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Editorial

Nonparametric Statistical Inference with an Emphasis on
Information-Theoretic Methods

Jan Mielniczuk 1,2

1 Institute of Computer Science, Polish Academy of Sciences, Jana Kazimierza 5, 01-248 Warsaw, Poland;
miel@ipipan.waw.pl

2 Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75,
00-662 Warsaw, Poland

The presented volume addresses some vital problems in contemporary statistical reaso-
ning. One of them is high dimensionality of the studied phenomenon and its consequences
for formal statistical inference. A huge number of studies have been devoted to proposing
new solutions and/or to modifying existing ones in order to account for the specificity
of high-dimensional data. However, frequently, these methods work well for precisely
defined parametric models and fail when misspecification occurs. Thus, there is a growing
need to develop non-parametric and robust procedures accounting for this problem and
to study existing methods when misspecification is suspected. This has been discussed in
several papers in this volume under various scenarios. Furthermore, information theoretic
methods due to their generality are of special interest in this context, e.g., when variable
selection is envisaged. Frequently, the approach to account for high-dimensionality is
based on the penalization of classic statistical procedures, and this line of reasoning is
discussed here. Moreover, in a multivariate scenario, there is a need to define and study
analogues of statistical measures designed for the univariate or bivariate case, and this
approach is represented by the study on tail dependence indices. The important area
of statistical research is devoted to time series analysis, especially in multivariate cases
and in non-standard observability scenarios; two papers in the volume address this issue.
Furthermore, information theoretic tools used to shed a new light on the generalization
risk in learnability theory are covered here.

In [1], the general class of non-stationary multivariate processes is considered based
on p-dimensional Bernoulli shifts, which, in particular, encompass multivariate linear
processes with time-varying coefficients. A locally stationary model is proposed, under
which its covariance matrix Σ(t) is piecewise Lipschitz continuous except at a certain
number of breaks (change points). The problem of the non-parametric estimation of change
points is addressed as well as that of graph support recovery, specifically the estimation of
the set {(j, k) : |Σ(t)−1(j, k)| > u} for a given threshold u and precision matrix Σ(t)−1. It
is shown that in both problems, one can obtain theoretical guarantees of the accuracy of
estimation procedures using the proposed kernel smoothed constrained �1 minimization
approach.

In [2], the problem of support recovery is considered for a semiparametric binary
model in which the posterior probability of the response is given by q(βTx), where q is
an unknown response function. The problem is dealt with by applying the penalized
empirical risk minimization approach for a convex loss φ. This has nice information
theoretic connotations when φ is a logistic loss, as, in this case, we aim at estimating the
averaged Kullback–Leibler projection of q(βTx) on the family of logistic models. For a high-
dimensional setting and random subgaussian regressors, the conditions are studied, under
which the minimizer of penalized empirical risk β̂ converges to vector β∗ corresponding
to the Kullback–Leibler projection. This is used to establish selection consistency of the
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Generalized Information Criterion GIC based on β̂ for Lipschitz and convex φ under Linear
Regressions Conditions. The resulting Screeing and Selection (SS) procedure is studied in
numerical experiments.

Ref. [3] addresses one of the main issues of the learnability theory, namely the proper-
ties of generalization risk for the given learning algorithm L. I. Alabdulmohsin introduces a
new concept of the uniform generalization of L with a rate ε that stipulates that the generali-
zation risk is less than ε for any bounded loss function l(·, ·) such that l(·, h) depends on the
underlying sample only through the hypothesis h chosen by L. The information-theoretic
characterization of this property is given in terms of variational information J(ẑ, h) between
a single observation ẑ and chosen hypothesis h (Theorem 2). In Theorem 4, the probabilistic
inequality for deviation of empirical risk from the true risk is given in terms of J(ẑ, h).
Moreover, the concept of the learning capacity of L, analogous to the concept of Shannon
channel capacity, is introduced and studied.

Ref. [4], similarly to [2], deals with the classification problem of a binary variable
under misspecification. It focuses on establishing a general upper bound of excess risk,
i.e., the difference between the risk of the linear classifier β̂Tx, obtained as a minimizer
of the penalized empirical risk pertaining to convex function φ, and the Bayes risk in
such a case (Theorem 1). The crucial part of the bound is the probability that |β̂ − β∗|1
exceeds a certain threshold, where β∗ is the minimizer of the theoretical risk pertaining to
φ. Interestingly, the authors are able to bound this probability, provided the predictors are
multivariate subgaussian, for non-Lipschitz quadratic risk φ(t) = (1 − t)2, which is rarely
studied in the classification context. The second part of the paper deals with consistency of
the thresholded Lasso selector under the Linear Regression Conditions mentioned above
and again for quadratic loss. The result complements the results on selection consistency
studied in [2].

The paper [5] is an insightful study of introduced tail dependence indices in the
multivariate case from a novel perspective, which sheds a new light on their similarities
and differences. Namely, a set of five natural properties are introduced, which should be
satisfied by such indices, and existing proposals (Frahm’s extremal dependence, Li’s tail
dependence and Schmid’s and Schmidt’s tail dependence measures) are investigated in
this context. Further properties of these indices are studied such as their behavior with
increasing dimensions of the vector. The delicate problem of estimating the tail indices is
addressed, and the consistency of the introduced estimators is studied. Their performance
is illustrated using the EURO STOXX 50 index.

Ref. [6] considers non-parametric variable selection based on information-theoretic
criteria. In such an approach, the maximization of conditional mutual information CMI =
I(X, Y|XS) is often considered in greedy selection, where Y is the response, XS is a vector
of already chosen predictors, and X is a candidate for a possible augmentation of XS.
Frequently, conditional mutual information is replaced by the approximations resulting
from Möbius expansion or some modifications of these approximations. In the paper, two
criteria obtained in such a way, namely Conditional Infomax Feature Extraction (CIFE) and
Joint Mutual Information (JMI), are analyzed, together with CMI, in a certain dependence
model called the Generative Tree Model. It is shown that the two considered criteria may
lead to a different order of chosen variables than the order induced by CMI, and CIFE
may disregard a significant part of active variables. The analysis is based on formulae for
the entropy of the multivariate Gaussian mixture and its mutual information with mixing
variables derived in the paper, which are interesting in their own right.

In [7], the authors consider a semiparametric stationary time series model of the
form Zt = xT

t β + f (st) + εt, where xt is a vector of random explanatory variables, st is a
temporal covariate, and εt is an autoregressive process. Moreover, Zt is subject to random
censoring from the right, and f is a linear combination of B-spline basis functions of order
q with a corresponding vector of coefficients α. The penalized adaptive spline approach is
developed in the paper to tackle the data irregularity and is then applied to an unbiased
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synthetic transformation of Zt. The bias and covariance structure of the obtained estimators
of α and β are derived, and their consistency is studied.

Ref. [8] addresses practically important and intensively researched problem of acco-
unting for outliers in the estimation process when fitting the multiple linear regression
model. The approach is based on the L2E parametric method proposed by the first author,
which consists of finding the minimizer of the estimated Integrated Squared Error (ISE) in a
parametric family of densities { f (x|θ)}. The proposed extension introduces an additional
parameter w, which loosely corresponds to the mixture proportion of the main (outlier-free)
component of the density, and the minimization is now performed in family {w f (θ|x)}
with respect to both θ and x. The authors then convincingly show by analyzing several
examples that the proposed method yields a much more adequate fit of residuals than the
least squares, and additional insight into data interpretation is sometimes possible.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: This paper is concerned with the estimation of time-varying networks for high-dimensional
nonstationary time series. Two types of dynamic behaviors are considered: structural breaks (i.e.,
abrupt change points) and smooth changes. To simultaneously handle these two types of time-varying
features, a two-step approach is proposed: multiple change point locations are first identified
on the basis of comparing the difference between the localized averages on sample covariance
matrices, and then graph supports are recovered on the basis of a kernelized time-varying constrained
L1-minimization for inverse matrix estimation (CLIME) estimator on each segment. We derive the
rates of convergence for estimating the change points and precision matrices under mild moment
and dependence conditions. In particular, we show that this two-step approach is consistent in
estimating the change points and the piecewise smooth precision matrix function, under a certain
high-dimensional scaling limit. The method is applied to the analysis of network structure of the
S&P 500 index between 2003 and 2008.

Keywords: high-dimensional time series; nonstationarity; network estimation; change points;
kernel estimation

1. Introduction

Networks are useful tools to visualize the relational information among a large number of
variables. An undirected graphical model belongs to a rich class of statistical network models that
encodes conditional independence [1]. Canonically, Gaussian graphical models (or their normalized
version partial correlations [2]) can be represented by the inverse covariance matrix (i.e., the precision
matrix), where a zero entry is associated with a missing edge between two vertices in the graph.
Specifically, two vertices are not connected if and only if they are conditionally independent, given the
value of all other variables.

On one hand, there is a large volume of literature on estimating the (static) precision matrix
for graphical models in the high-dimensional setting, where the sample size and the dimension are
both large [3–16]. Most of the earlier work along this line assumes that the underlying network
is time-invariant. This assumption is quite restrictive in practice and hardly plausible for many
real-world applications, such as gene regulatory networks, social networks, and stocking market,
where the underlying data generating mechanisms are often dynamic. On the other hand, dynamic
random networks have been extensively studied from the perspective of large random graphs,
such as community detection and edge probability estimation for dynamic stochastic block models
(DSBMs) [17–30]. Such approaches do not model the sampling distributions of the error (or noise),

Entropy 2020, 22, 55; doi:10.3390/e22010055 www.mdpi.com/journal/entropy
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since the “true” networks are connected with random edges sampled from certain probability models,
such as the Erdős–Rényi graphs [31] and random geometric graphs [32].

In this paper, we view the (time-varying) networks of interests as non-random graphs. We adopt
the graph signal processing approach for denoising the nonstationary time series and target
on estimating the true unknown underlying graphs. Despite the recent attempts towards more
flexible time-varying models [33–40], there are still a number of major limitations in the current
high-dimensional literature. First, theoretical analysis was derived under the fundamental assumption
that the observations are either temporally independent, or the temporal dependence has very
specific forms, such as Gaussian processes or (linear) vector autoregression (VAR) [14,33,34,37,41–43].
Such dynamic structures are unduly demanding in view that many time series encountered in real
applications have very complex nonlinear spatial-temporal dependency [44,45]. Second, most existing
work assumes the data have time-varying distributions with sufficiently light tails, such as Gaussian
graphical models and Ising models [33,34,36,41,42]. Third, in change point estimation problems
for high-dimensional time series, piecewise constancy is widely used [41,42,46,47], which can be
fragile in practice. For instance, financial data often appears to have time-dependent cross-volatility
with structural breaks [48]. For resting-state fMRI signals, correlation analysis reveals both slowly
varying and abruptly changing characteristics corresponding to modularities in brain functional
networks [49,50].

Advances in analyzing high-dimensional (stationary) time series have been made recently
to address the aforementioned nonlinear spatial-temporal dependency issue [14,37,43,51–57].
In [53,56,57], the authors considered the theoretical properties of regularized estimation of
covariance and precision matrices, based on various dependence measures of high-dimensional
time series. Reference [38] considered the non-paranormal graphs that evolve with a random variable.
Reference [37] discussed the joint estimation of Gaussian graphical models based on a stationary VAR(1)
model with special coefficient matrices, which may also depend on certain covariates. The authors
applied a constrained L1-minimization for inverse matrix estimation (CLIME) estimator with a kernel
estimator of covariance matrix and developed consistency in the graph recovery at a given time
point. Reference [14] studied the recovery of the Granger causality across time and nodes assuming a
stationary Gaussian VAR model with unknown order.

In this paper, we focus on the recovery of time-varying undirected graphs on the basis of the
regularized estimation of the precision matrices for a general class of nonstationary time series.
We simultaneously model two types of dynamics: abrupt changes with an unknown number of
change points and the smooth evolution between the change points. In particular, we study a class
of high-dimensional piecewise locally stationary processes in a general nonlinear temporal dependency
framework, where the observations are allowed to have a finite polynomial moment.

More specifically, there are two main goals of this paper: first, to estimate the change point
locations, as well as the number of change points, and second, to estimate the smooth precision matrix
functions between the change points. Accordingly, our proposed method contains two steps. In the
first step, the maximum norm of the local difference matrix is computed at each time point and the
jumps in the covariance matrices are detected at the location where the maximum norms are above a
certain threshold. In the second step, the precision matrices before and after the jump are estimated by
a regularized kernel smoothing estimator. These two steps are recursively performed until a stopping
criterion is met. Moreover, a boundary correction procedure based on data reflection is considered to
reduce the bias near the change point.

We provide an asymptotic theory to justify the proposed method in high dimensions: point-wise
and uniform rates of convergence are derived for the change point estimation and graph recovery
under mild and interpretable conditions. The convergence rates are determined via subtle interplay
among the sample size, dimensionality, temporal dependence, moment condition, and the choice
of bandwidth in the kernel estimator. Our results are significantly more involved than problems
for sub-Gaussian tails and independent samples. We highlight that uniform consistency in terms
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of time-varying network structure recovery is much more challenging and difficult than pointwise
consistency. For the multiple change point detection problem, we also characterize the threshold of the
difference statistic that gives a consistent selection of the number of change points.

We fix some notations: Positive, finite, and non-random constants, independent of the sample size
n and dimension p, are denoted by C, C1, C2, . . . , whose values may differ from line to line. For the
sequence of real numbers, an and bn, we write an = O(bn) or an � bn if lim supn→∞(an/bn) ≤ C for
some constant C < ∞ and an = o(bn) if limn→∞(an/bn) = 0. We say an � bn if an = O(bn) and
bn = O(an). For a sequence of random variables Yn and a corresponding set of constants an, denote
Yn = OP(an) if for any ε > 0 there is a constant C > 0 such that P(|Yn|/an > C) < ε for all n. For a
vector x ∈ Rp, we write |x| = (∑

p
j=1 x2

j )
1/2. For a matrix Σ, |Σ|1 = ∑j,k |σjk|, |Σ|∞ = maxj,k |σjk|,

|Σ|L1 = maxk ∑j |σjk|, |Σ|F = (∑j,k σ2
jk)

1/2 and ρ(Σ) = max{|Σx| : |x| = 1}. For a random vector

z ∈ Rp, write z ∈ La, a > 0, if ‖z‖a =: [E(|z|a)]1/a < ∞. Let ‖z‖ = ‖z‖2. Denote a ∧ b = min(a, b)
and a ∨ b = max(a, b).

The rest of the paper is organized as follows: Section 2 presents the time series model, as well as
the main assumptions, which can simultaneously capture the smooth and abrupt changes. In Section 3,
we introduce the two-step method that first segments the time series based on the difference between
the localized averages on sample covariance matrices and then recovers the graph support based
on a kernelized CLIME estimator. In Section 4, we state the main theoretical results for the change
point estimation and support recovery. Simulation examples are presented in Section 5 and a real data
application is given in Section 6. Proof of main results can be found in Section 7.

2. Time Series Model

We first introduce a class of causal vector stochastic processes. Next, we state the assumptions
to derive an asymptotic theory in Section 4 and explain their implications. Let εi ∈ Rp, i ∈ Z be
independent and identically distributed (i.i.d.) random vectors and Fi = (. . . , εi−1, εi) be a shift
process. Let X◦

i (t) = (X◦
i1(t), . . . , X◦

ip(t)) be a p-dimensional nonstationary time series generated by

X◦
i (t) = H(Fi; t), (1)

where H(·; ·) =
(

H1(·; ·), . . . , Hp(·; ·)) is an Rp-valued jointly measurable function. Suppose we
observe the data points Xi = Xi,n = X◦

i (ti) at the evenly spaced time intervals ti = i/n, i = 1, 2, . . . , n,

Xi,n = H(Fi; i/n). (2)

We drop the subscription n in Xi,n in the rest of this section. Since our focus is to study the
second-order properties, the data is assumed to have a mean of zero.

Model (1) is first introduced in [58]. The stochastic process
(
X◦

i (t)
)

i∈Z,t∈[0,1) can be thought of as
a triangular array system, double indexed by i and t, while the observations (Xi)

n
i=1 are sampled from

the diagonal of the array. On one hand, when fixing the time index t, the (vertical) process
(
X◦

i (t)
)

i∈Z
is stationary. On the other hand, since H(Fi; ti) is allowed to vary with ti, the diagonal process (2) is
able to capture nonstationarity.

The process (Xi)i∈Z is causal or non-anticipative as Xi is an output of the past innovations (εj)j≤i
and does not depend on future innovations. In fact, it covers a broad range of linear and nonlinear,
stationary and non-stationary processes, such as vector auto-regressive moving average processes,
locally stationary processes, Markov chains, and nonlinear functional processes [53,58–61].

Motivated by real applications where nonstationary time series data can involve both abrupt
breaks and smooth varies between the breaks, we model the underlying processes as piecewise locally
stationary with a finite number of structural breaks.

7



Entropy 2020, 22, 55

Definition 1 (Piecewise locally stationary time series model). Define PLSι([0, 1], L) as the collection of
mean-zero piecewise locally stationary processes on [0, 1], if for each (X(t))0≤t≤1 ∈ PLSι([0, 1], L), there is a
nonnegative integer ι such that X(t) is piecewise stochastic Lipschitz continuous in t with Lipschitz constant L
on the interval [t(l), t(l+1)), l = 0, · · · , ι, where 0 = t(0) < t(1) · · · < t(ι) < t(ι+1) = 1. A vector stochastic
process (X(t))0≤t≤1 ∈ PLSι([0, 1], L) if all coordinates belong to PLSι([0, 1], L). For the process (X◦

0 (t))0≤t≤1

defined in (1), this means that there exists a non-negative integer ι and a constant L > 0, such that

max
1≤j≤p

∥∥Hj(F0; t)− Hj(F0; t′)
∥∥ ≤ L|t − t′| for all t(l) ≤ t, t′ < t(l+1), 0 ≤ l ≤ ι.

Remark 1. If we assume (X◦
i (t))0≤t≤1 ∈ PLSι([0, 1], L), i ∈ Z, then it follows that for each i′ = i − k, . . . , i +

k, where k/n → 0, and that t(l) ≤ i, i′ < t(l+1) for some 0 ≤ l ≤ ι, we have

max
1≤j≤p

‖Hj(Fi′ ; i/n)− Hj(Fi′ ; i′/n)‖ ≤ Lk/n = o(1).

In other words, within a locally stationary time period, in a local window of i, (Xi′ j)i−k≤i′≤i+k can
be approximated by the stationary process (X◦

i′ j(i/n))i−k≤i′≤i+k for each j = 1, . . . , p. This justifies the
terminology of local stationarity.

The covariance matrix function of the underlying process is Σ(t) =
(
σjk(t)

)
1≤j,k≤p, t ∈ [0, 1],

where σjk(t) = E
(

Hj(F0; t)Hk(F0; t)), and the precision matrix function is Ω(t) = Σ(t)−1 =(
ωjk(t)

)
1≤j,k≤p. The graph at time t is denoted by G(t) = (V , E(t)), where V is the vertex set and

E(t) = {(j, k) : ωjk(t) �= 0}. Note that (X◦
i (t))t ∈ PLSι([0, 1], L), i ∈ Z implies piecewise Lipschitz

continuity in Σ(t) except at the breaks t(1), . . . , t(ι). In particular, if sup0≤t≤1 max1≤j≤p
∥∥Hj(F0; t)

∥∥ ≤ C
for some constant C > 0, then

|Σ(s)− Σ(t)|∞ ≤ 2CL|s − t|, ∀s, t ∈ [t(l), t(l+1)), l = 0, . . . , ι. (3)

The reverse direction is not necessarily true, i.e., (3) does not indicate (X◦
i (t))t ∈ PLSι([0, 1], L),

i ∈ Z in general. As a trivial example, let εij = 2−1/2 with probability 2/3 and
√

2 with probability
1/3 i.i.d for all i, j. At time tk = k/n, let X◦

ij(tk) = (−1)k
√

tkεij. Then for any k and k′ such that k + k′ is
odd, |Σ(tk)− Σ(tk′)|∞ = |tk − tk′ |, while ‖X◦

01(tk)− X◦
01(tk′)‖2 =

√
tk +

√
tk′ .

Assumption 1 (Piecewise smoothness). (i) Assume (X◦
i (t))0≤t≤1 ∈ PLSι([0, 1], L) for each i ∈ Z, where

L > 0 and ι ≥ 0 are constants independent of n and p. (ii) For each l = 0, . . . , ι, and 1 ≤ j, k ≤ p, we have
σjk(t) ∈ C2[t(l), t(l+1)).

Now we introduce the temporal dependence measure. We quantify the dependence of
(
X◦

i (t)
)

i∈Z
by the dependence adjusted norm (DAN) (cf. [62]). Let ε′

i be an independent copy of εi and Fi,{m} =

(. . . , εi−m−1, ε′
i−m, εi−m+1, . . . , εi). Denote X◦

i,{m}(t) =
(
X◦

i1,{m}(t), . . . , X◦
ip,{m}(t)

)
, where X◦

ij,{m}(t) =
Hj(Fi,{m}; t), 1 ≤ j ≤ p. Here X◦

i,{m}(t) is a coupled version of X◦
i (t), with the same generating

mechanism and input, except that εi−m is replaced by an independent copy ε′
i−m.

Definition 2 (Dependence adjusted norm (DAN)). Let constants a ≥ 1, A > 0.
Assume sup0≤t≤1 ‖X◦

1j(t)‖a < ∞, j = 1, . . . , p. Define the uniform functional dependence measure
for the sequences (X◦

ij(t))i∈Z,t∈[0,1] of form (1) as

θm,a,j = sup
0≤t≤1

‖X◦
ij(t)− X◦

ij,{m}(t)‖a, j = 1, . . . , p,

8
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and Θm,a,j = ∑∞
i=m θi,a,j. The dependence adjusted norm of (X◦

ij(t))i∈Z,t∈[0,1] is defined as

∥∥X·,j
∥∥

a,A = sup
m≥0

(m + 1)AΘm,a,j,

whenever
∥∥X·,j

∥∥
a,A < ∞.

Intuitively, the physical dependence measure quantifies the adjusted stochastic difference between
the random variable and its coupled version by replacing past innovations. Indeed, θm,a,j measures
the impact on X◦

ij(t) uniform over t by replacing εi−m while freezing all the other inputs, while Θm,a,j

quantifies the cumulative influence of replacing ε−m on (X◦
ij(t))i≥0 uniform over t. Then

∥∥X·,j
∥∥

a,A
controls the uniform polynomial decay in the lag of the cumulative physical dependence, where a
depends on the the tail of marginal distributions of X◦

1,j(t) and A quantifies the polynomial decay
power and thus the temporal dependence strength. It is clear that

∥∥X·,j
∥∥

a,A is a semi-norm, i.e., it is
subaddative and absolutely homogeneous.

Assumption 2 (Dependence and moment conditions). Let X◦
i (t) be defined in (1) and Xi in (2). There exist

q > 2 and A > 0 such that

ν2q := sup
t∈[0,1]

max
1≤j≤p

E|X◦
j (t)|2q < ∞ and NX,2q := max

1≤j≤p

∥∥X·,j
∥∥

2q,A < ∞. (4)

We let MX,q :=
(

∑1≤j≤p
∥∥X·,j

∥∥q
2q,A

)1/q
and write NX = NX,4, MX = MX,2. The quantities MX,q

and NX,2q measure the Lq-norm aggregated effect and the largest effect of the element-wise DANs
respectively. Both quantities play a role in the convergence rates of our estimator.

Obviously, we have ‖Xij − Xij,{m}‖a ≤ θm,a,j and max1≤j≤p E|Xij|2q ≤ ν2q for all 1 ≤ i ≤ n.
In contrast to other works in a high-dimensional covariance matrix and network estimation, where
sub-Gaussian tails and independence are the keys to ensure consistent estimation. Assumption 2
only requires that the time series have a finite polynomial moment, and it allows linear and nonlinear
processes with short memory in the time domain.

Example 1 (Vector linear process). Consider the following vector linear process model

H(Fi; t) =
∞

∑
m=0

Am(t)εi−m,

where εi = (ε1, . . . , εp) and εij are i.i.d. with mean 0 and variance 1, and ‖εij‖q ≤ Cq for each i ∈ Z and
1 ≤ j ≤ p with some constants q > 2 and Cq > 0. The vector linear process is commonly seen in literature and
application [63]. It includes the time-varying VAR model where Am(t) = A(t)m as a special example.

Suppose that the coefficient matrices Am(t) = (am,jk(t))1≤j,k≤p, m = 0, 1, . . . satisfy the
following condition.

(A1) For each 1 ≤ j, k ≤ p, am,jk(t) ∈ C2[0, 1].

(A2) For each 1 ≤ j ≤ p, there is a constant CA,j > 0 such that for each t ∈ [0, 1], ∑
p
k=1 am,jk(t)2 ≤

CA,j(m + 1)−2(A+1) for all m ≥ 0.
(A3) For any t, t′ ∈ [0, 1], ∑∞

m=0 ∑
p
k=1[am,jk(t)− am,jk(t′)]2 ≤ L2|t − t′|2 for each j = 1, . . . , p.

9
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Note that

σjk(t) = ∑
m≥0

A�
m,j·(t)Am,k·(t),

Θm,q,j ≤ 2Cq
√

q − 1
∞

∑
m=0

(A�
m,j·Am,j·)

1/2,

‖X◦
ij(t)− X◦

ij(t
′)‖2 =

∞

∑
m=0

Am,j·
p

∑
k=1

[am,jk(t)− am,jk(t′)]2,

where Am,j·(t) is the jth row of Am(t). Under conditions (A1)–(A3), one can easily verify that for each

1 ≤ j, k ≤ p, the process satisfies: (1) σjk(t) ∈ C2[0, 1]; (2) ‖X·,j‖q,A ≤ Cq

√
(q − 1)CA,j (due to Burkholder’s

inequality, cf. [64]); (3) ‖Hj(F0; t)− Hj(F0; t′)‖ ≤ L|t − t′|.
Conditions (A1)–(A3) implicitly impose smoothness in each entry of the coefficient matrices, sparseness in

each column of the entry and evolution, and polynomial decay rate in the lag m of each entry and its derivative.

For 1 ≤ l ≤ ι, let δjk(t(l)) := σjk(t(l)) − σjk(t(l)−) and Δ(t(l)) =
(
δjk(t(l))

)
1≤j,k≤p, where

σjk(t(l)−) = limt→t(l)− σjk(t) is well-defined in view of (3). We assume that the change points are
separated and sizeable.

Assumption 3 (Separability and sizeability of change points). There exist positive constants c1 ∈ (0, 1)
and c2 > 0 independent of n and p such that max0≤l≤ι(t(l+1) − t(l)) ≥ c1 and δ(tl) := |Δ(tl)|∞ ≥ c2.

In the high-dimensional context, we assume that the inverse covariance matrices are sparse in the
sense of their L1 norms.

Assumption 4 (Sparsity of precision matrices). The precision matrix |Ω(t)|L1 ≤ κp for each t ∈ [0, 1],
where κp is allowed to grow with p.

If we further assume that the eigenvalues of the covariance matrices are bounded from below and
above, i.e., there exists a constant 0 < c < 1, such that c ≤ inft∈[0,1] |Σ(t)|2 ≤ supt∈[0,1] |Σ(t)|2 ≤ c−1,
then the covariance matrices and precision matrices are well-conditioned. In particular, as |Ω(t)−
Ω(t′)| ≤ c−2|Σ(t) − Σ(t′)|, a small perturbation in the covariance matrix would guarantee a small
change of the same order in the precision matrix under the spectral norm.

3. Method: Change Point Estimation and Support Recovery

In graphical models (such as the Gaussian graphical model or partial correlation graph), network
structures relevant to correlations or partial correlations are second-order characteristics of the data
distributions. Specifically, the existence of edges coincides with non-zero entries of the inverse
covariance matrix. We consider the dynamics of time series with both structural breaks and smooth
changes. The piecewise stochastic Lipschitz continuity in Definition 1 allows the time series to have
discontinuity in the covariance matrix function at time points t(l), l = 1, . . . , ι (i.e., change points),
while only smooth changes (i.e., twice continuous differentiability of the covariance matrix function in
Assumptions 1) can occur between the change points.

In the presence of change points, we must first remove the change points before applying any
smoothing procedures since |Ω(t) − Ω(t−)|∞ ≥ |Σ(t)|−1

L1 |Σ(t−)|−1
L1 |Δ(t)|∞, i.e., a non-negligible

abrupt change in the covariance matrix will result in a substantial change of the graph structure
for sparse and smooth covariance matrices. Thus our proposed graph recovery method consists of two
steps: change point detection and support recovery.

10
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Let h ≡ hn > 0 be a bandwidth parameter such that h = o(1) and n−1 = o(h), and Dh(0) =

{h, h + 1/n, . . . , 1 − h} be a search grid in (0, 1). Define

D(s) = n−1

(
hn−1

∑
i=0

Xns−iX
�
ns−i −

hn

∑
i=1

Xns+iX
�
ns+i

)
, s ∈ Dh(0). (5)

To estimate the change points, compute

ŝ1 = argmaxs∈Dh(0)
|D(s)|∞. (6)

The following steps are performed recursively. For l = 1, 2, . . ., let

Dh(l) = Dh(l − 1) ∩ {ŝl − 2h, · · · , ŝl + 2h}c, (7)

ŝl+1 = arg maxs∈Dh(l) |D(s)|∞, (8)

until the following criterion is attained:

max
s∈Dh(l)

|D(s)|∞ < ν, (9)

where ν is an early stopping threshold. The value of ν is determined in Section 4, which depends on the
dimension and sample size, as well as the serial dependence level, tail condition, and local smoothness.
Since our method only utilizes data in the localized neighborhood, multiple change points can be
estimated and ranked in a single pass, which offers some computational advantage than the binary
segmentation algorithm [41,46].

Once the change points are claimed, in the second step, we consider recovering the networks from
the locally stationary time series before and after the structural breaks. In [11], where Xi, i = 1, . . . , n
are assumed with an identical covariance matrix, the precision matrix Ω̂ is estimated as,

Ω̂λ = arg min
Ω∈Rp×p

|Ω|1 s.t. |Σ̂Ω − Idp|∞ ≤ λ, (10)

where Σ̂ is the sample covariance matrix. Inspired by (10), we apply a kernelized time-varying (tv-)
CLIME estimator for the covariance matrix functions of the multiple pieces of locally stationary
processes before and after the structural breaks. Let

Σ̂(t) =
n

∑
i=1

w(t, ti)XiX
�
i , (11)

where

w(t, i) =
Kb(ti, t)

∑n
i=1 Kb(ti, t)

(12)

and Kb(u, v) = K(|u − v|/b)/b. The bandwidth parameter b satisfies that b = o(1) and n−1 = o(b).
Denote Bn = nb. The kernel function K(·) is chosen to have properties as follows.

Assumption 5 (Regularity of kernel function). The kernel function K(·) is non-negative, symmetric,
and Lipschitz continuous with bounded support in [−1, 1], and that

∫ 1
−1 K(u)du = 1.

Assumption 5 is a common requirement on the kernel functions and can be fulfilled by a range
of kernel functions, such as the uniform kernel, triangular kernel, and the Epanechnikov kernel.

11
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Now the tv-CLIME estimator of the precision matrix Ω(t) is defined by Ω̃(t) =
(

ω̃jk(t)
)

1≤j,k≤p
, where

ω̃jk(t) = min(ω̂jk(t), ω̂kj(t)), and Ω̂(t) ≡ Ω̂λ(t) = (ω̂jk(t))1≤j,k≤p,

Ω̂λ(t) = arg min
Ω∈Rp×p

|Ω|1 s.t. |Σ̂(t)Ω − Idp|∞ ≤ λ. (13)

Similar hybridized kernel smoothing and the CLIME method for estimating the sparse and
smooth transition matrices in high-dimensional VAR model has been considered in [65], where change
point is not considered. Thus in the current setting we need to carefully control effect of (consistently)
removing the change points before smoothing.

Then, the network is estimated by the “effective support" defined as follows.

Ĝ(t; u) = (ĝjk(t; u))1≤j,k≤p, where ĝjk(t; u) = I

{
|ω̃jk(t)| ≥ u

}
. (14)

It should be noted that the (vanilla) kernel smoothing estimator (11) of the covariance matrix
does not adjust for the boundary effect due to the change points in the covariance matrice function.
Thus, in the neighborhood of the change points, a larger bias can be induced in estimating Σ(t) by
Σ̂(t). As a remedy, we apply the following reflection procedure for boundary correction. Suppose t ∈
T̂b+h2(j) for 1 ≤ j ≤ ι, Denote T̂d(j) := [ŝj − d, ŝj + d) for d ∈ (0, 1). We replace (11) by

Σ̂(t) =
n

∑
i=1

w(t, ti)x̆i x̆
�
i ,

and then apply the rest of the tv-CLIME approach. Here

x̆i =

{
xi if (i − ŝjn)(t − ŝjn) ≥ 0;

x2ŝjn−i otherwise.
(15)

4. Theoretical Results

In this section, we derive the theoretical guarantees for the change point estimation and graph
support recovery. Roughly speaking, Proposition 1 and 2 below show that under appropriate
conditions, if each element of the covariance matrix varies smoothly in time, one can obtain an
accurate snapshot estimation of the precision matrices as well as the time-varying graphs with high
probability via the proposed kernel smoothed constrained l1 minimization approach.

Define Jq,A(n, p) = MX,q(p�q,A(n))1/q, where �q,A(n) = n, n(log n)1+2q, nq/2−Aq if A > 1/2 −
1/q, A = 1/2 − 1/q, and 0 < A < 1/2 − 1/q, respectively.

Proposition 1 (Rate of convergence for estimating precision matrices: pointwise and uniform).
Suppose Assumptions 2, 4, and 5 hold with ι = 0. Let Bn = bn for n−1 = o(b) and b = o(1).

(i) Pointwise. Choose the parameter λ◦ ≥ Cκp(b2 + B−1
n Jq,A(Bn, p) + NX(log p/Bn)1/2) in the

tv-CLIME estimator Ω̂λ◦(t) in (13), where C is a sufficiently large constant independent of n and p.
Then for any t ∈ [b, 1 − b], we have

|Ω̂λ◦(t)− Ω(t)|∞ = OP(κpλ◦). (16)

(ii) Uniform. Choose λ� ≥ Cκp

(
b2 + B−1

n Jq,A(n, p) + NXB−1
n (n log(p))1/2

)
in the tv-CLIME estimator

Ω̂λ◦(t) in (13), where C is a sufficiently large constant independent of n and p. Then we have

sup
t∈[b,1−b]

|Ω̂λ�(t)− Ω(t)|∞ = OP(κpλ�). (17)

12
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The optimal order of the bandwidth parameter b = b� in (17) is the solution to the
following equation:

b2 = B−1
n max(Jq,A(n, p), NX(n log(p2))1/2),

which implies that the closed-form expression for b� is given by

b� = C1
(
n−1 Jq,A(n, p)

)1/3
+ C2N1/3

X n−1/6 log(p)1/6

for some constants C1 and C2 that are independent of n and p.
Given a finite sample, to distinguish the small entries in the precision matrix from the noise is

challenging. Since a smaller magnitude of a certain element of the precision matrix implies a weaker
connection of the edge in the graphical model, we instead consider the estimation of significant edges
in the graph. Define the set of significant edges at level u as E∗(t; u) =

{
(j, k) : g∗

jk(t; u) �= 0
}

, where

g∗
jk(t; u) = I

{
|ωjk(t)| > u

}
.

Then, as a consequence of (17), we have the following support recovery consistency result.

Proposition 2 (Consistency of support recovery: significant edges). Choose u as u� = C0κ2
pb2

� , where
C0 is taken as a sufficiently large constant independent of n and p. Suppose that u� = o(1) as n, p → ∞.
Then under conditions of Proposition 1, we have that as n, p → ∞,

P

(
sup

t∈[b,1−b]
∑

(j,k)∈E c(t)
I

{
ĝjk(t; u�) �= 0

}
�= 0

)
→ 0, (18)

P

(
sup

t∈[b,1−b]
∑

(j,k)∈E∗(t;2u�)

I

{
ĝjk(t; u�) = 0

}
�= 0

)
→ 0. (19)

Proposition 2 shows that the pattern of significant edges in the time-varying true graphs
G(t), t ∈ [b, 1 − b], can be correctly recovered with high probability. However, it is still an open
question to what extent the edges with magnitude below u can be consistently estimated, which can
be naturally studied in the multiple hypothesis testing framework. Nonetheless, hypothesis testing for
graphical models on the nonstationary high-dimensional time series is rather challenging. We leave it
as a future problem.

Propositions 1 and 2 together yield that the consistent estimation of the precision matrices and
the graphs can be achieved before and after the change points. Now, we provide the theoretical result
of the change point estimation. Theorem 1 below shows that if the change points are separated and
sizable, then we can consistently identify them via the single pass segmentation approach under
suitable conditions. Denote

h� = C1
(
n−1 Jq,A(n, p)

)1/3
+ C2N1/3

X n−1/6 log(p)1/6,

where C1 and C2 are constants independent of n and p.

Theorem 1 (Consistency of change point estimation). Assume Xi ∈ Rp admits the form (2). Suppose that
Assumptions 2 to 3 are satisfied. Choose the bandwidth h = h�, and ν = (1 + L)h2

� in (5) and (9) respectively.
Assume that h� = o(1) as n, p → ∞. We find that there exist constants C1, C2, C3 independent of n and p,
such that

P(|ι̂ − ι| > 0) ≤ C1

( p�q,A(n)Mq
X,qν

q
2q

nqcq
2

)1/3
+ C2 p2 exp

{
− C3(

n log2(p)
N2

X
)1/3

}
. (20)

13
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Furthermore, in the event {ι = ι̂}, the ordered change-point estimator (ŝ(1) < ŝ(2) < · · · < ŝ(ι̂)) defined
in (7) satisfies

max1≤j≤ι |ŝ(j) − t(j)| = OP(h2
�). (21)

Proposition 2 and Theorem 1 together indicate the consistency in the snapshot estimation of
the time-varying graphs before and after the change points. In a close neighborhood of the change
points, we have the following result for the recovery of the time-varying network. Denote S :=[
b�, 1 − b�] ∩ (∪1≤j≤ι̂T̂ c

h2�+b�
(j)
)

as the time intervals between the estimated change points, and N :=

[0, b�) ∪
(
∪1≤j≤ι̂ (T̂h2�+b� ∩ T̂ c

h2�
)
)
∪ (1 − b�, 1] as the recoverable neighborhood of the jump.

Theorem 2. Let Assumptions 2 to 5 be satisfied. We have the following results as n, p → ∞.

(i) Between change points. For t ∈ S , take b = b� and u = u�, where b� and u� are defined in Proposition 2.
Suppose u� = o(1). We have

sup
t∈S

max
j,k

|σ̂j,k(t)− σj,k(t)| = OP(b2
� ). (22)

Choose the penalty parameter as λ� := C1κpb2
� , where C1 is a constant independent of n and p. Then

sup
t∈S

|Ω̂λ�
(t)− Ω(t)|∞ = OP(κ

2
pb2

� ).

Moreover,

P

(
sup
t∈S

∑
(j,k)∈E c(t)

I

{
ĝj,k(t; u�) �= 0

}
= 0

)
→ 1, (23)

P

(
sup
t∈S

∑
(j,k)∈E∗(t;2u�)

I

{
ĝjk(t; u�) = 0

}
= 0

)
→ 1. (24)

(ii) Around change points. For s ∈ N , take b = b� := C1
(
n−1 Jq,A(n, p)

)1/2
+ C2N1/2

X n−1/4 log(p)1/4,
and u = u� := C0κ2

pb�, where C0, C1 and C2 are constants independent of n and p. Suppose u� = o(1).
We have

sup
t∈N

max
j,k

|σ̂j,k(t)− σj,k(t)| = OP(b�).

Choose the penalty parameter as λ� := C1κpb�, where C1 is a constant independent of n and p. Then

sup
t∈N

|Ω̂λ�(t)− Ω(t)|∞ = OP(κ
2
pb�). (25)

Moreover,

P

(
sup
t∈N

∑
(j,k)∈E c(t)

I

{
ĝj,k(t; u�) �= 0

}
= 0

)
→ 1, (26)

P

(
sup
t∈N

∑
(j,k)∈E∗(t;2u�)

I

{
ĝj,k(t; u�) = 0

}
= 0

)
→ 1. (27)

Note that the convergence rates for the covariance matrix entries and precision matrix entries
in case (ii) around the jump locations are slower than those for points well separated from the jump
locations in case (i). This is because on the boundary due to the reflection, the smooth condition may
no longer hold true. Indeed, we only take advantage of the Lipschitz continuous property of the
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covariance matrix function. Thus, we lose one degree of regularity in the covariance matrix function,
and the bias term b2 in the convergence rate of the between-jump area becomes b around the jumps.
We also note that around the smaller neighborhood of the jump J := ∪1≤j≤ι̂T̂h2� , due to the larger error
in the change point estimation, consistent recovery of the graphs is not achievable.

5. A Simulation Study

We simulate data from the following multivariate time series model:

Xi =
100

∑
m=0

Am(i)εi−m, i = 1, . . . , n,

where Am(i) ∈ Rp×p, 1 ≤ m ≤ 100, 1 ≤ i ≤ n, and εi−m = (εi−m,1, . . . , εi−m,p)
�, with εm,k, m ∈ Z, j =

1, . . . , p generated as i.i.d. standardized T(8) random variables. In the simulation, we fix n = 1000 and
vary p = 50 and p = 100. For each m = 1, . . . , 100, the coefficient matrices Am(i) = (1 + m)−βBm(i),
where β = 1, and Bm(1) is an Rp×p block diagonal matrix. The 5 × 5 diagonal blocks in Bm(i) are fixed
with i.i.d. N(0, 1) entries and all the other entries are 0.

We consider the number of abrupt changes is ι = 2 and (nt(1), nt(2)) = (300, 650). The matrix
A0(i) is set to be a zero matrix for i = 1, 2, . . . , 299, while A0(i) = A0(299) + αα�, i = 300, 301, . . . , 649,
and A0(i) = A0(649) − αα�, i = 650, 651, . . . , 1000, where the first 20 entries in α are taken to be a
constant δ0 and the others are 0.

We let the coefficient matrices A1(i) = {am,jk(i)}1≤j,k≤p evolve at each time point, such that two
entries are soft-thresholded and another two elements increase. Specifically, at time i, we randomly
select two elements from the support of A1(i), which are denoted as {a1,j�l k�l

(i)}, l = 1, 2 and that
a1,j�k�(i) �= 0, and set them to a�1,j�l k�l

(i) = sign(a1,j�l k�l
(i))(|a1,j�l k�l

(i)− 0.05|). We also randomly select

two elements from A�
1(i) and increase their values by 0.03.

Figures 1 and 2 show the support of the true covariance matrices at i = 100, 200, . . . , 900.
In detecting the change points, the cutoff value ν of detection is chosen as follows. After removing

the neighborhood of detected change points, we obtain D(l)
h by ordering D(l)

h , . . . D(l)
h , where l is

obtained from (9) with ν = 0. For l = 1, 2, . . . , l− 1, compute

R(l)
h =

D(l)
h

D(l+1)
h

.

We let ι̂ = arg max0≤l≤l−1 R(l)
h and set ν = D(ι̂)

h .
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Figure 1. Support of the true covariance matrices, p = 50.
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Figure 2. Support of the true covariance matrices, p = 100.

We report the number of estimated jumps and the average absolute estimation error, where the
average absolute estimation error is the mean of the distance between the estimated change points
and the true change points. As is shown in Tables 1 and 2, there is an apparent improvement in
the estimation accuracy as the jump magnitude increases and dimension decreases. The detection is
relatively robust to the choice of bandwidth.

Table 1. Average distance.

Bandwidth 0.14 0.16 0.18 0.2 0.22 0.24

p = 50
δ0 = 1 23.4 21.0 17.47 16.6 14.7 16.5
δ0 = 2 7.4 6.9 8.3 8.1 7.2 6.3

p = 100
δ0 = 1 37.2 30.1 26.4 25.5 21.2 21.3
δ0 = 2 7.8 8.2 9.9 6.9 8.9 7.6
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Table 2. Number of estimated change points.

Bandwidth 0.14 0.16 0.18 0.2 0.22 0.24

p = 50
δ0 = 1 2.38 2.16 1.99 2.00 2.00 2.00
δ0 = 2 2.46 2.31 2.00 2.00 2.00 2.00

p = 100
δ0 = 1 2.25 2.09 1.99 1.99 2.00 2.00
δ0 = 2 2.38 2.19 2.00 2.00 2.00 2.00

We evaluate the support recovery performance of the time-varying CLIME at the lattice
100, 200, . . . , 900 with λ = 0.02, 0.06, 0.1. We take the uniform kernel function and the bandwidth is
fixed as 0.2. At each time point t0, two quantities are computed: sensitivity and specificity, which are
defined as:

sensitivity =
∑1≤j,k≤p I{ĝjk(t0; u) �= 0, gjk(t0; u) �= 0}

∑1≤j,k≤p I{gjk(t0; u) �= 0} ,

specificity =
∑1≤j,k≤p I{ĝjk(t0; u) = 0, gjk(t0; u) = 0}

∑1≤j,k≤p I{gjk(t0; u) = 0} .

We plot the Receiver Operating Characteristic (ROC) curve, that is, sensitivity against 1-specificity.
From Figures 3 and 4 we observe that, due to a screening step, the support recovery is robust to the
choice of λ, except at the change points, where a non-negligible estimation error of the covariance
matrix is induced and the overall estimation is less accurate. As the effective dimension of the network
remains the same at p = 50 and p = 100 by the construction of the coefficient matrix Am(i), there is no
significant difference in the ROC curves at different dimensions.
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Figure 3. ROC curve of the time-varying CLIME, p = 50.
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Figure 4. ROC curve of the time-varying CLIME, p = 100.

6. A Real Data Application

Understanding the interconnection among financial entities and how they vary over time provides
investors and policy makers with insights into risk control and decision making. Reference [66] presents
a comprehensive study of the applications of network theory in financial systems. In this section,
we apply our method to a real financial dataset from Yahoo! Finance (finance.yahoo.com). The data
matrix contains daily closing prices of 420 stocks that are always in the S&P 500 index between 2
January 2002 through 30 December 2011. In total, there are n = 2519 time points. We select 100 stocks
with the largest volatility and consider their log-returns; that is, for j = 1, . . . , 100,

Xij = log
(

pi+1,j/pij
)

,

where pij is the daily closing price of the stock j at time point i. We first compute the statistic (5)
and (6) for the change point detection. We look at the top three statistics for different bandwidths.
For bandwidth k = n−1/5 = 0.21, we rank the test statistic and find that the location for the top change
point is: 7 February 2008 (nŝ1 = 1536), which is shown in Figure 5. The detected change point is quite
robust to a variety of choices of bandwidth. Our result is partially consistent with the change point
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detection method in [48]. In particular, the two breaks in 2006 and 2007 were also found in [48] and it
is conjectured that the 2007 break may be associated to the U.S. house market collapse. Meanwhile, it is
interesting to observe the increased volatility before the 2008 financial crisis.

Figure 5. Break size |Ds|∞. From 4 February 2004, to 30 November 2009.

Next, we estimate the time-varying networks before and after the change point at 26 May 2006 with
the largest jump size. Specifically, we look at four time points at: 813, 828, 888, and 903, corresponding
to 23 March 2006, 13 April 2006, 11 July 2006, and 1 August 2006. We use tv-CLIME (13) with the
Epanechnikov kernel with the same bandwidth as in the change point detection to estimate the
networks at the four points. Optimal tuning parameter λ is automatically selected according to the
stability approach [67]. The following matrix shows the number of different edges at those four time
points. It is observed that the time of the first two time points (813 and 828) and the last two (888
and 903) has a higher similarity than across the change point at time 858. The estimated networks are
shown in Figure 6. Networks in the first and second row are estimated before and after the estimated
change point at time 858, respectively. It is observed that at each time point the companies in the same
section tend to be clustered together such as companies in the Energy section: OXY, NOV, TSO, MRO,
and DO (highlighted in cyan). In addition, the distance matrix of estimated networks is estimated as⎛⎜⎜⎜⎝

0 332 350 396
332 0 394 428
350 394 0 234
396 428 234 0

⎞⎟⎟⎟⎠ .
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(a) Time 813. (b) Time 828.

(c) Time 888. (d) Time 903.

Figure 6. Estimated networks at time points 813, 828, 888, and 903, corresponding to 23 March
2006, 13 April 2006, 11 July 2006, and 1 August 2006. Colors correspond to the nine sections in the
S&P dataset.

7. Proof of Main Results

7.1. Preliminary Lemmas

Lemma 1. Let (Yi)i∈Z be a sequence that admits (2). Assume Yi ∈ Lq for i = 1, 2, . . . , and the dependence
adjusted norm (DAN) of the corresponding underlying array (Y◦

i (t)) satisfies ‖Y·‖q,A < ∞ for q > 2 and
A > 0. Let (ω(t, ti))

n
i=1 be defined in (12) and suppose that the kernel function K(·) satisfies Assumption 5.

Denote �q,A(n) = n, n(log n)1+2q, nq/2−Aq if A > 1/2 − 1/q, A = 1/2 − 1/q, and 0 < A < 1/2 − 1/q,
respectively. Then there exist constants C1, C2 and C3 independent of n, such that for all x > 0,

sup
t∈(0,1)

P

(∣∣∣∣∣ n

∑
i=1

w(t, ti)
(
Yi −E(Yi)

)∣∣∣∣∣ > x

)
≤ C1

�q,A(Bn) ‖Y·‖q
q,A

Bq
nxq

+ C2 exp

(
−C3Bnx2

‖Y·‖2
2,A

)
. (28)

P

(
sup

t∈(0,1)

∣∣∣∣∣ n

∑
i=1

w(t, ti)
(
Yi −E(Yi)

)∣∣∣∣∣ > x

)
≤ C1

�q,A(n) ‖Y·‖q
q,A

Bq
nxq

+ C2 exp

(
−C3B2

nx2

n ‖Y·‖2
2,A

)
. (29)
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Proof. Let Si = ∑i
j=1
(
Yi −E(Yi)

)
. Note that

sup
t∈(0,1)

∣∣∣∣∣ n

∑
i=1

w(t, ti)Yi

∣∣∣∣∣ = sup
t∈(0,1)

∣∣∣∣∣ n

∑
i=1

w(t, ti)(Si − Si−1)

∣∣∣∣∣
≤ sup

t

∣∣∣∣∣n−1

∑
i=1

[(
w(t, ti)− w(t, ti+1)

)
Si
]∣∣∣∣∣+ sup

t
|w(t, 1)Sn|

� B−1
n max

1≤i≤n
|Si|,

where the last inequality follows from the fact that supt ∑n
i=1 |w(t, ti) − w(t − ti+1)| � B−1

n , due to
Assumption 5.

To see (29), it suffices to show

P

(
max

1≤i≤n
|Si| > x

)
≤ C1

�q,A(n) ‖Y·‖q
q,A

xq + C2 exp

(
−C3x2

n ‖Y·‖2
2,A

)
. (30)

Now, we develop a probability deviation inequality for max1≤i≤n | ∑i
j=1 αjYj|, where αj ≥ 0,

1 ≤ j ≤ n are constants such that ∑1≤j≤n αj = 1. Denote P0(Yi) = E(Yi|εi)−E(Yi) and

Pk(Yi) = E(Yi|εi−k, . . . , εi)−E(Yi|εi−k+1, . . . , εi).

Then we can write

max1≤i≤n | ∑i
j=1 αjYj| ≤ max1≤i≤n | ∑i

j=1 αjP0(Yj)|+ max1≤i≤n | ∑n
k=1 ∑i

j=1 αjPk(Yj)|
+max1≤i≤n | ∑∞

k=n+1 ∑i
j=1 αjPk(Yj)|.

(31)

Note that (P0(Yj))j∈Z is an independent sequence. By Nagaev’s inequality and Ottaviani’s
inequality, we have that

P(max1≤i≤n | ∑i
j=1 αjP0(Yj)| ≥ x) �

∑n
j=1 α

q
j ‖P0(Yj)‖q

q
xq + exp

(
− C3x2

∑n
j=1 α2

j ‖P0(Yj)‖2
2

)
� ∑n

j=1 α
q
j

xq‖Yj‖q
+ exp

(
− C3

x2

∑n
j=1 α2

j

)
,

(32)

where the last inequality holds because ‖P0(Yj)‖q ≤ 2‖Yj‖q by Jensen’s inequality.
Since ∑∞

j=i+1 αjPk(Yj) is a martingale difference sequence with respect to σ(εi+1−k, εi+2−k, . . .), we have
that | ∑∞

k=1+n ∑n
j=i+1 αjPk(Yj)| is a non-negative sub-martingale. Then by Doob’s inequality and

Burkholder’s inequality, we have

P
(
max1≤i≤n | ∑∞

k=n+1 ∑i
j=1 αjPk(Yj)| ≥ x

)
≤ P

(
| ∑∞

k=n+1 ∑n
j=1 αjPk(Yj)| ≥ x

2
)
+ P

(
max1≤i≤n | ∑∞

k=n+1 ∑n
j=1+i αjPk(Yj)| ≥ x

2
)

�
∥∥∥∑∞

k=1+n ∑n
j=1 αjPk(Yj)

∥∥∥q

q
xq

� (∑n
j=1 α2

j )
q/2Θq

n,q

xq ≤ Θq
n,qnq/2−1 ∑n

j=1 α
q
j

xq .

(33)

Now, we deal with the term max1≤i≤n | ∑n
k=1 ∑i

j=1 αjPk(Yj)|. Define am = min(2m, n) and Mn =

�log n/ log 2�. Then

max
1≤i≤n

∣∣ n

∑
k=1

i

∑
j=1

αjPk(Yj)
∣∣ ≤ Mn

∑
m=1

max
1≤i≤n

∣∣ �i/am�
∑
l=1

min(lam ,i)

∑
j=1+(l−1)am

am

∑
k=1+am−1

αjPk(Yj)
∣∣. (34)
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Let Aodd = {1 ≤ l ≤ �i/am�, l is odd} and Aeven = {1 ≤ l ≤ �i/am�, l is even}. We have

P
(

max
1≤i≤n

∣∣ �i/am�
∑
l=1

Zl,m,i
∣∣ ≥ x

)
≤ P

(
max

1≤i≤n

∣∣ ∑
Aodd

Zl,m,i
∣∣ ≥ x/2

)
+ P

(
max

1≤i≤n

∣∣ ∑
Aeven

Zl,m,i
∣∣ ≥ x/2

)
,

where we have that Zl,m,i := ∑
min(lam ,i)
j=1+(l−1)am

αjP am
am−1(Yj) is independent of Zl+2,m,i for 1 ≤ l ≤

�i/am�, 1 ≤ m ≤ Mn, 1 ≤ i ≤ n, as P am
am−1(Yj) := ∑am

k=1+am−1
Pk(Yj) is am-dependent. Therefore, we can

apply Ottaviani’s inequality and Nagaev’s inequality for independent variables. As a consequence,

P
(

max
1≤i≤n

∣∣ �i/am�
∑
l=1

Zl,m,i
∣∣ ≥ x

)
� ∑1≤l≤�n/am� ‖Zl,m,n‖q

q

xq + exp
(
− C3x2

∑1≤l≤�n/am� ‖Zl,m,n‖2
2

)
.

Again, by Burkholder’s inequality, we have that for q ≥ 2,

‖Zl,m,n‖q ≤
am

∑
k=1+am−1

‖
min(lam ,n)

∑
j=1+(l−1)am

αjPk(Yj)‖q

� (
min(lam ,n)

∑
j=1+(l−1)am

α2
j )

1/2(Θam−1 − Θam).

Note ∑
min(lam ,n)
j=1+(l−1)am

α2
j ≤ a(q−2)/q

m (∑
min(lam ,n)
j=1+(l−1)am

α
q
j )

2/q. Let τm = m−2/ ∑Mn
m=1 m−2, and we have

τm � m−2 as 1 ≤ ∑Mn
m=1 m−2 ≤ π2/6. In respect to (34), we have that

P
(

max1≤i≤n
∣∣∑n

k=1 ∑i
j=1 Pk(Yj)

∣∣ ≥ x
)

≤ ∑Mn
m=1 P

(
max1≤i≤n

∣∣∑
�i/am�
l=1 Zl,m,i

∣∣ ≥ τmx
)

� ∑n
i=1 α

q
j

xq ‖Y·‖q
q,A ∑Mn

m=1 τ
−q
m a(1/2−A)q−1

m + ∑Mn
m=1 exp

(
− C3x2τ2

ma2A
m

∑n
j=1 α2

j ‖Y·‖2
2,A

)
.

(35)
Note ∑Mn

m=1 τ
−q
m a(1/2−A)q−1

m � n−1�q,A(n), and

Mn

∑
m=1

exp
(
− C3x2τ2

ma2A
m

∑n
j=1 α2

j ‖Y·‖2
2,A

)
� exp

(
− C3x2

∑n
j=1 α2

j ‖Y·‖2
2,A

)
.

Combining (31), (32), (33), and (35), we obtain

P
(

max1≤i≤n
∣∣∑i

j=1 αj
(
Yj −E(Yj)

)∣∣ > x
)

≤ C1
�q,A(n)∑n

j=1 α
q
j ‖Y·‖q

q,A
nxq + C2 exp

( −C3x2

∑n
j=1 α2

j ‖Y‖2
2,A

)
.

(36)

Now, we have (30) by taking αj = n−1 for j = 1, . . . , n. Note that since K(·) has bounded support,
for any given t ∈ [b, 1 − b], we have

P
(∣∣ n

∑
i=1

w(t, ti)(Yi −EYi)
∣∣ > x

)
≤ P

(∣∣ Bn

∑
i=−Bn

w(t, ttn+i)(Ytn+i −EYtn+i)
∣∣ > x

)
≤ C1

�q,A(Bn)∑Bn
i=−Bn

w(t, ttn+i)
q ‖Y·‖q

q,A

Bnxq + C2 exp
( −C3x2

∑Bn
i=−Bn

w(t, ttn+i)2 ‖Y·‖2
2,A

)
.

Therefore (28) follows from (36) by taking αj = w(t, tn + j), and note that for any t ∈ [b, 1 − b],

∑Bn
i=−Bn

w(t, ttn+i)
β � B1−β

n for a constant β ≥ 2.
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Lemma 2. Suppose (Xij)i∈Z,1≤j≤p satisfys Assumption 2. Furthermore, let Assumption 5 hold. Let �q,A(n)
be defined as in Lemma 1. Then there exist constants C1, C2, and C3 independent of n and p, such that for all
x > 0, we have

supt∈(0,1) P
(∣∣∑n

i=1 ω(t, ti)
(
XiX

�
i −E(XiX

�
i )
)∣∣

∞ ≥ x
)

≤ C1ν
q
2q

p�q,A(Bn)Mq
X,q

Bq
nxq + C2 p2 exp

(
−C3

Bnx2

ν2
4 N2

X

)
,

(37)

and
P
(

supt∈(0,1)

∣∣∑n
i=1 w(t, ti)

(
XiX

�
i −E(XiX

�
i )
)∣∣

∞ ≥ x
)

≤ C1ν
q
2q

p�q,A(n)Mq
X,q

Bq
nxq + C2 p2 exp

(
−C3

B2
nx2

nν2
4 N2

X

)
.

(38)

Proof. For 1 ≤ j, k ≤ p, let Yi,jk = XijXik. We now check the conditions in Lemma 1 for (Yi,jk)1≤i≤n.
Denote Yi,jk,{m} = Xij,{m}Xik,{m}. Then the uniform functional dependence measure of (Yi,jk)i is

θY
m,q,jk = sup

i
‖Yi,jk − Yi,jk,{m}‖q

= sup
i

‖XijXik − Xij,{m}Xik,{m}‖q

≤ sup
i

‖Xij(Xik − Xik,{m})‖q + sup
i

‖Xik,{m}(Xij − Xij,{m})‖q.

Thus the DAN of the process Y·,jk satisfies that

‖Y·,jk‖q,A ≤ sup
i

‖Xij‖2q ‖X·,k‖2q,A + sup
i

‖Xik‖2q ‖X·,j‖2q,A ≤ νq(‖X·,k‖2q,A + ‖X·,j‖2q,A).

The result follows immediately from Lemma 1 and the Bonferroni inequality.

Lemma 3. We adopt the notation in Lemma 2. Suppose Assumptions 2, 1, and 5 hold with ι = 0. Recall Bn =

nb, where b → 0 and Bn/
√

n → ∞ as n → ∞. Then there exists a constant C independent of n and p such
that Σ̂(t) in (11) satisfies that for any t ∈ [c, 1 − c],

|Σ̂(t)− Σ(t)|∞ = OP

(
b2 + MX,qν2qB−1

n (p�q,A(Bn))
1/q + ν4NX(log p/Bn)

1/2
)

. (39)

Furthermore,

sup
t∈[c,1−c]

|Σ̂(t)− Σ(t)|∞ = OP

(
b2 + MX,qν2qB−1

n (p�q,A(n))1/q + ν4NXB−1
n [n log p]1/2

)
. (40)

Proof. First, we have

Eσ̂jk(t)− σjk(t) =
n

∑
i=1

w(t, ti)[σjk(ti)− σjk(t)].

Approximating the discrete summation with integral, we obtain for all 1 ≤ j, k ≤ p,

sup
t∈[b,1−b]

∣∣∣∣Eσ̂jk(t)− σjk(t)−
∫ 1

−1
K(u)[σjk(ub + t)− σjk(t)]du

∣∣∣∣ = O
(

B−1
n

)
.

By Assumption 1, we have

σjk(ub + t)− σjk(t) = ubσ′
jk(t) +

1
2

u2b2σ′′
jk(t) + o(b2u2).
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Thus we have supt∈[c,1−c] |Eσ̂(t)− σ(t)|∞ = O
(

B−1
n + b2), in view of Assumption 5. By Lemma 2,

we have

sup
t∈(0,1)

P
(∣∣Σ̂(t)−EΣ̂(t)

∣∣
∞ ≥ x

)
≤ C1 pν

q
q

Mq
X,q�q,A(Bn)

Bq
nxq

+ C2 p2 exp

(
−C3

Bnx2

N2
X

)
.

Denote u = C4
(

MX,qν2qB−1
n (p�q,A(Bn))1/q + ν4NX(log p/Bn)1/2) for a large enough constant C4,

then for any t ∈ (0, 1), ∣∣Σ̂(t)−EΣ̂(t)
∣∣
∞ = OP(u).

Thus (39) is proved. The result (40) can be obtained similarly.

7.2. Proof of Main Results

Proof of Proposition 1. Given (39) and (40), the proof of (16) is standard. (See, e.g., Theorem 6 of [11]).
For λ◦ and λ∗ given in Proposition 1, by Lemma 3, we have that, respectively,

λ◦ ≥ sup
t

E
(
κp|Σ̂(t)− Σ(t)|∞

)
, (41)

λ� ≥ E
(
κp sup

t
|Σ̂(t)− Σ(t)|∞

)
. (42)

Then note that for any t ∈ [0, 1], for any λ > 0,

|Ω̂λ(t)− Ω(t)|∞ ≤ |Ω(t)|L1 |Σ(t)Ω̂λ(t)− Idp|∞
≤ |Ω(t)|L1

[
|Σ̂(t)Ω̂λ(t)− Idp|∞ + |(Σ(t)− Σ̂(t))Ω(t)|∞ + |Ω̂λ(t)− Ω(t)|L1 |Σ̂(t)− Σ(t)|∞

]
where by construction, we have |Σ̂(t)Ω̂λ(t)− Idp|∞ ≤ λ and |Ω̂λ(t)− Ω(t)|L1 ≤ 2κp. Consequently,

|Ω̂λ(t)− Ω(t)|∞ ≤ κp
(
λ + 3κp|Σ̂(t)− Σ(t)|∞

)
. (43)

Then (16) and (17) follow from (41) to (43).

Proof of Proposition 2. Theorem 2 is an immediate result of (17).

Proof of Theorem 1. Denote rj, 1 ≤ j ≤ ι as the time point(s) of the time of jump ordered decreasingly
in the sense of the infinite norm of covariance matrices, i.e., |Δ(r1)|∞ ≥ |Δ(r2)|∞ ≥ . . . ≥ |Δ(rι)|∞ ≥
|Δ(s)|∞ for s ∈ (0, 1) ∩ {r1, . . . , rι}c. (Temporal order is applied if there is a tie.) Let Th(j) = [rj − h, rj +

h). For h = o(1), as a result of Assumption 3, Th(j) ∩ Th(i) = ∅ if i �= j for n sufficiently large. That is
to say, each time point s ∈ (0, 1) is in the neighborhood of, at most, one change point.

For any s ∈ [t(j), t(j+1)), j = 0, 1, . . . , ι, denote D(s) = E[D(s)] and

D
�(s) =

⎧⎪⎨⎪⎩
(h − s + t(j))Δ(t(j)), t(j) ≤ s < t(j) + h

0, t(j) + h ≤ s < t(j+1) − h
(h + s − r)Δ(t(j+1)), t(j+1) − h ≤ s ≤ t(j+1).

(44)

Then, for s ∈ ∪1≤j≤ι[t(j) + h,< t(j+1) − h), by (3), we have

|Σ(s + t)− Σ(s)|∞ ≤ Lt, ∀|t| ≤ h,

we can easily verify that
sup

s∈[0,1]
|D(s)−D

�(s)|∞ ≤ Lh2. (45)
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Note that |D�(s)|∞ is maximized at s = r1 and |D�(r1)|∞ = h|Δ(r1)|∞. By the triangle inequalities,
we have that for some positive constant C, for any s ∈ [0, 1],

|D(r1)|∞ − |D(s)|∞ ≥ hc2 − |D(r1)−D�(r1)|∞ − |D�(s)|∞ − |D(s)−D�(s)|∞
≥ hc2 − |D�(s)|∞ − 2Lh2

≥ c2(|s − r1| ∧ h)− 2Lh2.
(46)

On the other hand, since |D(r1)|∞ ≤ |D(ŝ1)|∞, we have

|D(r1)|∞ − |D(ŝ1)|∞ ≤ |D(r1)|∞ − |D(ŝ1)|∞ + |D(r1)− D(r1)|∞ + |D(ŝ1)− D(ŝ1)|∞
≤ |D(r1)− D(r1)|∞ + |D(ŝ1)− D(ŝ1)|∞.

(47)

Denote the event A := {sups∈[h,1−h] |D(s) − D(s)|∞ ≤ h2
�} and let Yi = (Yi,jk)1≤j,k≤p, Yi,jk =

XijXik − σi,jk. Note that

|Djk(s)−Djk(s)| =
1
n

∣∣∣∣∣ hn

∑
i=1

Yns+1−i,jk −
hn

∑
i=1

Yns+i,jk

∣∣∣∣∣ . (48)

By Lemma 2, we have for any x > 0,

P

(
sup

s∈[h,1−h]
|D(s)−D(s)|∞ ≥ x

)
≤ C1

p�q,A(n)Mq
X,qν

q
2q

nqxq + C2 p2 exp

(
−C3

nx2

N2
X

)
. (49)

It follows that

|D(r1)|∞ − |D(ŝ1)|∞ = OP

(
h−1 Jq,A(n, p) + NXh−1(n−1 log(p))1/2).

Taking h = h�, we have
|ŝ1 − r1| = OP(h2

�).

Furthermore, we have

P(A) ≥ 1 − C1
( p�q,A(n)Mq

X,qν
q
2q

nqcq
2

)1/3 − C2 p2 exp
(
− C3(

n log2(p)
N2

X
)1/3).

Let Ak := {max1≤j≤k |ŝj − rj| ≤ c−1
2 2(L + 1)h2

�} for some 1 ≤ k ≤ ι. Assume Ak ⊂ A. Under Ak
we have that [rj − h�, rj + h�) ⊂ T̂2h�(j) =: [ŝj − 2h�, ŝj + 2h�) for 1 ≤ j ≤ k and rk+1 /∈ ∪1≤j≤kT̂2h�(j)
as a consequence of Assumption 3. According to (46) and (47), we have if A is true, |ŝk+1 − rk+1| ≤
c−1

2 2(L + 1)h2
�, which implies Ak+1 ⊂ A. The result (21) follows from deduction.

Suppose A holds. By the choice of ν, as a consequence of (45) and (49), and that ν � h�,
we have that

sup
s∈[0,1]

|D(s)−D
�(s)|∞ ≤ ν.

As a result,
min
1≤j≤ι

|D(rj)|∞ ≥ c2h� − ν ≥ ν,

i.e., ι̂ ≥ ι. On the other hand, since ∪1≤j≤ιT̂2h�(j) is excluded from the searching region for sι+1,
we have

sup
s∈
(
∪1≤j≤ι T̂2h� (j)

)c
|D(s)|∞ ≤ ν.

In other words, {ι̂ = ι} ⊂ A. Thus (20) is proved.
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Proof of Theorem 2. We adopt the notations in the proof of Theorem 1 and assume that E holds.
Similar to Lemma 3, we have that by Lemma 2, for any t ∈ (0, 1),∣∣Σ̂(t)−EΣ̂(t)

∣∣
∞ = OP(u),

where u = C4
(

MX,qν2qB−1
n (p�q,A(Bn))1/q + ν4NX(log p/Bn)1/2) for a large enough constant C4.

Since under E , Tb(j) ⊂ T̂b+h2�(j). For t ∈
(
∪1≤j≤ι T̂b+h2�(j)

)c ∩ [b, 1 − b], we have that for all
1 ≤ j, k ≤ p,∣∣∣Eσ̂jk(t)− σjk(t)

∣∣∣ = ∫ 1

−1
K(u)[σjk(ub + t)− σjk(t)]du + O

(
B−1

n

)
= bσ′

jk(t)
∫ 1

−1
uK(u)du +

(1
2

b2σ′′
jk(t) + o(b2)

) ∫ 1

−1
u2K(u)du + O

(
B−1

n

)
= O(b2 + B−1

n ).

On the other hand, for t ∈ ∪1≤j≤ι

(
T̂b+h2�(j) ∩ T c

h2�
(j)
)
∪ [0, b] ∪ [1 − b, 1], due to reflection, we no

longer have that differentiability. As a result of the Lipschitz continuity, we get∣∣∣Eσ̂jk(t)− σjk(t)
∣∣∣ = ∫ 1

−1
K(u)[σjk(ub + t)− σjk(t)]du + O

(
B−1

n

)
= O(b + B−1

n ).

The result (22) follows by the choices of b. The rest of the proof are similar to that of Proposition 1
and Theorem 2.
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Abstract: We consider selection of random predictors for a high-dimensional regression problem
with a binary response for a general loss function. An important special case is when the binary
model is semi-parametric and the response function is misspecified under a parametric model
fit. When the true response coincides with a postulated parametric response for a certain value
of parameter, we obtain a common framework for parametric inference. Both cases of correct
specification and misspecification are covered in this contribution. Variable selection for such a
scenario aims at recovering the support of the minimizer of the associated risk with large probability.
We propose a two-step selection Screening-Selection (SS) procedure which consists of screening and
ordering predictors by Lasso method and then selecting the subset of predictors which minimizes
the Generalized Information Criterion for the corresponding nested family of models. We prove
consistency of the proposed selection method under conditions that allow for a much larger number
of predictors than the number of observations. For the semi-parametric case when distribution of
random predictors satisfies linear regressions condition, the true and the estimated parameters are
collinear and their common support can be consistently identified. This partly explains robustness of
selection procedures to the response function misspecification.

Keywords: high-dimensional regression; loss function; random predictors; misspecification;
consistent selection; subgaussianity; generalized information criterion; robustness

1. Introduction

Consider a random variable (X, Y) ∈ Rp × {0, 1} and a corresponding response function defined
as a posteriori probability q(x) = P(Y = 1|X = x). Estimation of the a posteriori probability is of
paramount importance in machine learning and statistics since many frequently applied methods,
e.g., logistic or tree-based classifiers, rely on it. One of the main estimation methods of q is a parametric
approach for which the response function is assumed to have parametric form

q(x) = q0(βTx) (1)

for some fixed β and known q0(x). If Equation (1) holds, that is the underlying structure is correctly
specified, then it is known that

β = argminb∈Rp − {EX,Y(Y log q0(bTX) + (1 − Y) log(1 − q0(bTX))}, (2)

Entropy 2020, 22, 153; doi:10.3390/e22020153 www.mdpi.com/journal/entropy

33



Entropy 2020, 22, 153

or, equivalently (cf., e.g., [1])

β = argminbEXKL(q(X), q0(XTb)), (3)

where EX f (X) is the expected value of a random variable f (X) and KL(q(X), q0(XTb)) is
Kullback–Leibler distance between the binary distributions with success probabilities q(X) and
q0(XTb):

KL(q(X), q0(XTb)) = q(X) log
q(X)

q0(XTb)
+ (1 − q(X)) log

1 − q(X)

1 − q0(XTb)
.

The equalities in Equations (2) and (3) form the theoretical underpinning of (conditional) maximum
likelihood (ML) method as the expression under the expected value in Equation (2) is the conditional
log-likelihood of Y given X in the parametric model. Moreover, it is a crucial property needed to show
that ML estimates of β under appropriate conditions approximate β.

However, more frequently than not, the model in Equation (1) does not hold, i.e., response q is
misspecified and ML estimators do not approximate β, but the quantity defined by the right-hand side
of Equation (3), namely

β∗ = argminbEXKL(q(X), q0(XTb)), (4)

Thus, parametric fit using conditional ML method, which is the most popular approach to modeling
binary response, also has very intuitive geometric and information-theoretic flavor. Indeed, fitting a
parametric model, we try to approximate the β∗ which yields averaged KL projection of unknown q
on set of parametric models {q0(bTx)}b∈Rp . A typical situation is a semi-parametric framework the
true response function satisfies when

q(x) = q̃(βTx) (5)

for some unknown q̃(x) and the model in Equation (1) is fitted where q̃ �= q0. An important problem
is then how β∗ in Equation (4) relates to β in Equation (5). In particular, a frequently asked question
is what can be said about a support of β = (β1, . . . , βp)T , i.e., the set {i : βi �= 0}, which consists
of indices of predictors which truly influence Y. More specifically, an interplay between supports
of β and analogously defined support of β∗ is of importance as the latter is consistently estimated
and the support of ML estimator is frequently considered as an approximation of the set of true
predictors. Variable selection, or equivalently the support recovery of β in high-dimensional setting, is
one of the most intensively studied subjects in contemporary statistics and machine learning. This is
related to many applications in bioinformatics, biology, image processing, spatiotemporal analysis,
and other research areas (see [2–4]). It is usually studied under a correct model specification, i.e., under
theassumption that data are generated following a given parametric model (e.g., logistic or, in the case
of quantitative Y, linear model).

Consider the following example: let q̃(x) = qL(x3), where qL(x) = ex/(1 + ex) is the
logistic function. Define regression model by P(Y = 1|X) = q̃(βTX) = qL((X1 + X2)

3), where
X = (X1, . . . , Xp) is N(0, Ip×p)-distributed vector of predictors, p > 2 and β = (1, 1, 0, . . . , 0) ∈ Rp.
Then, the considered model will obviously be misspecified when the family of logistic models is fitted.
However, it turns out in this case that, as X is elliptically contoured, β∗ = ηβ = η(1, 1, 0, . . . , 0) and
η �= 0 (see [5]) and thus supports of β and β∗ coincide. Thus, in this case, despite misspecification
variable selection, i.e., finding out that X1 and X2 are the only active predictors, it can be solved using
the methods described below.

For recent contributions to the study of Kullback–Leibler projections on logistic model (which
coincide with Equation (4) for a logistic loss, see below) and references, we refer to the works of
Kubkowski and Mielniczuk [6], Kubkowski and Mielniczuk [7] and Kubkowski [8]. We also refer
to the work of Lu et al. [9], where the asymptotic distribution of adaptive Lasso is studied under
misspecification in the case of fixed number of deterministic predictors. Questions of robustness
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analysis evolve around an interplay between β and β∗, in particular under what conditions the
directions of β and β∗ coincide (cf. the important contribution by Brillinger [10] and Ruud [11]).

In the present paper, we discuss this problem in a more general non-parametric setting. Namely,
the minus conditional log-likelihood −(y log q0(bTx + (1 − y) log(1 − q0(bTx)) is replaced by a general
loss function of the form

l(b, x, y) = ρ(bTx, y), (6)

where ρ : R × {0, 1} → R is some function, b, x ∈ Rp, y ∈ {0, 1}, and

R(b) = EX,Yl(b, X, Y)

is the associated risk function for b ∈ Rp. Our aim is to determine a support of β∗, where

β∗ = argminb∈Rpn R(b). (7)

Coordinates of β∗ corresponding to non-zero coefficients are called active predictors and vector β∗ the
pseudo-true vector.

The most popular loss functions are related to minus log-likelihood of specific parametric models
such as logistic loss

llogist(b, x, y) = −ybTx + log(1 + exp(bTx))

related to q0(bTx) = exp(bTx)/(1 + exp(bTx), probit loss

lprobit(b, x, y) = −y log Φ(bTx) + (1 − y) log(1 − Φ(bTx))

related to q0(bTx) = Φ(bTx), or quadratic loss llin(b, x, y) = (y − bTx)2/2 related to linear regression
and quantitative response. Other losses which do not correspond to any parametric model such
as Huber loss (see [12]) are constructed with a specific aim to induce certain desired properties of
corresponding estimators such as robustness to outliers. We show in the following that variable
selection problem can be studied for a general loss function imposing certain analytic properties such
as its convexity and Lipschitz property.

For fixed number p of predictors smaller than sample size n, the statistical consequences of
misspecification of a semi-parametric regression model were intensively studied by H. White and his
collaborators in the 1980s. The concept of a projection on the fitted parametric model is central to these
investigations which show how the distribution of maximum likelihood estimator of β∗ centered by
β∗ changes under misspecification (cf. e.g., [13,14]). However, for the case when p > n, the maximum
likelihood estimator, which is a natural tool for fixed p ≤ n case, is ill-defined and a natural question
arises: What can be estimated and by what methods?

The aim of the present paper is to study the above problem in high-dimensional setting. To this
end, we introduce two-stage approach in which the first stage is based on Lasso estimation (cf., e.g., [2])

β̂L = argminb∈Rpn {Rn(b) + λL

pn

∑
i=1

|bi|} (8)

where b = (b1, . . . , bpn)
T and the empirical risk Rn(b) corresponding to R(b) is

Rn(b) = n−1
n

∑
i=1

ρ(bTXi, Yi).

Parameter λL > 0 is Lasso penalty, which penalizes large l1-norms of potential candidates for a
solution. Note that the criterion function in Equation (8) for ρ(s, y) = log(1 + exp(−s(2y − 1)) can be
viewed as penalized empirical risk for the logistic loss. Lasso estimator is thoroughly studied in the
case of the linear model when considered loss is square loss (see, e.g., [2,4] for references and overview
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of the subject) and some of the papers treat the case when such model is fitted to Y, which is not
necessarily linearly dependent on regressors (cf. [15]). In this case, regression model is misspecified
with respect to linear fit. However, similar results are scarce for other scenarios such as logistic fit
under misspecification in particular. One of the notable exceptions is Negahban et al. [16], who studied
the behavior of Lasso estimate i for a general loss function and possibly misspecified models.

The output of the first stage is Lasso estimate β̂L. The second stage consists in ordering of
predictors according to the absolute values of corresponding non-zero coordinates of Lasso estimator
and then minimization of Generalized Information Criterion (GIC) on the resulting nested family. This
is a variant of SOS (Screening-Ordering-Selection) procedure introduced in [17]. Let ŝ∗ be the model
chosen by GIC procedure.

Our main contributions are as follows:

• We prove that under misspecification when the sample size grows support ŝ∗ coincides
with support of β∗ with probability tending to 1. In the general framework allowing for
misspecification this means that selection rule ŝ∗ is consistent, i.e., P(ŝ∗ = s∗) → 1 when n → ∞.
In particular, when the model in Equation (1) is correctly specified this means that we recover the
support of the true vector β with probability tending to 1.

• We also prove approximation result for Lasso estimator when predictors are random and ρ is a
convex Lipschitz function (cf. Theorem 1).

• A useful corollary of the last result derived in the paper is determination of sufficient conditions
under which active predictors can be separated from spurious ones based on the absolute values
of corresponding coordinates of Lasso estimator. This makes construction of nested family
containing s∗ with a large probability possible.

• Significant insight has been gained for fitting of parametric model when predictors are elliptically
contoured (e.g., multivariate normal). Namely, it is known that in such situation β∗ = ηβ,
i.e., these two vectors are collinear [5]. Thus, in the case when η �= 0 we have that support s∗

of β∗ coincides with support s of β and the selection consistency of two-step procedure proved
in the paper entails direction and support recovery of β. This may be considered as a partial
justification of a frequent observation that classification methods are robust to misspecification of
the model for which they are derived (see, e.g., [5,18]).

We now discuss how our results relate to previous results. Most of the variable selection methods
in high-dimensional case are studied for deterministic regressors; here, our results concern random
regressors with subgaussian distributions. Note that random regressors scenario is much more realistic
for experimental data than deterministic one. The stated results to the best of our knowledge are
not available for random predictors even when the model is correctly specified. As to novelty of
SS procedure, for its second stage we assume that the number of active predictors is bounded by a
deterministic sequence kn tending to infinity and we minimize GIC on family M of models with sizes
satisfying also this condition. Such exhaustive search has been proposed in [19] for linear models and
extended to GLMs in [20] (cf. [21]). In these papers, GIC has been optimized on all possible subsets
of regressors with cardinality not exceeding certain constant kn. Such method is feasible for practical
purposes only when pn is small. Here, we consider a similar set-up but with important differences: M
is a data-dependent small nested family of models and optimization of GIC is considered in the case
when the original model is misspecified. The regressors are supposed random and assumptions are
carefully tailored to this case. We also stress the fact that the presented results also cover the case when
the regression model is correctly specified and Equation (5) is satisfied.

In numerical experiments, we study the performance of grid version of logistic and linear SOS
and compare it to its several Lasso-based competitors.

The paper is organized as follows. Section 2 contains auxiliaries, including new useful probability
inequalities for empirical risk in the case of subgaussian random variables (Lemma 2). In Section 3,
we prove a bound on approximation error for Lasso when the loss function is convex and Lipschitz
and regressors are random (Theorem 1). This yields separation property of Lasso. In Theorems
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2 and 3 of Section 4, we prove GIC consistency on nested family, which in particular can be built
according to the order in which the Lasso coordinates are included in the fitted model. In Section 5.1,
we discuss consequences of the proved results for semi-parametric binary model when distribution of
predictors satisfies linear regressions condition. In Section 6, we numerically compare the performance
of two-stage selection method for two closely related models, one of which is a logistic model and the
second one is misspecified.

2. Definitions and Auxiliary Results

In the following, we allow random vector (X, Y), q(x), and p to depend on sample size n,
i.e., (X, Y) = (X(n), Y(n)) ∈ Rpn × {0, 1} and qn(x) = P(Y(n) = 1|X(n) = x). We assume that
n copies X(n)

1 , . . . , X(n)
n of a random vector X(n) in Rpn are observed together with corresponding

binary responses Y(n)
1 , . . . , Y(n)

n . Moreover, we assume that observations (X(n)
i , Y(n)

i ), i = 1, . . . , n are
independent and identically distributed (iid). If this condition is satisfied for each n, but not necessarily
for different n and m, i.e., distributions of (X(n)

i , Y(n)
i ) may be different from that of (X(m)

j , Y(m)
j ) or

they may be dependent for m �= n, then such framework is called a triangular scenario. A frequently
considered scenario is the sequential one. In this case, when sample size n increases, we observe
values of new predictors additionally to the ones observed earlier. This is a special case of the above
scheme as then X(n+1)

i = (X(n)T
i , Xi,pn+1, . . . , Xi,pn+1)

T . In the following, we skip the upper index n
if no ambiguity arises. Moreover, we write q(x) = qn(x). We impose a condition on distributions of
random predictors assume that coordinates Xij of Xi are subgaussian Subg(σ2

jn) with subgaussianity

parameter σ2
jn, i.e., it holds that (see [22])

E exp(tXij) ≤ exp(t2σ2
jn/2) (9)

for all t ∈ R. This condition basically says that the tails of of Xij do not decrease more slowly than tails
of normal distribution N(0, σ2

jn). For future reference, let

s2
n = max

j=1,...,pn
σ2

jn

and assume in the following that
γ2 := lim sup

n
s2

n < ∞. (10)

We assume moreover that Xi1, . . . , Xipn are linearly independent in the sense that their arbitrary linear
combination is not constant almost everywhere. We consider a general form of response function
q(x) = P(Y = 1|X = x) and assume that for the given loss function β∗, as defined in Equation (7),
exists and is unique. For s ⊆ {1, . . . , pn}, let β∗(s) be defined as in Equation (7) when minimum is
taken over b with support in s. We let

s∗ = supp(β∗({1, . . . , pn}) = {i ≤ pn : β∗
i �= 0},

denote the support of β∗({1, . . . , pn}) with β∗({1, . . . , pn}) = (β∗
1, . . . , β∗

pn)
T .

Let vπ = (vj1 , . . . , vjk )
T ∈ R|π| for v ∈ Rpn and π = {j1, . . . , jk} ⊆ {1, . . . , pn}. Let β∗

s∗ ∈ R|s∗| be
β∗ = β∗({1, . . . , pn}) restricted to its support s∗. Note that if s∗ ⊆ s, then provided projections are
unique (see Section 2) we have

β∗
s∗ = β∗(s∗) = β∗(s)s∗ .

Note that this implies that for every superset s ⊇ s∗ of s the projection β∗(s) on the model pertaining
to s is obtained by appending projection β∗(s∗) with appropriate number of zeros. Moreover, let

β∗
min = min

i∈s∗
|β∗

i |.
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We remark that β∗, s∗ and β∗
min may depend on n. We stress that β∗

min is an important quantity
in the development here as it turns out that it may not decrease too quickly in order to obtain
approximation results for β̂∗

L (see Theorem 1). Note that, when the parametric model is correctly
specified, i.e., q(x) = q0(βTx) for some β with l being an associated log-likelihood loss, if s is the
support of β, we have s = s∗.

First, we discuss quantities and assumptions needed for the first step of SS procedure.
We consider cones of the form:

Cε = {Δ ∈ Rpn : ||Δs∗c ||1 ≤ (3 + ε)||Δs∗ ||1}, (11)

where ε > 0, s∗c = {1, . . . , pn} \ s∗ and Δs∗ = (Δs∗1
, . . . , Δs∗|s∗|

) for s∗ = {s∗1, . . . , s∗|s∗|}. Cones Cε are of

special importance because we prove that β̂L − β∗ ∈ Cε (see Lemma 3). In addition, we note that since
l1-norm is decomposable in the sense that ||vA||1 + ||vAc ||1 = ||v||1 the definition of the cone above
can be stated as

Cε = {Δ ∈ Rpn : ||Δ||1 ≤ (4 + ε)||Δs∗ ||1}.

Thus, Cε consists of vectors which do not put too much mass on the complement of s∗. Let H ∈ Rpn×pn

be a fixed non-negative definite matrix. For cone Cε, we define a quantity κH(ε) which can be regarded
as a restricted minimal eigenvalue of a matrix in high-dimensional set-up:

κH(ε) = inf
Δ∈Cε\{0}

ΔT HΔ
ΔTΔ

. (12)

In the considered context, H is usually taken as hessian D2R(β∗) and, e.g., for quadratic loss, it equals
EXTX. When H is non-negative definite and not strictly positive definite its smallest eigenvalue
λ1 = 0 and thus infΔ∈Rp\{0}

ΔT HΔ
ΔTΔ = λ1 = 0. That is why we have to restrict minimization in Equation

(12) in order to have κH(ε) > 0 in the high-dimensional case. As we prove that Δ0 = β̂L − β∗ ∈ Cε

and would use 0 < κH(ε) ≤ ΔT
0 HΔ0/ΔT

0 Δ0 it is useful to restrict minimization in Equation (12) to
Cε \ {0}. Let R and Rn be the risk and the empirical risk defined above. Moreover, we introduce the
following notation:

W(b) = R(b)− R(β∗), (13)

Wn(b) = Rn(b)− Rn(β∗), (14)

Bp(r) = {Δ ∈ Rpn : ||Δ||p ≤ r}, for p = 1, 2, (15)

S(r) = sup
b∈Rpn :b−β∗∈B1(r)

|W(b)− Wn(b)|. (16)

Note that ERn(b) = R(b). Thus, S(r) corresponds to oscillation of centred empirical risk over ball
B1(r). We need the following Margin Condition (MC) in Lemma 3 and Theorem 1:

(MC) There exist ϑ, ε, δ > 0 and non-negative definite matrix H ∈ Rpn×pn such that for all b with
b − β∗ ∈ Cε ∩ B1(δ) we have

R(b)− R(β∗) ≥ ϑ

2
(b − β∗)T H(b − β∗).

The above condition can be viewed as a weaker version of strong convexity of function R (when
the right-hand side is replaced by ϑ||b − β∗||2) in the restricted neighbourhood of β∗ (namely, in the
intersection of ball B1(δ) and cone Cε). We stress the fact that H is not required to be positive definite,
as in Section 3 we use Condition (MC) together with stronger conditions than κH(ε) > 0 which imply
that right hand side of inequality in (MC) is positive. We also do not require here twice differentiability
of R. We note in particular that Condition (MC) is satisfied in the case of logistic loss, X being bounded
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random variable and H = D2R(β∗) (see [23–25]). It is also easily seen that that (MC) is satisfied
for quadratic loss, X such that E||X||22 < ∞ and H = D2R(β∗). Similar condition to (MC) (called
Restricted Strict Convexity) was considered in [16] for empirical risk Rn:

Rn(β∗ + Δ)− Rn(β∗) ≥ DRn(β∗)TΔ + κL||Δ||2 − τ2(β∗)

for all Δ ∈ C(3, s∗), some κL > 0, and tolerance function τ. Note however that MC is a deterministic
condition, whereas Restricted Strict Convexity has to be satisfied for random empirical risk function.

Another important assumption, used in Theorem 1 and Lemma 2, is the Lipschitz property of ρ :

(LL) ∃L > 0 ∀b1, b2 ∈ R, y ∈ {0, 1} : |ρ(b1, y)− ρ(b2, y)| ≤ L|b1 − b2|.

Now, we discuss preliminaries needed for the development of the second step of SS procedure. Let
|w| stand for dimension of w. For the second step of the procedure we consider an arbitrary family
M ⊆ 2{1,...,pn} of models (which are identified with subsets of {1, . . . , pn} and may be data-dependent)
such that s∗ ∈ M, ∀w ∈ M : |w| ≤ kn a.e. and kn ∈ N+ is some deterministic sequence. We define
Generalized Information Criterion (GIC) as:

GIC(w) = nRn(β̂(w)) + an|w|, (17)

where
β̂(w) = arg min

b∈Rpn : bwc=0|wc |

Rn(b)

is ML estimator for model w as minimization above is taken over all vectors b with support in w.
Parameter an > 0 is some penalty factor depending on the sample size n which weighs how important
is the complexity of the model described by the number of its variables |w|. Typical examples of an

include:

• AIC (Akaike Information Criterion): an = 2;
• BIC (Bayesian Information Criterion): an = log n; and
• EBIC(d) (Extended BIC): an = log n + 2d log pn, where d > 0.

AIC, BIC and EBIC were introduced by Akaike [26], Schwarz [27], and Chen and Chen [19],
respectively. Note that for n ≥ 8 BIC penalty is larger than AIC penalty and in its turn EBIC penalty is
larger than BIC penalty.

We study properties of Sk(r) for k = 1, 2, where:

Sk(r) = sup
b∈Dk :b−β∗∈B2(r)

|(Wn(b)− W(b)| (18)

and is the maximal absolute value of the centred empirical risk Wn(·) and sets Dk for k = 1, 2 are
defined as follows:

D1 = {b ∈ Rpn : ∃w ∈ M : |w| ≤ kn ∧ s∗ ⊂ w ∧ supp b ⊆ w}, (19)

D2 = {b ∈ Rpn : supp b ⊂ s∗}. (20)

The idea here is simply to consider sets Di consisting of vectors having no more that kn non-zero
coordinates. However, for s∗ ≤ kn, we need that for b ∈ Di, we have | supp(b − β∗)| ≤ kn, what we
exploit in Lemma 2. This entails additional condition in the definition of D1. Moreover, in Section 4,
we consider the following condition Cε(w) for ε > 0, w ⊆ {1, . . . , pn} and some θ > 0:

Cε(w) : R(b)− R(β∗) ≥ θ||b − β∗||22 for all b ∈ Rpn such that supp b ⊆ w and b − β∗ ∈ B2(ε).
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We observe also that, although Conditions (MC) and Cε(w) are similar, they are not equivalent,
as they hold for v = b − β∗ belonging to different sets: B1(r) ∩ Cε and B2(ε) ∩ {Δ ∈ Rpn : supp Δ ⊆
w}, respectively. If the minimal eigenvalue λmin of matrix H in Condition (MC) is positive and
Condition (MC) holds for b − β∗ ∈ B1(r) (instead of for b − β∗ ∈ Cε ∩ B1(r)), then we have for
b − β∗ ∈ B2(r/

√
pn) ⊆ B1(r):

R(b)− R(β∗) ≥ ϑ

2
(b − β∗)T H(b − β∗) ≥ ϑλmin

2
||b − β∗||22.

Furthermore, if λmax is the maximal eigenvalue of H and Condition Cε(w) holds for all v = b − β∗ ∈
B2(r) without restriction on supp b, then we have for b − β∗ ∈ B1(r) ⊆ B2(r):

R(b)− R(β∗) ≥ θ||b − β∗||22 ≥ θ

λmax
(b − β∗)T H(b − β∗).

Thus, Condition (MC) holds in this case. A similar condition to Condition Cε(w) for empirical risk Rn

was considered by Kim and Jeon [28] (formula (2.1)) in the context of GIC minimization. It turns out
that Condition Cε(w) together with ρ(·, y) being convex for all y and satisfying Lipschitz Condition (LL)
are sufficient to establish bounds which ensure GIC consistency for kn ln pn = o(n) and kn ln pn = o(an)

(see Corollaries 2 and 3). First, we state the following basic inequality. W(v) and S(r) are defined
above the definition of Margin Condition.

Lemma 1. (Basic inequality). Let ρ(·, y) be convex function for all y. If for some r > 0 we have

u =
r

r + ||β̂L − β||1
, v = uβ̂L + (1 − u)β∗,

then
W(v) + λ||v − β∗||1 ≤ S(r) + 2λ||vs∗ − β∗

s∗ ||1.

The proof of the lemma is moved to the Appendix A. It follows from the lemma that, as in view
of decomposability of l1-distance we have ||v − β∗||1 = ||(v − β∗)∗s ||1 + ||(v − β∗)s∗c ||1, when S(r) is
small we have ||(v − β∗)s∗c ||1 is not large in comparison with ||(v − β∗)∗s ||1.

Quantities Sk(r) are defined in Equation (18). Recall that S2(r) is an oscillation taken over ball
B2(r), whereas Si, i = 1, 2 are oscillations taken over B1(r) ball with restriction on the number of
nonzero coordinates.

Lemma 2. Let ρ(·, y) be convex function for all y and satisfy Lipschitz Condition (LL). Assume that Xij for
j ≥ 1 are subgaussian Subg(σ2

jn), where σjn ≤ sn. Then, for r, t > 0:

1. P(S(r) > t) ≤ 8Lrsn
√

log(pn∨2)
t
√

n ,

2. P(S1(r) ≥ t) ≤ 8Lrsn
√

kn ln(pn∨2)
t
√

n ,

3. P(S2(r) ≥ t) ≤ 4Lrsn
√

|s∗|
t
√

n .

The proof of the Lemma above, which relies on Chebyshev inequality , symmetrization inequality
(see Lemma 2.3.1 of [29]), and Talagrand–Ledoux inequality ([30], Theorem 4.12), is moved to the
Appendix A. In the case when β∗ does not depend on n and thus its support does not change, Part 3
implies in particular that S2(r) is of the order n−1/2 in probability.

3. Properties of Lasso for a General Loss Function and Random Predictors

The main result in this section is Theorem 1. The idea for the proof is based on fact that, if S(r)
defined in Equation (16) is sufficiently small (condition S(r) ≤ C̄λr is satisfied), then β̂L lies in a
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ball {Δ ∈ Rpn : ||Δ − β∗||1 ≤ r} (see Lemma 3). Using a tail inequality for S(r) proved in Lemma 2,
we obtain Theorem 1. Note that κH(ε) has to be bounded away from 0 (condition 2|s∗|λ ≤ κH(ε)ϑC̃r).
Convexity of ρ(·, y) below is understood as convexity for both y = 0, 1.

Lemma 3. Let ρ(·, y) be convex function and assume that λ > 0. Moreover, assume margin Condition (MC)
with constants ϑ, ε, δ > 0 and some non-negative definite matrix H ∈ Rpn×pn . If for some r ∈ (0, δ] we have
S(r) ≤ C̄λr and 2|s∗|λ ≤ κH(ε)ϑC̃r, where C̄ = ε/(8 + 2ε) and C̃ = 2/(4 + ε), then

||β̂L − β∗||1 ≤ r.

The proof of the lemma is moved to the Appendix A.
The first main result provides an exponential inequality for P

(
||β̂L − β∗||1 ≤ β∗

min/2
)
.

The threshold β∗
min/2 is crucial there as it ensures separation: max

i∈s∗c
|β̂L,i| ≤ min

i∈s∗
|β̂L,i| (see proof

of Corollary 1).

Theorem 1. Let ρ(·, y) be convex function for all y and satisfy Lipschitz Condition (LL). Assume that Xij ∼
Subg(σ2

jn), β∗ exists and is unique, margin Condition (MC) is satisfied for ε, δ, ϑ > 0, non-negative definite
matrix H ∈ Rpn×pn and let

2|s∗|λ
ϑκH(ε)

≤ C̃ min
{

β∗
min
2

, δ

}
,

where C̃ = 2/(4 + ε). Then,

P
(
||β̂L − β∗||1 ≤ β∗

min
2

)
≥ 1 − 2pne−

nε2λ2
A ,

where A = 128L2(4 + ε)2s2
n.

Proof. Let

m = min
{

β∗
min
2

, δ

}
.

Lemmas 2 and 3 imply that:

P
(
||β̂L − β∗||1 >

β∗
min
2

)
≤ P

(
||β̂L − β∗||1 > m

)
≤ P (S (m) > C̄λm)

≤ 2pne
− nε2λ2

128L2(4+ε)2s2
n .

Corollary 1. (Separation property) If assumptions of Theorem 1 are satisfied,

λ =
8Lsn(4 + ε)φ

ε

√
2 log(2pn)

n

for some φ > 1 and κH(ε) > d for some d, ε > 0 for large n, |s∗|λ = o(min{β∗
min, 1}), then

P
(
||β̂L − β∗||1 ≤ β∗

min
2

)
→ 1.

Moreover,

P
(

max
i∈s∗c

|β̂L,i| ≤ min
i∈s∗

|β̂L,i|
)

→ 1.
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Proof. The first part of the corollary follows directly from Theorem 1 and the observation that:

P
(
||β̂L − β∗||1 >

β∗
min
2

)
≤ e

log(2pn)− nε2λ2

128L2(4+ε)2s2
n = elog(2pn)(1−φ2) → 0.

Now, we prove that condition ||β̂L − β∗||1 ≤ β∗
min/2 implies separation property

max
i∈s∗c

|β̂L,i| ≤ min
i∈s∗

|β̂L,i|. (21)

Indeed, observe that for all j ∈ {1, . . . , pn} we have:

β∗
min
2

≥ ||β̂L − β∗||1 ≥ |β̂L,j − β∗
j |. (22)

If j ∈ s∗, then using triangle inequality yields:

|β̂L,j − β∗
j | ≥ |β∗

j | − |β̂L,j| ≥ β∗
min − |β̂L,j|.

Hence, from the above inequality and Equation (22), we obtain for j ∈ s∗: |β̂L,j| ≥ β∗
min/2. If j ∈ s∗c,

then β∗
j = 0 and Equation (22) takes the form: |β̂L,j| ≤ β∗

min/2. This ends the proof.

We note that the separation property in Equation (21) means that when λ is chosen in an
appropriate manner, recovery of s∗ is feasible with a large probability if all predictors corresponding
to absolute value of Lasso coefficient exceeding a certain threshold are chosen. The threshold
unfortunately depends on unknown parameters of the model. However, separation property allows
to restrict attention to nested family of models and thus to decrease significantly computational
complexity of the problem. This is dealt with in the next section. Note moreover that if γ in Equation
(10) is finite than λ defined in the Corollary is of order (log pn/n)1/2, which is the optimal order of
Lasso penalty in the case of deterministic regressors (see, e.g., [2]).

4. GIC Consistency for a a General Loss Function and Random Predictors

Theorems 2 and 3 state probability inequalities related to behavior of GIC on supersets and
on subsets of s∗, respectively. In a nutshell, we show for supersets and subsets separately that the
probability that the minimum of GIC is not attained at s∗ is exponentially small. Corollaries 2 and
3 present asymptotic conditions for GIC consistency in the aforementioned situations. Corollary 4
gathers conclusions of Theorem 1 and Corollaries 1–3 to show consistency of SS procedure (see [17] for
consistency of SOS procedure for a linear model with dieterministic predictors) in case of subgaussian
variables. Note that in Theorem below we want to consider minimization of GIC in Equation (23) over
all supersets of s∗ as in our applications M is data dependent. As the number of such possible subsets is
at least (pn−|s∗|

kn−|s∗|), the proof has to be more involved than using reasoning based on Bonferroni inequality.

Theorem 2. Assume that ρ(·, y) is convex, Lipschitz function with constant L > 0, Xij ∼ Subg(σ2
jn),

condition Cε(w) holds for some ε, θ > 0 and for every w ⊆ {1, . . . , pn} such that |w| ≤ kn. Then, for any
r < ε, we have:

P( min
w∈M:s∗⊂w

GIC(w) ≤ GIC(s∗)) ≤ 2pne−
a2
n

kn B + 2pne−
nD
kn , (23)

where B = 32nL2r2kns2
n and D = θ2r2/512L2s2

n.
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Proof. If s∗ ⊂ w ∈ M and β̂(w)− β∗ ∈ B2(r), then in view of inequalities Rn(β̂(s∗)) ≤ Rn(β∗) and
R(β∗) ≤ R(b) we have:

Rn(β̂(s∗))− Rn(β̂(w)) ≤ sup
b∈D1 : b−β∗∈B2(r)

(Rn(β∗)− Rn(b))

≤ sup
b∈D1 : b−β∗∈B2(r)

((Rn(β∗)− R(β∗))− (Rn(b)− R(b)))

≤ sup
b∈D1 : b−β∗∈B2(r)

|Rn(b)− R(b)− (Rn(β∗)− R(β∗))|

= S1(r).

Note that an(|w| − |s∗|) ≥ an. Hence, if we have for some w ⊃ s∗: GIC(w) ≤ GIC(s∗), then we obtain
nRn(β̂(s∗)) − nRn(β̂(w))) ≥ an(|w| − |s∗|) and from the above inequality we have S1(r) ≥ an/n.
Furthermore, if β̂(w)− β∗ ∈ B2(r)c and r < ε, then consider:

v = uβ̂(w) + (1 − u)β∗,

where u = r/(r + ||β̂(w)− β∗||2). Then

||v − β∗||2 = u||β̂(w)− β∗||2 = r · ||β̂(w)− β∗||2
r + ||β̂(w)− β∗||2

≥ r
2

,

as function x/(x + r) is increasing with respect to x for x > 0. Moreover, we have ||v − β∗||2 ≤ r < ε.
Hence, in view of Cε(w) condition, we get:

R(v)− R(β∗) ≥ θ||v − β∗||22 ≥ θr2

4
.

From convexity of Rn, we have:

Rn(v) ≤ u(Rn(β̂(w))− Rn(β∗)) + Rn(β∗) ≤ Rn(β∗).

Let supp v denote the support of vector v. We observe that supp v ⊆ supp β̂(w) ∪ supp β∗ ⊆ w, hence
v ∈ D1. Finally, we have:

S1(r) ≥ Rn(β∗)− R(β∗)− (Rn(v)− R(v)) ≥ R(v)− R(β∗) ≥ θr2

4
.

Hence, we obtain the following sequence of inequalities:

P( min
w∈M:s∗⊂w

GIC(w) ≤ GIC(s∗))

≤ P(S1(r) ≥ an

n
, ∀w ∈ M : β̂(w)− β∗ ∈ B2(r))

+ P(∃w ∈ M : s∗ ⊂ w ∧ β̂(w)− β∗ ∈ B2(r)c) ≤ P(S1(r) ≥ an

n
) + P(S1(r) ≥ θr2

4
)

≤ 2pne
− a2

n
32nL2r2kns2

n + 2pne
− nθ2r2

512L2kns2
n .
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Corollary 2. Assume that the conditions of Theorem 2 hold and for some ε, θ > 0 and for every w ⊆ {1, . . . , pn}
such that |w| ≤ kn, kn ln(pn ∨ 2) = o(n) and lim inf

n→∞
Dnan

kn log(2pn)
> 1, where D−1

n = 128L2s2
nφ/θ for some

φ > 1. Then, we have
P( min

w∈M:s∗⊂w
GIC(w) ≤ GIC(s∗)) → 0.

Proof. We the choose allb radius r of B2(r) in a special way. Namely, we take:

r2
n =

512φ2L2s2
n log(2pn)kn

nθ2

for some φ > 1. In view of assumptions rn → 0. Consider n0 such that rn < ε for all n ≥ n0. Hence,
the second term of the upper bound in Equation (23) for r = rn is equal to:

2pne
− nθ2r2

n
512L2kns2

n = elog(2pn)(1−φ2) → 0.

Similarly, the first term of the upper bound in Equation (23) is equal to:

2pne
− a2

n
32nL2r2

nkns2
n = e

log(2pn)

(
1− a2

nθ2

1282 L4k2
ns4

nφ2 log2(2pn)

)
= e

log(2pn)

(
1− D2

na2
n

k2
n log2(2pn)

)
→ 0.

These two convergences end the proof.

The most restrictive condition of Corollary 2 is lim inf
n→∞

Dnan
kn log(2pn)

> 1 which is slightly weaker than

kn ln(pn ∨ 2) = o(an). The following remark proved in the Appendix A gives sufficient conditions for
consistency of BIC and EBIC penalties, which do not satisfy condition kn log(pn) = o(an).

Remark 1. If in Corollary 2 we assume Dn ≥ A for some A > 0, then condition lim inf
n→∞

Dnan
kn log(2pn)

> 1 holds
when:

(1) an = log n and pn < n
A

kn(1+u)

2 for some u > 0.
(2) an = log n + 2γ log pn, kn ≤ C and 2Aγ − (1 + u)C ≥ 0, where C, u > 0.
(3) an = log n + 2γ log pn, kn ≤ C, 2Aγ − (1 + u)C < 0, pn < Bnδ, where δ = A

(1+u)C−2Aγ
and

B = 2−(1+u)C.

Theorem 3 is an analog of Theorem 2 for subsets of s∗.

Theorem 3. Assume that ρ(·, y) is convex, Lipschitz function with constant L > 0, Xij ∼ Subg(σ2
jn),

condition Cε(s∗) holds for some ε, θ > 0, and 8an|s∗| ≤ θn min{ε2, β∗2
min}. Then, we have:

P( min
w∈M:w⊂s∗

GIC(w) ≤ GIC(s∗)) ≤
√

2e−n min{ε,β∗
min}2

E,

where E = θ2/212L2s2
n|s∗|

Proof. Suppose that for some w ⊂ s∗ we have GIC(w) ≤ GIC(s∗). This is equivalent to:

nRn(β̂(s∗))− nRn(β̂(w)) ≥ an(|w| − |s∗|).

In view of inequalities Rn(β̂(s∗)) ≤ Rn(β∗) and an(|w| − |s∗|) ≥ −an|s∗|, we obtain:

nRn(β∗)− nRn(β̂(w)) ≥ −an|s∗|.
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Let v = uβ̂(w) + (1 − u)β∗ for some u ∈ [0, 1] to be specified later. From convexity of ρ, we consider:

nRn(β∗)− nRn(v) ≥ nu(Rn(β∗)− Rn(β̂(w))) ≥ −uan|s∗| ≥ −an|s∗|. (24)

We consider two cases separately:

(1) β∗
min > ε.

First, observe that
8an|s∗| ≤ θε2n, (25)

which follows from our assumption. Let u = ε/(ε + ||β̂(w)− β∗||2) and

v = uβ̂(w) + (1 − u)β∗. (26)

Note that ||β̂(w) − β∗||2 ≥ ||β∗
s∗\w||2 ≥ β∗

min. Then, as function d(x) = x/(x + c) is increasing and
bounded from above by 1 for x, c > 0, we obtain:

ε ≥ ||v − β∗||2 =
ε||β̂(w)− β∗||2

ε + ||β̂(w)− β∗||2
≥ εβ∗

min
ε + β∗

min
>

ε2

2ε
=

ε

2
. (27)

Hence, in view of Cε(s∗) condition, we have:

R(v)− R(β∗) > θ
ε2

4
.

Using Equations (24)–(26) and the above inequality yields:

S2(ε) ≥ Rn(β∗)− R(β∗)− (Rn(v)− R(v)) > θ
ε2

4
− an

n
|s∗| ≥ θε2

8
.

Thus, in view of Lemma 2, we obtain:

P( min
w∈M:w⊂s∗

GIC(w) ≤ GIC(s∗)) ≤ P
(

S2(ε) >
θε2

8

)
≤

√
2e

− nθ2ε2

4096L2s2
n |s∗| . (28)

(2) β∗
min ≤ ε.

In this case, we take u = β∗
min/(β∗

min + ||β̂(w) − β∗||2) and define v as in Equation (26).
Analogously, as in Equation (27), we have:

β∗
min
2

≤ ||v − β∗||2 ≤ β∗
min.

Hence, in view of Cε(s∗) condition, we have:

R(v)− R(β∗) ≥ θ
β∗2

min
4

.

Using Equation (24) and the above inequality yields:

S2(β∗
min) ≥ Rn(β∗)− R(β∗)− (Rn(v)− R(v)) ≥ θ

β∗2
min
4

− an

n
|s∗| ≥ θ

8
β∗2

min.

Thus, in view of Lemma 2, we obtain:

P( min
w∈M:w⊂s∗

GIC(w) ≤ GIC(s∗)) ≤ P
(

S2(β∗
min) ≥ θ

8
β∗2

min

)
≤

√
2e

− nθ2β∗2
min

212 L2s2
n |s∗| . (29)
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By combining Equations (28) and (29), the theorem follows.

Corollary 3. Assume that loss ρ(·, y) is convex, Lipschitz function with constant L > 0, Xij ∼ Subg(σ2
jn),

condition Cε(s∗) holds for some ε, θ > 0 and an|s∗| = o(n min{1, β∗
min}2), then

P( min
w∈M:w⊂s∗

GIC(w) ≤ GIC(s∗)) → 0.

Proof. First, observe that as an → ∞

an|s∗| = o(n min{1, β∗
min}2)

implies
|s∗| = o(n min{1, β∗

min}2),

and thus in view of Theorem 3 we have

P( min
w∈M:w⊂s∗

GIC(w) ≤ GIC(s∗)) → 0.

5. Selection Consistency of SS Procedure

In this section, we combine the results of the two previous sections to establish consistency of a
two-step SS procedure. It consists in construction of a nested family of models M using magnitude of
Lasso coefficients and then finding the minimizer of GIC over this family. As M is data dependent to
establish consistency of the procedure we use Corollaries 2 and 3 in which the minimizer of GIC is
considered over all subsets and supersets of s∗.

SS (Screening and Selection) procedure is defined as follows:

1. Choose some λ > 0.
2. Find β̂L = arg min

b∈Rpn
Rn(b) + λ||b||1.

3. Find ŝL = supp β̂L = {j1, . . . , jk} such that |β̂L,j1 | ≥ . . . ≥ |β̂L,jk | > 0 and j1, . . . , jk ∈ {1, . . . , pn}.
4. Define MSS = {∅, {j1}, {j1, j2}, . . . , {j1, j2, . . . , jk}}.
5. Find ŝ∗ = arg min

w∈MSS

GIC(w).

The SS procedure is a modification of SOS procedure in [17] designed for linear models. Since
ordering step considered in [17] is omitted in the proposed modification, we abbreviate the name to SS.

Corollary 4 and Remark 2 describe the situations when SS procedure is selection consistent. In it,
we use the assumptions imposed in Sections 2 and 3 together with an assumption that support of s∗

contains no more than kn elements, where kn is some deterministic sequence of integers. Let MSS is
nested family constructed in the step 4 of SS procedure.

Corollary 4. Assume that ρ(·, y) is convex, Lipschitz function with constant L > 0, Xij ∼ Subg(σ2
jn) and β∗

exists and is unique. If kn ∈ N+ is some sequence, margin Condition (MC) is satisfied for some ϑ, δ, ε > 0,
condition Cε(w) holds for some ε, θ > 0 and for every w ⊆ {1, . . . , pn} such that |w| ≤ kn and the following
conditions are fulfilled:

• |s∗| ≤ kn,
• P(∀w ∈ MSS : |w| ≤ kn) → 1,
• lim inf

n
κH(ε) > 0 for some ε > 0, where H is non-negative definite matrix and κH(ε) is defined in

Equation (12),
• log(pn) = o(nλ2),
• knλ = o(min{β∗

min, 1}),
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• kn log pn = o(n),
• kn log pn = o(an),
• ankn = o(n min{β∗

min, 1}2),

then for SS procedure we have
P(ŝ∗ = s∗) → 1.

Proof. In view of Corollary 1, following from the separation property in Equation (22) we obtain
P(s∗ ∈ MSS) → 1. Let:

A1 = { min
w∈MSS :w⊃s∗ ,|w|≤kn

GIC(w) ≤ GIC(s∗)},

A2 = { min
w∈MSS :w⊃s∗ ,|w|>kn

GIC(w) ≤ GIC(s∗)},

B = {∀w ∈ MSS : |w| ≤ kn}.

Then, we have again from the fact that A2 ∩ B = ∅, union inequality and Corollary 2:

P( min
w∈MSS :w⊃s∗

GIC(w) ≤ GIC(s∗)) = P(A1 ∪ A2) = P(A1 ∪ (A2 ∩ Bc))

≤ P(A1) + P(Bc) → 0. (30)

In an analogous way, using |s∗| ≤ kn and Corollary 3 yields:

P( min
w∈MSS :w⊂s∗

GIC(w) ≤ GIC(s∗)) → 0. (31)

Now, observe that in view of definition of ŝ∗ and union inequality:

P(ŝ∗ = s∗) = P( min
w∈MSS :w �=s∗

GIC(w) > GIC(s∗))

≥ 1 − P( min
w∈MSS :w⊂s∗

GIC(w) ≤ GIC(s∗))

− P( min
w∈MSS :w⊃s∗

GIC(w) ≤ GIC(s∗)).

Thus, P(ŝ∗ = s∗) → 1 in view of the above inequality and Equations (30) and (31).

5.1. Case of Misspecified Semi-Parametric Model

Consider now the important case of the misspecified semi-parametric model defined in
Equation (5) for which function q̃ is unknown and may be arbitrary. An interesting question is
whether information about β can be recovered when misspecification occurs. The answer is positive
under some additional assumptions on distribution of random predictors. Assume additionally that
X satisfies

E(X|βTX) = u0 + uβTX, (32)

where β is the true parameter. Thus, regressions of X given βTX have to be linear. We stress that
conditioning βTX involves only the true β in Equation (5). Then, it is known (cf. [5,10,11]) that β∗ = ηβ

and η �= 0 if Cov(Y, X) �= 0. Note that because β and β∗ are collinear and η �= 0 it follows that
s = s∗. This is important in practical applications as it shows that a position of the optimal separating
direction given by β can be consistently recovered. It is also worth mentioning that if Equation (32)
is satisfied the direction of β coincides with the direction of the first canonical vector. We refer to the
work of Kubkowski and Mielniczuk [7] for the proof and to the work o Kubkowski and Mielniczuk
[6] for discussion and up-to date references to this problem. The linear regressions condition in
Equation (32) is satisfied, e.g., by elliptically contoured distribution, in particular by multivariate
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normal. We note that it is proved in [18] that Equation (32) approximately holds for the majority of β.
When Equation (32) holds exactly, proportionality constant η can be calculated numerically for known
q̃ and β. We can state thus the following result provided Equation (32) is satisfied.

Corollary 5. Assume that Equation (32) and the assumptions of Corollary 4 are satisfied. Moreover,
Cov(Y, X) �= 0. Then, P(ŝ∗ = s) → 1.

Remark 2. If pn = O(ecnγ
) for some c > 0, γ ∈ (0, 1/2), ξ ∈ (0, 0.5 − γ), u ∈ (0, 0.5 − γ − ξ),

kn = O(nξ), λ = Cn
√

log(pn)/n, Cn = O(nu), Cn → +∞, n− γ
2 = O(β∗

min), an = dn
1
2 −u, then

assumptions imposed on asymptotic behavior of parameters in Corollary 4 are satisfied.

Note that pn is allowed to grow exponentially: log pn = O(nγ), however β∗
min may not decrease

to 0 too quickly with regard to growth of pn: n− γ
2 = O(β∗

min).

Remark 3. We note that, to apply Corollary 4 to the two-step procedure based on Lasso, it is required that
|s∗| ≤ kn and that the support of Lasso estimator with probability tending to 1 contains no more than kn

elements. Some results bounding | supp β̂L| are available for deterministic X (see [31]) and for random X
(see [32]), but they are too weak to be useful for EBIC penalties. The other possibility to prove consistency of
two-step procedure is to modify it in the first step by using thresholded Lasso (see [33]) corresponding to k′

n
largest Lasso coefficients where k′

n ∈ N is such that kn = o(k′
n). This is a subject of ongoing research.

6. Numerical Experiments

6.1. Selection Procedures

We note that the original procedure is defined for a single λ only. In the simulations discussed
below, we implemented modifications of SS procedure introduced in Section 5. In practice, it is
generally more convenient to consider in the first step some sequence of penalty parameters λ1 >

. . . > λm > 0 instead of only one λ in order to avoid choosing the “best” λ. For the fixed sequence
λ1, . . . , λm, we construct corresponding families M1, . . . , Mm analogously to M in Step 4 of the SS
procedure. Thus, we arrive at the following SSnet procedure, which is the modification of SOSnet
procedure in [17]. Below, b̃ is a vector b with first coordinate corresponding to intercept omitted,
b = (b0, b̃T)T :

1. Choose some λ1 > . . . > λm > 0.
2. Find β̂

(i)
L = arg min

b∈Rpn+1
Rn(b) + λi||b̃||1 for i = 1, . . . , m.

3. Find ŝ(i)L = supp ˆ̃β(i)
L = {j(i)1 , . . . , j(i)ki

} where j(i)1 , . . . , j(i)ki
are such that |β̂(i)

L,j(i)1

| ≥ . . . ≥ |β̂(i)

L,j(i)ki

| > 0

for i = 1, . . . , m.
4. Define Mi = {{j(i)1 }, {j(i)1 , j(i)2 }, . . . , {j(i)1 , j(i)2 , . . . , j(i)ki

}} for i = 1, . . . , m.

5. Define M = {∅} ∪
m⋃

i=1
Mi.

6. Find ŝ∗ = arg min
w∈M

GIC(w), where

GIC(w) = min
b∈Rpn+1:supp b̃⊆w

nRn(b) + an(|w|+ 1).

Instead of constructing families Mi for each λi in SSnet procedure, λ can be chosen by
cross-validation using 1SE rule (see [34]) and then SS procedure is applied for such λ. We call
this procedure SSCV. The last procedure considered was introduced by Fan and Tang [35] and is Lasso
procedure with penalty parameter λ̂ chosen in a data-dependent way analogously to SSCV. Namely,
it is the minimizer of GIC criterion with an = log(log n) · log pn for which ML estimator has been
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replaced by Lasso estimator with penalty λ. Once β̂L(λ̂L) is calculated, then ŝ∗ is defined as its support.
The procedure is called LFT in the sequel.

We list below versions of the above procedures along with R packages that were used to choose
sequence λ1, . . . , λm and computation of Lasso estimator. The following packages were chosen based
on selection performance after initial tests for each loss and procedure:

• SSnet with logistic or quadratic loss: ncvreg;
• SSCV or LFT with logistic or quadratic loss: glmnet; and
• SSnet, SSCV or LFT with Huber loss (cf. [12]): hqreg.

The following functions were used to optimize Rn in GIC minimization step for each loss:

• logistic loss: glm.fit (package stats);
• quadratic loss: .lm.fit (package stats); and
• Huber loss: rlm (package rlm).

Before applying the investigated procedures, each column of matrix X = (X1, . . . , Xn)T was
standardized as Lasso estimator β̂L depends on scaling of predictors. We set length of λi sequence
to m = 20. Moreover, in all procedures we considered only λi for which |ŝ(i)L | ≤ n because, when

|ŝ(i)L | > n, Lasso and ML solutions are not unique (see [32,36]). For Huber loss, we set parameter
δ = 1/10 (see [12]). The number of folds in SSCV was set to K = 10.

Each simulation run consisted of L repetitions, during which samples Xk = (X(k)
1 , . . . , X(k)

n )T and

Yk = (Y(k)
1 , . . . , Y(k)

n )T were generated for k = 1, . . . , L. For kth sample (Xk, Yk) estimator ŝ∗k of set of

active predictors was obtained by a given procedure as the support of ˆ̃β(ŝ∗k ), where

β̂(ŝ∗k ) = (β̂0(ŝ∗k ),
ˆ̃β(ŝ∗k )

T)T = arg min
b∈Rpn+1

1
n

n

∑
i=1

ρ(bTX(k)
i , Y(k)

i )

is ML estimator for kth sample. We denote by M(k) the family M obtained by a given procedure for
kth sample.

In our numerical experiments we have computed the following measures of selection performance
which gauge co-direction of true parameter β and β̂ and the interplay between s∗ and ŝ∗:

• ANGLE = 1
L

L
∑

k=1
arccos | cos � (β̃0, ˆ̃β(ŝ∗k ))|, where

cos � (β̃, ˆ̃β(ŝ∗k )) =

pn

∑
j=1

β j β̂ j(ŝ∗k )

||β̃||2|| ˆ̃β(ŝ∗k )||2

and we let cos � (β̃, ˆ̃β(ŝ∗k )) = 0, if ||β̃||2|| ˆ̃β(ŝ∗k )||2 = 0,

• Pinc =
1
L

L
∑

k=1
I(s∗ ∈ M(k)),

• Pequal =
1
L

L
∑

k=1
I(ŝ∗k = s∗).

• Psupset =
1
L

L
∑

k=1
I(ŝ∗k ⊇ s∗).

Thus, ANGLE is equal an of angle between true parameter (with intercept omitted) and its post
model-selection estimator averaged over simulations, Pinc is a fraction of simulations for which family
M(k) contains true model s∗, and Pequal and Psupset are the fractions of time when SSnet chooses true
model or its superset, respectively.
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6.2. Regression Models Considered

To investigate behavior of two-step procedure under misspecification we considered two similar
models with different sets of predictors. As sets of predictors differ, this results in correct specification
of the first model (Model M1) and misspecification of the second (Model M2).

Namely, in Model M1, we generated n observations (Xi, Yi) ∈ Rp+1 × {0, 1} for i = 1, . . . , n
such that:

Xi0 = 1, Xi1 = Zi1, Xi2 = Zi2, Xij = Zi,j−7 for j = 10, . . . , p,

Xi3 = X2
i1, Xi4 = X2

i2, Xi5 = Xi1Xi2,

Xi6 = X2
i1Xi2, Xi7 = Xi1X2

i2, Xi8 = X3
i1, Xi9 = X3

i2,

where Zi = (Zi1, . . . , Zip)
T ∼ Np(0p, Σ), Σ = [ρ|i−j|]i,j=1,...,p and ρ ∈ (−1, 1). We consider response

function q(x) = qL(x3) for x ∈ R, s = {1, 2} and βs = (1, 1)T . Thus,

P(Yi = 1|Xi = xi) = q(βT
s xi,s) = q(xi1 + xi2) = qL((xi1 + xi2)

3)

= qL(x3
i1 + x3

i2 + 3x2
i1xi2 + 3xi1x2

i2)

= qL(3xi6 + 3xi7 + xi8 + xi9).

We observe that the last equality implies that the above binary model is correctly specified with
respect to family of fitted logistic models and X6, X7, X8 and X9 are four active predictors, whereas
the remaining ones play no role in prediction of Y. Hence, s∗ = {6, 7, 8, 9} and β∗

s∗ = (3, 3, 1, 1)T are,
respectively, sets of indices of active predictors and non-zero coefficients of projection onto family of
logistic models.

We considered the following parameters in numerical experiments: n = 500, p = 150, ρ ∈
{−0.9+ 0.15 · k : k = 0, 1, . . . , 12}, and L = 500 (the number of generated datasets for each combination
of parameters). We investigated procedures SSnet, SSCV, and LFT using logistic, quadratic, and Huber
(cf. [12]) loss functions. For procedures SSnet and SSCV, we used GIC penalties with:

• an = log n (BIC); and
• an = log n + 2 log pn (EBIC1).

In Model M2, we generated n observations (Xi, Yi) ∈ Rp+1 × {0, 1} for i = 1, . . . , n such that Xi =

(Xi0, Xi1, . . . , Xip)
T and (Xi1, . . . , Xip)

T ∼ Np(0p, Σ), Σ = [ρ|i−j|]i,j=1,...,p and ρ ∈ (−1, 1). Response
function is q(x) = qL(x3) for x ∈ R, s = {1, 2} and βs = (1, 1)T . This means that:

P(Yi = 1|Xi = xi) = q(βT
s xi,s) = q(xi1 + xi2) = qL((xi1 + xi2)

3)

This model in comparison to Model M1 does not contain monomials of Xi1 and Xi2 of degree higher
than 1 in its set of predictors. We observe that this binary model is misspecified with respect to fitted
family of logistic models, because q(xi1 + xi2) �≡ qL(βTxi) for any β ∈ Rp+1. However, in this case,
the linear regressions condition in Equation (32) is satisfied for X, as it follows normal distribution
(see [5,7]). Hence, in view of Proposition 3.8 in [6], we have s∗log = {1, 2} and β∗

log,s∗log
= η(1, 1)T for

some η > 0. Parameters n, p, ρ as well as L were chosen as for Model M1.

6.3. Results for Models M1 and M2

We first discuss the behavior of Pinc, Pequal and Psupset for the considered procedures. We observe
that values of Pinc for SSCV and SSnet are close to 1 for low correlations in Model M2 for every tested
loss (see Figure 1). In Model M1, Pinc attains the largest values for SSnet procedure and logistic loss
for low correlations, which is because in most cases the corresponding family M is the largest among
the families created by considered procedures. Pinc is close to 0 in Model M1 for quadratic and Huber
loss, which results in low values of the remaining indices. This may be due to strong dependences
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between predictors in Model M1; note that we have, e.g., Cor(Xi1, Xi8) = 3/
√

15 ≈ 0.77. It is seen
that in Model M1 inclusion probability Pinc is much lower than in Model M2 (except for negative
correlations). It it also seen that Pinc for SSCV is larger than for LFT and LFT fails with respect to Pinc
in M1.
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Figure 1. Pinc for Models M1 and M2.
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In Model M1, the largest values Pequal are attained for SSnet with BIC penalty, the second best
is SSCV with EBIC1 penalty (see Figure 2). In Model M2, Pequal is close to 1 for SSnet and SSCV with
EBIC1 penalty and is much larger than Pequal for the corresponding versions using BIC penalty. We also
note that choice of loss is relevant only for larger correlations. These results confirm theoretical result
of Theorem 2.1 in [5], which show that collinearity holds for broad class of loss function. We observe
also that, although in Model M2 remaining procedures do not select s∗ with high probability, they
select its superset, what is indicated by values of Psupset (see Figure 3). This analysis is confirmed by an
analysis of ANGLE measure (see Figure 4), which attains values close to 0, when Psupset is close to 1.

Low values of ANGLE measure mean that estimated vector ˆ̃β(ŝ∗k ) is approximately proportional to β̃,
which is the case for Model M2, where normal predictors satisfy linear regressions condition. Note that
the angles of ˆ̃β(ŝ∗k ) and β̃∗ in Model M1 significantly differ even though Model M1 is well specified. In
addition, for the best performing procedures in both models and any loss considered, Pequal is much
larger in Model M2 than in Model M1, even though the latter is correctly specified. This shows that
choosing a simple misspecified model which retains crucial characteristics of the well specified large
model instead of the latter might be beneficial.

In Model M1, procedures with BIC penalty perform better than those with EBIC1 penalty; however,
the gain for Pequal is much smaller than the gain when using EBIC1 in Model M2. LFT procedure
performs poorly in Model M1 and reasonably well in Model M2. The overall winner in both models is
SSnet. SSCV performs only slightly worse than SSnet in Model M2 but performs significantly worse in
Model M1.

Analysis of computing times of the first and second stages of each procedure shows that SSnet
procedure creates large families M and GIC minimization becomes computationally intensive. We also
observe that the first stage for SSCV is more time consuming than for SSnet, what is caused by multiple
fitting of Lasso in cross-validation. However, SSCV is much faster than SSnet in the second stage.

We conclude that in the considered experiments SSnet with EBIC1 penalty works the best in
most cases; however, even for the winning procedure, strong dependence of predictors results in
deterioration of its performance. It is also clear from our experiments that a choice of GIC penalty is
crucial for its performance. Modification of SS procedure which would perform satisfactorily for large
correlations is still an open problem.
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Figure 2. Pequal for Models M1 and M2.
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Figure 3. Psupset for Models M1 and M2.
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Figure 4. ANGLE for Models M1 and M2.

7. Discussion

In the paper, we study the problem of selecting a set of active variables in binary regression
model when the number of all predictors p is much larger then number of observations n and active
predictors are sparse among all predictors, i.e., their number is significantly smaller than p. We consider
a general binary model and fit based on minimization of empirical risk corresponding to a general loss
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function. This scenario encompasses the common case in practice when the underlying semi-parametric
model is misspecified, i.e., the assumed response function is different from the true one. For random
predictors, we show that in such a case the two-step procedure based on Lasso consistently estimates
the support of pseudo-true vector β∗. Under linear regression conditions and semi-parametric model,
this implies consistent recovery of a subset of active predictors. This partly explains why selection
procedures perform satisfactorily even when the fitted model is wrong. We show that, by using
the two-step procedure, we can successfully reduce the dimension of the model chosen by Lasso.
Moreover, for the two-step procedure in the case of random predictors, we do not require restrictive
conditions on experimental matrix needed for Lasso support consistency for deterministic predictors
such as irrepresentable condition. Our experiments show satisfactory behavior of the proposed SSnet
procedure with EBIC1 penalty.

Future research directions include considering the performance of SS procedure without
subgaussianity assumption and for practical importance an automatic choice of a penalty for GIC
criterion. Moreover, we note the existing challenge of finding a modification of SS procedure that
would perform satisfactorily for large correlations is still an open problem. It would also be of interest
to find conditions under which weaker than Equation (32) would lead to collinearity of β and β∗

(see [18] for different angle on this problem).
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Appendix A

Proof of Lemma 1:

Proof. Observe first that function Rn is convex as ρ is convex. Moreover, from the definition of β̂L,
we get the inequality:

Wn(β̂L) = Rn(β̂L)− Rn(β∗) ≤ λ(||β∗||1 − ||β̂L||1). (A1)

Note that v − β∗ ∈ B1(r), as we have:

||v − β∗||1 =
||β̂L − β∗||1

r + ||β̂L − β∗||1
· r ≤ r. (A2)

By definition of Wn, convexity of Rn, Equation (A2) and definition of S, we have:

W(v) = W(v)− Wn(v) + Rn(v)− Rn(β∗)

≤ W(v)− Wn(v) + u(Rn(β̂L)− Rn(β∗)) ≤ S(r) + uWn(β̂L). (A3)

From the convexity of l1 norm, Equations (A1) and (A3), equality ||β∗||1 = ||β∗
s∗ ||1, and triangle

inequality, it follows that:

W(v) + λ||v||1 ≤ W(v) + λu||β̂L||1 + λ(1 − u)||β∗||1
≤ S(r) + uWn(β̂L) + uλ(||β̂L||1 − ||β∗||1) + λ||β∗||1
≤ S(r) + λ||β∗||1 ≤ S(r) + λ||β∗ − vs∗ ||1 + λ||vs∗ ||1. (A4)
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Hence,

W(v) + λ||v − β∗||1 = (W(v) + λ||v||1) + λ(||v − β∗||1 − ||v||1)
≤ S(r) + λ||β∗ − vs∗ ||1 + λ||vs∗ ||1 + λ(||v − β∗||1 − ||v||1) = S(r) + 2λ||β∗ − vs∗ ||1.

We prove now Lemma A1 needed in the proof of Lemma 2 below.

Lemma A1. Assume that S ∼ Subg(σ2) and T is a random variable such that |T| ≤ M, where M is some
positive constant and S and T are independent. Then, ST ∼ Subg(M2σ2).

Proof. Observe that:
EetST = E(E(etST |T)) ≤ Ee

t2T2σ2
2 ≤ e

t2 M2σ2
2 .

Proof of Lemma 2.

Proof. From the Chebyshev inequality (first inequality below), symmetrization inequality (see Lemma
2.3.1 of [29]) and Talagrand–Ledoux inequality ([30], Theorem 4.12), we have for t > 0 and (εi)i=1,...,n
being Rademacher variables independent of (Xi)i=1,...,n:

P(S(r) > t) ≤ ES(r)
t

≤ 2
tn

E sup
b∈Rpn :b−β∗∈B1(r)

∣∣∣∣∣ n

∑
i=1

εi(ρ(XT
i b, Yi)− ρ(XT

i β∗, Yi))

∣∣∣∣∣
≤ 4L

tn
E sup

b∈Rpn :b−β∗∈B1(r)

∣∣∣∣∣ n

∑
i=1

εiXT
i (b − β∗)

∣∣∣∣∣ . (A5)

We observe that εiXij ∼ Subg(σ2
jn) in view of Lemma A1. Hence, using independence, we obtain

n
∑

i=1
εiXij ∼ Subg(nσ2

jn) and thus
n
∑

i=1
εiXij ∼ Subg(ns2

n). Applying Hölder inequality and the following

inequality (see Lemma 2.2 of [37]):

E

∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

εiXij

∣∣∣∣∣
∣∣∣∣∣
∞

≤
√

nsn

√
2 ln(2pn) ≤ 2sn

√
n ln(pn ∨ 2) (A6)

we have:

4L
tn

E sup
b∈Rpn :b−β∗∈B1(r)

∣∣∣∣∣ n

∑
i=1

εiXT
i (b − β∗)

∣∣∣∣∣ ≤ 4Lr
t

E max
j∈{1,...,pn}

∣∣∣∣∣ 1
n

n

∑
i=1

εiXij

∣∣∣∣∣
≤ 8Lrsn

√
log(pn ∨ 2)
t
√

n
.

From this, Part 1 follows. In the proofs of Parts 2 and 3, the first inequalities are the same as in
Equation (A5) with supremums taken on corresponding sets. Using Cauchy–Schwarz inequality,
inequality ||v||2 ≤

√
|v|||v||∞, inequality ||vπ ||∞ ≤ ||v||∞ for π ⊆ {1, . . . , pn}, and Equation (A6)

yields:
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P(S1(r) ≥ t) ≤ 4L
nt

E sup
b∈D1 : b−β∗∈B2(r)

∣∣∣∣∣ n

∑
i=1

εiXT
i (b − β∗)

∣∣∣∣∣
≤ 4Lr

nt
E max

π⊆{1,...,pn},|π|≤kn

∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

εiXi,π

∣∣∣∣∣
∣∣∣∣∣
2

≤ 4Lr
nt

E max
π⊆{1,...,pn},|π|≤kn

√
|π|

∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

εiXi,π

∣∣∣∣∣
∣∣∣∣∣
∞

≤ 4Lr
√

kn

nt
E

∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

εiXi

∣∣∣∣∣
∣∣∣∣∣
∞

≤ 8Lr
t
√

n

√
knsn

√
ln(pn ∨ 2).

Similarly for S2(r), using Cauchy–Schwarz inequality, ||vπ ||2 ≤ ||vs∗ ||2, which is valid for π ⊆ s∗,
definition of l2 norm and inequality E|Z| ≤

√
EZ2 ≤ σ for Z ∼ Subg(σ2), we obtain:

P(S2(r) ≥ t) ≤ 4L
nt

E sup
b∈D2 : b−β∗∈B2(r)

∣∣∣∣∣ n

∑
i=1

εiXT
i (b − β∗)

∣∣∣∣∣
≤ 4Lr

nt
E max

π⊆s∗

∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

εiXi,π

∣∣∣∣∣
∣∣∣∣∣
2

≤ 4Lr
nt

E

∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

εiXi,s∗

∣∣∣∣∣
∣∣∣∣∣
2

≤ 4Lr
nt

√√√√E

∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

εiXi,s∗

∣∣∣∣∣
∣∣∣∣∣
2

2

=
4Lr
nt

√√√√∑
j∈s∗

E

(
n

∑
i=1

εiXij

)2

≤ 4Lr√
nt

√
|s∗|sn.

Proof of Lemma 3.

Proof. Let u and v be defined as in Lemma 1. Observe that ||v − β∗||1 ≤ r/2 is equivalent to
||β̂L − β∗||1 ≤ r, as the function f (x) = rx/(x + r) is increasing, f (r) = r/2 and f (||β̂L − β∗||1) =

||v − β∗||1. Let C = 1/(4 + ε). We consider two cases:

(i) ||vs∗ − β∗
s∗ ||1 ≤ Cr.

In this case, from the basic inequality (Lemma 1), we have:

||v − β∗||1 ≤ λ−1(W(v) + λ||v − β∗||1) ≤ λ−1S(r) + 2||vs∗ − β∗
s∗ ||1 ≤ C̄r + 2Cr =

r
2

.

(ii) ||vs∗ − β∗
s∗ ||1 > Cr.

Note that ||vs∗c ||1 < (1 − C)r, otherwise we would have ||v − β∗||1 > r, which contradicts
Equation (A2) in proof of Lemma 1. Now, we observe that v − β∗ ∈ Cε, as we have from definition of
C and assumption for this case:

||vs∗c ||1 < (1 − C)r = (3 + ε)Cr < (3 + ε)||vs∗ − β∗
s∗ ||1.

By inequality between l1 and l2 norms, the definition of κH(ε), inequality ca2/4 + b2/c ≥ ab, and
margin Condition (MC) (which holds because v − β∗ ∈ B1(r) ⊆ B1(δ) in view of Equation (A2)),
we conclude that:
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||vs∗ − β∗
s∗ ||1 ≤

√
|s∗|||vs∗ − β∗

s∗ ||2 ≤
√

|s∗|||v − β∗||2 (A7)

≤
√

|s∗|
√

(v − β∗)T H(v − β∗)
κH(ε)

≤ ϑ(v − β∗)T H(v − β∗)
4λ

+
|s∗|λ

ϑκH(ε)
≤ W(v)

2λ
+

|s∗|λ
ϑκH(ε)

. (A8)

Hence, from the basic inequality (Lemma 1) and the inequality above, it follows that:

W(v) + λ||v − β∗||1 ≤ S(r) + 2λ||vs∗ − β∗
s∗ ||1 ≤ S(r) + W(v) +

2|s∗|λ2

ϑκH(ε)
.

Subtracting W(v) from both sides of the above inequality and using the assumption on S, the bound
on |s∗|, and the definition of C̃ yields:

||v − β∗||1 ≤ S(r)
λ

+
2|s∗|λ
ϑκH(ε)

≤ C̄r +
2|s∗|λ
ϑκH(ε)

≤ (C̄ + C̃)r =
r
2

.

Proof of Remark 1.

Proof. Condition lim inf
n→∞

Dnan
kn log(2pn)

> 1 is equivalent to the condition that exists some u > 0 that for

almost all n we have:
Dnan − (1 + u)kn log(2pn) > 0.

(1) We observe that, if
Aan − (1 + u)kn log(2pn) > 0,

then the above condition is satisfied. For BIC, we have:

A log n > (1 + u)kn log(2pn) > 0,

which is equivalent to the condition (1) of the Remark.

(2) We observe that using inequalities kn ≤ C, 2Aγ − (1 + u)C ≥ 0 and pn ≥ 1 yields for n > 2
(1+u)C

A :

A(log n + 2γ log pn)− (1 + u)kn log(2pn) ≥ A(log n + 2γ log pn)− (1 + u)C log(2pn)

= (2Aγ − (1 + u)C) log pn + A log n − (1 + u)C log 2 ≥ A log n − (1 + u)C log 2 > 0.

(3) In this case, we check similarly as in (2) that

A(log n + 2γ log pn)− (1 + u)kn log(2pn) ≥ A(log n + 2γ log pn)− (1 + u)C log(2pn)

= (2Aγ − (1 + u)C) log pn + A log n − (1 + u)C log 2 > 0
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Abstract: In this paper, we introduce the notion of “learning capacity” for algorithms that learn from
data, which is analogous to the Shannon channel capacity for communication systems. We show how
“learning capacity” bridges the gap between statistical learning theory and information theory, and
we will use it to derive generalization bounds for finite hypothesis spaces, differential privacy, and
countable domains, among others. Moreover, we prove that under the Axiom of Choice, the existence of
an empirical risk minimization (ERM) rule that has a vanishing learning capacity is equivalent to the
assertion that the hypothesis space has a finite Vapnik–Chervonenkis (VC) dimension, thus establishing
an equivalence relation between two of the most fundamental concepts in statistical learning theory and
information theory. In addition, we show how the learning capacity of an algorithm provides important
qualitative results, such as on the relation between generalization and algorithmic stability, information
leakage, and data processing. Finally, we conclude by listing some open problems and suggesting future
directions of research.

Keywords: statistical learning theory; information theory; entropy; parameter estimation; learning
systems; privacy; prediction methods

1. Introduction

1.1. Generalization Risk

A central goal when learning from data is to strike a balance between underfitting and overfitting.
Mathematically, this requirement can be translated into an optimization problem with two competing
objectives. First, we would like the learning algorithm to produce a hypothesis (i.e., an answer) that
performs well on the empirical sample. This goal can be easily achieved by using a rich hypothesis space
that can “explain” any observations. Second, we would like to guarantee that the performance of the
hypothesis on the empirical data (a.k.a. training error) is a good approximation of its performance with
respect to the unknown underlying distribution (a.k.a. test error). This goal can be achieved by limiting the
complexity of the hypothesis space. The first condition mitigates underfitting while the latter condition
mitigates overfitting.

Formally, suppose we have a learning algorithm L : Zm → H that receives a sample s = {z1, . . . , zm},
which comprises of m i.i.d. observations zi ∼ p(z), and uses s to select a hypothesis h ∈ H. Let l be a
loss function defined on the product space Z × H. For instance, l can be the mean-square-error (MSE) in
regression or the 0–1 error in classification. Then, the goal of learning from data is to select a hypothesis
h ∈ H such that its true risk R(h), defined by

R(h) = Ez∼p(z)[l(z, h)], (1)

Entropy 2020, 22, 438; doi:10.3390/e22040438 www.mdpi.com/journal/entropy
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is small. However, this optimization problem is often difficult to solve exactly since the underlying
distribution of observations p(z) is seldom known. Rather, because the true risk R(h) can be decomposed
into a sum of two terms:

R(h) =
[
Rs(h)

]
+
[
R(h)− Rs(h)

]
,

where Rs(h) = Ez∼s[l(z, h)]
.
= (1/m)∑z∈s l(z, h), both terms can be tackled separately. The first term in

the equation above corresponds to the empirical risk on the training sample s. The second term corresponds
to the generalization risk. Hence, by minimizing both terms, one obtains a learning algorithm whose true
risk is small.

Minimizing the empirical risk can be achieved using tractable approximations to the empirical risk
minimization (ERM) procedure, such as stochastic convex optimization [1,2]. However, the generalization
risk is often difficult to deal with directly because the underlying distribution is often unknown. Instead,
it is a common practice to bound it analytically. By establishing analytical conditions for generalization,
one hopes to design better learning algorithms that both perform well empirically and generalize as well
into the future.

Several methods have been proposed in the past for bounding the generalization risk of learning
algorithms. Some examples of popular approaches include uniform convergence, algorithmic stability,
Rademacher and Gaussian complexities, and the PAC–Bayesian framework [3–7].

The proliferation of such bounds can be understood upon noting that the generalization risk of a
learning algorithm is influenced by multiple factors, such as the domain Z , the hypothesis space H, and
the mapping from Z to H. Hence, one may derive new generalization bounds by imposing conditions
on any of such components. For example, the Vapnik–Chervonenkis (VC) theory derives generalization
bounds by assuming constraints on H whereas stability bounds, e.g., [6,8,9], are derived by assuming
constraints on the mapping from Z to H.

Rather than showing that certain conditions are sufficient for generalization, we will establish in this
paper conditions that are both necessary and sufficient. More precisely, we will show that the “ uniform”
generalization risk of a learning algorithm is an information-theoretic characterization. In particular, it is
equal to the total variation distance between the joint distribution of the hypothesis h and a single random
training example ẑ ∼ s, on one hand, and the product of their marginal distributions, on the other hand.
Hence, it is analogous to the mutual information between h and ẑ. Since uniform generalization is an
information-theoretic quantity, information-theoretic tools, such as the data-processing inequality and
the chain rules of entropy [10], can be used to analyze the performance of machine learning algorithms.
For example, we will illustrate this fact by presenting a simple proof to the classical generalization bound
in the finite hypothesis space setting using, solely, information-theoretic inequalities without any reference
to the union bound.

1.2. Types of Generalization

Generalization bounds can be stated either in expectation or in probability. Let l : Z × H → [0, 1] be
some loss function with a bounded range. Then, we have the following definitions:

Definition 1 (Generalization in Expectation). The expected generalization risk of a learning algorithm L :
Zm → H with respect to a loss l : Z × H → [0, 1] is defined by:

Rgen(L) = Eh[R(h)]−Es,h Eẑ∼s[l(ẑ, h)], (2)
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where R(h) is defined in Equation (1), and the expectation is taken over the random choice of s and the internal
randomness of L. A learning algorithm L generalizes in expectation if Rgen(L) → 0 as m → ∞ for all
distributions p(z).

Definition 2 (Generalization in Probability). A learning algorithm L generalizes in probability if for any ε > 0,
we have:

p
{∣∣R(h)−Eẑ∼s[l(ẑ, h)]

∣∣ > ε
}

→ 0 as m → ∞,

where the probability is evaluated over the randomness of s and the internal randomness of the learning algorithm.

In general, both types of generalization have been used to analyze machine learning algorithms.
For instance, generalization in probability is used in the VC theory to analyze algorithms with finite VC
dimensions, such as linear classifiers [3]. Generalization in expectation, on the other hand, was used to
analyze learning algorithms, such as the stochastic gradient descent (SGD), differential privacy, and ridge
regression [11–14]. Generalization in expectation is often simpler to analyze, but it provides a weaker
performance guarantee.

1.3. Paper Outline

In this paper, a third notion of generalization is introduced, which is called uniform generalization.
Uniform generalization also provides generalization bounds in expectation, but it is stronger than the
traditional form of generalization in expectation in Definition 1 because it requires that the generalization
risk vanishes uniformly in expectation across all bounded parametric loss functions (hence the name).
In this paper, a loss function l : Z × H → [0, 1] is called “ parametric” if it is conditionally independent of
the original training sample given the learned hypothesis h ∈ H.

As mentioned earlier, the uniform generalization risk is equal to an information-theoretic quantity and
it yields classical results in statistical learning theory. Perhaps more importantly, and unlike traditional
in-expectation guarantees that do not imply concentration, we will show that uniform generalization in
expectation implies generalization in probability. Hence, all of the uniform generalization bounds derived
in this paper hold both in expectation and with a high probability.

The theory of uniform generalization bridges the gap between information theory and statistical
learning theory. For example, we will establish an equivalence relation between the VC dimension, on one
hand, and another quantity that is quite analogous to the Shannon channel capacity, on the other hand.
Needless to mention, both the VC dimension and the Shannon channel capacity are arguably the most
central concepts in statistical learning theory and information theory. This connection between the two
concepts is obtained via the notion of the “ learning capacity” that we introduce in this paper, which
is the supremum of the uniform generalization risk across all input distributions. We will compute the
learning capacities for many machine learning algorithms and show how it matches known bounds on the
generalization risk up to logarithmic factors.

In general, the main aim of this work is to bring to light a new information-theoretic approach for
analyzing machine learning algorithms. Despite the fact that “ uniform generalization” might appear to be
a strong condition at a first sight, one of the central themes that is emphasized repeatedly throughout this
paper is that uniform generalization is, in fact, a natural condition that arises commonly in practice. It is
not a condition to require or enforce by machine learning practitioners! We believe this holds because any
learning algorithm is a channel from the space of training samples to the hypothesis space so its risk for
overfitting can be analyzed by studying the properties of this mapping itself. Such an approach yields the
uniform generalization bounds that are derived in this paper.
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While we strive to introduce foundational results in this work, there are many important questions
that remain unanswered. We conclude this paper by listing some of those open problems and suggesting
future directions of research.

2. Notation

The notation used in this paper is fairly standard. Important exceptions are listed here. If x is a
random variable that takes its values from a finite set s uniformly at random, we write x ∼ s to denote
such a distribution. If x is a boolean random variable (i.e., a predicate), then I{x} = 1 if and only if x

is true, otherwise I{x} = 0. In general, random variables are denoted with boldface letters x, instances
of random variables are denoted with small letters x, matrices are denoted with capital letters X, and
alphabets i.e., fixed sets) are denoted with calligraphic typeface X (except L that will be reserved for the
learning algorithm and D that will be reserved for the input distribution as is customary in the literature).

Throughout this paper, we will always write Z to denote the space of observations (a.k.a. domain)
and write H to denote the hypothesis space (a.k.a. range). A learning algorithm L : Zm → H is formally
treated as a stochastic map, where the hypothesis h ∈ H can be a deterministic or a randomized function
of the training sample s ∈ Zm. Given a 0–1 loss function l : H × Z → {0, 1}, we will abuse terminology
slightly by speaking about the “ VC dimension of H” when we actually mean the VC dimension of the
loss class {l(·, h) : h ∈ H}.

In addition, given two probability measures p and q defined on the same space, we will write
〈p, q〉 to denote the overlapping coefficient between p and q. That is, 〈p, q〉 = 1 − ||p , q||T , where
||p , q||T = 1

2

∣∣∣∣p − q
∣∣∣∣

1 is the total variation distance.
Moreover, we will use the order in probability notation for real-valued random variables. Here, we adopt

the notation used by [15] and [16]. In particular, let x = xn be a real-valued random variable that depends
on some parameter n ∈ N. Then, we will write xn = Op( f (n)) if for any δ > 0, there exists absolute
constants C and n0 such that for any fixed n ≥ n0, the inequality |xn| < C | f (n)| holds with a probability
of, at least, 1 − δ. In other words, the ratio xn/ f (n) is stochastically bounded [15]. Similarly, we write
xn = op( f (n)) if xn/ f (n) converges to zero in probability. As an example, if x ∼ N (0, Id) is a standard
multivariate Gaussian vector, then || x ||2 = Op(

√
d) even though || x ||2 can be arbitrarily large. Intuitively,

the probability of the event || x ||2 ≥ d
1
2+ε when ε > 0 goes to zero as d → ∞ so || x ||2 is effectively of the

order O(
√

d).

3. Related Work

A learning algorithm is called consistent if the true risk of its hypothesis h converges to the optimal
true risk in H, i.e., infh∈H R(h), as m → ∞ in a distribution agnostic manner. A learning problem, which
is a tuple (Z , H, l) with l being a loss function defined on the product space Z × H, is called learnable
if it admits a consistent learning algorithm. It can be shown that learnability is equivalent to uniform
convergence for supervised classification and regression even though uniform convergence is not necessary
in the general setting [17].

Unlike learnability, the subject of generalization looks into how representative the empirical risk
Rs(h) is to the true risk R(h) as discussed earlier. It can be rightfully considered as an extension to the
law of large numbers, which is one of the earliest and most important results in probability theory and
statistics. However, unlike the law of large numbers, which assumes that observations are independent
and identically distributed, the subject of generalization in machine learning addresses the case where the
losses l(zi, h) are no longer i.i.d. due to the fact that h is selected according to the training sample s and
zi ∈ s.
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Similar to learnability, uniform convergence is, by definition, sufficient for generalization but it is not
necessary because the learning algorithm might restrict its search space to a smaller subset of H. So, in
addition to uniform convergence bounds, several other methods have been introduced for bounding the
generalization risk, such as using algorithmic stability, Rademacher and Gaussian complexities, generic
chaining bounds, the PAC-Bayesian framework, and robustness-based analysis [5–7,18–20]. Classical
concentration of measure inequalities, such as using the union bound, form the building blocks of such
rich theories.

In this work, we address the subject of generalization in machine learning from an
information-theoretic point of view. We will show that if the hypothesis h conveys “ little” information
about a random single training example ẑ ∼ s, then the difference between Eẑ∼s[l(ẑ, h)] and
Ez∼p(z)[l(z, h)] will be small with a high probability. The measure of information we use here is given
by the notion of variational information J (ẑ; h) between the hypothesis h and a single random training
example ẑ ∼ s. Variational information, also sometimes called T-information [14], is an instance of the
class of informativity measures using f -divergences, which can be motivated axiomatically [21,22]. Unlike
traditional methods, we will prove that J (ẑ; h) is equal to the “ uniform” generalization risk; it is not just
an upper bound.

Information-theoretic approaches of analyzing the generalization risk of learning algorithms, such
as the one proposed in this paper, have found applications in adaptive data analysis. This includes the
work of [12] using the max-information, the work of [23] and [24] using the mutual information, and the
work of [14] using the leave-one-out information. One key contribution of our work is to show that one
should examine the relationship between the hypothesis and a single random training example, instead of
examining the relationship between the hypothesis and the full training sample as is customary in the
literature. The gap between such two approaches is strict. For example, Theorem 8 in Section 5.5 presents
an example of when a learning algorithm can have a vanishing uniform generalization risk even when the
mutual information between the learned hypothesis and the training sample can be made arbitrarily large.

4. Uniform Generalization

4.1. Preliminary Definitions

In this paper, we consider the general setting of learning introduced by Vapnik [3]. To reiterate, we
have an observation space (a.k.a. domain) Z and a hypothesis space H. Our learning algorithm L receives
a set of m observations s = {z1, . . . , zm} ∈ Zm generated i.i.d. from some fixed unknown distribution p(z),
and picks a hypothesis h ∈ H according to some probability distribution p(h | s). In other words, L is a
channel from s to h. In this paper, we allow the hypothesis h to be any summary statistic of the training
set. It can be an answer to a query, a measure of central tendency, or a mapping from the input space to
the output space. In fact, we even allow h to be a subset of the training set itself. In formal terms, L is
a stochastic map between the two random variables s ∈ Zm and h ∈ H, where the exact interpretation
of those random variables is irrelevant. Moreover, we assume that there exists a non-negative bounded
loss function l(z, h) ∈ [0, 1] that is used to measure the fitness of the hypothesis h ∈ H on the observation
z ∈ Z .

For any fixed hypothesis h ∈ H, we define its true risk R(h) by Equation (1) and denote its empirical
risk on the training sample by Rs(h). We also define the true and empirical risks of the learning algorithm L
by the expected corresponding risk of its hypothesis:

R(L) = Es Eh ∼p(h|s) [R(h)] = Eh [R(h)] (3)

R̂(L) = Es Eh ∼p(h|s) [Rs(h)] = Es, h [Rs(h)] (4)
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Finally, the generalization risk of the learning algorithm is defined by:

Rgen(L) .
= R(L)− R̂(L) (5)

Next, we define uniform generalization:

Definition 3 (Parametric Loss). A loss function l(·, h) : Z → [0, 1] is called parametric if it is conditionally
independent of the training sample given the hypothesis h ∈ H. That is, it satisfies the Markov chain s → h →
l(·, h).

Definition 4 (Uniform Generalization). A learning algorithm L : Zm → H generalizes uniformly with rate
ε ≥ 0 if for all bounded parametric losses l : Z × H → [0, 1], we have |Rgen(L)| ≤ ε, where Rgen(L) is given in
Equation (5).

Informally, Definition 4 states that once a hypothesis h is selected by a learning algorithm L that
achieves uniform generalization, then no “ adversary” can post-process the hypothesis in a manner that
causes over-fitting to occur. Equivalently, uniform generalization implies that the empirical performance
of h on the sample s will remain close to its performance with respect to the underlying distribution
regardless of how that performance is being measured. For example, the loss function l : Z × H →
[0, 1] in Equation (5) can be the misclassification error rate as in the traditional classification setting, a
cost-sensitive error rate as in fraud detection and medical diagnosis [25], or the Brier score as in probabilistic
predictions [26]. The generalization guarantee would hold in any case.

4.2. Variational Information

Given two random variables x and y, the variational information between the two random variables is
defined to be the total variation distance between the join distribution p(x, y) and the product of marginals
p(x) · p(y). We will denote this by J (x; y). By definition:

J (x; y) = Ex,y||p(x, y) , p(x) · p(y)||T = Ex||p(y) , p(y|x)||T

Note that 0 ≤ J (x; y) ≤ 1. We describe some of the important properties of variational information in
this section. The reader may consult the appendices for detailed proofs.

Lemma 1 (Data Processing Inequality). If x → y → z is a Markov chain, then:

J (x; z) ≤ J (y; z)

This data processing inequality holds, in general, for all informativity measures using f -divergences [21,22].

Lemma 2 (Information Cannot Hurt). For any random variables x ∈ X , y ∈ Y , and z ∈ Z , we have:

J (x; y) ≤ J (x; (y, z))

Proof. The proof is in Appendix A.

Finally, we derive a chain rule for the variational information.

68



Entropy 2020, 22, 438

Definition 5 (Conditional Variational Information). The conditional variational information between the two
random variables x and y given z is defined by:

J (x; y | z) = Ez
[
||p(x, y | z) , p(x|z) · p(y|z)||T

]
,

which is analogous to the conditional mutual information in information theory [10].

Theorem 1 (Chain Rule). Let (h1, . . . , hk) be a sequence of random variables. Then, for any random variable z,
we have: J (z; (h1, . . . , hk)) ≤ ∑k

t=1 J (z; ht | (h1, . . . , ht−1))

Proof. The proof is in Appendix B.

Although the chain rule above provides an upper bound, the upper bound is tight in the
following sense:

Proposition 1. For any random variables x, y, and z, we have
∣∣J (x; (y, z)) − J (x; z | y)

∣∣ ≤ J (x; y) and∣∣J (x; (y, z))− J (x; y)
∣∣ ≤ J (x; z | y).

Proof. The proof is in Appendix C.

In other words, the inequality in the chain rule J (x; (y, z)) ≤ J (x; y) + J (x; z | y) becomes an
equality if:

min{J (x; y), J (x; z | y)} = 0

The chain rule provides a recipe for computing the bias of a composition of hypotheses (h1, . . . , hk).
Recently, [23] proposed an information budget framework for controlling the bias of estimators by controlling
the mutual information between h and the training sample s. The proposed framework rests on the chain
rule of mutual information. Here, we note that the argument for the information budget framework also
holds when using the variational information due to the chain rule above.

4.3. Equivalence Result

Our first main theorem states that the uniform generalization risk has a precise information-theoretic
characterization.

Theorem 2. Given a fixed constant 0 ≤ ε ≤ 1 and a learning algorithm L : Zm → H that selects a hypothesis
h ∈ H according to a training sample s = {z1, . . . , zm}, where zi ∼ p(z) are i.i.d., L generalizes uniformly with
rate ε if and only if J (h; ẑ) ≤ ε, where ẑ ∼ s is a single random training example.

Proof. Let L : Zm → H be a learning algorithm that receives a finite set of training examples
s = {z1, . . . , zm} ∈ Zm drawn i.i.d. from a fixed unknown distribution p(z). Let h ∼ p(h|s) be the
hypothesis chosen by L (can be deterministic or randomized) and write ẑ ∼ s to denote a random variable
that selects its value uniformly at random from the training sample s. Clearly, ẑ and h are not independent
in general. To simplify notation, we will write l = l(·, h) : Z → [0, 1] to denote the loss function. Note
that l is itself a random variable that satisfies the Markov chain s → h → l. The claim is that L generalizes
uniformly with rate ε > 0 across all parametric loss functions l if and only if J (h; ẑ) ≤ ε.
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By the Markov property, we have p(l|h, s) = p(l|h). By definition, the true and empirical risks of L
are given by:

R(L) = Es,h El|hEz∼p(z) l(z) = El Ez∼p(z) l(z) (6)

R̂(L) = Es El|s Ez∼s l(z) = El Es|l Ez∼s l(z) (7)

Because ẑ ∼ s is a random variable whose value is chosen uniformly at random with replacement from the
training set s, its marginal distribution is p(z). Its conditional distribution given l can be different, however,
because both l and ẑ depend on the training set s. However, they are both conditionally independent of
each other given s. By marginalization, we have:

p(ẑ|l) = Es|l p(ẑ|s, l) = Es|l p(ẑ|s)

Combining this with Equations (6) and (7) yields R(L) = El Eẑ l(ẑ) and R̂(L) = El Eẑ|l l(ẑ). Both
equations imply that:

R(L)− R̂(L) = El

[
Eẑ l(ẑ)−Eẑ|l l(ẑ)

]
Now, we would like to sandwich the right-hand side between upper and lower bounds. To do this, we note
that if p1(z) and p2(z) are two distributions defined on the same domain Z and f : Z → [0, 1], then:∣∣Ez∼p1(z) f (z)−Ez∼p2(z) f (z)

∣∣ ≤ ||p1(z) , p2(z)||T ,

where ||p1(z) , p2(z)||T is the total variation distance. This result can be immediately proven by
considering the two regions {z ∈ Z : p1(z) > p2(z)} and {z ∈ Z : p1(z) < p2(z)} separately. In addition,
it is tight because the inequality holds with equality for the loss function f (z) = I{p1(z) ≥ p2(z)}.
Consequently:

|R(L)− R̂(L)| ≤ J (l; ẑ)

Finally, from the Markov chain ẑ → s → h → l and the data processing inequality, we have J (l; ẑ) ≤
J (h; ẑ). Plugging this into the earlier inequality yields the bound:

|R(L)− R̂(L)| ≤ J (h; ẑ)

To prove the converse, define:

l�(z, h) = I
{

p(ẑ = z) ≥ p(ẑ = z | h)
}

= I
{

p(ẑ = z) ≥ Es | h [pẑ∼s (ẑ = z)]
}

The loss l�(z, h) is independent of the training sample given h because p(ẑ = z | h) is evaluated by
taking expectation over all the training samples conditioned on h. Hence, l�(z, h) is a 0–1 loss defined on
the product space Z × H and satisfies the Markov chain s → h → l. However, given this choice of loss,
we have:

|R(L)− R̂(L)| = Eh

[
Eẑ I{p(ẑ) > p(ẑ | h)} −Eẑ | h I{p(ẑ) > p(ẑ | h)}

]
= Eh||p(ẑ) , p(ẑ | h)||T = J (h; ẑ)

Hence, the variational information J (h; ẑ) does not only provide an upper bound on the uniform
generalization risk, but is also a lower bound to it. Therefore, J (h; ẑ) is equal to the uniform
generalization risk.
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Remark 1. One important observation about Theorem 2 is that the variational information is measured between the
hypothesis h and a single training example ẑ, which is quite different from previous works that looked into the mutual
information with the entire training sample s. By considering ẑ rather than s, we quantify the uniform generalization
risk with equality and the resulting bound is not vacuous even if the learning algorithm was deterministic. By contrast,
J (s; h) may yield vacuous bounds when L is deterministic and both Z and H are uncountable.

For concreteness, we illustrate how to compute the uniform generalization risk (or equivalently the
variational information) on two simple examples. Here, B(k; φ, n) = (n

k)φ
k (1 − φ)n−k is the binomial

distribution. The first example is a special case of a more general theorem that will be presented later in
Section 5.2.

Example 1. Suppose that observations zi ∈ {0, 1} are i.i.d. Bernoulli trials with p(zi = 1) = φ, and that
the hypothesis produced by L is the empirical average h = 1

m ∑m
i=1 zi. Because p(h = k/m

∣∣ ztrn = 1) =

B(k − 1; φ, m − 1) and p(h = k/m
∣∣ ztrn = 0) = B(k; φ, m − 1), it can be shown that the uniform generalization

risk of this learning algorithm is given by the following quantity assuming that φm is an integer:

J (ẑ; h) = 2 (1 − φ)(1−φ)m φ1+m φ (1 + m φ)

(
m

m φ + 1

)
(8)

This is maximized when φ = 1/2, in which case, the uniform generalization risk can be bounded using the Stirling
approximation [27] by 1/

√
2 π m up to a first-order term.

Proof. First, the probability we obtain a hypothesis h = k
m , where k ∈ {0, 1, . . . , m}, given that we have m

Bernoulli trials has a binomial distribution:

p(h =
k
m
) =

(
m
k

)
φk (1 − φ)m−k

We use the identity:

J (ẑ; h) =
m

∑
k=0

p
(
h =

k
m
)
||p(ẑ) , p(ẑ|h)||T

However, p(ẑ) is Bernoulli with probability of success φ while p(ẑ|h = k
m ) is Bernoulli with

probability of success h. The total variation distance between the two Bernoulli distributions is given by
|φ − h|. So, we obtain:

J (ẑ; h) =
m

∑
k=0

(
m
k

)
φk (1 − φ)m−k

∣∣∣φ − k
m

∣∣∣ (9)

This is the mean deviation. Assuming φ m is an integer, then the mean deviation of the binomial random
variable is given by de Moivre’s formula:

MD = 2 (1 − φ)(1−φ)m φ1+m φ (1 + m φ)

(
m

m φ + 1

)
(10)

The mean deviation is maximized when φ = 1
2 . This gives us:

J (ẑ; h) ≤ 1
2m

(
m

m/2 + 1

)
∼ 1√

2 π m
,

where in the last step we expanded the binomial coefficient and used Stirling’s approximation [27].
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Example 2. Suppose that the domain is Z = {1, 2, 3, . . . , K} for some K < ∞, where p(z = k) = 1/K for all
k ∈ Z . Let the hypothesis space be H = Z where p(h = k) is equal to the fraction of times the value k is observed
in the training sample s = {z1, . . . , zm}. For example, if s = {1, 3, 2, 1, 1, 3}, the hypothesis h is chosen among the
set {1, 2, 3} with the respective probabilities {1/2, 1/6, 1/3}. Then, the variational information is given by:

J (ẑ; h) =
1
m

(
1 − 1

K

)
Proof. We have by symmetry p(h = k) = 1/K for all k ∈ {1, 2, 3, . . . , K}. Let ẑ = x. By Bayes rule,
we have:

p(ẑ = x|h = k) = p(h = k|ẑ = x) · p(ẑ = x)
p(h) = k

= p(h = k|ẑ = x)

However, given one observation ẑ = x, the probability of selecting a hypothesis h = k depends on
two cases:

p(h = k | ẑ = x) =

{
q if k = x

r if k �= x

for some values q ≥ 0 and r ≥ 0 such that q + (K − 1) r = 1. To find q, we use the definition of L:

q =
1
m

+
1
K

· m − 1
m

=
1
K
+

1
m

(
1 − 1

K

)
This holds because L is equivalent to an algorithm that selects a single observation in the set s uniformly
at random. So, to satisfy the condition q + (K − 1) r = 1, we have:

r =
1
K

− 1
mK

Now, we are ready to find the desired expression.

J (ẑ; h) =
1
2 ∑

x∈Z
p(ẑ = x) ∑

k∈Z

∣∣p(h = k)− p(h = k|ẑ = x)
∣∣

=
1
2 ∑

k∈Z

∣∣p(h = k)− p(h = k|ẑ = 1)
∣∣

=
1
2

[ 1
m
(
1 − 1

K
)
+

K − 1
mK

]
=

1
m

(
1 − 1

K

)
Note that the variational information in Example 2 is Θ(1/m), which is smaller than the variational

information in Example 1. This is not a coincidence. The difference between the two examples is related
to data processing. Specifically, suppose that K = 2 in Example 2 and let h2 be the hypothesis. Let h1 be
the hypothesis in Example 1. Then, we have the Markov chain s → h1 → h2 because h2 is Bernoulli with
parameter h1.

4.4. Learning Capacity

The variational information depends on the distribution of observations p(z), which is seldom known
in practice. To construct a distribution-free bound on the uniform generalization risk, we introduce the
following quantity:
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Definition 6 (Learning Capacity). The learning capacity of an algorithm L is defined by:

C(L) .
= sup

p(z)

{
J (ẑ; h)

}
, (11)

where h and ẑ are as defined in Theorem 2.

The above quantity is analogous to the Shannon channel capacity except that it is measured in the total
variation distance. It quantifies the capacity for overfitting in the given learning algorithm. For example,
the learning capacity of the algorithm in Example 1 is 1/

√
2πm up to a first order term, as proved earlier,

so its capacity for overfitting is larger than that of the learning algorithm in Example 2.
Theorem 2 reveals that C(L) has, at least, three equivalent interpretations:

1. Statistical: The learning capacity C(L) is equal to the supremum of the expected generalization risk
Rgen(L) across all input distributions and all bounded parametric losses. This holds by Theorem 2
and Definition 6.

2. Information-Theoretic: The learning capacity C(L) is equal to the amount of information contained in
the hypothesis h about the training examples. This holds because J (ẑ; h) = Eh||p(ẑ) , p(ẑ | h)||T .

3. Algorithmic: The learning capacity C(L) measures the influence of a single training example ẑ on the
distribution of the final hypothesis h. As such, a learning algorithm has a small learning capacity if
and only if it is algorithmically stable. This follows from the fact that J (ẑ; h) = Eẑ||p(h) , p(h | ẑ)||T .

Throughout the sequel, we analyze the properties of C(L) and derive upper bounds for it under
various conditions, such as in the finite hypothesis space setting and differential privacy.

4.5. The Definition of Hypothesis

In the proof of Theorem 2, the following Markov chain ẑ → s → h → l(·, h) is used. Essentially, this
states that the loss function l(·, h) : Z → [0, 1], which is a random variable itself, must be parameterized
entirely by the hypothesis h as stated in Definition 3. We list, next, a few examples that highlight this point.

Example 3 (Input Normalization). If the data is normalized prior to training, such as using min-max or z-score
normalization, then the normalization parameters are included in the definition of the hypothesis h.

Example 4 (Feature Selection). If the observations z comprise of d features and feature selection is implemented
prior to training a model v (such as in classification or clustering), then the hypothesis h is the composition (u, v),
where u ∈ {0, 1}d encodes the set of the features that have been selected by the feature selection algorithm.

Example 5 (Cross Validation). Hyper-parameter tuning is a common practice in machine learning. This includes
choosing the tradeoff parameter C in support vector machine (SVM) [28] or the bandwidth γ in radial basis function
(RBF) networks [29]. However, not all hyper-parameters are encoded in the hypothesis h. For instance, the tradeoff
constant C is never used during prediction so it is omitted from the definition of h but the bandwidth parameter γ is
included if it is selected based on the training sample.

In order to illustrate why the Markov chain ẑ → s → h → l(·, h) is important, consider the following
simple scenario. Suppose we have a mixture of two Gaussians in Rd, one corresponding to the positive
class and one corresponding to the negative class. If z-score normalization is applied before training a
linear classifier, then the generalization risk might increase with normalization because the final hypothesis
now includes more information about the training sample (see Lemma 2). Figure 1 shows this effect when
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d = 1. As illustrated in the figure, normalization is often important in order to assign equal weights to all
features but it can increase the generalization risk as well.

Figure 1. This figure corresponds to a classification problem in one dimension in which a classifier is a
threshold between positive and negative examples. In this figure, the x axis is the number of training
examples while the y-axis is the generalization risk. The red curve (top) corresponds to the difference
between training and test accuracy when z-score normalization is applied before learning a classifier.
The blue curve (bottom) corresponds to the difference between training and test accuracy when the data is
not normalized.

4.6. Concentration

The notion of uniform generalization in Definition 4 provides in-expectation guarantees. In this section,
we show that whereas traditional generalization in expectation does not imply concentration, uniform
generalization in expectation implies concentration. In fact, we will use the chain rule in Theorem 1 to
derive a Markov-type inequality. After that, we show that the bound is tight.

We begin by showing why a non-uniform generalization in expectation does not imply concentration.

Proposition 2. There exists a learning algorithm L : Zm → H and a parametric loss l : Z ×H → [0, 1] such that
the expected generalization risk is Rgen(L) = 0 even though p

{
|R(h)− Rs(h)| = 1

2
}
= 1, where the probability is

evaluated over the randomness of s and the internal randomness of L.

Proof. Let Z = [0, 1] be an instance space with a continuous marginal density p(z) and let Y = {−1,+1}
be the target set. Let h� : Z → {−1,+1} be some fixed predictor, such that p{h�(z) = 1} = 1

2 , where the
probability is evaluated over the random choice of z ∈ Z . In other words, the marginal distribution of
the labels predicted by h� is uniform over the set {−1,+1}. These assumptions are satisfied, for example,
if p(z) is uniform in [0, 1] and h�(z) = I{z < 1/2}.

Next, let the hypothesis space H be the set of predictors from Z to {−1,+1} that output a label in
{−1,+1} uniformly at random everywhere in Z except at a finite number of points. Define the parametric
loss by l(z; h) = I

{
h(z) �= h�(z)

}
.
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Next, we construct a learning algorithm L that generalizes perfectly in expectation but does not
generalize in probability. The learning algorithm L simply picks h ∈ {h0, h1} at random with equal
probability. The two hypotheses are:

h0(z) =

{
−h�(z) if z ∈ s

Uniform(−1,+1) if z /∈ s

h1(z) =

{
h�(z) if z ∈ s

Uniform(−1,+1) if z /∈ s

Because Z is uncountable, where the probability of seeing the same observation z twice is zero, R(h) = 1
2

for this learning algorithm. Thus:

Rgen(L) = Es,h
[
Rs(h)− R(h)

]
= 0

However, the empirical risk for any s satisfies Rs(h) ∈ {0, 1} while the true risk always satisfies R(h) = 1
2 ,

as mentioned earlier. Hence, the statement of the proposition follows.

There are many ways of seeing why the algorithm in Proposition 2 does not generalize uniformly in
expectation. The simplest way is to use the equivalence between uniform generalization and variational
information as stated in Theorem 2. Given the hypothesis h ∈ {h0, h1} that is learned by the algorithm
constructed in the proposition, the marginal distribution of an individual training example p(ẑ | h) is
uniform over the sample s. This follows from the fact that the hypothesis h has to encode the entire
sample s. However, the probability of seeing the same observation twice is zero (by construction). Hence,
||p(ẑ) , p(ẑ | h)||T = 1. This shows that C(L) = 1.

The example in Proposition 2 reveals an interesting property of non-uniform generalization. Namely,
non-uniform generalization can be sensitive to every bit of information provided by the hypothesis. In the
example above, the hypothesis h is encoded by the pair (s, k), where k ∈ {0, 1} determines which of
the two hypotheses {h0, h1} is selected. The discrepancy between generalization in expectation and
generalization in probability happens because k is added into the hypothesis.

Next, we use the chain rule in Theorem 1 to prove that uniform generalization, on the other hand,
is a robust property of learning algorithms. More precisely, if k has a finite domain, then a hypothesis h

generalizes uniformly in expectation if and only if the pair (h, k) generalizes uniformly in expectation.
Hence, adding any finite amount of information (in bits) to a hypothesis cannot alter its uniform
generalization property in a significant way.

Theorem 3. Let L : Zm → H be a learning algorithm whose hypothesis is h ∈ H. Let k ∈ K be a different
hypothesis that is obtained from the same sample s. If ẑ ∼ s, then:

J (ẑ; (h, k)) ≤ (2 +
|K|
2

) · J (ẑ; h) +

√
log |K|

2m

Proof. The proof is in Appendix D.

We use Theorem 3, next, to prove that a uniform generalization in expectation implies a generalization
in probability. The proof is by contradiction. Suppose we have a hypothesis h that generalizes uniformly
in expectation but there exists a parametric loss l : Z × H → [0, 1] that does not generalize in probability.
We will derive a contradiction from these two assumptions. We show that appending little information to
the hypothesis h will allow us to construct a different parametric loss that does not generalize in expectation
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by determining whether or not the empirical risk w.r.t. l : Z × H → [0, 1] is greater than, approximately
equal to, or is less than the true risk w.r.t. the same loss. This is described in, at most, two bits. Knowing
this additional information, we can define a new parametric loss that does not generalize in expectation,
which contradicts the definition of uniform generalization.

Theorem 4. Let L : Zm → H be a learning algorithm, whose risk is evaluated using a parametric loss l :
Z × H → [0, 1]. Then:

p
{∣∣Rs(h)− R(h)

∣∣ ≥ t
}

≤ 7
2t

[
J (ẑ; h) +

√
log 3
49m

]
,

where the probability is evaluated over the random choice of s and the internal randomness of L.

Proof. Let l : Z × H → [0, 1] be a parametric loss function and write:

κ(t) = p
{∣∣Rs(h)− R(h)

∣∣ ≥ t
}

(12)

Consider the new pair of hypotheses (h, k), where:

k =

⎧⎪⎪⎨⎪⎪⎩
+1, if Rs(h) ≥ R(h) + t

−1, if Rs(h) ≤ R(h)− t

0, otherwise

Then, by Theorem 3, the uniform generalization risk in expectation for the composition of hypotheses

(h, k) is bounded by (7/2)J (ẑ; h) +
√

log 3
2m . This holds uniformly across all parametric loss functions

that satisfy the Markov chain s → (h, k) → l(·, (h, k)). Next, consider the parametric loss:

l(z, (h, k)) =

⎧⎪⎪⎨⎪⎪⎩
l(z; h) if k = +1

1 − l(z; h) if k = −1

0 otherwise

Note that l(z, (h, k)) is parametric with respect to the composition of hypotheses (h, k). Using
Equation (12), the generalization risk w.r.t l(z, (h, k)) in expectation is, at least, as large as t κ(t). Therefore,

by Theorems 2 and 3, we have t κ(t) ≤ (7/2)J (ẑ; h) +
√

log 3
2m , which is the statement of the theorem

(Note: The proof assumes that the loss function l has access to the underlying distribution. This assumption
is valid because the underlying distribution p(z) is fixed and does not depend on any random outcomes,
such as s or h).

Theorem 4 reveals that uniform generalization is sufficient for concentration to hold. Importantly, the
generalization bound depends on the learning algorithm L only via its variational information J (ẑ; h).
Hence, by controlling the uniform generalization risk, one improves the generalization risk of L both in
expectation and with a high probability.

The same proof technique used in Theorem 4 also implies the following concentration bound, which
is useful when I(h; s) = o(m) where I(x; y) is the Shannon mutual information. The following bound is
similar to the bound derived by [23] using properties of sub-Gaussian loss functions.
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Proposition 3. Let L : Zm → H be a learning algorithm, whose risk is evaluated using a parametric loss function
l : Z × H → [0, 1]. Then:

p
{∣∣Rs(h)− R(h)

∣∣ ≥ t
}

≤ 1
t

√
I(s; h) + 2

2m
.

Proof. The proof is in Appendix E.

Note that having a vanishing mutual information, i.e., I(s; h) = o(m), which is the setting recently
considered in the work of [23], is a strictly stronger condition than uniform generalization. For instance, we
will later construct deterministic learning algorithms that generalize uniformly in expectation even though
I(s; h) is unbounded (see Theorem 8). By contrast, I(s; h) = o(m) is sufficient for J (ẑ; h) → 0 to hold.

Finally, we note that the concentration bound depends linearly on the variational information J (ẑ; h).
Typically, J (ẑ; h) = O(1/

√
m). By contrast, the VC bound provides an exponential decay on m [3,17].

Can the concentration bound in Theorem 4 be improved? The following proposition answers this question
in the negative.

Proposition 4. For any rational 0 < t < 1, there exists a learning algorithm L : Zm → H, a distribution p(z),
and a parametric loss l : Z × H → [0, 1] such that:

p
{∣∣Rs(h)− R(h)

∣∣ = t
}
=

J (ẑ; h)
t

,

where the probability is evaluated over the random choice of s and the internal randomness of L.

Proof. The proof is in Appendix F.

Proposition 4 shows that, without making any additional assumptions beyond that of uniform
generalization, the concentration bound in Theorem 4 is tight up to constant factors. Essentially, the only
difference between the upper and the lower bounds is a vanishing O(1/

√
m) term that is independent of L.

5. Properties of the Learning Capacity

In this section, we derive bounds on the learning capacity under various settings. We also describe
some of its important properties.

5.1. Data Processing

The relationship between learning capacity and data processing is presented in Lemma 1. Given the
random variables x, y, and z and the Markov chain x → y → z, we always have J (x; z) ≤ J (x; y). Hence,
we have a partial order on learning algorithms. This presents us with an important qualitative insight into
the design of machine learning algorithms.

Suppose we have two different hypotheses h1 and h2. We will say that h2 contains less information
than h1 if the Markov chain s → h1 → h2 holds. For example, if the observations zi ∈ {0, 1} are Bernoulli
trials, then h1 ∈ R can be the empirical average as given in Example 1 while h2 ∈ {0, 1} can be the label
that occurs most often in the training set. Because h2 = I{h1 ≥ m/2}, the hypothesis h2 contains strictly
less information about the original training set than h1. Formally, we have s → h1 → h2. In this case,
h2 enjoys a better uniform generalization bound because of data-processing. Intuitively, we know that
such a result should hold because h2 is less dependent to the original training set than h1. Hence, one can
improve the uniform generalization bound (or equivalently the learning capacity) of a learning algorithm
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by post-processing its hypothesis h in a manner that is conditionally independent of the original training
set given h.

Example 6. Post-processing hypotheses is a common technique in machine learning. This includes sparsifying the
coefficient vector w ∈ Rd in linear methods, where wj is set to zero if it has a small absolute magnitude. It also
includes methods that have been proposed to reduce the number of support vectors in SVM by exploiting linear
dependence [30], or some methods for decision tree pruning. By the data processing inequality, such techniques
reduce the learning capacity and, as a consequence, mitigate the risk for overfitting.

Needless to mention, better generalization does not immediately translate into a smaller true risk.
This is because the empirical risk itself may increase when the hypothesis h is post-processed independently
of the original training sample.

5.2. Effective Domain Size

Next, we look into how the size of the domain Z limits the learning capacity. First, we start with the
following definition:

Definition 7 (Lazy Learning). A learning algorithm L is called lazy if the training sample s ∈ Zm can be
reconstructed perfectly from the hypothesis h ∈ H. In other words, H(s|h) = 0, where H is the Shannon entropy.
Equivalently, the mapping from s to h is injective.

One common example of a lazy learner is instance-based learning when h = s. Despite their simple
nature, lazy learners are useful in practice. They are useful theoretical tools as well. In particular, because
of the fact that H(s|h) = 0 and the data processing inequality, the learning capacity of a lazy learner
provides an upper bound to the learning capacity of any possible learning algorithm. Therefore, we can
relate the learning capacity C(L) to the size of the domain Z by determining the learning capacity of lazy
learners. Because the size of Z is usually infinite, we introduce the following definition of effective set size.

Definition 8. In a countable space Z endowed with a probability mass function p(z), the effective size of Z w.r.t.
p(z) is defined by: Essp(z) (Z)

.
= 1 +

(
∑z∈Z

√
p(z) (1 − p(z))

)2.

At one extreme, if p(z) is uniform over a finite alphabet Z , then Essp(z) (Z) = |Z|. At the other
extreme, if p(z) is a Kronecker delta distribution, then Essp(z) (Z) = 1. As proved next, this notion of
effective set size determines the rate of convergence of an empirical probability mass function to its true
distribution when the distance is measured in the total variation sense. As a result, it allows us to relate
the learning capacity to a property of the domain Z .

Theorem 5. Let Z be a countable space endowed with a probability mass function p(z). Let s be a set of m i.i.d.
observations zi ∼ p(z). Define ps(z) to be the empirical probability mass function that results from drawing
observations uniformly at random from s. Then:

Es ||p(z), ps(z)||T =

√
Essp(z) [Z ]− 1

2 π m
+ o(1/

√
m),

where Essp(z) [Z ] is the effective size of Z (see Definition 8).

Proof. The proof is in Appendix G.
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A special case of Theorem 5 was proved by de Moivre in the 1730s, who showed that the empirical
mean of i.i.d. Bernoulli trials with a probability of success φ converges to the true mean with rate√

2φ(1 − φ)/(πm). This is believed to be the first appearance of the square-root law in statistical
inference in the literature [31]. Because the effective domain size of the Bernoulli distribution, according to
Definition 8, is given by 1 + 4φ(1 − φ), Theorem 5 agrees with, in fact generalizes, de Moivre’s result.

Corollary 1. Let L : Zm → H be a learning algorithm whose hypothesis is h ∈ H. Then, J (ẑ; h) ≤√
Essp(z) [Z ]−1

2 π m + o(1/
√

m). Moreover, the bound is achieved by lazy learners.

Proof. Let h̃ be the hypothesis produced by a lazy learner. The simplest example is if h is equal to the
training sample s itself. Then, we always have the Markov chain s → h̃ → h for any hypothesis h ∈ H.
Therefore, by the data processing inequality, we have J (ẑ; h) ≤ J (ẑ; h̃). By Theorem 5, we have:

J (ẑ; h̃) =

√
Essp(z) [Z ]− 1

2 π m
+ o(1/

√
m)

Hence, the statement of the corollary follows.

Corollary 2. For any learning algorithm L : Zm → H, we have C(L) ≤
√

|Z|−1
2 π m + o(1/

√
m).

Proof. The function f (p) = ∑z
√

p(z)(1 − p(z)) is both concave over the probability simplex and
permutation-invariant. Hence, by symmetry, the maximum effective domain size must be achieved
at the uniform distribution p(z) = 1/|Z|, in which case Essp(z) [Z ] = |Z|.

5.3. Finite Hypothesis Space

Next, we look into the role of the size of the hypothesis space. This is formalized by the
following theorem.

Theorem 6. Let h ∈ H be the hypothesis produced by a learning algorithm L : Zm → H. Then:

C(L) ≤
√

H(h)
2 m

≤
√

log |H|
2 m

,

where H is the Shannon entropy measured in nats.

Proof. If we let I(x; y) be the mutual information between the r.v.’s x and y and let s = {z1, z2, . . . , zm} be
the training set, we have:

I(s; h) = H(s)− H(s | h)

=
[ m

∑
i=1

H(zi)
]

−
[

H(z1|h) + H(z2|z1, h) + · · ·
]

Because conditioning reduces entropy, i.e., H(x|y) ≤ H(x) for any r.v.’s x and y, we have:

I(s; h) ≥
m

∑
i=1

[H(zi)− H(zi | h)] = m [H(ẑ)− H(ẑ | h)]

79



Entropy 2020, 22, 438

Therefore:

I(ẑ; h) ≤ I(s; h)

m
(13)

Next, we use Pinsker’s inequality [10], which states that for any probability measures p and q: ||p , q||T ≤√
D(p || q)

2 , where ||p , q||T is total variation distance and D(p || q) is the Kullback-Leibler divergence
measured in nats. If we recall that J (s; h) = ||p(s) p(h) , p(s, h)||T while the mutual information is
I(s; h) = D(p(s, h) || p(s) p(h)), we deduce from Pinsker’s inequality and Equation (13):

J (ẑ; h) = ||p(ẑ) p(h) , p(ẑ, h)||T

≤
√

I(ẑ; h)

2
≤
√

I(s; h)

2m
≤
√

H(h)

2m
≤
√

log |H|
2m

.

Theorem 6 re-establishes the classical PAC result on the finite hypothesis space setting. However,
unlike its typical proofs, the proof presented here is purely information-theoretic and does not make any
references to the union bounds.

5.4. Differential Privacy

Randomization reduces the risk for overfitting. One common randomization technique in machine
learning is differential privacy [32,33], which addresses the goal of obtaining useful information about the
sample s as a whole without revealing a lot of information about any individual observation. Here, we
show that differentially-private learning algorithms have small learning capacities.

Definition 9 ([33]). A randomized learning algorithm L : Zm → H is (ε, δ) differentially private if for any
O ⊆ H and any two samples s and s′ that differ in one observation only, we have:

p(h ∈ O | s) ≤ eε · p(h ∈ O | s′) + δ

Proposition 5. If a learning algorithm L : Zm → H is (ε, δ) differentially private, then: J (ẑ; h) ≤ (eε − 1 +

δ)/2.

Proof. The proof is in Appendix H.

Not surprisingly, the differential privacy parameters (ε, δ) control the uniform generalization risk,
where small values of ε and δ lead to a reduced risk for overfitting.

5.5. Empirical Risk Minimization of 0–1 Loss Classes

Empirical risk minimization (ERM) of stochastic loss is a popular approach for learning from
data. It is often regarded as the default strategy to use, due to its simplicity, generality, and statistical
efficiency [1,3,13,34]. Given a fixed hypothesis space H, a domain Z , and a loss function l : H × Z → R,
the ERM learning rule selects the hypothesis ĥs that minimizes the empirical risk:

ĥs = arg min
h∈H

{
Ls(h) =

1
|s| ∑

zi∈s

l(zi, h)
}

, (14)

By contrast, the true risk minimizer h� is:

h� = arg min
h∈H

{
L(h) = Ez∼p(z) [l(z, h)]

}
. (15)
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Hence, learning via ERM is justified if L(ĥs) ≤ L(h�) + ε, for some ε � 1. If such a condition holds and
ε → 0 as the sample size m increases, the ERM learning rule is called consistent.

Uniform generalization is a sufficient condition for the consistency of empirical risk minimization
(ERM). To see this, we have by definition:

Es[Ls(ĥs)] = Es[min
h∈H

Ls(h)]

≤ min
h∈H

{
Es[Ls(h)]

}
= min

h∈H
L(h) = R(h�),

From this, we conclude that:

EsR(ĥs)− R(h�) ≤ EsR(ĥs)−Es[Ls(ĥs)] ≤ C(L),

where C(L) is the learning capacity of the empirical risk minimization rule. The last inequality follows
from Theorem 2. In addition, because R(ĥs)− R(h�) ≥ 0, we have by the Markov inequality:

ps

{
R(ĥs)− R(h�) ≥ t

}
≤ EsR(ĥs)− R(h�)

t
≤ C(L)

t

Hence, the ERM learning rule is consistent if C(L) → 0 as m → ∞. Next, we describe when such a
condition on C(L) holds for 0–1 loss classes. To do that, we begin with two familiar definitions from
statistical learning theory.

Definition 10 (Shattered Set). Given a domain Z , a hypothesis space H, and a 0–1 loss function l : Z × H →
{0, 1}, a set {z1, . . . , zd} is said to be shattered by H with respect to the function l if for any labeling I ∈ {0, 1}d,
there exists a hypothesis hI ∈ H such that (l(z1, hI), . . . , l(zd, hI)) = I.

Example 7. Let Z = H = R and let the loss function be l(z, h) = I{z − h ≥ 0}. Then, any singleton set {z}
is shattered by H since we always have the two hypotheses h0 = z − 1 and h1 = z + 1. However, no set of two
points in Z can be shattered by H. By contrast, if the hypothesis is a pair (h, c) ∈ R×R and the loss function is
l(z, h, b) = I{c z − h ≥ 0}, then any set of two distinct examples {z1, z2} is shattered by the hypothesis space.

Definition 11 (VC Dimension). The VC dimension of a hypothesis space H with respect to a domain Z and a 0–1
loss l : Z × H → {0, 1} is the maximum cardinality of a set of points in Z that can be shattered by H with respect
to l.

The VC dimension is arguably the most fundamental concept in statistical learning theory because it
provides a crisp characterization of learnability for 0–1 loss classes. Next, we show that the VC dimension
has, in fact, an equivalence characterization with the learning capacity C(L). Specifically, under the Axiom
of Choice, an ERM learning rule exists that has a vanishing learning capacity C(L) if and only if the 0–1
loss class has a finite VC dimension.

Before we establish this important result, we describe why ERM by itself is not sufficient for uniform
generalization to hold even when the hypothesis space has a finite VC dimension.

Proposition 6. For any sample size m ≥ 1 and a positive constant ε > 0, there exists a hypothesis space H, a
domain Z , and a 0–1 loss l : Z × H → {0, 1} such that: (1) H has a VC dimension d = 1, and (2) a learning
algorithm L : Zm → H exists that outputs an empirical risk minimizer ĥs with J (ẑ; ĥs) ≥ 1 − ε.
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Proof. Let Z = X × Y , where X = [0, 1] and Y = {+1, −1} and let the loss be l(x, y, h) = I{y · (x − h) ≤
0}. In other words, the goal is to learn a threshold in the unit interval that separates the positive from the
negative examples. Let x ∈ X be uniformly distributed in [0, 1] and let h� be an error-free separator. Then,
for any training sample s ∈ Zm, the set of all empirical risk minimizers Ĥ is:

Ĥ =
{

h ∈ [0, 1] : yi = sign(xi − h), ∀i ∈ {1, . . . , m}
}

In particular, Ĥ is an interval, which has the power of the continuum, so it can be used to encode the entire
training sample.

Fix δ > 0 in advance, which can be made arbitrarily small. Then, the probability over the random
choice of the sample that |Ĥ| < δ can be made arbitrarily small for a sufficiently small δ > 0, where |Ĥ| is
the length of the interval.

Let ĥ ∈ Ĥ be a hypothesis that lies at the middle of Ĥ, i.e.,:

ĥ =
1
2

[
arg max

xi∈s∧yi=−1
xi + arg min

xi∈s∧yi=+1
xi

]
Let k = 1 + log2(1/δ). Then, [ĥ − 2−k, ĥ + 2−k] ⊆ Ĥ holds with a high probability (which can be made
arbitrarily close to 1 for a sufficiently small δ). Let h̃ be a hypothesis whose binary expansion agrees with
ĥ in its first k + 1 bits and encodes the entire training sample in the rest of the bits.

Finally, the output of the learning algorithm is ĥs, which is given by the following rule:

1. If h̃ is an empirical risk minimizer, then set ĥs = h̃

2. Otherwise, set ĥs = ĥ.

Now, define the following different parametric loss l′ : Z → [0, 1] to be a function that first uses ĥs to
decode the training sample s based on the coding method constructed above and, then, assigns 1 if and
only if x ∈ s. To reiterate, this decoding succeeds with a probability that can be made arbitrarily high for a
sufficiently small δ > 0. Clearly, l′ is a loss defined on the product space Z × H and has a bounded range.
However, the generalization risk w.r.t. l′ is, at least, equal to the probability that |Ĥ| < δ, which can be
made arbitrarily close to 1. Hence, the statement of the proposition holds.

Proposition 6 shows that one cannot obtain a non-trivial bound on the uniform generalization risk
of an ERM learning rule in terms of the VC dimension d and the sample size m without making some
additional assumptions. Next, we prove that an ERM learning rule exists that satisfies the uniform
generalization property if the hypothesis space has a finite VC dimension. We begin by recalling a
fundamental result in modern set theory. A non-empty set Q is said to be well-ordered if Q is endowed with
a total order ! such that every non-empty subset of Q contains a least element. The following fundamental
result, which was published in 1904, is due to Ernst Zermelo [35].

Theorem 7 (Well-Ordering Theorem). Under the Axiom of Choice, every non-empty subset can be well-ordered.

Theorem 8. Given a hypothesis space H, a domain Z , and a 0–1 loss l : H × Z → {0, 1}, let ! be a well-ordering
on H and let L : Zm → H be the learning rule that outputs the “ least” empirical risk minimizer to the training
sample s ∈ Zm according to !. Then, C(L) → 0 as m → ∞ if H has a finite VC dimension. In particular:

C(L) ≤ 3√
m

+

√
1 + d log 2em

d
m

,

where d is the VC dimension of H, provided that m ≥ d.
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Proof. The proof is in Appendix I.

Next, we prove a converse statement. Before we do this, we present a learning problem that shows
why a converse to Theorem 8 is not generally possible without making some additional assumptions.
Hence, our converse will be later established for the binary classification setting only.

Example 8 (Subset Learning Problem). Let Z = {1, 2, 3, . . . , d} be a finite set of positive integers. Let H = 2Z

and define the 0–1 loss of a hypothesis h ∈ H to be l(z, h) = I{z /∈ h}. Then, the VC dimension is d. However,
the learning rule that outputs h = Z is always an ERM learning rule that generalizes uniformly with rate ε = 0
regardless of the sample size and the distribution of observations.

The previous example shows that a converse to Theorem 8 is not generally possible without making
some additional assumptions. In particular, in the Subset Learning Problem, the VC dimension is not an
accurate measure of the complexity of the hypothesis space H because many hypotheses dominate others
(i.e., perform better across all distributions of observations). For example, the hypothesis h′ = {1, 2, 3}
dominates h′′ = {1} because there is no distribution on observations in which h′′ outperforms h′. In fact,
the hypothesis h = Z dominates all other hypotheses.

Consequently, in order to prove a lower bound for all ERM rules, we focus on the standard binary
classification setting.

Theorem 9. In any fixed domain Z = X × Y , let the hypothesis space H be a concept class on X and let
l(x, y, h) = I{y �= h(x)} be the misclassification error. Then, any ERM learning rule L w.r.t. l has a learning
capacity C(L) that is bounded from below by C(L) ≥ 1

2
(
1 − 1

d
)m, where m is the training sample size and d is the

VC dimension of H.

Proof. The proof is in Appendix J.

Using both Theorems 8 and 9, we arrive at the following equivalence characterization of the VC
dimension of a concept class with the learning capacity.

Theorem 10. Given a fixed domain Z = X × Y , let the hypothesis space H be a concept class on X and let
l(x, y, h) = I{y �= h(x)} be the misclassification error. Let m be the sample size. Then, the following statements are
equivalent under the Axiom of Choice:

1. H admits an ERM learning rule L whose learning capacity C(L) satisfies C(L) → 0 as m → ∞.
2. H has a finite VC dimension.

Proof. The lower bound in Theorem 9 holds for all ERM learning rules. Hence, an ERM learning rule exists
that generalize uniformly with a vanishing rate across all distributions only if H has a finite VC dimension.
However, under the Axiom of Choice, H can always be well-ordered by Theorem 7 so, by Theorem 8,
a finite VC dimension is also sufficient to guarantee the existence of a learning rule that generalize
uniformly.

Theorem 10 presents a characterization of the VC dimension in terms of information theory. According
to the theorem, an ERM learning rule can be constructed that does not encode the training sample if and
only if the hypothesis space has a finite VC dimension.
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Remark 2. One method of constructing a well-ordering on a hypothesis space H is to use the fact that computers
are equipped with finite precisions. Hence, in practice, every hypothesis space is enumerable, from which the normal
ordering of the integers forms a valid well-ordering on H.

6. Concluding Remarks

In this paper, we introduced the notion of “ learning capacity” for algorithms that learn from
data, which is analogous to the Shannon capacity of communication channels. Learning capacity is
an information-theoretic quantity that measures the contribution of a single training example to the final
hypothesis. It has three equivalent interpretations: (1) as a tight upper bound on the uniform generalization
risk, (2) as a measure of information leakage, and (3) as a measure of algorithmic stability. Furthermore,
by establishing a chain rule for learning capacity, concentration bounds were derived, which revealed that
the learning capacity controlled both the expectation of the generalization risk and its variance. Moreover,
the relationship between algorithmic stability and data processing revealed that algorithmic stability can
be improved by post-processing the learned hypothesis.

Throughout this paper, we provided several bounds on the learning capacity under various settings.
For instance, we established a relationship between algorithmic stability and the effective size of the domain
of observations, which can be interpreted as a formal justification for dimensionality reduction methods.
Moreover, we showed how learning capacity recovered classical bounds, such as in the finite hypothesis
space setting, and derived new bounds for other settings as well, such as differential privacy. We also
established that, under the Axiom of Choice, the existence of an empirical risk minimization (ERM) rule for
0–1 loss classes that had a vanishing learning capacity was equivalent to the assertion that the hypothesis
space had a finite Vapnik–Chervonenkis (VC) dimension, thus establishing an equivalence relation between
two of the most fundamental concepts in statistical learning theory and information theory.

More generally, the intent of this work is to bring to light a new information-theoretic approach for
analyzing machine learning algorithms. Despite the fact that “ uniform generalization” might appear to be
a strong condition at a first sight, one of the central claims of this paper is that uniform generalization is,
in fact, a natural condition that arises commonly in practice. It is not a condition to require or enforce!
We believe this holds because any learning algorithm is a channel from the space of training samples to
the hypothesis space. Because learning is a mapping between two spaces, its risk for overfitting should
be determined from the mapping itself (i.e., independently of the choice of the loss function). Such an
approach yields the uniform generalization bounds that are derived in this paper.

It is worth highlighting that uniform generalization bounds can be established for many other
settings that have not be discussed in this paper and it has found some promising applications. Using
sample compression schemes, one can show that any learnable hypothesis space is also learnable by an
algorithm that achieves uniform generalization [36]. Also, generalization bounds for stochastic convex
optimization yield information criteria for model selection that can outperform the popular Akaike’s
information criterion (AIC) and Schwarz’s Bayesian information criterion (BIC) [37]. More recently,
uniform generalization has inspired the development of new approaches for structured regression as
well [38].

7. Further Research Directions

Before we conclude, we suggest future directions of research and list some open problems.
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7.1. Induced VC Dimension

The variational information J (ẑ; h) provides an upper bound on the generalization risk of the
learning algorithm L across all parametric loss classes. This upper bound is achievable by the generalization
risk of the binary reconstruction loss:

l(z, h) = I{p(z ∈ s | h) ≥ p(z ∈ s)}, (16)

which assigns the value one to observations z ∈ Z that are more likely to have been present in the training
sample s upon knowing h, and assigns zero otherwise. In expectation, the generalization risk of this
parametric loss is the worst generalization risk across all parametric loss classes.

Let both p(z) and p(h|z) be fixed; the first is the distribution of observations while the second is
entirely determined by the learning algorithm L. Then, because the loss in Equation (16) is binary, it has a
VC dimension, which we will call the induced VC dimension of the learning algorithm L [39]. Note that this
induced VC dimension is defined for all learning problems, including regression and clustering, but it is
distribution-dependent, which is quite unlike the traditional VC dimension of hypothesis spaces.

There are a lot of open questions related to the induced VC dimension of learning algorithms. For
instance, while a finite VC dimension implies a small variational information, when does the converse also
hold? Can we obtain a non-trivial bound on the induced VC dimension of a learning algorithm L upon
knowing its uniform generalization risk J (ẑ; h)? Along similar lines, suppose that L is an empirical risk
minimization (ERM) algorithm of a 0–1 loss class that may or may not use an appropriate tie breaking rule
(in light of what was discussed in Section 5.5). Is there a non-trivial relation between the VC dimension of
the 0–1 loss that is being minimized and the induced VC dimension of the ERM learning algorithm?

7.2. Unsupervised Model Selection

Information criteria (such as AIC and BIC), are sometimes used in the unsupervised learning setting
for model selection, such as when determining the value of k in the popular k-means algorithm [40]. Given
that the notion of uniform generalization is developed in the general setting of learning, should the learning
capacity C(L) serve as a model selection criterion in the unsupervised setting? Why or why not?

7.3. Effective Domain Size

The effective size of the domain of a random variable z in Definition 8 satisfies some intuitive
properties and violates others. For instance, it reduces to the size of the domain |Z| when the distribution is
uniform. Moreover, if z is Bernoulli, the effective domain size is determined by the variance of the Bernoulli
distribution. Importantly, this notion is well-motivated because it determines the rate of convergence of
an empirical probability mass function to its true distribution when the distance is measured in the total
variation sense. As a result, it allowed us to relate the learning capacity to a property of the domain Z .

However, such a notion of effective domain size has some surprising properties. For instance,
the effective size of the domain of two independent random variables is not equal to the product of the
effective size of each individual domain! In rate distortion theory, a similar phenomenon is observed.
Reference [10] explain this observation by stating that “ rectangular grid points (arising from independent
descriptions) do not fill up the space efficiently.” Can the effective domain size in Definition 8 be motivated
using rate distortion theory?
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Appendix A. Proof of Lemma 2

With no loss of generality, let’s assume that all domains are enumerable. We have:

J (x; (y, z)) = 1 − ∑
x,y,z

min
{

p(x = x) p(y = y, z = z), p(x = x, y = y, z = z)
}

= 1 − ∑
x

p(x = x) ∑
y,z

min
{

p(y = y, z = z), p(y = y, z = z|x = x)
}

However, the minimum of the sums is always larger than the sum of minimums. That is:

min
{

∑
i

αi, ∑
i

βi
}

≥ ∑
i

min{αi, βi}

Using marginalization p(x) = ∑y p(x, y = y) and the above inequality, we obtain:

J (x; (y, z)) ≥ 1 − ∑
x

p(x = x) ∑
y

min{∑
z

p(y = y, z = z), ∑
z

p(y = y, z = z|x = x)}

= 1 − ∑
x

p(x = x)∑
y

min{p(y = y), p(y = y|x = x)}

= J (x; y)

Appendix B. Proof of Theorem 1

We will first prove the inequality when k = 2. First, we write by definition:

J (z; (h1, h2)) = ||p(z, h1, h2) , p(z) p(h1, h2)||T

Using the fact that the total variation distance is related to the �1 distance by ||P , Q||T = 1
2 ||P − Q||1,

we have:

J (z; (h1, h2)) =
1
2

∣∣∣∣ p(z, h1, h2)− p(z) p(h1, h2)
∣∣∣∣

1

=
1
2

∣∣∣∣ p(z, h1) p(h2|z, h1)− p(z) p(h1) p(h2|h1)
∣∣∣∣

1

=
1
2

∣∣∣∣ [p(z, h1)− p(z) p(h1)
]
· p(h2|h1)

+ p(z, h1) ·
[
p(h2|z, h1)− p(h2|h1)

] ∣∣∣∣
1

Using the triangle inequality:

J (z; (h1, h2)) ≤ 1
2

∣∣∣∣∣∣[p(z, h1)− p(z) p(h1)
]
· p(h2|h1)

∣∣∣∣∣∣
1
+

1
2

∣∣∣∣∣∣p(z, h1) ·
[
p(h2|z, h1)− p(h2|h1)

]∣∣∣∣∣∣
1

The above inequality is interpreted by expanding the �1 distance into a sum of absolute values of terms
in the product space Z × H1 × H2, where hk ∈ Hk. Next, we bound each term on the right-hand side
separately. For the first term, we note that:

1
2

∣∣∣∣ [p(z, h1)− p(z) p(h1)
]
· p(h2|h1)

∣∣∣∣
1 =

1
2

∣∣∣∣ p(z, h1)− p(z) p(h1)
∣∣∣∣

1 = J (z; h1) (A1)
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The equality holds by expanding the �1 distance and using the fact that ∑h2
p(h2|h1) = 1.

However, the second term can be re-written as:

1
2

∣∣∣∣ p(z, h1) ·
[
p(h2|z, h1)− p(h2|h1)

] ∣∣∣∣
1

=
1
2

∣∣∣∣ p(h1) ·
[
p(h2, z|h1)− p(z|h1) p(h2|h1)

] ∣∣∣∣
1

= Eh1

[
||p(h2, z|h1) , p(z|h1) p(h2|h1)||T

]
= J (z; h2 | h1) (A2)

Combining Equations (A1) and (A2) yields the inequality:

J (z; (h1, h2)) ≤ J (z; h1) + J (z; h2 | h1) (A3)

Next, we use Equation (A3) to prove the general statement for all k ≥ 1. By writing:

J (z; (h1, . . . , hk)) ≤ J (z; hk | (h1, . . . , hk−1)) + J (z; (h1, . . . , hk−1))

Repeating the same inequality on the last term on the right-hand side yields the statement of the theorem.

Appendix C. Proof of Proposition 1

By the triangle inequality:

J (x; z | y) = Ey||p(x|y) · p(z|y) , p(x, z|y)||T
= Ex,y||p(z|y) , p(z|x, y)||T
≤ Ex,y||p(z|y) , p(z)||T +Ex,y||p(z) , p(z|x, y)||T
= Ey||p(z|y) , p(z)||T +Ex,y||p(z) , p(z|x, y)||T
= J (y; z) + J (z; (x, y))

Therefore:
J (z; (x, y)) ≥ J (x; z | y)− J (y; z)

Combining this with the following chain rule of Theorem 2:

J (z; (x, y)) ≤ J (x; z | y) + J (y; z)

yields: ∣∣∣J (z; (x, y))− J (x; z | y)
∣∣∣ ≤ J (y; z)

Or equivalently: ∣∣∣J (x; (y, z))− J (x; z | y)
∣∣∣ ≤ J (x; y) (A4)

To prove the other inequality, we use Lemma 2. We have:

J (x; y) ≤ J (x; (y, z)) ≤ J (x; y) + J (x; z | y),
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where the first inequality follows from Lemma 2 and the second inequality follows from the chain rule.
Thus, we obtain the desired bound:∣∣∣J (x; (y, z))− J (x; y)

∣∣∣ ≤ J (x; z | y) (A5)

Both Equations (A4) and (A5) imply that the chain rule is tight. More precisely, the inequality can be made
arbitrarily close to an equality when one of the two terms in the upper bound is chosen to be arbitrarily
close to zero.

Appendix D. Proof of Theorem 3

We will use the following fact:

Fact 1. Let f : X → [0, 1] be a function with a bounded range in the interval [0, 1]. Let p1(x) and p2(x) be two
different probability measures defined on the same space X . Then:∣∣Ex∼p1(x) f (x)−Ex∼p2(x) f (x)

∣∣ ≤ ||p1(x) , p2(x)||T

First Setting: We first consider the following scenario. Suppose a learning algorithm L produces a
hypothesis h ∈ H from some marginal distribution p(h) independently of the training sample s. Afterwards,
L produces a second hypothesis k ∈ K according to p(k | h, s). In other words, k depends on both h and s

but the latter two random variables are independent of each other. Under this scenario, we have:

J (ẑ; (h, k)) = J (ẑ; k | h),

where the equality follows from the chain rule in Theorem 1, the statement of Proposition 1, and the fact
that J (ẑ; h) = 0.

The conditional variational information is written as:

J (ẑ; k | h) = Eh||p(ẑ) · p(k|h) , p(ẑ, k|h)||T ,

where we used the fact that p(ẑ|h) = p(ẑ). By marginalization:

p(k|h) = Eẑ′ |h[p(k|ẑ′, h)] = Eẑ′∼p(z)[p(k|ẑ′, h)]

Similarly:
p(ẑ, k|h) = p(ẑ|h) · p(k|ẑ, h) = p(ẑ) · p(k|ẑ, h)

Therefore:
J (ẑ; k | h) = EhEẑ||Eẑ′ [p(k|ẑ′, h)] , p(k|ẑ, h)||T

Next, we note that since h is independent of the sample s, the variational information between ẑ ∼ s and
k ∈ K can be bounded using Theorem 6. This follows because h is selected independently of the sample s,
and, hence, the i.i.d. property of the observations zi continues to hold. Therefore, we obtain:

EhEẑ||Eẑ′ [p(k|ẑ′, h)] , p(k|ẑ, h)||T ≤
√

log |K|
2m

(A6)

Because p(k|ẑ, h) is arbitrary in our derivation, the above bound holds for any distribution of observations
p(z), any distribution p(h), and any family of conditional distributions p(k|ẑ, h).
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Original Setting: Next, we return to the original setting where both h ∈ H and k ∈ K are chosen
according to the training sample s. We have:

J (ẑ; k | h) = Eh||p(ẑ|h) · p(k|h) , p(ẑ, k|h)||T
= Eh,ẑ||p(k|h) , p(k|ẑ, h)||T
= Eh,ẑ||Eẑ′ |h[p(k|ẑ′, h)] , p(k|ẑ, h)||T
≤ Eh,ẑ||Eẑ′ |h[p(k|ẑ′, h)] , Eẑ′ [p(k|ẑ′, h)]||T +Eh,ẑ||Eẑ′ [p(k|ẑ′, h)] , p(k|ẑ, h)||T (A7)

In the last line, we used the triangle inequality.
Next, we would like to bound the first term. Using the fact that the total variation distance is related

to the �1 distance by ||p , q||T = 1
2 ||p − q||1, we have:

Eh,ẑ||Eẑ′ |h[p(k|ẑ′, h)] , Eẑ′ [p(k|ẑ′, h)]||T
= Eh ||Eẑ′ |h[p(k|ẑ′, h)] , Eẑ′ [p(k|ẑ′, h)]||T

=
1
2
Eh ∑

k∈K

∣∣∣Eẑ′ |h[p(k = k|ẑ′, h)]−Eẑ′ [p(k = k|ẑ′, h)]
∣∣∣

≤ 1
2 ∑

k∈K
Eh||p(ẑ′|h) , p(ẑ′)||T

=
1
2 ∑

k∈K
J (ẑ; h) =

|K|
2

J (ẑ; h) (A8)

Here, the inequality follows from Fact 1.
Next, we bound the second term in Equation (A7). Using Fact 1 and our earlier result in Equation (A6):

Eh,ẑ||Eẑ′ [p(k|ẑ′, h)] , p(k|ẑ, h)||T
≤ J (ẑ; h) +EhEẑ||Eẑ′ [p(k|ẑ′, h)] , p(k|ẑ, h)||T

≤ J (ẑ; h) +

√
log |K|

2m
(A9)

Combining all results in Equations (A7)–(A9):

J (ẑ; k | ẑ) ≤
[
1 +

|K|
2

]
J (ẑ; h) +

√
log |K|

2m
(A10)

This along with the chain rule imply the statement of the theorem.
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Appendix E. Proof of Proposition 3

Let I(x; y) denote the mutual information between x and y and let H(x) denote the Shannon entropy of
the random variable x measured in nats (i.e., using natural logarithms). As before, we write s = (z1, . . . , zm).
We have:

I(s;(h, k)) = H(s)− H(s | h, k)

=
m

∑
i=1

H(zi)−
m

∑
i=1

H(zi|h, k, z1, . . . , zi−1)

≥
m

∑
i=1

H(zi)− H(zi|h, k) = mI(ẑ; h, k)

The second line is the chain rule for entropy and the third lines follows from the fact that conditioning
reduces entropy. We obtain:

I(ẑ; h, k) ≤ I(s; (h, k))

m
By Pinsker’s inequality:

J (ẑ; (h, k)) ≤
√

I(ẑ; (h, k))

2
≤
√

I(s; (h, k))

2m
Using the chain rule for mutual information:

J (ẑ; (h, k)) ≤
√

I(s; (h, k))

2m
=

√
I(s; h) + I(s; k|h)

2m

≤
√

I(s; h) + H(k)

2m
≤
√

I(s; h) + log |k|
2m

The desired bound follows by applying the same proof technique of Theorem 4 on the last uniform
generalization bound, and using the fact that log 3 < 2.

Appendix F. Proof of Proposition 4

Before we prove the statement of the theorem, we begin with the following lemma:

Lemma A1. Let the observation space Z be the interval [0, 1], where p(z) is continuous in [0, 1]. Let h ⊆ s : |h| = k
be a set of k examples picked at random without replacement from the training sample s. Then J (ẑ; h) = k

m .

Proof. First, we note that p(ẑ|h) is a mixture of two distributions: one that is uniform in h with probability
k/m, and the original distribution p(z) with probability 1− k/m. By Jensen’s inequality, we have J (ẑ; h) ≤
k/m. Second, let the parametric loss be l(z; h) = I{z ∈ h}. Then, |Rgen(L)| = k

m . By Theorem 2, we have
J (ẑ; h) ≥ |Rgen(L)| = k/m. Both bounds imply the statement of the lemma.

Now, we prove Proposition 4. Consider the setting where Z = [0, 1] and suppose that the observations
z ∈ Z have a continuous marginal distribution. Because t is a rational number, let the sample size m be
chosen such that k = t m is an integer.

Let s = {z1, . . . , zm} be the training set, and let the hypothesis h be given by h = {z1, . . . , zk} with
some probability δ > 0 and h = {} otherwise. Here, the k instances zi ∈ h are picked uniformly at random
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without replacement from the sample s. To determine the variational information between ẑ and h, we
consider the two cases:

1. If h �= {}, then ||p(ẑ) , p(ẑ|h)||T = t as proved in Lemma 1. This happens with probability δ

by design.
2. Otherwise, p(ẑ|h) = p(ẑ). Thus: ||p(ẑ) , p(ẑ|h)||T = 0.

So, by combining the two cases above, we deduce that:

J (ẑ; h) = Eh ||p(ẑ) , p(ẑ | h)||T = t δ.

Therefore, L generalizes uniformly with the rate tδ. Next, let the parametric loss be given by l(z ; h) =

I
{

z ∈ h
}

. With this loss:

p
{∣∣Rs(h)− R(h)

∣∣ = t
}
= δ =

J (ẑ; h)

t
,

which is the statement of the proposition.

Appendix G. Proof of Theorem 5

Because Z is countable, we will assume without loss of generality that Z = {1, 2, 3, . . . , . . .}, and we
will write pz = p(ẑ = z) to denote the marginal distribution of observations. Since all lazy learners are
equivalent, we will look into the lazy learner whose hypothesis h is equal to the training sample s itself up
to a permutation. Let mz denote the number of times z ∈ Z was observed in the training sample. Note
that p(ẑ = z|h) = ps(z), and so J (ẑ; h) = Es ||p(z), ps(z)||T .

We have:

p(h) = p(s) =
(

m
m1, m2, . . .

)
pm1

1 pm2
2 · · ·

Using the relation ||p , q||T = 1
2 ||p − q||1 for any two probability distributions p and q, we obtain:

Eh ||p(ẑ)− p(ẑ|h)||1 = ∑
k≥1 : m1+m2+..=m

(
m

m1, m2, . . .

)
× pm1

1 pm2
2 · · ·

∣∣∣mk
m

− pk

∣∣∣
For the inner summation, we write:

∑
m1+m2+...=m

(
m

m1, m2, . . .

)
pm1

1 pm2
2 · · ·

∣∣∣mk
m

− pk

∣∣∣
=

m

∑
s=0

(
m
s

)
ps

k

∣∣∣mk
m

− pk

∣∣∣ ∑
m1+...+mk−1+mk+1+...=m−s

(
m − s

m1, . . . , mk−1, mk+1, . . .

)
× pm1

1 · · · pmk−1
k−1 pmk+1

k+1 · · ·

Using the multinomial series, we simplify the right-hand side into:

m

∑
s=0

(
m
s

)
ps

k (1 − pk)
m−s

∣∣∣ s
m

− pk

∣∣∣
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Now, we use De Moivre’s formula for the mean deviation of the binomial random variable (see the proof of
Example 1). This gives us:

∑
m1+m2+...=m

(
m

m1, m2, . . .

)
pm1

1 pm2
2 · · ·

∣∣∣ s
m

− pk

∣∣∣
=

m

∑
s=0

(
m
s

)
ps

k (1 − pk)
m−s

∣∣∣ s
m

− pk

∣∣∣
=

2
m

(1 − pk)
(1−pk)m p1+mpk

k
m!

(pkm)! ((1 − pk)m − 1)!

Using Stirling’s approximation to the factorial [17], we obtain the simple asymptotic expression:

∑
m1+m2+...=m

(
m

m1, m2, . . .

)
pm1

1 pm2
2 · · ·

∣∣∣mk
m

− pk

∣∣∣ ∼
√

2pk(1 − pk)

πm

Plugging this into the earlier expression for J (ẑ; h) yields:

J (ẑ; h) ∼ 1
2 ∑

k=1,2,3,...

√
2pk(1 − pk)

πm

=

√
Ess [Z ; p(z)]− 1

2πm

Due to the tightness of the Stirling approximation, the asymptotic expression for the variational information
is tight. Because J (ẑ; h) = Es ||p(z), ps(z)||T , we deduce that:

Es ||p(z), ps(z)||T ∼
√

Ess [Z ; p(z)]− 1
2 π m

,

which provides the asymptotic rate of convergence of an empirical probability mass function to the
true distribution.

Appendix H. Proof of Proposition 5

First, we note that for any two adjacent samples s and s′ and any O ⊆ H, we have in the differential
privacy setting:

p(h ∈ O|s)− p(h ∈ O|s′) ≤ (eε − 1) p(h ∈ O|s′) + δ

Similarly, we have:

p(h ∈ O|s)− p(h ∈ O|s′) ≥ (e−ε − 1) p(h ∈ O|s′)− e−εδ

= −
[
(1 − e−ε) p(h ∈ O|s′) + e−εδ

]
≥ −eε

[
(1 − e−ε) p(h ∈ O|s′) + e−εδ

]
= −

[
(eε − 1)p(h ∈ O|s′) + δ

]
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Both results imply that: ∣∣p(h ∈ O|s)− p(h ∈ O|s′)
∣∣ ≤ (eε − 1)p(h ∈ O|s′) + δ

≤ eε − 1 + δ (A11)

We write:

J (ẑ; h) = Eẑ ||p(h|ẑ) , p(h)||T

=
1
2
Eẑ

∣∣∣∣Eẑ′
[
p(h|ẑ)− p(h|ẑ′)

]∣∣∣∣
1

≤ 1
2
Eẑ,ẑ′

∣∣∣∣p(h|ẑ)− p(h|ẑ′)
∣∣∣∣

1

The last inequality follows by convexity. Next, let sm−1 be a sample that contains m − 1 observations
drawing i.i.d. from p(z). Then:

J (ẑ; h) ≤ 1
2
Eẑ,ẑ′

∣∣∣∣Esm−1

[
p(h|ẑ, sm−1)− p(h|ẑ′, sm−1)

]∣∣∣∣
1

≤ 1
2
Es,s′

∣∣∣∣p(h|s)− p(h|s′)
∣∣∣∣

1,

where s, s′ are two adjacent samples. Finally, we use Equation (A11) to arrive at the statement of
the proposition.

Appendix I. Proof of Theorem 8

The proof is similar to the classical VC argument. Given a fixed hypothesis space H, a fixed domain
Z , and a 0–1 loss function l : H × Z → {0, 1}, let s = {z1, . . . , zm} be a training sample that comprises of
m i.i.d. observations. Define the restriction of H to s by:

Fs =
{

l(z1, h), . . . , l(zm, h) : h ∈ H
}

In other words, Fs is the set of all possible realizations of the 0–1 loss for the elements in s by hypotheses
in H. We can introduce an equivalence relation between the elements of H w.r.t. the sample s. Specifically,
we say that for h′, h′′ ∈ H, we have h′ ≡s h′′ if and only if:(

l(z1, h′), . . . , l(zm, h′)
)
=
(
l(z1, h′′), . . . , l(zm, h′′)

)
It is trivial to see that this defines an equivalence relation; i.e., it is reflexive, symmetric, and transitive.
Let the set of equivalence classes w.r.t. s be denoted Hs. Note that we have a one-to-one correspondence
between the members of Fs and the members of Hs. Moreover, Hs is a partitioning of H.

We use the standard twin-sample trick where we have s2 = s ∪ s′ ∈ Z2m and L learns based on s

only. For any fixed h ∈ H, let f : H × Z → [0, 1] be an arbitrary loss function, which can be different from
the loss l that is optimized during the training. A Hoeffding bound for sampling without replacement [41]
states that:

p
{∣∣∣Ez∼s[ f (z, h)]−Ez∼s2 [ f (z, h)]

∣∣∣ ≥ ε
}

≤ 2 exp{−2ε2m} (A12)
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Hence:

p
{∣∣∣Ez∼s[ f (z, h)]−Ez∼s′ [ f (z, h)]

∣∣∣ ≥ ε
}

≤ p
{∣∣∣Ez∼s[ f (z, h)]−Ez∼s2 [ f (z, h)]

∣∣∣ ≥ ε

2

}
+ p

{∣∣∣Ez∼s′ [ f (z, h)]−Ez∼s2 [ f (z, h)]
∣∣∣ ≥ ε

2

}
≤ 4 exp{−(1/2)ε2m}

This happens for a hypothesis h ∈ H that is fixed independently of the random split of s2 into training
and ghost samples. When h is selected according to the random split of s2, then we need to employ the
union bound.

For any subset H ⊆ H, let min(H) be the least element in H according to !. Let Hs be as defined
previously and write Hmin(s) = {min(Hk) : Hk ∈ Hs}. Then, it is easy to observe that the ERM learning
rule of Theorem 2 must select one of the hypotheses in Hmin(s2) regardless of the split s2 = s ∪ s′. This
holds because Hs2 is a coarser partitioning of H than Hs. In other words, every member of Hs is a union of
some finite number of members of Hs2 . By the well-ordering property, the “ least” element among the
empirical risk minimizers must be in Hmin(s2).

Hence, there is, at most, τH(2m) possible hypotheses given s2, where τH(m) is the growth function
(sometimes referred to as the shattering coefficient), and those hypotheses can be fixed independently of
the random splitting of s2 into a training sample s and a ghost sample s′.

Consequently, we have by the union bound:

p
{

sup
h∈Hmin(s∪s′)

∣∣∣Ez∼s[ f (z, h)]−Ez∼s′ [ f (z, h)]
∣∣∣ ≥ ε

}
≤ 4τH(2m) exp{− ε2m

2
} ≤ 4

(2em
d

)d
exp{− ε2m

2
},

where d is the VC dimension of H. Finally, to bound the generalization risk in expectation, we use
Lemma A.4 in [13], which implies that if m ≥ d:

Es,s′
[

sup
h∈Hmin(s∪s′)

∣∣∣Ez∼s[ f (z, h)]−Ez∼s′ [ f (z, h)]
∣∣∣]

≤
√

2
m

(
2 +

√
log 2 + d log

2em
d

)
≤
√

2
m

(
2 +

√
1 + d log

2em
d

)
≤

3 +
√

1 + d log 2em
d√

m
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Writing ĥ for the least empirical risk minimizer w.r.t. the training sample s:

Rgen(L) = Es

[
Ez∼s [ f (z, ĥ)]−Ez∼D [ f (z, ĥ)]

]
≤ Es

∣∣∣Ez∼s [ f (z, ĥ)]−Ez∼D [ f (z, ĥ)]
∣∣∣

= Es

∣∣∣Ez∼s [ f (z, ĥ)]−Es′Ez∼s′ [ f (z, ĥ)]
∣∣∣

≤ Es,s′
∣∣∣Ez∼s [ f (z, ĥ)]−Ez∼s′ [ f (z, ĥ)]

∣∣∣
≤ Es,s′ sup

h∈Hmin(s∪s′)

∣∣∣Ez∼s [ f (z, h)]−Ez∼s′ [ f (z, h)]
∣∣∣

≤
3 +

√
1 + d log 2em

d√
m

Because this bound in expectation holds for any single loss f : H × Z → [0, 1], it holds for the following
loss function:

l�(z, h) = I
{

p(z ∈ s|h) > p(z ∈ s)
}

,

which is a deterministic 0–1 loss function of h that assigns to z ∈ Z the value 1 if and only if our knowledge
of h increases the probability that z belongs to the training sample. However, the generalization risk
in expectation for the loss l� is equal to the variational information J (ĥ; ẑ) as shown in the proof of
Theorem 2. Hence, we have the bound stated in the theorem:

J (ĥ; ẑ) ≤
3 +

√
1 + d log 2em

d√
m

,

Because this is a distribution-free bound, we have:

C(L) ≤
3 +

√
1 + d log 2em

d√
m

Appendix J. Proof of Theorem 9

Let X � = {x1, . . . , xd} be a set of d points in X that are shattered by hypotheses in H. By definition,
this implies that for any possible 0–1 labeling I ∈ {0, 1}d, there exists a hypothesis hI ∈ H such that
(hI(x1), . . . , hI(xd)) = I.

Given an ERM learning rule L whose hypothesis is denoted ĥs, let p(x) be the uniform distribution
of instances over X � and define:

y(x) = arg min
ỹ∈{+1,−1}

ps

{
ĥs(x) = ỹ | x /∈ s}

}
In other words, y(x) is the least probable class that is assigned by L to the instance x when x is unseen in
the training sample. Let p(z) with z = (x, y) denote the uniform distribution of instances over X � with y

given by the labeling rule above.
By drawing a training sample s ∈ Zm of m i.i.d. observations from p(z), our first task is to bound the

expected number of distinct values in X � that are not observed in the training sample. Let:

Ei = I{xi /∈ s}
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Then, the expected number of distinct values in X � that are not observed in the training sample s is:

d

∑
i=1

E[Ei] =
d

∑
i=1

(
1 − 1

d

)m
= d

(
1 − 1

d

)m

Here, we used the linearity of expectation, which holds even when the random variables are not
independent. This shows that the expected fraction of instances in X � that are not seen in the sample s is
(1 − 1

d )
m.

Next, given an ERM learning rule that outputs an empirical risk minimizer, the training error of this
learning algorithm is zero because X � is shattered by H. However, for any learning rule L, the expected
error rate on the unseen examples is, at least, 1/2 by construction. Therefore, there exists a distribution
p(z) in which the generalization risk is, at least, (1/2)(1 − 1/d)m.

By Theorem 2, the learning capacity is an upper bound on the maximum generalization risk across all
distributions of observations and all parametric loss functions. Consequently:

C(L) ≥ 1
2

(
1 − 1

d

)m
,

which is the statement of the theorem.

References

1. Shalev-Shwartz, S.; Shamir, O.; Srebro, N.; Sridharan, K. Stochastic Convex Optimization. In Proceedings of the
Annual Conference on Learning Theory, Montreal, QC, Canada, 18–21 June 2009.

2. Bartlett, P.L.; Jordan, M.I.; McAuliffe, J.D. Convexity, classification, and risk bounds. J. Am. Stat. Assoc. 2006,
101, 138–156. [CrossRef]

3. Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [CrossRef]
[PubMed]

4. Blumer, A.; Ehrenfeucht, A.; Haussler, D.; Warmuth, M.K. Learnability and the Vapnik-Chervonenkis dimension.
JACM 1989, 36, 929–965. [CrossRef]

5. McAllester, D. PAC-Bayesian stochastic model selection. Mach. Learn. 2003, 51, 5–21. [CrossRef]
6. Bousquet, O.; Elisseeff, A. Stability and generalization. JMLR 2002, 2, 499–526.
7. Bartlett, P.L.; Mendelson, S. Rademacher and Gaussian complexities: Risk bounds and structural results. JMLR

2002, 3, 463–482.
8. Kutin, S.; Niyogi, P. Almost-everywhere algorithmic stability and generalization error. In Proceedings of the

Eighteenth conference on Uncertainty in Artificial Intelligence (UAI), Edmonton, AB, Canada, 1–4 August 2002.
9. Poggio, T.; Rifkin, R.; Mukherjee, S.; Niyogi, P. General conditions for predictivity in learning theory. Nature

2004, 428, 419–422. [CrossRef]
10. Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley & Sons: New York, NY, USA, 1991.
11. Hardt, M.; Recht, B.; Singer, Y. Train faster, generalize better: Stability of stochastic gradient descent. arXiv 2015,

arXiv:1509.01240.
12. Dwork, C.; Feldman, V.; Hardt, M.; Pitassi, T.; Reingold, O.; Roth, A. Preserving Statistical Validity in Adaptive

Data Analysis. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing
(STOC), Portland, OR, USA, 14–17 June 2015; pp. 117–126.

13. Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge
University Press: New York, NY, USA, 2014.

96



Entropy 2020, 22, 438

14. Raginsky, M.; Rakhlin, A.; Tsao, M.; Wu, Y.; Xu, A. Information-theoretic analysis of stability and bias of learning
algorithms. In Proceedings of the 2016 IEEE Information Theory Workshop (ITW), Cambridge, UK, 11–14
September 2016; pp. 26–30.

15. Janson, S. Probability asymptotics: Notes on notation. arXiv 2011, arXiv:1108.3924.
16. Tao, T. Topics in Random Matrix Theory; American Mathematical Society: Providence, RI, USA, 2012.
17. Shalev-Shwartz, S.; Shamir, O.; Srebro, N.; Sridharan, K. Learnability, stability and uniform convergence. JMLR

2010, 11, 2635–2670.
18. Talagrand, M. Majorizing measures: The generic chaining. Ann. Probab. 1996, 24, 1049–1103. [CrossRef]
19. Audibert, J.Y.; Bousquet, O. Combining PAC-Bayesian and generic chaining bounds. JMLR 2007, 8, 863–889.
20. Xu, H.; Mannor, S. Robustness and generalization. Mach. Learn. 2012, 86, 391–423. [CrossRef]
21. Csiszár, I. A Class of Measures of Informativity of Observation Channels. Period. Math. Hung. 1972, 2, 191–213.

[CrossRef]
22. Csiszár, I. Axiomatic Characterizations of Information Measures. Entropy 2008, 10, 261–273. [CrossRef]
23. Russo, D.; Zou, J. Controlling Bias in Adaptive Data Analysis Using Information Theory. In Proceedings of the

19th International Conference on Artificial Intelligence and Statistics (AISTATS), Cadiz, Spain, 9–11 May 2016.
24. Bassily, R.; Moran, S.; Nachum, I.; Shafer, J.; Yehudayoff, A. Learners that Use Little Information. PMLR 2018, 83,

25–55.
25. Elkan, C. The foundations of cost-sensitive learning. In Proceedings of the IJCAI, Seattle, WA, USA, 4–10

August 2011.
26. Kull, M.; Flach, P. Novel decompositions of proper scoring rules for classification: score adjustment as precursor

to calibration. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases; Springer:
Cham, Switzerland, 2015; pp. 68–85.

27. Robbins, H. A remark on Stirling’s formula. Am. Math. Mon. 1955, 62, 26–29. [CrossRef]
28. Cortes, C.; Vapnik, V. Support vector machine. Mach. Learn. 1995, 20, 273–297. [CrossRef]
29. Wang, J.; Chen, Q.; Chen, Y. RBF kernel based support vector machine with universal approximation and its

application. ISNN 2004, 3173, 512–517.
30. Downs, T.; Gates, K.E.; Masters, A. Exact simplification of support vector solutions. JMLR 2002, 2, 293–297.
31. Stigler, S.M. The History of Statistics: The Measurement of Uncertainty before 1900; Harvard University Press:

Cambridge, MA, USA, 1986.
32. Dwork, C.; McSherry, F.; Nissim, K.; Smith, A. Calibrating noise to sensitivity in private data analysis.

In Proceedings of the Third Theory of Cryptography Conference (TCC 2006), New York, NY, USA, 4–7 March
2006; pp. 265–284.

33. Dwork, C.; Roth, A. The algorithmic foundations of differential privacy. Theor. Comput. Sci. 2013, 9, 211–407.
34. Koren, T.; Levy, K. Fast rates for exp-concave empirical risk minimization. In Proceedings of the NIPS 2015,

Montreal, QC, Canada, 7–12 December, 2015; pp. 1477–1485.
35. Kolmogorov, A.N.; Fomin, S.V. Introductory Real Analysis; Dover Publication, Inc.: New York, NY, USA, 1970.
36. Alabdulmohsin, I.M. An information theoretic route from generalization in expectation to generalization in

probability. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS
2017), Fort Lauderdale, FL, USA, 20–22 April 2017.

37. Alabdulmohsin, I. Information Theoretic Guarantees for Empirical Risk Minimization with Applications to
Model Selection and Large-Scale Optimization. In Proceedings of the International Conference on Machine
Learning (ICML 2018), Stockholm, Sweden, 10–15 July 2018; pp. 149–158.

38. Pavlovski, M.; Zhou, F.; Arsov, N.; Kocarev, L.; Obradovic, Z. Generalization-Aware Structured Regression
towards Balancing Bias and Variance. In Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence (IJCAI-18), Stockholm, Sweden, 13–19 July 2018; pp. 2616–2622.

39. Alabdulmohsin, I.M. Algorithmic Stability and Uniform Generalization. In Proceedings of the NIPS 2015,
Montreal, QC, Canada, 7–12 December 2015; pp. 19–27.

97



Entropy 2020, 22, 438

40. Pelleg, D.; Moore, A.W. X-means: Extending k-means with efficient estimation of the number of clusters. In
Proceedings of the Seventeenth International Conference on Machine Learning, Stanford, CA, USA, 29 June–2
July 2000; pp. 727–734.

41. Bardenet, R.; Maillard, O.A. Concentration inequalities for sampling without replacement. Bernoulli 2015,
21, 1361–1385. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/).

98



entropy

Article

Prediction and Variable Selection in High-Dimensional
Misspecified Binary Classification
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Abstract: In this paper, we consider prediction and variable selection in the misspecified binary
classification models under the high-dimensional scenario. We focus on two approaches to classification,
which are computationally efficient, but lead to model misspecification. The first one is to apply
penalized logistic regression to the classification data, which possibly do not follow the logistic model.
The second method is even more radical: we just treat class labels of objects as they were numbers
and apply penalized linear regression. In this paper, we investigate thoroughly these two approaches
and provide conditions, which guarantee that they are successful in prediction and variable selection.
Our results hold even if the number of predictors is much larger than the sample size. The paper is
completed by the experimental results.

Keywords: misclassification risk; model misspecification; penalized estimation; supervised classification;
variable selection consistency

1. Introduction

Large-scale data sets, where the number of predictors significantly exceeds the number of
observations, become common in many practical problems from, among others, biology or genetics.
Currently, the analysis of such data sets is a fundamental challenge in statistics and machine learning.
High-dimensional prediction and variable selection are arguably the most popular and intensively
studied topics in this field. There are many methods trying to solve these problems such as those based
on penalized estimation [1,2]. The main representative of them is Lasso [3], that relates to l1-norm
penalization. Its properties in model selection, estimation and prediction are deeply investigated,
among others, in [2,4–10]. The results obtained in the above papers can be applied only if some
specific assumptions are satisfied. For instance, these conditions concern the relation between the
response variable and predictors. However, it is quite common that a complex data set does not satisfy
these model assumptions or they are difficult to verify, which leads to the fact that the considered
model is specified incorrectly. The model misspecification problem is the core of the current paper.
We investigate this topic in the context of high-dimensional binary classification (binary regression).

In the classification problem we are to predict or to guess the class label of the object on the
basis of its observed predictors. The object is described by the random vector (X, Y), where X ∈ Rp

is a vector of predictors and Y ∈ {−1, 1} is the class label of the object. A classifier is defined as a
measurable function f : Rp → R, which determines the label of an object in the following way:

if f (x) ≥ 0, then we predict that y = 1.

Entropy 2020, 22, 543; doi:10.3390/e22050543 www.mdpi.com/journal/entropy
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Otherwise, we guess that y = −1.
The most natural approach is to look for a classifier f , which minimizes the misclassification risk

(probability of incorrect classification)

R ( f ) = P(Y = 1, f (X) < 0) + P(Y = −1, f (X) ≥ 0). (1)

Let η(x) = P(Y = 1|X = x). It is clear that fB(x) = sign(2η(x) − 1) minimizes the risk (1) in the
family of all classifiers. It is called the Bayes classifier and we denote its risk as RB = R ( fB) . Obviously,
in practice we do not know the function η, so we cannot find the Bayes classifier. However, if we
possess a training sample (X1, Y1), . . . , (Xn, Yn) containing independent copies of (X, Y), then we can
consider a sample analog of (1), namely the empirical misclassification risk

1
n

n

∑
i=1

[I(Yi = 1, f (Xi) < 0) + I(Yi = −1, f (Xi) ≥ 0)] , (2)

where I is the indicator function. Then a minimizer of (2) could be used as our estimator.
The main difficulty in this approach lies in discontinuity of the function (2). It entails that finding

its minimizer is computationally difficult and not effective. To overcome this problem, one usually
replaces the discontinuous loss function by its convex analog φ : R → [0, ∞], for instance the logistic
loss, the hinge loss or the exponential loss. Then we obtain the convex empirical risk

Q̄( f ) =
1
n

n

∑
i=1

φ(Yi f (Xi)). (3)

In the high-dimensional case one usually obtains an estimator by minimizing the penalized version
of (3). Those tricks have been successfully used in the classification theory and have allowed to invent
boosting algorithms [11], support vector machines [12] or Lasso estimators [3]. In this paper we
are mainly interested in Lasso estimators, because they are able to solve both variable selection and
prediction problems simultaneously, while the first two algorithms are developed mainly for prediction.

Thus, we consider linear classifiers

fb(x) = b0 +
p

∑
j=1

bjxj, (4)

where b = (b0, b1, . . . , bp) ∈ Rp+1. For a fixed loss function φ we define the Lasso estimator as

b̂ = arg min
b∈Rp+1

Q̄( fb) + λ
p

∑
j=1

|bj|, (5)

where λ is a positive tuning parameter, which provides a balance between minimizing the empirical
risk and the penalty. The form of the penalty is crucial, because its singularity at the origin implies
that some coordinates of the minimizer b̂ are exactly equal to zero, if λ is sufficiently large. Thus,
calculating (5) we simultaneously select significant predictors in the model and we estimate their
coefficients, so we are also able to predict the class of new objects. The function Q̄( fb) and the penalty
are convex, so (5) is a convex minimization problem, which is an important fact from both practical
and theoretical points of view. Notice that the intercept b0 is not penalized in (5).

The random vector (5) is an estimator of

b∗ = arg min
b∈Rp+1

Q( fb), (6)

where Q( fb) = Eφ(Y fb(X)). In this paper we are mainly interested in minimizers (6) corresponding
to quadratic and logistic loss functions. The latter has a nice information-theoretic interpretation.
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Namely, it can be viewed as the Kullback–Leibler projection of unknown η on logistic models [13].
The Kullback–Leibler divergence [14] plays an important role in the information theory and statistics,
for instance it is involved in information criteria in model selection [15] or in detecting influenctial
observations [16].

In general, the classifier corresponding to (6) need not coincide with the Bayes classifier. Obviously,
we want to have a “good” estimator, which means that its misclassification risk should be as close to
the risk of the Bayes classifier as possible. In other words, its excess risk

E(b̂, fB) = EDR(b̂)− RB (7)

should be small, where ED is the expectation with respect to the data D = {(X1, Y1), . . . , (Xn, Yn)} and
we write simply R(b) instead of R( fb). Our goal is to study the excess risk (7) for the estimator (5) with
different loss functions φ. We do it by looking for the upper bounds of (7).

In the excess risk (7) we compare two misclassification risks defined in (1). In the literature one
can also find a different approach, which replaces the misclassification risks R(·) in (7) by the convex
risks Q(·). In that case the excess risk depends on the loss function φ. To deal with this fact one uses
the results from [17,18], which state the relation between the excess risk (7) and its analog based on the
convex risk Q(·). In this paper we do not follow this way and work, right from the beginning, with the
excess risk independent of φ. Only the estimator (5) depends on the loss φ.

In this paper we are also interested in variable selection. We investigate this problem in the
following semiparametric model

η(x) = g(β0 +
p

∑
j=1

β jxj), (8)

where η(x) = P(Y = 1|X = x), β ∈ Rp+1 is the true parameter and g is unknown function.
Thus, we suppose that predictors influence class probability through the function g of the linear combination

β0 +
p
∑

j=1
β jxj. The goal of variable selection is the identification of the set of significant predictors

T = {1 ≤ j ≤ p : β j �= 0}. (9)

Obviously, in the model (8) we cannot estimate an intercept β0 and we can identify the vector (β1, . . . , βp)

only up to a multiplicative constant, because any shift or scale change in β0 +
p
∑

j=1
β jXj can be absorbed

by g. However, we show in Section 5 that in many situations the Lasso estimator (5) can properly identify
the set (9).

The literature on the classification problem is comprehensive. We just mention a few
references: [12,19–21]. The predictive quality of classifiers is often investigated by obtaining upper
bounds for their excess risks. It is an important problem and was studied thoroughly, among others
in [17,18,22–24]. The variable selection and predictive properties of estimators in the high-dimensional
scenario were studied, for instance, in [2,10,13,25,26]. In the current paper we investigate the behaviour
of classifiers in possibly misspecified high-dimensional classification, which appears frequently in
practice. For instance, while working with binary regression one often assumes incorrectly that the
data follow the logistic regression model. Then the problem is solved using the Lasso penalized
maximum likelihood method. Another approach to binary regression, which is widely used due to
its computational simplicity, is just treating labels Yi as they were numbers and applying standard
Lasso. For instance, such method is used in ([1], [Subsections 4.2 and 4.3]) or ([2], Subsection 2.4.1).
These two approaches to classification sometimes give unexpectedly good results in variable selection
and prediction, but the reason of this phenomenon has not been deeply studied in the literature.
Among the above mentioned papers only [2,13,25] take up this issue. However, [25] focuses mainly
on the predictive properties of Lasso classifiers with the hinge loss. Bühlmann and van de Geer [2]
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and Kubkowski and Mielniczuk [13] study general Lipschitz loss functions. The latter paper considers
only the variable selection problem. In [2] one also investigates prediction, but they do not study
classification with the quadratic loss.

In this paper we are interested in both variable selection and predictive properties of classifiers
with convex (but not necessarily Lipschitz) loss functions. The prominent example is classification
with the quadratic loss function, which has not been investigated so far in the context of the
high-dimensional misspecified model. In this case the estimator (5) can be calculated efficiently
using the existing algorithms, for instance [27] or [28], even if the number of predictors is much
larger than the sample size. It makes this estimator very attractive, while working with large data
sets. In [28] one provides also the efficient algorithm for Lasso estimators with the logistic loss in
the high-dimensional scenario. Therefore, misspecified classification with the logistic loss plays an
important role in this paper as well. Our goal is to study thoroughly such estimators and provide
conditions, which guarantee that they are successful in prediction and variable selection.

The paper is organized as follows: in the next section we provide basic notations and assumptions,
which are used in this paper. In Section 3 we study predictive properties of Lasso estimators with
different loss functions. We will see that these properties depend strongly on the estimation quality
of estimators, which is studied in Section 4. In Section 5 we consider variable selection. In Section 6
we show numerical experiments, which describe the quality of estimators in practice. The proofs and
auxiliary results are relegated to Appendix A.

2. Assumptions and Notation

In this paper we work in the high-dimensional scenario p >> n. As usual we assume that
the number of predictors p can vary with the sample size n, which could be denoted as p(n) = pn.
However, to make notation simpler we omit the lower index and write p istead of pn. The same refers
to the other objects appearing in this paper.

In the further sections we will need the following notation:

- Xi = (Xi1, Xi2, . . . , Xip)
�;

- X = (X1, X2, . . . , Xn)� is the (n × p)-matrix of predictors;
- Let A ⊂ {1, . . . , p}. Then Ac = {1, . . . , p} \ A is a complement of A;
- XA is a submatrix of X, with columns whose indices belong to A;
- bA is a restriction of a vector b ∈ Rp to the indices from A;
- |A| is the number of elements in A;
- Ã = A ∪ {0}, so the set Ã contains indices from A and the intercept;

- The lq-norm of a vector is defined as |b|q =
(

∑
p
j=1 |bj|q

)1/q
for q ∈ [1, ∞];

- For x ∈ Rp we denote x̃ = (1, x)�;
- X̃ is the matrix X with the column of ones binded from the left side;
- b̂ quad, bquad

∗ are minimizers in (5), (6), respectively, with the quadratic loss function;
- b̂log, blog

∗ are minimizers in (5), (6), respectively, with the logistic loss function;
- The Kullback–Leibler (KL) distance [14] between two binary distributions with success probabilities

π1 and π2 is defined as

KL(π1, π2) = π1 log
(

π1

π2

)
+ (1 − π1) log

(
1 − π1

1 − π2

)
. (10)

Obviously, we have KL(π1, π2) ≥ 0 and KL(π1, π2) = 0 if only if π1 = π2. Moreover, the KL
distance need not be symmetric;

- the set of nonzero coefficients of bquad
∗ is denoted as

T = {1 ≤ j ≤ p : (b quad
∗ )j �= 0}. (11)
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Notice that the intercept is not contained in (11) even if it is nonzero.
We also specify assumptions, which are used in this paper.

Assumption 1. We assume that (X, Y), (X1, Y1), . . . , (Xn, Yn) are i.i.d. random vectors. Moreover, predictors
are univariate subgaussian, i.e., for each a ∈ R and j ∈ {1, . . . , p} we have E exp(aXj) ≤ exp(σ2

j a2/2) for

positive numbers σj. We also denote σ = max
1≤j≤p

σj. Finally, we suppose that the matrix H = E[XX�] is positive

definite and Hjj = 1 for j = 1, . . . , p.

In Sections 4 and 5 we need stronger version of Assumption 1.

Assumption 2. We suppose that the subvector of predictors XT is subgaussian with the coefficient σ0 >

0, i.e., for each u ∈ R|T| we have E exp(u�XT) ≤ exp(σ2
0 u�HTu/2), where HT =

(
E[X1jX1k]

)
j,k∈T .

The remaining conditions are as in Assumption 1. We also denote σ = max(σ0, σj, j /∈ T).

Subgaussianity of predictors is a standard assumption while working with random predictors in
high-dimensional models, cf. [13]. In particular, Assumption 1 implies that E[X] = 0 and σ ≥ 1 [29].

3. Predictive Properties of Classifiers

In this part of the paper we study prediction properties of classifiers with convex loss functions.
To do it we look for upper bounds of the excess risk (7) of estimators.

As usual the excess risk in (7) can be decomposed as

EDR(b̂)− R(b∗) + R(b∗)− RB. (12)

The second term in (12) is the approximation risk and compares the predictive abilitity of the “best”
linear classifier (6) to the Bayes classifier. The first term in (12) is called the estimation risk and describes
how the estimation process influences the predictive property of classifiers.

In the next theorem we bound from above the estimation risk of classifiers. To make the result
more transparent we use notations PD and PX in (13), which indicate explicitly which probability we
consider, i.e., PD is probability with respect to the data D and PX is with respect to the new object X.
In further results we omit these lower indexes and believe that it does not lead to confusion.

Theorem 1. For c > 0 we consider an event Ω = {|b̂ − b∗|1 ≤ c}. We have

EDR(b̂)− R(b∗) ≤ 2PD(Ωc) + PX(|b�
∗ X̃| ≤ c|X̃|∞). (13)

In Theorem 1 we obtain the upper bound for the estimation risk. This risk becomes small, if we
establish that probability of the event Ωc is small and the sequence c, which is involved in Ω and in
the second term on the right-hand side of (13), decreases sufficiently fast to zero. Therefore, Theorem 1
shows that to have a small estimation risk it is enough to prove that for each ε ∈ (0, 1) there exists c
such that

P(|b̂ − b∗|1 ≤ c) ≥ 1 − ε. (14)

Moreover, numbers ε and c should be sufficiently small. This property will be studied thoroughly in
the next section. Notice that the first term on the right-hand side of (13) relates to the fact, how well (5)
estimates (6). Moreover, the second expression on the right-hand side of (13) can be bounded from
above, if predictors are sufficiently regular, for instance subgaussian.

So far, we have been interested in the estimation risk of estimators. In the next result we establish
the upper bound for the approximation risk as well. This bound combined with (13) enables us to
bound from above the excess risk of estimators. We prove this fact for the quadratic loss φ(t) = (1 − t)2

and the logistic loss φ(t) = log(1 + e−v), which play prominent roles in this paper.
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Theorem 2. Suppose that Assumption 1 is fulfilled. Moreover, a random variable b�
∗ X̃ has a density h, which

is continuous on the interval U = [−2σc
√

log p, 2σc
√

log p ] and h̃ = sup
u∈U

h(u).

(a) We have

E(b̂quad, fB) ≤ 2P(Ωc) + 4σh̃quadc
√

log p + 2/p (15)

+

√
E
[
2η(X)− 1 − (bquad

∗ )�X̃
]2

, (16)

where h̃quad refers to the density h of (bquad
∗ )�X̃.

(b) Let ηlog(u) = 1/(1 + exp(−u)). Then we obtain

E(b̂log, fB) ≤ 2P(Ωc) + 4σh̃logc
√

log p + 2/p (17)

+

√
2E
[
KL
(

η(X), ηlog((b
log
∗ )�X̃)

)]
(18)

where KL(·, ·) is the Kullback–Leibler distance defined in (10) and h̃log refers to the density h of (blog
∗ )�X̃.

Additionally, assuming that there exists δ ∈ (0, 1) such that δ ≤ η(X) ≤ 1 − δ and δ ≤ ηlog((b
log
∗ )�X̃) ≤

1 − δ, we have

E
[
KL
(

η(X), ηlog((b
log
∗ )�X̃)

)]
≤ (2δ(1 − δ))−1E

[
η(X)− ηlog((b

log
∗ )�X̃)

]2
. (19)

In Theorem 2 we establish upper bounds on the excess risks for Lasso estimators (5). They
describe predictive properties of these classifiers. In this paper we consider linear classifiers, so the
misclassification risk of an estimator is close to the Bayes risk, if the “truth” can be approximated
linearly in a satisfactory way. For the classifier with the logistic loss this fact is described by (18)
and (19), which measure the distance between true success probability and the one in logistic regression.
In particular, when the true model is logistic, then (18) and (19) vanish. The expression (16) relates
to the approximation error in the case of the quadratic loss. It measures how well the conditional
expectation E[Y|X] can be described by the “best” (with respect to the loss φ) linear function (bquad

∗ )�X̃.
The right-hand sides of (15) and (17) relate to estimation risk. They have been already discussed

after Theorem 1. Using subgaussianity of predictors we have made them more explicit. The main
ingredient of bounds in Theorem 2, namely P(Ωc), is studied in the next section.

Results in Theorem 2 refer to Lasso estimators with quadratic and logistic loss functions. Similar
results are given in ([2], Theorem 6.4). They refer to the case that the convex excess risk is considered,
i.e., the misclassification risks R(·) are replaced by the convex risks Q(·) in (7). Moreover, these results
do not consider Lasso estimators with the quadratic loss applied to classification, which is an approach
playing a key role in the current paper. Furthermore, in ([2], Theorem 6.4) the estimation error b̂ − b∗ is
measured in the l1-norm, which is enough for prediction. However, for variable selection the l∞-norm
gives better results. Such results will be established in Sections 4 and 5. Finally, results of [2] need
more restrictive assumptions than ours. For instance, predictors should be bounded and a function fb∗
should be sufficiently close to fB in the supremum norm.

Analogous bounds to those in Theorem 2 can be obtained for other loss functions, if we combine
Theorem 1 with results of [17]. Finally, we should stress that the estimator b̂ need not rely on the Lasso
method. All we require is that the bound (14) can be estiblished for this estimator.

4. On the Event Ω

In this section we show that probability of the event Ω can be close to one. Such results for
classification models with Lipschitz loss functions were established in [2,13]. Therefore, we focus on
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the quadratic loss function, which is obviously non-Lipschitz. This loss function is important from the
practical point of view, but was not considered in these papers. Moreover, in our results the estimation
error in Ω can be measured in the lq-norms, q ≥ 1, not only in the l1-norm as in [2,13]. Bounds in the
l∞-norm lead to better results in variable selection, which are given in Section 5.

We start with introducing the cone invertibility factor (CIF), which plays a significant role in
investigating properties of estimators based on the Lasso penalty [9]. In the case n > p one usually
uses the minimal eigenvalue of the matrix X�X/n to express the strength of correlations between
predictors. Obviously, in the high-dimensional scenario this value is equal to zero and the minimal
eigenvalue needs to be replaced by some other measure of predictors interdependency, which would
describe the potential of consistent estimation of model parameters.

For ξ > 1 we define a cone

C(ξ) = {b ∈ R
p+1 : |bTc |1 ≤ ξ|bT̃ |1},

where we recall that T̃ = T ∪ {0}. In the case when p >> n three different characteristics measuring
the potential for consistent estimation of the model parameters have been introduced:

- The restricted eigenvalue [8]:

RE(ξ) = inf
0 �=b∈C(ξ)

b�X̃�X̃b/n
|b|22

,

- The compatibility factor [7]:

K(ξ) = inf
0 �=b∈C(ξ)

|T|b�X̃�X̃b/n
|bT |21

,

- The cone invertibility factor (CIF, [9]): for q ≥ 1

F̄q(ξ) = inf
0 �=b∈C(ξ)

|T|1/q|X̃�X̃b/n|∞
|b|q

.

In this article we will use CIF, because this factor allows for a sharp formulation of convergency
results for all lq norms with q ≥ 1, see ([9], Section 3.2). The population (non-random) version of CIF is
given by

Fq(ξ) = inf
0 �=b∈C(ξ)

|T|1/q|H̃b|∞
|b|q

,

where H̃ = E
[
X̃X̃�] . The key property of the random and the population versions of CIF, F̄q(ξ) and

Fq(ξ), is that, in contrast to the smallest eigenvalues of matrices X̃�X̃/n and H̃, they can be close to
each other in the high-dimensional setting, see ([30], Lemma 4.1) or ([31], Corollary 10.1). This fact is
used in the proof of Theorem 3 (given below).

Next, we state the main results of this section.

Theorem 3. Let a ∈ (0, 1), q ≥ 1 and ξ > 1 be arbitrary. Suppose that Assumption 2 is satisfied and

n ≥ K1|T|2σ4(1 + ξ)2 log(p/a)
F2

q (ξ)
(20)

and

λ ≥ K2
ξ + 1
ξ − 1

σ2

√
log(p/a)

n
, (21)
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where K1, K2 are universal constants. Then there exists a universal constant K3 > 0 such that with probability
at least 1 − K3a we have

|b̂quad − bquad
∗ |q ≤ 2ξ|T|1/qλ

(ξ + 1)Fq(ξ)
. (22)

In Theorem 3 we provide the upper bound for the estimation error of the Lasso estimator with
the quadratic loss function. This result gives the conditions for estimation consistency of b̂quad in the
high-dimensional scenario, i.e., the number of predictors can be significantly greater than the sample
size. Indeed, consistency in the l∞-norm holds e.g., when p = exp(na1), |T| = na2 , a = exp(−na1),
where a1 + 2a2 < 1. Moreover, λ is taken as the right-hand side of the inequality (21) and finally F∞(ξ)

is bounded from below (or slowly converging to 0) and σ is bounded from above (or slowly diverging
to ∞).

The choice of the λ parameter is difficult in practice, which is a common drawback of Lasso
estimators. However, Theorem 3 gives us a hint how to choose λ. The “safe” choice of λ is the
right-hand side of the inequality (21), so, roughly speaking, λ should be proportional to

√
log(p)/n.

In the experimental part of the paper the parameter λ is chosen using the cross-validation method.
As we will observe it gives satisfatory results for the Lasso estimators in both prediction and
variable selection.

Theorem 3 is a crucial fact, which gives the upper bound for (15) in Theorem 2. Namely, taking
q = 1, a = 1/p and λ equal to the right-hand side of the inequality (21), we obtain the following
consequence of Theorem 3.

Corollary 1. Suppose that Assumptions 2 is satisfied. Moreover, assume that there exist ξ0 > 1 and constants
C1 > 0 and C2 < ∞ such that F1(ξ0) ≥ C1 and σ ≤ C2. If n ≥ K1|T|2 log p, then

P

(
|b̂quad − bquad

∗ |1 ≤ K2|T|
√

log p
n

)
≥ 1 − K3/p, (23)

where the constants K1 and K2 depend only on ξ0, C1, C2 and K3 is a universal constant provided in Theorem 3.

The above result works for Lasso estimators with the quadratic loss. In the case of the logistic loss
analogous result is obtained in ([13], Theorem 1). In fact, their results relate to the case of quite general
Lipschitz loss functions, which can be useful in extending Theorem 2 to such cases.

5. Variable Selection Properties of Estimators

In Section 3 we are interested in predictive properties of estimators. In this part of the paper
we focus on variable selection, which is another important problem in high-dimensional statistics.
As we have already noticed upper bounds for probability of the event Ω are crucial in proving results
concerning prediction. It also plays a key role in establishing results relating to variable selection.
In this section we again focus on the Lasso estimators with the quadratic loss functions. The analogous
results for Lipschitz loss functions were considered in ([13], Corollary 1).

In the variable selection problem we want to find significant predictors, which, roughly
speaking, give us some information on the observed phenomenon. We consider this problem in
the semiparametric model, which is defined in (8). In this case the set of significant predictors is given
by (9). As we have already mentioned vectors β and bquad

∗ need not be the same. However, in [32] one
proved that for a real number γ the following relation

(bquad
∗ )j = γβ j, j = 1, . . . , p (24)

holds under Assumption 3, which is now stated.
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Assumption 3. Let β̊ = (β1, . . . , βp). We assume that for each θ ∈ Rp the conditional expectation

E
[
θ�X|β̊�X

]
exists and

E
[
θ�X|β̊�X

]
= dθ β̊�X

for a real number dθ ∈ R.

The coefficient γ in (24) can be easily calculated. Namely, we have

γ =
E
[
Yβ̊�X

]
β̊�Hβ̊

=
2E
[

g(β�X̃)β̊�X
]

β̊�Hβ̊
.

Standard arguments [33] show that γ is nonzero, if g is monotonic. In this case we have that the set T
defined in (9) equals to T defined in (11).

Assumption 3 is a well-known condition in the literature, see e.g., [13,32,34–36]. It is always
satisfied in the simple regression model (i.e., when X1 ∈ R), which is often used for initial screening of
explanatory variables, see, e.g., [37]. It is also satisfied when X comes from the elliptical distribution,
like the multivariate normal distribution or multivariate t-distribution. In the interesting paper [38]
one advocates that Assumption 3 is a nonrestrictive condition, when the number of predictors is large,
which is the case that we focus on in this paper.

Now, we state the results of this part of the paper. We will use the notation bquad
min = minj∈T |(bquad

∗ )j|.

Corollary 2. Suppose that conditions of Theorem 3 are satisfied for q = ∞. If bquad
min ≥ 4ξλ

(ξ+1)F∞(ξ)
, then

P
(
∀j∈T,k/∈T |b̂quad

j | > |b̂quad
k |

)
≥ 1 − K3a ,

where K3 is the universal constant from Theorem 3.

In Corollary 2 we show that the Lasso estimator with the quadratic loss is able to separate
predictors, if the nonzero coefficients of b̊quad

∗ are large enough in absolute values. In the case that T
equals (9) (i.e., T is the set of significant predictors) we can prove that the thresholded Lasso estimator is
able to find the true model with high-probability. This fact is stated in the next result. The thresholded
Lasso estimator is denoted by b̂quad

th and defined as

(b̂quad
th )j = b̂quad

j I(|b̂quad
j | ≥ δ), j = 1, . . . , p, (25)

where δ > 0 is a threshold. We set (b̂quad
th )0 = b̂quad

0 and denote T̂th = {1 ≤ j ≤ p : (b̂quad
th )j �= 0}.

Corollary 3. Let g in (8) be monotonic. We suppose that Assumption 3 and conditions of Theorem 3 are
satisfied for q = ∞. If

2ξλ

(ξ + 1)F∞(ξ)
< δ ≤ bquad

min /2,

then
P
(
T̂th = T

)
≥ 1 − K3a,

where K3 is the universal constant from Theorem 3.

Corollary 3 states that the Lasso estimator after thresholding is able to find the true model with
high probability, if the threshold is appropriately chosen. However, Corollary 3 does not give a
constructive way of choosing the threshold, because both endpoints of the interval [ 2ξλ

(ξ+1)F∞(ξ)
, bquad

min /2]
are unknown. It is not a surprising fact and has been already observed, for instance, in linear models
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([9], Theorem 8). In the literature we can find methods, which help to choose a threshold in practice,
for instance the approach relying on information criteria developed in [39,40].

Finally, we discuss the condition of Corollary 3 that bquad
min cannot be too small, i.e., bquad

min ≥
4ξλ

(ξ+1)F∞(ξ)
. We know that (bquad

∗ )j = γβ j for j = 1, . . . , p, so the considered condition requires that

min
j∈T

|β j| ≥
4ξλ

|γ|(ξ + 1)F∞(ξ)
. (26)

Compared to the similar condition for the Lasso estimators in the well-specified models, we observe
that the denominator in (26) contains an additional factor |γ|. This number is usually smaller than
one, which means that in the misspecified models the Lasso estimator needs larger sample size to
work well. This phenomenon is typical for misspecified models and the similar restrictions hold for
competitors [13].

6. Numerical Experiments

In this section we present simulation study, where we compare the accuracy of considered
estimators in prediction and variable selection.

We consider the model (8) with predictors generated from the p-dimensional normal distribution
N(0, H), where Hjj = 1 and Hjk = 0.5 for j �= k. The true parameter is

β = (1, ±1, ±1, . . . , ±1︸ ︷︷ ︸
10

, 0, 0, . . . , 0), (27)

where signs are chosen at random. The first coordinate in (27) corresponds to the intercept and the
next ten coefficients relate to significant predictors in the model. We study two cases:

- Scenario 1: g(x) = exp(x)/(1 + exp(x));
- Scenario 2: g(x) = arctan(x)/π + 0.5.

In each scenario we generate the data (X1, Y1), . . . , (Xn, Yn) for n ∈ {100, 350, 600}.
The corresponding numbers of predictors are p ∈ {100, 1225, 3600}, so the number of predictors
exceeds significantly the sample size in the experiments. For every model we consider two Lasso
estimators with unpenalized intercepts (5): the first one with the logistic loss and the second one with
the quadratic loss. They are denoted by “logistic” and “quadratic”, respectively. To calculate them we
use the “glmnet” package [28] in the “R” software [41]. The tuning parameters λ are chosen on the
basis of 10-fold cross-validation.

Observe that applying the Lasso estimator with the logistic loss function to Scenario 1 leads to
a well-specified model, while using the quadratic loss implies misspecification. In Scenario 2 both
estimators work in misspecified models.

Simulations for each scenario are repeated 300 times.
To describe the quality of estimators in variable selection we calculate two values:

- TD—the number of correctly selected relevant predictors;
- sep—the number of relevant predictors, whose Lasso coefficients are greater in absolute value

than the largest in absolute value Lasso coefficient corresponding to irrelevant predictors.

So, we want to confirm that the considered estimators are able to separate predictors, which we
establish in Section 5. Using TD we also study “screening” properties of estimators, which are easier
than separability.

The classification accuracy of estimators is measured in the following way: we generate a test
sample containg 1000 objects. On this set we calculate

- pred—the fraction of correctly predicted classes of objects for each estimator.
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The results of experiments are collected in Tables 1 and 2. By the “oracle” we mean the classifier,
which works only with significant predictors and uses the function g from the true model (8) in the
estimation process.

Table 1. Results for Scenario 1.

n = 100 Quadratic Logistic Oracle

TD 6.3 6.1
sep 2.2 2.3

pred 0.734 0.736 0.810

n = 350

TD 9.3 9.5
sep 6.0 6.3

pred 0.774 0.779 0.831

n = 600

TD 9.8 9.9
sep 8.6 8.9

pred 0.791 0.795 0.832

Table 2. Results for Scenario 2.

n = 100 Quadratic Logistic Oracle

TD 4.8 4.6
sep 1.4 1.4

pred 0.697 0.698 0.768

n = 350

TD 8.1 8.2
sep 3.9 3.9

pred 0.730 0.731 0.805

n = 600

TD 9.4 9.4
sep 6.8 6.9

pred 0.750 0.752 0.809

Finally, we also compare execution time of both algorithms. In Table 3 we show the averaged
relative time difference

tlog − tquad

tquad , (28)

where tquad and tlog is time of calculating Lasso with quadratic and logistic loss functions, respectively.

Table 3. Relative time difference (28) of algorithms.

Scenario 1 Scenario 2

n = 350 0.02 0.06
n = 600 0.11 0.13

Looking at the results of experiments we observe that both estimators perform in a satisfactory
way. Their predictive accuracy is relatively close to the oracle, especially when the sample size is
larger. In variable selection we see that both estimators are able to find significant predictors and
separate predictors in both scenarios. Again we can notice that properties of estimators become better,
when n increases.
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In Scenario 2 the quality of both estimators in prediction and variable selection is comparable.
In Scenario 1, which is well-specified for Lasso with the logistic loss, we observe its dominance over
Lasso with the quadratic loss. However, this dominance is not large. Therefore, using Lasso with the
quadratic loss we obtain slightly worse accuracy of the procedure, but this algorithm is computationally
faster. The computational efficiency is especially important, when we study large data sets. As we can
see in Table 3 execution time of estimators is almost the same for n = 350, but for n = 600 the relative
time difference becomes greater than 10%.
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Appendix A. Proofs and Auxiliary Results

This section contains proofs of results from the paper. Additional lemmas are also provided.

Appendix A.1. Results from Section 3

Proof of Theorem 1. For arbitrary b ∈ Rp+1 the averaged misclassification risk of fb can be
expressed as

EDR(b) = EDE(X,Y)

[
I(Y = 1)I(b�X̃ < 0) + I(Y = −1)I(b�X̃ ≥ 0)

]
. (A1)

Moreover, we have

I(Y = −1)I(b�X̃ ≥ 0) = I(Y = −1)
[
1 − I(b�X̃ < 0)

]
. (A2)

Applying (A1) and (A2) for b̂ and b∗, we obtain

|EDR(b̂)− R(b∗)|
=

∣∣∣EDE(X,Y) [I(Y = 1)− I(Y = −1)]
[

I(b̂�X̃ < 0)− I(b�
∗ X̃ < 0)

]∣∣∣
≤ EDE(X,Y)

∣∣∣I(b̂�X̃ < 0)− I(b�
∗ X̃ < 0)

∣∣∣
= P(b̂�X̃ < 0, b�

∗ X̃ ≥ 0) + P(b̂�X̃ ≥ 0, b�
∗ X̃ < 0),

where P is probability with respect to both the data D and the new object X. Observe that on the event
Ω, we have that

b̂�X̃ ≤ c|X̃|∞ + b�
∗ X̃,

so

P(b̂�X̃ ≥ 0, b�
∗ X̃ < 0) = P(b̂�X̃ ≥ 0, b�

∗ X̃ < 0, Ω)

+ P(b̂�X̃ ≥ 0, b�
∗ X̃ < 0, Ωc)

≤ PX(−c|X̃|∞ ≤ b�
∗ X̃ < 0) + PD(Ωc).

Analogously, we obtain

P(b̂�X̃ < 0, b�
∗ X̃ ≥ 0) ≤ PX(0 ≤ b�

∗ X̃ ≤ c|X̃|∞) + PD(Ωc)
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from
b̂�X̃ ≥ −c|X̃|∞ + b�

∗ X̃,

which finishes the proof.

Lemma A1. Suppose that Assumption 1 is fulfilled. Moreover, a random variable b�
∗ X̃ has a density h, which is

continuous on the interval U = [−2σc
√

log p, 2σc
√

log p ] and h̃ = sup
u∈U

h(u). Then

PX(|b�
∗ X̃| ≤ c|X̃|∞) ≤ 4σh̃c

√
log p + 2/p. (A3)

Proof. For simplicity, we omit the lower index X in probability PX in this proof. We take a > 1 and
obtain inequalities

P(|b�
∗ X̃| ≤ c|X̃|∞) ≤ P(|b�

∗ X̃| ≤ c|X̃|∞, |X̃|∞ ≤ a)

+ P(|b�
∗ X̃| ≤ c|X̃|∞, |X̃|∞ > a)

≤ P(|b�
∗ X̃| ≤ ca) + P(|X̃|∞ > a). (A4)

The second expression in (A4) equals P(|X|∞ > a), because a > 1. It can be handled using
subgaussianity of X as follows: take z > 0 and notice that by the Markov inequality and the fact that
exp(|u|) ≤ exp(u) + exp(−u) for each u ∈ R, we obtain

P(|X|∞ > a) ≤ e−zaE exp(z|X|∞) ≤ e−za
p

∑
j=1

E exp(z|Xj|)

≤ 2p exp(σ2z2/2 − az).

Taking z = a/σ2, we obtain
P(|X|∞ > a) ≤ 2p exp(−a2/(2σ2)).

Then we choose a = 2σ
√

log p, which is not smaller than one, because σ ≥ 1 from Assumption 1.
Finally, the first term in (A4) can be bounded from above by 2cah̃ = 4σh̃c

√
log p by the mean

value theorem.

Proof of Theorem 2. The right-hand side of (15) and (17) are upper bounds on the estimation risk.
They are obtained using Theorem 1 and Lemma A1. The expressions (16) and (18) are upper bounds
for the approximation risk in the case of estimators with the quadratic and logistic loss functions,
respectively. In particular, (16) follows from ([17], [Theorem 2.1) applied for f

bquad
∗

and Example 3.1.
Establishing (18) is similar: we just use ([17], [Theorem 2.1) applied for f

blog
∗

and Example 3.5 to
show that

R(blog
∗ )− RB ≤

√
2E
[
KL
(

η(X), ηlog((b
log
∗ )�X̃)

)]
, (A5)

where the Kullback–Leibler distance KL(·, ·) is defined in (10).
Next, we define the function h(a) = a log a + (1 − a) log(1 − a) for a ∈ (0, 1). Clearly,

we have KL(a, b) = h(a) − h(b) − h′(b)(a − b) and h′′(a) = (a(1 − a))−1. Therefore, from the mean
value theorem

KL(a, b) =
(a − b)2

2c(1 − c)
(A6)

for some c between a and b. To finish the proof we apply (A6) to the right-hand side of (A5) with
δ < c < 1 − δ.
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Appendix A.2. Results from Section 4

To simplify notation we write b̂, b∗ for b̂quad, bquad
∗ , respectively, in this section. Moreover, we also

denote b̊∗ = ((b∗)1, . . . , (b∗)p).
We start with establishing results, which help us to prove Theorem 3.

Lemma A2. For b̊∗ = H−1E [XY] we have b̊�
∗ Hb̊∗ ≤ 1.

Proof. The proof is elementary and based on the inequality

0 ≤ E
[

E [Y|X]− b̊�
∗ X
]2

. (A7)

The right-hand side of (A7) can be expressed as

E
[
[E [Y|X]]2 − 2b̊�

∗ E [XY|X] + b̊�
∗ XX� b̊∗

]
= E[E [Y|X]]2 − 2b̊�

∗ E [XY] + b̊�
∗ Hb̊∗. (A8)

Using b̊∗ = H−1E [XY] , we have b̊�
∗ E [XY] = b̊�

∗ HH−1E [XY] = b̊�
∗ Hb̊∗ and we can bound from above

the right-hand side of (A8) by
E
[
Y2
]
− b̊�

∗ Hb̊∗,

which finishes the proof.

The next result is given in ([42], Corollary 8.2).

Lemma A3. Suppose that Z1, . . . , Zn are i.i.d. random variables and there exists L > 0 such that C2 =

E exp (|Z1|/L) is finite. Then for arbitrary u > 0

P

(
1
n

n

∑
i=1

(Zi − E [Zi]) > 2L

(
C

√
2u
n

+
u
n

))
≤ exp(−u).

Lemma A4. For arbitrary j = 1, . . . , p and u > 0 we have

P

(
2
n

n

∑
i=1

Xij(X�
i b̊∗ + E [Y]− Yi) > 16.4σ2

(
3

√
2u
n

+
u
n

))
≤ exp(−u). (A9)

Proof. Fix j = 1, . . . , p and u > 0. Recall that Hb̊∗ = E [YX] and E [X] = 0. Thus, we work with an
average of i.i.d. centred random variables, so we can use Lemma A3. We only have to find L, C > 0
such that

E exp
(
|Xj(X� b̊∗ + E [Y]− Y)|/L

)
≤ C2, (A10)

where Xj is the j-th coordinate of X. For each positive number a, b we have the inequality ab ≤ a2

2 + b2

2 .
Therefore, we have

|Xj(X� b̊∗ + E [Y]− Y)| ≤
X2

j

2
+ (X� b̊∗)2 + 4.

Applying this fact and the Schwarz inequality we obtain

E exp
(
|Xj(X� b̊∗ − Y)|/L

)
≤ exp

(
4
L

)√√√√E exp

(
X2

j

L

)
E exp

(
2(X� b̊∗)2

L

)
. (A11)
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The variable Xj is subgaussian, so using ([43], Lemma 7.4) we can bound the first expectation in (A11)

by
(

1 − 2σ2

L

)−1/2
provided that L > 2σ2. The second expectation in (A11) can be bounded using

subgaussianity of the vector XT , ([43], Lemma 7.4) and Lemma A2 in the following way

E exp

(
2(X� b̊∗)2

L

)
≤
(

1 − 4σ2

L

)−1/2

,

provided that 4σ2 < L. Taking L = 4.1σ2 we can bound exp(4/L) ≤ 2.7, because Hjj = 1 implies that
σ ≥ 1. Thus, we obtain C ≤ 3, where C is the upper bound in (A10). It finishes the proof.

Lemma A5. Suppose that assumptions of Theorem 3 are satisfied. Then for arbitrary a ∈ (0, 1), q ≥ 1, ξ > 1
with probability at least 1 − Ka we have F̄q(ξ) ≥ Fq(ξ)/2, where K is an universal constant.

Proof. Fix a ∈ (0, 1), q ≥ 1, ξ > 1. We start with considering the l∞-norm of the matrix∣∣∣∣ 1
n
X̃

�
X̃− E

[
X̃X̃�

]∣∣∣∣
∞

= max

(
max

j,k=1,...,p

∣∣∣∣∣ 1
n

n

∑
i=1

XijXik − E
[
XjXk

]∣∣∣∣∣ , (A12)

max
j=1,...,p

∣∣∣∣∣ 1
n

n

∑
i=1

Xij

∣∣∣∣∣
)

. (A13)

We focus only on the right-hand side of (A12), because (A13) can be done similarly. Thus, fix j, k ∈
{1, . . . , p}. Using subgaussianity of predictors, Lemma A3 and argumentation similar to the proof of
Lemma A4 we have

P

(∣∣∣∣∣ 1
n

n

∑
i=1

XijXik − E
[
X1jX1k

]∣∣∣∣∣ > K2σ2

√
log(p2/a)

n

)
≤ 2a

p2 ,

where K2 is an universal constant. The values of constants Ki that appear in this proof can change from
line to line.

Therefore, using union bounds we obtain

P

(∣∣∣∣ 1
n
X̃

�
X̃− E

[
X̃X̃�

]∣∣∣∣
∞
> K2σ2

√
log(p2/a)

n

)
≤ K3a.

Proceeding similarly to the proof of ([30], Lemma 4.1) we have the following probabilistic inequality

F̄q(ξ) ≥ Fq(ξ)− K2(1 + ξ)|T|σ2

√
log(p2/a)

n
.

To finish the proof we use (20) with K1 being sufficiently large.

Proof of Theorem 3. Let a ∈ (0, 1), q ≥ 1, ξ > 1 be arbitrary. The main part of the proof is to show
that with high probability

|b̂ − b∗|q ≤ ξ|T|1/qλ

(ξ + 1)F̄q(ξ)
. (A14)

Then we apply Lemma A5 to obtain (22).
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Thus, we focus on showing that (A14) holds with high probability . Denote A = {|∇Q̄(b∗)|∞ ≤
ξ−1
ξ+1 λ}. We start with bounding from below probability of A. Recall that b∗ is the minimizer of

Q(b) = E(1 − Yb �X̃)2, which can be easily calculated, namely

b̊∗ = H−1E [YX] and (b∗)0 = E [Y] .

For every j = 1, . . . , p the j-th partial derivative of Q̄(b) at b∗ is

∇jQ̄(b∗) =
2
n

n

∑
i=1

Xij(X�
i b̊∗ + E [Y]− Yi). (A15)

The derivative with respect to the b0 is

∇0Q̄(b∗) =
2
n

n

∑
i=1

(X�
i b̊∗ + E [Y]− Yi). (A16)

Taking λ, which satisfies (21), and using union bounds, we obtain that

P(Ac) ≤
p

∑
j=0

P

(
|∇jQ̄(b∗)| > K2σ2

√
log(p/a)

n

)
. (A17)

Consider a summand on the right-hand side of (A17), which corresponds to j ∈ {1, . . . , p}. From (A15)
we can handle it using Lemma A4. We just take u = log(p/a) and suffciently large K2. Probability of
the first term on the right-hand side of (A17), which corresponds to j = 0, can be bounded from above
analogously as in the proof of Lemma A4. Proceeding is even easier, so we omit it.

In further argumentation we consider only the event A. Besides, we denote θ = b̂ − b∗, where b̂ is
a minimizer of a convex function (5), that is equivalent to⎧⎪⎨⎪⎩

∇jQ̄(b̂) = −λsign(b̂j) for b̂j �= 0;
|∇jQ̄(b̂)| ≤ λ for b̂j = 0;
∇0Q̄(b̂) = 0,

(A18)

where j = 1, . . . , p.
First, we prove that θ ∈ C(ξ). Here our argumentation is standard [9]. From (A18) and the fact

that |θ|1 = |θT |1 + |θTc |1 + |θ0| we can calculate

0 ≤ 2θ�
X̃

�
X̃θ/n = θ�

[
∇Q̄(b̂)− ∇Q̄(b∗)

]
= ∑

j∈T
θj∇jQ̄(b̂) + ∑

j∈Tc
b̂j∇jQ̄(b̂)− θ�∇Q̄(b∗)

≤ λ ∑
j∈T

|θj| − λ ∑
j∈Tc

|b̂j|+ |θ|1|∇Q̄(b∗)|∞

= [λ + |∇Q̄(b∗)|∞] |θT |1 + [|∇Q̄(b∗)|∞ − λ] |θTc |1 + |θ0||∇Q̄(b∗)|∞ .

Thus, using the fact that we consider the event A we get

|θTc |1 ≤ λ + |∇Q̄(b∗)|∞
λ − |∇Q̄(b∗)|∞

|θT |1 +
|∇Q̄(b∗)|∞

λ − |∇Q̄(b∗)|∞
|θ0| ≤ ξ|θT̃ |1 .

Therefore, from the definition of F̄q(ξ) we have

|b̂ − b∗|q ≤ |T|1/q|X̃�X̃(b̂ − b∗)/n|∞
F̄q(ξ)

≤ |T|1/q |∇Q̄(b̂)|∞/2 + |∇Q̄(b∗)|∞/2
F̄q(ξ)

.
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Using (A18) and the fact, that we are on A, we obtain (A14).

Appendix A.3. Results from Section 5

Proof of Corollary 2. The proof is a simple consequence of the bound (22) with q = ∞ obtained in
Theorem 3. Indeed, for arbitrary predictors j ∈ T and k /∈ T we obtain

|b̂quad
j | ≥ |(bquad

∗ )j| − |b̂quad
j − (bquad

∗ )j| ≥ bquad
min − |b̂quad − bquad

∗ |∞

>
2ξλ

(ξ + 1)F∞(ξ)
≥ |b̂quad − (bquad

∗ )|∞ ≥ |b̂quad
k − (bquad

∗ )k| = |b̂quad
k |.

Proof of Corollary 3. The proof is almost the same as the proof of Corollary 2, so it is omitted.
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Abstract: Multivariate tail coefficients are an important tool when investigating dependencies
between extreme events for different components of a random vector. Although bivariate tail
coefficients are well-studied, this is, to a lesser extent, the case for multivariate tail coefficients.
This paper contributes to this research area by (i) providing a thorough study of properties of
existing multivariate tail coefficients in the light of a set of desirable properties; (ii) proposing some
new multivariate tail measurements; (iii) dealing with estimation of the discussed coefficients and
establishing asymptotic consistency; and, (iv) studying the behavior of tail measurements with
increasing dimension of the random vector. A set of illustrative examples is given, and practical use
of the tail measurements is demonstrated in a data analysis with a focus on dependencies between
stocks that are part of the EURO STOXX 50 market index.

Keywords: archimedean copula; consistency; estimation; extreme-value copula; tail dependency;
multivariate analysis

MSC: Primary: 60Exx; Secondary: 62H20; 62G32

1. Introduction

Assume that we have a d-variate random vector and we are interested in the tendency of the
components to achieve extreme values simultaneously, which is taking extremely small or extremely
large values. In the bivariate setting, when d = 2, this so-called tail dependence has been studied
thoroughly in the literature. Bivariate lower and upper tail coefficients appeared for example in [1]
but the idea of studying bivariate extremes dates back to [2]. These coefficients, being conditional
probabilities of an extreme event given that another event is also extreme, have become the standard
tool to quantify tail dependence of a bivariate random vector. Later, a generalization into arbitrary
dimension d became of interest. The presence of more than two components however brings difficulties
of defining tail dependency and several proposals appeared in the literature. These proposals include
those made by [3,4] or [5] who adopted different strategies for conditioning in general dimensions.
Further proposals were made for specific copula families, for example, by [6] for Archimedean copulas
or by [7] for extreme-value copulas.

In this paper, we aim to contribute to the discussion on the appropriateness of multivariate
tail coefficients, from the view point of properties that one would desire such coefficients to have.
This study also entails the proposal of some new multivariate tail measures, for which we establish the
properties. We investigate an estimation of the discussed multivariate tail coefficients and establish
consistency of all estimators. It is also of particular interest to find out how tail dependence measures
behave when the dimension d increases.

Entropy 2020, 22, 728; doi:10.3390/e22070728 www.mdpi.com/journal/entropy
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The organization of the paper is as follows. In Section 2, we briefly review some basic concepts
about copulas and classes of copulas that will be needed in subsequent sections. Section 3 is devoted
to the study of various multivariate tail dependence measures, whereas Section 7 discusses statistical
estimation of these measures, including consistency properties. Section 4 investigates some further
probabilistic properties of the multivariate tail dependence measures. Section 5 studies the behavior
of the tail coefficient measures for Archimedean copulas when the dimension increases to infinity.
A variety of illustrative examples is provided in Section 6, and it accompanies the studies that are
presented in Sections 3 and 5. Finally, in Section 8, it is demonstrated how multivariate tail coefficients
contribute in getting insights into dependencies between stocks that are part of the EURO STOXX 50
market index.

2. Multivariate Copulas

In this section, we briefly introduce concepts and notation from copula theory that will be
necessary in the rest of this text. For more details on copulas, see e.g., [8].

2.1. Basic Properties. Survival and Marginal Copulas

Suppose that we have a d-variate random vector X = (X1, . . . , Xd)
� having a joint distribution

function F. Let further Fj denote the continuous marginal distribution function of Xj for j = 1, . . . , d.
Sklar’s theorem [9] describes the relationship between the joint distribution function and the marginals
that are given by a unique copula function Cd : [0, 1]d → [0, 1] such that

F(x1, . . . , xd) = Cd(F1(x1), . . . , Fd(xd)), (x1, . . . , xd)
� ∈ R

d.

We denote the set of all d-variate copulas by Cop(d). From the above relationship, it is easily seen
that the random vector U = (U1, . . . Ud)

� = (F1(X1), . . . , Fd(Xd))
� has a joint distribution function

Cd, that is, with u = (u1, . . . , ud)
� ∈ [0, 1]d, Cd(u) = P(U ≤ u). The inequalities of vectors in this text

are understood component-wise.
The survival function Cd that is associated to a copula Cd is defined as Cd(u) = P(U > u).

The survival copula CS
d that is associated to a copula Cd is defined as the copula of the random vector

1 − U, that is

CS
d (u) = P(1 − U ≤ u) = Cd(1 − u). (1)

Let π be a permutation of the set of indices {1, . . . , d}, i.e., π : {1, . . . , d} → {1, . . . , d}. The copula Cπ
d

is defined using a copula Cd as [10]

Cπ
d (u1, . . . , ud) = Cd(uπ(1), . . . , uπ(d)), ∀u ∈ [0, 1]d.

In every point of the unit hypercube [0, 1]d, the value of a copula Cd is restricted by the
lower Fréchet’s bound Wd(u) = max(∑d

j=1 uj − d + 1, 0) and the upper Fréchet’s bound Md(u) =

min(u1, . . . , ud). In other words,

Wd(u) ≤ Cd(u) ≤ Md(u), ∀u ∈ [0, 1]d.

The function Md is a copula for any d ≥ 2 and it is often called the comonotonicity copula, since it
corresponds to the copula of a random vector X whose arbitrary component can be expressed as a
strictly increasing function of any other component. If the components of a random vector X are
mutually independent, the copula of X is the independence copula Πd(u) = ∏d

j=1 uj.
The copula that is associated to any subset of components of a d-dimensional random vector X is

called a marginal copula of Cd. A marginal copula might be calculated from the original copula by
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setting arguments corresponding to the unconsidered components to 1. For example, the marginal
copula C(1,...,d−1)

d−1 of (X1, . . . , Xd−1)
� can be obtained as

C(1,...,d−1)
d−1 (u1, . . . , . . . ud−1) = Cd(u1, . . . , ud−1, 1),

where Cd is the copula of X. Marginal copulas can be used to calculate the survival function Cd of a
copula Cd, since

Cd(u) = 1 +
d

∑
j=1

(−1)j ∑
1≤k1<···<kj≤d

C
(k1,...,kj)

j (uk1 , . . . , ukj
). (2)

2.2. Classes of Archimedean and Extreme-Value Copulas

In the study here, we pay particular attention to two classes of copulas: multivariate extreme-value
copulas and multivariate Archimedean copulas.

Definition 1. A d-variate copula Cd is called an extreme-value copula if it satisfies

Cd(u1, . . . , ud) =

[
Cd

(
u1/m

1 , . . . , u1/m
d

)]m

for every integer m ≥ 1 and u ∈ [0, 1]d.

This definition is only one of many ways how to define extreme-value copulas. For other
definitions and properties, see, for example, ref. [11]. Every extreme-value copula Cd can be expressed
in terms of a so-called stable tail dependence function �d : [0, 1)d → [0, ∞) as

Cd(u1, . . . , ud) = exp(−�d(− log u1, . . . , − log ud)). (3)

Denote by Δd−1 the d-dimensional unit simplex

Δd−1 =
{
(w1, . . . , wd) ∈ [0, ∞)d : w1 + · · ·+ wd = 1

}
.

Every extreme-value copula can be equivalently expressed in terms of Pickands dependence function
Ad : Δd−1 → [1/d, 1] as

Cd(u1, . . . , ud) = exp

⎡⎢⎢⎢⎢⎢⎣
⎛⎝ d

∑
j=1

log uj

⎞⎠ Ad

⎛⎜⎜⎜⎜⎝ log u1
d
∑

j=1
log uj

, . . . ,
log ud

d
∑

j=1
log uj

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦

=

⎛⎝ d

∏
j=1

uj

⎞⎠Ad

⎛⎜⎜⎜⎝ log u1
d
∑

j=1
log uj

,...,
log ud
d
∑

j=1
log uj

⎞⎟⎟⎟⎠
(4)

The function Ad is the restriction of the function �d on the unit simplex and given as

Ad

⎛⎝ x1

∑d
j=1 xj

, . . . ,
xd

∑d
j=1 xj

⎞⎠ =
1

x1 + · · ·+ xd
�d(x1, . . . , xd). (5)
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Further, Ad is convex and it satisfies max(w1, . . . , wd) ≤ Ad(w1, . . . , wd) ≤ 1, for w = (w1, . . . , wd)
� ∈

Δd−1. The comonotonicity copula Md and the independence copula Πd are both extreme-value copulas
with respective Pickands dependence functions Ad(w) = max(w1, . . . , wd) and Ad(w) = 1, i.e., the
lower and upper bounds above.

Note that if Ad(1/d, . . . , 1/d) = 1/d, then the corresponding copula must be the comonotonicity
copula Md. Indeed, if Ad(1/d, . . . , 1/d) = 1/d it follows from (4) that Cd(u, . . . , u) = u for every
u ∈ (0, 1). Because, for any copula Cd, it holds that Cd(u) ≤ Md(u) for all u ∈ [0, 1]d, the upper
Fréchet bound, and Cd(u) ≥ Cd(min(u1, . . . , ud), . . . , min(u1, . . . , ud)), where the latter quantity equals
min(u1, . . . , ud) in this case and, consequently, Cd(u) ≥ Md(u) for all u ∈ [0, 1]d. Hence, in this case
Cd = Md.

Similarly, if Ad(1/d, . . . , 1/d) = 1, then the corresponding copula Cd must be the independence
copula Πd. To see this, first suppose that there exists a point w = (w1, . . . , wd−1, 1 − ∑d−1

j=1 wj)
� ∈ Δd−1,

such that Ad(w) = c < 1. Now, define a point z ∈ Δd−1 by setting zj = (1 − wj)/(d − 1) for
j = 1, . . . , d − 1 and zd = 1 − ∑d−1

j=1 zj = ∑d−1
j=1 wj/(d − 1). Because Ad is a convex function, then

1 = Ad

(
1
d

, . . . ,
1
d

)
= Ad

(
1
d

w +

(
1 − 1

d

)
z

)
≤ 1

d
Ad(w) +

d − 1
d

Ad(z) ≤ c + d − 1
d

< 1

which is a contradiction. This means that Ad(w) = 1 for every w ∈ Δd−1. Immediately from (4), we
get that Cd(u) = ∏d

j=1 uj for every u ∈ [0, 1]d and, hence, Cd = Πd.
Finally, from Definition 1, it follows that the marginal copula of an extreme-value copula is also

an extreme-value copula.
We next provide an illustrative example.

Example 1. Let Cd be the d-variate extreme-value copula of (X1, . . . , Xd)
� and Cd+1 be the (d + 1)-variate

copula of (X1, . . . , Xd, Xd+1)
� where Xd+1 is independent of (X1, . . . , Xd)

�, that is

Cd+1(u1, . . . , ud, ud+1) = Cd(u1, . . . , ud)ud+1.

Subsequently, from Definition 1, Cd+1 is also an extreme-value copula. The stable dependence function �d+1 can
be expressed, using (3), as

�d+1(x1, . . . , xd+1) = − log(Cd+1(e−x1 , . . . , e−xd+1)) = �d(x1, . . . , xd) + xd+1.

Then from (5)

Ad+1

⎛⎝ x1

∑d+1
j=1 xj

, . . . ,
xd+1

∑d+1
j=1 xj

⎞⎠ =

(
∑d

j=1 xj

)
Ad

(
x1

∑d
j=1 xj

, . . . , xd
∑d

j=1 xj

)
+ xd+1

∑d+1
j=1 xj

and in particular

Ad+1

(
1

d + 1
, . . . ,

1
d + 1

)
=

1
d + 1

(
dAd

(
1
d

, . . . ,
1
d

)
+ 1

)
.

Another class of copulas that we consider is the class of multivariate Archimedean copulas,
thoroughly discussed, for example, in [12].

Definition 2 (Archimedean copula). A non-increasing and continuous function ψ : [0, ∞) → [0, 1], which
satisfies the conditions ψ(0) = 1, limx→∞ ψ(x) = 0 and is strictly decreasing on [0, inf{x : ψ(x) = 0}) is
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called an Archimedean generator. A d-dimensional copula Cd is called Archimedean if it, for any u ∈ [0, 1]d,
permits the representation

Cd(u) = ψ
[
ψ−1(u1) + · · ·+ ψ−1(ud)

]
for some Archimedean generator ψ and its inverse ψ−1 : (0, 1] → [0, ∞), where, by convention, ψ(∞) = 0 and
ψ−1(0) = inf

{
u : ψ(u) = 0

}
.

In [12], the authors also provide a characterization of an Archimedean generator leading to some
Archimedean copula by means of the following definition and proposition.

Definition 3 (d-monotone function). A real function f is called d-monotone on the interval [0, ∞), where
d ≥ 2, if it is continuous on [0, ∞) and differentiable on (0, ∞) up to the order d − 2 and the derivatives satisfy

(−1)k f (k)(x) ≥ 0, for k = 0, 1, . . . d − 2

for any x ∈ (0, ∞) and further if (−1)d−2 f (d−2) is non-increasing and convex in (0, ∞). If f has derivatives
of all orders in (0, ∞) and if (−1)k f (k)(x) ≥ 0 for any x ∈ (0, ∞) and any k = 0, 1, . . . , then f is called
completely monotone.

It can be shown that exactly this definition is the key to specify which Archimedean generators
can generate copulas.

Proposition 1 (Characterization of Archimedean copulas). Let ψ be an Archimedean generator and d ≥ 2.
Subsequently, Cd : [0, 1]d → [0, 1] given by

Cd(u) = ψ
[
ψ−1(u1) + · · ·+ ψ−1(ud)

]
is a d-dimensional copula if and only if ψ is d-monotone on [0, ∞).

Corollary 1. An Archimedean generator ψ can generate a copula in any dimension if and only if it is
completely monotone.

Most of the well-known Archimedean generators are completely monotone, also called strict
generators. For strict generators, ψ−1(0) = ∞. However, the range of parameter values possibly
depends on the dimension. We illustrate this with the Clayton copula family.

Example 2. Let Cd be the d-variate Clayton copula with parameter θ. In the bivariate case, its generator is
defined as ψθ(t) = (1+ θt)−1/θ

+ with θ ≥ −1. However, ψθ is d-monotone only for θ ≥ −1/(d − 1) (see [12]).
That is, if we want to consider Clayton copula in any dimension, we have to restrict ourselves to θ ≥ 0, where
case θ = 0 is defined as a limit θ ↘ 0 and, in fact, corresponds to the independence copula.

Figure 1 shows how the generator of the Clayton family depends on the parameter θ. When θ < 0 and,
thus, ψθ is not completely monotone, then there exists t ∈ (0, ∞), such that ψθ(t) = 0. Otherwise, for θ ≥ 0,
limt→∞ ψθ(t) = 0, but for every t ∈ (0, ∞) we have ψθ(t) > 0.

In Figure 1, we see the most common shape of the generator function. The following lemma
focuses on the behavior of generators close to t = 0 and is useful later in this text.
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ψ
θ

θ =
θ =

θ =
θ =

Figure 1. Generator of Clayton copula with parameters −0.3 (dash-dotted line), 1 (solid line), 5 (dashed
line) and 10 (dotted line).

Lemma 1. Let ψ be an Archimedean generator that generates a copula, differentiable on (0, ε) for some ε > 0.
Afterwards, ψ′(0+) = limt↘0 ψ′(t) can take values in [−∞, 0).

Proof. It can be easily shown that ψ is a convex function on [0, ∞) [13] (Theorem 6.3.3). That means that
ψ′ is a non-decreasing function on [0, ∞). Additionally, from Definition 2, ψ is strictly decreasing on
[0, inf{x : ψ(x) = 0}). That is, ψ′ is negative on (0, inf{x : ψ(x) = 0}), which implies that ψ′(0+) ≤ 0.
Suppose now that ψ′(0+) = 0. Afterwards, from negativity of ψ′ on (0, inf{x : ψ(x) = 0}), ψ′ must
decrease, which is in contradiction with the fact that ψ′ is a non-decreasing function on [0, ∞).

The following example shows that ψ′(0+) can be equal to −∞.

Example 3. Let ψθ(t) = exp(−t1/θ) for θ ≥ 1 which is the generator of the Gumbel-Hougaard family. Then

ψ′
θ(0

+) = lim
t↘0

−1
θ

exp(−t1/θ)t1/θ−1 =

⎧⎨⎩−1, if θ = 1,

−∞, if θ > 1.

Recall that θ = 1 corresponds to the independence copula. Figure 2 shows how the generator of Gumbel-Hougaard
family depends on the parameter θ.

ψ
θ

θ
θ
θ
θ

Figure 2. Generator of the Gumbel-Hougaard copula with parameters 1 (dash-dotted line), 2 (solid line),
5 (dashed line) and 10 (dotted line).
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3. Tail Coefficients

In the bivariate case (i.e., d = 2), lower and upper tail coefficients are defined, respectively, as

λL(C2) = lim
u↘0

P(U2 ≤ u|U1 ≤ u) = lim
u↘0

P(U1 ≤ u|U2 ≤ u) = lim
u↘0

C2(u, u)
u

,

λU(C2) = lim
u↗1

P(U2 > u|U1 > u) = lim
u↗1

P(U1 > u|U2 > u) = lim
u↗1

1 − 2u + C2(u, u)
1 − u

,

if the limits above exist. Throughout the text, when defining these and other tail coefficients, we will
assume the existence of the limits involved. The general idea behind the tail coefficients is to measure
how likely a random variable is extreme, given that another variable is extreme. These coefficients can
take values between 0 and 1, since they are probabilities.

For extreme-value copulas, tail coefficients can be expressed as functions of Pickands dependence
function A2 corresponding to the copula C2 as

λL(C2) =

⎧⎨⎩1 if A2 (1/2, 1/2) = 1/2,

0 otherwise,

λU(C2) = 2(1 − A2(1/2, 1/2)),

(6)

see [11]. That is, unless the studied copula is the comonotonicity copula, extreme-value copulas
do not possess any lower tail dependence. Recall that, when A2(1/2, 1/2) = 1, the corresponding
copula must be the independence copula Π2. Therefore, an extreme-value copula possesses upper tail
dependence, unless the copula is the independence copula.

In case of Archimedean copulas, the tail coefficients can be expressed via the corresponding
generator ψ as

λL(C2) = 2 lim
u↘0

ψ′(2ψ−1(u))
ψ′(ψ−1(u))

,

λU(C2) = 2 − 2 lim
u↗1

ψ′(2ψ−1(u))
ψ′(ψ−1(u))

= 2 − 2 lim
t↘0

ψ′(2t)
ψ′(t)

,

see [14]. Note that both tail coefficients only depend on the behavior of the generator ψ in proximity of
the points 0 and ψ−1(0). Recall that, in the case of strict Archimedean generators, the latter is equal
to ∞.

Given their meaning and mathematical expression, tail coefficients cannot be generalized in
general dimension d ≥ 2 in a straightforward and unique way. We first propose a set of desirable
properties that are expected to hold for any multivariate tail coefficient td : Cop(d) → R and for any
d-variate copulas Cd and Cd,m, m = 1, 2, . . . . The following properties are stated under the working
condition that all tail coefficients (td(Cd), td+1(Cd+1), td(Cd,m), and so on) exist.

(T1) (Normalization) td(Md) = 1, td(Πd) = 0,
(T2) (Continuity) If limm→∞ Cd,m(u) = Cd(u), ∀u ∈ [0, 1]d, then td(Cd,m) → td(Cd) as m → ∞,
(T3) (Permutation invariance) td(Cπ

d ) = td(Cd) for every permutation π,
(T4) (Addition of an independent component) For Xd+1 independent of (X1, . . . , Xd)

td(Cd) ≥ td+1(Cd+1).

Property (T4) could be formulated in a slightly stricter way, as
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(T′
4) For Xd+1, independent of (X1, . . . , Xd), there exists a constant kd(td) ∈ [0, 1] not depending on Cd

such that

td+1(Cd+1) = kd(td) · td(Cd).

Because both lower and upper tail dependence are of interest, usually we consider that td has
actually two versions tU,d and tL,d focusing on either upper tail (variables simultaneously large)
or lower tail (variables simultaneously small) dependence respectively. Thus we can also consider the
following property

(T5) (Duality) tL,d(CS
d ) = tU,d(Cd).

In general, some of the desirable properties above are easy to be enforced. If one starts with a
candidate coefficient t∗

d , property (T1) can be achieved by defining

td(Cd) =
t∗

d (Cd)− t∗
d (Πd)

t∗
d (Md)− t∗

d (Πd)
.

Property (T3) can be achieved by taking an average of the candidate coefficient t∗
d over all of

the permutations

td(Cd) =
1
d! ∑

π∈Sd

t∗
d (C

π
d ),

where Sd denotes all of the permutations of the set {1, . . . , d}. Note, however, that, especially for high
dimensions, this significantly increases computational complexity. In the case of property (T5), we can
simply use it to define an upper tail coefficient from the lower tail one (or the other way around).

In the following, we briefly review multivariate tail coefficients proposed in the literature
and elaborate on their behavior with respect to the desirable properties (T1)–(T5). For brevity of
presentation, we refer to (T4) or its variant (T′

4) as the “addition property”. To simplify the notation,
the subscript d of td, denoting the dimension, will sometimes be omitted in the text, the dimension
being clear from an argument of a functional t.

3.1. Frahm’s Extremal Dependence Coefficient

Frahm (see [3]) considered lower and upper extremal dependence coefficients εL, εU , respectively,
defined as

εL(Cd) = lim
u↘0

P(Umax ≤ u|Umin ≤ u) = lim
u↘0

P(Umax ≤ u)
P(Umin ≤ u)

= lim
u↘0

Cd(u1)

1 − Cd(u1)
,

εU(Cd) = lim
u↗1

P(Umin > u|Umax > u) = lim
u↗1

P(Umin > u)
P(Umax > u)

= lim
u↗1

Cd(u1)

1 − Cd(u1)
,

(7)

given the limits exist, where Umax = max(U1, . . . , Ud) and Umin = min(U1, . . . , Ud). These coefficients
are not equal to λL, λU , respectively, in the bivariate case. More specifically, for any copula C2 (see [3])

εL(C2) =
λL(C2)

2 − λL(C2)
, εU(C2) =

λU(C2)

2 − λU(C2)
.

Thus, we can consider it more as a different type of tail dependence coefficient than a generalization of
bivariate tail coefficients.
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For extreme-value copulas, extremal dependence coefficients can be stated in terms of Pickands
dependence function. Let Cd be an extreme-value copula with Pickands dependence function Ad and

denote the Pickands dependence function of the marginal copula C
(k1,...,kj)

j as A
(k1,...,kj)

j . Subsequently,

Cd(t, . . . , t) = exp
{

d log(t)Ad (1/d, . . . , 1/d)
}
= tdAd(1/d,...,1/d)

Cd(t, . . . , t) = 1 +
d

∑
j=1

(−1)j ∑
1≤k1<···<kj≤d

tjA
(k1,...,kj)

j (1/j,...,1/j) (8)

= 1 +
d

∑
j=1

(−1)j ∑
1≤k1<···<kj≤d

tjAd(w1,...,wd), (9)

where w� = 1/j if � ∈ {k1, . . . , kj} and w� = 0 otherwise. As opposed to (8), expression (9) only
involves the overall d-dimensional Pickands dependence function. This might be helpful, for example,
during estimation, since not all of the lower-dimensional Pickands dependence functions in (8) need
to be estimated.

Thus, for the lower extremal dependence coefficient, one obtains

εL(Cd) = lim
t↘0

tdAd(1/d,...,1/d)

−
d
∑

j=1
(−1)j ∑1≤k1<···<kj≤d tjA

(k1,...,kj)

j (1/j,...,1/j)
=

⎧⎨⎩1 if Ad (1/d, . . . , 1/d) = 1/d,

0 otherwise
(10)

because the polynomial (in t) in the denominator contains lower-degree terms than the polynomial in
the numerator. We can see that this behavior resembles λL for bivariate extreme-value copulas, since
the only extreme-value copula possessing lower tail dependence is the comonotonicity copula.

For the upper extremal dependence coefficient, we can calculate

εU(Cd) = lim
t↗1

1 +
d
∑

j=1
(−1)j ∑1≤k1<···<kj≤d tjA

(k1,...,kj)

j (1/j,...,1/j)

1 − tdAd(1/d,...,1/d)

= lim
t↗1

d
∑

j=1
(−1)j ∑1≤k1<···<kj≤d jA

(k1,...,kj)

j
(
1/j, . . . , 1/j

)
tjA

(k1,...,kj)

j (1/j,...,1/j)−1

−dAd (1/d, . . . , 1/d) tdAd(1/d,...,1/d)−1

=

d
∑

j=1
(−1)j+1 ∑1≤k1<···<kj≤d jA

(k1,...,kj)

j
(
1/j, . . . , 1/j

)
dAd (1/d, . . . , 1/d)

=

d
∑

j=1
(−1)j+1 ∑1≤k1<···<kj≤d jAd(w1, . . . , wd)

dAd (1/d, . . . , 1/d)
, (11)

where, as above, w� = 1/j if � ∈ {k1, . . . , kj} and w� = 0 otherwise.
We next look into the tail coefficients (7) for Archimedean copulas. Let {Cd}d≥2 be a sequence of

d-dimensional Archimedean copulas with (the same) generator ψ. Subsequently,

Cd(u, . . . , u) = ψ(dψ−1(u)),

Cd(u, . . . , u) = 1 +
d

∑
j=1

(−1)j
(

d
j

)
ψ(jψ−1(u)).
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The corresponding derivatives, if they exist, are

C′
d(u, . . . , u) = ψ′(dψ−1(u))d(ψ−1)′(u),

C′
d(u, . . . , u) =

d

∑
j=1

(−1)j
(

d
j

)
ψ′(jψ−1(u))j(ψ−1)′(u).

Afterwards, the extremal dependence coefficients can be expressed as

εL(Cd) = lim
u↘0

Cd(u1)

1 − Cd(u1)
= lim

u↘0

ψ(dψ−1(u))

∑d
j=1(−1)j+1(d

j)ψ(jψ−1(u))

= lim
u↘0

ψ′(dψ−1(u))d

∑d
j=1(−1)j+1(d

j)ψ
′(jψ−1(u))j

, (12)

εU(Cd) = lim
u↗1

Cd(u1)

1 − Cd(u1)
= lim

u↗1

1 + ∑d
j=1(−1)j(d

j)ψ(jψ−1(u))

1 − ψ(dψ−1(u))

= lim
u↗1

∑d
j=1(−1)j(d

j)ψ
′(jψ−1(u))j

−ψ′(dψ−1(u))d

= lim
t↘0

∑d
j=1(−1)j(d

j)ψ
′(jt)j

−ψ′(dt)d
, (13)

where we used L’Hospital’s rule to get to the equation in (12), and the second equation in the derivation
towards (13). Recall that ψ−1(1) = 0 and ψ−1(0) = inf{u : ψ(u) = 0}. One can see that using
L’Hospital’s rule does not solve the 0/0 limit problem for general ψ and knowledge of the precise
behavior of ψ is thus crucial for calculating the coefficients εL(Cd) and εU(Cd).

As will be illustrated in Section 6, Archimedean copulas can have both extremal dependence
coefficients non-zero, depending on the generator. For εU , one additional assumption regarding a
generator ψ may become useful. Because (from the definition of the generator) limu↗1 ψ−1(u) = 0, if
the additional condition ψ′(0+) > −∞ is fulfilled, we get

εU(Cd) =
∑d

j=1(−1)j(d
j)ψ

′(0+)j

−ψ′(0+)d
=

d

∑
j=1

(−1)j
(

d − 1
j − 1

)
= 0,

using that from Lemma 1 ψ′(0+) cannot be equal to zero. In other words, if ψ′(0+) > −∞, then the
corresponding Archimedean copula is upper tail independent, for every dimension.

Next, we investigate which of the desirable properties (T1)–(T5) are satisfied for Frahm’s extremal
dependence coefficients εL and εU .

Proposition 2. Frahm’s extremal dependence coefficients εL and εU satisfy normalization property (T1),
permutation invariance property (T3), and addition property (T′

4), with kd(εL) = kd(εU) = 0 for every d ≥ 2,
and (T5).

Proof. Normalization property (T1) follows from straightforward calculations

εL(Md) = lim
u↘0

u
1 − (1 − u)

= 1,

εL(Πd) = lim
u↘0

ud

1 − (1 − u)d = 0,

εU(Md) = lim
u↗1

1 − u
1 − u

= 1,

εU(Πd) = lim
u↗1

(1 − u)d

1 − ud = 0.

Permutation invariance property (T3) follows immediately from the fact that the coefficients only
depend on Umax and Umin, which do not depend on the order of components of the random vector.
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Look now into the addition of an independent component, i.e., property (T′
4). To be able to

distinguish between the dimensions, we use the notation Umax,d = max(U1, . . . , Ud) and Umin,d =

min(U1, . . . , Ud). For Xd+1 independent of (X1, . . . , Xd), we have P(Umin,d+1 ≤ u) ≥ P(Umin,d ≤ u)
and P(Umax,d+1 > u) ≥ P(Umax,d > u) for every u ∈ [0, 1]. Further, P(Umax,d+1 ≤ u) = P(Umax,d ≤
u, Ud+1 ≤ u) = u P(Umax,d ≤ u) and similarly P(Umin,d+1 > u) = P(Umin,d > u, Ud+1 > u) =

(1 − u)P(Umin,d > u). Thus,

εL(Cd+1) = lim
u↘0

P(Umax,d+1 ≤ u)
P(Umin,d+1 ≤ u)

≤ lim
u↘0

u P(Umax,d ≤ u)
P(Umin,d ≤ u)

= 0 · εL(Cd) = 0,

εU(Cd+1) = lim
u↗1

P(Umin,d+1 > u)
P(Umax,d+1 > u)

≤ lim
u↗1

(1 − u)P(Umin,d > u)
P(Umax,d > u)

= 0 · εU(Cd) = 0,

which means that the property about adding an independent component (T′
4) holds with constants

kd(εL) = kd(εU) = 0 for every d ≥ 2.
We next look into duality (T5). Using relation (1) between the survival function and the survival

copula, coefficients εL and εU can be rewritten as

εL(Cd) = lim
u↘0

C(u1)

1 − C(u1)
= lim

u↘0

C(u1)

1 − CS(1 − u1)
,

εU(Cd) = lim
u↗1

C(u1)

1 − C(u1)
= lim

u↗1

CS(1 − u1)

1 − C(u1)

and thus

εL(CS
d ) = lim

u↘0

CS(u1)

1 − C(1 − u1)
= lim

v↗1

CS(1 − v1)

1 − C(v1)
= εU(Cd),

where substitution v = 1 − u was used. This proves the validity of duality property (T5).

We suspect that the continuity property (T2) does not hold in its full generality for most
multivariate tail coefficients. To obtain insight into this, consider the following example with a
sequence of copulas {Cd,m} given by

Cd,m(u) = Md(u)�
{

min{u1, . . . , ud} ≤ 1
m

}
+

(
1
m

+
Πd(u − 1

m 1)

(1 − 1
m )d−1

)
�

{
min{u1, . . . , ud} > 1

m

}
.

Note that the distribution that is given by Cd,m is uniform on the set [ 1
m , 1]d and it corresponds to the

upper Fréchet’s bound Md otherwise. Note that Cd,m is a copula with an ordinal sum representation,
see [8] (Section 3.2.2).

It is easily seen that Cd,m → Πd as m → ∞ uniformly on [0, 1]d. Note that εL(Cd,m) = 1 for each
m ∈ N. On the other hand, εL(Πd) = 0. Hence, for this sequence of copulas, the continuity property
(T2) does not hold.

However, a continuity property may hold, in general, under more specific conditions on the
copula sequences. One such condition is that of a sequence of contaminated copulas, defined as follows.

Let Cd and Bd,m, for m = 1, . . . be d-variate copulas, and let εm be a sequence of numbers in [0, 1].
One considers the sequence of contaminated copulas

Cd,m = (1 − εm)Cd + εmBd,m. (14)

Note that Cd,m is a convex combination of the copulas Cd and Bd,m and, hence, is also a copula,
see e.g., [8]. The interest is to investigate the behavior of a tail coefficient for the sequence Cd,m
when εm → 0, as m → ∞.
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Proposition 3 establishes a continuity property for Frahm’s extremal dependence coefficient.

Proposition 3. Suppose that, for any d-variate copulas Cd and Cd,m, m = 1, 2, . . . , there exist ε > 0, such that

Cd,m(u1)

1 − Cd,m(u1)
→ Cd(u1)

1 − Cd(u1)
uniformly on (0, ε), as m → ∞. (15)

Further assume that εL(Cd,m) exists for every m = 1, 2, . . . . Subsequently, εL(Cd,m) → εL(Cd) as m → ∞.
In particular, condition (15) is satisfied for a sequence of contaminated copulas, as in (14), for which εm → 0, as
m → ∞, and provided εL(Cd) exists.

Proof. Assumption (15) allows for us to use the Moore–Osgood theorem to interchange the limits
and, thus

lim
m→∞

εL(Cd,m) = lim
m→∞

lim
u↘0

Cd,m(u1)

1 − Cd,m(u1)
= lim

u↘0
lim

m→∞

Cd,m(u1)

1 − Cd,m(u1)
= εL(Cd).

Suppose now that we have a sequence of contaminated copulas, for which εm → 0, as m → ∞.
Subsequently, one calculates

Cd,m(u1)

1 − Cd,m(u1)
− Cd(u1)

1 − Cd(u1)
=

Cd,m(u1)− Cd(u1)

1 − Cd,m(u1)
+

Cd(u1)

1 − Cd,m(u1)
− Cd(u1)

1 − Cd(u1)

=
εm(Bd,m(u1)− Cd(u1))

1 − Cd,m(u1)
+

Cd(u1)εm(Bd,m(u1)− Cd(u1))

(1 − Cd,m(u1))(1 − Cd(u1))
. (16)

One next realizes that max{Bd,m(u1), Cd(u1)} ≤ u and min{1 − Cd,m(u1), 1 − Cd(u1)} ≥ u.
Furthermore, with the help of Formula (2) for the survival function of a copula one gets Bd,m(u1)−
Cd(u1) = O(u). Thus, one can bound∣∣∣∣∣ Cd,m(u1)

1 − Cd,m(u1)
− Cd(u1)

1 − Cd(u1)

∣∣∣∣∣ ≤ εm u
u

+
u εm O(u)

u2 = εm O(1),

which implies (15).

Analogously, a similar result could be stated for εU .

3.2. Li’s Tail Dependence Parameter

Suppose that ∅ �= Ih ⊂ {1, . . . , d} is a subset of indices, such that |Ih| = h and Jd−h = {1, . . . , d}\Ih.
Subsequently, Li [4] (Def. 1.2) defines so-called lower and upper tail dependence parameters, as follows

λ
Ih |Jd−h
L (Cd) = lim

u↘0
P(Ui ≤ u, ∀i ∈ Ih|Uj ≤ u, ∀j ∈ Jd−h),

λ
Ih |Jd−h
U (Cd) = lim

u↗1
P(Ui > u, ∀i ∈ Ih|Uj > u, ∀j ∈ Jd−h),

given the expressions exist. It is evident that these coefficients heavily depend on the choice of the
set Ih. Additionally, this generalization includes the usual bivariate tail dependence coefficients λL
and λU , by letting h = 1, I1 = {1} and J1 = {2} or the other way around. Li [4] further states that

λ
Ih |Jd−h
L (Cd) = λ

Ih |Jd−h
U (CS

d ) and, therefore, duality property (T5) is fulfilled.
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One can also notice that, for exchangeable copulas (i.e., symmetric in their arguments), the
dependence parameters are in fact functions of cardinality h rather than particular contents of Ih.
Especially in this case, it is worth introducing another notation being

λ
1,...,h|h+1,...,d
L (Cd) = lim

u↘0
P(U1 ≤ u, . . . , Uh ≤ u|Uh+1 ≤ u, . . . Ud ≤ u),

λ
1,...,h|h+1,...,d
U (Cd) = lim

u↗1
P(U1 > u, . . . , Uh > u|Uh+1 > u, . . . Ud > u).

In paper [15], it is shown that these coefficients can be rewritten while using one-sided derivatives
of the diagonal section δCd(u) = Cd(u, . . . , u) of the corresponding copula in the following way:

λ
1,...,h|h+1,...,d
L (Cd) =

δ′
Cd
(0+)

δ′
(h+1)...d(0

+)

λ
1,...,h|h+1,...,d
U (Cd) =

∑d
j=1(−1)j+1 ∑1≤k1<···<kj≤d δ′

k1...kj
(1−)

∑d−h
j=1 (−1)j+1 ∑h+1≤k1<···<kj≤d δ′

k1...kj
(1−)

where δk1...kj
denotes the diagonal section of copula C

(k1,...,kj)

j .
Additionally, the authors in [15] comment on the connection with Frahm’s extremal dependence

coefficients εL and εU , which can be expressed as

εL(Cd) =
δ′

Cd
(0+)

∑d
j=1(−1)j+1 ∑1≤k1<···<kj≤d δ′

k1...kj
(0+)

=
λ

1,...,(d−1)|d
L (Cd)

∑d
j=1(−1)j+1 ∑1≤k1<···<kj≤d λ

1,...,j−1|j
L (C

(k1,...,kj)

j )
,

εU(Cd) =
λ

1,...,(d−1)|d
U (Cd)

δ′
Cd
(1−)

if all of the above quantities exist.
De Luca and Rivieccio [6] (Def. 2) also use this way to measure tail dependence, although they

consider it as a measure for Archimedean copulas only since we can express the measures while using
the generator, as

λ
1,...,h|h+1,...,d
L = lim

u↘0

Cd(u, . . . , u)

C(h+1,...,d)
d−h (u, . . . , u)

= lim
u↘0

ψ(dψ−1(u))
ψ((d − h)ψ−1(u))

= lim
u↘0

dψ′(dψ−1(u))
(d − h)ψ′((d − h)ψ−1(u))

, (17)

λ
1,...,h|h+1,...,d
U = lim

u↗1

Cd(u, . . . , u)

C(h+1,...,d)
d−h (u, . . . , u)

= lim
u↗1

1 + ∑d
j=1(−1)j(d

j)ψ(jψ−1(u))

1 + ∑d−h
j=1 (−1)j(d−h

j )ψ(jψ−1(u))

= lim
u↗1

∑d
j=1(−1)j(d

j)ψ
′(jψ−1(u))j

∑d−h
j=1 (−1)j(d−h

j )ψ′(jψ−1(u))j
, (18)
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where we applied l’Hospital’s rule for obtaining the equation in (17) and (18). In contrast to the
Frahm’s coefficient, here the additional condition that ψ′(0+) > −∞ is not helpful, since it leads to

λ
1,...,h|h+1,...,d
U =

∑d
j=1(−1)j(d

j)ψ
′(0+)j

∑d−h
j=1 (−1)j(d−h

j )ψ′(0+)j
=

∑d
j=1(−1)j(d

j)j

∑d−h
j=1 (−1)j(d−h

j )j

and numerator and denominator are both equal to zero here.

Proposition 4. Li’s tail dependence parameters λ
Ih |Jd−h
L and λ

Ih |Jd−h
U satisfy normalization property (T1),

addition property (T4), and duality property (T5).

Proof. Duality property (T5) was shown in [4]. Normalization property (T1) follows from
straightforward calculations while using (17) and (18)

λ
Ih |Jd−h
L (Md) = lim

u↘0

u
u
= 1, λ

Ih |Jd−h
L (Πd) = lim

u↘0

ud

ud−h = 0.

For λ
Ih |Jd−h
U , it follows from duality property (T5).
We now check property (T4), the addition of an independent random component. Suppose that

the added independent component belongs to the set Ih+1. Subsequently,

λ
Ih+1|Jd−h
L (Cd+1) = lim

u↘0

Cd(u1)u

CJd−h
d−h (u1)

= 0 · λ
Ih |Jd−h
L (Cd) = 0.

If the added independent component belongs to the set Jd−h+1, then from the definition of
the coefficient

λ
Ih |Jd−h+1
L (Cd+1) = lim

u↘0

Cd(u1)u

CJd−h
d−h (u1)u

= λ
Ih |Jd−h
L (Cd).

Showing the duality property for λ
Ih |Jd−h
U is analogous.

The proof of Proposition 4 shows that, in fact, property (T′
4) is fulfilled if one distinguishes two

cases. If the added independent component belongs to the set Ih+1, then (T′
4) holds with kd(λL) =

kd(λU) = 0 for every d ≥ 2. However, if the added independent component belongs to the set Jd−h+1,
then kd(λL) = kd(λU) = 1 for every d ≥ 2.

Permutation invariance (T3) does not hold in general. However, if one would restrict to only
permutations that permute indices within Ih and within Jd−h and not across these two sets, λL and λU
would be invariant with respect to such permutations. Further, we might consider the special case
when h = d − 1, which is if we condition only on one variable. Subsequently, for any permutation π

λ
Id−1|J1
L (Cπ

d ) = lim
u↘0

Cπ
d (u1)

u
= lim

u↘0

Cd(u1)

u
= λ

Id−1|J1
L (Cd) (19)

and analogously for λU , we have λ
Id−1|J1
U (Cπ

d ) = λ
Id−1|J1
U (Cd).

A continuity property can be shown under a specific condition on the copula sequence as is
established in Proposition 5.

Proposition 5. Suppose that, for any d-variate copulas Cd and Cd,m, m = 1, 2, . . . , there exist ε > 0, such that

Cd,m(u1)

CJd−h
d−h,m(u1)

→ Cd(u1)

CJd−h
d−h (u1)

uniformly on (0, ε), as m → ∞. (20)
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Further assume that λ
Ih |Jd−h
L (Cd,m) exists for every m = 1, 2, . . . , as well as λ

Ih |Jd−h
L (Cd). Subsequently,

λ
Ih |Jd−h
L (Cd,m) → λ

Ih |Jd−h
L (Cd) as m → ∞.

In particular, condition (20) holds for a sequence of contaminated copulas, see (14), for which εm → 0,
as m → ∞, and

lim sup
m→∞

sup
u∈(0,ε)

BJd−h
d−h,m(u1)

CJd−h
d−h (u1)

< ∞, (21)

and λ
Ih |Jd−h
L (Cd) exists.

Proof. The first part of Proposition 5 is proven along the same lines as the proof of Proposition 3 and
hence omitted here.

Consider now a sequence of contaminated copulas satisfying in addition (21). We need to show
that (20) holds. To see this, note that, similarly as in (16), one gets

Cd,m(u1)

CJd−h
d−h,m(u1)

− Cd(u1)

CJd−h
d−h (u1)

=
εm(Bd,m(u1)− Cd(u1))

CJd−h
d−h,m(u1)

+
Cd(u1)εm(BJd−h

d−h,m(u1)− CJd−h
d−h (u1))

CJd−h
d−h,m(u1)CJd−h

d−h (u1)
. (22)

Further note that, for all sufficiently large m for all u ∈ (0, ε)

CJd−h
d−h (u1)

CJd−h
d,m (u1)

≤
CJd−h

d−h (u1)

(1 − εm)C
Jd−h
d−h (u1)

≤ 2. (23)

Combining (21), (22) and (23) now yields that (for all sufficiently large m)∣∣∣∣∣ Cd,m(u1)

CJd−h
d−h,m(u1)

− Cd(u1)

CJd−h
d−h (u1)

∣∣∣∣∣ ≤ εmBd,m(u1)

CJd−h
d−h,m(u1)

+
εm Cd(u1)

CJd−h
d−h,m(u1)

+
εm Cd(u1)BJd−h

d−h,m(u1)

CJd−h
d−h,m(u1)CJd−h

d−h (u1)
+

εm Cd(u1)

CJd−h
d−h,m(u1)

≤ 2 εmBd,m(u1)

CJd−h
d−h (u1)

+
2 εm Cd(u1)

CJd−h
d−h (u1)

+
2 εm Cd(u1)BJd−h

d−h,m(u1)

CJd−h
d−h (u1)CJd−h

d−h (u1)
+

2 εm Cd(u1)

CJd−h
d−h (u1)

= εm O(1),

where the O(1)-term does not depend on u. Thus, one can conclude that condition (20) of Proposition 5
is satisfied.

An analogous result as the one stated in Proposition 5 can be stated for λU .

3.3. Schmid’s and Schmidt’s Tail Dependence Measure

Schmid and Schmidt (see [5] (Sec. 3.3)) considered a generalization of tail coefficients based on a
multivariate conditional version of Spearman’s rho, which is defined as

ρ(Cd, g) =

∫
[0,1]d Cd(u)g(u)du −

∫
[0,1]d Πd(u)g(u)du∫

[0,1]d Md(u)g(u)du −
∫
[0,1]d Πd(u)g(u)du

for some non-negative measurable function g provided that the integrals exist. The choice g(u) =
�(u ∈ [0, p]d) leads to

ρ1(Cd, p) =

∫
[0,p]d Cd(u)du −

∫
[0,p]d Πd(u)du∫

[0,p]d Md(u)du −
∫
[0,p]d Πd(u)du
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and the multivariate tail dependence measure is defined as

λL,S(Cd) = lim
p↘0

ρ1(Cd, p) = lim
p↘0

d + 1
pd+1

∫
[0,p]d

Cd(u)du, (24)

provided the existence of the limit. Similarly, they define

λU,S(Cd) = lim
p↘0

∫
[1−p,1]d Cd(u)du −

∫
[1−p,1]d Πd(u)du∫

[1−p,1]d Md(u)du −
∫
[1−p,1]d Πd(u)du

. (25)

Additionally, these coefficients are not equal to λL, λU , respectively, in the bivariate case, so we can
consider it more as a different type of tail dependence coefficient rather than a generalization.

Proposition 6. Schmid’s and Schmidt’s tail dependence measure λL,S satisfies normalization property (T1),
permutation invariance property (T3), and addition property (T′

4), with kd(λL,S) = 0 for every d ≥ 2.

Proof. Normalization property (T1) and permutation invariance (T3) follow from the normalization
property and permutation invariance of Spearman’s rho, see, for example [16]. When adding an
independent component, one gets

λL,S(Cd+1) = lim
p↘0

d + 2
pd+2

∫
[0,p]d+1

Cd(u)u du = lim
p↘0

p(d + 2)
2(d + 1)

d + 1
pd+1

∫
[0,p]d

Cd(u)du = 0.

This finishes the proof.

In order for duality property (T5) to hold, the upper version should rather be defined as

λ∗
U,S(Cd) = lim

p↘0

d + 1
pd+1

∫
[0,p]d

CS
d (u)du. (26)

This seems to be more logical, since λU,S(Cd) can only be expressed, after substituting

∫
[1−p,1]d

Πd(u)du =

[
p(2 − p)

2

]d

and
∫
[1−p,1]d

Md(u)du = pd − d
d + 1

pd+1 (27)

into (25), as

λU,S(Cd) = lim
p↘0

∫
[1−p,1]d Cd(u)du −

[
p(2−p)

2

]d

pd − d
d+1 pd+1 −

[
p(2−p)

2

]d

which cannot be further simplified. It is easy to show that in the bivariate case (i.e., d = 2) the
coefficients λU,S(Cd) and λ∗

U,S(Cd) coincide. For a general dimension d > 2 however they can differ.

The continuity property (T2) cannot be shown in full generality, but a continuity property is
fulfilled in the special case of a sequence of contaminated copulas, as in (14).

Proposition 7. Consider a sequence of contaminated copulas, Cd,m = (1 − εm)Cd + εmBd,m, such that
εm → 0, as m → ∞, and λL,S(Cd) exists. Afterwards, as m → ∞,

λL,S(Cd,m) → λL,S(Cd).
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Proof. Direct calculation gives

lim
m→∞

λL,S(Cd,m) = lim
m→∞

[
(1 − εm)λL,S(Cd) + εmλL,S(Bd,m)

]
= λL,S(Cd)

since λL,S(Bd,m) is bounded.

3.4. Tail Dependence of Extreme-Value Copulas

As stated in (6), bivariate tail coefficients for extreme-value copulas can be simply expressed using
the corresponding Pickands dependence function. Thus tail dependence is fully determined by the
Pickands dependence function A2 in the point (1/2, 1/2). The range of values for A2 is limited by
max(w1, w2) ≤ A2(w1, w2) ≤ 1, which also gives us 1/2 ≤ A2(1/2, 1/2) ≤ 1 where the bivariate tail
coefficient λU gets larger when A2(1/2, 1/2) is closer to 1/2. On the other hand, A2(1/2, 1/2) = 1
means tail independence. Following this idea and given that also for the d-dimensional Pickands
dependence function Ad associated to a copula Cd we have 1/d ≤ Ad(1/d, . . . , 1/d) ≤ 1, a measure
of tail dependence for d-dimensional extreme-value copulas could be based on the difference 1 −
Ad(1/d, . . . , 1/d). After proper standardization, this leads to

λU,E(Cd) =
d

d − 1
(1 − Ad(1/d, . . . , 1/d)). (28)

Note that such a coefficient is equal to a translation of the extremal coefficient given in [17] or [7]
and defined as θE = d · Ad(1/d, . . . , 1/d). This coefficient θE was termed extremal coefficient in [17].
Schlather and Town (see [18]) give a simple interpretation of θE, related to the amount of independent
variables that are involved in the corresponding d-variate random vector.

Proposition 8. The multivariate tail dependence coefficient λU,E in (28) satisfies normalization property
(T1), continuity property (T2), permutation invariance property (T3), and addition property (T′

4), with
kd(λU,E) =

d−1
d for every d ≥ 2.

Proof. Normalization (T1) and permutation invariance (T3) follow immediately from the definition of
λU,E. If limm→∞ Cd,m(u) = Cd(u), ∀u ∈ [0, 1]d, and then also limm→∞ Ad,m(w) = Ad(w), ∀w ∈ Δd−1,
which proves the validity of (T2). For Xd+1 independent of (X1, . . . , Xd), we can use Example 1
and obtain

λU,E(Cd+1) =
d + 1

d

(
1 − Ad+1

(
1

d + 1
, . . . ,

1
d + 1

))
=

d + 1
d

⎛⎝1 − 1
d + 1

(
dAd

(
1
d

, . . . ,
1
d

)
+ 1

)⎞⎠
= 1 − Ad

(
1
d

, . . . ,
1
d

)
=

d − 1
d

λU,E(Cd).

Remark 1. The duality property (T5) is not applicable, since the survival copula of an extreme-value copula
does not have to be an extreme-value copula.

3.5. Tail Dependence Using Subvectors

A common element of the multivariate tail dependence measures discussed in Sections 3.1–3.3
is that they focus on extremal behavior of all d components of a random vector X. However, one
could also be interested in knowing whether there is any kind of tail dependence present in the vector,
which is even for subvectors of X. An interesting observation to be made is for tail dependence
measures that satisfy property (T′

4) with kd = 0 for every d ≥ 2. Assume that X and Y are independent
random variables. Then any tail measure t2(C2) would be zero for the random couple (X, Y) and no
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matter which random component we add the tail measure for the extended random vector would
stay 0. In other words, for any such tail dependence measure, this leads to tail independence of the
d-dimensional random vector (X, . . . , X, Y)�, no matter what d is. Considering tail dependence of
subvectors would be of particular interest in this case.

Suppose that we have a multivariate tail coefficient μL,d that can be calculated for general
dimension d ≥ 2. Suppose further that this coefficient only depends on the strength of tail dependence
when all of the components of a random vector are simultaneously large or small. This is the case for
all multivariate tail coefficients mentioned in Sections 3.1–3.3. Subsequently, we can introduce a tail
coefficient given by

μL(Cd) =
d

∑
j=2

wd,j ∑
1≤�1<···<�j≤d

μL,j(C
(�1,...,�j))

=
d

∑
j=2

w̃d,j
1

(d
j)

∑
1≤�1<···<�j≤d

μL,j(C
(�1,...,�j)) (29)

where 1
(d

j)
∑

1≤�1<···<�j≤d
μL,j(C

(�1,...,�j)) can be interpreted as an average tail dependence measure per

dimension, and where w̃d,j = wd,j(
d
j). This measure deals with a disadvantage of current multivariate

tail coefficients that assign a value of 0 to the copulas, where d − 1 components are highly dependent in
their tail, and the d-th component is independent. When dealing with possible stock losses, for example,
this situation should be also captured by a tail coefficient.

Recall that the weight w̃d,j corresponds to an importance given to the average tail dependence
within all the j-dimensional subvectors of X. Because tail dependence in a higher dimension is more
severe, as more extremes occur simultaneously, it is natural to assume w̃d,2 ≤ w̃d,3 ≤ · · · ≤ w̃d,d.
However, such an assumption excludes other approaches to measure tail dependence. For example,
setting w̃d,2 = 1 and w̃d,j = 0 for j = 3, . . . , d would lead to the construction of a tail dependence
measure as the average of all pairwise measures. If the underlying bivariate measure satisfies (T1), (T2),
(T3), and (T5) with d = 2 only, these properties are carried over to the pairwise measure. Additionally,
(T′

4) can be shown similarly as in Proposition 1 in [16]. Despite possibly fulfilling the desirable
properties, all of the higher dimensional dependencies are ignored, being a clear drawback of such a
pairwise approach. In the sequel, we focus on the setting that w̃d,2 ≤ w̃d,3 ≤ · · · ≤ w̃d,d.

Proposition 9. Suppose that the tail dependence measures μL,j satisfy normalization property (T1), continuity
property (T2), permutation invariance property (T3), and duality property (T5), for j = 2, . . . , d. Further

assume that
d
∑

j=2
w̃d,j = 1. Subsequently, the coefficient μL in (29) also satisfies properties (T1), (T2), (T3),

and (T5).

Proof. Clearly μL(Πd) = 0 and μL(Md) =
d
∑

j=2
w̃d,j = 1. The continuity, permutation invariance,

and duality properties follow from the continuity, permutation invariance, and duality properties
of μL,j.

What happens in case of the addition of an independent component (property (T4)) is not so
straightforward, since the weights differ depending on the overall dimension d. The addition of an
independent component increases dimension and, thus, possibly changes all of the weights. However,
one could try to come up with a weighting scheme that guarantees fulfilment of property (T4).
Consider Xd+1 independent of (X1, . . . , Xd)

�. Suppose that the input tail dependence measures μL,j
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satisfy property (T′
4), with kj = kj(μL,j) for j = 2, . . . , d. First, we express μL for the random vector

(X1, . . . , Xd+1)
�, as

μL(Cd+1) =
d+1

∑
j=2

w̃d+1,j
1

(d+1
j )

∑
1≤�1<···<�j≤d+1

μL,j(C
(�1,...,�j)

j )

=
d

∑
j=2

w̃d+1,j
1

(d+1
j )

∑
1≤�1<···<�j≤d

μL,j(C
(�1,...,�j)

j )

+
d+1

∑
j=2

w̃d+1,j
1

(d+1
j )

∑
1≤�1<···<�j−1≤d

μL,j(C
(�1,...,�j−1,d+1)
j ). (30)

Now using property (T′
4) in (30) together with the fact that for index j = 2, the corresponding summand

is μL,2(Π2) = 0 and, thus, this index can be omitted, one obtains

μL(Cd+1) =
d

∑
j=2

w̃d+1,j
d + 1 − j

d + 1
1

(d
j)

∑
1≤�1<···<�j≤d

μL,j(C
(�1,...,�j)

j )

+
d+1

∑
j=3

w̃d+1,j
kj−1

(d+1
j )

∑
1≤�1<···<�j−1≤d

μL,j−1(C
(�1,...,�j−1)

j−1 )

=
d

∑
j=2

(
w̃d+1,j

d + 1 − j
d + 1

+ w̃d+1,j+1kj
j + 1
d + 1

)
1

(d
j)

∑
1≤�1<···<�j≤d

μL,j(C
(�1,...,�j)

j )

which is equal to μL(Cd) with weights given as

w̃d,j = w̃d+1,j
d + 1 − j

d + 1
+ w̃d+1,j+1kj

j + 1
d + 1

for every j = 2, . . . , d. A sufficient criterion for fulfillment of property (T4) would thus be to have

w̃d,j ≥ w̃d+1,j
d + 1 − j

d + 1
+ w̃d+1,j+1kj

j + 1
d + 1

(31)

for every j = 2, . . . , d. Knowing the values kj, w̃d,j, w̃d+1,j, for j = 2, . . . , d, and w̃d+1,d+1, one can
check (31).

One rather general method of weight selection can then be as follows. Suppose that one wants to
achieve that proportions of weights wd,d1 and wd,d2 corresponding to two subdimensions d1 and d2 do
not depend on the overall dimension d. This can be achieved by setting recursively wd+1,j = rd+1wd,j

for j = 2, . . . , d and wd+1,d+1 = 1 − ∑d
j=2 wd+1,j = 1 − rd+1. The initial condition is obviously given as

w2,2 = 1. To obtain w̃d,2 ≤ w̃d,3 ≤ · · · ≤ w̃d,d, one needs that rd ∈ [0, 1/2] for every d = 3, . . . . Values
of rd closer to 0 give more weight to the d-th dimension, values close to 1/2 limit its influence. If we
further assume that rd = r, which is rd does not depend on d, this further simplifies to

wd,j = rd−j(1 − r)�{j>2}

for d = 2, . . . and j = 2, . . . , d. We next check the condition in (31) for this particular weight selection.
Condition (31) can be rewritten as

1 ≥ r
d + 1 − j

d + 1
+ kj

j + 1
d + 1

, for every j = 2, . . . , d. (32)
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If kj = 1 for every j as in one case of Li’s tail dependence parameter, condition (32) allows for only one
selection of r, which is r = 0. On the other hand, if kj = 0 for every j, r can take any values in [0, 1/2].
Looking from the other perspective, if r = 1/2, then condition (32) is satisfied if

kj ≤ d + 1/2
d + 1

, for every j = 2, . . . , d.

Let us recall that these conditions can only be seen as sufficient, not necessary. A precise study of what
happens when an independent component is added requires knowledge of the weighting scheme and
knowledge of the underlying input tail dependence measure.

In summary, the above discussion reveals that a measure that is able to detect tail dependence
not only in a random vector as a whole, but also in lower-dimensional subvectors, can be constructed.
A simple and interpretable weighting scheme proposed above can be used, such that several desirable
properties of the tail dependence measure are guaranteed.

3.6. Overview of Multivariate Tail Coefficients and Properties

For convenience of the reader, we list in Table 1 all of the discussed tail dependence measures,
with reference to their section number, and indicate which properties they satisfy.

Table 1. Overview of multivariate tail coefficients and their properties.

Tail Coefficient Section Properties

Frahm’s extremal dependence coefficient Section 3.1 (T1), (T3), (T′
4), (T5)

εL(Cd) , εU(Cd) + continuity property

Li’s tail dependence parameter Section 3.2 (T1), (T4), (T5)

λ
Ih |Jd−h
L (Cd), λ

Ih |Jd−h
U (Cd) + continuity property

(T3) (restricted sense)

Schmid’s and Schmidt’s tail dependence measure Section 3.3 (T1), (T3), (T′
4)

λL,S(Cd), λU,S(Cd) + continuity property

our proposal: λ∗
U,S(Cd) Section 3.3 (T1), (T3), (T′

4), (T5)

+ continuity property

Tail dependence of extreme-value copulas Section 3.4 (T1), (T2), (T3), (T′
4)

λU,E(Cd)

Tail dependence using subvectors Section 3.5 (T1), (T2), (T3), (T5)
μL(Cd), μU(Cd) (T4) (under extra conditions on the weights)

4. Multivariate Tail Coefficients: Further Properties

In Section 3, the focus was on properties (T1)–(T5). In this section, we aim at exploring some
further properties that might be of special interest. We, in particular, investigate the following type
of properties. Here, td(Cd) denotes a multivariate tail coefficient for Cd ∈ Cop(d). When needed,
we specify whether it concerns a lower or upper tail coefficient, referring to them as tL,d(Cd) and
tU,d(Cd), respectively.

• Expansion property (P1).
Given is a random vector X = (X1, . . . , Xd)

� with copula Cd. One adds one random component
Xd+1 to X. Denote the copula of the expanded random vector (X�, Xd+1)

� by Cd+1. How does
td+1(Cd+1) compare to td(Cd)? Does it hold that td+1(Cd+1) ≤ td(Cd)?

• Monotonicity property (P2).
Consider two copulas Cd,1, Cd,2 ∈ Cop(d). Does the following hold?

(i) If Cd,1(u) ≤ Cd,2(u) for u in some neighborhood of 0, then tL,d(Cd,1) ≤ tL,d(Cd,2).

(ii) If Cd,1(u) ≤ Cd,2(u) for u in some neighborhood of 1, then tU,d(Cd,1) ≤ tU,d(Cd,2).
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• Convex combination property (P3).
Suppose that the copula Cd can be written as Cd = αCd,1 + (1 − α)Cd,2 for α ∈ [0, 1], and
Cd,1, Cd,2 ∈ Cop(d). What can we say about the comparison between td(Cd) and αtd(Cd,1) + (1 −
α)td(Cd,2)?
For extreme-value copulas, we look into geometric combinations instead.

The logic behind property (P1) comes from the perception of a tail coefficient as a probability of
extreme events of components of the random vector to happen simultaneously. Thus, when another
component is added, the probability of having extreme events cannot increase. However, there is
no such a limitation from below and adding a component can immediately lead to a decrease of the
coefficient to zero.

In the next subsections, we briefly discuss these properties for the multivariate tail coefficients
discussed in Section 3.

4.1. Expansion Property (P1)

For Frahm’s coefficient, it holds that εL(Cd+1) ≤ εL(Cd) and analogously for the upper coefficient.
This result can be found in Proposition 2 of [3].

For Li’s tail dependence parameters, we need to distinguish two cases. If we add the new
component to the set Ih, then we have

λ
Ih+1|Jd−h
L (Cd+1) = lim

u↘0

Cd+1(u1)

CJd−h
d−h (u1)

≤ lim
u↘0

Cd(u1)

CJd−h
d−h (u1)

= λ
Ih |Jd−h
L (Cd).

However, if the component is added to the set Jd−h, no relationship can be shown, in general. A special
situation occurs when the component Xd+1 added to the set Jd−h is just a duplicate of a component,

which is already included in Jd−h. Subsequently, obviously λ
Ih |Jd−h+1
L (Cd+1) = λ

Ih |Jd−h
L (Cd).

For Schmid’s and Schmidt’s tail dependence measures, one cannot say, in general, how the
coefficient λL,S(Cd+1) behaves when compared to λL,S(Cd). As can be seen from (24), the integral
expression decreases with increasing dimension d, but, at the same time, the normalizing constant
increases with d.

For the tail coefficient for extreme-value copulas, λU,E(Cd) it follows from Example 7 in Section 6
that the addition of another component can lead to an increase in this coefficient. See, in particular,
also Figure 5.

4.2. Monotonicity Property (P2)

Concerning the monotonicity property (P2) it is easily seen that (P2)(i) holds for Frahm’s lower
dependence coefficient εL(Cd) if we additionally assume that Cd,1(u) ≤ Cd,2(u) for u in some
neighborhood of 0. Similarly, we need to assume that Cd,1(u) ≤ Cd,2(u) for u in some neighborhood of
1 in order to show that (P2) (ii) holds.

For Li’s tail dependence parameters, property (P2) does not hold in general. This is illustrated
via the following example in case d = 4. Consider a random vector (U1, U2, U3, U4)

� with uniform
marginals and with distribution function a Clayton copula with parameter θ > 0 (see Example 6),
given by C4,1(u) = (u1 + u2 + u3 + u4 − 3)1/θ (see (39)). We denote this first copula by C4,1. Note that
the random vector (U1, U2, U3)

� has as joint distribution a three-dimensional Clayton copula with
parameter θ, which we denote by C3. The vector (U1, U2, U4)

� has the same joint distribution C3. Next,
we consider the copula of the random vector (U1, U2, U3, U3)

� that we denote by C4,2. One has that,
for all u ∈ [0, 1]4,
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C4,1(u) = P (U1 ≤ u1, U2 ≤ u2, U3 ≤ u3, U4 ≤ u4)

≤ min
(
P (U1 ≤ u1, U2 ≤ u2, U3 ≤ u3) , P (U1 ≤ u1, U2 ≤ u2, U4 ≤ u4)

)
= min

(
C3(u1, u2, u3), C3(u1, u2, u4)

)
= C3(u1, u2, min(u3, u4))

= C4,2(u).

In Example 6 we calculate Li’s lower tail dependence parameter for a d-variate Clayton copula, which

equals λ
Ih |Jd−h
L (Cd) =

(
(d − h)/d

)1/θ (see (41)). Applying this in the setting of the current example
leads to

λ
1,2|3,4
L (C4,2) = λ

1,2|3
L (C3) =

(
1
3

)1/θ
<
(

2
4

)1/θ
= λ

1,2|3,4
L (C4,1),

which thus contradicts monotonicity property (P2)(i).
From the definition of Schmid’s and Schmidt’s tail dependence measure, it is immediate that the

monotonicity property (P2) holds.
For the tail coefficient for extreme-value copulas, λU,E defined in (28) the monotonicity property

(P2) holds. To see this, recall from (3), that, for an extreme-value copula Cd,1, we can express its stable
tail dependence function as

�Cd,1(x1, . . . , xd) = − log(Cd,1(e−x1 , . . . , e−xd)), (33)

and, hence, using that Cd,1 ≤ Cd,2, it follows that �Cd,1 ≥ �Cd,2 . The same inequality holds for Pickands
dependence function Ad,1, which is a restriction of the stable tail dependence function �Cd,1 on the unit
simplex. Hence, Cd,1 ≤ Cd,2 also implies that ACd,1 ≥ ACd,2 . From the definition of the tail coefficient in
(28) it thus follows λU,E(Cd,1) ≤ λU,E(Cd,2).

4.3. Investigation of a Tail Coefficient for a Convex/Geometric Combination (Property (P3))

Consider a copula Cd that is a convex combination of two copulas Cd,1 and Cd,2, i.e., Cd =

αCd,1 + (1 − α)Cd,2 for α ∈ [0, 1]. For the survival function, we then also have Cd = αCd,1 + (1 − α)Cd,1.
Before stating the results for the various multivariate tail coefficients, we first make the following

observation. For α, a, b, c, d ∈ [0, 1], it is straightforward to show that

a
c

≤ αa + (1 − α)b
αc + (1 − α)d

≤ b
d

⇐⇒ a
c

≤ b
d

. (34)

Frahm’s lower extremal dependence coefficient for the copula Cd is given by

εL(Cd) = lim
u↘0

αCd,1(u1) + (1 − α)Cd,2(u1)

α(1 − Cd,1(u1)) + (1 − α)(1 − Cd,2(u1))
.

Using (34), it then follows that, if εL(Cd,1) ≤ εL(Cd,2), then

εL(Cd,1) ≤ εL(Cd) ≤ εL(Cd,2).

The same conclusion can be found for Frahm’s upper extremal dependence coefficient εU .
Li’s lower tail dependence parameter for Cd, a convex mixture of copulas, equals

λ
Ih |Jd−h
L (Cd) = lim

u↘0

αCd,1(u1) + (1 − α)Cd,2(u1)

αCJd−h
d−h,1(u1) + (1 − α)CJd−h

d−h,2

,
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and an application of (34) gives that, if λ
Ih |Jd−h
L (Cd,1) ≤ λ

Ih |Jd−h
L (Cd,2), then λ

Ih |Jd−h
L (Cd,1) ≤

λ
Ih |Jd−h
L (Cd) ≤ λ

Ih |Jd−h
L (Cd,2). The same conclusion can be found for Li’s upper tail dependence

parameter λ
Ih |Jd−h
U .

Schmid’s and Schmidt’s lower tail dependence measure for a convex mixture of copulas is

λL,S(Cd) = lim
p↘0

d + 1
pd+1

∫
[0,p]d

[
αCd,1(u) + (1 − α)Cd,2(u)

]
du = αλL,S(Cd,1) + (1 − α)λL,S(Cd,2).

For an extreme-value copula, it does not make sense to look at convex combinations of two
extreme-value copulas, since it cannot be shown, in general, that such a convex combination would
again be an extreme-value copula. A more natural way to combine two extreme-value copulas Cd,1
and Cd,2 is by means of a geometric combination, i.e., by considering Cd = Cα

d,1C1−α
d,2 , with α ∈ [0, 1].

In, for example, Falk et al. [19] (p. 123) it was shown that a convex combination of two Pickands
dependence functions is also a Pickands dependence function. Denoting by Ad,1 and Ad,2, the
Pickands dependence functions of Cd,1 and Cd,2, respectively, it then follows from (33) that the Pickands
dependence function Ad for Cd = Cα

d,1C1−α
d,2 , is given by Ad = αAd,1 + (1 − α)Ad,2. From this it is seen

that Cd is again an extreme-value copula. For the tail dependence coefficient for extreme-value copulas,
it thus holds that

λU,E(Cd) =
d

d − 1
(1 − αAd,1(1/d, . . . , 1/d)− (1 − α)Ad,2(1/d, . . . , 1/d))

= αλU,E(Cd,1) + (1 − α)λU,E(Cd,2),

i.e., the coefficient λU,E of a geometric mean of two extreme-value copulas is equal to the corresponding
convex combination of the coefficients of the concerned two copulas.

5. Tail Coefficients for Archimedean Copulas in Increasing Dimension

A natural question to examine is an influence of increasing dimension on possible multivariate
tail dependence. If one restricts to the class of Archimedean copulas, several results can be achieved,
despite that similar problems with interchanging limits occur while studying the continuity property
(T2). First, let us formulate a useful lemma that describes the behavior of the main diagonal of
Archimedean copulas when the dimension increases.

Lemma 2. Let {Cd} be a sequence of d-dimensional Archimedean copulas with (the same) generator ψ. Then for
u ∈ [0, 1) and v ∈ (0, 1]

lim
d→∞

Cd(u, . . . , u) = 0,

lim
d→∞

Cd(v, . . . , v) = 0.

Proof. The proof is along the same lines as the proof of Proposition 9 in [16].

This lemma can be used in the following statements that focus on individual multivariate tail
coefficients. The first one to be examined is the Frahm’s extremal dependence coefficient εL.

Proposition 10. Let {Cd} be a sequence of d-dimensional Archimedean copulas with (the same) generator ψ.
Further assume that

lim
d→∞

lim
u↘0

Cd(u1)

1 − Cd(u1)
= lim

u↘0
lim

d→∞

Cd(u1)

1 − Cd(u1)
.
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Then

lim
d→∞

εL(Cd) = 0.

Proof. The statement follows by the direct application of Lemma 2, since then

lim
d→∞

εL(Cd) = lim
u↘0

lim
d→∞

Cd(u1)

1 − Cd(u1)
= 0.

An analogous result could be stated for εU .

Remark 2. The condition on interchanging limits is, in general, difficult to check. However, we discuss
some examples in which the condition can be checked. A first example is that of the independence copula
Cd(u) = Π(u) for which Cd(u1) = ud and Cd(u1) = (1 − u)d. Henceforth, limu↘0

Cd(u1)

1−Cd(u1)
= 0 for all

u ∈ [0, 1]. Furthermore, limd→∞
Cd(u1)

1−Cd(u1)
= 0, for all u ∈ [0, 1). Consequently, in this example, the condition

of interchanging limits holds. A second example is the Gumbel–Hougaard copula also considered in Example 7
in Section 6. For this copula it can be seen that, as in the previous example, the two concerned limits (when
u → 0 and when d → ∞) are zero and, hence, interchanging the limits is also valid in this example.

Proposition 10 further shows that if we construct estimators (based on values of u close to 0 or close to 1) of
the limits above for Archimedean copulas in high dimensions, these will be very close to 0.

For Li’s tail dependence parameters λ
Ih |Jd−h
L and λ

Ih |Jd−h
U , the situation is further complicated by

the necessary selection of Ih and Jd−h and, in particular, of the cardinality h. However, if the cardinality
of the set Jd−h is kept constant when the dimension d increases, the following result can be achieved.

Proposition 11. Let {Cd} be a sequence of d-dimensional Archimedean copulas with (the same) generator ψ

and let h in definition of λ
Ih |Jd−h
L be given as h(d) = d − h∗ for a constant h∗. Further assume that

lim
d→∞

lim
u↘0

Cd(u1)

Ch∗(u1)
= lim

u↘0
lim

d→∞

Cd(u1)

Ch∗(u1)
.

Subsequently

lim
d→∞

λ
Id−h∗ |Jh∗
L (Cd) = 0.

Proof. Using Lemma 2, we obtain

lim
d→∞

λ
Id−h∗ |Jh∗
L (Cd) = lim

u↘0
lim

d→∞

Cd(u1)

Ch∗(u1)
= 0,

from which the statement of this proposition follows.

An analogous statement could be formulated for λU .
What can one learn from the results in this section? Archimedean copulas may be not very

appropriate in high dimensions, because of their symmetry, but they are a convenient class of copulas
to use. It is good to be aware though that, when the dimension increases, the tail dependence

of Archimedean copulas vanishes, at least from the perspective of εL, λ
Ih |Jd−h
L and their upper

tail counterparts.
Obtaining similar results for different classes of copulas would also be of interest, for example,

for extreme-value copulas with restrictions on Pickands dependence function. However, this is
complicated by the fact that, unlike Archimedean copulas, extreme-value copulas do not share a
structure that could be carried through different dimensions. Some insights into this behavior are
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studied using the examples given in Section 6. This section includes examples on both Archimedean
and extreme-value copulas, as well as examples outside these classes.

6. Illustrative Examples

Example 4. Farlie–Gumbel–Morgenstern copula.

Let Cd be a d-dimensional Farlie–Gumbel–Morgenstern copula defined as

Cd(u) = u1u2 . . . ud

⎡⎣1 +
d

∑
j=2

∑
1≤k1<···<kj≤d

αk1,...,kj

(
1 − uk1

)
. . .
(

1 − ukj

)
,

⎤⎦ (35)

where the parameters have to satisfy the following 2d conditions

1 +
d

∑
j=2

∑
1≤k1<···<kj≤d

αk1,...,kj
εk1 · · · εkj

≥ 0, ∀ε1, . . . , εd ∈ {−1, 1}.

This copula is neither an Archimedean nor extreme-value copula.
We first consider Frahm’s extremal dependence coefficients εL and εU . From (35), up to a constant

Cd(u1) ≈ ud when u ≈ 0. Further, plugging (35) into (2) gives that 1 − Cd(u1) behaves like a
polynomial u − u2 + . . . when u ≈ 0. Thus,

εL(Cd) = lim
u↘0

Cd(u1)

1 − Cd(u1)
= 0,

because the polynomial in the numerator converges to zero faster than the polynomial in the
denominator. Similarly, one obtains

εU(Cd) = lim
u↗1

Cd(u1)

1 − Cd(u1)
= 0.

While examining λ
Ih |Jd−h
L and λ

Ih |Jd−h
U , the very same arguments are of use. No matter how one

chooses index sets Ih and Jd−h,

λ
Ih |Jd−h
L (Cd) = λ

Ih |Jd−h
U (Cd) = 0

since, again, the corresponding limits contain ratios of polynomials, such that the polynomials in the
numerators converge to zero faster than the polynomials in the denominators.

To obtain λL,S, the integral
∫
[0,p]d Cd(u)du needs to be calculated. Consider now a special case

when the only non-zero parameter is α = α1,...,d. Then

∫
[0,p]d

Cd(u)du =
∫
[0,1]p

u1u2 . . . ud
[
1 + α(1 − u1) . . . (1 − ud)

]
du =

(
p2

2

)d

+ α

(
3p2 − 2p3

6

)d

.

Going back to general Cd, we can notice that the resulting integral would always be a polynomial in p,
with the lowest power being 2d and thus

λL,S(Cd) = lim
p↘0

d + 1
pd+1 p2d = 0.

A similar calculation leads to λU,S(Cd) = 0. Some further calculations (not presented here) also show
that λ∗

U,S(Cd) = 0.
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From the perspective of all the above tail dependence coefficients, the Farlie–Gumbel–Morgenstern
copula does not possess any tail dependence.

Example 5. Cuadras-Augé copula.

Let Cd be a d-variate Cuadras-Augé copula, that is of the form

Cd(u1, . . . , ud) = [min(u1, . . . , ud)]
θ(u1u2 . . . ud)

1−θ

for θ ∈ [0, 1]. The Cuadras-Augé copula combines the comonotonicity copula Md with the
independence copula Πd. If θ = 0, then Cd becomes Πd. If θ = 1, then Cd becomes Md.

We again start with calculating εL and εU . From (2), we find

Cd(u1) = 1 +
d

∑
j=1

[
(−1)j

(
d
j

)
uj−(j−1)θ

]

and Frahm’s lower extremal dependence coefficient εL is thus given as

εL(Cd) = lim
u↘0

Cd(u1)

1 − Cd(u1)
= lim

u↘0

ud−(d−1)θ

d
∑

j=1

[
(−1)j+1(d

j)u
j−(j−1)θ

]

= lim
u↘0

ud−(d−1)θ−1

d
∑

j=1

[
(−1)j+1(d

j)u
j−(j−1)θ−1

] =

⎧⎨⎩1 if θ = 1,

0 if θ ∈ [0, 1)

since if θ ∈ [0, 1), the polynomial in u in the numerator converges to zero faster than the polynomial in
the denominator. For εU , using L’Hospital’s rule leads to

εU(Cd) = lim
u↗1

Cd(u1)

1 − Cd(u1)
= lim

u↗1

1 +
d
∑

j=1

{
(−1)j(d

j)u
j−(j−1)θ

}
1 − ud−(d−1)θ

= lim
u↗1

d
∑

j=1

{
(−1)j(d

j)
[
j − (j − 1)θ

]
uj−(j−1)θ−1

}
−(d − (d − 1)θ)ud−(d−1)θ−1

=

d
∑

j=1

{
(−1)j(d

j)
[
j − (j − 1)θ

]}
−(d − (d − 1)θ)

=

(1 − θ)
d
∑

j=1

[
(−1)j(d

j)j
]
+ θ

d
∑

j=1

[
(−1)j(d

j)
]

−(d − (d − 1)θ)

=
0 − θ

−(d − (d − 1)θ)
=

θ

d − (d − 1)θ
.

These values coincide with those calculated in [20] for a more general group of copulas. One can also
notice that

lim
d→∞

εU(Cd) =

⎧⎨⎩1 if θ = 1,

0 if θ ∈ [0, 1).
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In other words, if the parameter θ is smaller than 1, any sign of tail dependence disappears when the
dimension increases. If θ = 1, then εU(Cd) = 1 for every d ≥ 2 which is no surprise, since, in that case,
Cd is the comonotonicity copula Md. This behavior is illustrated in Figure 3 that details the influence
of the parameter θ on the speed of decrease of εU(Cd) when d increases.

A Cuadras–Augé copula is an exchangeable copula, which is invariant with respect to the order
of its arguments. Therefore, when calculating Li’s tail dependence parameters, only the cardinality of
the index sets Ih and Jd−h plays a role. Subsequently,

λ
Ih |Jd−h
L (Cd) = lim

u↘0

ud−(d−1)θ

ud−h−(d−h−1)θ
=

⎧⎨⎩1 if θ = 1,

0 if θ ∈ [0, 1)

and by using L’Hospital’s rule

λ
Ih |Jd−h
U (Cd) = lim

u↗1

1 + ∑d
j=1(−1)j(d

j)u
j−(j−1)θ

1 + ∑d−h
j=1 (−1)j(d−h

j )uj−(j−1)θ
=

∑d
j=1(−1)j(d

j)(j − (j − 1)θ)

∑d−h
j=1 (−1)j(d−h

j )(j − (j − 1)θ)
. (36)

If θ = 1, then λ
Ih |Jd−h
U (Cd) = 1, as expected, and it does not depend on the conditioning sets Ih and Jd−h.

For Schmid’s and Schmidt’s lower tail dependence measure λL,S(Cd), defined in (24), we first
need to calculate the integral

∫
[0,p]d Cd(u)du. A straightforward calculation gives that

∫
[0,p]d

Cd(u)du =
d

(2 − θ)d p(2−θ)(d−1)+2B
(

2
2 − θ

, d
)

where B(s, t) =
∫ 1

0 xs−1(1 − x)t−1dx is the Beta function. We then get

λL,S(Cd) = lim
p↘0

d + 1
pd+1

d
(2 − θ)d p(2−θ)(d−1)+2B

(
2

2 − θ
, d
)

,

which equals 1 when θ = 1 and 0 when θ ∈ [0, 1). Schmid’s and Schmidt’s lower tail dependence
measure thus equals Frahm’s lower extremal dependence coefficient εL as well as Li’s lower tail

dependence parameter λ
Ih |Jd−h
L (Cd).

Determining Schmid’s and Schmidt’s upper tail dependence measure λU,S(Cd) in (25) is less
straightforward. This dependence measure involves three integrals. Because its expression concerns
the limit when p → 0, it suffices to investigate the behavior of the numerator and the denominator of
(25) for p close to 0. From (27) it is easy to see that, for p close to 0,

∫
[1−p,1]d

Πd(u)du = pd − d
2

pd+1 + o
(

pd+1
)

,

and, hence, the denominator of (25) behaves, for p close to 0, as

∫
[1−p,1]d

Md(u)du −
∫
[1−p,1]d

Πd(u)du =
d(d − 1)
2(d + 1)

pd+1 + o
(

pd+1
)

. (37)
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For the integral
∫
[1−p,1]d Cd(u)du, note that, since Cd is an exchangeable copula, we can divide the

integration domain [1 − p, 1]d into d parts depending on which argument from u1, . . . , ud is minimal.
The integrals over each of the d parts are equal. We get

∫
[1−p,1]d

Cd(u)du = d
∫ 1

1−p
u1

⎛⎝ d

∏
j=2

∫ 1

u1

u1−θ
j duj

⎞⎠du1

= d
∫ 1

1−p
u1

(
1 − u2−θ

1
2 − θ

)d−1

du1

=
d

(2 − θ)d−1

∫ 1

1−p
u1

(
1 − u2−θ

1

)d−1
du1

= pd +

[
θ

d(d − 1)
2(d + 1)

− d
2

]
pd+1 + o

(
pd+1

)
,

where the approximation, valid for p close to 0, is based on a careful evaluation of the integral.
For brevity, we do not include the details here. Consequently the numerator of (25) behaves, for p
close to 0, as ∫

[1−p,1]d
Cd(u)du −

∫
[1−p,1]d

Πd(u)du = θ
d(d − 1)
2(d + 1)

pd+1 + o
(

pd+1
)

. (38)

Combining (37) and (38) reveals that λU,S(Cd) = θ, for all d ≥ 2. Other calculations (omitted here for
brevity) lead to λ∗

U,S(Cd) = θ.
A Cuadras–Augé copula is also an extreme-value copula. This can be seen through the following

calculation, where the notation u(1) = min(u1, . . . , ud) is used. One gets

Cd(u1, . . . , ud) = [u(1)]
θ(u1u2 . . . ud)

1−θ = exp

⎧⎨⎩θ log
(

u(1)

)
+ (1 − θ)

d

∑
j=1

log(uj)

⎫⎬⎭
= exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
θ log

(
u(1)

)
log(u1u2 . . . ud)

+

(1 − θ)
d
∑

j=1
log(uj)

log(u1u2 . . . ud)

⎞⎟⎟⎟⎟⎠ log(u1u2 . . . ud)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
and, thus, Cd is an extreme-value copula with Pickands dependence function

Ad(w1, . . . , wd) = θw(1) + (1 − θ)
d

∑
j=1

wj.

This allows for calculating the tail coefficient for extreme-value copulas, λU,E, as

λU,E(Cd) =
d

d − 1

(
1 − θ

d
− (1 − θ)

)
= θ.

In case of the Cuadras–Augé copula, tail dependence measured by λU,E does not depend on the
dimension d. For illustration, the values of λU,E(Cd) are included in Figure 3. One can see that εU and
λU,E behave very differently, both in terms of shapes and values.
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ε θ
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ε θ

λ θ
λ θ
λ θ

Figure 3. Frahm’s upper extremal dependence coefficient (black line) and tail dependence coefficient
for extreme-value copulas λU,E (grey line) for a Cuadras–Augé copula with parameters 0.9 (solid line),
0.99 (dashed line) and 0.999 (dotted line) as a function of the dimension of the copula.

Example 6. Clayton copula.

Let Cd be a d-variate Clayton family copula defined as

Cd(u) =

⎛⎝ d

∑
j=1

u−θ
j − d + 1

⎞⎠−1/θ

(39)

for θ > 0. The Clayton copula is an Archimedean copula and the behavior of its generator is studied in
Example 2.

For Frahm’s lower extremal dependence coefficient, either using (12) or by factoring out as below,
one obtains

εL(Cd) = lim
u↘0

Cd(u1)

1 − Cd(u1)
= lim

u↘0

u(d − duθ + uθ)−1/θ

d
∑

j=1
(−1)j+1(d

j)u(j − juθ + uθ)−1/θ

=
d−1/θ

d
∑

j=1
(−1)j+1(d

j)j−1/θ

, (40)

whereas, for Frahm’s upper extremal dependence coefficient, using (13) with the derivative of the
Clayton generator ψ′(t) = −(1 + θt)−(1+θ)/θ , one finds

εU(Cd) = lim
t↘0

∑d
j=1(−1)j(d

j)ψ
′(jt)j

−ψ′(dt)d
=

−
d
∑

j=1
(−1)j(d

j)j

d
=

d

∑
j=1

(−1)j+1
(

d − 1
j − 1

)
= 0.

Analytical calculation of limd→∞ εL(Cd) is not possible; however, insight can be gained by plotting
εL(Cd) as a function of the dimension d. This is done in Figure 4. From the plot it is evident that εL(Cd)

decreases when the dimension increases. However, for larger parameter values, the decrease seems to
be slow.
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θ =
θ =
θ =

Figure 4. Frahm’s lower extremal dependence coefficient for Clayton copula with parameters 1 (solid
line), 5 (dashed line) and 10 (dotted line) as a function of the dimension of the copula.

A Clayton copula is also an exchangeable copula and, thus, when calculating Li’s tail dependence
parameters, only the cardinality of the index sets Ih and Jd−h comes into play. Then

λ
Ih |Jd−h
L (Cd) = lim

u↘0

(
du−θ − d + 1

)−1/θ

(
(d − h)u−θ − (d − h) + 1

)−1/θ
= lim

u↘0

(
d − duθ + uθ

)−1/θ

(
d − h − (d − h)uθ + uθ

)−1/θ

=

(
d − h

d

)1/θ

. (41)

If, as in Proposition 11, the cardinality of Jd−h is kept constant (equal to h∗) when the dimension
increases, then

lim
d→∞

λ
Ih |Jd−h
L (Cd) = 0. (42)

In fact, in this example, even a milder condition is sufficient for achieving (42). If h = h(d) is linked to
the dimension such that limd→∞(d − h(d))/d = 0, then (42) holds. However, for large values of the
parameter θ, the convergence in (42) might be very slow. By applying L’Hospital’s rule (d − h) times,
one can also calculate

λ
Ih |Jd−h
U (Cd) = 0.

Spearman’s rho for the Clayton copula cannot be explicitly calculated and, thus, the values of
λL,S and λU,S are unknown.

Example 7. Gumbel-Hougaard copula.

Let Cd be a d-variate Gumbel–Hougaard copula, defined as

Cd(u) = exp

⎧⎪⎨⎪⎩−

⎡⎣ d

∑
j=1

(− log uj)
θ

⎤⎦1/θ
⎫⎪⎬⎪⎭

where θ ≥ 1. The Gumbel-Hougaard copula is the only copula (family) that is both an extreme-value
and an Archimedean copula as proved in [21] (Sec. 2). The behavior of its Archimedean generator is
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studied in Example 3. Note that θ = 1 corresponds to the independence copula Πd and the limiting
case θ → ∞ corresponds to the comonotonicity copula Md.

As expected (see (10)), for an extreme-value copula which is not the comonotonicity copula,
the Frahm’s lower extremal dependence coefficient is

εL(Cd) = lim
u↘0

Cd(u1)

1 − Cd(u1)
= lim

u↘0

ud1/θ

d
∑

j=1
(−1)j+1(d

j)u
j1/θ

= 0

since the polynomial in u in the numerator converges to zero faster than the polynomial in the
denominator. For the Frahm’s upper extremal dependence coefficient, by using (13) with the derivative
of the Gumbel–Hougaard generator ψ′(t) = −1

θ exp(−t1/θ)t1/θ−1, one obtains

εU(Cd) = lim
t↘0

∑d
j=1(−1)j(d

j)ψ
′(jt)j

−ψ′(dt)d
= lim

t↘0

−1
θ t1/θ−1 ∑d

j=1(−1)j(d
j) exp(−(jt)1/θ)j1/θ

1
θ t1/θ−1 exp(−(dt)1/θ)d1/θ

=

d
∑

j=1
(−1)j+1(d

j)j1/θ

d1/θ
. (43)

Analytical calculation of limd→∞ εU(Cd) is not possible; however, insights can be gained by plotting
εU(Cd) as a function of dimension d. This is done in Figure 5. It is evident that εU(Cd) decreases
when the dimension increases; but, the decrease seems to be slow for larger parameter values.
When comparing Figures 4 and 5, one might come to a conclusion that εL for the Clayton copula with
parameter θ is equal to εU for the Gumbel–Hougaard copula with the same parameter θ. Despite
their similarity, that is not true, as can be easily checked by calculating both of the quantities for any
pair (d, θ).

ε θ
ε θ
ε θ

λ θ
λ θ
λ θ

Figure 5. Frahm’s upper extremal dependence coefficient (black line) and tail dependence coefficient
for extreme-value copulas λU,E (grey line) for Gumbel–Hougaard copula with parameters 2 (solid line),
5 (dashed line) and 10 (dotted line) as a function of the dimension of the copula.

When calculating Li’s tail dependence parameters, one uses that the Gumbel–Hougaard copula
is also an exchangeable copula and, thus, only the cardinality of the index sets Ih and Jd−h plays a
role. Then

λ
Ih |Jd−h
L (Cd) = lim

u↘0

ud1/θ

u(d−h)1/θ
= 0.
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If θ = 1, then λ
Ih |Jd−h
U (Cd) = 0, otherwise by using L’Hospital’s rule

λ
Ih |Jd−h
U (Cd) = lim

u↗1

d
∑

j=0
(−1)j(d

j)u
j1/θ

d−h
∑

j=0
(−1)j(d−h

j )uj1/θ

=

d
∑

j=1
(−1)j(d

j)j1/θ

d−h
∑

j=1
(−1)j(d−h

j )j1/θ

. (44)

This function of parameter θ, dimension d and cardinality h is rather involved and it is depicted
in Figure 6 for different parameter choices and also two different selections of h. In one of the cases,
h = d − 1 and thus corresponds to h∗ = 1 in Proposition 11. In the other case, the number of
components on which we condition h∗ = h∗(d) is chosen to increase with d, specifically h∗(d) = '

√
d(.

For h∗ = 1 (and thus the setting of Proposition 11), the tail coefficient slowly decreases with dimension,
as expected. An interesting behavior is seen for h∗(d) = '

√
d(, where the tail coefficient seems to be,

except for instability in low dimensions, constant, independently of the parameter θ choice.

θ
θ
θ

⎣ ⎦ θ
⎣ ⎦ θ
⎣ ⎦ θ

Figure 6. Li’s upper tail dependence parameter with h∗ = 1 (black line) and with h∗ = '
√

d( (grey line)
for Gumbel-Hougaard copula with parameters 2 (solid line), 5 (dashed line) and 10 (dotted line) as a
function of the dimension of the copula.

Spearman’s rho for a Gumbel–Hougaard copula cannot be calculated explicitly and thus the
values of λL,S and λU,S are unknown.

Pickands dependence function Ad of a Gumbel–Hougaard copula is

Ad(w) = (w1 + · · ·+ wd)
−1(wθ

1 + · · ·+ wθ
d)

1/θ

and thus

λU,E(Cd) =
d − d1/θ

d − 1
.

Note that limd→∞ λU,E(Cd) = 1. From our perspective, such a behavior is rather counter-intuitive and
should be taken into account when using this tail coefficient.

An overview of the results obtained in the illustrative examples is given in Table 2.
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7. Estimation of Tail Coefficients

Before we move to the estimation of tail coefficients itself, we introduce the setting and notation
for the estimation.

7.1. Preliminaries

Let X1, . . . , Xn be a random sample of a d-dimensional random vector with copula Cd where
Xi = (X1,i, . . . Xd,i)

� for i ∈ {1, . . . n}. Throughout this section, the dimension d of a copula Cd is
arbitrary but fixed and, thus, for simplicity of notation, we omit the subscript d in Cd.

We consider the empirical copula

Ĉn(u) =
1
n

n

∑
i=1

�(Û1,i ≤ u1, . . . , Ûd,i ≤ ud), (45)

where

Ûj,i = F̂j,n(Xj,i), with F̂j,n(x) =
1

n + 1

n

∑
i=1

�(Xj,i ≤ x), x ∈ R.

Similarly, we define the empirical survival function as

Ĉn(u) =
1
n

n

∑
i=1

�(Û1,i > u1, . . . , Ûd,i > ud).

For extreme-value copulas, one can take advantage of estimation methods for the Pickands
dependence function or the stable tail dependence function. The estimation of these was discussed, for
example, in [22–24], or [7]. We briefly discuss the estimator for the Pickands dependence function, as
proposed in [7].

Madogram Estimator of Pickands Dependence Function

The multivariate w-madogram, as introduced in [7], is, for w ∈ Δd−1, defined as

νd(w) = E

⎛⎝ d∨
j=1

F
1/wj
j (Xj)−

1
d

d

∑
j=1

F
1/wj
j (Xj)

⎞⎠ ,

where u1/wj = 0 by convention if wj = 0 and 0 < u < 1. The authors in [7] further show a relation
between Pickands dependence function and the madogram given by

Ad(w) =
νd(w) + c(w)

1 − νd(w)− c(w)

where c(w) = d−1 ∑d
j=1 wj/(1 + wj). This leads to the following estimator of Pickands

dependence function

ÂMD
n (w) =

ν̂n(w) + c(w)

1 − ν̂n(w)− c(w)

with

ν̂n(w) =
1
n

n

∑
i=1

⎛⎝ d∨
j=1

F̂
1/wj
j,n (Xj,i)−

1
d

d

∑
j=1

F̂
1/wj
j,n (Xj,i)

⎞⎠ .
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However, the estimator ÂMD
n is not a proper Pickands dependence function. To deal with this problem,

they propose an estimator based on Bernstein polynomials that overcomes this issue and results into
an estimator, which is a proper Pickands dependence function.

7.2. Estimation of the Various Tail Coefficients

7.2.1. Estimation of Frahm’s Extremal Dependence Coefficient

The estimation of the Frahm’s extremal dependence coefficients has not been discussed in the
literature so far. However, a straightforward approach is to consider empirical approximations of the
quantities in definition (7), i.e.,

ε̂L =
Ĉn(un, . . . , un)

1 − Ĉn(un, . . . , un)
, ε̂U =

Ĉn(1 − un, . . . , 1 − un)

1 − Ĉn(1 − un, . . . , 1 − un)
,

where {un} is a sequence of positive numbers converging to zero. The choice of un is crucial for the
performance of the estimator. Small values of un provide an estimator with low bias but large variance,
large values of un provide an estimator with large bias but small variance. Note that, in applications, it
is useful to think about un as un = kn

n+1 , where kn stands for the numbers of extreme values used in the
estimation procedure.

Alternatively, if the underlying copula is known to be an extreme-value copula, the estimator
can be based on the estimator of Pickands dependence function plugged into (11). This results in the
following estimator

ε̂MD
U =

d
∑

j=1
(−1)j+1 ∑1≤k1<···<kj≤d j ÂMD

n (w1, . . . , wd)

dÂMD
n (1/d, . . . , 1/d)

,

with w� = 1/j if � ∈ {k1, . . . , kj} and w� = 0 otherwise.

7.2.2. Estimation of Li’s Tail Dependence Parameters

Similarly as for Frahm’s extremal dependence coefficients, one can introduce the
following estimators

λ̂
Ih |Jd−h
L =

Ĉn(un, . . . , un)

ĈJd−h
n (un, . . . , un)

, λ̂
Ih |Jd−h
U =

Ĉn(1 − un, . . . , 1 − un)

Ĉ
Jd−h

n (1 − un, . . . , 1 − un)
.

7.2.3. Estimation of Schmid’s and Schmidt’s Tail Dependence Measure

Also in this case, one can make use of the empirical copula (45). Recall the definition of λL,S in (24),
and consider p small. More precisely, let pn be a small positive number. Subsequently, one can calculate

∫
[0,pn ]d

Ĉn(u)du =
1
n

n

∑
i=1

d

∏
j=1

(
pn − Ûj,i

)
+

. (46)

The estimator of λL,S that could then be considered is of the form

(d + 1)
n pd+1

n

n

∑
i=1

d

∏
j=1

(
pn − Ûj,i

)
+

.
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However, this quantity does not provide the value 1 for a sample from a comonotonicity copula. See
the related discussion in [25]. This problem increases, while pn gets smaller. Thus, we propose to use
an estimator defined as

λ̂L,S =
∑n

i=1 ∏d
j=1

(
pn − Ûj,i

)
+

∑n
i=1

[(
pn − i

n+1

)
+

]d

where the denominator is based on estimating
∫
[0,p]d Md(u)du using (46) and the fact that for a sample

from a comonotonicity copula Û1,i = · · · = Ûd,i for every i ∈ {1, . . . , n} almost surely. Analogous
arguments lead to an estimator of λ∗

U,S, as defined in (26), given by

λ̂∗
U,S =

∑n
i=1 ∏d

j=1

(
pn − (1 − Ûj,i)

)
+

∑n
i=1

[(
pn − i

n+1

)
+

]d .

7.2.4. Estimation of λU,E the Proposed Tail Coefficient for Extreme-Value Copulas

Because coefficient λU,E, in (28), is a function of Pickands dependence function Ad, estimation can
again be based on estimation of Ad. For example, the madogram estimator ÂMD

n can be used, which
results in the following estimator

λ̂MD
U,E =

d
d − 1

(1 − ÂMD
n (1/d, . . . , 1/d)).

The consistency results for the suggested estimators can be found in the following propositions.

Proposition 12. Suppose that Cd is a d-variate extreme-value copula. Subsequently, the estimators ε̂MD
U and

λ̂MD
U,E are strongly consistent.

Proof. The statement of the proposition follows by Theorem 2.4(b) in [7], which states that

sup
w∈Δd−1

∣∣∣ÂMD
n (w)− A(w)

∣∣∣ alm. surely−−−−−−→
n→∞

0.

Proposition 13. Suppose that un, pn ∈ (n−δ, n−γ) for some 0 < γ < δ < 1.

(i) Then ε̂L and ε̂U are weakly consistent.
(ii) Then λ̂L,S and λ̂∗

U,S are weakly consistent.
(iii) Further suppose that (n CJd−h(un1)) → ∞. Subsequently, the following implications hold.

If limγ→0 limu→0+
CJd−h (u(1+γ)1)

CJd−h (u1)
= 1, then λ̂

Ih |Jd−h
L is weakly consistent.

If limγ→0 limu→0+
CJd−h (u(1+γ)1)

CJd−h (u1)
= 1, then λ̂

Ih |Jd−h
U is weakly consistent.

Proof. We will only deal with the estimators of the lower dependence coefficients ε̂L, λ̂L,S and λ̂
Ih |Jd−h
L .

The estimators of the upper dependence coefficients can be handled completely analogously.

Showing (i).

With the help of (A.22) of [26], one gets that for each β < 1
2

Ûj,i = Uj,i + Uβ
j,i OP

(
1√
n

)
, uniformly in j ∈ {1, . . . , d}, i ∈ {1, . . . , n}.
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This, together with Lemma A3 in [27] (see also (A.12) in [26]), implies that, for each ε > 0 with
probability arbitrarily close to 1 for all sufficiently large n, it holds that[

Uj,i ≤ un(1 − ε)
]
⊆
[
Ûj,i ≤ un

]
⊆
[
Uj,i ≤ un(1 + ε)

]
, for all j, i. (47)

Denote

Gn(u) =
1
n

n

∑
i=1

�{Ui ≤ u}.

Subsequently, conditionally on (47) and with the help of Chebyshev’s inequality, one gets that

Ĉn(un1) ≤ Gn(un(1 + ε)1) = C(un(1 + ε)1) +

√
C
(

un(1 + ε)1
)

OP

(
1√
n

)
(48)

= C(un1) + ε O(un) +
√

un OP

(
1√
n

)
. (49)

Analogously, also
Ĉn(un1) ≥ C(un1) + ε O(un) +

√
un OP

(
1√
n

)
. (50)

As ε > 0 is arbitrary, one can combine (49) and (50) to deduce that

Ĉn(un1) = C(un1) + oP(un). (51)

Completely analogously with the help of (2), one can show that

1 − Ĉn(un1) = 1 − C(un1) + oP(un). (52)

Further note that
1 − C(un1) = P(Umin ≤ un) ≥ P(U1 ≤ un) = un. (53)

Now combining (51), (52) and (53) yields that

ε̂L =
Ĉn(un1)

1 − Ĉn(un1)
=

C(un1) + oP(un)

1 − C(un1) + oP(un)
=

C(un1)

1 − C(un1)
+ oP(1)

P−−−→
n→∞

εL.

Showing (ii).

First of all, note that it is sufficient to show that

In =
d + 1
pd+1

n

∫
[0,pn ]d

[
Ĉn(u)− C(u)

]
du = oP(1). (54)

Further, it is straightforward to bound

d + 1
pd+1

n

∫
[0,pn ]d\[ pn

log n ,pn ]d

∣∣∣Ĉn(u)− C(u)
∣∣∣du ≤ d + 1

pd+1
n

∫
[0,pn ]d\[ pn

log n ,pn ]d

{
2 min{u1, . . . , ud}+ 1

n

}
du

≤ 2d(d + 1)
pd+1

n

∫ pn

0
· · ·

∫ pn

0

[ ∫ pn
log n

0
u1 du1

]
du2 . . . dud + O

(
1

n pn

)
= O

(
1

log2 n

)
= o(1). (55)

Now, (47) holds uniformly for un ∈ [ pn
log n , pn]. Thus analogously as one derived (51) one can also show

that uniformly in u ∈ [ pn
log n , pn]d

Ĉn(u) = C(u) + oP

( d

∑
j=1

uj

)
,
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which further implies
d + 1
pd+1

n

∫
[

pn
log n ,pn ]d

∣∣∣Ĉn(u)− C(u)
∣∣∣du = oP(1). (56)

Now, combining (55) and (56) yields (54).

Showing (iii).

To prove the weak consistency of λ̂
Ih |Jd−h
L , it is sufficient to show that

Ĉn(un1)− C(un1)

CJd−h(un1)

P−−−→
n→∞

1 and
ĈJd−h

n (un1)

CJd−h(un1)

P−−−→
n→∞

1. (57)

We start with the second convergence. Similarly, as in (48) for each ε > 0 with probability arbitrarily
close to 1 for all sufficiently large n, one can bound

GJd−h
n (un(1 − ε)1)

CJd−h(un(1 − ε)1)

CJd−h(un(1 − ε)1)

CJd−h(un1)
≤ ĈJd−h

n (un1)

CJd−h(un1)
≤ GJd−h

n (un(1 + ε)1)

CJd−h(un(1 + ε)1)

CJd−h(un(1 + ε)1)

CJd−h(un1)
.

Now, by the assumption in (iii), the ratios CJd−h (un(1−ε)1)

CJd−h (un1)
and CJd−h (un(1+ε)1)

CJd−h (un1)
can be made arbitrarily

close to 1 for ε close enough to zero and n large enough. Further, by Chebyshev’s inequality

GJd−h
n (un(1 + ε)1)

CJd−h(un(1 + ε)1)
= 1 + OP

(
1√

n CJd−h (un(1+ε)1)

)
P−−−→

n→∞
1

and, similarly, one can show also G
Jd−h
n (un(1−ε)1)

CJd−h (un(1−ε)1)

P−−−→
n→∞

1. This concludes the proof of the second

convergence in (57).
To show the first convergence in (57), one can proceed as in (48) (exploiting (47)) and arrive at

Ĉn(un1)− C(un1)

CJd−h(un1)
≤ Gn(un(1 + ε)1)− C(un(1 + ε)1)

CJd−h(un1)
+

C(un(1 + ε)1)− C(un1)

CJd−h(un1)

= OP

(
1√

n CJd−h (un1)

)
+

C(un(1 + ε)1)− C(un1)

CJd−h(un1)
.

Now, the second term on the right-hand side of the last inequality can be rewritten as

C(un(1 + ε)1)− C(un1)

CJd−h(un1)
=

C(un(1 + ε)1)

CJd−h(un(1 + ε)1)

CJd−h(un(1 + ε)1)

CJd−h(un1)
− C(un1)

CJd−h(un1)
,

which, thanks to the assumptions of the theorem and the existence of λ
Ih |Id−h
L , can be made arbitrarily

small by taking ε small enough and n sufficiently large.

As an analogous lower bound can be derived for Ĉn(un1)−C(un1)

CJd−h (un1)
, one can conclude that the first

convergence in (57) also holds.

8. Real Data Application

In this section, we illustrate the practical use of the multivariate tail coefficients via a real data
example. The data concern stock prices of companies that are constituents of the EURO STOXX
50 market index. EURO STOXX 50 index is based on the largest and the most liquid stocks in the
eurozone. Daily adjusted prices of these stocks are publicly available on https://finance.yahoo.com/
(downloaded 19 March 2020). The selected time period is 15 years, starting on 18 March 2005 and
ending on 18 March 2020. Note that this period covers both the global financial crisis 2007–2008, as well
as the sharp decline of the markets that was caused by COVID-19 coronavirus pandemic in early 2020.
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All the calculations are done in the statistical software R [28]. The R codes for the data application,
written by the authors, are available at https://www.karlin.mff.cuni.cz/~omelka/codes.php.

The preprocessing of the data was done, as follows. The stocks are traded on different stock
exchanges and thus might differ in trading days. The union of all trading days is used and missing
data introduced by this method are filled in by linear interpolation. No data were missing on the
first or the last day of the studied time range. Negative log-returns are calculated from the adjusted
stock prices and ARMA(1,1)–GARCH(1,1) is fitted to each of the variables (stocks), similarly as for
example in [29]. We also refer therein for detailed model specification. Fitting ARMA(1,1)–GARCH(1,1)
model to every stock does not necessarily provide the best achievable model, but residual checks show
that the models are adequate. The standardized residuals obtained from these univariate models are
used as the final dataset for calculating various tail coefficients. The total number of observations is
n = 3847. Table 3 summarizes the stocks used for the analysis.

Table 3. List of selected stocks for the analysis.

Company Name Industry Country Market Capitalization [bil. EUR]

Group 1 (G1)
(German stocks)

Bayer Pharmaceutics Germany 48.31
BMW Automotive Germany 27.81
Deutsche Post Courier Germany 28.02

Group 2 (G2)
(Financial stocks)

BBVA Financial Spain 19.39
BNP Paribas Financial France 33.23
Generali Financial Italy 18.41

Group 3 (G3)
(Energetics stocks)

Enel Energetics Italy 63.51
ENGIE Energetics France 24.22
Iberdrola Energetics Spain 53.75

It is of interest here to discuss tendency of extremely low returns happening simultaneously,
which translates into calculating upper tail coefficients while working with negative log-returns. This
allows us to use also the methods assuming that the data are coming from an extreme-value copula.

Six different settings are considered: stocks from Group 1 (G1), from Group 2 (G2), from Group 3
(G3), from G1 and G2, from G1 and G3, and finally stocks from G2 and G3. The dimension d is equal
to 3 for the first three settings and equal to 6 for the last three settings.

Six different estimators are considered: ε̂U , ε̂MD
U , λ̂∗

U,S, λ̂U,E, and λ̂
Ih |Jd−h
U with two different

selections of the conditioning sets Ih and Jd−h. In one case, h∗ = d − h = 1 and we condition on only
one variable. The specific choice of that one variable does not impact the result, as follows from (19).
The analysis with the conditioning on only one variable shows how the rest of the group is affected
by the behavior of one stock. In the other case, we condition on all of the stocks, except for the one
with largest market capitalization within the group. This analysis indicates how the largest player is
affected by the behavior of the rest of the group.

The estimators that are functions of the amount of data points k (recall from Section 7.2 that a
common choice is un = kn/(n + 1), with kn = k here) do not provide one specific estimate but rather
a function of k. A selection of in some sense the best possible k requires further study. Intuitively,
one should look at lowest k for which the estimator is not too volatile. This idea was used in [30] for
estimating bivariate tail coefficients by finding a plateau in the considered estimator as a function of
k. The results of the analysis are summarized in Figures 7 and 8 and Table 4. Examining Figure 7, it
seems that k around 100 would be a possible reasonable choice for the tail coefficients of Frahm, and
Schmid and Schmidt, for these data. For Li’s tail dependence parameters, it appears from Figure 8 that,
when conditioning on more than one variable, a larger value for k is needed, for example k = 200.

For the tail dependence measurements for extreme-value copulas, we include the coefficients
λU,E and the original extremal coefficient θE (see [17]), where the latter can be estimated from
the former, since θE = d(1 − d−1

d λU,E). Recall that the various tail coefficient estimators estimate
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different quantities and, therefore, their values should not be compared to each other. However, a few
general conclusions can be made based on Figures 7 and 8. Clearly, all the studied groups possess
a certain amount of tail dependence. The combinations of groups also seem to be tail dependent,
although the strength of dependence is smaller. Groups G2 and G3 seem to be slightly more tail
dependent than G1, which suggests that sharing industry influences tail dependence more than
sharing geographical location.

Table 4. Estimated tail coefficients for extreme-value copulas.

G1 G2 G3 G1 + G2 G1 + G3 G2 + G3

λ̂U,E 0.50 0.63 0.58 0.61 0.57 0.64
θ̂E 2 1.74 1.84 2.95 3.15 2.8

●

●

(a)

●

●

(b)

(c) (d)
Figure 7. Various estimated tail coefficients. (a) Estimator ε̂U for 3-variate groups. Corresponding
symbols (�, •, �) represent values of ε̂MD

U (not a function of k); (b) Estimator ε̂U for 6-variate groups.
Corresponding symbols (�, •, �) represent values of ε̂MD

U (not a function of k); (c) Estimator λ̂∗
U,S for

3-variate groups; (d) Estimator λ̂∗
U,S for 6-variate groups.
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(a) (b)

(c) (d)

Figure 8. Various estimated tail coefficients. (a) Estimator λ̂
I2|J1
U for 3-variate groups with conditioning

on one stock; (b) Estimator λ̂
I5|J1
U for 6-variate groups with conditioning on one stock; (c) Estimator

λ̂
I1|J2
U for 3-variate groups with conditioning on all but the stock with highest market capitalization;

(d) Estimator λ̂
I1|J5
U for 6-variate groups with conditioning on all but the stock with highest market

capitalization.

The estimator of Frahm’s extremal dependence coefficient in Figure 7a,b is clearly the smallest
of all the estimators, which follows its “strict” definition in (7). The dots, representing the estimates
under the assumption of underlying copula being an extreme-value copula, are greater than the fully
non-parametric estimators. This indicates that assuming underlying extreme-value copula might not
be appropriate.

The estimator of Schmid’s and Schmidt’s tail dependence measure in Figure 7c,d is much smoother
as a function of k than the other estimators. However, it tends to move towards 0 or 1 for very low k.

The estimator λ̂
I2|J1
U in Figure 8a suggests that, for all three groups, the probability of two stocks

having an extremely low return given that the third stock has an extremely low return is approximately
0.2. The estimator λ̂

I1|J5
U in Figure 8d on the other hand suggests that, in all three group combinations,

the largest company is heavily affected if the remaining five stocks have extremely low returns.
For group combinations G1 + G3 and G2 + G3, the estimated tail coefficient is, in fact, equal to 1.

The values of λ̂U,E and θ̂E are presented in Table 4. One can notice that these measures also
suggest that groups G2 and G3 are slightly more tail dependent than G1, or, in other words, they likely
contain less independent components (see [18]).
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Abstract: We consider a nonparametric Generative Tree Model and discuss a problem of selecting
active predictors for the response in such scenario. We investigated two popular information-based
selection criteria: Conditional Infomax Feature Extraction (CIFE) and Joint Mutual information
(JMI), which are both derived as approximations of Conditional Mutual Information (CMI) criterion.
We show that both criteria CIFE and JMI may exhibit different behavior from CMI, resulting in
different orders in which predictors are chosen in variable selection process. Explicit formulae
for CMI and its two approximations in the generative tree model are obtained. As a byproduct,
we establish expressions for an entropy of a multivariate gaussian mixture and its mutual information
with mixing distribution.

Keywords: conditional mutual information; CMI; information measures; nonparametric variable
selection criteria; gaussian mixture; conditional infomax feature extraction; CIFE; joint mutual
information criterion; JMI; generative tree model; Markov blanket

1. Introduction

In the paper, we consider theoretical properties of Conditional Mutual Information (CMI) and
its approximations in a certain dependence model called Generative Tree Model (GTM). CMI and
its modifications are used in many problems of machine learning including feature selection,
variable importance ranking, causal discovery, and structure learning of dependence networks
(see, e.g., Reference [1,2]). They are the cornerstone of nonparametric methods to solve such problems
meaning that no parametric assumptions on dependence structure are imposed. However, formal
properties of these criteria remain largely unknown. This is mainly due to two problems: firstly,
theoretical values of CMI and related quantities are hard to calculate explicitly, especially when
the conditioning set has a large dimension. Moreover, there are only a few established facts about
behavior of their sample counterparts. Such a situation, however, has important consequences.
In particular, a relevant question whether certain information based criteria, such as Conditional
Infomax Feature Extraction (CIFE) and Joint Mutual Information (JMI), obtained as approximations of
CMI, e.g., by truncation of its Möbius expansion are approximations in analytic sense (i.e., whether
the difference of both quantities is negligible) remains unanswered. In the paper, we try to fill this
gap. The considered GTM is a model for which marginal distributions of predictors are mixtures of
gaussians. Exact values of CMI, as well as of those of CIFE and JMI, are calculated for this model,
which makes studying their behavior when parameters of the model and number of predictors change
feasible. In particular, it is shown that CIFE and JMI exhibit different behavior than CMI and also they
may significantly differ between themselves. In particular, we show, that depending on the value of
model parameters, each of considered criteria JMI and CIFE can incorporate inactive variables before
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active ones into a set of chosen predictors. This, of course, does not mean that important performance
criteria, such as False Detection Rate (FDR), cannot be controlled for CIFE and JMI but should serve as
a cautionary note that their similarity to CMI, despite their derivation, is not necessarily ensured. As a
byproduct, we establish expressions for an entropy of a multivariate gaussian mixture and its mutual
information with mixing distribution, which are of independent interest.

We stress that our approach is intrinsically nonparametric and focuses on using nonparametric
measures of conditional dependence for feature selection. By studying their theoretical behavior for
this task we also learn an average behavior of their empirical counterparts for large sample sizes.

Generative Tree Model appears, e.g., in Reference [3], a non-parametric tree structured model is
also considered, e.g., in Reference [4,5]. Together with autoregressive model, it is one of the two most
common types of generative models. Besides its easily explainable dependence structure, distributions
of predictors in the considered model are mixed gaussians, and this facilitates calculation of explicit
form of information-based selection criteria.

The paper is structured as follows. Section 2 contains information-theoretic preliminaries,
some necessary facts on information based feature-selection and derivation of CIFE and JMI criteria as
approximations of CMI. Section 3 contains derivation of entropy and mutual information for gaussian
mixtures. In Section 4, behavior of CMI, CIFE, and JMI is studied in GTM. Section 5 concludes.

2. Preliminaries

We denote by p(x), x ∈ Rd a probability density function corresponding to continuous variable X
on Rd. Joint density of X and variable Y will be denoted by p(x, y). In the following, Y will denote
discrete random response to be predicted using multivariate vector X.

Below, we discuss some information-theoretic preliminaries, which leads, at the end of Section 2.1,
to Möbius decomposition of mutual information. This is used in Section 2.2 to construct CIFE
approximation of CMI. In addition, properties of Mutual Information discussed in Section 2.1 are used
in Section 2.2 to justify JMI criterion.

2.1. Information-Theoretic Measures of Dependence

The (differential) entropy for continuous random variable X is defined as

H(X) = −
∫
Rd

p(x) log p(x) dx (1)

and quantifies the uncertainty of observing random values of X. Note that the definition above is
valid regardless the dimensionality d of the range of X. For discrete X, we replace the integral in (1) by
the sum and density p(x) by probability mass function. In the following, we will frequently consider
subvectors of X = (X1, . . . , Xp), which is a vector of all potential predictors of discrete response Y.
The conditional entropy of X given discrete Y is written as

H(X|Y) = ∑
y∈Y

p(y)H(X|Y = y). (2)

When Z is continuous, the conditional entropy H(X|Z) is defined as EZ H(X|Z = z), i.e.,

H(X|Z) = −
∫

p(z)
∫ p(x, z)

p(z)
log

(
p(x, z)
p(z)

)
dxdz = −

∫
p(x, z) log

(
p(x, z)
p(z)

)
dxdz, (3)

where p(x, z) and p(z) denote joint density of (X, Z) and density of Z, respectively. The mutual
information (MI) between X and Y is

I(X, Y) = H(X)− H(X|Y) = H(X)− H(Y|X). (4)
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This can be interpreted as the amount of uncertainty in X (Y) which is removed when Y (respectively,
X) is known, which is consistent with the intuitive meaning of mutual information as the amount of
information that one variable provides about another. It determines how similar the joint distribution
is to the product of marginal distributions when Kullback-Leibler divergence is used as similarity
measure (cf. Reference [6], Equation (8.49)). Thus, I(X, Y) may be viewed as nonparametric measure
of dependence. Note that, as I(X, Y) is symmetric, it only shows the strength of dependence but not its
direction. In contrast to correlation coefficient MI is able to discover non-linear relationships as it equals
zero if and only if X and Y are independent. It is easily seen that I(X, Y) = H(X) + H(Y)− H(X, Y).
A natural extension of MI is conditional mutual information (CMI) defined as

I(X, Y|Z) = H(X|Z)− H(X|Y, Z) =
∫

p(z)
∫

p(x, y|z) log
p(x, y|z)

p(x|z)p(y|z) dxdydz, (5)

which measures the conditional dependence between X and Y given Z. When Z is a discrete random
variable, the first integral is replaced by a sum. Note that the conditional mutual information is mutual
information of X and Y given Z = z averaged over values z of Z, and it equals zero if and only if X
and Y are conditionally independent given Z. Important property of MI is a chain rule which connects
I((X1, X2), Y) with I(X1, Y):

I((X1, X2), Y) = I(X1, Y) + I(X2, Y|X1). (6)

For more properties of the basic measures described above, we refer to Reference [6,7]. We define now
interaction information II ([8]), which is a useful tool for decomposing mutual information between
multivariate random variable XS and Y (see Formula (13) below). The 3-way interaction information is
defined as

I I(X1, X2, Y) = I((X1, X2), Y)− I(X1, Y)− I(X2, Y). (7)

This is frequently interpreted as the part of I((X1, X2), Y), which remains after subtraction of individual
informations between Y and X1 and Y and X2. The definition indicates in particular that I I(X1, X2, Y)
is symmetric. Note that it follows from (6) that

I I(X1, X2, Y) = I(X1, Y|X2)− I(X1, Y) = I(X2, Y|X1)− I(X2, Y), (8)

which is consistent with the intuitive meaning of existence of interaction as a situation in which the
effect of one variable on the class variable Y depends on the value of another variable. By expanding
all mutual informations on RHS of (7), we obtain

I I(X1, X2, Y) = −H(X1)− H(X2)− H(Y) + H(X1, Y) + H(X2, Y) + H(X1, X2)− H(X1, X2, Y). (9)

The 3-way I I can be extended to the general case of p variables. The p-way interaction
information [9,10] is

I I(X1, . . . , Xp) = − ∑
T⊆{1,...,p}

(−1)p−|T|H(XT). (10)

For p = 2, (10) reduces to mutual information, whereas, for p = 3, it reduces to (9).
We consider two useful properties of introduced measures. We first start with 3-way information

interaction, and we note that it inherits chain-rule property from MI, namely

I I(X1, (X2, X3), Y) = I I(X1, X3, Y) + I I(X1, X2, Y|X3), (11)

where I(X1, X2, Y|X3) is defined analogously to (7) by replacing mutual informations on RHS by
conditional mutual informations given X3. This is easily proved by writing, in the view of (6):

I I(X1, (X2, X3), Y) = I(X1, (X2, X3)|Y)− I(X1, (X2, X3)) =
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I(X1, X3|Y) + I(X1, X2|Y, X3)− [I(X1, X3) + I(X1, X2|X3)] (12)

and using (8) in the above equalities. Namely, joining the first and the third expression together
(and the second and the fourth, as well), we obtain that RHS equals I I(X1, X3, Y) + I I(X1, X2, Y|X3).

We also state Möbius representation of mutual information which plays an important role in
the following development. For S ⊆ {1, 2, . . . , p}, let XS be a random vector coordinates of which
have indices in S. Möbius representation [10–12] states that I(XS, Y) can be recovered from interaction
informations

I(XS, Y) =
|S|
∑
k=1

∑
{t1,...,tk}⊆S

I I(Xt1 , . . . , Xtk , Y), (13)

where |S| denotes number of elements of set S.

2.2. Information-Based Feature Selection

We consider discrete class variable Y and p features X1, . . . , Xp. We do not impose any
assumptions on dependence between Y and X1, . . . , Xp, i.e., we view its distributional structure
in a nonparametric way. Let XS denote a subset of features, indexed by set S ⊆ {1, . . . , p}. As I(XS, Y)
does not decrease when S is replaced by its superset S′ ⊇ S, the problem of finding arg maxS I(XS, Y)
has a trivial solution f ull = {1, 2, . . . , p}. Thus, one usually tries to optimize mutual information
between XS and Y under some constraints on the size |S| of S. The most intuitive approach is an
analogue of k-best subset selection in regression which tries to identify a feature subset of a fixed
size 1 ≤ k ≤ p that maximizes the joint mutual information with a class variable Y. However, this is
infeasible for large k because the search space grows exponentially with the number of features.
As a result, various greedy algorithms have been developed including forward selection, backward
elimination and genetic algorithms. They are based on observation that

arg max
j∈Sc

[I(XS∪{j}, Y)− I(XS, Y)] = arg max
j∈Sc

I(Xj, Y|XS), (14)

where Sc = {1, . . . , p} \ S is a complement of S. The equality in (14) follows from (6). In each step,
the most promising candidate is added. In the case of ties in (14), the variable satisfying it with the
smallest index is chosen.

2.3. Approximations of CMI: CIFE and JMI Criteria

Observe that it follows from (13)

I(XS∪{j}, Y)− I(XS, Y) = I(Xj, Y|XS) =
|S|
∑
k=0

∑
{t1,...,tk}⊆S

I I(Xt1 , . . . , Xtk , Xj, Y). (15)

Direct application of the above formula to find the maximizer in (14) is infeasible as estimation of a
specific information interaction of order k requires O(Ck) observations. The above formula allows
us, however, to obtain various natural approximations of CMI. The first order approximation does
not take interactions between features into account and that is why the second order approximation
obtained by taking first two terms in (15) is usually considered. The corresponding score for candidate
feature Xj is

CIFE(Xj, Y|XS) = I(Xj, Y) + ∑
i∈S

I I(Xi, Xj, Y) = I(Xj, Y) + ∑
i∈S

[
I(Xi, Xj|Y)− I(Xi, Xj)

]
. (16)

The acronym CIFE stand for Conditional Infomax Feature Extraction, and the measure has been
introduced in Reference [13]. Observe that if interactions of order 3 and higher between predictors
are 0, i.e., I I(Xt1 , . . . , Xtk , Xj, Y) = 0 for k ≥ 2 and then CIFE coincides with CMI. In Reference [2],
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it is shown that CMI also coincides with CIFE if certain dependence assumptions on vector (X, Y) are
satisfied. In view of the discussion above, CIFE can be viewed as a natural approximation to CMI.

Observe that, in (16), we take into account not only relevance of the candidate feature, but also the
possible interactions between the already selected features and the candidate feature. The empirical
evaluation indicates that (16) is among the most successful MI-based methods; see Reference [2] for an
extensive comparison of several MI-based feature selection approaches. We mention in this context,
Reference [14], in which stopping rules for CIFE-based methods are considered.

Some additional assumptions lead to other score functions. We show now reasoning leading to
Joint Mutual Information Criterion JMI (cf. Reference [12], on which the derivation below is based).
Namely, if we define S = {j1, . . . , j|S|}, we have for i ∈ S

I(Xj, XS) = I(Xj, Xi) + I(Xj, XS\{i}|Xi).

Summing these equalities over all i ∈ S and dividing by |S|, we obtain

I(Xj, XS) =
1
|S| ∑

i∈S
I(Xj, Xi) +

1
|S| ∑

i∈S
I(Xj, XS\{i}|Xi)

and analogously

I(Xj, XS|Y) =
1
|S| ∑

i∈S
I(Xj, Xi|Y) +

1
|S| ∑

i∈S
I(Xj, XS\{i}|Xi, Y).

Subtracting the two last equations and using (8), we obtain

I(Xj, Y|XS) = I(Xj, Y) +
1
|S| ∑

i∈S
I I(Xj, Xi, Y) +

1
|S| ∑

i∈S
I I(Xj, XS\{i}, Y|Xi). (17)

Moreover, it follows from (8) that when Xj is independent of XS\{i} given Xi and these quantities are
independent given Xi and Y the last sum is 0 and we obtain equality

JMI(Xj, Y|XS) = I(Xj, Y) +
1
|S| ∑

i∈S
I I(Xj, Xi, Y) = I(Xj, Y) +

1
|S| ∑

i∈S

[
I(Xj, Xi|Y)− I(Xj, Xi)

]
. (18)

This is Joint Mutual Information Criterion (JMI) introduced in Reference [15]. Note that (18) together
with (8) imply another useful representation

JMI(Xj, Y|XS) = I(Xj, Y) +
1
|S| ∑

i∈S

[
I(Xj, Y|Xi)− I(Xj, Y)

]
=

1
|S| ∑

i∈S
I(Xj, Y|Xi). (19)

JMI can be viewed as an approximation of CMI when independence assumptions on which the
above derivation was based are satisfied only approximately. Observe that JMI(Xj, Y|XS) differs
from CIFE(Xj, Y|XS) in that the influence of the sum of interaction informations I I(Xj, Xi, Y) is down
weighted by factor |S|−1 instead of 1. This is sometimes interpreted as coping with ‘redundancy
over-scaled’ problem (cf. Reference [2]). When the terms I(Xj, Xi|Y) are omitted from the sum
above then minimal redundancy maximal relevance (mRMR) criterion is obtained [16]. We note that
approximations of CMI, such as CIFE or JMI, can be used in place of CMI in (14). As the derivation
in both cases is quite intuitive, it is natural to ask how the approximations compare when used for
selection. This is the primary aim of the present paper. Theoretical behavior of such methods will
be investigated in the following sections. Note that we do not consider empirical counterparts of
the above selection rules and investigate how they would behave provided their values have been
known exactly.
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3. Auxiliary Results: Information Measures for Gaussian Mixtures

In the following section, we will prove some results on information-theoretic properties of
gaussian mixtures which are necessary to analyze the behavior of CMI, CIFE, and JMI in Generative
Tree Model defined below.

In the next section, we will consider a gaussian Generative Tree Model, in which the main
components have marginal distributions being mixtures of normal distributions. Namely, if Y
has Bernoulli distribution Y ∼ Bern (1/2) (i.e., it admits values 0 and 1 with probability 1/2) and
distribution of X is defined as N (μY, Σ), then X is a mixture of two normal distributions: N (0, Σ)
and N (μ, Σ) with equal weights. Thus, in this section, we state auxiliary results on entropy of such
random variable and its mutual information with its mixing distribution. The result for entropy of
multivariate gaussian mixture, to the best of our knowledge, is new; for univariate case, it was derived
in Reference [17]. Bounds and approximations of the entropy of a gaussian mixture are used, e.g.,
in signal processing; see, e.g., Reference [18,19]. Consider d-dimensional gaussian mixture X defined as

X ∼ 1
2
N (0, Id) +

1
2
N (μ, Id) , (20)

where ‘∼’ signifies ‘distributed as’.

Theorem 1. Differential entropy of X in (20) equals

H(X) = h(‖μ‖) + d − 1
2

log(2πe),

where h(a) is the differential entropy of one-dimensional gaussian mixture 2−1{N (0, 1) +N (0, a)} for a > 0.

h(a) = −
∫
R

1
2
√

2π

(
e−

x2
2 + e−

(x−a)2
2

)
log

(
1

2
√

2π

(
e−

x2
2 + e−

(x−a)2
2

))
dx. (21)

Proof. In order to avoid burdensome notation, we prove the theorem for d = 2 only. By the definition
of differential entropy, we have

H(X) = −
∫
R2

1
2
(

f0(x1, x2) + fμ(x1, x2)
)

log
(

1
2
( f0(x1, x2) + fμ(x1, x2))

)
dx1dx2,

where X is defined in (20) for d = 2, and fμ denotes the density of normal distribution with a mean μ

and a covariance matrix I2.
We calculate the integral above changing the variables according to the following rotation(

y1

y2

)
=

( μ1
‖μ‖ − μ2

‖μ‖
μ2
‖μ‖

μ1
‖μ‖

)(
x1

x2

)
.

Transformed densities f0 and fμ are equal

f0(y1, y2) =
1

2π
exp

(
−y2

1 + y2
2

2

)

and

fμ(y1, y2) =
1

2π
exp

(
− (y1 − ‖μ‖)2 + y2

2
2

)
.
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Applying above transformation, we can decompose H(X) into sum of two integrals as follows:

H(X) =
∫
R

1
2
√

2π

(
e−

1
2 y2

1 + e−
1
2 (y1−‖μ‖)2

)
log

(
1

2
√

2π

(
e−

1
2 y2

1 + e−
1
2 (y1−‖μ‖)2

))
dy1

+
∫
R

1√
2π

e−
1
2 y2

2 log
(

1√
2π

e−
1
2 y2

2

)
dy2 = h(‖μ‖) + 1

2
log(2πe),

where in the last equality the value H(Z) = log(2πe)/2 for N(0, 1) variable Z is used. This ends
the proof.

The result above is now generalized to the case of arbitrary covariance matrix Σ. The general
case will follow from Theorem 1 and the scaling property of differential entropy under
linear transformations.

Theorem 2. Differential entropy of

X ∼ 1
2
N (0, Σ) +

1
2
N (μ, Σ)

equals

H(X) = h
(∥∥∥Σ−1/2μ

∥∥∥)+ d − 1
2

log(2πe) +
1
2

log (det Σ) .

Proof. We apply Theorem 1 to multivariate random variable Y = Σ− 1
2 X. We obtain

H(Y) = h
(∥∥∥Σ−1/2μ

∥∥∥)+ d − 1
2

log(2πe).

Using the scaling property of differential entropy [6], we have

H(X) = H(Y) +
1
2

log(det Σ),

which completes the proof.

Similarly, we obtain the formula for mutual information of gaussian mixture and its mixing
distribution. We use shorthand X|Y = y to denote random variable defined as having distribution
coinciding with conditional distribution P(X|Y = y).

Theorem 3. Mutual information of X and Y where Y ∼ Bern (1/2) and X|Y = y ∼ N (yμ, Σ) equals

I(X, Y) = h
(∥∥∥Σ−1/2μ

∥∥∥)− 1
2

log(2πe). (22)

Proof. We will use here the fact that the entropy of multidimensional normal distribution Z ∼
N (μZ, Σ) equals (cf. Reference [6], Theorem 8.4.1)

H(Z) =
d
2

log(2πe) +
1
2

log(det Σ).

Therefore, we have

I(X, Y) = H(X)− H(X|Y) = h
(∥∥∥Σ−1/2μ

∥∥∥)− 1
2

log(2πe), (23)

as
H(X|Y) = 1

2
H(X|Y = 0) +

1
2

H(X|Y = 1), (24)
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where H(X|Y = i) stands for the entropy of X on the stratum Y = i. We notice that H(X|Y = i) =
H(Z), as the distribution of X on stratum Y = i is normal with covariance matrix Σ, and its entropy
does not depend on the mean.

We note that, in Reference [17], entropy of one-dimensional Gaussian mixture 2−1(N(a, 1) +
N(−a, 1)) is calculated as he(a), where he(a) is given in an integral form. As the entropy is invariant
with respect to translation, function h(a) defined above equals he(a/2). The behavior of h and its two
first derivatives is shown in Figure 1. It indicates that the function h is strictly increasing, and this fact
is also stated in Reference [17] without proof. This is proved formally below. Strict monotonicity of h
plays a crucial role in determining the order in which variables are included in a set of active variables.
Note that h(0) = log(2πe)/2, which is the entropy of the standard normal N(0, 1) variable. Values of
h need to be calculated numerically.
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Figure 1. Behavior of function h and its two first derivatives. Horizontal lines in the left chart
correspond to bounds of h and equal 1

2 log(2πe) and 1
2 log(2πe) + log(2), respectively.

Lemma 1. Differential entropy h(a) of gaussian mixture defined in Theorem 1 is strictly increasing function of a.

Proof. It is easy to see that h is differentiable and for calculation of its derivative, integration in (21)
and taking derivatives can be interchanged. We show that derivative of h is positive. We have by
standard manipulations, using the fact that x exp(−x2/2) is an odd function for the second equality
below, that
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h′(a) = − 1
2
√

2π

∫
R

(
(x − a)e−

(x−a)2
2 log

(
1

2
√

2π

(
e−

x2
2 + e−

(x−a)2
2

))
+ (x − a)e−

(x−a)2
2

)
dx

= − 1
2
√

2π

∫
R

(x − a)e−
(x−a)2

2 log
(

1
2
√

2π

(
e−

x2
2 + e−

(x−a)2
2

))
dx

= − 1
2
√

2π

∫
R

xe−
x2
2 log

(
1

2
√

2π

(
e−

x2
2 + e−

(x+a)2
2

))
dx

= − 1
2
√

2π

∞∫
0

xe−
x2
2 log

(
1

2
√

2π

(
e−

x2
2 + e−

(x+a)2
2

))
dx

− 1
2
√

2π

0∫
−∞

xe−
x2
2 log

(
1

2
√

2π

(
e−

x2
2 + e−

(x+a)2
2

))
dx

=
1

2
√

2π

∞∫
0

xe−
x2
2

(
log

(
1

2
√

2π

(
e−

x2
2 + e−

(x−a)2
2

))
− log

(
1

2
√

2π

(
e−

x2
2 + e−

(x+a)2
2

)))
dx.

We have used change of variables for the third and the fifth equality above. It follows from the last
expression that h′(a) > 0 as (x − a)2 < (x + a)2 for x > 0 and a > 0, and, therefore, h is increasing.

Remark 1. Note that Theorems 2 and 3 in conjunction with Lemma 1 show that entropy of mixture of two
gaussians with the same covariance matrix and its mutual information with mixing distribution is strictly
increasing function of the norm

∥∥Σ−1μ
∥∥. In particular, for Σ = I, entropy increases as the distance between

centers of two gaussians increases. In addition, it follows from (22) and I(X, Y) ≥ 0 that h(s) ≥ log(2πe)/2
for any s ∈ R.

Remark 2. We call a random variable X ∈ Rd a generalized mixture when there exist diffeomorphisms
fi : R → R such that ( f1(X1), . . . fp(Xd)) ∼ 2−1(N (0, Id) + N (μ, Id)). Then, it follows from Theorem
2 that, analogously to Reference [20], that total correlation of X (cf. Reference [21]) defined as T(X) =

∑d
i=1 H(Xi)− H(X) equals for generalized mixture X

TC(X) =
d

∑
i=1

h(|μi|)− h(||μ||) + (1 − d) log(2πe)/2,

where μ = (μ1, . . . , μd)
T.

4. Main Results: Behavior of Information-Based Criteria in Generative Tree Model

In the following, we define a special gaussian Generative Tree Model and investigate how greedy
procedure based on (14), as well as its analogues when CMI is replaced by JMI and CIFE, behaves in
this model. Theorem 22 proved in the previous section will yield explicit formulae for CMIs in this
model, whereas strict monotonicity of function h(·) proved in Lemma 1 will be essential to compare
values of I(Xj, Y|XS) for different candidates Xj.

4.1. Generative Tree Model

We will consider the Generative Tree Model with tree structure illustrated in the Figure 2.
Data Generating Process described by this model yields the distribution of the random vector
(Y, X1, . . . , Xk+1, X(1)

1 ) such that:

Y ∼ Bern (1/2) , Xi|Y ∼ N
(

γi−1Y, 1
)

and i ∈ {1, 2, . . . , k + 1}, |X1 ∼ N (X1, 1) , (25)

169



Entropy 2020, 22, 974

where 0 < γ ≤ 1 is the parameter. Thus, first the value Y = 0, 1 is generated with both values 0
and 1 having the same probability 1/2; then, X1, . . . Xk+1 are generated as normal variables with
the variance 1 and the mean equal to Y. Finally, once the value of X1 is obtained, X(1)

1 is generated
from normal distribution with the variance 1 and the mean equal to X1. Thus, in the sense specified
above, X1, . . . Xk+1 are the children of Y and X(1)

1 is the child of X1. Parameter γ controls how difficult
the problem of feature selection is. Namely, the smaller the parameter γ is, the less information Xi
holds about Y for i ∈ {1, 2, . . . , k + 1}. We will refer to the model defined above as Mk,γ. We denote

by, abusing slightly the notation, p(y, xi), p(x1, x(1)1 ) bivariate densities and by p(y), p(xi), p(x(1)1 )

marginal densities. With this notation, the joint density p(y, x1, . . . , xk+1, x(1)1 ) equals

p(y)
[ k+1

∏
i=1

p(y, xi)

p(y)

] p(x1, x(1)1 )

p(x1)
=

p(x1, x(1)1 )

p(x1)p(x(1)1 )

k+1

∏
i=1

p(y, xi)

p(y)p(xi)

[ k+1

∏
i=1

p(xi)
]

p(y)p(x(1)1 ),

which can be more succinctly written as

∏
(i,j)∈E

p(zi, zj)

p(zi)p(zj)
∏
i∈V

p(zi),

after renaming the variables to zi, i = 1, . . . k + 3 and E and V standing for edges and vertices in the
graph shown in Figure 2 (cf. formula (4.1) in Reference [4]).

Y

X1

X(1)
1

X2 Xk Xk+1· · ·

Figure 2. Generative Tree Model under consideration.

The above model generalizes the model discussed in Reference [3], but some branches which
are irrelevant in our considerations are omitted. The values of conditional mutual information
I(Xk+1, Y|XS) in the model, where S = {1, 2, . . . , k} for different γ as a function of k are shown
in the Figure 3. We prove in the following that I(Xk+1, Y|XS) > 0; thus, Xk+1 carries non-null
predictive information about Y even when variables X1, . . . , Xk are already chosen as predictors.
We note that I(X(1)

1 , Y|XS) = 0 for every γ ∈ (0, 1] and XS containing X1. Thus, {X1, . . . , Xk+1}
is the Markov Blanket (cf., e.g., Reference [22]) of Y among predictors {X1, . . . , Xk+1, X(1)

1 } and
{X1, . . . , Xk+1} is sufficient for Y (cf. Reference [23]). A more general model may be considered
which incorporates children of every vertex X1, . . . , Xk+1, and several levels of progeny. Here, we show
how one variable X(1)

1 which does not belong to Markov Blanket of Y is treated differently by the
considered selection rules.

Intuitively, for 0 < γ < 1 and l < n Xl carry more information about Y than Xn and, moreover,
X(1)

1 is redundant once X1 has been chosen. Thus, predictors should be chosen in order X1, X2, . . . Xk+1.
For γ = 1, the order of selection of Xi is also X1, . . . , Xk+1 in concordance with our convention of
breaking ties, but X(1)

1 should not be chosen. We show in the following that CMI chooses variables
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in this order; however, the order with respect to its approximations, CIFE, and JMI may be different.
We also note that alternative way of representing predictors is

Xi = γi−1Y + εi, X(1)
1 = X1 + εk+2, (26)

for i = 1, . . . , k + 1, where ε1, . . . , εk+2 are i.i.d. N(0, 1). Thus, in particular

akY =
k+1

∑
i=1

Xi −
k+1

∑
i=1

εi,

with ak = (1 − γk+1)/(1 − γ). Moreover, it is seen that EXi = γi−1EY = γi−1/2.
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0.9
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Figure 3. Behavior of conditional mutual information I(Xk+1, Y|X1, X2, . . . , Xk) as a function of k for
different γ values.

It is shown in Reference [2] that maximization of I(Xj, Y|XS) is equivalent to maximization
of CIFE(Xj, Y|XS) provided that selected features in XS are independent and class-conditionally
independent given unselected features Xj. It is easily seen that these properties do not hold in the
considered GTM for S = {1, . . . , l} and j = l + 1 for l ≤ k. It can also be seen by a direct calculation
that CMI differs from CIFE in GTM. Take S = {1, 2} and Xj = X(1)

1 . Then, note that the difference
between these quantities equals

I(Xj, Y|XS)− I(Xj, Y)− ∑
i∈S

I I(Xi, Xj, Y) (27)

Moreover, using conditional independence, we have

I I(X1, X(1)
1 , Y) = I(X(1)

1 , Y|X1)− I(X(1)
1 , Y) = −I(X(1)

1 , Y)

and
I I(X2, X(1)

1 , Y) = I(X(1)
1 , X2|Y)− I(X(1)

1 , X2) = −I(X(1)
1 , X2);

thus, plugging the above equalities into (27) and using I(X(1)
1 , Y|X1, X2) = 0, we obtain that expression

there equals I(X(1)
1 , X2), which is strictly positive in the considered GTM.

Similar considerations concerning conditions stated above (18) show that maximization of JMI is
not equivalent to maximization of CMI in GTM. Namely, if S = {1, 2} and j ∈ {3, . . . , k + 1}, then it is
easily seen that I(Xj, XS\{i}|Xi) > 0 and I(Xj, XS\{i}|Xi, Y) = 0 for i = 1, 2; thus, the last term in (17)
is negative.
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In order to support this numerically for a specific case, consider γ = 2/3. In the first column
of the Table 1a, MI values I(Xi, Y), i = 1, . . . , 4 are shown for this value of γ. They were calculated
in Reference [3] using simulations, while here they are based on (23) and numerical evaluation of
h
(∥∥∥Σ−1/2μ

∥∥∥). Additionally, in Table 1, CMI values from subsequent steps and JMI and CIFE values
in such a model are shown. As a foretaste of the analysis which follows, note that, in view of panel (b)
of the table, JMI chooses erroneously X(1)

1 in the third step instead of X3 in contrast to CIFE (cf. part (c)
of the table) which chooses X1, X2, X3 in the right order. Note also that, in this case, is the second
largest mutual informations with Y; thus, when the filter based solely on this information is considered,
then X(1)

1 is chosen at the second step (after X1).
We note that analysis of behavior of CMI and its approximations including CIFE and JMI has

been given in Reference [24], Section 6, for a simple model containing 4 predictors. We analyze here
the behavior of these measures of conditional dependence for the general model Mk,γ, which involves
arbitrary number of predictors having varying dependence with Y.

Table 1. The criteria (Conditional Mutual Information (CMI), Joint Mutual Information (JMI),
Conditional Infomax Feature Extraction (CIFE)) values for k = 2 and γ = 2/3. A value of the
chosen variable in each step and for each criterion is in bold.

(a) XS1 = {X1}, XS2 = {X1, X2}, XS3 = {X1, X2, X3}
I(·, Y) I(·, Y|XS1 ) I(·, Y|XS2 ) I(·, Y|XS3 )

X1 0.1114
X2 0.0527 0.0422
X3 0.0241 0.0192 0.0176

X(1)
1 0.0589 0.0000 0.0000 0.0000

(b) XS1 = {X1}, XS2 = {X1, X2}, XS3 = {X1, X2, X(1)
1 }

JMI(·) JMI(·|XS1 ) JMI(·|XS2 ) JMI(·|XS3 )

X1 0.1114
X2 0.0527 0.0422
X3 0.0241 0.0192 0.0205 0.0208

X(1)
1 0.0589 0.0000 0.0266

(c) XS1 = {X1}, XS2 = {X1, X2}, XS3 = {X1, X2, X3}
CIFE(·) CIFE(·|XS1 ) CIFE(·|XS2 ) CIFE(·|XS3 )

X1 0.1114
X2 0.0527 0.0422
X3 0.0241 0.0192 0.0169

X(1)
1 0.0589 0.0000 −0.0057 −0.0083

4.2. Behavior of CMI

First of all, we show that the criterion based on conditional mutual information CMI without
any modifications chooses correct variables in the right order. It has been previously noticed that
I(X(1)

1 , Y|XS) = 0 for S = {1, . . . , k}. Now, we show that I(Xk+1, Y|XS) > 0 for every k. Namely,
applying Theorem 3 and the chain rule for mutual information

I(XS∪{k+1}, Y) = I(XS, Y) + I(Xk+1, Y|XS),

we obtain

I(Xk+1, Y|XS) = h

⎛⎝
√√√√ k

∑
i=0

γ2i

⎞⎠− h

⎛⎝
√√√√k−1

∑
i=0

γ2i

⎞⎠ > 0, (28)
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where the inequality follows as h is an strictly increasing function. Thus, we proved that
I(X(1)

1 , Y|XS) = 0 < I(Xk+1, Y|XS) for S = {1, . . . , k} for every k. Whence we have for S = {1, . . . , l}
and l < k that

arg max
Z∈Sc

I(Z, Y|XS) = Xl+1,

thus CMI chooses predictors in a correct order. Figure 3 shows behavior of g(k, γ) =

I(Xk+1, Y|X1, . . . , Xk) as the function of k for various γ. Note that it follows from Figure 3 that g(·, γ) is
decreasing. This means that the additional information on Y obtained when Xk+1 is incorporated gets
smaller with k. Now, we study the order in which predictors are chosen with respect to JMI and CIFE.

4.3. Behavior of JMI

The main objective of this section is to examine performance of JMI criterion in the Generative
Tree Model for different values of parameter γ. We will show that:

• For γ = 1 active predictors X1, . . . , Xk+1 ∈ MB(Y) are chosen in the right order and X(1)
1 is not

chosen before them;
• For 0 < γ < 1, variable X(1)

1 �∈ MB(Y) is chosen at a certain step before all X1, . . . , Xk+1 are
chosen, and we evaluate a moment when this situation occurs.

Consider the model above and assume that the set of indices of currently chosen variables equals
S = {1, 2, . . . , k}. For i ∈ {1, 2, . . . , k} we apply chain rule (6) and Theorem 3 with the following
covariance matrices and mean vectors for I((Xi, Z), Y) (cf. (26)):

Σ =

(
1 0
0 1

)
, μ =

(
γi−1

γk

)
and Σ =

(
1 0
0 2

)
, μ =

(
γi−1

1

)
, (29)

respectively, for Z = Xk+1 and Z = X(1)
1 . Then, we have

I(Xk+1, Y|Xi) = h
(√

γ2k + γ2(i−1)
)

− h
(

γi−1
)

, (30)

I(X(1)
1 , Y|Xi) = h

(√
γ2(i−1) +

1
2

)
− h

(
γi−1

)
for i �= 1, (31)

I(X(1)
1 , Y|X1) = 0. (32)

The last equation follows from the fact that X(1)
1 and Y are conditionally independent given X1.

From the definition of JMI(X, Y|XS), abbreviated from now on to JMI(X|XS) to simplify notation,
we obtain

kJMI(Xk+1|XS) =
k

∑
i=1

(
h
(√

γ2k + γ2(i−1)
)

− h
(

γi−1
))

, (33)

kJMI(X(1)
1 |XS) =

⎧⎪⎨⎪⎩
0 if k = 1

k
∑

i=2

(
h
(√

γ2(i−1) + 1
2

)
− h

(
γi−1)) if k > 1

. (34)

We observe that the variables X1, X2, . . . are chosen in order according to JMI, as for S = {1, . . . , l}
and l < m < n, we have JMI(Xm) > JMI(Xn). For γ = 1, the right-hand sides of the last two
expressions equal k

(
h
(√

2
)

− h (1)
)

and (k − 1)
(
h
(√

3/2
)
− h (1)

)
, respectively. Thus, for γ = 1,

we have JMI(Xk+1|XS) > JMI(X(1)
1 |XS), which means that variables are chosen in the order
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X1, . . . , Xk+1 and X(1)
1 is not chosen before them when JMI criterion is used. Although, for γ = 1,

JMI criterion does not select this redundant feature, we note that, for k → ∞, S = {1, . . . , k}, and γ = 1

JMI(X(1)
1 |XS) →

(
h

(√
3
2

)
− h (1)

)
> 0,

which differs from I(X(1)
1 , Y|XS) = 0 for all k ≥ 1. We note also that, in this case, JMI(Xk+1|XS) does

not depend on k in contrast to I(Xk+1, Y|XS).
Now, we will consider the case 0 < γ < 1. We want to show that, for sufficiently large k and

S = {1, . . . , k}, JMI criterion chooses X(1)
1 since

JMI(Xk+1|XS) < JMI(X(1)
1 |XS).

The last inequality is equivalent to

k

∑
i=2

(
h

(√
γ2(i−1) +

1
2

)
− h

(√
γ2k + γ2(i−1)

))
> h(

√
1 + γ2k)− h (1) . (35)

The right-hand side tends to 0 when k → ∞. For the left-hand side, note that, for k > − logγ 2
2 , we have

γ2k < 1/2, and all summands of the sum above are positive, as h is an increasing function. Thus,
bounding the sum by its first term, we have

k

∑
i=2

(
h

(√
γ2(i−1) +

1
2

)
− h

(√
γ2k + γ2(i−1)

))
> h(

√
γ2 + 1/2)− h(

√
γ2 + 1/2) = 0.

The minimal k for which the JMI criterion incorrectly chooses X(1)
1 , i.e., the first k for which (35)

holds, is shown in Figure 4. The values of JMI criterion for variables Xk+1 and X(1)
1 is shown in Figure 5.

Figure 4 indicates that X(1)
1 is chosen early; for γ ≤ 0.8, it happens in the third step at the latest.

γ

Figure 4. Minimal k for which JMI(Xk+1|XS) < JMI(X(1)
1 |XS), 0 < γ < 1.
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Figure 5. The behavior of JMI in the generative tree model: JMI(Xk+1|XS) and JMI(X(1)
1 |XS).

4.4. Behavior of CIFE and Its Comparison with JMI

The aim of this section is to show that, although both JMI and CIFE criteria are developed as
approximations to conditional mutual information, their behavior in the tree generative model differs.
We will show that:

• For γ = 1, CIFE incorrectly chooses X(1)
1 at some point;

• For 0 < γ < 1, CIFE selects variables X1, . . . , Xk+1 in the right order.

Thus, CIFE behaves very differently from JMI in Generative Tree Model.
Analogously to formulae for JMI, we have the following formulae for CIFE (S = {1, . . . , k}):

CIFE(Xk+1|XS) = (1 − k)
(

h
(

γk
)

− 1
2

log(2πe)
)
+

k

∑
i=1

(
h
(√

γ2k + γ2(i−1)
)

− h
(

γi−1
))

,

CIFE(X(1)
1 |XS) =

⎧⎪⎨⎪⎩
0 if k = 1

(1 − k)
(

h(1)− 1
2 log(2πe)

)
+

k
∑

i=2

(
h
(√

γ2(i−1) + 1
2

)
− h

(
γi−1)) if k > 1

.

For γ = 1, we have

CIFE(Xk+1|XS) = (1 − k)
(

h (1)− 1
2

log(2πe)
)
+

k

∑
i=1

(
h
(√

2
)

− h (1)
)

,

= h (1)− 1
2

log(2πe)− k
(

2h(1)− h(
√

2)− 1
2

log(2πe)
)

CIFE(X(1)
1 |XS) = (1 − k)

(
2h(1)− 1

2
log(2πe)− h

(√
3
2

))
.

Note that both expressions above are linear functions with respect to k. Comparison of their slopes,

in view of h
(√

3
2

)
< h

(√
2
)

as h is an increasing function, yields that, for sufficiently large k,

we obtain CIFE(Xk+1|XS) < CIFE(X(1)
1 |XS). The behavior of CIFE for 0 < γ < 1 in case of Xk+1

and X(1)
1 is shown in Figure 6 and the difference between CIFE(Xk+1|XS) and CIFE(X(1)

1 |XS) in
Figure 7. The values below 0 in the last plot occur for γ = 1; only, thus, for 0 < γ < 1, we have
CIFE(Xk+1|XS) > CIFE(X(1)

1 |XS) for any k.
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Figure 6. The behavior of CIFE in the generative tree model: CIFE(Xk+1|XS) and CIFE(X(1)
1 |XS).

γ

Figure 7. Difference between values of JMI for Xk+1 and X(1)
1 (left panel) and analogous difference for

CIFE (right panel). Values below 0 mean that the variable X(1)
1 is chosen.

Furthermore, as 2h(1)− 1
2 log(2πe)− h

(√
3
2

)
≈ 0.0642 > 0, we have, for γ = 1,

CIFE(X(1)
1 |XS) → −∞ as k → ∞,

and as 2h(1)− h(
√

2)− 1
2 log(2πe) ≈ 0.0215 > 0, we have

CIFE(Xk+1|XS) → −∞ as k → ∞.

In order to understand the consequences of this property, let us momentarily assume that
one introduces an intuitive stopping rule which says that candidate Xj0 such that j0 =

arg maxj∈Sc CIFE(Xj, Y|XS) is appended only when CIFE(Xj0 , Y|XS) > 0. Then, Positive Selection
Rate (PSR) of such selection procedure may become arbitrarily small in model Mk,γ for fixed γ and
sufficiently large k. PSR is defined as |t̂ ∩ t|/|t|, where t = {1, . . . , k + 1} is a set of indices of Markov
Blanket of Y and t̂ is a set of indices of the chosen variables.
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5. Conclusions

We have considered Mk,γ, a special case of Generative Tree Model and investigated behavior
of CMI and related criteria JMI and CIFE in this model. We have shown that, despite the fact that
both of these criteria are derived as approximations of CMI under certain dependence conditions,
their behavior may greatly differ from that of CMI in the sense that they may switch the order of
variable importance and treat inactive variables as more relevant than active ones. In particular,
this occurs for JMI when γ < 1 and CIFE for γ = 1. We have also shown a drawback of CIFE procedure
which consists in disregarding significant part of active variables so that PSR may become arbitrarily
small in model Mk,γ for large k. As a byproduct, we obtain formulae for the entropy of multivariate
gaussian mixture and its mutual information with mixing variable. We have also shown that the
entropy of the gaussian mixture is a strictly increasing function of the euclidean distance between
two centers of its components. Note that, in this paper, we investigated behavior of theoretical CMI
and its approximations in GTM; for their empirical versions, we may expect exacerbation of effects
described here.
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Abstract: As modern data analysis pushes the boundaries of classical statistics, it is timely to
reexamine alternate approaches to dealing with outliers in multiple regression. As sample sizes
and the number of predictors increase, interactive methodology becomes less effective. Likewise,
with limited understanding of the underlying contamination process, diagnostics are likely to fail
as well. In this article, we advocate for a non-likelihood procedure that attempts to quantify the
fraction of bad data as a part of the estimation step. These ideas also allow for the selection of
important predictors under some assumptions. As there are many robust algorithms available,
running several and looking for interesting differences is a sensible strategy for understanding the
nature of the outliers.

Keywords: minimum distance estimation; maximum likelihood estimation; influence functions

1. Introduction

We examine how to approach bad data in the classical multiple regression setting.
We are given a section of n vectors, {(xi, yi), i = 1, 2, . . . , n}. We have p predictors; hence,
xi ∈ )p. The random variable model we consider is Yi = Xt

i β + εi where εi represents the
(random) unexplained portion of the response. In vector form we have

Y = Xβ + ε ,

where Y is the n × 1 vector of responses. X is the n × p matrix whose n rows contain the
predictor vectors, and ε is the vector of random errors. Minimizing the sum of squared
errors leads to the well-known formula

β̂ = (XtX)−1XtY . (1)

Since β̂ is a linear combination of the responses, any outliers will result in corresponding
influence in the parameter estimates. Alternatively, outliers in the predictor vectors can
exert a strong influence on the estimated parameter vector. With modern gigabit datasets,
both outliers may be expected. Outliers in the predictor space may or may not be viewed
as errors. In either case, they may result in high leverage, as any prediction errors there
that are very large would result in a large fraction of the SSE; thus, we would expect β̂ to
pay attention and try to rotate to minimize that effect. In practice, it is more common to
assume the features are measured accurately and without error and to focus on outliers in
the response space. We will adopt this framework initially.

2. Strategies for Handling Outliers in the Response Space

Denote the multivariate normal PDF by φ(x|μ, Σ). Although it is not required, if we
assume the distribution of the error vector ε is multivariate normal with zero mean and
covariance matrix Σ = σ2

ε Ip, maximizing the likelihood

Entropy 2021, 23, 88. https://doi.org/10.3390/e23010088 https://www.mdpi.com/journal/entropy179
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n

∏
i=1

φ(εi|β, σ2
ε Ip) =

n

∏
i=1

1√
2πσε

2
exp(−ε2

i /2σε
2)

=
n

∏
i=1

1√
2πσε

2
exp(−(yi − xt

i β)
2/2σε

2) (2)

may be shown to be equivalent to minimizing the residual sum of squares

n

∑
i=1

(yi − ŷi)
2 =

n

∑
i=1

(yi − xt
i β)

2 (3)

= (Y − Xβ)t(Y − Xβ) ,

over β, leading to the least squares estimator given in Equation (1), where ŷi = xt
i β̂ is the

predicted response. Again we remark that the least squares criterion in Equation (3) is
often invoked without assuming the errors are independent and normally distributed.

Robust estimation for the parameters of the normal distribution as in Equation (2) is a
well-studied topic. In particular, the likelihood is modified so as to avoid the use of the
non-robust squared errors found in Equation (3). For example, ε2

i may be modified to be
bounded from above, or may even take a more extreme modification to have redescending
shape (to zero); see [1–3]. Either approach requires the specification of meta-parameters
that explicitly control the shape of the resulting influence function. Typically, this is done
by an iterative process where the residuals are computed and a robust estimate of their
scale is obtained. For example, the median of the absolute median residuals.

As an alternative, we advocate making an assumption about the explicit shape of
the residuals, for example, ε ∼ N(0, σε

2). With such an assumption, it is possible to
replace likelihood and influence function approaches with a minimum distance criterion.
As we shall show, the advantage of doing so is that an explicit estimate of the fraction of
contaminated data may be obtained. In the next section, we briefly describe this approach
and the estimation equations.

3. Minimum Distance Estimation

We follow the derivation of the L2E algorithm described by Scott [4]. Suppose we have
a random sample {xi, i = 1, 2, . . . , n} from an unknown density function g(x), which we
propose to model with the parametric density f (x|θ). Either x or θ may be multivariate in
the following. Then as an alternative to evaluating potential parameter values of θ with
respect to the likelihood, we consider instead estimates of how close the two densities are
in the integrated squared or L2 sense:

θ̂ = arg min
θ

∫̂ (
f (x|θ)− g(x)

)2dx (4)

= arg min
θ

[ ∫̂
f (x|θ)2dx −

∫̂
2 f (x|θ)g(x)dx +

∫̂
g(x)2dx

]
(5)

= arg min
θ

[ ∫
f (x|θ)2dx − 2Ê f (X|θ)

]
(6)

= arg min
θ

[ ∫
f (x|θ)2dx − 2

n

n

∑
i=1

f (xi|θ)
]

. (7)

Notes: In Equation (4), the hat on the integral sign indicates we are seeking a data-based
estimator for that integral; in Equation (5), we have simply expanded the integrand into
three individual integrals, the first of which can be calculated explicitly for any posited
value of θ and need not be estimated; in Equation (6), we have omitted the hat on the
first integral and eliminated entirely the third integral since it is a constant with respect
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to θ, and we have observed that the middle integral is (by definition) the expectation of
our density model at a random point X ∼ g(x); and finally, in Equation (7), we have
substituted an unbiased estimate of that expectation. Note that the quantity in brackets
in Equation (7) is fully data-based, assuming the first integral exists for all values of θ.
Scott calls the resulting estimator L2E as it minimizes an L2 criterion.

We illustrate this estimator with the 2-parameter N(μ, σ2) model. Then the criterion
in Equation (7) becomes

(μ̂, σ̂) = arg min
(μ,σ)

[
1

2
√

πσ
− 2

n

n

∑
i=1

φ(xi|μ, σ2)

]
. (8)

We illustrate this estimator on a sample of 104 points from the normal mixture
0.10N(1, 0.22) + 0.75N(5, 1) + 0.15N(9, 0.52). The L2E and MLE curves are shown in
the left frame of Figure 1.

 

Figure 1. (Left) MLE and L2E estimates together with a histogram; (Right) partial L2E estimate.

A careful examination of the L2E derivation in Equation (4) shows that we crucially
used the fact that g(x) was a density function, but nowhere did we require the model
f (x|θ) to also be a bona fide density function. Scott proposed fitting a partial mixture
model, namely

f (x|θ) = w · φ(x|μ, σ2) ,

which he called a partial density component. (Here, the L2E criterion could be applied to a
full 3-component normal mixture density.) When applied to the previous data, the fitted
curve is shown in the right frame of Figure 1.

We discuss these 3 estimators briefly. The MLE is simply (x̄, s), and the nonrobustness
of both parameters is clearly illustrated. Next, the L2E estimate of the mean is clearly robust,
but the scale estimate is also inflated compared to the true value σ = 1. After reflection,
this is the result of the fitted model having an area equal to 1. The closest normal curve
is close to the central portion of the mixture, but with standard deviation inflated by
a third. Note that the fitted curve completely ignores the outer mixture components.
However, when the 3-parameter partial density component model is fitted, ŵ = 0.759,
which suggests that some 24% of the data are not captured by the minimum distance fit.
Thus the estimation step itself conveys important information about the adequacy of the fit.
By way of contrast, a graphical diagnosis of the MLE fit such as a q–q plot would show the
fit is also inadequate, but give no explicit guidance as to how much data are outliers and
what the correct parameters might be. Note that the parameter estimates of the mean and
standard deviation by partial L2E are both robust, although the estimate of σ is inflated by
3%, reflecting some overlap of the third mixture component with the central component.
Thus, we should not assume ŵ is an unbiased estimate of the fraction of “good data”,
but rather an upper bound on it.

With the insight gained by this example, we shift now to the problem at hand, namely,
multiple regression. We will use the partial L2E formulation in order to gain insight into
the portion of data not adequately modeled by the linear model.
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4. Minimum Distance Estimation for Multiple Regression

If we are willing to make the (perhaps rather strong but explicit) assumption that the
error random variables follow a normal distribution, the appropriate model is

ε ∼ N(0, σε
2) .

Given initial estimates for β, σε, and w, we use any nonlinear optimization routine (for
example, nlminb in the R language) to minimize Equation (7)

w2

2
√

πσε
− 2w

n

n

∑
i=1

φ(yi − xt
i β|0, σε

2) (9)

over the p + 2 parameters (β, σε, w). In practice, the intercept may be coded as another
parameter, or a column of 1s may be included in the design matrix, X. Notice that the
residuals are assumed to be normal (at least partially) and centered at 0. It is convenient to
use the least-squares estimates to initialize the L2E algorithm. In some cases, there may be
more than one solution to Equation (9), especially if using the partial component model.
In every case, the fitted value of w should offer clear guidance.

5. Examples

5.1. Hertzsprung–Russell Diagram CYG OB1 Data

These data (n = 47) are well-studied due to the strong influence of the four very
bright giant stars observed at low temperatures [5]; see Figure 2. In fact, the slope of the
least-squares line in the left frame has the wrong sign.
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Figure 2. (Left) MLE (blue) and L2E (red) regression estimates for the Hertzsprung–Russell data; (Middle) kernel (blue)
and normal (green) densities of the least squares residuals; and (Right) kernel (red) and normal (green) densities of the L2E
residuals. See text.

In the middle frame, we examine the residuals from the least-squares fit. The residuals
are shown along the x-axis, together with a kernel density estimate (blue), which has a bi-
modal shape [6]. The green curve shows the presumed normal fit N(0, σ̂2

ε ), where σ̂ε = 0.558.
Since this is just a bivariate case, it is easy to see that the bimodal shape of the residuals does
not convey the correct size of the population of outliers. In higher dimensions, such inference
about the nature and quantity of outliers only becomes more difficult.

In the right frame, we examine the residuals from the L2E fit. We begin by noting
that the fraction of “good data” is around 92%, indicating 3.8 outliers. The kernel density
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estimate of the residuals is shown in red. The fitted normal curve to the residuals is the
partial normal component given by

0.919 · N(0, 0.3942)

and is shown again in green. The estimated L2E standard deviation is 41% smaller than the
least-squares estimate. Examining the residuals closely, there are a possible two more stars
with residual values 1.09 and 1.49 that may bear closer scrutiny. Finally, the assumption of
a normal shape for the residuals seems warranted by the close agreement of the red and
green curves around the origin in this figure.

5.2. Boston Housing Data

This dataset was first analyzed by economists who were interested in the affect
that air pollution (nitrous oxide) had on median housing prices per census track [7].
A description of the data may be found at https://www.cs.toronto.edu/~delve/data/
boston/bostonDetail.html.

We begin by fitting the full least-squares and L2E multiple regression models with
p = 13 predictors to the median housing price for the 506 census tracks. All 14 variables
were standardized; see Table 1. Thus we know the intercept for the least-squares model will
be zero. All of the LS coefficients were significant except for INDUS and AGE. L2E puts
more weight on AGE and RM and less on NOX, RAD, and LSTAT compared to least-squares.

Table 1. The multiple regression parameter estimates for LS and L2E are given in the first two rows. The variable importance counts
are given in the last two rows; see text.

Int CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT

LS 0 −0.101 0.118 0.015 0.074 −0.224 0.291 0.002 −0.338 0.290 −0.226 −0.224 0.092 −0.407
L2E −0.155 −0.140 0.078 0.015 0.048 −0.061 0.400 −0.135 −0.177 0.105 −0.135 −0.135 0.173 −0.180

LS 123 121 112 158 134 396 110 270 128 137 334 155 396
L2E 135 155 133 157 133 396 63 269 122 144 305 166 396

In Figure 3, we display histograms of the residuals as well as a normal curve with
mean zero and the estimated standard deviation of the residuals. The estimated value
of σε is 0.509 and R2 = 0.74 for LS; however, σ̂ε is only 0.240 for L2E, with ŵ = 0.845.
Examining the curves in Figure 3, we see that the least-squares model tends to over-
estimate the median housing value. Our interpretation of the L2E result is that the simple
multiple linear regression model only provides an adequate fit to at most 84.5% of the data.
(This interpretation relies critically on the correctness of the proper shape of the residuals
following the normal distribution.) In particular, the L2E model is saying that very accurate
predictions of the most expensive median housing census tracks are not possible with these
13 predictors.

In Figure 4, the L2E residuals (in standardized units) are displayed for the 506 census
tracks. The dark blue and dark red shaded tracks are more than 3 standard units from
their predictions. The expanded scale shown in Figure 5 shows that the largest residuals
(outliers) are in the central Boston to Cambridge region. Similar maps of the LS residuals
show much less structure, as is apparent from the top histogram in Figure 3.
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Figure 3. LS and L2E residual analysis; see text.

Figure 4. Full map of the L2E residuals in the Boston region; see text.

Next, we briefly examine whether subsets of the predictors are sufficient for prediction.
In Figure 6, we display the residual standard deviation for all 8191 such models. Apparently,
as few as 5 variables provide as good a prediction as the full model above. In the bottom
two rows of Table 1 we tabulate the variables that entered into the best 100 models as
the number of variables range from 5 to 8. The variables RM, LSTAT, PTRATIO, and DIS
appear in almost all of those 400 models. The additional three variables ZN, B, and CHAS
appear at least half the time. However, the L2E fits for these models have standard errors
often 50% larger than the full model. Variable selection remains a noisy process, although
this simple counting procedure can prove informative.
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Figure 5. Blow-up of central Boston region residuals.
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Figure 6. Fitting all possible subsets of predictors for the median housing values (213 − 1 = 8191).
The red lines connect the best model for each number of predictors. The blue lines connect the best w
for that best model. Of course w = 1 for all least-squares models. See text.

5.3. Superconductivity Data

This dataset was analyzed in 2018 in a published manuscript [8] to predict the super-
conductivity critical temperature using the features extracted from the superconductor’s
chemical formula. A description of the dataset may be found at https://archive.ics.uci.
edu/ml/datasets/Superconductivty+Data#.

As for the other examples, we begin by fitting the full least-squares and L2E multiple
regression models with p = 81 predictors to the critical temperature for the 21,263 super-
conductors. All 82 variables were standardized; in Figure 7, we display histograms of the
critical temperatures of the 21,263 superconductors. The data clearly manifest two “major
clusters” and one “minor cluster”. We also display histograms of the least-squares regres-
sion residuals as well as a normal curve with mean zero and the estimated standard devia-
tion of the residuals. When we examine the histogram and curves in Figure 8, we see that
the least-squares model overall does a reasonable job, while possessing larger deviation.
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Figure 7. Histograms of the critical temperatures; see text.

We showcase the histograms and curves for L2E regression residuals, as well as the
fitting curves in Figure 9. We plotted the blue curve with the negative residuals and the
green curve with positive residuals. Our interpretation of the L2E result is that the points
with positive and negative residuals from the L2E regression fit the two major clusters of the
critical temperature very well. In particular, the L2E model yields a narrower distribution
of residuals, and the fitting explains the bi-modal distribution of the critical temperatures.
On a practical note, the same L2E values (to five significant digits) were obtained starting
with the LS parameters or a vector of zeros, for any initial choice of w.

Figure 8. Histogram and normal curve for LS residual; see text.
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Figure 9. Histogram and fitting kernel density estimation curves for L2E residuals; see text.

6. Discussion

Maximum likelihood or entropy or Kullbach–Liebler estimators are examples of di-
vergence criteria rather than being distance-based. It is well-known these are not robust
in their native form. Donoho and Liu argued that all minimum distance estimators are
inherently robust [9]. Other minimum distance criteria (L1 or Hellinger, e.g.) exist with
some properties superior to L2E such as being dimensionless. However, none are fully
data-based and unbiased. Often a kernel density estimate is placed in the role of g(x),
which introduces an auxiliary parameter that is problematic to calibrate. Furthermore,
numerical integration is almost always necessary. Numerical optimization of a criterion in-
volving numerical integration severely limits the number of parameters and the dimension
that can be considered.

The L2E approach with multivariate normal mixture models benefits greatly from the
following closed form integral:∫

)p
φ(x|μ1, Σ1) φ(x|μ2, Σ2) dx = φ(0|μ1 − μ2, Σ1 + Σ2) ,

whose proof follows from the Fourier transform of normal convolutions; see the appendix
of Wand and Jones [10]. Thus the robust multiple regression problem could be approached
by fitting the parameter vector (μ, Σ, w) to the random variable vector (x, y) and then
computing the conditional expectation. In two dimensions, the number of parameters
is 2 + 3 + 1 compared to the multiple regression parameter vector (β, σε, w), which has
2 + 1 + 1 parameters (including the intercept). The advantage is much greater as p increases,
as the full covariance matrix requires p(p + 1)/2 parameters alone.

To illustrate this approach, we computed the MLE and L2E parameters estimates for
the Hertzsprung–Russell data [11]. The solutions are depicted in Figure 10 by three level
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sets corresponding to 1-, 2-, and 3-σ contours. These data are not perfectly modeled by the
bivariate normal PDF; however, the direct regression solutions shown in the left frame of
Figure 2 are immediately evident. The estimate of ŵ here was 0.937, which is slightly larger
than the estimate shown in the right frame of Figure 2.
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Figure 10. MLE (blue) and L2E (red) bivariate normal estimates for the Hertzsprung–Russell data.

If the full correlation structure is of interest, then the extra work required to robustly
estimate the parameters may be warranted. For x ∈ )p, this requires estimation of
p + p(p + 1)/2+ 1 or (p + 2)(p + 1)/2 parameters. In )10 this means estimating 66 param-
eters, which is on the edge of optimization feasibility currently. Many simulated bivariate
examples of partial mixture fits with 1–3 normal components are given in Scott [11]. When
the number of fitted components is less than the true number, initialization can result in
alternative solutions. Some correctly isolate components, others combine them in interest-
ing ways. Software to fit such mixtures and multiple regression models may be found at
http://www.stat.rice.edu/~scottdw/ under the Download software and papers tab.

We have not focused on the theoretical properties of L2E in this article. However,
given the simple summation form of the L2E criterion in Equation (7), the asymptotic
normality of the estimated parameters may be shown. Such general results are to be found
in Basu, et al. [12], for example. Regularization of L2E regression, such as the L1 penalty in
LASSO, has been considered by Ma, et al. [13]. LASSO can aid in the selection of variables
in a regression setting.

7. Conclusions

The ubiquitousness of massive datasets has only increased the need for robust meth-
ods. In this article, we advocate application of numerous robust procedures, including
L2E, in order to find similarities and differences among their results. Many robust proce-
dures focus on high-breakdown as a figure of merit; however, even those algorithms may
falter in the regression setting; see Hawkins and Olive [14]. Manual inspection of such
high-dimensional data is not feasible. Similarly, graphical tools for inspection of residuals
also are of limited utility; however, see Olive [15] for a specific idea for multivariate regres-
sion. The partial L2E procedure described in this article puts the burden of interpretation
where it can more reasonably be expected to succeed, namely, in the estimation phase.
Points tentatively tagged as outliers may still be inspected in aggregate for underlying
cause. Such points may have residuals greater than some multiple of the estimated residual
standard deviation, σ̂ε, or simply be the largest 100(1 − ŵ)% of the residuals in magnitude.
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In either case, the understanding of the data is much greater than least-squares in the
high-dimensional case.
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Abstract: This paper focuses on the adaptive spline (A-spline) fitting of the semiparametric regression
model to time series data with right-censored observations. Typically, there are two main problems
that need to be solved in such a case: dealing with censored data and obtaining a proper A-spline
estimator for the components of the semiparametric model. The first problem is traditionally solved
by the synthetic data approach based on the Kaplan–Meier estimator. In practice, although the
synthetic data technique is one of the most widely used solutions for right-censored observations, the
transformed data’s structure is distorted, especially for heavily censored datasets, due to the nature
of the approach. In this paper, we introduced a modified semiparametric estimator based on the
A-spline approach to overcome data irregularity with minimum information loss and to resolve the
second problem described above. In addition, the semiparametric B-spline estimator was used as
a benchmark method to gauge the success of the A-spline estimator. To this end, a detailed Monte
Carlo simulation study and a real data sample were carried out to evaluate the performance of the
proposed estimator and to make a practical comparison.

Keywords: adaptive splines; B-splines; right-censored data; semiparametric regression; synthetic
data transformation; time series

1. Introduction

Time series datasets are censored from the right under specific conditions, such as
a detection limit or an insufficient observation process. Consider a device which cannot
measure values above a certain point, which is known as a detection limit. Since the
device cannot determine the real value of an observation above its detection limit, such
observations are recorded as right-censored data points. The hourly observed cloud ceiling
heights data collected by the National Center for Atmospheric Research (NCAR) and
modelled by [1,2] can be used as an example of a right-censored time series. Although
right-censored time series are encountered frequently in the real world, in the literature,
there are truly few studies completed on the estimation of right-censored time series. This
may be because censorship is an unwanted data irregularity for the researchers, and it is
therefore often ignored or solved by outdated techniques.

To solve the censorship problem before modelling the time series, reference [1] used
the Gaussian imputation technique to estimate the series using modified ARMA mod-
els. In a similar manner, references [2,3] solved the censorship problem by using data
imputation techniques. The common ground of these studies is the use of imputation
and data augmentation methods to estimate the regression models with autoregressive
errors for right-censored time series. On the other hand, there is an easier way to handle
the censorship problem called synthetic data transformation. Although data imputation
techniques have some merits, they are generally based on iterative algorithms and their
calculations are costly. Reference [4] estimated the temporally correlated and right-censored
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series by Nadaraya–Watson estimator nonparametrically, solving the censorship problem
using a data transformation technique. Various data transformation (or synthetic data)
methods have been proposed and studied in the literature for independent and identically
distributed (i.i.d.) datasets; for example, see [5–7]. Because synthetic data transformation
manipulates the data structure, which is disadvantageous, this solution method is no longer
the preferred technique for right-censored time series. This paper aims to propose a method
which can overcome the disadvantage of the synthetic data transformation method.

Note that the studies mentioned above consider the modeling of time series data using
parametric or nonparametric methods. The data structure of a time series in the real world
is generally not suitable for parametric modelling, because it requires rigid assumptions
to reach reasonable estimates. Single-index nonparametric models, on the other hand,
are very flexible, which is an important advantage over parametric methods and there
are valuable studies on the subject [2,8,9]. However, nonparametric approaches lose their
statistical efficiencies, when the number of covariates increases. In addition, it should be
noted that, when a time series dataset is right-censored, the weaknesses of both methods
are further increased.

Considering the issues mentioned above, this paper adopts semiparametric regression
model for estimating right-censored time series. Although several researchers have intro-
duced different types of semiparametric estimators for time series data, such as [10,11],
there remains a significant gap in the research regarding the modelling of right-censored
time series data. To address this absence, our paper proposes a modified semiparametric
A-spline (AS) estimator based on synthetic data transformation. Thus, the bidirectional
flexibility of the semiparametric model will be used, and the censorship problem will be
effectively solved.

The paper is designed as follows: the methodology and fundamental ideas about right-
censored semiparametric time series model with autoregressive errors and the synthetic
data transformation method are given in Section 2. Section 3 introduces a modified AS
estimator for parametric and nonparametric components of the right-censored time series
model, and a semiparametric B-spline (BS) is given as a benchmark. Section 4 involves the
statistical properties and evaluation criteria for both the modified AS and benchmark BS
methods. Section 5 introduces some additional information about the penalty term of the
semiparametric AS approach. Sections 6 and 7 contain a detailed Monte Carlo simulation
study and a real-world data example, respectively. Conclusions are presented in Section 8.

2. Background

The classical semiparametric model can be defined as a hybrid model with a finite
dimensional parametric component and a nonparametric component having an infinite
dimensional nuisance parameter. See [12–15] for additional information. In both theory
and practice, the semiparametric model brings a new perspective to data modeling, since
it includes both parametric and nonparametric components. As mentioned in the previ-
ous section, it is well-suited to time series data, because it brings the advantages of the
semiparametric model to time series analysis.

Suppose that a time series dataset {Zt, xt, st, t = 1, 2, . . . , n } satisfies an uncensored
semiparametric time series model of the form:

Zt = xtβ+ f (st) + εt, a = s1 < . . . < sn = b, (1)

where Zt
′s are the observations of stationary time series, xt =

(
xt1, . . . , xtp

)
and x1, . . . , xn

are known p-dimensional vectors of the explanatory variables, β =
(

β1, β2, . . . , βp
)′ is

an unknown p-dimensional vector of the regression coefficients to be estimated, f (.) is
an unknown smooth function that describes the relationship between Zt and a nonpara-
metric temporal covariate st, and finally, εt’s are the stationary autoregressive error terms
generated by:

εt = ρ1εt−1 + . . . + ρkεt−k + ut, (2)
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where ρ1, . . . , ρk are the autoregressive coefficients, and ut denotes the independent and
identically distributed random error terms with mean zero and a constant variance.
Model (1) does not include lagged Zt

′s and has auto-correlated errors. This expression
makes it a suitable model for the semiparametric regression analysis of certain kinds of
time series.

A common problem in practice is that dependent observations Zt
′s cannot be perfectly

collected due to limitations including the detection limit of an evaluation tool or the end
time for the study. To express this situation algebraically, we assume that Zt

′s are censored
from the right by a non-negative random variable representing detection limit Ct. Therefore,
instead of observing the values of Zt, we now observe:

Yt = min(Zt, Ct) and δt =

{
1 i f Zt ≤ Ct (uncensored)
0 i f Zt > Ct (censored)

, (3)

where δt’s denote the censoring information. Suppose that we are interested in estimating
the mean semiparametric regression function. The distribution of the observable random
variables does not identify the mean regression function uniquely. However, this problem
can be solved as follows.

Let FZ(α) = P(Z ≤ α), GC(α) = P(C ≤ α), and HY(α) = P(Y ≤ α) for α ∈ R

be cumulative distribution functions of non-negative random variables Zt, Ct, and Yt,
respectively. If random variables Zt and Ct are independent, then the survival function
HY(α) for observed response variable Yt can be defined from the basic relationship between
FZ and GC: {

HY(α) = 1 − HY(α)
}

= [(1 − FZ(α))·(1 − GC(α))]. (4)

Given a random sample from the distribution of (Yt, Xt, st, δt), it is of interest to ex-
amine the explanatory variables’ effect on the observations of time series (i.e., response
variable) by estimating the survival function HY(α) = P(Y > α), which is the regression
function E(Yt|xt, st) = xtβ+ f (st), the conditional mean of time series Yt. However,
because of the censoring, ordinary methods cannot be applied directly to estimate the
regression function. To overcome censored observations, a data transformation technique
should be used. One of the most widely used techniques is the synthetic data transforma-
tion, detailed in the section below.

Synthetic Data

To extend the penalized sum of squares approach to right-censored semiparametric
regression analysis, we updated the synthetic data approach developed by [5]. The first
step is to create an unbiased synthetic response variable of which the expectation is equal to
the original and then to obtain the penalized squares estimator by means of this synthetic
variable. The main goal of this transaction is to consider the censoring effect on the
distribution of response variable. In the case of censored data, the authors of [16,17] used
the synthetic data approach.

In the synthetic approach, we replace observed variable Yt with transformed data YtG;
a transformation maintains the conditional expectation of original variable Zt. To describe
this situation, it is easier to proceed directly using the cumulative distributions given in
Lemma 1 below. Note also that if GC is known then it is possible to transform observed
data {(Yt, δt), t = 1, . . . , n} into unbiased synthetic data, given by:

YtG =
δtYt

1 − GC(Yt)
, (5)
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where GC(.) is the distribution function of the censoring time Ct, as defined before. It
should be noted that the distribution of GC is rarely known. In this case, we use the
Kaplan–Meier estimator defined by:

1 − Ĝc(y) = ∏n
t = 1

(
n − t

n − t + 1

)I[Y(t)≤y, δ(t) = 0]
, y ≥ 0, (6)

where Y(1) ≤ . . . ≤ Y(n) are the sorted values of Y1, . . . , Yn and δ(t) is the δt related to Y(t).
Equation (5) has the following properties: (a) if distribution GC is selected arbitrarily, some
Y(i) can be identical. In this case, the ranking of Y1, . . . , Yn into Y(1) . . . Y(n) is not unique.
However, the Kaplan–Meier estimator allows us to define the ranking of Yt uniquely;
(b) ĜC(.) has jumps only at the censored observations of the time series (see [18]).

Substituting ĜC(.) for GC(.) in Equation (5), we construct the following synthetic data,
given by:

YtĜ =
δtYt

1 − ĜC(Yt)
. (7)

Then, one practical consequence of the following Lemma is that synthetic data YtĜ
and completely observed response times Zt have the same conditional expectations, as
claimed in before.

Lemma 1. Consider time series data Zt denoted as a response variable. If the data is censored by
random censoring variable C with distribution GC, transform observed series Yt = min(Zt, Ct) to
YtG = δtYt/1 − GC(Yt) in an unbiased form, as defined in Equation (4). Based on the information,
it can be easily verified that E[YtG|xt, st] = E[Zt|xt, st] = xtβ + f (st). However, generally,
GC is unknown as mentioned before. Therefore, YtĜ is used which is defined in Equation (7),
instead of YtG. Because of Ĝc → G when n → ∞ , (see [5]), it is ensured that E

[
YtĜ

∣∣xt, st
] ∼=

E[YtG|xt, st] = xtβ + f (st).

Let us consider that τHY = sup{α : HY(α) < 1}, where HY(.) is defined right after
Equation (3). In the literature, the convergence rate of the Kaplan–Meier estimator is
examined in two classes: (i) restriction of time-interval as [0, α] with α < τHY ; (ii) extension
of time-interval

[
0, τHY

]
(see [19] for more detailed discussions). Here, the convergence

rate of the Kaplan–Meier estimator is inspected with regard to case (ii). However,
[
0, τHY

]
cannot be used without some strong conditions that can be given by:

(i) G
(
τHY

)
< 1 = F

(
τHY

)
;

(ii) τHY < ∞;

(iii)
∫ τHY

0
1

1−G(α)
dF < ∞.

Details about conditions (i)–(iii) were studied by [20]. The convergence of Ĝ → G
over the interval

[
0, τHY

]
can be provided. Reference [19] clearly shows both strong and

weak convergences at the rate n−ϑ where 0 ≤ ϑ ≤ 1/2.
The proof of Lemma 1 is given in Appendix A.
The major concern of this paper is to overcome the censoring problem and to estimate

the semiparametric time series model efficiently. To achieve this goal, we used two different
approaches, BS and modified AS estimators. In the following section, we applied these
approaches to the transformed data to estimate time series observations under random
right-censorship.

3. Estimating the Semiparametric Model Based on the BS Estimator

We first introduce the BS considered for estimating the components of model (1). A
univariate B-spline is constructed by a piecewise polynomial function of degree q such that
its derivatives up to order (q − 1) is continuous at each knot point r1, . . . , rk. The set of BSs
of degree q over the real numbers (r1, . . . , rk) = r is a vector space of dimension q + k + 1.
In addition, note that k denotes the number of interior knots, while q ≥ 0 indicates the
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polynomial order. For example, the polynomials of order q = 0, 1, 2, and 3 are defined
as constant, linear, quadratic, and cubic BS basis functions, respectively. If the knots are
equally spaced (i.e., separated by same distance h = (rk+1 − rk)), the knot points and the
corresponding BSs are called uniform.

Definition 1. Given an ordered knot vector r = {r1 ≤ r2 ≤ . . . ≤ rk} in the domain of covariate
st, then ith BS basis functions

{
Bi,q(st), i = 1, 2, . . . , q + k + 1

}
of degree q = 0 and q > 0

can be defined in recursive series, respectively, as:

Bi,0(s) =

{
1 i f ri ≤ s ≤ ri+1

0, otherwise
, (8)

Bi,q(s) =
s − ri

ri+q − ri
Bi,q−1(s) +

ri+q+1 − s
ri+q+1 − ri+1

Bi+1,q−1(s). (9)

Note that if the denominator of Equation (9) is equal to zero, then the BS basis function is
assumed to be zero. From Equations (8) and (9), a set of (q + k + 1) basis functions have the
following important properties:

(a) The BS basis functions form a partition of unity,∑
q+k+1
i = 1 Bi,q(s) = 1;

(b) For all values of covariate st, Bi,q(s) ≥ 0; and
(c) Bi,q(s) is realized in the interval [rk, rk+q+1].

Reference [21] proposes an algorithm to solve equation (9). See also the work of [22]
for more detailed discussions on the BS approximation. Note also that the BS curve can be
uniquely represented as a linear combination of the BSs basis functions in Equation (9), as
given in the next section. Note that references [23,24] could be counted as recent studies
about BSs.

3.1. BS Estimator

As previously noted, in this paper, we fit semiparametric time series model (1) with
right-censored data. For this purpose, the BS estimator can be used as an approximation
method. Using the synthetic data in Equation (7), we estimated the parametric and non-
parametric components of model (1). Therefore, the sum of the squares of the differences
between the censored time series values YtĜ and (xtβ+ f (st)) are minimum. Assume that
f (.) is a smooth function that can be approximated by a linear combination of the BSs basis
functions in Equations (8) and (9):

f (s) ∼= ∑m = q+k+1
i = 1 αiBi,q(s) = Bα , (10)

where m = (q + k + 1) is the total number of BS basis functions being used, α̂i
′s are

estimated coefficients (or control points) for each BS, B is an (n × m)-dimensional matrix
which includes BSs as defined by Equation (9) and α = (α1, . . . ,αm)′ is a parameter
vector of the BS function. Note also that the autoregressive errors in model (1) follow an
n-dimensional multivariate normal distribution with a zero mean and stationary (n × n)
covariance matrix Σ, that is, (ε1, . . . , εn)

T ∼ Nn(0, Σ ), where the covariance matrix Σ is a
symmetric and positive definite matrix with elements:

Σ =
σ2

u
1 − ρ2 R, R(t, j) = ρ|t−j|, 1 ≤ (t, j) ≤ n. (11)

Throughout the paper, the notation is used as Σ−1 = V. Note that V is generally
unknown. However, its elements can be obtained by the generalized least squares (GLS)
based on an iterative process. Then, as in [25] which is a penalized BS study combining
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BS and difference penalties, the estimates of the components of semiparametric model (1)
were obtained by minimizing the penalized sum of squares (PSS) criterion:

PSS = ∑n
t = 1 V

{
YtĜ − ∑p

j = 1 xtjβ j − ∑m
i = 1 αiBi,q(s)

}2
+ λ ∑m

i = q+1(Δ
qαi)

2, (12)

where Δαi = (αi − αi−1) is the first-order difference penalty on the coefficients of the BSs. The
other differences can be defined as follows:

Δ2αi = Δ(Δαi) = (αi − αi−1)− (αi−1 − αi−2) = αi − 2αi−1 + αi−2, (13)

and similarly:
Δqαi = Δ

(
Δq−1αi

)
. (14)

Note that if degree q = 0 in Equation (12), we obtain semiparametric ridge regression
based on BSs. When λ = 0 in Equation (12), we have the minimization equation of
ordinary least squares regression with a correlated error. If λ > 0, the penalty only
influences the main diagonal and q sub-diagonals (on both sides of the main diagonal
elements) of the banded structure system due to the limited overlap of the BSs.

We rewrite the minimization criterion described as Equation (12) in a matrix and
vector notation:

PSS =
(
YĜ − Xβ− Bα

)′
V
(
YĜ − Xβ− Bα

)
+ λ‖Dα‖2, (15)

where ‖.‖ denotes Euclidean norm, X = (x1, . . . , xn)′, YĜ =
(
Y1Ĝ, . . . , YtĜ

)′ is the
synthetic response vector defined in Equation (7), λ > 0 is a smoothing parameter, and
D denotes the matrix notation of the difference operator (Δq) defined in Equation (13).
For example, D is an (n − 2) × n-dimensional banded matrix that corresponds to the
second-order difference penalty, given by:

D =

⎡⎢⎢⎣
1 −2 1 · · · 0
...

. . . . . . . . .
...

0 · · · 1 −2 1

⎤⎥⎥⎦. (16)

From simple algebraic operations, it follows that the solution to the minimization
problem in Equation (15) satisfies the following block matrix equation:(

X
′
V X X

′
V B

B
′
V X

(
B′V B + λD

′
D
) )( β

α

)
=

(
X

′

B
′

)
VYĜ. (17)

Given a parameter λ > 0, the corresponding estimators based on BSs for vectors β

and α can be easily obtained by:

α̂BS =
[
B

′
VB + λD

′
D
]−1

B
′
V
(
YĜ − Xβ̂BS

)
, (18)

and:
β̂BS =

[(
X

′
V − ABS

)
X
]−1(

X
′ − ABS

)
VYĜ, (19)

where ABS = X
′
VB
[
B

′
VB + λD

′
D
]−1

B
′
V. It should be noted that the estimates of the

unknown regression function in a censored semiparametric model are obtained by:

f̂BS = Bα̂BS =
[

f̂ (s1), . . . , f̂ (sn)
]
′. (20)
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From Equations (19) and (20), we see that the fitted values of dependent time series
data can be written as:

μ̂BS =
(

Xβ̂BS + f̂BS

)
= HBSYĜ = E[Y | X, s], (21)

where HBS is a hat matrix for BSs and computed as follows:

HBS =

[
X
[(

X
′
V − ABS

)
X
]−1(

X
′ − ABS

)
V(I − MBS) + MBS

]
, (22)

where MBS = B
[
B

′
VB + λD

′
D
]−1

B
′
V.

3.2. AS Estimator

The adaptive spline (AS) applies an adaptive ridge penalty to the BS method, which
makes it more flexible for knot determination. The AS concept is explained in [26] in a
nonparametric context. However, in this paper, we generalized this estimation concept to
the semiparametric environment based on synthetic response observations. It should be
noted that the location and number of knots have crucial importance in terms of synthetic
data transformation. This issue is discussed in detail in Section 4.3. The point here is that a
more efficient estimator based on synthetic responses is needed, as most of the existing
smoothing techniques (spline smoothing, kernel smoothing, etc.) cannot properly handle
synthetic data. This article aims to solve this issue with the AS estimator.

When a BS is defined on the knots r1 ≤ r2 ≤ . . . ≤ rk such that Δqαi = 0 for some ith

knot, it may be reparametrized as a BS on the knots r1, r2, . . . , ri−1, ri+1, . . . , rk. Accordingly,
when m = (q + k + 1), we want to put a penalty on the number of non-zero differences
indicated as below:

λ
m

∑
i = q+1

‖Δqαj‖0 , (23)

where Δqαi is the qth-order difference operator and ‖Δqαi‖0 is the L0-norm of the differ-
ences, that is, ‖Δqαi‖0 = 0 if Δqαj = 0, otherwise, ‖Δqαi‖0 = 1, and λ is a positive penalty
parameter that ensures the tradeoff between the goodness of fit to the data and the smooth-
ness of the fitted curve. This penalty enables us to remove knot ri that is not related to the
smoothing problem, to join the neighbor intervals [ri−1, ri) and [ri, ri+1), and to carry on
fitting with a BS described over the remaining knot points. Note also that when λ → 0 ,
the fitted curve becomes a BS with knots ri, i = 1, 2, . . . , k and when λ → ∞, the fitted
function becomes a polynomial of degree q.

It should be emphasized that one of the important points about the adaptive ridge
penalty is that Equation (23) cannot be differentiated due to the L0-norm. As a result,
the fitting process is made numerically untraceable. An approximate solution to dealing
with the L0-norm is provided by [27,28]. Following the studies of these authors, we
approximate the L0-norm by using an iterative process referred to as an “adaptive ridge”
based on synthetic data. The new criterion function is expressed by the following weighted
penalized sum of squares:

WPSS =
(
YĜ − Xβ− Bα

)′
V
(
YĜ − Xβ− Bα

)
+ λ ∑m

i = q+1 wi( Δqαi)
2, (24)

where wi’s denote the positive weights. It should be noted that the penalty is close to the
L0-norm of the differences when the weights are iteratively calculated from the parameter
vector α of BS following the equation:

wi =
[
(Δqαi)

2 + γ2
]−1

, γ > 0, (25)

where γ is a constant properly determined by the researcher.
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Remark 1. There are a few important points to know about the selection of γ. If (Δqαi) < γ,
then the magnitudes of wi’s might be quite large, resulting in (Δqαi) ∼= 0 and the penalty term
turning into wi(Δqαi)

2 ∼= 0. Furthermore, if (Δqαi) * γ , then wi(Δqαi)
2 ∼= ‖Δqαi‖0. This

convergence gives us a measure of how relevant the ith knot point is. In practice, one possible choice,
suggested by [28], is γ = 10−5. They select the knots (denoted as ri∗ ) with a weighted difference
bigger than 0.99. The number of parameters of the chosen BS is mλ = q + kλ + 1, where kλ

denotes the number of selected knot points.

Note that reference [28] provides a figure to show the effects of different norm degrees
(q) on the quality of estimation. It is seen from that the performance of estimation does not
change for different values of γ when norm degree is zero (q = 0). However, it affects the
performance seriously if q > 0.

For some λ > 0 and non-negative weights, the WPSS of Equation (26) can be rewritten as:

WPSS =
(
YĜ − Xβ− Bα

)′
V
(
YĜ − Xβ− Bα

)
+ λα′Kα, (26)

where K is a penalty matrix and written as K = D′WD, where W = diag
(
wq+1, . . . , wm

)
and D is the matrix form of the difference operator Δq, as defined in Equation (13). Sim-
ple algebraic operations show that the solution to the minimization problem WPSS in
Equation (26) satisfies the block matrix equation:(

X
′
VX X

′
VB

B
′
VX

(
B

′
VB + λK

) )( β

α

)
=

(
X

′

B
′

)
VYĜ. (27)

By similar arguments as in the case of the BS approach, the corresponding estimators
α̂AS and β̂AS of α and β, based on the right-censored semiparametric time series model (1)
with correlated data, can be easily obtained, respectively, as:

α̂AS =
[
B

′
VB + λK

]−1
B

′
V

′(
YĜ − Xβ̂AS

)
, (28)

and:
β̂AS =

(
(X

′
V − AAS)X

)−1(
X

′ − AAS

)
VYĜ, (29)

where AAS = X
′
VB
[
B

′
VB+ λK

]−1
B

′
V

′
. The proofs and derivations of Equations (28) and (29)

are given in Appendix B. Notice that the estimates corresponding to the nonparametric
part of the semiparametric model (1) are obtained using Equation (28) as described in the
following equation:

f̂AS = Bα̂AS =
[

f̂ (s1), . . . , f̂ (sn)
]
′. (30)

From Equations (29) and (30), we can see that the fitted values of the dependent time
series data can be obtained as:

^
μAS =

(
Xβ̂AS + f̂AS

)
= HASYĜ = E[Y|X, s], (31)

where HAS denotes the hat matrix, given by:

HAS =

[
X
[(

X
′
V − AAS

)
X
]−1(

X
′ − AAS

)
V(I − MAS) + MAS

]
, (32)

with MAS = B
[
B

′
VB + λK

]−1
B

′
V

′
.

To make the computation process efficient, all penalty terms
(
DTWD

)
are calculated

by using the iteration process instead of finding matrix D and knot set individually. The
iterative algorithm is given in Algorithm 1 below.
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Algorithm 1. Iterative algorithm process for the modified A-spline (AS) estimator α̂AS.

Input: X, s, YĜ.

Output: β̂(i)
AS =

(
β̂
(i)
1 , β̂

(i)
2 , . . . , β̂

(i)
p

)
α̂
(i)
AS =

(
α̂
(i)
1 , α̂

(i)
2 , . . . , α̂

(i)
q+k+1

)′

1: Begin

2: Give initial values, β(0) = 1p, α(0) = 0q+k+1 and W(0) = I to start iterative process
3: do until converges weighted differences to L0-norm

4: β̂(i)
AS = (

(
X

′
V − A)X

)−1(
X

′ − A
)

VYĜ

5: α̂(i)
AS =

[
B

′
VB + λK

]−1
B

′
V

′
(

YĜ − Xβ̂
(i)
AS

)
6: Determine γ = 10−5

7: w(i)
i =

[(
Δqα

(i)
i

)2
+ γ2

]−1

8: β̂AS = β
(i)
AS, α̂AS = α̂

(i)
AS, W = diag

(
w(i)

i

)
9: end

10: Calculate r(i∗) by the criterion of
(

Δqα
(i)
AS

)2
W(i) > 0.99

11: Return β̂
(i)
AS =

(
β̂1, β̂2, . . . , β̂p

)
, α̂(i)

AS =
(

α̂1, α̂2, . . . , α̂q+k+1

)′

12: End

Remark 2. For the constant value of γ = 10−5, the iteration process repeats between
step 3 and step 9 until the pre-determined tolerance value δ = 10−4 is obtained where
δ = ∑n

i = 1 n−1
∣∣Yi − ŶiĜ

∣∣. From our experience, the expected number of iterations is observed as
no.iteration = 20 to achieve the convergence.

Notice that the complexity and efficiency of Algorithm 1 is analyzed from different
aspects that are given by:

(i) Number of local searches: algorithm does not involve a local search procedure
which is an advantage for the speed of Algorithm 1;

(ii) Number of nested loops: due to the fact that there is only an iteration loop (without
nested loops), if an algorithm does not include nested loops, its “order of growth” will be O(n);

(iii) Asymptotic behaviors: as the former inference mentioned, Algorithm 1 has O(n)
which means that the limiting case of its convergence speed is considerable when it is
compared with its alternative BS method on this issue.

As mentioned at the beginning of this section, the choice of an optimum smoothing
parameter λ is required for both semiparametric BS and AS estimators. In this context,
the improved Akaike information criterion (AICc) proposed by [29] is used, which is
computed with the following equation:

AICc(λ) = log
(

σ̂2
)
+ 1 +

2{tr(H) + 1}
n − tr(H)− 2

, (33)

where σ̂2 is the estimate of the model variance, which is estimated for both methods
separately in the next section, and H denotes the hat matrix for any of two methods. It is
replaced by HAS for the AS method and HBS for the BS method, respectively.

4. Statistical Properties of the Estimators

In this paper, we introduced the semiparametric AS and BS estimators for the estima-
tion of the right-censored time series model. It should be noted that these two methods
were used for the first time in the setting of a time series estimation procedure. Inferences
were therefore carried out about their statistical properties. For example, among these, the
error terms obtained from the estimates of both methods and the estimators of parametric
and nonparametric components were inspected and their properties were extracted.
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4.1. Properties of the Semiparametric BS Estimator

Firstly, the parametric component was inspected. As is known, in a parametric context,
errors can be decomposed into the bias and the variance terms that provide the quality
of the estimator. Accordingly, the estimator β̂BS of the parametric coefficients vector is
expanded as follows:

β̂BS =
[
(X′V − ABS)X

]−1
(X′V − ABS)YĜ = β+

[
(X′V − ABS)X

]−1
(X′V − ABS)f, (34)

where V, ABS and MBS matrices are as defined in Section 3.1 and f = [ f (s1), f (s2), . . . , f (sn)]
′.

From here, bias B
(
β̂BS

)
and variance-covariance V

(
β̂BS

)
of estimator β̂BS can be computed

as follows:

B
(
β̂BS

)
= E

(
β̂BS

)
−β =

[
(X′V − ABS)X

]−1
(X′V − ABS)f, (35)

V
(
β̂BS

)
= σ2[(X′V − ABS)X

]−1
(X′V − ABS)X

[
(X′V − ABS)X

]−1, (36)

where σ2 is the variance of the fitted semiparametric model. Since the variance is not
generally known, instead of σ2, the estimation (denoted by σ̂2

BS) based on the BS is used. It
can be computed from the residuals sum of squares (RSS) using error terms:

σ̂2
BS =

RSS

tr(I − HBS)
2 =

‖(I − HBS)ŶĜBS
‖2

tr
[
(I − HBS)

′(I − HBS)
] , (37)

where tr(I − HBS)
2 = n − 2tr(HBS) + tr

(
H′

BSHBS
)

denotes the degrees of freedom. In
addition, tr

(
H′

BSHBS
)

needs O(n) algebraic operations. In the context of the BS, if the data
have a normal distribution, σ̂2

BS is asymptotically unbiased.

Secondly, the properties of estimated nonparametric component α̂BS =
(

α̂1, α̂2, . . . , α̂q+k+1

)′

are given here. The bias of α̂ is one of the quality measurements for the estimated model.
The bias is denoted as conditional expectation E[α̂|st], given by:

E[α̂BS|st] =
(

B
′
VB + λD

′
D
)−1

B
′
VBα. (38)

From that, the bias is given by:

Bias(α̂BS) = E[α̂BS|st]−α = [(B
′
VB + λD

′
D)]−1B

′
V

′
f − [(B

′
VB+

λD
′
D)]−1B

′
V

′
X[(X′ V − ABS)X]

−1(X′ V − ABS)− [(B
′
VB + λD

′
D)]−1B

′
V

′
=

[(B
′
VB + λD

′
D)]−1B

′
V

′
X[(X′ V − ABS)X]

−1(X′ V − ABS).

(39)

Accordingly, the covariance of α̂BS can be computed as:

Cov(α̂BS) = σ̂2
BS

1
n

(
B

′
VB + λD

′
D
)−1(

B
′
VB
)(

B
′
VB + λD

′
D
)−1

, (40)

where σ̂2
BS is defined by Equation (36). In addition, to reveal the performance of f̂BS = Bα̂BS,

the root square of mean squared error RMSE
(

f, f̂BS

)
is used:

RMSE(f, f̂BS) = n−1 ∑n
t = 1 [ f (st)− f̂BS(st) ]

2
= n−1(f − f̂BS)

′
(f − f̂BS). (41)

4.2. Properties of the Semiparametric AS Estimator

Similar to in Section 4.1, the same properties for parametric and nonparametric com-
ponents are given for the AS estimator here. The necessary expansion is written as follows
to derivate the bias and variance of β̂AS:
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β̂AS =
[
(X′V − AAS)X

]−1
(X′V − AAS)YĜ = β+

[
(X′V − AAS)X

]−1
(X′V − AAS)f, (42)

where AAS and MAS are given in Section 3.2. Now, the bias and the covariance matrix of
the estimator β̂AS can be provided by:

B
(
β̂AS

)
= E

(
β̂A
)
−β =

[
(X′V − AAS)X

]−1
(X′V − AAS)f, (43)

V
(
β̂AS

)
= σ2[(X′V − AAS)X

]−1
(X′V − AAS)X

[
(X′V − AAS)X

]−1, (44)

where σ2 is the variance of the fitted semiparametric model. Similar to Equation (40),
instead of the model variance, σ̂2

AS is obtained as follows:

σ̂2
AS =

RSS

tr(I − HAS)
2 =

‖(I − HAS)ŶĜAS
‖2

tr
[
(I − HAS)

′(I − HAS)
] . (45)

The properties of estimated nonparametric component α̂AS =
(

α̂1, α̂2, . . . , α̂q+k+1

)′

for the AS method are described below. The bias and the variance of the AS estimator α̂AS
can be given, respectively, as:

Bias(α̂AS) = E[α̂AS|st]−α = [(B
′
VB + λD

′
WD)]−1B

′
V

′
f − [(B

′
VB+

λD
′
WD)]−1B

′
V

′
X[(X′ V − AAS)X]

−1(X′ V − AAS)− [(B
′
VB+

λD
′
WD)]−1B

′
V

′
f = [(B

′
VB + λD

′
WD)]−1B

′
V

′
X[(X′ V − AAS)X]

−1(X′ V − AAS),
(46)

and
Cov(α̂AS) = σ̂2

AS
1
n

(
B

′
VB + λD

′
WD

)−1(
B

′
VB
)(

B
′
VB + λD

′
WD

)−1
. (47)

Thus, the value of RMSE
(

f, f̂AS

)
for f̂AS = Bα̂AS, similar to Equation (41), is

calculated as follows:
RMSE(f, f̂AS) = n−1 ∑n

t = 1 [ f (st)− f̂AS( st)]
2
= n−1(f − f̂AS)

′
(f − f̂AS). (48)

4.3. Quality Measures for the Fitted Model

After assessing the parametric and nonparametric components of the model in
Sections 4.1 and 4.2, several measurements are introduced in this section to evaluate the
overall model performance. In the literature on time series modelling, mean absolute
percentage error (MAPE), mean absolute error (MAE), and mean squared error (MSE)
are the most commonly used performance criteria. To represent these criteria, MAPE
is preferred in this study. In addition, median absolute error (MedAE) was used, which
allowed us to account for missing or censored data. Generalized MSE (GMSE) and the
ratio of GMSE (RGMSE) proposed by [30] and [2], respectively, were used to measure
the quality of the fitted time series model. The aforementioned criteria can be defined
as follows:

MAPE(YtĜ, ŶtĜ) =
n−1 ∑n

t = 1 |Yt−ŶtĜ |
YtĜ

, MedAE(YĜ, ŶĜ) = Median(|YĜ − ŶĜ|),

GMSE(YĜ, ŶĜ) = (YĜ − ŶĜ)
′E(YĜY′

Ĝ )(YĜ − ŶĜ),

where ŶtĜ and ŶĜ denote the fitted dependent variable values and vector for any estimation
method. Here, ŶtĜ and ŶĜ are replaced by ŶtĜBS

and ŶĜBS
for the BS, and ŶtĜA

and ŶĜA
for the AS. In addition, to make a more considerable comparison between the AS and BS
estimators, RGMSE is defined below.
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Definition 2. The ratio of GMSE can be defined as follows:

RGMSE(YĜBS
, ŶĜAS

) =
GMSE(ŶĜAS

)

GMSE(ŶĜBS
)

. (49)

Regarding the RGMSE criterion, if RGMSE (YĜBS
, ŶĜAS

) < 1, then it can be seen that
the fitted model by the AS method shows better performance then the BS method.

5. Further Information for Adaptive-Ridge Penalty

The semiparametric AS estimator proposed for the right-censored time series model,
with its adaptive nature, aims for qualified estimations despite the censorship. To approach
the L0-norm given in Equation (23), the most suitable knot locations can be chosen due to
the weighted penalty term. Thus, the model avoids the disadvantages of synthetic data
transformation, which gives higher magnitudes to uncensored observations.

This section is designed to inspect some of the large sample properties of the modified
AS estimator under right-censored data. It should be noted that adaptive ridge penalty
in the setting of regression has been studied by many authors; see for example [25,26,28].
However, the aforementioned studies consider adaptive ridge penalty individually, not as
a part of a semiparametric time series model. This section provides basic information for
the large sample properties of the proposed AS estimator in the context of a semiparametric
time series model.

As previously stated, the AS approximation is a modified version of the P-splines
(penalized BSs) estimator proposed by [31]. Note also that the AS method diverges from
BSs with a significant difference of the L0-norm in the penalty term. The AS estimator is
obtained by an iterative process with determining weights, as expressed in Section 3.2. In
addition, apart from the usage of the AS method in the literature, it is also used for mod-
elling censored time series. For these reasons, we can make several important assumptions.
The large sample properties are written based on the assumptions given below:

Assumption 1. The minimization problem for the semiparametric AS is given in Equation (26).
To make this expression more general, it can be rewritten as follows:

PSS(α; λ) =
n

∑
t = 1

V

{
YtĜ −

p

∑
l = 1

xtl βl −
v

∑
j = 1

αjBj,q(st)

}2

+ λ
q+k+1

∑
j = q+1

‖Δqαj‖τ
, (50)

where ‖Δqαj‖τ
represents the τ-norm of the penalty term. The first assumption is τ → 0 , which

allows approximation to the L0-norm with the acquisition of weights via the iterative process. Oth-
erwise, the L0-norm needs overly complex calculations, which leads to the loss of practicality when
using the method. From our knowledge of the literature, when τ → 0, such as in Equation (26),
the minimization of Equation (50) works by penalizing the non-zero coefficients αj’s, as shown
by [32].

Assumption 2. When α̂AS is examined asymptotically, the objective function of Equation (26)
may not have a global minimum, since it is not clearly convex. However, if we assume that:

Rn =
1
r ∑r

i BiB.′
i → R, (51)

then it is possible to point out some important aspects of asymptotic consistency. Therefore, it should
be presumed that R is a non-negative definite matrix and:

1
q + k + 1

max
1≤i≤r

B′
iBi → 0, (52)

where elements of diag(Ri) = 1.
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Assumption 3. BT
j Bj,

(
BT

j Bj

)−1
, and R are assumed to be full rank matrices. Under the

assumptions given above, to see asymptotic consistency of α̂AS and β̂AS, an equation can be
obtained from Equation (50) as follows:

Mn

(
α̂ASn, β̂ASn

)
= ∑n

t = 1
V
{

YtĜ − ∑
p
l = 1 xtl β̂ASnl − ∑r

j = 1 α̂ASnjBj,q(st)
}2

+λn ∑
q+k+1
i = q+1 ‖Δqα̂ASni‖τ

, (53)

where
(

α̂ASn, β̂ASn

)
denote the limiting case of the estimators for λn = O(n). Note that

Equation (52) is ensured by following Theorem 1.

Theorem 1. Based on Assumptions 1–3, and λn → λ ≥ 0 , then
(

β̂ASn , α̂ASn

)
d→ argmin(Mn)

where:

Mn

(
β̂ASn , α̂ASn

)
=

[(
β̂ASn α̂ASn

)′
− (β α)′

]′
R
[(

β̂ASn α̂ASn

)′
− (β α)′

]
+

λn ∑
m = q+k+1
i = q+1 ‖Δqαi‖τ .

(54)

Therefore, for optimal λn = O(1), pair (β̂ASn , α̂ASn) can be counted as a consistent AS
estimator of (β, α). In this context, when n → ∞ then |β̂ASn , α̂ASn | → (β, α) .

For the proof of Theorem 1, see Appendix C.
To clearly indicate the place of Assumptions 1–3 in the estimation process, the follow-

ing explanations are given for each assumption.

• Assumption 1 is independent from the data. We assume that to provide a practical
solution when minimizing Equation (50). Therefore, in both empirical and real data
studies, this assumption does not impose anything to the dataset, but it is necessary to
reduce the computational complexity.

• In real data studies, to ensure Assumption 2, “B” matrix obtained by using the non-

parametric covariate needs to have independent columns. Because
(

B
′
B
)

should be

identifiable and avoid the ill-posed problem,
(

B
′
B
)

must be a full-ranked matrix.

• Assumption 3 confirms Assumption 2. Thus, it can be seen that asymptotic consistency
can be confirmed by Assumption 3. From that it can be said that Assumption 3 is
indirectly depended on the dataset.

5.1. Asymptotic Distribution and Consistency of the Proposed Estimator

In this section, the estimate of parametric component β̂AS is inspected in terms of
asymptotic consistency and asymptotic distribution.

Assume the following regularity conditions:

(i) Fn = n−1
(

XT
i V − A

)
Xi → F for non-negative matrix F;

(ii) n−1 max
1≤t≤n

(
XT

i V − A
)

Xi → 0;

(iii) Autoregressive errors εt’s given in Equation (2) are stationary with independent
and identically distributed random error terms ut’s that have zero mean and finite
variance 0 < σ2 < ∞;

(iv) F−1
n = n−1

[(
XT

i V − A
)

Xi

]−1
exists.

Here, condition (ii) indicates that the diagonal elements of F and Fn are identical
and one, because the covariates are scaled. To obtain the asymptotic distribution of β̂AS,
“nearly-singular” designs are performed due to τ → 0 for Fn. Thus, it can be ensured
that Fn → F asymptotically. On the other hand, Fn and F are assumed as non-singular in
Section 5.1.
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To show the consistency and asymptotic normality of the semiparametric AS estimator
when conditions (i), (ii), and (iii) are ensured with non-singular F, first the case of τ ≥ 1 is
considered, followed by the case of τ < 1.

Let β̂ASn be an asymptotic estimator. The consistency of β̂ASn can be reached by using
following minimization function:

ψn

(
β̂ASn , f̂ (st)

)
= n−1 ∑n

t = 1

[
Yt − Xtβ̂ASn − f̂ (st)

]2
+ λnn−1 ∑p

j = 1

∣∣∣β̂(j)ASn

∣∣∣τ . (55)

The following theorem shows the consistency of β̂ASn for validated additional as-
sumption λn = O(n).

Theorem 2. Assume that F is non-singular, f̂ (st) behaves stable, and λnn−1 → λ0 ≥ 0 . It can
then be said that as n → ∞ :

β̂ASn
d→ β, (56)

where β̂ASn is a consistent estimator of β. The proofs of this theorem are given in Appendix D. For
λn = O(n), argmin(ψ) = β and therefore β̂ASn is a consistent estimator.

It should be emphasized that the consistency of β̂ASn is sufficient to show that
λn = O(n). However, this depends on the magnitude of growth of λn. When λn
grows more slowly, then a limiting distribution

√
n
(
β̂ASn −β

)
exists. It is clear from

Theorem 2 that the mean of the limiting distribution of
√

n
(
β̂ASn −β

)
converges to zero

for the consistency of β̂ASn . In addition, its asymptotic variance can be obtained based on
conditions (i) and (iv) as σ2F−1. Accordingly, the asymptotic distribution of the semipara-
metric AS estimator is written as:

θ =
√

n
(
β̂ASn −β

) d→ N
[
0, σ2F−1

]
. (57)

However, the limiting distribution depends on whether τ < 1 or τ ≥ 1. In the context
of this paper, Theorem 3 is given for the limiting distribution of β̂ASn when τ < 1.

Theorem 3. Assume that τ < 1 if λn/n
τ
2 → λ0 ≥ 0 . Then:

θ =
√

n
(

β̂ASn − β
)

d→ argmin(ξ), (58)

where ξ(θ) = −2θT F + θTFθ+ λ0 ∑
p
j = 1 ‖θj‖τ I

(
β j = 0

)
. The proofs of Theorem 3 are given

in Appendix E.

6. Simulation Study

In this section, a simulation study was conducted to inspect the finite-sample behaviors
and performances of the two semiparametric estimators

(
α̂BS, β̂BS

)
and

(
α̂AS, β̂AS

)
under

right-censored time series. These estimators were then compared through the quality
measurements given in Section 4. The simulation scenarios are designed as follows:

(a) We use the model Zt = Xtβ+ f (st) + εt, t = 1, 2, . . . , n to generate datasets in the
simulation experiments.

(b) The unknown smooth regression function f (st) is constructed by combining the functions{
Sj, j = 1, . . . , 5

}
that denote seasonal effects on the data, that is, f (st) = U5

j = 1Sj(si),

where Sj(si) = si sin2(si) with si = (i−0.5)
n
5

, i = 1, . . . , (n/5).

(c) The design matrix is generated from a normal distribution: Xt ∼ N
(
μx = 5, σ2

x = 1
)
,

where Xt is the (n × p) dimensional matrix for p = 3. Note also that the distribution
may not be normal, and that one can thus consider a uniform or other distributions.
The vectors of the regression coefficients are β = (3, 0.5, −1).
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(d) The autoregressive error terms are generated from a one-lagged process εt = ρεt−1 +
ut with ρ = 0.5 and ut ∼ N(0, 1).

(e) Thus, as stated in (a), completely observed dependent time series Zt’s are generated
from the sum of the parametric, nonparametric, and error terms using (b), (c), and (d).

(f) To produce the right censored variable Yt, as specified in Equation (3), we generate the
censoring variable Ct from the binomial distribution with proportions or censoring
levels (CLs) at 5%, 20%, and 40%. The Algorithm 2, given below, demonstrates how
the censoring variable is created.

Algorithm 2. Generation of censoring variable Ct.

Input: Completely observed Zt
Output: Right-censored dependent variable Yt
1: For given censoring level (CL), produce δt = I(Zt ≤ Ct) from the binomial distribution
2: for (t in 1 to n)
3: If (δt = 0)
4: while (Zt ≤ Ct)
5: generate Ct ∼ N

(
μZ, σ2

Z
)

6: Else

7: Ct = Zt
8: end (for loop in step 2)
9: for (t in 1 to n)
10: If (Zt ≤ Ct)
11: Yt = Zt
12: Else

13: Yt = Ct
14: end (for loop in Step 9)

(a) To deal with censored observations in Yt obtained with Algorithm 2, we use synthetic
data values YtĜ obtained through the Kaplan and Meier estimator [18], as described
in Equation (6).

(b) AR(1) model is used as a naïve model to estimate the right-censored time-series as
in [1,2]. Thus, the finite sample performance of the introduced methods can be made.

For each CL in the simulation experiments, we generated 1000 random samples for
size n = 50, 100, and 200.

The results of the simulation study were divided into three parts for parametric
components, nonparametric components, and overall model performance. Accordingly,
the outcomes of the estimated models, comparative results, and corresponding comments
are given together in the following tables and figures. To understand the simulated datasets
and the scenarios, examples of some of the simulation configurations are given in Figure 1.
Panel (a) shows the dataset for small sample size and low censorship. Panel (b) is drawn to
show the case when the censoring level is really high. Panels (c)–(d) indicates the cases for
medium and large sample sized data with censoring levels 20% and 40% respectively.

6.1. Assessing the Parametric Component

In this section, the performances of the two methods were compared in terms of the
parametric components of the right-censored semiparametric linear models generated
by the simulation. It should be also noted that in this simulation study, 54 different
configurations were analyzed to provide a broad perspective of the adequacy of each
method. The results from the parametric components in the simulation study are displayed
in Table 1 and Figure 2. Note that bold colored scores indicate the best (minimum) scores.

From the careful inspection of Table 1, it can be demonstrated that the behaviors of the
BS and AS change noticeably in different scenarios. Let us look at low and medium CLs for
n = 50; under these conditions, the BS has remarkable superiority over the AS. This can
be interpreted as the BS fitting the data better when the data’s structure is distorted less by
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censorship. However, for CL = 40%, which means the data are heavily censored, the AS
method gives better scores.

As the sample size increases, although the bias and variance values from the methods
are obtained more closely, the AS provides more efficient performance in estimating the
parametric component. Regarding the parametric component, it should be emphasized
that the AS behaves as expected and gives the best scores for cases of heavy censorship.

In general, the best scores for each method can be evaluated in terms of bias and
variance results. When we examined the bias results of the regression coefficients, the
AS method gives the best score in only 12 out of 27 configurations while the BS method
gives the best score in 15. However, regarding the variances, the AS gives the best score
in 18 of 27 configurations, while the BS is superior in only 9 configurations. In Figure 2,
Panels (a–c) shows the calculated biases for each simulation repetition for all cases when
sample size is small, medium, and large.

Figure 1. Some of the datasets generated using Algorithm 2 including both fully observed and
censored data points for different censoring levels and sample sizes.

Table 1. Estimated regression coefficients from the AS and the B-spline (BS) with values of variance
and bias.

β1 = 3 β2 = 0.5 β3 = −1

Bias(β̂1) Var(β̂1) Bias(β̂2) Var(β̂2) Bias(β̂3) Var(β̂3)

n C.L. AS BS AS BS AS BS AS BS AS BS AS BS

50
5 0.887 0.870 0.936 0.842 0.809 0.786 0.922 0.845 0.867 0.837 0.884 0.804
20 0.852 0.895 1.180 1.290 0.888 0.892 1.210 1.358 0.963 0.949 1.191 1.336
40 0.999 1.172 1.455 1.641 0.916 1.108 1.431 1.657 0.946 1.145 1.453 1.674

100
5 0.510 0.470 0.440 0.425 0.539 0.434 0.433 0.422 0.515 0.467 0.439 0.431
20 0.514 0.610 0.583 0.609 0.538 0.579 0.583 0.609 0.527 0.599 0.590 0.618
40 0.535 0.433 0.619 0.689 0.525 0.622 0.619 0.689 0.535 0.610 0.629 0.692

200
5 0.285 0.271 0.260 0.253 0.290 0.272 0.255 0.255 0.294 0.271 0.252 0.254
20 0.310 0.324 0.333 0.355 0.311 0.300 0.325 0.351 0.304 0.296 0.328 0.353
40 0.314 0.333 0.338 0.352 0.321 0.337 0.332 0.356 0.307 0.336 0.332 0.363

The bolded values indicate the best scores.
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6.2. Evaluating the Nonparametric Component

As in the case of parametric components, we constructed 1000 estimates of the regres-
sion function f (.), which is the nonparametric component of model (1). For each method,
1000 replications were carried out, and the estimated bias, variance and RMSE values were
computed for each estimator. This section is designed to show the simulated results related
to the nonparametric component.

The results in Table 2 showed that the AS method proves its efficiency for the esti-
mation of the nonparametric component when time series data are moderately to heavily
censored. On the other hand, for CL = 5%, the BS method gives better results for all
sample sizes according to our evaluation metrics. One of the main reasons for this is that
the BS adapted to the knots more than the AS. Consequently, when the data points are
manipulated by censorship, these knots force the BS to make inefficient estimates. At
this point, the knot determination of the AS based on the weights given in Equation (24)
diminishes the effect of the censorship. That is why the AS method performs better under
moderately and heavily censored time series data.

(a) Biases obtained from estimated coefficients when n = 50 

 
(b) Biases obtained from estimated coefficients when n = 100 

 
(c) Biases obtained from estimated coefficients when n = 200 

 

Figure 2. Boxplots of bias values for both the AS and BS methods for all configurations. In the x-axis, b1, b2, and b3 denote
β1, β2, and β3; A1, A2, and A3 denote biases obtained from the AS method for CLs of 5%, 20%, and 40%. Similarly, B1, B2,
and B3 denote biases for the BS method, when CLs are 5%, 20%, and 40%.
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Table 2. Outcomes from the fitted nonparametric components.

Bias(α̂) Var(α̂) RMSE(f, f̂ )

n CLs AS BS AS BS AS BS

50
5 1.085 0.629 0.048 0.022 1.135 0.883

20 1.128 1.498 0.066 0.075 1.099 2.061
40 1.287 2.510 0.079 0.095 2.511 3.127

100
5 0.961 0.851 0.022 0.025 0.824 0.664
20 1.040 1.217 0.030 0.041 1.255 1.779
40 1.070 1.302 0.037 0.070 1.815 2.331

200
5 0.891 0.813 0.009 0.008 0.670 0.435

20 0.928 0.959 0.013 0.021 1.547 1.871
40 0.995 1.070 0.017 0.028 2.397 2.882

The bolded values indicate the best scores.

Figure 3, consisting of four panels (a), (b), (c), and (d), is drawn to illustrate the
performance of the AS and BS methods in nonparametric curve estimation and to present
different simulation configurations. Panel (a) show the estimated curves for small sample
size and medium censoring level. Similarly, Panel (b) shows the case when medium sample
size and high censoring level. Panel (c) indicates the estimated curves for small sample size
and low censoring level. Finally, Panel (d) shows the estimated curves when sample size is
large and censoring level is medium. When panels (a) and (c) are analyzed comparatively,
the effect of the censorship level can be seen. At the first glance, the distortion of both
curves is noticeable. However, the BS method is insufficient to represent censored time
series compared to the AS method. In addition, panel (b) shows that when data are heavily
censored, the BS curve is drawn towards the x = 0 line, due to the presence of zero values
in the synthetic response variable. Finally, panel (d) indicates that although the time series
contains censored data points, the qualities of the estimates for both the AS and BS methods
become better as the sample size increases.

(a) n=50, CL=20% 

 

n=100, CL=%40 

n=50, CL=5% n=200, CL=20% 

Figure 3. Data points, real regression functions, and curves fitted by two methods. In the legend of the
plots, f(A) and f(B) represent function estimates obtained from the AS and BS methods, respectively.

6.3. Assessing the Performances of Methods

This section involves the results for overall model estimations obtained from the AS
and BS methods. Although results are given for parametric and nonparametric components
in the previous sections, a separate review for the whole model estimation is required for a
healthy comparison. Accordingly, the performance scores for MAPE, MedAE, and GMSE
are given in Table 3, and Figure 4 is drawn to illustrate the RGMSE values.
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Table 3. The values of performances from the AS and BS methods.

MAPE MedAE GMSE

n CLs AS BS AR(1) AS BS AR(1) AS BS AR(1)

50
5 0.166 0.157 0.322 0.419 0.383 0.999 3.119 3.510 4.915
20 0.358 0.348 0.388 0.737 0.896 1.052 4.468 4.920 5.142
40 0.584 0.688 1.980 1.030 1.519 1.971 7.762 9.542 10.751

100
5 0.154 0.186 0.303 0.323 0.320 0.860 1.001 0.928 3.614
20 0.333 0.336 0.365 0.668 0.750 0.914 1.870 1.988 4.147
40 0.514 0.528 1.476 1.025 1.831 1.891 3.663 4.182 6.798

200
5 0.111 0.096 0.283 0.264 0.251 0.717 0.983 0.761 1.935
20 0.312 0.332 0.364 0.552 0.606 0.847 2.065 2.497 3.411
40 0.499 0.508 0.654 1.008 1.086 1.501 2.759 2.816 3.131

The bolded values indicated the best scores.

Figure 4. 360◦ bar chart for the RGMSEs of all simulation combinations.

When Table 3 is examined, it can be seen that the results obtained for the model
estimates are slightly different from the previous results, as expected. The total error
obtained from the estimation of parametric and nonparametric components is one of the
reasons for this discrepancy. In addition, considering the situations where the two methods
produce extremely similar scores, this difference can be understood better. Note that AR(1)
model shows poor performance, which depends on its parametric and linear structure.
However, for the large sample size (n = 200), the scores of models obtained are close to
each other. However, it is clearly seen that the AS and BS methods are much better on the
estimation of right-censored time series.

As can be seen from the bolded scores, the AS method generally performs better.
From Table 3, it can be seen that the MAPE values obtained by BS are better for n = 50.
However, as mentioned earlier, in this study, the MedAE criterion, which is not frequently
used for time series data, is used to measure the durability of the predictions. When the
scores of this criterion are examined, it is understood that, as stated from the beginning of
the study, the BS method has more successful estimates under low censorship levels, but
the AS method is superior for medium and high censorship levels.

Figure 4 includes the RGMSE scores for both the AS and BS methods that are formed
by the ratio of the GMSE values of each method. In Figure 4, the difference between the
qualities of the estimates is clearly very small for CL = 5%. However, the difference
becomes more significant for CL = 20% and CL = 40%. Note that for CL = 5%, the BS
method gives smaller ratio values, which confirms the results given in Table 3. As stated
before, the AS method is demonstrably superior at higher censorship levels, which can be
seen in Figure 4 for all sample sizes.
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7. Real-World Data

This section is designed to show how the newly introduced semiparametric estima-
tor AS and benchmark BS method behave with a real right-censored time series dataset.
For this purpose, we consider unemployment duration data involving the monthly un-
employment period rates years between 2004 and 2019 for Turkey; this dataset is avail-
able at https://ec.europa.eu/eurostat/databrowser/view/UNE_RT_M__custom_163512
7/default/table?lang=en. In the dataset, the last three months of 2004 and the last three
months of 2019 cannot be observed correctly. Therefore, these data points can be censored
from the right by the detection limit zero, because none of the data points are negative
values. Accordingly, the introduced semiparametric methods, AS and BS, can be used
for this time series analysis. In addition, as in the simulation study, the results of the AR
model are given in the following tables. However, different from the simulation study,
AR(2) model was used for the real data study, because the optimal lag values is determined
as lag = 2 from Table 4. Before the modelling procedure, the stationarity of the time
series data was tested with the augmented Dickey–Fuller (ADF) test, the suitable lag is
determined under null hypothesis H0 : yt is non − stationary. The test results are given in
Table 4 below:

Table 4. Augmented Dickey–Fuller (ADF) test results for the stationarity of time series data and the
determination of the appropriate lag.

No. Lag ADF Test Results p-Value

0 −2.61 0.318
1 −3.27 0.077
2 −3.52 0.041
3 −3.33 0.066
4 −3.30 0.072

Bold scores are significant score for the 95% confidence level.

Table 4 shows that the second lag for this time series is suitable for the modelling.
From this information, the semiparametric time series model can be given by:

UEDt = β1UED(t−1) + β2UED(t−2) + f (st) + εt, t = 1, . . . , 186, (59)

where UEDts represent the dependent time series of the unemployment duration ratio,
UED(t−1) and UED(t−2) denote the first and second lags of the dependent series UEDt that

are used as covariates, respectively, st = (1, . . . , n)T denotes the seasonality, and finally,
εt’s are the stationary autoregressive error terms as given in Equation (2). The estimation
of model (6.1) is realized by both the AS and BS methods, and then, results are presented
in Tables 5 and 6 and Figure 5.

Table 5. The performances of the BS and AS methods for the estimation of both parametric and
nonparametric components.

Measurement Bias Variance

AS BS AS BS

β̂1 1.941 2.682 1.272 1.703
β̂2 0.915 1.139 1.562 1.624
α̂ 3.628 4.566 0.067 0.058

The bolded values indicate the best scores.
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Table 6. Scores of performance measures for the AS and BS methods obtained from the whole
model estimation.

Method MAPE MedAE GMSE RGMSE RMSE
(

f,f̂
)

AS 0.623 0.510 1.275 0.824 1.154
BS 1.315 1.166 1.546 1.212 1.385

AR(2) 1.856 4.506 3.702 2.775 -
The bolded values indicate the best scores.

Figure 5. Estimated curves for the seasonality f (st) obtained from the AS and BS methods.

Table 5 involves the bias and variance values for estimated regression coefficients

β̂ =
(

β̂1, β̂2
)

and α̂ =
(

α̂1, α̂2, . . . , α̂q+k+1

)T
. Accordingly, the AS method gives smaller

bias and variance values than the BS method regarding β̂. Moreover, the AS method has
better bias values for α̂, but the BS method gives smaller variance values for α̂ than the
AS method. In overview, the AS and BS methods give similar values, because the data
properties are n = 186 and CL = 8.1%. Thus, it can be seen that the results of the
unemployment duration data ensure the simulation outputs.

In addition, it should be noted that the outcomes obtained from estimated model (7.1)
are given in Table 6 with RMSE scores for the estimated nonparametric function f (st).
Upon close inspection, it is obviously seen from the results that the AS method produces
the best scores. It should be emphasized that the largest difference between the methods
regarding performance criteria is in MedAE, which indicates the strength of the AS method
under censorship. Table 6 indicates the results of AR(2) model that are worse than the
results of the other two as in the simulation study. Note that because of the sample size of
the real data of n = 186 which is close to the simulation configurations when n = 200,
scores are relatively close to each other. Figure 5 is given to compare the AS and BS methods
in representing data under censorship.

As can be seen in Figure 5, the estimated curves are quite similar due to the data
properties of a large sample size and a low CL. The effect of synthetic data manipulation is
obvious in the figure with zero values. Like the simulation study, the BS method is affected
by these zero values more than the AS method. The reason for this is that the knots of the
AS method are determined by iteratively calculated weights. Therefore, the optimal knot
sequence diminishes the effect of censorship.

8. Concluding Remarks

This paper demonstrated the estimation of right-censored time series data using a
newly introduced semiparametric AS estimator and making a comparison with the BS
method as a benchmark. The results obtained from both a simulation study and a real data
example proved that the introduced method (AS) achieves the superior modelling of right-
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censored time series data in a semiparametric context. Comparative outcomes also support
that the AS method provides better performance scores over the BS method in most simula-
tion configurations and the real data example. The most important factor in the success of
the AS method is the adaptive nature of the method based on iteratively calculated weights.
In the AS method, weights are responsible for determining and controlling the penalty
term and for dependently obtaining the optimal knot points. Accordingly, our findings
showed that the proposed method provides an advantage in modelling right-censored
time series over the benchmark.

The simulation study examined the performance of the methods in three parts:
the outcomes for the estimated parametric component (Table 1 and Figure 2), the non-
parametric component (Table 2 and Figure 3), and the whole semiparametric model
(Table 3 and Figure 4). The unemployment data estimation was evaluated for bias and
variance (Table 5) using the criteria of MAPE, MedAE, GMSE, and RGMSE (Table 6).
Given the outcomes of the simulation study and the real data example, our general and
detailed conclusions are as follows:

• As expected, the estimation qualities for both the AS and BS methods change for dif-
ferent CLs and sample sizes. The performances of the methods are affected negatively
by increasing CLs, and they give better results for larger sample sizes. This claim is
seen clearly from Tables 1–3.

• When unemployment duration data were analyzed, it can be seen that the results agreed
with the corresponding configuration (n = 200; CL = 20%) of the simulation study.

• One of the striking results of this paper is that, as Tables 1–3 demonstrate, while the AS
method gives worse results at low censorship levels than the BS method, it provides
significantly better results at medium and high censorship levels. This conclusion
proves the claim of the paper, which is that using the AS method reduces the effect of
the data manipulation of synthetic data transformation.

• When all the results obtained from simulation and real data studies were inspected,
the AS method gives better results than the BS method, except in the configurations
for low CLs, which supports the targeted conclusion.

• Unemployment duration data were modelled by the BS and AS methods using two
lagged parametric components and the seasonal effect as a nonparametric component.
Tables 5 and 6 show each method’s scores using four evaluation metrics, which
indicate the superiority of the AS method. Figure 5 shows the estimated curves for
both methods, which are similar. However, the estimated curves show that the AS
method is less affected by zero values of synthetic data and thus gives more satisfying
estimates for the right-censored time series model than the BS method.

Finally, as can be understood from the whole paper, the AS method is superior for
estimating right-censored time series over the BS method in both theory and practice.
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Appendix A

Proof of Lemma 1. Lemma 1 can be ensured based on the common censorship assumption
that Zt and Ct are independent. From that, the proof can be written as follows:

E[YtG|x, s] = E
[

δt Zt
1−G(Zt)

| x, s
]

= E
[

δt Zt
G(Zt)

|x, s
]

= E
[

I(Zt≤Ct)min(Zt ,Ct)

G[min(Zt ,Ct)]
|x, s

]
=

E
[

I(Zt ≤ Ct)
Zt

G(Zt)
|x, s

]
= E

[
E
[

Zt
G(Zt)

I(Zt ≤ Ct)|x, s
]
|x, s

]
= E

[
Zt

G(Zt)
G(Zt)|x, s

]
=

E[Zt|x, s] = xtβ+ f (st)

(A1)

Thus, Lemma 1 is proven. Here, G(.) = 1 − G(.). Generally, distribution G(.) is unknown.
Therefore, its Kaplan–Meier estimator Ĝ(.) is used instead of G(.), which is given in
Equation (5). �

Appendix B

Derivations of Equations (29) and (30).
To show the derivations of Equations (29) and (30), two equations obtained from

Equation (27) are written as:(
X

′
VX
)
β+ X

′
VBα = X

′
VYĜ B′VXβ+

(
B

′
VB + λK

)
α = B

′
VYĜ (A2)

From Equation (B1), α̂AS can be acquired by the algebraic operations:(
B

′
VB + λK

)
α = B

′
VYĜ − B

′
VXβ

(
B

′
VB + λK

)
α = B′V

(
YĜ − Xβ

)
. (A3)

Thus, if β is replaced by β̂AS, then α̂AS can be written as:

α̂AS =
[
B

′
VB + λK

]−1
B

′
V

′(
YĜ − Xβ̂AS

)
. (A4)

Therefore, Equation (27) can be derived. Accordingly, the derivation of β̂AS can be obtained
by using (B1):(

X
′
VX
)
β+ X

′
VB

[[
B

′
VB + λK

]−1
B

′
V

′(
YĜ − Xβ

)]
= X

′
VYĜ,(

X
′
VX
)
β+ X

′
VB
[
B

′
VB + λK

]−1
B

′
V

′
YĜ − X

′
VB
[
B

′
VB + λK

]−1
B

′
V

′
Xβ = X

′
VYĜ,[(

X
′
VX
)

− X
′
VB
[
B

′
VB + λK

]−1
B

′
V

′
X

]
β = X

′
VYĜ − X

′
VB
[
B

′
VB + λK

]−1
B

′
V

′
YĜ.

(A5)

To simplify the calculations, let AAS = X
′
VB
[
B

′
VB + λK

]−1
B

′
V

′
. Therefore,[(

X
′
V − AAS

)
X
]
β =

(
X

′ − AAS

)
VYĜ, β̂AS = (

(
X

′
V − AAS)X

)−1(
X

′ − AAS

)
VYĜ. (A6)

The derivations of Equations (29) and (30) are thus completed.
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Appendix C

Proof of Theorem 1. To validate the Theorem 1, necessary equations are given by:

sup
α̂ASn∈Q

∣∣∣Mn(α̂n)− M(α̂ASn)− σ2
ε

∣∣∣ p→ 0, (A7)

where σ2
ε is the variance of the model defined in Equation (7), Q is a compact set in a metric

space and by using Equations (54)–(57), it can be seen that:

|α̂ASn| → α, as n → ∞. (A8)

See [33] for more details. �

Appendix D

Proof of Theorem 2. For ensured regularity conditions (i)–(iv), plim(β̂ASn) is written
as follows:

plim(β̂ASn ) = β+ plim(n−1[(X′V − AAS)X]
−1(X′V − AAS)f) + plim(n−1[(X′V−

AAS)X]
−1(X′V − AAS)ε)

plim(β̂ASn ) = β+ plim
{

n−1 [(X′V − AAS)X]
−1}plim

{
n−1(X′V − AAS)[f + ε]

}
.

(A9)

Because f can be counted as a nuisance parameter, and from assumptions (i) and (ii),
plim

{
n−1 [(X′V − AAS)X

]−1
}

= F−1
n and plim

{
n−1(X′V − AAS)[f + ε]

}
= o(1). There-

fore, the expression at the right side in (D1) goes to zero. Thus, from that, it is obtained that:

argmin(ψn)
p→ argmin(ψ), β̂ASn

d→ β. (A10)

Note that the results obtained above are for τ ≥ 1, which means ψn has a convex structure
(see [34,35]). However, the proposed AS estimator includes the case of τ < 1, so that ψn is
not convex. In this matter, Equation (D2) is processed differently as:

ψn

(
β̂ASn , f̂ (st)

)
> n−1

n

∑
t = 1

[
Yt − Xtβ̂ASn − f̂ (st)

]2
= ψ

(0)
n

(
β̂ASn , f̂ (st)

)
(A11)

Note that Equation (D3) is validated for all β̂ASn . Moreover, argmin(ψn) = Op(1), because(
ψ
(0)
n

)
= Op(1). �

Appendix E

Proof of Theorem 3. To show the proof of Theorem 3, due to the non-convex structure of
τ < 1, some complex expressions are needed for minimization criterion ξ. These are given by:

ξn(θ) = ∑n
t = 1

[(
εt −

θTXt

n−1

)2

− εt

]
+ λn ∑p

j = 1

[∣∣∣∣β j +
θj

n−1

∣∣∣∣τ −
∣∣β j
∣∣τ]. (A12)

Due to λn = O
(

nτ/2
)

= o
(√

n
)
, the following expression is obtained similar to Theorem 3:

λn ∑p
j = 1

[∣∣∣∣β j +
θj

n−1

∣∣∣∣τ −
∣∣β j
∣∣τ] d→ λ0 ∑p

j = 1

∣∣θj
∣∣τI
(

β j = 0
)
. (A13)

Then the convergence is realized as follows:

argmin(ξn)
d→ argmin(ξ). (A14)
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Thus, the proof is finished. It is important to note that, for τ < 1, the non-zero regression
coefficients of the model can be estimated without asymptotic bias if zero ones are shrunk
to the zero with a positive probability. �
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