0.1 to
0.7% from the three surfaces. Moreover, fresh bleach, stored bleach, Trigene®, and sodium
hypochlorite were very efficient in removing DNA, with recoveries from 0.0 to 0.3% from
all surfaces. These five decontamination strategies (EtOH+UV, fresh bleach, stored bleach,
Trigene®, and sodium hypochlorite) resulted in less than 1% of the DNA recovered from
the surface. In addition, if accepting up to 5% recovered DNA, Virkon® is also efficient.
The least efficient decontamination strategies were UV and DAX Ytdesinfektion Plus, with
up to 73% and 19% DNA recovered, respectively.
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Table 1. The efficiency of cell-free DNA removal after cleaning with different treatments on plastic,
metal, and wood surfaces. The table is summarizing the mean in mtDNA copies (and standard
deviation) per category (3 to 5 biological replicates). The efficiency (Yield) is expressed as the
percentage of recovered mtDNA copies of the no-treatment controls.

Cell-Free DNA/Surface PLASTIC METAL WOOD

Cleaning Agent Mean SD Yield Mean SD Yield Mean SD Yield

No-treatment controls 9,396,667 4,074,633 5,701,333 4,395,753 4,792,667 3,528,892

EtOH 131,640 120,771 1.4% 655,333 78,520 11.4% 63,460 45,714 1.3%

UV 1,136,000 361,494 12.1% 115,507 84,110 2.0% 3,500,000 1,530,768 73.0%

EtOH+UV 4724 3020 0.1% 42,567 1570 0.7% 11,480 8569 0.2%

Fresh bleach 1991 2900 0.0% 23 30 0.0% 15,313 8443 0.3%

Stored bleach 918 1238 0.0% 85 77 0.0% 4337 5040 0.1%

DAX Ytdesinfektion Plus 1,399,800 1,357,424 14.9% 1,108,198 812,671 19.2% 486,000 252,391 10.1%

Virkon® 188,720 75,615 2.0% 123,350 77,649 2.1% 201,400 84,417 4.2%

DNA Remover® 304,333 3055 3.2% 149,910 142,169 2.6% 416,000 265,640 8.7%

Trigene® 4223 4026 0.0% 970 1657 0.0% 0 0 0.0%

Sodium hypochlorite 199 151 0.0% 0 0 0.0% 8 16 0.0%

Background controls 15 26 37 65 354 352

For cell-contained DNA in the form of blood, the recoveries expressed in mtDNA
copies and the percent of recovery relative to the no-treatment controls are shown in Table 2.
Also, for blood, the cleaning procedures of UV and ethanol were relatively inefficient when
used alone, with recoveries of up to 11% and 70%, respectively, from all surfaces. Again,
the combination of both treatments (EtOH+UV) was much more efficient, with recoveries
between 0.6 to 2.9% from the three surfaces, representing the second most efficient strategy
for blood. The most efficient strategy was Virkon®, with recoveries between 0.0 and 0.8%
for the three different surfaces. If accepting up to 5% recovered DNA, also stored bleach
fulfils the criterion. The least efficient decontamination strategy was DAX Ytdesinfektion
Plus, with up to 91% DNA recovered after cleaning.

Large differences were observed between the DNA removal of both DNA sources
(cell-free DNA and blood) from the plastic, metal, and wood surfaces, indicating differences
in surface absorbance and sampling efficiency. On the wood surface, more than 70% of
the added DNA was recovered, and, thus, not efficiently removed by the cleaning with
ethanol (for blood), UV (for cell-free DNA,) and DAX Ytdesinfektion Plus (for blood).
For these three decontamination strategies, the recoveries differed at least 40% between
wood and the other surfaces, indicating that the porous wood presents a challenge for
decontamination with large amounts of DNA remaining on the surface (Tables 1 and 2).
For cell-free DNA, UV radiation left the highest amount of mtDNA copies (73% on wood),
followed by the second highest, which was DNA in blood left by DAX Ytdesinfektion Plus
(27% on metal). DAX Ytdesinfektion Plus left the highest DNA amount from blood (91%
on wood) of all agents, followed by aqueous ethanol (70% of blood DNA on wood) and
DNA Remover® (43% of blood DNA on metal). It was observed that decontamination of
DNA is less efficient in general for DNA from blood compared to cell-free DNA, which
may be a result of the protection by the nucleus and the cell wall (Tables 1 and 2). This
is illustrated by the fact that more of the decontamination agents exceed 5% of recovered
DNA for blood than for cell-free DNA. Moreover, recovery of more than 5% of DNA from
blood was observed on all three surfaces for DAX Ytdesinfektion Plus (ranging from 18 to
91%) and EtOH (ranging from 28 to 70%).
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Table 2. The efficiency of cell-contained DNA (blood) removal after cleaning with different treatments
on plastic, metal, and wood surfaces. The table is summarizing the mean in mtDNA copies (and
standard deviation) per category (3 to 5 biological replicates). The efficiency (Yield) is expressed as
the percentage of recovered mtDNA copies of the no-treatment controls.

Blood/Surface PLASTIC METAL WOOD

Cleaning Agent Mean SD Yield Mean SD Yield Mean SD Yield

No-treatment controls 720,000 66,144 607,667 345,048 469,333 150,111

EtOH 198,200 67,277 27.5% 170,078 235,148 28.0% 330,600 108,933 70.4%

UV 29,640 8644 4.1% 21,308 15,775 3.5% 49,660 16,808 10.6%

EtOH+UV 4530 3678 0.6% 14,475 1987 2.4% 13,624 6104 2.9%

Fresh bleach 131,380 91,357 18.3% 4028 5124 0.7% 20,465 13,006 4.4%

Stored bleach 26,898 24,457 3.7% 2118 2527 0.4% 5003 1221 1.1%

DAX Ytdesinfektion Plus 131,880 81,201 18.3% 154,488 145,119 25.4% 425,000 58,151 90.6%

Virkon® 5824 7503 0.8% 395 790 0.1% 160 321 0.0%

DNA Remover® 128,060 89,646 17.8% 260,000 121,290 42.8% 0 0 0.0%

Trigene® 5598 1517 0.8% 42,775 28,180 7.0% 16,960 7688 3.6%

Sodium hypochlorite 42,310 28,842 5.9% 79,700 75,524 13.1% 15,618 19,392 3.3%

Background controls 15 26 37 65 354 352

The most successful decontamination strategies identified in this study for cell-free
DNA were fresh and stored bleach, Trigene® and sodium hypochlorite. These cleaning
strategies resulted in 0.3% or less of cell-free DNA being recovered from all surfaces, which
is equivalent to 0.05 ng DNA or approximately 15,000 mtDNA copies (approximately eight
cells) out of the 18 million mtDNA copies initially deposited on the surface. In addition,
the combination of EtOH and UV was highly efficient on all three surfaces (0.1 to 0.7%).
For blood, the best decontamination efficiency was obtained by Virkon® (0.0 to 0.8%). Thus,
some of the decontamination treatments were demonstrated as highly efficient in this study,
while others were less efficient in removing contamination.

4. Discussion

Our results demonstrate that using different cleaning strategies on three different
surfaces can remove between 27 and 100% of cell-free DNA and between 9 and 100% of
the DNA in the blood. While most treatments showed moderate differences between the
recoveries from the three surfaces, the DNA recoveries following UV treatment ranged
from 2 to 73% for cell-free DNA and from 4 to 11% for DNA in the blood (Tables 1 and 2).
The differences in the DNA recoveries from the three surfaces may be attributed to the
different structures, absorbances, and porousness of the materials as well as the efficiencies
of the different treatments. In addition, the agents may result in a chemical reaction with
components of the surface, causing for example, corrosion.

In addition to the type of cleaning agents, several other factors can influence the
efficiency of removing contaminating DNA during the cleaning process. For example,
the mechanical energy from the wiping action, combined with the chemicals used, may
enhance the cleaning effect [24]. Moreover, substantial DNA loss is expected in the sampling
by swabbing and the extraction process [25]. In this study, the sampling and extraction
efficiency was demonstrated by the no-treatment positive controls, resulting in a loss of 48,
68, and 73% of cell-free DNA from the plastic, metal and wood surfaces, respectively. It
is important to note, however, that most extraction kits are developed for the purification
of cell-contained DNA and not cell-free DNA, which may result in larger losses in this
case than for other sample types. The amount of DNA to simulate contamination to
be removed or destroyed was very high in this study, with a total of 60 ng of DNA or
10 μL of blood added to the surface. The high amounts of DNA were used to compensate
for expected loss in the initial sample preparation process and to challenge the different
cleaning strategies efficiently. The added DNA amount is excessively more than expected
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from most contamination events by aerosols or touched surfaces (without gloves) and may
only be possible to transfer to laboratory surfaces by contamination from a concentrated
DNA extract or items with relatively fresh blood stains. Despite all factors that may cause
variation, this study could demonstrate decontamination efficiency, by measurements of
DNA quantities made before and after cleaning.

Apart from efficiency, several parameters are important when choosing a decontam-
ination strategy, such as simplicity of use, safety, and cost. Ethylene oxide is a highly
efficient but poisonous agent and, therefore, unsuitable for decontamination in a labo-
ratory environment [26]. Moreover, certain combinations of agents and strategies may
be hazardous, such as 1% sodium hypochlorite and 70% ethanol, which form gaseous
chlorine and chloroform when combined [17]. It is also essential to allow practical and
straightforward daily routines. A commonly used decontaminating agent in laboratories is
1–10% sodium hypochlorite solutions, and a low-cost solution can easily be prepared by
diluting household bleach. [17]. A low-cost hypochlorite solution can easily be prepared
by diluting household bleach. In this study, the in-house sodium hypochlorite dilutions
were made at 15% for easy preparations. Due to discontinuation of the stock solution used
for the stored bleach, the bleach solutions were prepared from two different variants of
the same brand, Klorin Original and Klorin, with sodium hypochlorite concentrations of
3.6 and 2.7%, respectively. Thus, the 15% dilutions resulted in final Cl2 ion concentrations
of 0.54 and 0.4% for fresh and stored bleach, respectively. It is, therefore, important to
note that the ratio between the fresh and the stored bleach is 1:0.74 rather than 1:1 when
comparing the decontamination efficiencies. To further simplify the routines, the lasting
properties of diluted household bleach are important. The available chlorine concentration
may be affected in hypochlorite solutions when exposed to light, air, and heat, among other
factors. This may reduce the stability, but it has been shown that solutions stored up to 200
days at 4 ◦C are stable [22]. Our study demonstrated that a hypochlorite solution stored at
8 ◦C for 80 days is not less efficient than the freshly made solution. Therefore, preparing a
new solution is not needed more often than every second month if stored properly.

Many cleaning agent solutions contain hazardous chemical compounds listed in their
safety data sheets. The treatments used in this study have a variety of health risks. Some
are safe (e.g., DNA Remover®) with no risks listed, while others present several risks
(Supplementary Materials, Table S1). Health risks are very important, but also, the cost is a
relevant parameter. For example, DNA Remover® costs 100 times more than household
bleach. In contrast, Trigene® has a low cost but is associated with multiple health and
environmental hazards. Another important aspect is that the cleaning agent might inhibit
the PCR reaction and affect the downstream profiling process. An inhibitory effect has
been observed for minute amounts of Trigene® introduced into the PCR reaction, whereas
Virkon® or ethanol did not affect STR profiling [14]. All this may influence laboratories
final choice of decontamination agent.

Although sodium hypochlorite is highly efficient for the removal of DNA contami-
nation, there are several drawbacks, such as corrosion of metal instruments (e.g., scissors
and tweezers). For this reason, alternatives to bleach may be preferred for repeated de-
contamination of metal items. We performed a limited experiment with metal scissors
(stainless steel) submerged in 15% household bleach, DNA Remover®, Virkon®, and water.
Preliminary observations showed that corrosion was apparent after only one day in the
bleach solution and after five days for water, while no corrosion was observed after 14 days
in DNA Remover® or Virkon® (Table S4).Thus, as Virkon® appears to have a high DNA
removal ability, this agent may be a good option when decontaminating metal instruments,
despite a somewhat lower ability to remove cell-free contaminating DNA compared to
household bleach. However, disposable instruments for evidence sampling and recovery
(e.g., single-use scalpels or plastic tweezers) may eliminate the need for a non-corrosive
decontamination treatment either completely or at least to some extent. Alternatively, if
using sodium hypochlorite for decontamination, rinsing or wiping the surface with distilled
water should be performed to avoid corrosion [17].
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To conclude, this study showed large differences in the decontamination efficiency
between commonly used cleaning strategies on different surfaces and types of traces, cell-
free or cell-contained. Of all cleaning agents, six left around 1% or less of either cell-free
DNA or DNA in blood on all surfaces. For cell-free DNA, EtOH+UV, fresh bleach, stored
bleach, Trigene®, and sodium hypochlorite demonstrated the highest efficiency. Out of
these, the highest remaining DNA amounts of 0.7% (on metal and with removal of outliers)
correspond to 0.14 ng or around 43,000 copies of mtDNA. For cell-contained DNA as
blood, Virkon® left less than 1% DNA and the highest remaining amount corresponds
to 0.025 ng or around 7500 mtDNA copies. In addition to efficiency, parameters such as
health hazards, simplicity, and cost should also be considered. Therefore, different agents
or a combination of treatments may be optimal for the decontamination in laboratories
performing forensic DNA analysis. Considering our own requirements and priorities,
the updated routines for our laboratory will be to perform decontamination with a 15%
dilution of stored household bleach for laboratory work surfaces and with Virkon® for
metal instrumentation to avoid corrosion.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes13010162/s1: Table S1, Overview of the cleaning strategies; Table S2, Overview of the
mtDNA data in copies from cell-free DNA samples; and Table S3, Overview of the mtDNA data in
copies from blood samples; Table S4: Cleaning of scissors_HDM.
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Abstract: Skin pigmentation is one of the most prominent and variable phenotypes in humans. We
compared the alleles of 163 SNPs and indels from the Human Pigmentation (HuPi) AmpliSeq™
Custom panel, and biogeographic ancestry with the quantitative skin pigmentation levels on the
upper arm, lower arm, and forehead of 299 Pakistani individuals from three subpopulations: Baloch,
Pashtun, and Punjabi. The biogeographic ancestry of each individual was estimated using the Preci-
sion ID Ancestry Panel. All individuals were mainly of mixed South-Central Asian and European
ancestry. However, the Baloch individuals also had an average proportion of Sub-Saharan African
ancestry of approximately 10%, whereas it was <1% in the Punjabi and Pashtun individuals. The
pairwise genetic distances between the Pashtun, Punjabi, and Baloch subpopulations based on the
ancestry markers were statistically significantly different. Individuals from the Pashtun subpopula-
tion had statistically significantly lower skin pigmentation than individuals from the Punjabi and
Baloch subpopulations (p < 0.05). The proportions of European and Sub-Saharan African ancestry
and five SNPs (rs1042602, rs10831496, rs1426654, rs16891982, and rs12913832) were statistically
significantly associated with skin pigmentation at either the upper arm, lower arm or forehead in
the Pakistani population after correction for multiple testing (p < 10−3). A model based on four of
these SNPs (rs1426654, rs1042602, rs16891982, and rs12913832) explained 33% of the upper arm skin
pigmentation. The four SNPs and the proportions of European and Sub-Saharan African ancestry
explained 37% of the upper arm skin pigmentation. Our results indicate that the four likely causative
SNPs, rs1426654, rs1042602, rs16891982, and rs12913832 located in SLC24A5, TYR, SLC45A2, and
HERC2, respectively, are essential for skin color variation in the admixed Pakistani subpopulations.

Keywords: biogeographic ancestry; pigmentation; skin color; forensic DNA phenotyping; externally
visible characteristics

1. Introduction

Human pigmentation is one of the most variable externally visible characteristics
(EVCs). Prediction of EVCs may result in helpful leads early in a police investigation by
providing a ‘genetic eye witness’ of a possible perpetrator and may allow the police inves-
tigators to focus their attention on specific groups of individuals and decrease the number
of potential suspects [1–3]. The genetics of human pigmentation is a field of great interest
in forensic genetics because it offers a prediction of three prominent EVCs: hair, eye, and
skin color [4,5]. Skin pigmentation is strongly associated with biogeographic ancestry [6]
and influenced by environmental factors (e.g., UV radiation) [7], which complicates the
identification of causative variants and the reliability of the predictions. Prediction of the
biogeographic ancestry may indicate skin pigmentation of the individual. However, skin
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color prediction based on the assumption that biogeographic ancestry and skin color are
well correlated only offers an indirect prediction, and the assumption is not necessarily
true in admixed populations [8,9]. Studies of admixed individuals from North and South
American populations showed that the correlation between ancestry and skin pigmen-
tation varied considerably and explained 20–65% of the skin pigmentation [3,6,10,11].
Nevertheless, admixed populations are ideal for studying the effect of genetic variants
associated with skin pigmentation because they have a wide range of skin colors, and
the ancestry proportions of each individual may be estimated using standard population
genetic methods.

The Pakistani population is an admixed population with several subpopulations and
ethnic groups. Pakistan is situated at the junction of the Middle East, Central Asia, and
Southeast Asia. This area was the home of various ancient cultures, including the Bronze
Age Indus Valley Civilization [12]. The region was ruled by dynasties and empires of
different religions and cultures, including Muslims, Turco-Mongols, Hindus, Indo-Greeks,
Sikhs, and Afghans [13]. Hence, the Pakistani population is well suited for studying
biogeographic ancestry and skin pigmentation genetics.

We studied the associations among pigmentary variants, biogeographic ancestry, and
quantitative skin pigmentation in three admixed subpopulations from Pakistan (n = 299).
We evaluated the individuals’ ancestry with the Precision ID Ancestry Panel (Thermo Fisher
Scientific, Waltham, MA, USA) [14–16] and investigated the association between skin pig-
mentation and genetic pigmentary variants in the HuPi AmpliSeq™ Custom panel [17].
We also analyzed the correlation between skin pigmentation and the 36 HIrisPlex-S
SNPs [18,19] as well as nine SNPs found to be associated with skin pigmentation variation
in an admixed Brazilian population [3]. Lastly, we analyzed the efficiency of the skin color
prediction using the HIrisPlex-S prediction model [18,19].

2. Materials and Methods

2.1. Samples, DNA Extraction, and DNA Quantification

Buccal swabs were collected from 299 unrelated healthy Pakistani individuals and
stored on FTA cards. The individuals belonged to three major Pakistani subpopulations:
107 Baloch from Baluchistan, 103 Pashtuns from Khyber Pakhtunkhwa, and 89 Punjabis
from northern Punjab. Signed informed consent was obtained from all participants, and
the samples were anonymized. The study was approved by the Review Board/Ethical
Committee of the University of the Punjab, Pakistan (D/No. 019/DFEMS). Genomic DNA
was extracted using the Qiagen BioRobot® EZ1 Workstation and the EZ1 DNA investigator
kit (Qiagen, Hilden, Germany). Purified DNA was quantified using the Qubit™ dsDNA
HS Assay Kit and a Qubit® 4.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA)
according to the manufacturer’s recommendations.

2.2. Measurement of Quantitative Skin Pigmentation

The UV-Optimize Scientific 555 (Chromo Light APS, Vedbæk, Denmark) calibrated
with a white standard (ISO 2469) was used to measure quantitative skin pigmentation.
Quantitative skin pigmentation was determined as the pigment protection factor, PPF,
which is a measure for skin pigmentation levels [20,21]. The skin pigmentation of each
individual was measured in triplicates from skin areas on the lower inner forearm (lower
arm), upper inner arm (upper arm), and forehead. The median PPF-value for each mea-
suring site was used for further analysis. All skin measurements were taken from areas
without hair, freckles, nevi, or tattoos.

2.3. Typing with the Precision ID Ancestry Panel and the Human Pigmentation (HuPi)
AmpliSeq™ Custom Panel

DNA was amplified with the Precision ID Ancestry Panel (Thermo Fisher Scientific,
Waltham, MA, USA) and the Human Pigmentation (HuPi) AmpliSeq™ Custom panel [17]
in two separate reactions. The Precision ID Ancestry Panel targets 165 ancestry-informative
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markers (AIMs). The HuPi AmpliSeq™ Custom panel targets 183 SNPs and indels, which
were previously found to be associated with human pigmentary variation [17]. Sequencing
libraries were prepared with the Ion AmpliSeq™ Library Kit 2.0 (Thermo Fisher Scien-
tific, Waltham, MA, USA) using half volume of all reagents but otherwise following the
manufacturer’s instructions. Amplification of targets was carried out using approximately
1 ng DNA (1–3 μL) and 24 and 26 cycles for the Precision ID Ancestry Panel and the
HuPi AmpliSeq™ Custom panel, respectively. Sequencing libraries were purified us-
ing the Biomek 3000 pipetting robot [22]. Purified libraries were quantified using the
Qubit™ 4.0 Fluorometer with the Qubit™ dsDNA HS Assay kit (Thermo Fisher Scientific,
Waltham, MA, USA) and pooled in equimolar concentrations to a final volume of 28 pM
for the Precision ID Ancestry panel and 35–60 pM for the HuPi AmpliSeq™ Custom Panel.
Template preparation was performed with the Ion Chef™ instrument (Thermo Fisher
Scientific, Waltham, MA, USA) using the Ion S5™ Precision ID Chef Kit (Thermo Fisher
Scientific, Waltham, MA, USA) following the manufacturer’s recommendations (Thermo
Fisher Scientific, Waltham, MA, USA). Sequencing was carried out with Ion 530™ Chips
and Ion S5™ Precision ID Sequencing Reagents on the Ion S5™ (Thermo Fisher Scientific,
Waltham, MA, USA) with up to 80 samples per chip.

2.4. Analysis of Sequencing Data

The data were initially analyzed with the Torrent Suite Software v.5.10.1 (Thermo
Fisher Scientific, Waltham, MA, USA). For the Precision ID Ancestry panel, data were ana-
lyzed with the HID_SNP_Genotyper_v5_2_2 plugin using GRCh37 (hg19) as the reference
genome and default parameters (Thermo Fisher Scientific, Waltham, MA, USA). The data
obtained with the HuPi AmpliSeq™ Custom Panel were analyzed with the VariantCaller
v5.10.1.20 plugin and the GRCh38.p2 (hg38) reference genome. The “Down-sample to
coverage” was changed from 400 to 10,000 reads. Otherwise, the analyses were performed
with the default parameters (Thermo Fisher Scientific, Waltham, MA, USA). The resulting
Excel-files were processed using R v.4.0.2 (R core team, https://www.R-project.org/, ac-
cessed on 1 November 2020) and an in-house developed script. The data quality control
comprised evaluation of the locus balance, heterozygote balance (Hb), and noise levels
for each target. Hb was calculated as the number of reads for one nucleotide divided by
the number of reads for the other nucleotide in the order A, C, G, and T. Genotypes were
accepted when a locus had ≥45 reads and the Hb was between 0.3 and 3. SNPs with
30–44 reads were inspected and accepted if the Hb was between 0.7 and 1.5 or if the noise
did not exceed one read for homozygous genotype calls. Genotypes that did not meet the
criteria were annotated as NN. For both panels, loci with NNs in more than 15% of the
samples were excluded. Moreover, samples with more than 15% missing data (NN) were
excluded from further analysis. Hardy–Weinberg Equilibrium (HWE) and pairwise linkage
disequilibrium (LD) were calculated with Haploview v. 4.2 [23], and pairwise FST-values
were calculated using Arlequin v3.5.2.2 software [24].

2.5. Classification of Biogeographic Ancestry

The alleles of the AIM-SNPs in each sample were investigated using STRUCTURE
v.2.3.4.21 [25,26]. The analyses were carried out using 100,000 steps of burn-in followed by
100,000 repetitions for the MCMC. The ‘admixture’ and the ‘correlated allele frequencies’
models were used [25,26]. After testing the number of clusters (K) from K = 3 to K = 6, K
was set to 4, corresponding to the Sub-Saharan African, South-Central Asian, European,
and East Asian populations. The results were visualized using CLUMPP v.1.1.222 [27]
and Distruct v.1.1.23 [28]. Principal component analysis (PCA) was carried out using an
in-house written Python script. Reference population data (Supplementary Table S1) were
collected as previously described [14,29]. Four SNPs, rs1800414, rs12913832, rs1426654,
and rs16891982, were included in both the Precision ID Ancestry Panel and the HuPi
AmpliSeq™ Custom panel. One SNP, rs10954737, lacked genotype data in all reference
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populations. Hence, these five SNPs were not considered in the PCA and STRUCTURE
analyses and were not used to classify ancestry.

2.6. Correlations between Biogeographic Ancestry, Pigmentary Variants, and Skin Pigmentation

We excluded monomorphic genetic variants (i.e., variants with only one observed
genotype) and variants in LD (r2 > 0.8) with other variants in the HuPi AmpliSeq™ Custom
Panel. Hence, the dataset was limited to 102 genetic variants and four metapopulations
(Sub-Saharan Africa, South-Central Asia, Europe, and East Asia). Differences in skin
pigmentation levels of the lower arm, upper arm, and forehead, as well as differences in
skin pigmentation of the three subpopulations, were investigated using Student’s t-test
for paired data or the Welch two-sample t-test for unpaired data. The correlations among
skin pigmentation levels, genetic variants in the HuPi AmpliSeq™ Custom Panel, and the
estimation of the ancestry proportions were carried out using multiple linear regression
(MLR). The correlation was evaluated using the adjusted R2. To select a subset of variants,
backwards model selection was performed using MLR with Akaike Information Criterion
(AIC) using the stepAIC function in the MASS R-package [30].

We also evaluated the correlation between skin pigmentation and the genotypes of
the 36 HIrisPlex-S SNPs [18,19], and between skin pigmentation and nine SNPs (rs1426654,
rs1448484, rs16891982, rs4424881, rs10831496, rs6119471, rs12913832, rs10424065, and
rs1408799) previously found to explain up to 65% of the skin pigmentation variation in a
Brazilian population of primarily European ancestry [3].

2.7. Prediction of Skin Colour Using the HIrisPlex-S

Prediction of skin color using the HIrisPlex-S model was carried out with the online
web-tool (https://hirisplex.erasmusmc.nl/, accessed on 1 Novmber 2020). The HIrisPlex-S
model predicts skin color in five categories: Very pale, Pale, Intermediate, Dark, and Dark
to Black [18,19]. The skin color category with the highest predictive value was used as the
skin pigmentation prediction. The HIrisPlex-S skin color prediction and the quantitative
skin pigmentation measurements were compared.

2.8. Statistical Methods

The statistical methods used are described in each section. When multiple comparisons
were performed, the statistical significance was corrected with the Bonferroni method.

3. Results

3.1. Skin Pigmentation Measurements

Quantitative skin pigmentation measurements were performed for the 299 Pakistani
individuals, Baloch (n = 107), Pashtun (n = 103), and Punjabi (n = 89). The lowest pigmenta-
tion levels were observed on the upper arm (mean PPF of 11.08), followed by the lower
arm (mean PPF of 12.30) and the forehead (mean PPF of 12.43). We observed statistically
significant differences between the pigmentation levels on the upper arm and lower arm
(p < 0.05) and the upper arm and forehead (p < 0.05) among all subpopulations. Statistically
significant difference between pigmentation levels of the lower arm and forehead was only
observed in the Baloch subpopulation (p < 0.05).

Individuals from the Pashtun subpopulation showed statistically significant (p < 0.05)
lower pigmentation levels than individuals in the Baloch and Punjabi subpopulations on
all measured areas (Figure 1).
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Figure 1. Boxplots of skin pigmentation measurements (pigment protection factor) of the upper arm, lower arm, and
forehead in three Pakistani subpopulations. The pigment protection factor was measured in triplicate at each measured
skin area.

3.2. The Precision ID Ancestry Panel

The allele frequencies for the 165 loci in the Punjabi, Pashtun, and Baloch populations
are presented in Supplementary Table S2. The median number of reads per target was 493
(range: 45–12,105), the median Hb was 1.0 (range: 0.3–3.0) for heterozygous SNPs, and the
median level of noise was 0.0% (range: 0–14.3%). One locus, rs2070586, deviated from HWE
(p < 10−3) in the Baloch population. The loci rs3811801 and rs671 were monomorphic in all
three populations, rs1871534 and rs2814778 were monomorphic in Pashtuns and Punjabis,
and rs1800414 was monomorphic in the Baloch. No pairwise LD (pairwise r2 > 0.8) was
detected in any of the three populations. The observed values of pairwise FST genetic
distances were statistically significantly different among all subpopulations (p < 10−5)
(Supplementary Table S3).

3.3. Proportion of Ancestry Components

The biogeographic ancestry of each individual was investigated with STRUCTURE
and PCA using reference data from 34 populations grouped into six metapopulations:
Sub-Saharan African, North African, European, Middle Eastern, South-Central Asian, and
East Asian (Supplementary Table S1). The results of the STRUCTURE analysis with K = 4
are shown in Figure 2. The Baloch, Punjabi, and Pashtun subpopulations were admixed
populations with major contributions from South-Central Asian and European populations.
The Baloch differed from the other two subpopulations due to approximately 10% Sub-
Saharan African genetic contribution, whereas the Sub-Saharan African contribution was
<1% in the Punjabis and Pashtuns. The Baloch had the lowest proportion of South-Central
Asian ancestry (44.7%), followed by the Pashtuns (56.6%) and the Punjabis (69.3%).
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Figure 2. STRUCTURE analysis with K = 4 using 160 ancestry informative markers (AIMs) and six meta-populations. Each
cluster (K) is represented by a color. Population abbreviations used: SS Africa: Sub-Saharan Africa; N Africa: North Africa;
M East: Middle East; SC Asia: South-Central Asia; E Asia: East Asia.

The first two principal components (PC1 and PC2) in the PCA analysis separated
the Sub-Saharan African, European, and East Asian populations from each other (Sup-
plementary Figure S1). The North Africans clustered closest to the European and Middle
Eastern populations, while the South-Central Asian populations clustered between the
East Asian and European populations. The positions of the three Pakistani subpopulations,
Punjabis, Pashtuns, and the Baloch, overlapped with each other and the South-Central
Asian and Middle Eastern populations. The Baloch individuals clustered closer to the
African populations than the Pashtuns and Punjabis. In contrast, the Punjabis clustered
closer to the South-Central Asian populations than the Pashtuns and Baloch, supporting
the STRUCTURE analysis conclusions.

3.4. The HuPi AmpliSeq™ Custom Panel

A total of 163 variants were successfully typed with the HuPi AmpliSeq™ Custom
Panel (Supplementary Table S4). The median number of reads was 597 (range: 60–1532)
per target. The median Hb for heterozygous SNP calls was 1.0 (range: 0.35–2.86). The
median level of noise was 0.0% (range: 0–12.7%). The allele frequencies of rs4778241
in OCA2 deviated statistically significantly from HWE (p < 10−3). Twelve variants were
monomorphic (Supplementary Table S4), and these data were removed from the subsequent
analysis. For the correlation measurements between skin pigmentation and genetic variants,
only independent genetic variants were considered (pairwise r2 < 0.8), reducing the number
of genetic variants to 102 (Supplementary Table S4).

3.5. Correlation between Skin Pigmentation and Biogeographic Ancestry

The proportions of Sub-Saharan African, European, South-Central Asian, and East
Asian ancestry were compared with the skin pigmentation at each measured site using
MLR. We found statistically significant (p < 10−3) adjusted R2-values for the upper arm:
0.10, lower arm: 0.13, and forehead: 0.12 when comparing the full ancestry profiles with the
skin pigmentation (Supplementary Table S5). We found statistically significant (p < 0.05)
negative correlations between the proportion of European ancestry and skin pigmentation
at all three measured sites (adjusted R2: 0.04–0.09) and statistically significant positive
correlation (p < 0.05) between Sub-Saharan African ancestry and skin pigmentation at
the upper arm and forehead (adjusted R2 = 0.06 and 0.07, respectively). In contrast,
the proportions of East Asian and South-Central Asian ancestry showed no statistically
significant correlation with skin pigmentation (Supplementary Table S5). We analyzed the
correlation between the proportions of only European and Sub-Saharan African ancestry
with skin pigmentation at all three measuring sites using MLR. The resulting adjusted
R2-values were 0.10 (p < 10−3), 0.13 (p < 10−6), and 0.12 (p < 10−6) for the upper arm, lower
arm, and forehead pigmentation, respectively (Supplementary Table S5).

3.6. Correlations among Skin Pigmentation, Pigmentary Variants, and Biogeographic Ancestry

Each of the independent variants typed with the HuPi AmpliSeq™ Custom Panel was
compared with the skin pigmentation at the upper arm, lower arm, and forehead using
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linear regression. We observed statistically significant (p < 0.05) correlations between skin
pigmentation on either the upper arm, lower arm, or forehead and the SNPs rs1042602
in TYR and rs10831496 in GRM5, rs1426654 in SLC24A5, rs16891982 in SLC45A2, and
rs12913832 in HERC2 (Table 1). Only rs1426654 and rs1042602 were statistically significantly
correlated with skin pigmentation at all three sites (p < 10−3) (Table 1).

Table 1. Five SNPs with statistically significant association with skin pigmentation on the upper arm,
lower arm, or forehead in 299 Pakistani individuals from three subpopulations (Baloch, Pashtun,
and Punjabi).

Upper Arm Lower Arm Forehead

Gene SNP
Adjusted

R2 Sign.1
Adjusted

R2
Sign.

1
Adjusted

R2
Sign.

1

TYR rs1042602 0.13 *** 0.11 ** 0.071 **
GRM5 rs10831496 0.029 – 0.047 * 0.014 –
HERC2 rs12913832 0.025 – 0.016 – 0.064 *
SLC24A5 rs1426654 0.16 *** 0.10 ** 0.082 **
SLC45A2 rs16891982 0.075 ** 0.028 – 0.058 **

1 Statistical significance (Sign.) after Bonferroni correction: * p < 0.05, ** p < 10−3, *** p < 10−6.

The five SNPs were compared with skin pigmentation using MLR, and the adjusted R2

ranged from 0.24 to 0.33 (p < 10−6) (Table 2). Subsequently, model selection was performed
using stepwise AIC, giving the best model with rs1426654, rs1042602, rs16891982, and
rs12913832 for all three sites (upper arm, lower arm, and forehead). When the proportions
of European and Sub-Saharan African ancestry were included, the adjusted R2-values
increased slightly (Table 2, Figure 3). The cumulative correlations between (1) the four
SNPs and ancestry and (2) the skin pigmentation are shown in Figure 3. The four SNPs,
ancestry, and the upper arm pigmentation showed the highest adjusted R2-values (Table 2
and Figure 3).

Table 2. Multiple loci correlations with skin pigmentation on the upper arm, lower arm, or forehead
in 299 Pakistani individuals from three subpopulations (Baloch, Pashtun, and Punjabi).

Upper Arm Lower Arm Forehead

Adjusted
R2

Sign.
1

Adjusted
R2

Sign.
1

Adjusted
R2

Sign.
1

Five SNPs 2 0.33 *** 0.24 *** 0.24 ***
Best model 3 0.33 *** 0.23 *** 0.24 ***
Best model +

ancestry 4 0.37 *** 0.28 *** 0.30 ***

1 Statistical significance (Sign.): *** p < 10−6. 2 rs1042602, rs10831496, rs12913832, rs1426654, and
rs16891982. 3 rs1042602, rs12913832, rs1426654, and rs16891982. 4 Ancestry is the estimated proportion
of European and Sub-Saharan African ancestry.

3.7. Correlation of Skin Pigmentation with SNPs from Existing Skin Colour Models

The skin pigmentation in the Pakistani individuals was compared with nine SNPs
previously found to be associated with skin pigmentation in a Brazilian population of pri-
marily European ancestry [3]. The nine SNPs included rs10831496, rs12913832, rs1426654,
and rs16891982, which were associated with skin pigmentation in the Pakistani population
(Table 1), as well as rs1448484 in OCA2, rs4424881 in APBA2, rs6119471 in ASIP, rs1408799
in TYRP1, and rs10424065 in MFSD12, which were not associated with skin pigmentation
in our study. In the Pakistani population, these nine SNPs explained up to 26% of the skin
pigmentation (upper arm). The adjusted R2-values were 0.26 (p < 0.05), 0.15 (p < 0.05), and
0.19 (p < 0.05) for the upper arm, lower arm, and forehead pigmentation, respectively.
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Figure 3. Cumulative correlations between (1) four SNPs and ancestry and (2) upper arm, lower arm, and forehead
pigmentation. The SNPs were ranked based on their correlations with skin color (adjusted R2). Ancestry is the proportion
of Sub-Saharan African and European ancestry.

We also correlated the HIrisPlex-S SNPs with the skin pigmentation on the upper arm,
lower arm, and forehead using MLR. Four SNPs in the MC1R-gene, rs3212355, rs1805006,
rs11547464, and rs1110400 were monomorphic and excluded from the analysis. Thus,
the correlation was based on 32 of the 36 skin color predictive SNPs in the HIrisPlex-S.
The adjusted R2-values were 0.36 (p < 10−6), 0.29 (p < 10−6), and 0.27 (p < 10−6), for
pigmentation on the upper arm, lower arm, and forehead, respectively.

Lastly, we evaluated the performance of the HIrisPlex-S model that is a forensically
validated skin color prediction model [18,19]. The predicted skin colors of the 299 Pakistani
individuals were: Intermediate: 102, Dark: 167, and Black: 30. No individual was predicted
to have very pale or pale skin colors. Comparisons between the predicted skin color
categories and the quantitative skin pigmentation measurements are shown in Figure 4.

Figure 4. Boxplots showing the skin color category predicted with the HIrisPlex-S prediction model and the pigmentation
protection factor on the upper arm, lower arm, and forehead.
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4. Discussion

The pairwise genetic distances calculated among the three subpopulations were
statistically significantly different (Supplementary Table S3). The Baloch were more distant
from Punjabis and Pashtuns than Punjabis were from Pashtuns. The results agreed with
our previous results obtained with short tandem repeats that depicted genetic differences
between the Baloch and other subpopulations from Pakistan [31]. The STRUCTURE
analysis (Figure 2) showed that all three subpopulations from Pakistan were admixed,
mainly with South-Central Asian and European genetic contributions. However, the Baloch
population also had a genetic contribution from Sub-Saharan African populations, which
may be remnants of African individuals settling in the Indian subcontinent [32,33].

The proportion of European and Sub-Saharan African ancestry affected the skin pig-
mentation, whereas the proportion of South-Central Asian ancestry did not (Supplementary
Table S5). However, the proportions of European and Sub-Saharan African ancestry only ex-
plained approximately 10% of the variation (Supplementary Table S5) and only influenced
the adjusted R2-values of the MLR model marginally (Table 2). This showed that ances-
try was a relatively poor predictor of skin pigmentation in the highly admixed Pakistani
populations. It also indicated that any association between a locus and skin pigmentation
levels would most likely come from causative SNPs or indels, and not be a consequence of
population genetic differences.

Of the 163 variants that were previously shown to be associated with pigmentary traits,
five SNPs were statistically significantly correlated with the skin pigmentation levels of the
investigated individuals from the Pakistani subpopulations (Table 1). These five SNPs are
located in five genes, TYR, GRM5, SLC24A5, SLC45A2, and HERC2. Four of the five SNPs,
rs1042602 in TYR, rs1426654 in SLC24A5, rs16891982 in SLC45A2, and rs12913832 in HERC2,
explained 33% of the skin pigmentation variation on the upper arm area and 23–24% of the
skin pigmentation variation on the lower arm and forehead that are less protected from UV
irradiation (Table 2). Three of the SNPs, rs1426654 (ranked 1), rs1042602 (ranked 2), and
rs16891982 (ranked 3), were previously found to be associated with skin pigmentation in
individuals of South Asian descent [7,34,35]. In agreement with our results, the SLC24A5
SNP rs1426654 had the most pronounced effect on skin pigmentation levels [7,34,36]. The
HERC2 SNP rs12913832 (ranked 4) has not previously reported to be associated with skin
pigmentation in South Asian populations. However, it was reported to be associated with
skin color in other populations [11,19]. The fifth SNP, GRM5 rs10831496 (ranked 5), did
not increase the cumulative adjusted R2-value of the MLR model at any of the measured
pigmentation areas. This SNP is highly polymorphic and located in intron 3 of the GRM5
gene, 340 kbp upstream of the TYR gene on chromosome 11. GRM5 rs10831496 was
previously reported to be associated with tanning response after exposure to sunlight [37].
In our study, it was associated with skin pigmentation on the lower arm.

The three highest ranking SNPs, rs1426654, rs1042602, and rs16891982, are non-
synonymous variants: Thr111Ala in SLC24A5, Ser192Tyr in TYR, and Phe374Leu in
SLC45A2, respectively, and they all influence melanin production. In human primary
melanocytes that were homozygous for the SLC24A5 111Ala variant, the TYR activity,
melanin content, and the number of mature melanosomes were decreased [38]. The 192Tyr
TYR variant reduced the TYR activity by 40% [39] and the number of primary melanocytes,
and human skin tissue samples that were homozygous for the 192Tyr variant had reduced
TYR activity and expression [40]. The SLC45A2 374Leu variant was found in increased
frequency in non-European populations, and 374Leu homozygous melanocytes had higher
TYR activity and melanin content than melanocytes that were homozygous for the 374Phe
variant [38]. The fourth-ranking SNP, HERC2 rs12913832, is the most important variant
for eye color determination [41–43]. It is positioned in a key enhancer element of the
OCA2 pigmentary gene [44]. Human primary melanocytes that were homozygous for the
derived rs12913832 G allele had reduced TYR activity, melanin content, and numbers of
mature melanosomes [38]. When we analyzed five additional SNPs that were previously
found to be associated with pigmentation in an admixed Brazilian population with pri-
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marily European and Sub-Saharan African genetic contributions [3], the correlation with
skin pigmentation of the upper arm was reduced from 33% to 26%. This indicates that
the biogeographic background of an individual is important for the selection of markers
that eventually will give the best prediction of skin color, which is well in line with the
knowledge that some genetic markers are associated with skin pigmentation in certain
populations and not in others [45]. It also indicates that the estimation of the biogeographic
background should be the first step in the estimation of skin pigmentation levels from
DNA samples of unknown individuals. The second step should be to investigate causative
variants found to be associated with skin pigmentation in the most likely biogeographic
background of the collected trace sample and these variants should form the basis for the
estimation of skin pigmentation.

In forensics genetic casework, ancestry inference can provide helpful information
about an unidentified perpetrator who left a biological trace sample at a crime scene.
Several well-established AIM panels that successfully differentiate the major human pop-
ulations, including Europeans, East Asians, South Central Asians, Native Americans,
Sub-Saharan Africans, and Oceanians, have been developed [14,46–49]. Ancestry informa-
tion may also provide indications on EVCs that are typical for a given population. However,
caution must be taken when using ancestry to infer the phenotypes of an individual. An
individual of mixed ancestry may have AIM alleles inherited from one parental popula-
tion, but phenotypic characteristics, e.g., skin color, of the other parental population [3,9].
Thus, skin color and other EVCs should be estimated using causative genetic variants.
We identified four likely causative variants that influence skin pigmentation in Pakistanis
and are included in the leading skin color prediction model, HIrisPlex-S [18,19]. However,
the variants only explained approximately one-third of the skin pigmentation variation
and the remaining SNPs of the HIrisPlex-S only slightly increased the adjusted R2-values
underlining the need for additional genetic studies of human skin pigmentation.
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Abstract: A custom plate of OpenArray™ technology was evaluated to test 60 single-nucleotide
polymorphisms (SNPs) validated for the prediction of eye color, hair color, and skin pigmentation,
and for personal identification. The SNPs were selected from already validated subsets (Hirisplex-s,
Precision ID Identity SNP Panel, and ForenSeq DNA Signature Prep Kit). The concordance rate and
call rate for every SNP were calculated by analyzing 314 sequenced DNA samples. The sensitivity of
the assay was assessed by preparing a dilution series of 10.0, 5.0, 1.0, and 0.5 ng. The OpenArray™
platform obtained an average call rate of 96.9% and a concordance rate near 99.8%. Sensitivity testing
performed on serial dilutions demonstrated that a sample with 0.5 ng of total input DNA can be
correctly typed. The profiles of the 19 SNPs selected for human identification reached a random
match probability (RMP) of, on average, 10−8. An analysis of 21 examples of biological evidence
from 8 individuals, that generated single short tandem repeat profiles during the routine workflow,
demonstrated the applicability of this technology in real cases. Seventeen samples were correctly
typed, revealing a call rate higher than 90%. Accordingly, the phenotype prediction revealed the
same accuracy described in the corresponding validation data. Despite the reduced discrimination
power of this system compared to STR based kits, the OpenArray™ System can be used to exclude
suspects and prioritize samples for downstream analyses, providing well-established information
about the prediction of eye color, hair color, and skin pigmentation. More studies will be needed for
further validation of this technology and to consider the opportunity to implement this custom array
with more SNPs to obtain a lower RMP and to include markers for studies of ancestry and lineage.

Keywords: TaqMan SNP genotyping; OpenArray™ system; forensic DNA phenotyping; forensic
DNA typing

1. Introduction

Short tandem repeats (STRs) are genetic variants widely used in forensic investigations
for the identification of offenders and in cases concerning relationship testing [1,2]. How-
ever, the multiplexing capacity of STRs is relatively low because of the need for capillary
electrophoresis and inability to accommodate large numbers of markers. In the genomic
era, it is well known that STRs are not the only source of genetic variation in humans [3].
Single-nucleotide polymorphisms (SNPs) are the most common type of genetic variation
among people and can provide additional information such as the inferred ancestry of
a DNA sample and phenotypes (eye and hair color) [4]. From a technical point of view,
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SNPs can be used to support forensic DNA analyses because of an abundance of potential
markers, amenability to automation, and potential reduction in required fragment length
to only 60–80 bp [5–7].

Forensic analysis usually involves comparisons between genetic profiles extracted
from biological samples collected from a crime scene, and objects and suspects which are
thought to be associated to that crime. In the absence of suspects, the power of forensic
DNA analysis has been enhanced through the development of DNA databases, allowing the
identification of unknown offenders and serial offenders by linking different crimes [1,8,9].
However, in criminal cases without an STR profile match, police investigation can be aided
by different kinds of genetic tests.

In this context, the analysis of SNPs for the study of phenotypic variability (forensic
DNA phenotyping, FDP) and for the determination of biogeographical origin is particularly
promising [1,10]. The main advantage of such analysis is to narrow down the number of
potential crime scene trace donors to a smaller group of people who most likely have the
externally visible characteristics and biogeographic ancestry that were inferred from the
crime scene DNA [11].

Forensic DNA phenotyping is explicitly regulated and permitted by law in two EU
member states (the Netherlands and Slovakia) and practiced in compliance with existing
laws in six more (Poland, Czech Republic, Sweden, Hungary, Austria, and Spain) and the
United Kingdom [11].

In the “omic era”, different approaches have been developed to test thousands of
genetic variations for forensic purposes (phenotype, ancestry, and identification). Real-time
PCR using TaqMan chemistry is a well-known technology routinely used in the workflow
of forensic laboratories to quantify the DNA extracted from biological samples [12,13].
The OpenArray™ system (Thermo Fisher Scientific, Waltham, MA, USA) applies TaqMan
chemistry for the simultaneous and massive study of samples and SNPs [14,15].

Here we report a pilot study aimed at evaluating the applicability of OpenArray™
technology (Thermo Fisher Scientific, Waltham, MA, USA) for the testing of SNPs for
human identification and for inferring phenotypes. To this end, we selected the entire
panel of 41 SNPs for eye, hair, and skin color prediction from the validated tool HIrisPlex-S
and 19 SNPs for individual identification from the Precision ID Identity SNP Panel (Thermo
Fisher Scientific, Waltham, MA, USA) and ForenSeq DNA Signature Prep Kit (Verogen Inc,
San Diego, CA, USA). A total of 314 samples were typed to test the genotyping accuracy of
OpenArray™ through comparison with resequencing data.

The sensitivity of the platform was assessed using four serial dilutions of DNA
consisting of 10, 5, 1, and 0.5 ng [16–18].

2. Materials and Methods

2.1. Selection of SNPs

In this work we selected 41 SNPs for eye, hair, and skin color prediction from the
HIrisPlex-S system and 19 SNPs from a universal individual identification SNPs panel
validated for forensic purposes [16–19]. The SNPs for human identification were selected
based on their chromosomal location (each SNP is mapped to a different chromosome to
avoid linkage and linkage disequilibrium effects). These genetic variants were included in
a customized panel of 60 SNPs able to provide both human identification and phenotyping
information in the same analytical session. The TaqMan probe related to rs1805008 could
not be developed. Therefore, rs11538871 was chosen because of its complete linkage
disequilibrium (LD) with rs1805008 [20].

The selected SNPs are summarized in Table 1.
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Table 1. Single-nucleotide polymorphism (SNP) details. FDP: forensic DNA phenotyping; ID: SNPs for forensic identifica-
tion [16–19].

Reference SNP Number Assay Name Call Rate (%) Concordance Rate (%) FDP/ID

rs3114908 C__27458355 100% 100% skin
rs1800414 C___8866240_10 100% 100% skin

rs10756819 C_____69643_10 97.8% 97.5% skin
rs2238289 C__26683035_10 97.8% 97.5% skin

rs17128291 C__34508041_10 100% 100% skin
rs6497292 C__31479145_10 97.8% 100% skin
rs1129038 C____489033_10 97.8% 100% skin
rs1667394 C__26683195_10 97.8% 100% skin
rs1126809 C_175675702_10 100% 100% skin
rs1470608 C___8866144_10 97.8% 100% skin
rs1426654 C___2908190_10 100% 100% skin
rs6119471 C__30035872_10 100% 100% skin
rs1545397 C__11751858_10 100% 100% skin
rs6059655 C_189135912_10 100% 100% skin

rs12441727 C___1289851_10 97.8% 100% skin
rs8051733 C__43670381_20 100% 100% skin
rs3212355 C__32390816_10 100% 100% hair

rs312262906/rs796296176 C_339644346_10 100% 100% hair
rs11547464 C__27541634_10 100% 100% hair
rs885479 C___7519060_20 100% 100% hair

rs1805008 (rs11538871) C_175977481_10 100% 100% hair
rs1805005 C___7519054_10 100% 100% hair
rs1805006 C___7519055_20 100% 100% hair
rs1805007 C___2033404_30 97.8% 100% hair
rs1805009 C___1010501_30 100% 100% hair

rs201326893 C_190249836_20 100% 100% hair
rs2228479 C___2033405_20 97.8% 100% hair
rs1110400 ANKCDY2 97.8% 100% hair

rs28777 C___2390574_10 100% 100% hair
rs12821256 C__26988870_10 100% 100% hair
rs4959270 C__29334795_10 97.8% 100% hair
rs1042602 C___8362862_10 95.7% 100% hair
rs2402130 C__27204528_20 100% 100% hair
rs2378249 C__16003674_10 100% 100% hair

rs683 C___3119206_10 97.8% 100% hair
rs16891982 C___2842665_10 100% 100% eye
rs12203592 C__31918199_10 100% 100% eye
rs1800407 C___8866200_10 97.8% 97.5% eye
rs12913832 C__30724404_10 97.8% 100% eye
rs12896399 C___3244615_10 100% 100% eye
rs1393350 C___9491300_10 100% 100% eye
rs10488710 C___2450075_30 97.8% 100% ID
rs2920816 C__16156638_10 97.8% 100% ID
rs6955448 C__29220288_10 100% 100% ID
rs1058083 C___1619935_1_ 95.7% 97.4% ID
rs221956 C____824925_10 100% 100% ID

rs13182883 C___2556113_10 100% 100% ID
rs1821380 C__11673733_10 100% 100% ID
rs6811238 C__11245682_10 100% 100% ID
rs430046 C___9603287_10 100% 100% ID
rs576261 C____788229_10 97.8% 100% ID

rs10092491 C___2049946_10 95.7% 100% ID
rs560681 C___1006721_1_ 100% 100% ID
rs1736442 C___3285337_1_ 91.3% 97.3% ID
rs4364205 C__26449463_10 95.7% 100% ID
rs445251 C___2997607_10 100% 100% ID
rs7041158 C__29060279_10 97.8% 100% ID
rs13218440 C___9371416_10 100% 100% ID
rs9786184 C__29554891_10 100% 100% ID
rs2032652 C___2259382_10 100% 100% ID

2.2. Ethical Committee Approval

These investigations were carried out following the rules of the Declaration of Helsinki
of 1975, revised in 2013. According to Point 23 of this declaration, approval from the
ethical committee of Policlinico Tor Vergata (protocol number: Prot. CE/PROG.177/20)
was obtained.
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2.3. Reference DNA Samples

A total of 314 reference DNA samples were used. In particular, 114 genomic DNA sam-
ples were obtained from the 1000 Genomes Project (Coriell Institute for Medical Research,
Camden, NJ, USA) and 200 blood samples were obtained from the Laboratory of Genomic
Medicine UILDM (Italian Muscular Dystrophy Association) Santa Lucia Foundation [21].
The 114 samples from 1000 Genomes were selected from a small town near Florence in the
Tuscany region of Italy. The genotype data of genomic DNA samples from 1000 Genomes
were extracted from the Ensembl genome browser [22]. An additional four volunteer
donors were used for the sensitivity testing.

2.4. Biological Samples from Real Cases

We analyzed a total of 21 samples of biological evidence that had single STR profiles
generated during the routine workflow and that were assigned to their reference perpe-
trator. This evidence was from different tissues (10 from saliva, 2 from semen, 7 from
blood, 2 from urine) and was attributed to 8 different subjects from different tissues [23,24].
All samples were marked with a specific internal code, as shown in Table 2 [2]. The
forensic samples were loaded in the same plate twice with the purpose of verifying the
reproducibility of genotyping assignation.

Table 2. Details of forensic biological samples. Subject A (SubjA), Subject B (SubjB), Subject C (SubjC), Subject D (SubjD),
Subject E (SubjE), Subject F (SubjF), Subject G (SubjG), and Subject H (SubjH).

Sample Source Subject [ng/μL] Call Rate (%) Predicted Phenotype Real Phenotype

20–352 Saliva SubjA 9.483 97.5 blue eyes; brown hair/dark hair;
pale skin confirmed20–367 Blood SubjA 1.263 91.7

20–368 Blood SubjB 2.322 93.3 blue eyes; blond hair/light hair;
intermediate skin confirmed

20–369 Blood SubjC 6.609 97.5 brown eyes; brown hair/dark hair;
dark skin confirmed

20–361 Saliva SubjD 18.493 95.8 brown eyes; brown hair/dark hair;
intermediate skin confirmed20-370 Blood SubjD 2.178 94.2

20–364 Saliva SubjE 36.327 96.7 brown eyes; red hair;
intermediate skin confirmed20–371 Blood SubjE 1.657 95.0

20–144 Blood SubjF 0.078 16.7
blue eyes; blond hair/light hair;

intermediate skin confirmed20–145 Semen SubjF 7.022 92.5
20–146 Urine SubjF 0.009 4.2
20–147 Saliva SubjF 5.534 95.0
20–148 Blood SubjG 4.994 96.7

brown eyes; brown hair/light hair;
intermediate skin confirmed20–149 Semen SubjG 0.642 52.5

20–150 Urine SubjG 0.012 0.8
20–151 Saliva SubjG 20.448 99.2
20–065 Saliva SubjH 18.562 97.5

brown eyes; brown hair/dark hair;
intermediate skin confirmed

20–069 Saliva SubjH 19.640 97.5
20–071 Saliva SubjH 13.438 98.3
20–072 Saliva SubjH 12.512 97.5
20–074 Saliva SubjH 10.603 97.5

2.5. DNA Purification and Quantification

In accordance with the quality standards of forensic laboratories that require the use
of automatized instruments, the genomic DNA of 225 samples were extracted using the
Maxwell®16 MDx Instrument (Promega, Madison, WI, USA) and the DNA IQ Casework
Pro Kit for Maxwell®16 (Promega, Madison, WI, USA).

Each DNA sample was quantified using the Quantifiler®Trio DNA Quantification Kit
(Thermo Fisher Scientific, Waltham, MA, USA).

2.6. OpenArray™ Technology

OpenArray™ Technology (Thermo Fisher Scientific, Waltham, MA, USA) is a high-
throughput real-time PCR genotyping method that allows for rapid screening of several
TaqMan assays in many samples [13]. This real-time method involves the use of an
array composed of 3072 through-holes running on the QuantStudio 12K Flex Real Time
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PCR System (Thermo Fisher Scientific, Waltham, MA, USA) with an OpenArray™ block.
The OpenArray™ system is composed of a specific plate (OpenArray™ plate) enabling
192 samples to be typed in a single run [14].

For each sample, 5 ng (volume of 3 μL) of extracted DNA from the reference samples
and 3 μL of 2× TaqMan OpenArray™ Genotyping Master Mix were manually loaded
into 384 well-plates according to the manufacturer’s instructions (Thermo Fisher Scientific,
Waltham, MA, USA). A negative control was obtained by adding 3 μL of pure distilled water
to the Master Mix. The QuantStudio 12K Flex OpenArray™ AccuFill System transferred
the previously generated mix to the TaqMan OpenArray™ plate. The amplification was
performed using the QuantStudio 12K Flex Real Time PCR System (Thermo Fisher Scientific,
Waltham, MA, USA) instrument, and the results were analyzed using TaqMan Genotyper
Software (Thermo Fisher Scientific, Waltham, MA, USA) [14]. For each SNP, the call rate
and concordance rate were calculated as described in Section 2.7 [25].

2.7. Sensitivity

For sensitivity studies, genotyping results from four volunteer donors were assessed
from serial dilutions of DNA consisting of 10 ng, 5 ng, 1 ng, and 0.5 ng. These four volunteer
donors provided a total of one sample (buccal swab) each.

2.8. Resequencing Analysis

The genotyping accuracy was assessed through comparison with resequencing data.
Resequencing data were available from the Ensembl genome browser for the 1000 Genomes
Project samples and from an internal database for the Laboratory of Genomic Medicine
UILDM Santa Lucia Foundation samples. The PCR sequence reactions were performed
with BigDye Terminator v3.1 (Thermo Fisher Scientific, Waltham, MA, USA) and the
purification with BigDyeXTerminator (Thermo Fisher Scientific, Waltham, MA, USA)
according to the manufacturer’s instructions. The samples were run on ABI3130xl (Thermo
Fisher Scientific, Waltham, MA, USA) and the obtained sequences were read by Sequencing
Analysis software v5.2 (Thermo Fisher Scientific, Waltham, MA, USA) [13].

2.9. Statistical Analysis

At the end of the analytical assay, TaqMan Genotyper Software indicated the per-
centage of successful genotyping, reported as the call rate. The call rate is defined as the
percentage of SNPs that were assigned a genotype call by the software out of the total
number of SNPs typed. According to the software’s instructions, a successful call rate
is more than 90%. The concordance rate is defined as the proportion of SNPs typed by
OpenArray™ confirming the resequencing data. This value was determined by comparing
the allele calls generated by OpenArray™ technology with the genotypes resulting from
resequencing data [25]. Concordance is the percentage of SNPs with identical results using
both OpenArray™ and resequencing.

For phenotypic characterization of biological forensic samples (n = 17), we con-
structed a statistical prediction model using HIrisPlex-S webtool systems, available at
https://hirisplex.erasmusmc.nl/ (accessed on 20 January 2021). Each phenotype was
predicted by applying established algorithms for the color of the eyes, hair, and skin, which
returns a p-value (prediction probability) [19]. In terms of eye color, the highest p-value
is assigned to the most probable phenotype [19,26]. For the interpretation of hair color,
we considered the hair color prediction guide developed by Walsh S. et al. [23,27]. This
guide examines categorical hair color probabilities in combination with light/dark hair
color shade probabilities as obtained from genotype data [23,27]. For the interpretation of
skin color, we used the guide developed by L. Chaitanya et al. [16]. This guide considers
the highest p-value in combination with the second highest p-value [16,28]. For example, if
in the pale category we obtained a p-value greater than 0.7, this phenotypic characteristic
depends on the effect of the second highest category if this p-value is greater than 0.15. In
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particular, it will appear darker if the second most likely category is intermediate, whereas
it will appear lighter if the second most likely category is pale [16].

Prior visual phenotyping was performed by two blind assessments (two independent
individuals from our laboratory not involved in this study) to verify the validity of the
software prediction.

In order to verify the discrimination power of 17 human identification SNPs (not
including rs9786184 and rs2032652 on the Y chromosome), we determined the random
match probability (RMP) [29]. The random match probability is the estimated frequency of
a genetic profile in the reference population and is calculated using allele frequencies from
that population group. Therefore, the RMP is a useful value for evaluating the discriminat-
ing power of a DNA profiling system, and it indicates the probability of obtaining a match
between two distinct and unrelated individuals [29].

3. Results

3.1. Genotyping of the Control Sample and Concordance

The OpenArray™ System (Thermo Fisher Scientific, Waltham, MA, USA) successfully
analyzed 100% of the reference DNA samples. The average call rate and the average
concordance rate were 96.9 ± 1.72 and 99.8 ± 0.56, respectively [25]. The call rate was also
calculated for each SNP. The average SNP call rate was 98.9% ± 1.67, with values from
91.3–100% (Table 1).

3.2. Sensitivity Study

The results of the sensitivity study are shown in Table 3. A call rate higher than or
equal to 90% was obtained for all samples. The results obtained demonstrated that the
system is able to correctly type DNA evidence in quantities starting from 0.5 ng.

Table 3. The call rate and concordance rate obtained from the sensitivity study.

Sample Call Rate (%) Concordance Rate (%)

SAMPLE_1_10 ng 100 100
SAMPLE_1_5 ng 100 100
SAMPLE_1_1 ng 100 100

SAMPLE_1_0.5 ng 100 100
SAMPLE_2_10 ng 95 100
SAMPLE_2_5 ng 98.3 100
SAMPLE_2_1 ng 96.7 100

SAMPLE_2_0.5 ng 96.7 100
SAMPLE_3_10 ng 96.7 100
SAMPLE_3_5 ng 95 100
SAMPLE_3_1 ng 90 98.21

SAMPLE_3_0.5 ng 91.7 100
SAMPLE_4_10 ng 96.7 100
SAMPLE_4_5 ng 95 100
SAMPLE_4_1 ng 91.7 98.28

SAMPLE_4_0.5 ng 95 100

3.3. Genotyping of Biological Evidence from Real Cases

A total of 21 single biological evidence samples from different tissues (10 from saliva,
2 from semen, 7 from blood, 2 from urine), previously assigned to their reference perpe-
trator, were analyzed using the OpenArray™ System. This evidence was attributed to
eight different subjects [23,24] (Table 2). A total of 17 samples presented call rates higher
than 90%, with only 4 samples showing call rates below 90% (Table 2). As expected, these
4 samples were characterized by an extremely low starting concentration (Table 2).

We typed two replicates of each sample to verify the genotype call reliability. We
obtained concordant results between the two replicates for all samples.
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3.3.1. Predicting Human Appearance from Forensic Samples

Once the correct allelic call was ascertained for all subjects, it was possible to carry
out predictive analysis on the HIrisPlex-S System software [19].

The data reported in Supplementary Table S1 describe the outputs (p-values) obtained
by the HIrisPlex-S System Software for each subject [19].

Table 2 reports the phenotype predictions given by the HIrisPlex-S System soft-
ware [19].

3.3.2. RMP Calculation

Calculation of the random match probability (RMP) was performed. The calculation
considered 17 SNPs located on the autosomal chromosomes. The frequencies relating to the
European (EUR), African (AFR), and East Asian (EAS) populations of the 1000 Genomes
Project, available on the Ensembl genome browser, were used [22].

Table 4 shows the RMP values obtained for each subject.

Table 4. The random match probability (RMP) values relating to the eight subjects. European (EUR),
African (AFR), and East Asian (EAS).

Subject RMPEUR RMPAFR RMPEAS

SubjA 2.67 × 10−8 1.48 × 10−8 1.56 × 10−8

SubjB 5.60 × 10−9 1.57 × 10−9 3.51 × 10−9

SubjC 1.15 × 10−7 2.49 × 10−8 4.51 × 10−8

SubjD 4.24 × 10−7 1.91 × 10−7 1.37 × 10−7

SubjE 2.89 × 10−8 1.51 × 10−8 2.81 × 10−8

SubjF 1.80 × 10−9 6.07 × 10−10 3.27 × 10−10

SubjG 2.23 × 10−7 8.95 × 10−8 1.19 × 10−7

SubjH 4.26 × 10−8 2.30 × 10−8 6.44 × 10−8

These values show that the discriminatory power of the analyzed SNPs is not sufficient
to uniquely identify a subject in the world population but can be used to verify genetic
compatibility with suspects to be confirmed by traditional STR analysis [30,31].

4. Discussion

To the best of our knowledge this is the first application of the OpenArray™ System in
the forensic field. We designed a panel of 60 SNPs for phenotype estimation and personal
identification [2]. SNPs for eye, hair, and skin color prediction were directly selected
from the HIrisPlex-S system, while SNPs for human identification were selected from
already validated subsets (the Precision ID Identity SNP Panel (Thermo Fisher Scientific,
Waltham, MA, USA) and ForenSeq DNA Signature Prep Kit (Verogen Inc, San Diego, CA,
USA) [16–19]. These SNPs were first tested on 314 reference samples, revealing an average
call rate of 96.9% and a concordance rate near 99.8%.

Sensitivity testing performed on serial dilutions demonstrated that samples with
0.5 ng of total input DNA can be correctly typed.

Of 21 biological evidence samples from different tissues (10 from saliva, 2 from semen,
7 from blood, 2 from urine), a total of 17 were correctly typed using OpenArray™, revealing
a call rate higher than 90%.

Regarding identification purposes, since most SNPs are biallelic, they are less infor-
mative for identity testing than STR analyses [32]. Thus, many more SNPs will be needed
to achieve the same level of discrimination afforded by the commonly used STR loci [33].
However, our system is not intended to replace the present STR analysis for human identi-
fication. Despite the reduced discrimination power of this system compared to STR based
kits, the OpenArray™ System can be used to exclude suspects, to prioritize samples for
downstream analyses providing well-established information about the prediction of eye
color, hair color, and skin pigmentation.
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It should be used primarily as a tool for phenotype prediction, while identification
should also be supported by traditional methods. A total of 17 SNPs for human identifica-
tion were used in this study, yielding a mean RMP of approximately 10−8.

It is important to outline that our work was intended to provide a new tool, based
on previously validated SNPs, for phenotype prediction and prioritizing samples for
downstream analyses for human identification [16–19,34,35]. The HIrisPlex-S panel and
the related software were previously validated elsewhere [16,19]. Thus, our work was
aimed at verifying the ability of OpenArray™ to correctly type the selected SNPs.

The main strengths of the OpenArray™ System are the speed of the analysis (less
than four hours against the current 24–48 h), the standardized interpretation of the results,
the low cost for the analysis of a single sample (about 10 euros, in the region of 20% of
the current average) and the opportunity to provide both a first evaluation of biological
compatibility and phenotypic information. Moreover, TaqMan chemistry is a well-known
technology routinely used in the workflow of forensic laboratories to quantify the DNA
extracted from biological samples.

Current weaknesses are that it is necessary to analyze the samples with a second
system based on traditional STRs to determine biological compatibility. Furthermore, the
OpenArray™ System is not used in the workflow of forensic genetics laboratories, limiting
its availability for routine use.

5. Conclusions

To the best of our knowledge, this study represents the first application of the OpenAr-
ray™ System as a genotyping tool in forensic genetics. In particular, the results obtained
suggest that the OpenArray™ System is robust and reliable and is suitable for use in
forensic genotyping. Herein, we developed a panel for phenotypic prediction and human
identification. Although the 19 SNPs used provide useful information for personal identifi-
cation, a greater number of SNPs is required for the reliable identification of a subject.

The quality of the results obtained from biological evidence also promotes the applica-
tion of this system in forensic laboratories to assist investigators in resolving cases.

Finally: these data suggest the applicability of this system as a genotyping method
in the forensic field. In particular, it could be suitable as a first line method to verify the
presence of genetic compatibility between evidence and suspects and to achieve rapid
investigative information also providing well-founded predictions of eye color, hair color,
and skin pigmentation. More studies will be needed for further validation of this technology
and to consider opportunities to implement this custom array with more SNPs to lower
the RMP and to include markers for studies of ancestry and lineage.
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Abstract: In terms of crime scene investigations by means of forensic DNA-analyses, burglaries are
the number one mass crime in Switzerland. Around one third of the DNA trace profiles registered
in the Swiss DNA database are related to burglaries. However, during the collection of potential
DNA traces within someone’s residence after a burglary, it is not known whether the sampled DNA
originated from the perpetrator or from an inhabitant of said home. Because of the high incidence of
burglaries, crime scene investigators usually do not collect reference samples from all the residents
for economical and administrative reasons. Therefore, the presumably high probability that a DNA
profile belonging to a person authorized to be at the crime scene ends up being sent to a DNA
database for comparison, has to be taken into account. To our knowledge, no investigation has
been made to evaluate the percentage of these non-perpetrator profiles straying into DNA databases.
To shed light on this question, we collected reference samples from residents who had been victims of
recent burglaries in their private homes. By comparing the profiles established from these reference
samples with the profiles generated from trace DNA, we can show that the majority of the DNA
samples collected in burglary investigations belong to the residents. Despite the limited number of
cases included in the study, presumably due to a crime decline caused by the pandemic, we further
show that trace DNA collection in the vicinity of the break and entry area, in particular window and
door glasses, is most promising for sampling perpetrator instead of inhabitant DNA.

Keywords: burglary; CODIS; touch DNA; forensic genetics; crime scene; authorized; sampling

1. Introduction

Burglaries, usually coming along as a mixture of property damage, trespassing,
and theft, are a severe type of property crime, the impact being increased by the feel-
ing of insecurity left among the victims. In Switzerland and probably many other countries,
burglaries constitute the number one volume crime investigated by means of forensic
genetics. On one hand, it is a frequent type of property crime with 24,010 registered cases
in Switzerland in 2020 (about 9% of all registered offences against property) [1] and on the
other hand, burglaries are particularly suited for the sampling of DNA traces, compared to
other volume crimes such as fraud. In the department for Forensic Molecular Biology of the
Institute of Forensic Medicine, in which the present study was conducted, “touch” DNA
traces from burglaries and burglary attempts make up for more than 50% of the overall
number of traces analyzed.

Given the time spent within a household, one can expect that the majority of the DNA
traces left on site actually originated from the respective inhabitants. However, despite
the large number of cases, we rarely obtain reference samples from inhabitants to avoid
having their profiles established from DNA traces sampled at the crime scene sent to the
Swiss DNA database for comparison via CODIS. Assuming an average of 2–3 persons per
household or even more for workspaces, when taking burglaries in business environments
into account, routine sampling of reference swabs from all residents would cause enormous
financial and administrative costs.
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However, ignoring the fact that a large number of resident profiles end up registered in
CODIS as traces profiles creates a couple of problems: (a) The police run the risk of spoiling
investigations through the presentation of inadmissible evidence. The following real case
might serve as an example to illustrate this particular problem: Two persons, a man and
a woman living together, were assaulted by three men. From the jacket of the woman,
a DNA mixture containing a female and a male component was recovered and sent to
CODIS. The female component belonged to the female victim, as inferred by crosschecking
all samples in the same case. The male component, however, resulted in profile matches
with DNA traces from two burglaries. The police therefore started investigations against
the male victim of the assault. The Bern Cantonal High Court, however, prohibited all
the evidence gathered in this case from being used, since the investigation was launched
based on inadmissible evidence given by two random and case unrelated DNA matches
that could have been avoided by taking reference samples [2]. The verdict prevented the
assailants from being brought to justice and the affaire became a cold case. (b) A lack
of prior exclusion might prevent crime victims from contacting the police. The risk of
being associated with a past crime or a juvenile sin, e.g., illegal graffiti spraying, might
discourage people from contacting the police, once they have become victims themselves.
In Switzerland, trace DNA sampling is legitimate in cases of property damage having
caused more than 10,000 CHF of pecuniary damage, a sum that is easily reached through
graffiti spraying. We can imagine a 16-year-old graffiti sprayer, who becomes a victim in
a more serious crime and who refrains from contacting the police, because he fears that
through incidental DNA matches, his past or present spraying activities might be revealed
to the police. (c) The database becomes inflated. DNA trace profiles caused by residents
will normally not generate hits in forensic databases, at least not with profiles of convicted
individuals. Therefore, the traces will remain in the database for years and create candidate
matches with newly added suspect profiles or trace profiles from other cases. DNA mixture
profiles frequently lead to candidate matches that have to be verified by the submitting
lab. The lab than decides whether the “candidate match” is considered as a true match
(“HIT”), or not. For mixture profiles, most of the verifications result in “NO HIT” verdicts.
The control of those candidate matches is time consuming and constitutes a possible source
of error, justifying a cleanup of the database from profiles from crime-authorized people.

From controlled studies on DNA transfer and persistence [3–6], we expect a high
number of the DNA trace profiles generated in burglary investigations to be from the
inhabitants. However, no figures are available on how many of the profiles in real case
scenarios stem from residents. To get an impression of those figures, we focused on
burglaries in private households, because access is more restricted than in stores or other
business environments. We collected the reference samples from the inhabitants and
compared them to the DNA profiles generated from the crime scene traces before sending
them for comparison into the Swiss DNA database.

2. Materials and Methods

2.1. Sampling

Sampling for crime scene traces in burglaries was performed by the Bern Cantonal Po-
lice in accordance with their usual practice. The police officers individually decided ad hoc
at the scene where DNA from the offender could be expected and took samples accordingly.
Reference samples from residents of private households were collected between November
2020 and April 2021. Residents present during the crime scene investigation were asked
for reference samples. Consenting residents were handed out a written agreement form
with explanations concerning the procedure, the modalities for the usage of their DNA
profiles and information on why prior exclusion of their profiles would be in their favor.
The police officer further registered the number of persons living in the household and
whether there had been any visitors at the house within the last 7 days prior to the burglary.
For all inhabitants not present at the apartment or house during the crime scene sampling,
the police officer left a set of documents, buccal swabs, and a prepaid reply envelope on-site,
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so the absent inhabitants could send their reference swabs directly to the DNA laboratory
by mail. All samples were given a pseudonymized family role (such as “father” or “man”)
under which they were subsequently processed in the DNA laboratory. Buccal swabs
were collected with Sarstedt Forensic Swab L. (Sarstedt AG, Nümbrecht, Germany), crime
scene traces were collected using the forensiX Cardboard Evidence Collection Kit (Art. Nr.
9021040; Prionics, Schlieren, Switzerland). One or two partially moistened swabs were
used for the sampling of one trace.

2.2. Analysis

DNA from buccal swabs was extracted by Chelex 100 (Bio-Rad Laboratories, Hercules,
CA, USA). Samples were placed in 1500 μL of 20% Chelex 100, put for two times 30 s at
5900 rpm on a Precellys®24 homogenizer (Bertin instruments, Montigny-le-Bretonneux,
France), incubated at 100 ◦C for 10 min and subsequently centrifuged at 13,000 rpm on
an Eppendorf Minispin centrifuge (Eppendorf, Hamburg, Germany). DNA extracted
from buccal swabs was quantified using a Qubit fluorometer (Thermo Fisher, Waltham,
MA, USA). DNA profiles were established in 12.5 μL reaction volume by multiplex-PCR
using the AmpFlSTR® NGM Select ExpressTM (Thermo Fisher, Waltham, MA, USA) and
PowerPlex® ESI17 Fast kits (Promega, Madison, WI, USA). DNA from trace samples was
extracted with the AutoMateExpressTM device and the PrepFiler ExpressTM Kit (both
Thermo Fisher, Waltham, MA, USA), with an elution volume of 50 μL, representing our
standard lab procedure for swabs from touched surfaces [7]. DNA was quantified by
Real-Time-PCR (qPCR) using the Quantifiler® HP Kit from Thermo Fisher on a 7500 RT
PCR System (Thermo Fisher, Waltham, MA, USA). DNA profiles were established by
multiplex-PCR using the AmpFlSTR® NGM SelectTM and NGMDetectTM Kits (Thermo
Fisher, Waltham, MA, USA) in a total reaction volume of 25 μL (at least two independent
amplifications). A maximum of 0.5 ng DNA was amplified per reaction, using the maximum
sample volume of 10 μL for samples with DNA-concentrations below 50 pg/μL. In line with
our standard operating procedures for casework, all samples with a DNA concentration
below 20 pg/μL were amplified with 32 instead of 30 PCR cycles. Capillary electrophoresis
was run either on a 3130 xl or on a 3500 xl genetic analyzer (Thermo Fisher, Waltham, MA,
USA). Signal interpretation was performed with Genemapper ID-X, v1.4 (Thermo Fisher,
Waltham, MA, USA). All peaks above 50 rfu (3130 xl) and 100 rfu (3500 xl) were considered
as true alleles.

2.3. Criteria for a Submission to Swiss CODIS Database

The Swiss DNA database uses the CODIS (combined DNA index system) software
v7.0. Switzerland has defined by law the 16 loci included in the AmpFlSTR® NGMSe-
lect/NGMDetect and PowerPlex® ESI17/ESX17 kits as database core loci [8]. More or less
all offences leading to ordinary criminal proceedings are recordable, except misdemeanors
penalized with a fine. Familial searches are permitted for all offences penalized with a
prison sentence of more than three years and can be ordered by the public prosecutor.
If reference samples are collected, the generated profiles are used only for the exclusion
of people with lawful right of access to the scene. Reference profiles are not registered in
CODIS. Profile exclusion is performed locally in the laboratory, before sending the trace
profile to CODIS. The entry criteria for a regular database search in Switzerland are a mini-
mum of 6 loci for single or major component profiles and 8 loci for two person mixtures.
The sex locus Amelogenin can be entered, but is not searched for in CODIS. Apparent major
components are selected, if no two-person mixture can be clearly distinguished. A submis-
sion was considered when the lab internal quality conditions were met, i.e., a minimum
ratio of 3:1 for major to minor component and heterozygote peak balance of at least 60%.
Profiles that did not fulfill our lab or the search criteria for CODIS, although they could
possibly still be interpreted, e.g., by probabilistic genotyping [9,10], were not investigated
any further. It is important to note that our study targets the investigative phase of burglary
investigations and not the evaluative phase [11].
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3. Results

3.1. Samples Obtained

We had a bad timing for our study, since we registered in the relevant timeframe
between November 2020 and April 2021 an unusual low number of burglaries in private
households. This was presumably due to the COVID-19 pandemic. As part of the mea-
sures taken in the fight against the pandemic, e.g., restrictions in cross-border traffic or
the obligation of working in the home office, people spent more time at home. In 2020,
we temporarily observed a workload drop of about 80%. From November to April, our lab
registered 226 burglaries in private housings; attempts and sneak-in thefts not included.
In 55 of those cases, so approximately one-quarter, we obtained the reference samples from
the inhabitants. We analyzed 144 trace samples in total, what corresponds to 2.6 traces
per burglary. We obtained a total of 118 references samples (50 women, 47 men, and 21 chil-
dren), so in average about 2.14 reference samples per case, corresponding well with the
average household size in Switzerland of 2.2 persons [12].

3.2. Sample Categories

Samples were classified into three categories: (a) furniture, e.g., handles from cup-
boards, pieces of furniture that had been moved by the offenders; (b) portable items, e.g.,
keys or jewelry; and (c) samples taken around the entry of the offender, e.g., door or window.
The majority, about 65%, of the samples were taken in the vicinity of the entry (Figure 1a).
The samples around the entry were further divided into subcategories (Figure 1b). Half of
them (n = 46) were collected from window glass or glass fragments.

  
(a) (b) 

Figure 1. (a) All samples classified in three categories; (b) samples from entry divided in several
sub-classes.

3.3. Typing Success

We were able to establish DNA profiles suitable for submission to CODIS from
48 traces, what corresponds to an overall success rate of 33% (Figure 2).

 

Figure 2. The STR typing results for all 144 crime scene samples summarized. The category “no
profiles” includes all profiles not fulfilling the CODIS entry criteria.
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Figure 3 shows the distribution of the total amount of DNA extracted from each
sample of all 144 samples (Figure 3a) and of the 48 samples that resulted in CODIS-suitable
profiles (Figure 3b). We were able to establish DNA profiles for database entry for all traces
with a total DNA amount of more than 1 ng. Around 85% of the traces with less than 0.5
ng total DNA did not result in CODIS-suitable profiles.

  
(a) (b) 

Figure 3. Histograms of the distributions of DNA amounts in ng obtained from: (a) all samples and
(b) samples for which we were able to establish CODIS-suitable DNA profiles.

The DNA typing success rate of samples taken from furniture and portable items
reaches 70% and 50%, respectively, whereas only about 30% of traces taken around the
entry resulted in CODIS-suitable profiles (Figure 4).

 

Figure 4. Fraction of samples of the respective class that resulted in CODIS-suitable DNA profiles.

3.4. Comparison with Reference Samples

The 48 CODIS-suitable profiles include interpretable components from 57 DNA con-
tributors. We obtained 41 single or major component profiles and 7 two-person mixtures.
Two of the major component profiles showed a reproducible (at least three PCR amplifica-
tions conducted) minor component with more than five but less than eight alleles. Therefore,
those three minor components are not suitable for CODIS as a mixture, but would be suffi-
cient according to the Swiss CODIS criteria for interpretation, the reason why we included
them in our interpretation. Of those 57 trace donors, 17 were detected on portable items,
12 on furniture and 28 on samples around the entry, half of which were from windows
glass (Figure 5a). Of those 57 trace contributors, 43 (75%) were identified as crime scene
authorized persons, i.e., inhabitants.
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(a) (b) 

Figure 5. (a) Donors of the 48 CODIS-suitable profiles, according to trace class. (b) Unknown donors
according to trace class. There were 0 unknown donors on furniture.

If we have a closer look on the different sample categories, we can see that traces
from window glass clearly outperform the rest of the samples (Figure 5b). Whereas 71% of
the interpretable traces detected on window glass and glass fragments are from unknown
contributors, and therefore from possible suspects, less than 10% of the contributors from all
other traces were from unknown individuals. The ratio of unknown vs. known contributors
is depicted in Figure 6.

 

Figure 6. Ratios between unknown contributors and inhabitants detected on the different types
of traces.

4. Discussion

The 33% success rate for DNA typing of contact (“touch”) traces in burglaries are
in line with the approximate 25% overall typing efficiency we have observed in our lab
in recent years. It also corresponds with the success rate from casework published by
another Swiss laboratory, therefore operating within the same national and regulatory
framework [13]. Their average success rate for “touch” DNA traces of 26% is slightly lower
than the one for the samples from our study, but we have to take into account the higher
sensitivity of the multiplex kits nowadays, since the study from 2008 used AmpFlSTR®

SGM PlusTM and we used the more sensitive NGMSElectTM and NGMDetectTM kits.
Around 70% of the profiles established from window glass and glass fragments were

from unknown individuals. A low level of background DNA on windows has been reported
in a previous study, which suggests windows as premium choice for DNA sampling in
burglary cases. However, no numbers were presented by the authors of this study from
2008 [14]. The results from our study confirm that windows have a comparatively low
background of resident DNA and are therefore most suited for DNA trace analysis. We can
see that the police officers of the Bern Cantonal Police are already focusing on the most
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promising sampling spots, since 32% of the traces we received were taken from windows
or glass fragments.

Even though the data shown in Figure 6 seem to be very strong in favor of the sampling
of window glass, we have to keep one limitation in mind, concerning the pre-selection
effectuated by the police officer handling the case. This pre-selection is twofold: First,
the officer will select the traces appearing most promising to him or her at the crime scene.
Second, he or she will make a subsequent selection as to which samples to send for analysis
to the DNA laboratory. If the analysis of the first samples sent to the lab do not result in
interpretable DNA profiles, the case-managing officer might decide to send additional
samples for analysis. Therefore, we encounter some risk of bias if samples from window
glass are prioritized and no other samples are analyzed in the case. If we assume that
the unknown profiles we can recover are maybe from “less prudent” burglars, than we
might also possibly expect more of their profiles on other items in the apartment. However,
we would not see those suspect profiles, because we do not analyze additional samples
after having successfully established a profile from window glass.

In the years from 2009 to 2017, between 30 to 40% of all the DNA trace profiles
submitted every year to the Swiss DNA database originated from burglary cases [15]. From
our study, we would expect that at least 75% of those profiles originate from residents.
The number of non-suspect profiles could even be higher, because we cannot be sure that
we obtained reference samples from all people authorized to the crime scene, e.g., visitors or
first responding local police officers, and DNA might also be transferred and subsequently
picked up [3–6].

In routine casework, we usually do not obtain reference samples from inhabitants.
From the 144 samples in the present study, we normally would have sent 44 unique profiles
into CODIS (redundant profiles from the same case would not be submitted and were
subtracted). After the comparison with the reference samples, we ended up submitting
11 profiles (10 single/major component profiles and 1 mixture). To date (10 December 2021),
six of those profiles generated hits with profiles from persons registered in the Swiss DNA
database, five of which originated from samples taken from window glass, underlining the
high potential of this trace type to advance burglary investigations.

To date, the Swiss DNA database contains around 100,000 trace DNA profiles. There-
fore, extrapolating the results from of our study, we expect that around 25,000 trace DNA
profiles registered in the database actually originate from inhabitants. Not being excluded
from a trace DNA profile as a resident bears the risk of being associated with other offences
by a trace-to-trace match in CODIS, as mentioned in the introduction. However, a lack
of prior exclusion interferes also with the privacy of the residents in a more general way.
Today, the standard STR profiles contain only little personal information. However, poten-
tially more privacy intrusive techniques, such as forensic DNA phenotyping (FDP) are on
the rise [16]. Even though we consider such a development as not very probable, privacy
issues for crime scene authorized individuals might increase in situations where FDP could
also be employed for volume crimes in the future.

5. Conclusions

More than 70% of all profiles generated from window glass in the vicinity of the break-
in site were caused by unknown individuals, whereas less than 10% of all other traces
led to unknown, and therefore possible suspect profiles. Therefore, traces from (broken)
windows should be prioritized in crime scene sampling for the generation of investigative
leads. To minimize the inclusion of DNA profiles originating from crime scene authorized
individuals in CODIS, the collection of reference samples should at least be considered for
traces that were not sampled from window glass.
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Abstract: The FORensic Capture Enrichment (FORCE) panel is an all-in-one SNP panel for forensic
applications. This panel of 5422 markers encompasses common, forensically relevant SNPs (identity,
ancestry, phenotype, X- and Y-chromosomal SNPs), a novel set of 3931 autosomal SNPs for extended
kinship analysis, and no clinically relevant/disease markers. The FORCE panel was developed
as a custom hybridization capture assay utilizing ~20,000 baits to target the selected SNPs. Five
non-probative, previously identified World War II (WWII) cases were used to assess the kinship panel.
Each case included one bone sample and associated family reference DNA samples. Additionally,
seven reference quality samples, two 200-year-old bone samples, and four control DNAs were
processed for kit performance and concordance assessments. SNP recovery after capture resulted in
a mean of ~99% SNPs exceeding 10X coverage for reference and control samples, and 44.4% SNPs for
bone samples. The WWII case results showed that the FORCE panel could predict first to fifth degree
relationships with strong statistical support (likelihood ratios over 10,000 and posterior probabilities
over 99.99%). To conclude, SNPs will be important for further advances in forensic DNA analysis.
The FORCE panel shows promising results and demonstrates the utility of a 5000 SNP panel for
forensic applications.

Keywords: SNP; kinship; massively parallel sequencing; next generation sequencing; hybridization
capture; bone

1. Introduction

Forensic DNA databases were built around the use of non-coding DNA markers
for human identification, primarily short tandem repeat (STR) loci from autosomal and
Y-chromosomal targets [1]. By using a core set of DNA markers with almost no significance
outside the medico-legal system, forensic DNA profiling was set to evolve independently
from, and in parallel to, other fields of genetics sans overlap. This technological indepen-
dence was rapidly breached, however, with the adoption of investigative genetic genealogy
(IGG) and high-density single nucleotide polymorphism (SNP) genotyping for solving
high-profile criminal cases (e.g., the Golden State Killer) and for identifications of un-
known human remains [2]. Extant direct to consumer (DTC) SNP databases provided an
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exponentially growing, vast resource that could produce a genetic trail to anyone whose
relatives participated in the consumer DNA testing market and opted into genealogical
DNA databases such as GEDmatch [3,4]. The IGG method involves determining an ex-
tended DNA profile from a crime scene (or other forensic) sample using high-density
SNP genotyping microarrays [5] or whole-genome sequencing (WGS) [6]. Then the SNP
genotype dataset is searched in a public DNA database to identify matches with significant
DNA sharing, indicating a familial relationship. Genealogists reconstruct family trees from
the matches, identifying branches that could represent possible suspects that are provided
to law enforcement. Once the “investigative lead” is identified, the next phase in the DNA
profiling reverts back to using the forensic DNA core markers (i.e., STRs) to confirm the
identification. DNA from the person of interest is obtained for testing, and the suspect’s
STR profile is compared to the STR profile produced from the crime scene sample. The
final DNA-based identification rests on the court-admissible STR results, which constitute
the definitive forensic evidence from the case.

Confirmatory STR testing is feasible when the DNA from a forensic sample is of
standard forensic quality. Yet certain sample types contain degraded DNA, making them
unsuitable for STR profiling, most notably rootless hair shafts and aged skeletal remains.
Furthermore, confirmatory STR testing is limited when direct/reference samples are lacking
and distant relationships must be inferred, as in historical remains identifications. In such
cases, mitochondrial DNA (mtDNA) analysis is often used to recover a DNA profile,
as mtDNA is higher in copy number than nuclear DNA (nDNA); thus, the chances of
recovering a mtDNA target are higher. Since mtDNA is a non-recombining lineage marker
whose DNA sequence is shared amongst maternal relatives, the utility of mtDNA is limited
forensically because its discrimination power is fairly weak. Therefore, mtDNA best serves
degraded DNA cases that can be bolstered by other types of evidence, DNA, or otherwise.
Recent methods for mitogenome massively parallel sequencing (MPS) have been applied to
degraded DNA samples and validated for forensic use, including mini-amplicon PCR [7,8],
primer extension capture (PEC) [9], and hybridization capture [10]. Such methods are very
sensitive and capable of providing authentic mtDNA data from the most challenging of
forensic specimens. These MPS workflows have also been adapted for SNP profiling of
degraded DNA specimens [11–15]. Large SNP multiplexes suitable for extended kinship
analysis can be readily enriched using custom hybridization capture [14]. However, such
large panels may not be suitable for routine forensic casework due to the markers that may
be linked and/or associated with pathogenic variants.

To provide an enrichment approach for the generation of a large number of SNPs
from all sample types, the FORensic Capture Enrichment (FORCE) panel was designed as
an all-in-one SNP panel for forensic applications. This panel encompasses all forensically
relevant SNP markers (identity, ancestry, phenotype, X- and Y-chromosomal SNPs) and
presents a novel kinship SNP set for distant relationship inference. The relatively small
size of the FORCE panel minimizes the number of primers/probes per reaction to reduce
the enrichment cost. The FORCE panel can be adapted to various enrichment methods,
including hybridization capture, PEC, and possibly multiplexed PCR, making it a viable
option for both high quality and degraded DNA samples. The enriched SNP targets can
be sequenced on a variety of downstream MPS platforms. By limiting the number of
SNPs, fewer MPS reads are required to obtain per-SNP coverage requirements, and thus
sequencing efficiency is maximized. The FORCE panel SNPs were sub-selected from SNPs
on the genotyping microarrays used by DTC DNA testing companies, enabling cross-
compatibility with externally developed SNP data. This is important for forensic validation
purposes to demonstrate concordance and genotyping accuracy. Medically relevant SNPs
were excluded from the FORCE panel design in order to mitigate genetic privacy issues
around FORCE panel DNA databanks. Y-SNPs were included for high-resolution Y-
chromosome haplogroup inference, which may be informative for both identification and
ancestry prediction purposes [16]. X-SNPs were included due to their potential kinship
informative value for cases scenarios in which one may make use of the X-chromosomal
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specific mode of inheritance [17]. Aside from general forensic sample use, the FORCE
panel is ideally suited to confirm investigative leads gained with genetic genealogy that
cannot be confirmed with STR typing, such as those from degraded DNA.

2. Materials and Methods

2.1. FORCE Panel Design

A kinship SNP panel was designed to provide maximum kinship resolution with
minimal SNPs for enhanced sequencing efficiency. Kinship SNPs were selected based
on the following criteria (Table 1): (1) Inclusion in three commonly used Illumina SNP
genotyping chips (Table 2; San Diego, CA, USA), (2) minor allele frequency (MAF) between
0.2 and 0.8 in the major 1000 Genomes continental populations (African (AFR), Admixed
American (AMR), East Asian (EAS), European (EUR), and South Asian (SAS)) [18], (3) at
least 0.5-cm genetic distance between selected SNPs, (4) linkage disequilibrium (LD) metric
r2 smaller than 0.1, and (5) frequency difference of less than 0.35 between the 1000 Genomes
five continental populations. Using the same parameters as the autosomal kinship SNPs,
X-SNPs were selected for cases requiring X-chromosomal information. Pre-existing SNP
marker sets were added to the FORCE panel to offer cross-compatibility with commercial
SNP assays (Table 2). Identity-informative SNPs (iiSNPs) were compiled from the ForenSeq
DNA Signature Prep Kit (Primer Mix A; San Diego, CA, USA), the Precision ID Identity
Panel (Thermo Fisher Scientific, Waltham, MA, USA), and a published QIAseq panel
(QIAGEN) [19]. The ancestry- and phenotype-informative SNPs (aiSNPs and piSNPs,
respectively) were compiled from the ForenSeq kit (Primer Mix B), the Precision ID Ancestry
Panel (Thermo Fisher Scientific), and markers identified by the VISAGE consortium [20].
To increase the Y haplogroup resolution beyond the 34 Y-SNPs in the Precision ID Identify
Panel, 884 Y-SNPs targeted by the amplicons of the Ralf et al. [16]. AmpliSeq panel (Thermo
Fisher Scientific) were included in the assay. All of the selected FORCE panel SNPs were
compared with American College of Medical Genetics (ACMG) secondary findings (SF) 2.0
genes to test for clinical relevance [21]. SNPs listed the ACMG SF 2.0 were omitted from
the panel. Tri-allelic SNPs were omitted from the panel and autosomal microhaplotypes
were not included to simplify the data analysis.

Table 1. Kinship SNP selection criteria and resulting viable SNPs.

Kinship Panel Criterion
Number of

Remaining SNPs

1. Included on all major SNP array chips (Table 2) 116,544

2. MAF 0.2–0.8 in 1000 Genomes populations 34,851

3. Minimum 0.5 cm distance 5426

4. LD metric r2 < 0.1 5376

5. Maximum 35% frequency difference between 1000
Genomes populations 3937

A custom myBaits-20,000 kit (Arbor Biosciences, Ann Arbor, MI, USA) was designed
for hybridization capture of the selected SNPs. The design included four baits per au-
tosomal SNP (right flank, left flank, and each allele) and two baits per X/Y SNP (each
allele). A BLAST [22] analysis was then performed to filter out non-specific baits. A total
of 228 baits failed to meet the BLAST analysis requirements. Most of these failed baits
(139/228) came from the AmpliSeq Y-SNP marker set [16], including 61 Y-SNPs for which
both baits failed. The remaining failed baits targeted autosomal markers (74 SNPs with one
failed bait, six SNPs with two failed baits, and one SNP with three failed baits). The failed
baits were removed from the kit, thus eliminating 61 of the 884 Y-SNPs. Overall, there
were 97 SNP markers with at least one failed bait and thus may show reduced coverage in
the SNP capture results. The α version of the myBaits FORCE capture assay tested in this
study included 5446 SNPs (Table S1), targeted by 19,526 unique baits. There were 24 SNPs
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included in the α panel but ultimately excluded from analysis due to the outlined criteria.
The excluded SNPs were six kinship SNPs with clinical relevance, 15 triallelic aiSNPs (one
of which also had clinical relevance), one Y-SNP from the Precision ID Identity Panel with
no Y haplogroup association, and two uninformative autosomal SNPs. A summary of
the marker types comprising the 5422 FORCE panel SNP targets analyzed in this study is
presented in Figure 1 and detailed marker information is provided in Table S1.

Table 2. Commercial and/or published SNP panels utilized for the FORCE panel selection. iiSNP =
identity-informative SNP; aiSNP = ancestry-informative SNP; piSNP = phenotype-informative SNP;
X-SNP = X-chromosomal SNP; Y-SNP = Y-chromosomal SNP.

Marker Type SNP Panels (# SNPs)

Kinship SNP/
X-SNP

Infinium Global Screening Array (654,027), Infinium Omni
Express (710,000), Infinium CytoSNP-850K (850,000)

iiSNP

ForenSeq DNA Signature Prep Kit: Primer Mix A (94)

Precision ID Identity Panel (90)

QIAseq Investigator 140 SNP panel (140)

aiSNP

ForenSeq DNA Signature Prep Kit: Primer Mix B (56)

Precision ID Ancestry Panel (165)

VISAGE panel (115)

piSNP
ForenSeq DNA Signature Prep Kit: Primer Mix B (24)

VISAGE panel (41)

Y-SNP
Precision ID Identity Panel (34)

AmpliSeq (884)

2.2. Simulated Panel Performance

A simulation approach was used to study expected likelihood ratio (LR) distributions
for various kinship case scenarios based on the kinship SNPs included in the FORCE panel.
Five different kinship case scenarios were selected, representing second to sixth degrees of
pairwise relatedness (i.e., half siblings, first cousins, first cousins once removed, second
cousins, and second cousins once removed). The simulations were performed with the
complete kinship SNP set (the initial 3937 SNPs including the six that were ultimately
excluded). Simulations were also performed with 75% and 25% of the kinship SNPs in
order to mimic situations for which only partial SNP profiles are available.

The simulations were performed using the software Merlin [23]. Merlin was used both
to create the pedigree-based DNA data and to calculate likelihoods for the tested hypothe-
ses. European allele frequencies from [18] were used and genetic linkage was accounted for
using genetic position information from Rutgers map [24]. For each simulated kinship case
scenario, the likelihood ratio was calculated as LR = Pr (DNA|H1)/Pr (DNA|H2), where
H1 was the hypothesis representing the related case scenario, and H2 was the hypothesis
representing the alternative, in which the tested individuals are unrelated. For each case
scenario and true hypothesis, 10,000 simulation events were performed. A front-end script
written in R [25] was used to format and manage input files, and R was also used to handle
the outputs from Merlin and for plotting the distribution curves (R package ggplot2).
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Figure 1. FORCE panel SNP marker summary (n = 5422).

2.3. SNP Capture Assay Laboratory Testing
2.3.1. Sample Selection

The samples utilized in this study originated from non-probative Defense Personnel
Accounting Agency (DPAA) cases that were previously processed by the Armed Forces
Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL).
These cases involve skeletal samples from five previously identified World War II (WWII)
male service members and their associated family reference specimens. One or more
DNA extracts from a single skeletal element per service member was included in this
study, along with two or three family reference samples for each service member (Table 3).
The five cases were chosen to range in sample quality and degree of relationship. In
addition to the case samples included for testing the effectiveness of the kinship SNPs,
further non-probative samples were evaluated for concordance and/or SNP performance
(Table 4). These included seven reference samples, a 19th century bone sample from a
previously identified individual (sample 25, JB55 [12]), an additional 19th century bone
sample associated with JB55 (sample 26), and four control DNAs.
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Table 3. Non-probative case descriptions. Each of the five cases includes one or more DNA ex-
tracts from a degraded bone sample (~70 years) of a previously identified World War II (WWII)
service member, along with two or three family reference specimens (buccal swabs). DOR = degree
of relatedness.

Case
WWII

Context
Sample Sample Type Relationship to Service Member (DOR)

A USS Oklahoma

1 Buccal swab Grandniece (3)

2 Buccal swab Nephew (2)

3 Left femur Self

B USS Oklahoma

4 Buccal swab Nephew (2)

5 Buccal swab Great grandnephew (4)

6 Buccal swab Great grandniece (4)

7.1
Left femur Self

7.2

C Austria

8 Buccal swab First cousin twice removed, male (5)

9 Buccal swab Nephew (2)

10 Buccal swab Daughter (1)

11.1
Long bone Self

11.2

D Italy

12 Buccal swab Sister (1)

13 Buccal swab Grandniece (3)

14.1

Right parietal Self14.2

14.3

E Tarawa

15 Buccal swab Son (1)

16 Buccal swab Daughter (1)

17.1
Right tibia Self

17.2

All living sample donors provided informed consent for their samples to be used in
research and quality improvement activities. The use of these reference and bone samples
was approved by the Defense Health Agency Office of Research Protections (Protocol #
DHQ-20-2073).

2.3.2. DNA Extraction and Quantitation

Existing DNA extracts and associated reagent blanks (RBs) from the five skeletal
samples as well as JB55 [12] were obtained. During previous processing of these samples,
DNA was extracted from 0.2–1.0 g bone powder. Samples were first digested overnight at
56 ◦C in a buffer containing 0.5 M EDTA, 1% lauroylsarcosine and 200 μL of 20 mg/mL
proteinase K. DNA extraction was achieved using either an organic protocol or a double
QIAquick PCR Purification Kit method (QIAGEN, Hilden, Germany), as described in [26].
Purification was performed on all organic extracts using the QIAGEN MinElute PCR
Purification Kit, followed by elution in 50 to 100 μL of Tris-EDTA (10 mM Tris, (pH 7.5)
0.1 mM EDTA). An unknown skeletal sample from the same historical context as JB55,
along with an associated RB, underwent a modified Dabney DNA extraction. This Dabney
protocol followed the method using large volume silica columns [27]; however, overnight
digestion was performed at 56 ◦C.
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Table 4. Additional non-probative samples tested: seven reference samples with self-reported
phenotypic and ancestry information (18–24), two historical bone samples ~200 years postmortem
(25 and 26), and four control DNA samples (2800M, K562, NA12877, and NA12878).

Sample Sample Type Sex

18 Buccal swab Female

19 Buccal swab Female

20 Buccal swab Male

21 Buccal swab Female

22 Buccal swab Female

23 Buccal swab Male

24 Buccal swab Male

25 (JB55) Femoral bone (~200 years) Male

26 Unknown bone (~200 years) Unknown

2800M Whole blood Male

K562 Cell line Female

NA12877 Cell line Male

NA12878 Cell line Female

DNA was isolated from the buccal swabs using the QIAGEN EZ1 DNA Investigator
Kit automated on an EZ1 Advanced XL instrument following the manufacturer’s Trace
or Tip Dance Protocol. The final elution volume for all samples ranged from 50 to 100 μL
of Tris-EDTA. DNA was quantified with the dsDNA High Sensitivity (HS) Assay Kit on
the Qubit 2.0 or Qubit 3.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) to
determine input into library preparation.

2.3.3. Library Preparation

Samples were divided into three sets for laboratory processing and sequencing, and
each set included library negative and positive controls to evaluate library and capture
success. The first sample set (bone) included ten DNA extracts from the WWII bone
samples and one of the historical bone samples (26) plus two associated RBs. The bone
set positive control was 1 ng of fragmented K562 control DNA as previously described
in [10]. JB55 was processed separately from the other bone samples in its own set, which
included an associated RB, library negative control, and K562 positive control as used in
the bone sample set. Lastly, the reference sample set included the 12 family references,
seven additional reference-type samples, and three control DNAs (2800M, NA12877, and
NA12878). Associated RBs and a library negative control were included in the reference
sample set.

The bone libraries were prepared in a dedicated low copy DNA laboratory using the
KAPA Hyper Prep Kit (Roche Sequencing, Wilmington, MA, USA). Library preparation
followed the manufacturer’s recommendations using 15-μM 8-bp dual-indexed adapters.
A target DNA extract volume of 50 μL was used for library preparation, with a maximum
DNA input of 1 μg. Some of the previously existing DNA extracts had limited volume
available; therefore, Tris-EDTA was added to create a total volume of 50 μL. Reference
sample libraries were prepared with the KAPA HyperPlus Kit (Roche Sequencing), as
fragmented DNA is required for successful library preparation. Library preparation was
performed in accordance with the manufacturer’s protocol with a 20-min fragmentation
and ligation of dual-indexed 8-bp adapters (Integrated DNA Technologies, Coralville, IA,
USA). The library PCR reactions for the bone samples utilized KAPA HiFi HotStart Uracil
+ ReadyMix (Roche Sequencing) to accommodate for uracils present in the native DNA
molecule from cytosine deamination. The reference/control sample libraries were amplified
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with the KAPA HiFi HotStart ReadyMix (Roche Sequencing). Library amplification was
completed following the manufacturer’s recommendations, using a total of 12 cycles of
PCR for each of the sample sets (bone and reference/control). Samples were purified using
a 1.0× AMPure XP (Beckman Coulter, Indianapolis, ID, USA) bead-based cleanup and
were then eluted in 20 μL of Tris-EDTA. The quality of the libraries was checked on the 2100
Bioanalyzer instrument (Agilent Technologies, Santa Clara, CA, USA) using the Agilent
DNA 7500 Kit. For the bone sample and control DNA libraries, an aliquot of the purified
library product was reserved for WGS (described below).

2.3.4. Hybridization Capture

Hybridization capture with the α version of the FORCE capture panel was completed
using the myBaits 1-20K Custom DNA Hybridization Capture kit (Arbor Biosciences, Ann
Arbor, MI, USA). The procedure followed the manufacturer’s recommended v5 protocol
using a single capture and 5 μL of custom SNP baits. Samples were allowed to incubate
overnight for approximately 24 h at 62 ◦C with a heated lid (72 ◦C) using a Veriti thermal
cycler (Thermo Fisher Scientific, Waltham, MA, USA). PCR amplification was achieved
using duplicate PCR reactions to make use of the entire capture product. The post-capture
PCR reactions were completed with 19 PCR cycles using the KAPA HiFi HotStart ReadyMix
following the manufacturer’s recommendations. The two amplified capture products were
combined for each sample and then purified with the MinElute PCR Purification Kit,
eluting in 25 μL of Tris-EDTA.

2.3.5. Normalization, Pooling, and High Throughput Sequencing

Purified capture product was quantified using the 2100 Bioanalyzer instrument with
the Agilent DNA 7500 Kit to determine DNA molarity. As in library preparation and
hybridization capture, the three sample sets (bone, JB55, and reference) were pooled
separately to minimize the impact of crosstalk between samples of disparate quality during
sequencing [10]. The bone set positive control (K562) was omitted from the bone sample
sequencing pool and instead added to the reference sample pool for sequencing. The
JB55 sample pool included JB55 and its associated RB, as well as an additional library
from a different JB55 DNA extract. (Since both JB55 libraries produced similar results;
only the data from the DNA extract that also underwent WGS are presented below.) The
JB55 library controls were not sequenced; but they were assessed with the Bioanalyzer for
contamination and quality control purposes.

Pooling was achieved by individually normalizing captured libraries to the same con-
centration as the least concentrated sample (nM) in the set, then adding equal volume of all
samples to the pool along with maximum RB and negative control volumes. The captured
library pools were quantified using the Agilent DNA 7500 Kit on the 2100 Bioanalyzer. The
bone and reference captured library pools were diluted to 1 pM with a 5% spike-in of PhiX
Control V3 (Illumina) for sequencing on a NextSeq 550 (Illumina) using NextSeq 500/550
High Output Kits, v2.5 (150 cycles). Paired-end sequencing (75 × 75 cycles) was performed
for the bone sample pool (14 captured libraries), while single-end data (150 cycles) were
generated for the reference and control DNA samples (26 captured libraries). The JB55
pool was diluted to 12 pM including 5% PhiX control V3, and paired-end sequencing
(75 × 75 cycles) was completed on a Verogen MiSeq FGx in RUO mode using a MiSeq
Reagent Kit, v3 (150 cycles).

To gauge capture efficiency for the non-probative bone sample and control DNA
libraries, baseline WGS data were produced on an Illumina NextSeq 550. WGS was not
performed for any of the reference samples. Sequencing was completed with NextSeq
500/550 High Output Kits, v2.5 (150 cycles) using the same approach as the captured
libraries (75 × 75 cycles for the bone sample pool and 1 × 150 cycles for the control DNA
pool). For direct comparison with the JB55 capture data, WGS of one JB55 library was
performed on a MiSeq FGx using RUO mode and paired-end (75 × 75 cycles) sequencing
on a v3 cartridge (150 cycles).
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2.3.6. Sequence Data Analysis

FASTQ files were imported into the CLC Genomics Workbench v12.0.1 (QIAGEN) and
all sample data were analyzed with a custom workflow. The workflow, which was applied
to all samples, included five steps. (1) Reads were trimmed based on quality (including
ambiguous bases) as well as adapter read-through (for paired reads only). (2) Trimmed
reads were then mapped to the GRCh38 human reference genome using stringent mapping
parameters designed to prevent off-target mapping of exogenous DNA (e.g., bacterial
DNA). Modifications to the default mapping parameters were a length fraction of 0.85
and stringency fraction of 0.95, and non-specific reads (i.e., reads that produce an equal
alignment score for multiple mapping regions) were ignored. (3) Duplicate mapped
reads were removed with 20% maximum representation of minority sequence. (4) Local
realignment of unaligned ends was performed to improve indel alignment in the mapping.
(5) The alleles observed at each of the 5422 FORCE SNPs was determined using the Identify
Known Mutations from Mappings tool, ignoring broken pairs in the bone set sequence data.
Various analysis metrics such as the total number of reads, percent mapped, and percent
duplicate reads were reported throughout the workflow using different CLC Genomics
Workbench quality control (e.g., QC for Targeted Sequencing) tools.

A custom Microsoft Excel (Redmond, WA, USA) template was developed for genotype
generation based on the CLC Identify Known Mutations from Mappings output. The
targeted SNP had to be covered by a minimum of 10 reads for analysis. Furthermore,
in order for a FORCE SNP to be called (i.e., used for downstream analyses), genotypes
required allele frequency of 90% or greater to be called as a homozygote and heterozygous
genotypes needed at least 30% MAF. SNPs meeting the minimum coverage requirement
(10X) but with imbalanced alleles (10–30% MAF) that could not be confidently called
homozygote or heterozygote were noted as “imbalanced” and excluded from further
analyses. The called SNPs were separated by type (e.g., kinship SNPs, aiSNPs, piSNPs) for
analysis and interpretation as described below.

2.3.7. SNP Concordance Assessment

The genotypes derived from the FORCE capture data of the four control DNAs
(2800M, K562, NA12877, and NA12878) and one of the historical bone samples (JB55)
were compared to previously published data. For 2800M, data from the ForenSeq DNA
Library Preparation Kit were used for comparison [28], taking into account reverse strand
orientation at 52 markers. For the remaining control DNA samples, published variant
call format (VCF) files from WGS data were used for the concordance assessment ([29] for
K562, [30,31] for NA12877 and NA12878). The VCF files for K562 and NA12877 included
only those positions in which a variant was detected; thus, the genotype was assumed
to be homozygous for the reference allele at SNPs missing from the VCF for the purpose
of this comparison. A preliminary assessment identified a few issues in the published
control DNA datasets that impacted concordance. There was an error in the K562 VCF
for rs10892689, and the genotype for this SNP was determined by visual inspection of
the associated BAM [29]. The NA12878 VCF included all SNP positions regardless of the
detection of a non-reference allele. Five FORCE SNPs were missing from the NA12878
VCF, and the associated BAM [30,31] was used to confirm the genotype at those positions.
Additionally, strand orientation was corrected in the published genotypes at two SNP
markers (rs6670984 and rs4922532).

For JB55, published genotypes produced with the Precision ID Ancestry Panel (n = 165)
and targeted Y-SNP typing (n = 4) as described in [12] were used for comparison to the
FORCE profile. The genotype with the highest coverage was utilized when discordant data
were observed between the two Precision ID replicates analyzed in the previously published
study. Additionally, there were 16 SNPs without sufficient coverage (<10X) in either
Precision ID replicate; these markers were excluded from the concordance assessment.

Supplementary to called SNPs, “imbalanced” FORCE genotypes were also compared
to the published data. Imbalanced genotypes were observed at SNPs with sufficient
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coverage (≥10X), but where the allele frequency thresholds for homozygote/heterozygote
calling were not met. When the minor allele(s) was observed with base quality <20 and
<10% forward reverse balance, indicating sequencing error, the artifact (minor) allele was
removed, and the observed genotype noted for the imbalanced SNP was modified. This
was only performed for the concordance assessment. No imbalanced SNPs were utilized
in downstream analyses (e.g., ancestry predictions, kinship comparisons).

When discordance was observed between the FORCE and published genotype, the
FORCE BAM and the BAM associated with the published data were reviewed to confirm
the genotypes at the SNP marker. If the genotypes were still inconsistent after further
review, the cause of the discrepancy was investigated.

2.3.8. Biogeographical Ancestry Predictions

Biogeographical ancestry predictions, based on the aiSNPs, were performed with two
different methods: principal component analysis (PCA) and naïve Bayes analysis. An
R script [25] was developed, in which the R package prcomp [32] was used for the PCA
analysis with SNP profiles from the 1000 Genomes project [18] to train the PCA model.
In the same script we included the naïve Bayes [33] analysis method by calculating the
likelihood Pr (DNA|Population X), for each major continental population group (EUR,
EAS, AMR, SAS, and AFR). Allele frequencies from the 1000 Genomes project [18] were
used for these likelihood calculations. Since the allele frequencies were missing for one
aiSNP (rs10954737) in the 1000 Genomes dataset, this marker was excluded from analysis
and ancestry predictions were based on 240 aiSNPs. Posterior probabilities were calculated
assuming a flat prior. These previously characterized aiSNPs allow for clear separation of
the major population groups EUR, AFR, EAS, and SAS [34].

2.3.9. Phenotype Predictions

The 41 piSNPs included in the FORCE panel are consistent with the markers of the
HirisPlex-S System [35]. Using the Excel template described in Section 2.3.6, the genotypes
from sequence data were converted into the correct allele orientation and assigned “0”,
“1”, “2”, or “N/A” based upon a customized R script [36]. The converted genotypes were
then submitted to the HirisPlex-S System webtool for phenotype prediction [37]. The Excel
template organizes the converted genotypes of the piSNPs either for easy manual entry
or for batch analysis using the file upload functionality. The FORCE data were uploaded
as a single file and the HirisPlex-S output was downloaded. The results were compared
to self-reported eye color and hair color for the seven additional non-probative reference
samples (18–24; Table 4).

2.3.10. Y Haplogroup Predictions

Y haplogroups were predicted based upon the 829 Y-SNPs included in the FORCE
panel. Called Y-SNPs were compared to the Yleaf WGS HG38 Position file [38,39] within the
Excel template and variants (non-reference alleles) were denoted with the corresponding
Y haplogroup. Identified haplogroups were reviewed manually and the most refined Y
haplogroup was reported. The results were further inspected to ensure that the variants
observed were expected based upon the predicted Y haplogroup (e.g., variants associated
with ancestral haplogroups of the reported haplogroup). Though not utilized in this study,
Yleaf offers automated Y haplogroup predictions [38]. Yleaf can analyze both FASTQ
and BAM files; however, current functionality does not allow for duplicate removal, and
therefore it is recommended to utilize FORCE BAM files after mapped duplicate removal
for haplogroup predictions performed with the Yleaf software.

2.3.11. Kinship Statistics (Kinship SNP and X-SNP)

Pairwise kinship calculations (kinship SNPs). Likelihoods were calculated based on
observed kinship SNP data given seven different relationship hypotheses (parent/offspring,
full siblings, half siblings, first cousins, first cousins once removed, second cousins, and
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second cousins once removed) and one hypothesis representing no genetic relationship
between the two compared individuals (i.e., unrelated). From these likelihoods, likelihood
ratios (LRs) were calculated for each related hypothesis using the unrelated hypothesis
as the alternative hypothesis (i.e., LR = Pr (DNA|H1)/Pr (DNA|H2), where H1 was
the hypothesis representing one of the related relationships given above and H2 was the
unrelated hypothesis). These kinship calculations were performed in a pairwise fashion
between all reference samples as well as between each “Unknown” (i.e., WWII bone
sample) and each reference sample. Posterior probabilities were calculated assuming a
flat prior. The likelihoods were calculated using Merlin with the preferences described
above (Section 2.2). R was again used to format and manage input files (e.g., filter SNPs
when having partial SNP profiles) as well as to handle the outputs from Merlin and for the
plotting of distribution curves.

Pedigree kinship calculations (kinship SNPs). In addition to the pairwise kinship
calculation, kinship statistics were also calculated in a pedigree fashion. Here, SNP profiles
for all reference individuals, in each reference family, were included in the likelihood
calculations. In this approach each unknown sample was tested as the missing person
in each reference pedigree (Figure S1). For each such pedigree, the LR was calculated as
LR = Pr (DNA|“H1: The tested unknown sample comes from the missing person”)/Pr
(DNA|“H2: The tested unknown sample comes from an individual unrelated to the
reference pedigree”). The likelihoods were calculated using Merlin with the preferences
described above (Section 2.2). As previously noted, a front-end script was written in R to
format input files and to handle the outputs from Merlin. Kinship predictions with strong
statistical support were defined as those that met the following two criteria: LR ≥ 10,000
(log 10 LR ≥ 4) and posterior probability ≥ 99.99% given equal priors for the tested
hypotheses.

Kinship calculations using X-SNPs. In order to demonstrate the possibility to calculate
kinship statistics solely based on X-SNPs, two samples were selected from family D: sample
12 (“reference”) and sample 14.1 (“unknown”). These two individuals are full siblings
(Figure 2) and their X-SNP genotypes were used to calculate the LR = Pr (DNA|“Sample 12
and sample 14.1 come from two full siblings)/Pr (DNA|“Sample 12 and sample 14.1 come
from two unrelated individuals”). The X-specific version of Merlin (“MINX”) calculated the
likelihoods of the two hypotheses, using European allele frequencies and genetic positions
obtained from Rutgers map [18,24]. As previously noted, R was used to format input files
and to handle the outputs from Merlin.

 

Figure 2. Pedigree of unknown (sample 14.1) and the reference sample (12) from family D utilized in
X-SNP kinship assessment.
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3. Results and Discussion

3.1. Simulated Panel Performance

The results from the kinship simulations clearly demonstrate that the kinship SNPs
could be used to solve the majority of kinship case scenarios down to first cousins, including
cases with partial SNP profiles (Figure 3). Furthermore, this set of kinship SNPs can be
informative in cases involving a more distant relationship issue (such as second cousins)
(Figure S2); however, the LR distribution curves for such cases for true related and true
unrelated cases are overlapping.

 

Figure 3. Simulation results for pairwise kinship predictions. Simulations were performed between
an unknown sample at varying levels of kinship SNP recovery (100%, 75%, and 25%) compared to a
complete reference sample profile. (A) Second degree (half siblings) vs. unrelated (UR); (B) third
degree (first cousins) vs. UR; (C) fourth degree (first cousins once removed) vs. UR. Simulation
results for additional relationships (first degree and fifth degree) are presented in Figure S2.
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3.2. SNP Capture Assay Laboratory Testing

Detailed sequencing and SNP coverage metrics for all samples can be found in Table S2.
The number of called SNPs, which met the 10X coverage and allele frequency requirements
for homozygotes and heterozygotes, varied by sex due to the number of Y-SNPs in the
assay. The maximum number of called SNPs was 5422 for males and 4593 for females.
All reference and control DNA SNP profiles were 94.7–99.8% complete when accounting
for sex, with an average of 5355 SNPs for males and 4552 SNPs for females (Table 5). The
average coverage of the called SNPs in reference/control samples was 225X (Table S2). The
standard deviation of called SNPs in the reference/control samples was approximately
42% of the average coverage. As noted in the methods, some SNPs had fewer probes than
others. Hence, average coverage by bait count was investigated (Figure S3). For autosomal
SNPs having all four baits (n = 4267), the average coverage across the reference/control
samples was 241X. The average coverage dropped to 180X for autosomal SNPs with three
baits (n = 73) and 122X for autosomal SNPs with two baits (n = 6). The single autosomal
(kinship) SNP (rs4847178) with one bait (right flank) produced an average coverage of
157X, with called data for 100% of the reference/control samples. All 246 X-SNPs were
targeted by two baits, averaging 166X in coverage for females and 89X for males. The 812
Y-SNPs with two baits produced an average coverage of 105X in male reference/control
samples, with the reduced coverage observed at the 17 Y-SNPs with only one bait (50X).
There were 13 SNPs (including two kinship SNPs, one iiSNP and ten Y-SNPs) that failed
to produce sufficient coverage (10X) for any sample (Table S3). An additional 17 SNPs
(six kinship SNPs, one iiSNP, five X-SNPs, and five Y-SNPs) had no call for a majority
(>50%) of reference/control samples. Of these 30 poor performing SNPs, four had one
bait that failed during the kit design. Three of these four SNPs with one failed bait were
Y-SNPs (which consequently failed in all samples due to Y-SNPs only targeted by two
baits per SNP). In all three cases, the failed bait was associated with the reference allele.
The fourth poorly performing SNP that also had a failed bait (rs662185) had coverage and
allele imbalance issues in the reference/control samples (see Section 3.3 below). Other
factors such as the specific baits included (e.g., reference allele, alternate allele, right flank,
or left flank) and the surrounding sequence motif (e.g., insertions and deletions impacting
alignment) may have affected SNP performance. As a result of these findings, the capture
kit will be modified in the future to remove poor performing SNPs. The modified/“β”
FORCE kit will also eliminate baits targeting SNPs that were later discovered to lack one or
more of the FORCE panel criteria (e.g., clinical relevance or triallelic SNPs).

Table 5. Summary of the number and proportion of called SNPs after capture of the FORCE panel targets. The results are
broken down by sample type. High quality includes family references, additional non-probative reference samples, and
control DNAs.

Sample Type Count
Maximum

Possible SNPs

Called SNPs *

Count Percentage

Minimum Maximum Average Minimum Maximum Average

Male,
high quality 11 5422 5133 5395 5355 94.7% 99.5% 98.8%

Female,
high quality 12 4593 4396 4582 4552 95.7% 99.8% 99.1%

Bone
(all male) 12 5422 11 5361 2407 0.2% 98.9% 44.4%

Control blank 7 5422 0 26 4 0.0% 0.5% 0.1%

* ≥10X coverage, homozygous genotype ≥ 90% allele frequency; heterozygous genotype ≥ 30% minor allele frequency.

The bone sample results varied considerably, ranging from 11–5361 called SNPs and
an average of 44.4% of the possible 5422 SNPs across the 12 DNA extracts (Table S2). To
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compare the number of called SNPs per bone, the results from each DNA extract were
averaged for bone samples with multiple DNA extracts (Figure 4). Four of the seven
bone samples produced 3719 or more SNPs (two USS Oklahoma (3 and 7) and the two
historical bones (JB55 and sample 26)). These four samples were extracted with either PCIA
followed by MinElute purification or the Dabney DNA extraction method. In contrast, the
bone samples that were extracted with QIAquick produced fewer called SNPs. The three
QIAquick replicates from the Italy bone sample (14) yielded 282–5121 called SNPs, for an
average of 2308. The Austria (11) and Tarawa (17) bone samples, which were also extracted
with QIAquick, produced only 50 and 14 called SNPs on average, respectively. The
Tarawa bone sample was likely chemically treated with formalin, which was the standard
postmortem procedure during WWII. Such chemically treated samples have been shown to
produce poor DNA sequencing results [10]. The bone from Austria may have also received
the same standard WWII postmortem chemical treatment. It is important to note that the
variable results obtained from the bone samples may be due to a combination of differing
factors, including separate case contexts, the DNA extraction method utilized, as well as
the remaining DNA extract volume available for library preparation. The sample selection
strategy for this study had prioritized known, non-probative samples with available DNA
extracts from both the bone sample and associated family reference samples. Therefore,
it was not possible to control for DNA extract preparation and other variables that may
have a considerable impact on SNP capture results. An investigation into DNA extraction
methods for downstream SNP capture success is an area of future research.
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Figure 4. The number of called SNPs per bone sample (maximum 5422). An asterisk (*) represents the
average number of called SNPs for a bone sample with multiple DNA extracts. The color indicates
the DNA extraction method: orange = phenol chloroform isoamyl alcohol (PCIA) extracts purified
with MinElute; gray = Dabney; blue = QIAquick.

In the absence of capture, the bone DNA extracts produced 2–1539 SNPs at 1X coverage
and zero SNPs met the 10X calling threshold. These details and the remaining shotgun
sequencing results are shown in Table S4. The proportion of reads aligning to the FORCE
panel regions (i.e., mapped read specificity) was significantly increased by capture, from an
average of 0.03% in the shotgun data to 11.4% in the capture data. The capture procedure
thus resulted in a 380-fold increase in mapped read specificity over shotgun sequencing.
Of note, shotgun sequencing of the four control DNAs produced only partial 10X FORCE
SNP profiles. Thus, the capture enrichment was necessary for all samples, including
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references and control DNAs, in order to meet the 10X coverage requirement for SNP
calling. The improved SNP profiling of the captured libraries demonstrates the efficacy of
the enrichment step in obtaining on-target FORCE panel SNPs.

3.3. Concordance with Published SNP Data

Overall, 14,519 (99.97%) SNPs were concordant between the 14,524 called FORCE
genotypes and published data of the four control DNA samples (Figure 5; Table S5).
Complete concordance (100%) was observed for 2800M across the 170 SNPs overlapping
called FORCE and expected ForenSeq genotypes. High concordance (99.98%) was also
observed for both NA12877 and NA12878 when considering the called FORCE genotypes
for each sample (5383 and 4576 SNPs, respectively). Though slightly lower, FORCE
data of K562 produced concordant genotypes with published data at 99.93% of the 4395
compared SNPs.
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Figure 5. SNP concordance of FORCE capture data compared to published genotypes from the four
control DNA samples.

The five discordant called FORCE genotypes were all kinship SNPs, and each discor-
dance was observed in only one control DNA sample (Table S6). The greatest proportion of
discordant calls (60%) was observed in the K562 data. Two of three discordant called SNPs
produced high-coverage homozygote genotypes in the FORCE data, while heterozygote
genotypes were observed in the published K562 BAM but with allele imbalance (MAF
~20%). The third K562 discordance may be the result of incorrect genotyping based on
the published data, as all reads at the SNP location in the published BAM were forward-
oriented and unpaired. The greater discordance observed in the K562 data compared
to the other control samples is likely due to well-known immortalization effects [29] as
well as lot-to-lot variability of this cell line [40]. For NA12877, there was one difference
between the called FORCE SNP and the published data at rs229352. Insufficient coverage
(<10X) at this same SNP was observed for many reference/control samples (n = 7). In-
terestingly, NA12878 and K562 were expected to be homozygous for the alternate allele
(GG) at rs229352 based on the published data (this marker is not included in ForenSeq
and therefore the expected genotype for 2800M is unknown). Analysis of the rs229352 bait
design identified that the alternate allele (G) or left flank did not map under the stringent
mapping parameters utilized in the developed workflow. Furthermore, review of the
published BAM showed a 5-bp insertion located 30 bp upstream (5′) of the SNP on the
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reads with the G allele at rs229352. For NA12878, the discordant called SNP (rs662185) was
identified as a poor performing SNP in Section 3.2, with nearly half (47.8%) of the refer-
ence/control samples failing to produce sufficient coverage (<10X) and an additional 17.4%
with imbalanced genotypes (Table S3). In NA12878, significantly lower coverage (10X) was
observed at rs662185 compared to the average coverage of the other FORCE SNPs (>250X
for called SNPs; Table S2). Similar to rs229352, the published NA12878 BAM showed a 4-bp
deletion associated with the G allele at rs662185 located 5 bp downstream (3′) of the SNP.
Additionally, evaluation of the three baits for this marker (the right flank bait failed during
design) revealed that the alternate allele bait included in the kit was incorrect (T instead
of G). Inspection of the baits for all targets identified an additional 522 markers with the
incorrect alternate allele. However, these errors in the bait design appeared to have little to
no impact on the SNP performance, as only seven (1.3%) of the 523 SNPs with the wrong
alternate allele bait performed poorly (<75% called) in reference/control samples (Table S3).
Therefore, the discordances observed at rs229352 and rs662185 are likely due to the indel
clusters associated with the alternate allele, which may impact the probe hybridization
efficacy and/or prevent mapping under the stringent parameters applied.

Though not utilized for other analyses in this study, the concordance of the 187 ob-
served genotypes at imbalanced FORCE SNPs was assessed for the four control DNA
samples. It is noted that 95.19% (178) of the observed imbalanced genotypes were consis-
tent with the published data (Table S5). Unsurprisingly, a majority (168 of 187; ~90%) of
the imbalanced genotypes were detected in K562 (Table S5). As stated above, stochastic
variation is expected in the K562 cell line, resulting in allele imbalance and loss of heterozy-
gosity [29]. Furthermore, these cell line artifacts may be exacerbated by the relatively low
input (1 ng) into library preparation [10]. Of the nine discordances found in the imbalanced
genotypes, rs169250 accounted for three instances. The imbalanced FORCE genotypes at
rs169250 were discordant for three of the control DNA samples (NA12877, NA12878, and
K562; this marker is not targeted by ForenSeq and therefore no published genotype was
available for 2800M). Further investigation of the BAMs revealed that rs169250 is located
in the middle of a 12-bp polycytosine stretch, and thus the complexity of the region for se-
quencing and/or alignment likely caused discordant genotypes. As a result, future designs
of the FORCE panel may exclude rs169250 to ensure successful and accurate genotyping.
The remaining imbalanced FORCE genotypes for NA12877 (n = 3) and NA12878 (n = 1) that
were discordant with the published data appear to be the result of non-specific mapping in
the FORCE data. The last two discordances involving imbalanced FORCE genotypes were
found in K562. One appeared to be the result of non-specific mapping in the published
BAM (rs241408), while the other (rs7117433) could not be resolved and may be due to cell
line artifacts previously discussed.

In the end, considering both called and imbalanced FORCE genotypes, a total of
99.90% (14,697 out of 14,711) SNPs were in agreement between the FORCE and published
control DNA datasets (Table S5). There were, however, a total of 69 genotypes could not be
compared out of a maximum of 14,780 possible SNPs (Table S5) because no call was possible
for the FORCE or published data (<10X). Most (68) of the failed SNPs were observed in the
FORCE data, while one SNP for K562 had low coverage (5X) in the published BAM that
prevented the associated published genotype from being confirmed. The number of failed
SNPs varied by sample: two of 172 SNPs for 2800M, nine of 4593 SNPs for NA12878, 28 of
5422 SNPs for NA12877, and 30 of 4593 SNPs for K562. Of note, FORCE data from all four
control DNA samples failed to produce called genotypes for 16 SNPs. Thirteen of these
SNPs failed to produce sufficient coverage for any samples (Table S3), as previously noted
in Section 3.2. The three additional poor performing SNPs included two X-SNPs and one Y-
SNP. Most (~70%) reference samples failed to produce called genotypes at the two X-SNPs,
with no called data in the bone samples. The Y-SNP produced greater reference/control
samples success (>65% of male references/controls with a called genotype), but 0% SNP
recovery for the bone samples.
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Published and FORCE data for JB55, the only bone sample evaluated for concordance,
enabled the comparison of 153 SNPs. Sixteen of the 169 overlapping SNPs were excluded
from comparison due to insufficient coverage (<10X) in the published Precision ID data.
JB55 had 151 of 153 (98.69%) concordant genotypes, and two discordant aiSNPs were
observed (Table S6). The FORCE genotype (CC) for the first discordant marker (rs1879488)
was inconsistent with the highest coverage Precision ID replicate from the published study
(AC with 395X in replicate 2); however, the FORCE results were concordant with the
replicate with slightly lower coverage (CC with 236X in replicate 1). The second difference
was observed at a SNP with low coverage in both Precision ID replicates (8X and 16X),
potentially the result of non-specific amplification and/or mapping. In the case of these two
discordant SNPs, stricter parameters such as a higher coverage threshold or heterozygote
threshold than what was used for the previous JB55 study (≥6X and ≥10% MAF) [12] may
have improved the concordance for JB55.

3.4. Ancestry, Phenotype, and Y Haplogroup Predictions

The completeness of the reference and control sample profiles allowed for ancestry,
phenotype, and Y-chromosomal haplogroup predictions, which were consistent with
available metadata (Table S7). The predictive results from the bone sample DNA extracts
were much more variable due to the wide range of SNPs obtained. As an example of the
bone sample data, the ancestry of sample 7.2 was predicted to be 100% European from 210
called aiSNPs (Figure 6). Phenotype predictions were also possible for this bone sample
(7.2) using 33 called piSNPs, which estimated blue eyes (93.2% probability), blond-brown
hair (66.0% and 27.4% probabilities, respectively), light hair shade (92.8% probability), and
pale-intermediate skin (54.1% and 41.6% probabilities, respectively). The Y haplogroup
was predicted to be R1a1a1b1a2b~ from 370 Y-SNPs, which was the same Y haplogroup
that was predicted for the paternal nephew (sample 4). These predictions were possible
even with the partial SNP profile (4165, or 76.8%, of possible 5422 called SNPs) generated
from this degraded USS Oklahoma sample. Thus, hybridization capture was effective in
producing sufficient SNPs from the multiple marker types included within the FORCE
panel to allow for predictive information to be gained.

 

Figure 6. An illustration of ancestry predictions, here exemplified with predictions for sample 7.2.
Individuals from the 1000 Genomes project (grouped into the five different continental groups: EUR
(European), EAS (East Asian), AMR (American), SAS (South Asian), and AFR (African)) were used as
reference data. (A) Posterior probabilities using a naïve Bayes approach; (B) Prediction using a PCA.

3.5. Kinship Predictions

The related reference to reference sample kinship prediction results are shown in
Figure 7. The first degree (parent/offspring and full sibling) predictions produced log
10 LRs from 287.7–439.3 with well over 99.99% posterior probabilities, demonstrating
extremely strong statistical support of these predictions. The log 10 LRs for the third degree
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reference to reference predictions were 34.4 and 37.8 with over 99.99% posterior probability,
indicating very strong statistical support. The two fifth degree relationship predictions
produced log 10 LRs of 3.8 and 6.5, with 99.98% and 99.99% posterior probabilities, re-
spectively. Thus, the kinship analysis was capable of correctly predicting fifth degree
relatives from reference quality FORCE panel profiles. The two sixth degree relationship
predictions were supported with over 99% posterior probability, but with log 10 LRs of 2.2
and 2.6, indicating moderate statistical support. Considering the four examples of fifth–
sixth degree relationships, log 10 LRs corresponding to moderate statistical support [41]
were obtained in a majority (75%) of the fifth–sixth degree comparisons. Interestingly,
sample 4 (fifth degree comparison) had the lowest SNP recovery of the references (95%)
and sample 8 (sixth degree comparison) also had reduced SNP recovery (98%). All but
one of the remaining references had >99% complete FORCE profiles (sample 13 at 98%).
Therefore, the ability to obtain stronger statistical support for these more distant degrees of
relatedness (as in the case of samples 4 and 8) could be possible when complete FORCE
panel profiles are obtained. Regardless, the simulation studies indicated considerable
overlap in expected versus unrelated relationships when testing 5th degree relatives and
beyond. When pairwise kinship predictions were performed in a blind search fashion
allowing up to either third degree or sixth degree relatedness, zero incorrect (false positive)
relationships with strong statistical support were observed (Table S8).
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Figure 7. Pairwise kinship prediction log 10 likelihood ratio (LR) (left y-axis; bars) and posterior
probabilities (right y-axis; black line) of reference-to-reference comparisons. All predictions compared
the expected (known) relationships vs. unrelated. Parent/offspring = yellow (sample pair 1 + 2);
full siblings = orange (sample pairs 15 + 16 and 5 + 6); third degree = blue (sample pairs 9 + 10 and
12 + 13); fifth degree = gray (sample pairs 4 + 6 and 4 + 5); and sixth degree = purple (sample pairs
8 + 9 and 8 + 10).

Unknown to reference pairwise kinship predictions from bone sample DNA extracts
that produced 1000 (~25%) or more kinship SNPs are presented in Figure 8. Similar to what
was observed in the reference to reference pairwise comparisons, the unknown to reference
full sibling predictions had extremely strong statistical support. The log 10 LRs of these
first degree relationship predictions were 120.7 and 492.8, with posterior probabilities over
99.99%. The three second degree relationship predictions produced log 10 LRs between
65.4 and 82.3 and posterior probabilities over 99.99%, also indicating extremely strong
statistical support. Two of the three third degree relationship predictions (for sample pairs
3 + 1 and 14.1 + 13) were consistent with the reference to reference predictions. These
two had log 10 LRs of 32.8 and 41.1 with posterior probabilities over 99.99%, indicating
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extremely strong statistical support. The other third degree prediction (14.2 + 13) also had
a posterior probability over 99.99% but with a log 10 LR of 5.5, which was much lower than
that of the other two third degree predictions. This LR indicating strong statistical support
was made from a bone sample profile with only 1324 (33.7%) kinship SNPs. It is likely that
a higher LR would have been obtained if sample 14.2 had greater SNP recovery. The four
fourth degree relationship predictions had log 10 LRs from 4.5 to 11.8, and all had posterior
probabilities over 99.99%. These fourth degree unknown to reference predictions would be
classified as having strong to very strong support.
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Figure 8. Pairwise kinship prediction log 10 likelihood ratio (LR) (left y-axis; bars) and posterior
probabilities (right y-axis; black line) of unknown to reference comparisons. Results are presented for
each bone sample DNA extract that produced 1000 (~25%) or more kinship SNPs. All predictions
compared the expected (known) relationships vs. unrelated. Full siblings = orange (sample pairs
14.1 + 12 and 14.2 + 12); second degree = green (sample pairs 3 + 2, 7.1 + 4, and 7.2 + 4); third degree
= blue (sample pairs 3 + 1, 14.1 + 13, and 14.2 + 13); fourth degree = red (sample pairs 7.1 + 5, 7.2 + 5,
7.1 + 6, and 7.2 + 6).

The five bone sample DNA profiles with >25% kinship SNPs were utilized for kinship
predictions in a pedigree scenario, as presented in Figure 9. All of the predicted rela-
tionships indicated relatedness between the unknown and the expected family members.
These pedigree scenario relationship predictions were supported by log 10 LRs greater than
91.3 (and up to 503.7) with posterior probabilities exceeding 99.99%. Thus, the pedigree
scenarios yielded extremely strong statistical support when bone sample profiles yielded
~25% or more kinship SNPs.

When bone sample profiles produced minimal SNP data (10–247 kinship SNPs), the
kinship predictions were expectedly weaker overall (Figure 10). Only two bone sample
profiles yielded predictions that would indicate strong statistical support, and both in-
volved first degree relationships. Unknown (bone) sample 11.2 had 73 kinship SNPs, and
its parent/offspring relationship with sample 10 was strongly supported by a log 10 LR of
5.2 and a posterior probability > 99.99%. Sample 14.3 had 247 kinship SNPs, and its full
sibling relationship with sample 12 was very strongly supported by a log 10 LR of 15.8 and
posterior probability > 99.99%. The remaining six relationship pairs shown in Figure 10
had low log 10 LRs (1.2 or less) and posterior probabilities (<95%). The pedigree scenario
kinship predictions did not significantly improve the log 10 LRs or posterior probabilities
of the bone sample profiles with 10–247 called SNPs (Figure 11). Additionally, samples 17.1
and 17.2 yielded <15 kinship SNPs each, with some SNPs that were inconsistent with the
profiles of the associated child reference (one son and one daughter of the unknown) in
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these parent/offspring relationships. As a result of the poor SNP recovery, bone samples
17.1 and 17.2 were excluded altogether from the pairwise and pedigree scenario kinship
predictions. Regardless of the number of kinship SNPs in the bone sample profiles, there
were no incorrect (false positive) relationship predictions between unknowns and unrelated
reference samples with strong statistical support in blind search scenarios (Table S9).

Figure 9. Pedigree scenario kinship prediction results of all bone samples with more than 1000
(~25%) kinship SNPs. All predictions compared the unknown when situated in the expected (known)
pedigree vs. unrelated. The log 10 likelihood ratio (LR) (left y-axis; bars) and posterior probabilities
(right y-axis; black line) are shown.

Figure 10. Pairwise kinship prediction log 10 likelihood ratio (LR) (left y-axis; bars) and posterior
probabilities (right y-axis; black line) of unknown to reference comparisons. Results are presented
for each bone sample DNA extract that produced 10–247 kinship SNPs (all results <25% called
SNPs). Samples 17.1 and 17.2 yielded <15 kinship SNP calls that were inconsistent with the expected
parent/offspring relationships; therefore 17.1 and 17.2 and were excluded altogether. All predictions
compared the expected (known) relationships vs. unrelated. Parent/offspring = yellow (sample pairs
11.1 + 10 and 11.2 + 10), full siblings = orange (sample pair 14.3 + 12); second degree = green (sample
pairs 11.1 + 9 and 11.2 + 9); third degree = blue (sample pair 14.3 + 13); and fifth degree = gray
(sample pairs 11.1 + 8 and 11.2 + 8).
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Figure 11. Pedigree scenario kinship prediction results of bone sample DNA extracts that produced
10–247 kinship SNPs. All predictions compared the expected (known) pedigree vs. unrelated. The
log 10 likelihood ratio (LR) (left y-axis; bars) and posterior probabilities (right y-axis; black line) are
shown. Samples 17.1 and 17.2 yielded <15 kinship SNP calls that were inconsistent with the expected
parent/offspring relationships; therefore, 17.1 and 17.2 were excluded altogether.

Supplementary to the autosomal SNPs, 246 X-SNPs were targeted in the panel for
kinship testing in specific case contexts. The X-SNPs included in the panel were used
to connect individual 12 with the remains from individual 14.1 in family D. The log 10
LR (for them being full siblings versus being unrelated) was calculated to be 6.7 and a
posterior probability > 99.99%; thus, the X-SNP data showed to be clearly informative
in the case example. The use of X-chromosomal data may be especially informative in
kinship testing due to its particular mode of inheritance. For example, when comparing
two alleged paternal half-sisters or an alleged paternal grandmother and a granddaughter,
the exclusion power for X-chromosomal markers are not zero, in contrast to autosomal
markers [17].

4. Conclusions

This study demonstrates the utility of the 5422-SNP FORCE panel for forensic applica-
tions. This panel was designed to exclude clinically relevant markers to alleviate privacy
concerns with DNA databanking. The SNPs included in the FORCE panel are found on
microarray genotyping chips used for genetic genealogy, enabling cross-compatibility with
externally produced data that will be useful in validation studies. Moreover, large reference
databases are available for all of the markers included in the kit, unlike other marker types
such as microhaplotypes. The FORCE panel includes kinship SNPs with forensic iiSNPs,
aiSNPs, piSNPs, Y-SNPs, and X-SNPs. The hybridization capture method was capable
of recovering SNP profiles from high quality reference and historical bone samples alike.
A high degree of concordance (>99.9%) was observed when comparing FORCE profiles
with previously published data. The few underperforming SNPs that were identified in
the present study can be removed from future designs of the FORCE panel to improve
efficiency. Ancestry and phenotype predictions were possible and consistent with self-
reported data from reference sample donors. Additionally, high-resolution Y-haplogroup
prediction was possible from 829 Y-SNPs. The novel kinship marker set of 3931 SNPs
was shown to be effective for 4th degree relationship predictions with strong statistical
support. Furthermore, known case examples involving previously identified WWII service
members and associated family reference samples resulted in kinship predictions consis-
tent with expected relationships. Future efforts involving the FORCE panel will entail an
inter-laboratory study incorporating alternate enrichment methods for SNP profiling. This
will be pertinent before the FORCE panel can be used in routine casework.
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Abstract: The integration of massively parallel sequencing (MPS) technology into forensic casework
has been of particular benefit to the identification of unknown military service members. However,
highly degraded or chemically treated skeletal remains often fail to provide usable DNA profiles,
even with sensitive mitochondrial (mt) DNA capture and MPS methods. In parallel, the ancient DNA
field has developed workflows specifically for degraded DNA, resulting in the successful recovery
of nuclear DNA and mtDNA from skeletal remains as well as sediment over 100,000 years old. In
this study we use a set of disinterred skeletal remains from the Korean War and World War II to
test if ancient DNA extraction and library preparation methods improve forensic DNA profiling.
We identified an ancient DNA extraction protocol that resulted in the recovery of significantly
more human mtDNA fragments than protocols previously used in casework. In addition, utilizing
single-stranded rather than double-stranded library preparation resulted in increased attainment of
reportable mtDNA profiles. This study emphasizes that the combination of ancient DNA extraction
and library preparation methods evaluated here increases the success rate of DNA profiling, and
likelihood of identifying historical remains.

Keywords: degraded DNA; massively parallel sequencing (MPS); mitochondrial DNA; forensic DNA
profiling; ancient DNA; human identification

1. Introduction

Massively parallel sequencing (MPS), also known as next-generation sequencing
(NGS), has only recently begun integration into the forensic field. MPS was first accepted
in a court case in the Netherlands in 2019 [1]. The technology has also been approved for
use within the U.S. criminal justice system for both STR profiling and mitochondrial (mt)
DNA sequencing [2]. Furthermore, whole genome (shotgun) sequencing and genome-wide
SNP arrays are often used for investigative genetic genealogy to provide leads in active
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and cold cases [3]. While more challenging cases involving historical skeletal remains,
including historical figures, unmarked graves, and unidentified war victims, have seen
some advances in DNA profiling with MPS, success rates are still low [4–6]. This may be
due to the fact that successful forensic DNA profiling typically requires relatively large
DNA fragments (greater than ~100 base pairs) with current methods, which are not always
available in sufficient number in degraded samples.

One set of historical remains that exemplifies the challenges faced by historical identifi-
cation cases is Unknowns from the Korean War buried in the National Memorial Cemetery
of the Pacific (NMCP) in Honolulu, Hawaii [7]. These remains contain poorly preserved
DNA due to extensive chemical treatment that was standard postmortem military prac-
tice in the 1940s and 1950s. The war dead were initially collected in temporary graves
(Figure 1a) by the Army Graves Registration Service. They were then transferred to the
United Nations Cemetery in Tanggok, Republic of Korea [8,9] where they were treated
with insecticide and deodorant. The remains were subsequently shipped to the Army’s
Central Identification Unit in Kokura, Japan [7,10]. At this location, the remains were
soaked in 40–50% formaldehyde solution for three to five days (Figure 1b). Formaldehyde
is known to lead to the formation of cross-linked complexes between DNA molecules
or between DNA and proteins, complicating DNA extraction [11]. In addition, Hawaii
has a warm and wet environment, while Korea is climatically diverse with temperatures
fluctuating from freezing to extremely hot. Such environmental conditions involving high
heat have been found to increase DNA degradation, specifically deamination and frag-
mentation rates [12]. After further treatment with fungicide and a powdered hardening
compound (Figure 1c), bodies were wrapped and casketed. In total, the remains of 859
unidentified Korean War service members were shipped to Hawaii in 1956 and buried
as Unknowns at the NMCP, also known as the Punchbowl [7]. In 1999, the then Central
Identification Laboratory, Hawaii (CILHI, now called the Defense POW/MIA Accounting
Agency (DPAA)) [13], undertook a fledgling exhumation program focused on identifying
Korean War Unknowns at NMCP. Working in concert with the CILHI, the Armed Forces
DNA Identification Laboratory (a division of the Armed Forces Medical Examiner System
(AFMES-AFDIL)) attempted DNA testing of the first five exhumed cases using standard
forensic DNA profiling techniques [14]. However, the results were not reproducible and
therefore determined to be unreliable.

In 2016 the AFMES-AFDIL validated a novel MPS protocol for mitochondrial genome
(mitogenome) sequencing using a probe capture and Illumina sequencing approach. This
method was shown to be more amenable to the crosslinked and severely fragmented DNA
from NMCP Unknowns, which was detailed in a 2017 performance evaluation [4]. As
a result of this MPS mitogenome sequencing validation, the AFMES-AFDIL became the
first accredited laboratory to adopt MPS for forensic casework worldwide. The study
showed severe degradation of the DNA from Korean War NMCP Unknowns, which
averaged <70 base pairs (bp) in length. The validated MPS methods are now routinely
applied to all chemically treated or severely degraded DNA samples at the AFMES-AFDIL,
regardless of the military conflict. These include remains from U.S. military WWII cemetery
exhumations with similar preservation problems to those encountered with the Korean War
unknowns from the NMCP. To date, over 3000 samples have been tested using the validated
mitogenome MPS protocol with a success rate of ~60%. While this is a marked improvement
from before the integration of MPS into the casework workflow (6% success rate with PCR
and Sanger sequencing), the sample failure rate is still substantial, even when targeting
mtDNA, which is high in copy number relative to nuclear DNA. Additional advancements
to improve MPS sensitivity could elevate success rates in reportable mitogenome profile
generation and may furthermore enable SNP profiling for extended kinship analysis [15].
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Figure 1. These historical photographs show some of the important events that occurred after
service members were killed in action during the Korean War. (A) In this photograph, taken on
19 August 1950, a battlefield cemetery in Daegu (formerly Taegu), Korea, contains dozens of tempo-
rary graves where the bodies of soldiers killed in action were laid to rest. This image was reprinted
with permission of the U.S. Army Quartermaster Museum in Fort Lee, Virginia. (B) This photograph
of the Kokura embalming laboratory was originally printed in the American Graves Registration
Service Group 8204th Army Unit APO 3 Brochure, April 1955. Examination tables were equipped
with exhaust systems for formaldehyde treatment. (C) These remains from a Korean War service
member were covered with a powdered hardening compound prior to shipment to the United States.
This photograph was reprinted courtesy of the DPAA. (D) In Operation GLORY, the first of the United
Nations war dead from North Korea were received at Moji Port near Kokura, Japan (ca. fall of 1954).
This photograph was originally printed in the American Graves Registration Service Group 8204th
Army Unit APO 3 Brochure, April 1955.

While the forensic field has faced obstacles in generating DNA profiles from historical
remains, the ancient DNA field has been successful in recovering authentic DNA from very
old and degraded samples from a variety of substrates and environments. Advancements
in the extraction [16,17], library preparation [18], and enrichment of target DNA [19,20]
have enabled the generation of hominin nuclear and mtDNA sequence profiles from skele-
tal elements as well as sediment over 300,000 years old [21–23]. Of particular importance in
these developments was an extraction protocol that can recover DNA fragments <50 bp in
length [16] and transitioning from double- to single-stranded DNA library preparation [24],
a method that has also been shown to improve the recovery of DNA molecules from
formalin-fixed samples [25–27]. However, the focus for method development for forensic
casework and ancient DNA studies is different. This is due to the consistent, degraded
nature of ancient DNA samples that motivates the foundation for methodological advance-
ments in the field. Forensic samples, by contrast, are much more heterogeneous in terms
of DNA quality. Novel forensic methods are largely aimed to improve DNA profiling of
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traditional forensic targets that exceed 100 bp in size. Furthermore, new forensic DNA
methods must meet rigorous validation standards, making it difficult to test and adopt new
protocols. These differing forces that drive the two fields have positioned ancient DNA
considerably ahead of forensics in terms of method development. Yet both fields share the
common problem of analyzing DNA that is (or can be) highly degraded. This commonality
prompted the question if methods from the ancient DNA field could improve success rates
for generating mtDNA profiles for historical identifications, which has been suggested
in recent studies and reviews [28–30]. Therefore, we tested the feasibility of integrating
ancient DNA methods into a forensic casework workflow by comparing different DNA
extraction and library preparation protocols using fifteen skeletal remains with DNA of
varying quality as determined by previous testing. We then evaluated the success of each
protocol based on the number of informative sequences, completeness of mtDNA profiles,
and concordance with expected profiles when available. This study lays the groundwork
for further developments that will advance DNA profiling and identification of the poorest
quality historical remains samples.

2. Materials and Methods

2.1. Skeletal Samples

Fifteen non-probative skeletal samples were utilized for DNA testing in this study
(Table 1). The samples originated from disinterred burials of World War II and Korean
War service members that were likely to have been chemically treated, either with forma-
lin or with chemical powder (deodorant or insecticide) application. All fifteen samples
were previously processed in routine casework at the AFMES-AFDIL using the validated
mitogenome sequencing methods outlined in [4]. Samples were selected based on DNA
quality in order to cover a range in quality types and not based on skeletal element. The
samples ranged in DNA quality based on casework sequencing success: seven failed with
<10-fold average coverage, four provided mtDNA sequences with 10-35-fold (low) average
coverage, and four yielded high coverage mtDNA data (100-360-fold).

Table 1. Sample descriptions and case contexts. World War II (WWII) conflict locations are shown,
as well as the cemetery of disinterment. Formalin treatment was not documented, but was noted
as being likely in certain cases. Powder application was evidenced by visible powder on the re-
mains. Casework results were based on the coverage of the revised Cambridge Reference Sequence
(rCRS) [31] produced from the same skeletal sample using the methods outlined in [4].

Sample ID
Skeletal
Element

Context
Cemetery of

Disinterment
Formalin
Treatment

Powder
Application

Casework
Results

2224 Tibia WWII-Tarawa NMCP 1 Unknown Not visible High Coverage

0858 Temporal WWII-USS
Oklahoma NMCP 1 No, Oil Soaked Likely High Coverage

0994 Femur WWII-Buna MAC 2 Unknown Not visible High Coverage
2255 Humerus WWII-Cabanatuan MAC 2 Unknown Not visible High Coverage
0899 Humerus WWII-Tarawa NMCP 1 Unknown Yes Low Coverage
0100 Femur Korea NMCP 1 Likely Yes Low Coverage
1001 Os coxa WWII-Yugoslavia SRAC 3 Unknown Not visible Low Coverage
3140 Radius WWII-Burma NMCP 1 Unknown Yes Low Coverage
0378 Femur WWII-Tarawa NMCP 1 Unknown Yes Failed
1837 Tibia WWII-Tarawa NMCP 1 Unknown Yes Failed
1198 Tibia Korea NMCP 1 Likely Yes Failed
1964 Humerus Korea NMCP 1 Likely Yes Failed
0917 Tibia Korea NMCP 1 Likely Yes Failed
3825 Radius Korea NMCP 1 Likely Yes Failed
1487 Femur WWII-Italy SRAC 3 Unknown Yes Failed

1 National Memorial Cemetery of the Pacific, Honolulu, Hawaii, USA; 2 Manila American Cemetery, Philippines;
3 Sicily-Rome American Cemetery, Italy.
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2.2. DNA Extraction

All DNA extractions were performed at the AFMES-AFDIL in a clean, pre-PCR room
with positive pressure, per standard ancient and forensic DNA practices. Under sterile
conditions, each bone was sanded to remove the external surface, washed in ethanol,
and then powdered using a blender cup. Bone powder samples were digested and a
reagent blank (RB) was initiated for each extraction set. DNA was extracted using one of
the conditions outlined in Table 2. As described in Edson et al. [32], the AFDIL method
utilized 1.0 g of bone powder incubated overnight at 56 ◦C in 7.5 mL digestion buffer (0.5 M
EDTA, 1% lauroylsarcosine) with 200 μL proteinase K (20 mg/mL). DNA was then isolated
using an organic DNA extraction protocol with phenol chloroform isoamyl alcohol (PCIA),
followed by concentration and buffer exchange using an Amicon Ultra-4 (molecular weight
cut-off 30 kDa) (MilliporeSigma, Burlington, MA, USA). The resulting DNA extracts were
divided into three aliquots to assess the effect of DNA repair on the sequence data. The
following repair conditions were evaluated: (1) no repair, (2) USER (New England Biolabs
(NEB), Ipswich, MA, USA) treatment to remove uracil residues resulting from cytosine
deamination, and (3) NEBNext FFPE DNA Repair Mix (NEB) to remove uracils and also
repair nicks, gaps, oxidized bases, and blocked 3′ ends [33]. Repair treatments followed
their respective manufacturer protocols. All three DNA extracts (no repair, USER, and
FFPE DNA Repair) underwent MinElute (QIAGEN, Hilden, Germany) purification after
repair. This resulted in a total of three different PCIA-based protocols that were tested (PM:
no repair, PUM: USER, and PFM: FFPE DNA Repair).

Table 2. DNA extraction methods tested.

Method Bone Powder (g) Digestion Buffer
Digestion Buffer

Volume (mL)
Proteinase K (20

mg/mL) (μL)

Incubation
Temperature

(◦C)

DNA
Purification

Repair Protocol

AFDIL (PM) 1.0 Demin buffer 1 7.5 200 56 PCIA with
buffer exchange

NA (MinElute
purification)

AFDIL-USER
(PUM) 1.0 Demin buffer 1 7.5 200 56 PCIA with

buffer exchange
USER (NEB,

Ipswich, MA, USA)

AFDIL-FFPE
(PFM) 1.0 Demin buffer 1 7.5 200 56 PCIA with

buffer exchange

NEBNext FFPE
DNA Repair Mix

(NEB)
Dabney—37
(aDNA37) 0.2 Dabney buffer 2 1.0 25 37 Silica column

and PB Buffer NA

Dabney—56
(aDNA56)

Dabney 37
remaining pellet Dabney buffer 2 1.0 25 56 Silica column

and PB Buffer NA

AFDIL-Dabney
(A_D) 0.2 Demin buffer 1 4.0 200 56 Silica column

and PB Buffer NA

1 Demin buffer: 0.5 M EDTA, 1% lauroyl sarcosine; 2 Dabney buffer: 0.45 M, 0.5% Tween 20.

The ancient DNA extraction protocol followed was the Dabney method [16] as de-
scribed in Rohland et al. [17], substituting the binding buffer ‘D’ with QIAGEN PB buffer.
This method utilized 0.2 g bone powder digested at 37 ◦C in 1 mL 0.45 M EDTA with 0.05%
Tween 20 and 25 μL proteinase K (20 mg/mL). Unlike the AFDIL digestion, there was not a
complete digestion of bone powder. Therefore, the bone powder pellets remaining after
the initial 37 ◦C Dabney extraction were re-digested overnight with 1.0 mL buffer at 56 ◦C,
which resulted in the powder going into solution. Purification was then performed with
the Roche High Pure Spin Column (a large volume silica column) (Pleasanton, CA, USA).
This resulted in two ancient DNA extractions, although each were from the same bone
powder aliquot (first digestion: aDNA37 and second digestion: aDNA56).

Finally, a hybrid “AFDIL-Dabney” DNA extraction method was performed following
the AFMES-AFDIL digestion procedures (i.e., 1.0 g of bone powder incubated overnight at
56 ◦C in 7.5 mL digestion buffer and 200 μL proteinase K) and Dabney purification (i.e.,
High Pure Spin Column).
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2.3. Library Preparation
2.3.1. In House MPI Method

This single-stranded DNA library preparation was performed as described in [19] on a
Bravo NGS Workstation (Agilent Technologies) at the Max Planck Institute for Evolutionary
Anthropology (MPI-EVA) in Leipzig, Germany from 5μL of each sample extract and RB.
In short, the DNA was denatured by heat, and then the 5′ and 3′ phosphate groups were
removed. T4 DNA ligase was used to ligate an adapter oligonucleotide with a 3′ biotin
to the 3′ end of each DNA fragment, aided by a splinter oligonucleotide. This product
was then immobilized on streptavidin magnetic beads and a wash was performed at 45 ◦C
to remove the splinter. Primer and the E.coli DNA polymerase I Klenow fragment was
added to make a copy of the template strand from the attached adapter. A bead wash was
then performed to remove excess primers and prevent adapter dimer formation. Next, T4
DNA ligase was used for a blunt-end ligation of a second, double-stranded adapter. Heat
denaturation at 95 ◦C was then used to release the library products from the beads. Library
amplification and indexing was performed with AccuPrime Pfx DNA polymerase with the
following cycling parameters: 95 ◦C for 2 min, then 35 cycles of 95 ◦C for 20 s, 60 ◦C for 30 s
and 68 ◦C for 1 min, with a final additional 5 min at 68 ◦C. Post-amplification purification
was performed using the MinElute PCR purification kit. Libraries were generated from all
15 samples, one RB, one library positive control and one library negative control.

2.3.2. SRSLY Kit

The SRSLY single-stranded DNA library preparations were performed manually at
the AFMES-AFDIL using Claret’s SRSLY PicoPlus Library Prep Kit for Illumina (Santa
Cruz, CA, USA). Unless otherwise noted, library preparation was carried out according
to the manufacturer protocol for ancient and highly degraded DNA samples, including
purification steps with AMPure XP (Beckman Coulter, Brea, CA, USA) for maximum short
fragment retention [34]. In summary, 5 μL of extract was used for library preparation, and
a positive control and negative control were included with each sample set. The positive
control was enzymatically fragmented K562 cell line with 1 ng library input, as described
in [4]. An initial denaturation step rendered all DNA single-stranded and then stabilized
by a single-stranded binding protein, followed by adapter ligation at 37 ◦C (lid 45 ◦C)
for 1 h with splinted adapters that retain the original strand orientation. AMPure XP
purification after adapter ligation included the addition of isopropanol and 10 mM Tris-HCl
pH 8.5 with a final ratio of 0.54× (0.99× ratio to library prior to isopropanol and Tris-HCl
addition). The full library volume was amplified in a single reaction using Claret unique
dual indexes (undiluted) and KAPA HiFi HotStart Uracil+ ReadyMix (Roche) according to
the manufacturer recommendations. Uracil+ was selected in order to tolerate uracil bases
present in the DNA due to cytosine deamination. Library amplification was completed
with the following parameters: 95 ◦C for 3 min, then 35 cycles of 95 ◦C for 20 s, 60 ◦C for
15 s, 72 ◦C for 1 min, followed by 72 ◦C for 7 min. Post-amplification purification utilized a
1.2× AMPure XP ratio. Libraries were generated from a total of 15 samples, one RB, two
positive controls and two negative controls.

2.3.3. KAPA Hyper Prep Kit

The KAPA double-stranded DNA library preparations were performed manually at
the AFMES-AFDIL using the Roche KAPA Hyper Prep Kit. Unless otherwise noted, library
preparation was carried out according to the manufacturer protocol. Again, 5 μL of extract
was used for library preparation, and a positive control and negative control were included
with each sample set. The positive control was fragmented DNA from a K562 cell line with
1 ng library input. End repair and A-tailing took place in a single step with incubation
at 20 ◦C for 30 min, then 65 ◦C for 30 min (lid 85 ◦C), followed by adapter ligation using
15 μM KAPA dual indexed adapters for all libraries at 20 ◦C for 15 min. Post-ligation
clean-up used an increased 2× AMPure XP ratio in order to retain smaller fragments. The
full library volume was amplified using KAPA HiFi HotStart Uracil+ ReadyMix and KAPA
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Library Amplification Primer mix, according to the manufacturer’s recommendations with
the following parameters: 95 ◦C for 3 min, then 35 cycles of 98 ◦C for 20 s, 60 ◦C for 15 s,
72 ◦C for 1 min, followed by 72 ◦C for 7 min. The same post-amplification AMPure XP
purification was utilized as with the SRSLY libraries. Libraries were generated from a total
of 15 samples, one RB, two positive controls and two negative controls.

2.3.4. Quantification

To compare the number of DNA molecules converted into library molecules for each
of the three library preparation methods, quantitative (q) PCR was performed on the
unamplified library products of each method. The qPCR was performed as described in
Gansauge et al. [18] at the MPI-EVA with all the libraries on the same plate to remove any
possible plate-to-plate variation.

2.4. MtDNA Hybridization Capture

In-solution hybridization capture was used for the enrichment of human mtDNA
for the three different types of library preparation methods. Two rounds of capture were
performed following the protocol outlined in Fu et al. [19] in 384-well format on a Bravo
NGS Workstation B (Agilent, Santa Clara, CA, USA) with adjustments to the number of
amplification cycles per library to prevent each from reaching plateau.

2.5. Sequencing and Data Processing

For the comparison of extraction protocols, all resulting single-stranded DNA libraries
were pooled for shotgun sequencing. For the comparison of library preparation protocols,
each library type was pooled separately (three total pools) for shotgun sequencing and the
human mtDNA enriched SRSLY and MPI library sets (two pools). In order to avoid captured
libraries with identical indices being sequenced together, the KAPA Hyper Prep human
mtDNA enriched libraries were split between nine pools and sequenced with other libraries
not included in this study. All sequencing pools were created by combining equal amounts
of sample libraries and 1:10 dilutions of controls (RBs and library negative controls). Library
positive controls were not sequenced. Sequencing was performed on a MiSeq or NextSeq
(Illumina technology) in 2× 75 bp paired-end configuration with 8-bp dual-indexed reads.
Base calling was completed with bustard (Illumina) and overlapping paired-end reads
were merged using leeHom [35]. For shotgun sequencing, reads were then mapped to
the human reference genome GRCh37/1000 (Genomes release; ftp://ftp.1000genomes.ebi.
ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/, accessed on
12 November 2021) and captured library reads were mapped to the revised Cambridge
reference sequence [31]. PCR duplicates were then removed using bam-rmdup (https:
//github.com/mpieva/biohazard-tools, accessed on 15 October 2021).

For the processing of the shotgun results, all sequences less than 35 bp and unmapped
sequences were removed. The remaining sequences were then used to calculate the average
fragment size, rates of C-to-T substitutions, and number of informative sequences [26]
in each sample. The 35 bp cut-off was used to allow comparisons to previous published
ancient DNA data.

For the processing of the capture enriched data, the resulting de-duplicated sequences
from each library preparation type continued either through the MPI workflow or a CLC
Genomic Workbench (QIAGEN, Hilden, Germany) workflow. For the MPI workflow,
unmapped sequences, sequences shorter than 30 bp or with a mapping quality less than
25 were removed. The resulting sequences were used to calculate the coverage of the
mtDNA genome. For the CLC workflow, the de-duplicated bam files were ingested into
the CLC at the AFMES-AFDIL for variant calling, mtDNA haplogroup prediction, and
forensic profile reporting using AQME [36], in addition to determining the mtDNA cov-
erage. A minimum read depth of 5 was required for bases to be included in the reported
sequence range. Variant detection required a minimum of 4 reads supporting the variant
as well as a minimum frequency of 10%. Point heteroplasmy was documented when
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variants exhibited 10–90% frequency. Length heteroplasmy was reported based on the
major molecule; however, this was ignored in concordance assessments due to the impact
of differing polymerases on length variants [37]. Additionally, variants consistent with
cytosine deamination (C-to-T or G-to-A substitutions) that were low in frequency (<30%)
and/or lacking in forward/reverse read balance (<0.30) were excluded. These variant
detection parameters minimized the reporting of stochastic error while allowing for the
mixture and contamination detection necessary in forensic casework. When processing
the SRSLY libraries, contaminant pig DNA was identified as mismapping to the human
mtDNA reference genome (rCRS), resulting in spikes of coverage and unexpected variants
(Supplementary Figures S1 and S2). The presence of pig sequences in these libraries was
confirmed using a pipeline [38] that uses BLAST [39] and MEGAN [40] to assign sequences
from sediment samples to different mammalian families (Supplementary Figure S3). To re-
move these sequences a “pig-out” pipeline was added to both the CLC and MPI workflows
as described in Supporting Information Text S1.

3. Results

3.1. Evaluation of Extraction Methods

In order to evaluate the feasibility of integrating ancient DNA methods into a forensic
casework workflow, we first evaluated the performance of various extraction protocols with
respect to success in recovering DNA fragments. Fifteen non-probative skeletal remains
that had been previously tested at the AFMES-AFDIL and were therefore of known quality
(Table 1). We selected five different extraction/repair protocols to test: three PCIA-based
from the forensic field [32], one from the ancient DNA field ([17], with PB buffer), and one
that combined elements of each the forensic and ancient DNA protocols (see Section 2.2).
As the bone powder pellet did not go into solution in the initial ancient DNA digestion at
37 ◦C, a redigestion was performed at 56 ◦C of the same pellet and each of the fractions was
purified. Therefore, six extraction/repair conditions were tested in total (Table 2); however,
the two ancient DNA extractions were from the same original powder sample.

DNA extraction performance was assessed using shotgun sequencing data produced from
single-stranded libraries constructed following the method outlined in Gansauge et al. [18].
To determine which extraction protocol was most effective, we estimated the number of
unique DNA fragments present in each library that mapped to the human DNA reference
genome (informative sequences) in each library. For each sample we then determined
which extraction protocol resulted in the most recovered informative sequences and took
the ratio of the informative sequences from each other extraction protocol to this “best”
protocol. This resulted in the relative informative sequences for each sample and extraction
combination (see Supporting Information Text S2 for further explanation on how infor-
mative sequences and relative informative sequences were calculated). This calculation
allowed us to compare the relative informative sequences across extraction types for the
different samples (Figure 2A, see Supplementary Data File S1 for which extraction was
best per sample). We found that the combined forensic ancient DNA extraction protocol
(AFDIL-Dabney) was significantly worse than all other protocols (n = 15, Wilcoxon test
with correction for multiple testing, p-values: 6.5 × 10−4 to 1.1 × 10−4). The redigestion at
56 ◦C with the ancient DNA protocol (aDNA56) recovered significantly more informative
fragments than the two forensic extraction protocols that included extra DNA repair steps
intended to improve recovery of damaged DNA (n = 15, Wilcoxon test with correction
for multiple testing, p-values both 2.8 × 10−2). This loss of recovered DNA is likely, at
least in part, due to the addition of extra purification steps. No significant difference in
recovered informative sequences was observed between the two ancient DNA protocols
and the forensic protocol with no DNA repair (p-values: 6.4 × 10−1 to 1). However, as the
two ancient DNA protocols originate from the same bone powder pellet, theoretically if
the initial lysis had been performed at 56 ◦C the DNA recovered in the 37 ◦C and 56 ◦C
fractions would have been extracted together. If we combine the recovered informative
sequences from both of these fractions, the ancient DNA protocol results in significantly
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more informative sequences than the forensic extraction protocols (n = 15, Wilcoxon test
with correction for multiple testing, p-values all <4.8 × 10−4, Figure 2B). These results
indicate that the ancient DNA extraction protocol does improve the recovery of target DNA
from historical skeletal remains that are of interest for forensic casework particularly in a
MPS workflow.

Figure 2. Relative informative sequences recovered per extraction protocol across 15 historical skeletal
remains with the ancient DNA extraction fractions (A) separate and (B) merged. The total informative
sequences per library was calculated by multiplying the number of DNA molecules in each library as
determined by qPCR by the proportion of sequences longer than 35 bp that mapped to the human
reference genome. The relative informative sequences were then calculated by taking the ratio of total
informative sequences for each extraction/sample combination to the total number of informative
sequences from the best performing extraction protocol per sample. The box plots follow the standard
Tukey representation to show the distribution of the relative informative sequences per extraction
type (n = 15). The significance of different relative amounts recovered per extraction was evaluated
with a Wilcoxon test with a correction for multiple testing. The ancient DNA protocols (aDNA37:
37 ◦C digestion; aDNA56: 56 ◦C digestion; Dabney merged: merging of total informative sequences
per extraction/sample from aDNA37 and aDNA56) are colored in blue; forensic protocols (PM: PCIA
with Min Elute; PUM: PCIA with Min Elute and USER treatment; PFM: PCIA with Min Elute and
FFPE treatment) in green; and the combined forensic ancient DNA protocol (A_D: AFDIL digestion
with Dabney purification) in yellow.

3.2. Characteristics of Recovered DNA

Single-stranded DNA library preparation coupled with shotgun sequencing allows for
the characterization of nuclear DNA recovered from each of these samples. Specifically, we
examined the percentage of sequences longer than 35 bp that mapped to the human genome,
average fragment size for each sample, and deamination as represented by cytosine to
thymine (C-to-T) substitutions. The latter two analyses were performed after removing
unmapped reads, PCR duplicates, and sequences shorter than 35 bp or with mapping
qualities less than 25. We used the data from the ancient DNA extraction protocol with a
56 ◦C incubation to investigate each of these factors.

The percent mapped for the samples ranged from 0.13–72.5% (mean 7.88%) and the
average fragment size for each of the samples ranged from 44 to 64 bp (mean 49 bp).
The observed percent of C-to-T substitutions on the 5′ ends ranged from 8.8% to 30.7%
(mean 18.3%) and 8% to 22.3% (mean 13.3%) on the 3′ end. These values are similar to
those observed in ancient DNA samples, where the presence of short DNA fragments and
deamination are used for the authentication of ancient DNA [41] as well as to disentangle
endogenous ancient DNA from modern human contamination [42]. While there have

491



Genes 2022, 13, 129

been multiple studies on the impacts of various factors on the DNA degradation patterns
from ancient samples [12,22,43] and modern samples [44,45], there is limited data on DNA
degradation in the more recent past. Therefore, we compared the average fragment size and
deamination patterns of this set of forensic samples to published shotgun data from seven
Late Pleistocene modern human specimens (~37 to 46,000 years ago) [46]. We found that the
percent of sequences that mapped to the human reference genome (fragment length ≥ 35 bp
and mapping quality ≥ 25) for about half of the historical remains fell within two standard
deviations of the mean for the ancient samples (Figure 3A). Additionally, the average sizes
of mapped human DNA fragments recovered from all of the historical remains were within
the range for the ancient samples (Figure 3B). As the library preparation method used
is known to impact the observed 3′ deamination [26], we compared the values on the
5′ end only. In this comparison, many of the historical remains had lower deamination
rates than the average ancient sample (Figure 3C). In ancient DNA studies, a cut-off of
10% deamination is often used for the identification of authentic ancient DNA [38,43,47],
and the majority of the historical samples exceeded this threshold. When looking at the
rate of deamination along the DNA fragments, while the terminal base has the highest
rate, elevated rates of deamination continue until the third terminal base for the historical
samples (Figure 3D). This trend is known for ancient samples, but this observation indicates
that it may be important to consider deamination during the downstream analyses of
historical DNA samples, particularly when no DNA repair step is included. In addition, the
similarity between the DNA recovered from the historical and ancient samples emphasizes
the difficulty of performing identifications for forensic casework when remains may have
been formalin treated or are poorly preserved.

Figure 3. The (A) percent mapped (B) average fragment size (bp) and (C,D) observed 5′ C to T
substitution frequencies of DNA recovered from historical and ancient DNA samples. Each bar
represents a single sample for fifteen historical samples (purple) and seven Late Pleistocene modern
human skeletal samples from ~37,000–46,000 years ago (dark green). In (A–C) the x-axis is the
same for each and the black line represents the average for the ancient skeletal (dark green) samples
and the dashed lines show two standard deviations above and below this average. In (C) the red
line represents the 10% threshold typically used to determine if a sample contains ancient DNA. In
(D) each point represents the 5′ C to T substitution frequency at a position from the 5′ end of DNA
fragments recovered from a single sample. Note that only historical samples are shown in (D).
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3.3. Evaluation of Library Preparartion Protocols

The characterization of the DNA recovered from the historical remains confirmed the
finding of previous studies that the DNA from these samples is highly degraded [4,15,48].
As the currently validated MPS workflow at AFMES-AFDIL uses a double-stranded li-
brary preparation method, it is likely that many of these DNA fragments are lost and
not successfully converted into libraries. Therefore, success rates could be improved if a
single-stranded library preparation method was used. We tested this hypothesis by taking
three 5 μL aliquots from the ancient DNA extracts with a 56 ◦C incubation and preparing
libraries with the KAPA Hyper Prep double-stranded kit (currently being validated for case-
work by AFMES-AFDIL) [15], the SRSLY single-stranded kit [49], and the single-stranded
DNA library preparation method described in [18], which we refer to as the “MPI” method.
For the double-stranded KAPA libraries, shotgun sequencing resulted in between 4 and
6997 unique nuclear DNA fragments recovered (two libraries failed during library prep).
The two single-stranded DNA libraries resulted in between 23 and 143,388 unique DNA
fragments for the SRSLY kit and 908 to 407,183 for the MPI method. It is important to note,
however, that none of these libraries were sequenced to exhaustion. As with the extrac-
tion method comparison, we determined the relative informative sequences per sample
for the three different library preparation methods based on the shotgun data (Figure 4).
This confirmed that single-stranded library preparation methods were more effective at
recovering informative sequences (n = 15 for the number of samples used for comparisons
across the three different library preparation methods, Wilcoxon test with correction for
multiple testing, both p-values < 2.0 × 10−5), although there was no significant difference
between the two single-stranded methods (p-value = 0.29).

Figure 4. Relative informative nuclear DNA sequences recovered per library preparation protocol
across 15 historical skeletal remains. The relative informative sequences per library was calculated as
described in Supporting Information Text S2. The box plots follow the standard Tukey representation
to show the distribution of the relative informative sequences per extraction type (n = 15). The
significance of different relative amounts recovered per library prep type was evaluated with a
Wilcoxon test with a correction for multiple testing.

Next, we wanted to evaluate the mtDNA variant calling success rates of the two single-
stranded methods for each sample to determine if there was a difference from previous
casework attempts. In order to test this, each library was enriched for human mtDNA
using hybridization capture. The resulting sequencing data was then processed both at
the MPI and using a CLC workflow at the AFMES-AFDIL (see Section 2.5). No significant
difference was observed in the percentage of sequences that mapped between the two
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library preparation methods (Figure 5A, Wilcox test with correction for multiple testing,
n = 15, p = 0.57). However, during the processing of the SRSLY libraries, pig mtDNA was
identified as mismapping to the human mtDNA genome (0 to 17 fragments, contributing
up to 6.5% of sequences per sample library). Therefore, a “pig-out” alternative workflow
was used to remove these sequences via competitive mapping for all the SRSLY libraries
(Supporting Information Text S2). The MPI method was found to result in more mtDNA se-
quences (Figure 5B, p-values adjusted for multiple testing 5.5 × 10−4 for MPI workflow and
7.6 × 10−6 for CLC workflow, n = 12 samples compared between library types, Wilcoxon
test) with no significant difference in number of unique mtDNA sequences (n = 40 sample,
library and workflow comparisons, p-value adjusted for multiple testing: 0.24, Wilcoxon
test). Importantly, the maximum coverage for the negative controls was 0.3-fold for the
CLC workflow, which is lower than typically observed in MPS data using the validated
AFMES-AFDIL double-stranded DNA workflow [4], allowing for lowering thresholds
below 10-fold for variant detection. For the CLC processing, two standard deviations above
mean coverage of the controls was 0.38-fold. Thus the analytical threshold, above which
sequence data can be distinguished from background noise, could be set as low as 2-fold
(2×) average coverage. The SRSLY library preparation method resulted in 13 samples with
an average coverage of at least 10-fold for the mtDNA genome and the MPI library prepa-
ration method resulted in 14 samples with at least 10-fold average coverage. While 10-fold
was the previous coverage threshold, the low coverages observed in the negative controls
supported decreasing this threshold comfortably to 5-fold, well above the 2-fold level of
background noise. All samples resulted in at least 5-fold average coverage using either
single-stranded library preparation technique (Figure 6, Supplementary Data File S1).

Figure 5. (A) The distribution of the percentage of sequences at least 30 bp long that mapped to the
human mtDNA reference genome after capture using the MPI workflow. (B) The relative number of
mapped mtDNA sequences across library preparation methods for both the CLC and MPI workflows.
The box plots follow the standard Tukey representation to show the distribution of the relative
informative sequences per extraction type (n = 15).
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Figure 6. Average coverage of different qualities of samples with MPI and SRSLY library preparations
after enrichment for human mtDNA using the CLC workflow. Samples are colored based on the
quality as determined from the initial casework evaluation before changing the extraction and library
preparation methods (Table 1). The left plots underwent MPI library preparation and the right plots
SRSLY library preparation.

For variant calling, only the CLC workflow was used as it applies forensic standards
to haplotype reporting that have been previously validated for forensic casework use.
When compared with previously generated casework results, the low-coverage and high-
coverage sample data were nearly 100% concordant (Tables 3 and S3). It is important to
note that the previous casework results were generated from two DNA libraries comprised
of roughly 1.0 g of bone powder each; whereas the data in this study utilized DNA libraries
comprised of 0.01 g of bone powder. The only discordance was observed in the high
coverage sample 2255 at nucleotide position (np) 6755. Heteroplasmy (G6755R) was called
in the 473-fold casework data due to a minor guanine (G) variant at 21.1% frequency.
However, heteroplasmy was not observed above the set thresholds in either the MPI or
the SRSLY data, which both produced a G6755A variant. It is noted that the MPI data
exhibited 15-fold coverage at this position, with 13 (87%) of reads exhibiting adenine (A) at
this position and two reads (13%) producing a guanine (G) base. The SRSLY data had
11× coverage at np 6755 and produced 100% adenine. This decreased observation of
guanine at this position may be due to a combination of lower coverage and cytosine
deamination. It is possible that higher coverage, gained through either higher DNA input
into library or through combining data produced from multiple libraries and/or sequencing
events, would result in improved heteroplasmy detection at this position in either of the
single-stranded DNA libraries.
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The seven samples that failed to produce reportable mtDNA profiles in routine case-
work (at a 10-fold coverage threshold) yielded concordant, partial profiles when comparing
the 5-fold MPI and SRSLY data. Despite partial ranges, the predicted haplogroups (Table 3)
were almost identical between the MPI and SRSLY data for all seven samples. The reason
that they are not exactly identical is due to missed/uncalled variants in low coverage
regions, in which the minimum 5-fold (5×) coverage threshold was met but the minimum
variant count of 4 was not met—either due to cytosine deamination and/or low-level back-
ground noise. It is likely that, when merged with sequence data from a second/replicate
library, the coverage and variant detection will improve. This merging of data from two
independent libraries, as is routinely done in AFMES-AFDIL casework, would likely make
these profiles reportable. Notably, only two of the seven failed samples (1837 and 1964)
exceeded 5-fold average coverage in routine DNA casework. Thus at a minimum, the MPI
and SRSLY methods improved the mtDNA profiling success of the bottom third (n = 5)
of the poorest quality AFMES-AFDIL samples, from 0% to 100%. In other words, the
previous method did not even produce partial mtDNA profiles at a 5-foldcoverage level
that could be reported; whereas the ssDNA methods both yielded sufficient coverage for
haplogrouping and distinguishing mtDNA profiles.

4. Discussion

The identification of historical remains usually falls within the scope of the forensic
science community, particularly with remains from armed military conflicts. The DNA
recovered from the samples in this set, which had varied preservation conditions, includ-
ing formalin treatment, showed similar properties to DNA recovered from remains over
30,000 years old. While it has been previously demonstrated with both artificially degraded
DNA and forensic casework samples that ancient DNA extraction methods can increase
DNA yields in historical cases [28,30], this study clearly demonstrates the benefits of mak-
ing this change for the disinterred remains of WWII and Korean War service members. The
degraded nature of the DNA recovered from the remains investigated here, possibly facili-
tated by the powder application and/or formalin-treatment they were subjected to [25,26],
made them clear candidates for single-stranded DNA library preparation. For the seven
samples that had previously failed to result in data that met the required 10-fold average
coverage for casework, six passed this threshold with at least one of the two single-stranded
DNA library preparation methods. Importantly, these methods also resulted in cleaner
negative controls, which allowed for lowering of thresholds for data reporting, a benefit
when working with degraded samples that contain limited amounts of data. In this study,
the lowering of the average coverage threshold to 5-fold enabled the reporting of two more
samples, which would have failed if we had maintained the previous 10-fold threshold,
allowing all samples to be reportable.

Typically, in forensic DNA analysis, analytical thresholds are established based on
2–3 standard deviations above the mean coverage in negative controls [4]. In this study that
would place the average coverage threshold at 2-fold. However, we raised this threshold to
5-fold, in order to minimize the reporting of background noise, low-level variants, and con-
tamination. This also raises an important discussion about the detection of contamination.
Although both the ancient DNA and forensic fields follow similar clean room practices
and maintain negative controls throughout processing, the methods for identification of
contamination in sample data differs. Expected elevated rates of deamination in ancient
samples allow for the examination of deamination patterns to determine the presence of
endogenous DNA and estimate amounts of modern human contamination [41,42], which
may result in decisions to restrict analyses to only fragments that have deamination. While
the samples in this study showed elevated deamination rates, this is not the case for all
forensic samples and cannot be relied upon for confirmation of endogenous DNA content.
For this reason, the forensic field has established three pathways for detecting contamina-
tion. First, DNA profiles from all staff members and individuals known to have handled
the remains are maintained allowing for source identification from any contamination that
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may arise from the handling of the remains during processing. Profiles among unidentified
remains can also be compared this way in case cross-contamination occurs due to commin-
gling of remains. Second, all results from degraded skeletal remains are replicated from
a new/second bone powder aliquot that is taken through DNA extraction, downstream
processing, and analysis. Finally, each profile is evaluated as being either single-source or a
mixture using interpretation parameters established through comprehensive validation
studies. For mtDNA, mixed/contaminated DNA samples are known to cause a reduction
in variant frequency as well as an excess of heteroplasmy (>3 nucleotide positions across
the mitogenome) [4]. Mixed DNA samples are not reportable, and the laboratory work
will be repeated in an attempt to determine the source of the mixture. If the bone itself is
contaminated, as evidenced by a repeat mixture after a second DNA extraction, the sample
results will not be reported. Determining contamination within the bone requires having
multi-fold coverage across the mitogenome, which is why we decided to use a threshold of
5-fold. Attempts to lower this threshold further would require the development of other
bioinformatic tools for the identification of mixtures from low-coverage data.

Although exogenous human DNA is highly scrutinized, as described above, low-level
contaminants from non-human sources can also impact the accuracy of variant calling. We
were able to develop a pipeline to remove the identified pig mtDNA contaminant, but
currently validated workflows at the AFMES-AFDIL do not include these steps or a way to
easily screen for the presence of non-human DNA. There are different taxonomic classifiers
and methods used in other fields to identify different species and families in sequence
data [39,40,50]. Based on the pig DNA observed in the SRSLY data, it may be worthwhile
considering integrating one of these into workflows when working with historical casework.
Additionally, the presence of deamination in all samples raises the question of how to ensure
this does not impact downstream variant calling. In the presented analysis, variants that
appeared to be due to deaminated bases were removed from the profile for concordance
purposes. For the typical casework workflow, the impacts of deamination would likely be
mitigated by merging the data from multiple extractions and/or libraries. In ancient DNA
studies, different methods are used to minimize the impact of deamination on downstream
analyses. For example, the terminal three positions of all fragments are often masked
or, in extreme cases, only variants that are transversions are used [51,52]. A previous
sensitivity study on the impact of DNA degradation on STR and SNP concordance with
Verogen’s ForenSeq kit also found differences in concordance and heterozygosity balance
in comparison to studies with non-degraded DNA [28], indicating that considerations
for the analysis of degraded DNA across platforms is of importance. Future studies on
the impacts of low-input and degraded DNA for downstream forensics analyses will
both help to increase the accuracy when working with more challenging data and open
up the possibility of producing accurate, identification informative data from previously
inaccessible samples.

In conclusion, we have identified that an altered ancient DNA extraction protocol
coupled with single-stranded library preparation increases the amount of recovered mtDNA
from disinterred military service member skeletal remains. These findings emphasize the
value of exchanging methods between the ancient DNA and forensic fields [29], which
are beneficial in both directions as shown from the ancient DNA community integrating
bleach treatment to remove contamination from samples [53,54]. The integration of the
methods in this study into casework samples with highly degraded DNA has the potential
to increase success rates for identifying historical remains.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/genes13010129/s1, Figure S1: The coverage distribution across the mtDNA
genome for a SRSLY library negative control before (A) and after (B) CLC pig out workflow. Green
portion represents forward reads and red portion represents reverse reads; Figure S2: Sequences
mapped to positions 2300–3200 of the human mtDNA reference genome from a SRSLY library (sam-
ple 0378) pre- (A) and post- (B) CLC pig out workflow. Horizonal green lines represent individual
forward reads and red lines reverse reads. Vertical lines represent differences from the reference
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(blue = C, yellow = G, red = A, green = T). A maximum of 100-fold in displayed range for (A) and
48-fold for (B); Figure S3: The number of mtDNA fragments assigned to the suidae family for samples
that underwent SRSLY library preparation; Figure S4: The (A) informative and (B) relative informa-
tive sequences recovered from samples 2018H1198-02A2 across six difference extraction protocols.
Table S1: Summary statistics from shotgun sequencing of MPI single-stranded library prepared
samples from different types of extracts; Table S2: Summary statistics from shotgun sequenciing
and capture of samples from double-stranded and single-stranded libraries; Table S3: Haplotypes
reported in routine casework (validated dsDNA workflow), compared with haplotypes observed in
MPI and SRSLY DNA libraries.
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