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This paper belongs to our Special Issue “Application of Climate Data in Hydrologic
Models”. Here, we represent an example of the importance of climate data in terms of
global surface temperature. This paper investigates the changes of 20-year (2000–2019)
mean surface temperature (ST), wind speed (WS), and albedo (AL) data from the Global
Land Data Assimilation System (GLDAS) over the globe with respect to those in 1961–1990.
Moreover, we assess if the alterations in ST are affected by the changes in WS and AL. We
also discuss the main reasons for the variations observed in ST, WS, and AL on global and
hemispheric scales.

Our planet is within ~1 ◦C of its highest surface temperature in the past million
years [1]. The most important indicator of global warming and climate change is the global
mean surface temperature (GMST) [2]. Figure 1a shows the time series of monthly GMST
anomalies from the Hadly Center/Climate Research Unit (HadCRUT) [2,3]. The mean of
monthly GMST anomalies in 2000–2019 is 0.54 ◦C higher than that in 1961–1990 (Figure 1a)
(see also [1,4]). The standard deviation (SD) of the decadal variation of GMST anomalies
is reduced by 0.05 ◦C in 2000–2019 compared to 1850–1899 (Figure 1a). This is due to
the climate sensitivity to oscillation indices, particularly El Niño/Southern Oscillation
(ENSO) [5]. Indeed, there were more ENSO events in 1850–1900 than in 2000–2020, which
affected the GMST anomalies. For example, the high positive GMST anomaly in 1878
(shown by the black circle) is caused by the late 1870s El Niño (Figure 1a) [1].

Figure 1b shows the variation of Global Land Data Assimilation System (GLDAS)
ST data (ΔST) from 1961–1990 to 2000–2019 over the globe. The results show the GMST
increase of 0.66 ◦C from 1961–1990 to 2000–2019. Analogously, Hansen et al. [1] reported
the GMST growth of ~0.2 ◦C per decade during the last three decades. As indicated
in Figure 1b, in general, the Northern Hemisphere (NH) has a higher variation of ST
(ΔST) than the Southern Hemisphere (SH) [4]. The averages of ΔST in the NH and SH
are 1.27 ◦C and −0.18 ◦C, respectively. Increasing greenhouse gas (GHG) emissions and
variations of the North Atlantic Oscillation (NAO) are the main causes of increasing ST
across the globe and particularly in the NH [1,6]. Effective policies must focus on using
clean energies to reduce the GHG emissions. Such policies can facilitate achieving the 2015
Paris COP21 Agreement to maintain the GMST below 1.5–2 ◦C above pre-industrial levels.
The decreasing ST in the SH is associated with the variations of the SH Annular Mode
(SAM) and intensification of the South Pacific Anticyclone [7,8]. Fogt and Marshall [7]
showed that adiabatic cooling over the Antarctica due to the variations of SAM aids in
decreasing ST in the SH.

Figure 1c indicates the boxplot of GMST anomalies in each season. The horizontal line
within the box indicates the median. The upper and lower edges of the box represent the
75% and 25% percentiles, respectively. The upper and lower ends of the whiskers show the
maximum and minimum values, respectively. Outliers are observations beyond the end of
the whiskers. As shown, the variation of the GMST anomaly during December–February
(DJF) is more than that of other seasons. Vose et al. [9] also observed the highest upward
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decadal trend of ST in the NH (particularly high latitudes) in DJF when the minimum ST
often occurs. In addition, the global minimum ST has increased approximately twice as fast
as the global maximum ST since 1950 [9]. Hence, a larger variation in the GMST anomaly
is seen in DJF (Figure 1c).

Comparison of Figure 1b,d illustrates a larger variation of ST during DJF in both
hemispheres. During DJF, the mean of ΔST in the NH is 1.8 ◦C (Figure 1d). However,
in some parts of Eastern Russia, it can reach up to 20 ◦C (Figure 1d). Hansen et al. [1]
concluded that the global warming of more than ~1 ◦C could lead to a dangerous climate
change and impacts the sea water level.

From 1961–1990 to 2000–2019, the GLDAS ST (WS) increased (decreased) in the
northwest of North America (Alaska) and northeast of Asia (Russia) (Figure 1b,e). Both
ST and WS increased in Canada (except in the western part), most regions of Australia
and North Africa. In most regions of Africa and South America, WS enhanced, but ST
reduced. Figure 1f shows the changes in the ST-WS correlation (ΔρST−WS) from 1961–1990
to 2000–2019. High positive or negative values of ΔρST−WS (>1 or <−1) in Southern Africa,
North Greenland, Western America, Eastern Russia, and Central and Eastern Asia denote
the changes of vegetation cover [10].

As can be seen in Figure 1e, winds slow down in most of the coastal regions as well as
in Central and Eastern of Asia due to an increase in the surface roughness. These findings
are consistent with those of Vautard et al. [10] who reported the highest downward trend
of WS in Central and Eastern Asia from 1979 to 2008 due to the land-use change and/or
biomass increase. They demonstrated that increasing the Normalized Difference Vegetation
Index (NDVI) in Eurasia could explain 25–60% of the NH atmospheric stilling.

The increase of AL plays an important role in future climate change [11]. Ghimire et al. [12]
reported an increase of about 1% in the global albedo due to the land cover change during
1700–2005. That caused the global atmospheric radiation to vary by almost 0.15 W/m2.
Figure 1g represents changes in the GLDAS AL from 1961–1999 to 2000–2019 over the globe.
On average, AL increases by 3.19% in the NH. AL varies with changes in cloud fractional
coverage, aerosol amount, and land cover type [13]. If the variation of AL is caused by
changes in aerosols and land cover type, ST reduces by rising AL [13]. In the NH, AL
increased from 1961–1999 to 2000–2019 (Figure 1g), while ST did not decrease (Figure 1b).
Therefore, the increase of AL is indicative of climatologically significant cloud-induced
variations in the Earth’s radiation budget, which is in line with the GMST growth in recent
decades [11]. Another reason of AL growth may be the intensified wildfires in the NH
boreal forests (due to droughts), especially in Canada and Alaska (see also [14,15]). In this
region, the ST increase (Figure 1b,d) along with the precipitation reduction led to drought,
which enhanced the wildfire severity [14].

Through changing ST, NDVI, AL and evapotranspiration, wildfire is the dominant
driver of water, energy, and carbon cycles as well as vegetation dynamics in the North
American boreal region [15,16]. The aforementioned region has the highest increase of AL
that can reach up to 36% (Figure 1g). Likewise, Jin et al. [16] indicated that the increased
severity of wildfires in the North American boreal forests during 2000–2009 enhanced AL
by ~60%. Potter et al. [15] showed that climate change counteracts the cooling impact of
postfire AL growth in the NH boreal forests. This justifies the increase of ST despite rising
AL in the NH (Figure 1b,g).

Figure 1h compares the changes of ST, WS, and AL from 1961–1990 to 2000–2009 in the
NH and SH. Both ST and AL increased in 86% of the NH and 9% of SH regions. Increase of
ST in most regions on the NH leads to drought events, which intensify wildfires, ultimately
rising AL. In addition, variations of ST are consistent with those of WS (i.e., both increase
or decrease) in 53% and 51% of the areas of NH and SH, respectively. This happens because
WS can affect ST through modifying evapotranspiration [17,18].

Regional studies are necessary to improve our understanding of the variations in ST,
WS, and AL [4]. Some important regions for further investigations are the High Mountains
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of Asia, which demonstrate extreme values of ΔST (Figure 1b), ΔWS (Figure 1e), and ΔAL
(Figure 1g) (see also [10,19]).

 

Figure 1. (a); Time series of monthly and decadal GMST anomalies. The 1850–1899 and 2000–2019 periods are shown by
pink colors to compare the variations before the 20th century and after the 21st century, (b); variation of the GMST, (c);
boxplots of the GMST anomalies. The horizontal line within the box indicates the median (50% percentile). The upper
and lower edges of the box represent the 75% and 25% percentile, respectively. The upper and lower ends of the whiskers
represent the maximum and minimum values. Outliers are observations beyond the end of the whiskers, (d); variation of
the GMST in DJF, (e); variation of WS, (f); variation of the correlation between the GMST and WS, (g); variation of AL, (h);
Hemispheric variation of the GMST, AL and WS. (a,c) are plotted based on the HadCRUT-version 4.6 product [20]. (b,d–h)
are drawn based on the GLDAS (1◦ × 1◦ spatial resolution and monthly temporal resolution) dataset [21].
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Abstract: The tank cascade system, which emerged as early as the fifth century BC in Sri Lanka’s dry
zone, has been portrayed as one of the oldest water management practices in the world. However, its
important function as flood management has not yet been thoroughly examined. In this paper, we
argue that the main principle behind the tank cascade system is not only to recycle and reuse water
resources by taking advantage of natural landscapes but also to control floods. This paper examines
the evolution of traditional water management and flood mitigation techniques that flourished in
pre-colonial Sri Lanka. This historical examination also sheds light on recent policies that exhibited
renewed interests in revitalizing some aspects of the tank cascade system in Sri Lanka’s dry zone.
This paper shows how ancient Sinhalese engineers and leaders incorporated traditional scientific and
engineering knowledge into flood mitigation by engendering a series of innovations for land use
planning, embankment designs, and water storage technologies. It also discusses how this system
was governed by both kingdoms and local communities. Water management and flood control were
among the highest priorities in urban planning and management. The paper thus discusses how,
for centuries, local communities successfully sustained the tank cascade system through localized
governance, which recent revitalized traditional water management projects often lack.

Keywords: tank cascade system; dry zone; water governance; flood control; traditional knowledge;
community participation; Sri Lanka

1. Introduction

Water management is one of the fundamental requirements for the survival and
prosperity of civilizations. Historically each civilization developed its unique water man-
agement practices that reflected the surrounding topography, climate, soil and utility
purposes [1,2]. The traditional water management system that developed in the dry zone of
Sri Lanka more than 2500 years ago is one of the oldest known water management systems
in the world [3]. This ancient hydraulic civilization uniquely engineered storage dams [4]
and water distribution systems [5,6].

According to the Mahavamsa, an earliest known chronicle that depicted ancient Sri
Lanka, when Indian Prince Wijaya landed Sri Lanka from India in 543 BC, he observed
irrigation practices among Indigenous Sinhalese people. At the port of Mannar, where he
landed, the prince found many water tanks (or reservoirs) with cool water that replenished
a great garden [5].

In the twenty-first century, this traditional water management is still in practice to
some extent although much of it has been disrespected due to the introduction of Western
water management systems under the colonial regime as well as in the age of the more
contemporary international cooperation regime. However, somewhat reversing this trend,
the Sri Lankan government has recently acknowledged the importance of historically

Climate 2022, 10, 69. https://doi.org/10.3390/cli10050069 https://www.mdpi.com/journal/climate5
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practiced water management and reinstalled some in rural regions for flood protection and
irrigation purposes.

Some scholars have reexamined Sri Lanka’s traditional water management system
partly for the purpose of enhancing modern day climate resilience actions. Some empha-
sized the implications for drought mitigation and rain water harvesting [7–11], agricultural
developments [5,12,13], ecosystem management [2,14–17], and socio-economic develop-
ment [4,18–20]. Literature shows that a similar tank system existed in semiarid southern
India, but its main purpose was to provide water for paddy cultivation [21,22]. Qanat is
another traditional irrigation water management practices that existed in semi-arid regions
of Morocco, Spain, Syria, Iran, and Central and Eastern Asia. Ancient societies developed
underground networks for the transportation of water [1].

Looking at this growing trend of studies, what is missing is a linkage between tradi-
tional water management and flood mitigation practices in Sri Lanka and elsewhere. Some
researchers did mention about traditional flood mitigation functions in Sri Lanka [2,13,22–25],
but the question remains as to the extent to which traditional water management prac-
tices were systemically arranged for improving or supplementing flood protection. In
other words, we argue, flood mitigation has long been integral part of Sri Lanka’s water
management system.

This paper, therefore, seeks to understand Sri Lanka’s traditional flood mitigation func-
tions and technologies that evolved through time in its dry zone. This said, some may argue
that this type of examination requires hydrological modeling or engineering investigation
to truly understand the effectiveness of ancient flood mitigation infrastructure [26]. How-
ever, our main focus in this paper is rather to trace how past practices took shape in time,
given urgent needs of local Sri Lankan farmers to mitigate flood risks. The IPCC report and
other recent studies on climate change adaptation and disaster mitigation emphasized the
importance of better understanding locally developed adaptation and mitigation practices
as a way to enhance local disaster response capacity and participation [6,13,22,27–30].

In the following discussion, we first look at the development process and functions
of the traditional system. Then, we examine water and flood management practices in
ancient cities. Finally, we discuss the water governance system and its sustainability. For
our examination, we used historical records, secondary sources, institutional reports, and
audiovisual sources. In March 2019, the authors visited several ancient water management
sites, including Sigiriya and Polonnaruwa to collect documentary and visual information.
We also collected information in Colombo in the same year to find out what has already
been known in the country about its ancient water management system.

2. Development of the Tank Cascade System in the Dry Zone of Sri Lanka

In Sri Lanka’s dry zone annual mean precipitation is about 1750 mm whereas annual
mean evaporation ranges from 1700 mm to 1900 mm [31]. About 80% of the annual rainfall
occurs during the northeast monsoon season from November to February when flash
floods often occur. Seasonal rivers and so-called Villu (wetland ecosystem in floodplains)
are natural water bodies that emerge during these months. The earliest inhabitants were
recorded in the lowland areas such as Anuradhapura and north central parts of Sri Lanka
in the ninth century BC [32,33]. They lived along rivers and water bodies, collecting and
storing water partly for drinking and irrigation purposes [2,6].

The earliest available information on hydraulic civilization of Sri Lanka dated back to
the sixth to fifth century BC [4,5]. Archaeological studies show a network of tanks that were
interconnected by streams and waterways. Today, this water network is commonly known
as the tank cascade system [5,8,9,34–36]. The main hydrological principle behind the tank
cascade system is to recycle and reuse water through a network of small to large scale
tanks within a catchment. It also considers storing, transporting and distributing water for
mitigating floods and droughts [2]. The International Union for Conservation of Nature in
Sri Lanka identified four main functions of these ancient structures: (1) capturing rainwater
to minimize floods; (2) storing rainwater; (3) recycling used water; and (4) mitigating
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drought impact [25,27]. Other than these, the cascade system sustained the local ecosystem
as ancient engineers carefully used natural landscapes to enhance water storage [37].

The flood mitigation of the tank cascade system entailed engineering techniques of
water and sedimentation flow control along with the protection of banks from erosion.
Ancient Sinhalese people constructed granite structures and pillars. In order to protect the
embankment from breaching and flooding, with improved technologies for metallurgy,
iron was used to strengthen the structure [5]. The knowledge of iron metallurgy was
introduced to Sri Lanka as early as the tenth century BC. The archaeological sites of
Aligala, Sigiriya and Anuradhapura show evidence of iron smelting in the ninth century
BC [38]. The construction of large tanks emerged in the fourth century BC. At the time of
increasing water levels, tanks had spillways to safely release excess water from one tank
to another. Small tanks were built in low plains between hills by connecting them with
embankments [36]. For example, Basawakkulama tank, the earliest recorded large-scale tank
was built in the Malwathu Oya Basin in about 430 BC. With over 3000 feet in length and
21 feet in height, the dam had storage capacity for cultivating 350 acres. A large number of
small tanks were built in the same basin to avoid possible disasters from flooding [4].

Mahatantila et al. [39] identified three main components of tanks: (1) upper periphery,
(2) bund/embankment and (3) tank body. However, in the following discussion, we add
one more component, which is especially important for flood management; that is, the
lower periphery of the tank where human settlements with paddies were located. Figure 1
shows how these components were typically laid out. Paddy cultivation was the main
livelihood practiced by early inhabitants. The paddy cultivation of Sri Lanka dates back
to the ninth to sixth centuries BC. During this period, ancient farmers domesticated cattle.
Cattle were used for harrowing paddy fields [32,33,40].

Figure 1. Main components of the tank.
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In the upper periphery of the tank running water in streams was filtered through
forests with patchy water holes or bogs. Rain-fed farms were located here [2]. The ancient
law prohibited felling trees as forests were important to manage water quantity and quality.
Ancient people developed water holes (godawala) partly to prevent sediments from entering
the tank [19,23]. Below these water holes, a water filtering area called perahana was created
with water grasses like reeds [23,27].

Ancient Sinhalese protected the embankment from wind, heavy rain and waves by
building stone liners on embankment walls [2,20]. The tank embankment was basically
made of earth and granite rocks. Large-scale embankments with 30–40 feet deep reservoirs
consisted of unique and intricate engineering innovations. The height of the embank-
ment was carefully designed not to flood the upper stream area [14]. The embankment
was installed with a sluice gate (sorowwa), valve pit (bisokotuwa), water level indicator
(diyakata pahana), spillway (pitawana) and embankment protector (ralapanawa). The main
purpose of sluice gate (sorowwa) was to regulate water release without flooding lower
stream areas. The water level indicator helped decide when to release water. The valve pit
or bisokotuwa, which was attached to the sluice gate on the bottom of the embankment, was
basically a rectangular buffer room that was created to temporarily gather water from the
lake through the sluice. When the level of gathered water in the room was raised above the
sluice gate level but below the reservoir water level, water was released toward the lower
periphery through the other gate(s). The location and arrangement of these water gates
differed by region and embankment, showing engineering diversity [16,41]. The bisokotuwa
is still in operation at Kalawewa, one of the largest tanks built in 477AD during the period
of Anuradhapura kingdom [2].

In the upper edge of tanks, a so-called tree belt (gasgommana) had a number of planted
trees partly to protect the embankment. It also provided the habitat for fish and other
aquatic species [2,23]. The trees became partly submerged in water during the heavy rain
period. This tree belt also acted as a wind barrier and reduced the waves in the tank.

In the lower periphery of the tank, when water was released from a sluice gate through
a valve pit it ran through an interceptor (kattakaduwa). The interceptor is a reserved land for
the purpose of controlling soil erosion and water contamination. Villagers took drinking
water below the interceptor. It also provided water to farms. The surrounding village
was protected from water inundation with a hamlet buffer area (thisbambe), shrub land
(landa) and drainage (kivul ela). The trees that have high heavy metal and salt absorption
capacity with a strong root system were planted [2,23]. Being in the high elevated areas
near the interceptor, villagers could observe flooding or damages to the embankment. The
hamlet was surrounded by the hamlet buffer area that was used for common perennial
cultivation (e.g., mango, coconut) and resting places for buffaloes [20,23]. Paddy fields
below the interceptor functioned as wetlands during heavy rains to keep temporary flood
water. When water is not enough for the whole paddy lands, all farmers cultivated equally
(Bethma cultivation), limiting the paddy area to be irrigated [13,15]. The villagers used the
shrub land for home gardening, such as chena cultivation. The excess water of the paddy
fields flowed to the drainage area that was used for common village purposes to absorb
salt and other contaminations [23,27]. Through the drainage and other natural streams,
water reached the next tank.

3. Flood and Water Management Techniques in Ancient Kingdoms in Sri Lanka

In planning cities, villages and monastery complexes, ancient Sinhalese engineers
carefully considered water sources, water uses and landscapes [42]. Flood control is one
of the main requirements of city planning. Figure 2 shows the locations of the ancient
kingdoms, main tanks and rivers. The historical records show that water was used not only
for drinking and irrigation purposes but also for public bath and recreational activities.
Traditional knowledge on rainfall patterns, land use planning and landscape helped ancient
people maximize the use of water resources [17].
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Figure 2. The locations of the ancient kingdoms, main tanks and rivers.

For example, in the early fifth century BC, the city of Anuradhapura adopted the
ancient Indian “Nandyavarta plan” for water resource management [42]. It laid out the
city in a circular shape. The central area was surrounded by walls with four gates that
faced each cardinal direction. Anuradhapura was established along the Malwathu Oya (or
river), the main river of the area. Anuradhapura’s engineers constructed five large tanks
around the city in about 437 BC. In order to protect the city from floods and droughts, they
also constructed many small tanks in the same valley. Between the river and the tanks,
three green parks were established mainly for recreational purposes [42]. These parks
acted as water retention facilities during floods. Villages and king’s palace were located
below Basawakkulama tank. Its L-shaped embarkment was designed to take advantage of
the surrounding landscape. It supplied both drinking and irrigation water. Bathing also
became important part of Anuradhapura residents’ lifestyle [42].

Sigiriya fortress, the present-day UNESCO World Heritage site, is another example to
show a complex outlook of water management in an ancient city. The annual rainfall is the
only possible water source here [8,17]. The fortress, which was built on the top of a gigantic
rock as well as its surrounding areas, was built by King Kassapa in the fifth century AD
(477–495). Human settlements began in this area as early as the third to the first century
BC [43–45]. These early settlements were basically for monks who lived in caves of Sigiriya
Rock. The rock walls just above caves were carved out like a gutter to keep out rainwater
from flooding dwelling areas [43,45]. The cave entrances were then plastered for further
protection. Archeologists identified about thirty such locations [43].

Later, King Kassapa developed an urban complex here [43,45]. Residents took water
from the Sigiriya Oya and stored in a tank near Sigiriya Rock. Engineers at the time built
storage tanks, cisterns, water-courses, underground and surface drainage to managed
water in the city. All storage ponds and bathing pools were paved with marbles and
pebbles to enhance water retention. In addition, natural depression areas were used to
collect rainwater. The city was designed to control flow velocity, runoff discharge, and
flow distance. For example, non-structural depression areas and drainage patterns were
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used to direct rainwater to the structural ponds located in lower elevations. During the
process, water was filtered and velocity was reduced to control soil erosion [17]. Sigiriya
also had water gardens and fountains [17,45]. The pools in the water gardens and Sigiriya
tank were interconnected through underground drainage. This helped fill the pools auto-
matically [8,42]. During the rain, the water garden can function as a water storage facility.
In maintaining pools for bathing purposes, water was supplied from storage tanks, and
the used water was released to moats through a separate drainage. The fountains were
connected to special underground channels [42]. The moats were located in the lowest area
of the land and excess water flows into the moats by reducing floods (Figure 3).

 

Figure 3. A water storage tank in the Sigiriya complex, Photo courtesy: Kenichi Matsui.

King’s palace and the rock garden were located on the three-acre rock summit area
about 360 m above the sea level [43]. Roofs were designed to collect and transport rainwater
to the main water storage area. A drainage outlet was constructed to dispose excess water
and prevent flooding. The surface area was terraced with the western side as the highest
point [42].

After the demise of Sigiriya city, the Anuradhapura kingdom was reestablished in the
5th century AD about 80 km northwest from the rock. In its monastery site called Abayagiri,
twin ponds were created in a low-lying area partly for monks to bathe. It is considered one
of the best hydrologic engineering marvels of ancient Sri Lanka [46]. Underground pipelines
were established to connect the ponds to Tissawewa, Basawakkulama, and Nuwarawewa
tanks around the city by drawing water from the Malwathu Oya [42]. These pipelines ran
through a number of small sediment/debris control tanks [47]. An enclosing wall was
built around the ponds to control the possible spillage [46]. Also, wastewater outflows ran
through wetlands for purification. Then the water was released back to the same river [8].
Each component of the ponds was carefully designed to protect the monastery complex
from flooding.

Wastewater is a significant threat to health, particularly during flood events [28,48,49].
Ancient Sinhalese developed and practiced wastewater management. In Anuradhapura
and Polonnaruwa different types of lavatories were developed [50]. Here urinals were
collected in pits through terracotta pipes. Sands, lime powder and charcoals were used
to purify wastewater [8,50]. In some places, separate septic tanks were used to store
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wastewater. These places were kept some distance from residential areas in order to avoid
wastewater spillage during floods.

In the reign of King Parakramabahu (1153–1183 AD), water management technolo-
gies were further refined [5]. His engineers built several large-scale tanks and irrigation
systems [23]. They constructed more than 163 major tanks, 2376 minor tanks, 165 anicuts
and 3910 diversion channels [51]. The capital was located in present-day Polonnaruwa
city, about 50 km east from Sigiriya. King’s palace was located very close to the tank called
Parakyama Samudraya (Figure 4) that had nine-mile-long embankment. In order to protect
the palace from floods, huge brick walls were constructed along the tank side of the palace.
There were several non-structural natural drainage facilities inside the walls to temporarily
store water. The ground was also covered with grass to reduce soil erosion and trap debris.
A few sluice gates were installed along the brick walls. A drainage canal was installed in
the other side of the palace. Kumara Pokuna near King Parakramabahu’s palace was one
of bathing ponds that might have functioned as flood control structure (Figure 5). Similar
to the Anuradhapura pipeline system it was connected with several drainages to purify
water [17]. Even today this system is functioning well.

 
Figure 4. View of Parakrama Samudraya Photo courtesy: Kenichi Matsui.

 
Figure 5. Kumara Pokuna in Polonnaruwa Photo courtesy: Kenichi Matsui.
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4. Water Governance in Ancient Sri Lanka

The ancient chronicles of Mahavamsa, Dipavamsa and Culavamsa as well as remaining
cave, rock and slab inscriptions show evidence of Sri Lanka’s water governance from the
fourth century BC to the thirteenth century AD [3]. Some of these documents tell us how
early Anuradhapura kingdom governance practices emerged with professionals and water
ownership. The government imposed an income tax and other rules on using water [52].
These rules basically relied on community participation and involvement [10,13,17]. Later,
the governance system gradually changed from a community-based system to a cen-
tralized one although the small-scale tank cascade system remained under community
management [3].

From the fourth century BC to third century AD, water rights in general were held by
individuals, kings, elites, local chiefs and families [3]. Kings and elites could grant water
rights to monks mainly in the period between the second century BC and eighth century AD.
Buddhist temples then administered water allocations. Until the second century BC, the
management of tanks, including flood control and maintenance, were mainly undertaken
at the village level, which mainly consisted of farmers [3,13]. Works for repair, desiltation
and cleaning of the tank during the dry season were shared among farmers proportionately
to the land ownership. Each farmer provided his or her service free on certain days [20].
The community also planted trees to strengthen the stability of the tank embankment and
the interceptor (Kattakaduwa). In times of water shortage, the Bethma rules made farmers
share water for paddy cultivation. This set of rules are still practiced today among some
farmers during water shortage [13]. Here the village head or prominent leader decide the
area for cultivation each year based on water availability in the tank. Farmers then received
equity-based water allocation based on land ownership [13,20,40,53].

In the second century BC, localized water governance was gradually replaced with
a centralized system. Different professions emerged as a result, such as flow operators
(Naguli), canal officials, and proprietors of ferries (Parumaka Thota Bojhaka), and proprietor
of tanks (Parumaka vapihamika). This institutionalized governance made it possible to
sustain the food supply of a large population [3]. In the ninth century AD, the last phase
of kingdom of Anuradhapura further institutionalized water governance by establishing
specialized committees to maintain large-scale tanks [3].

Water rites, rituals, and customs played an important role in ancient water governance.
For example, the king granted water rights through the “ceremony of golden vase”, in which
water was poured from a golden vase into farmers’ hands [3]. The king also participated in
festivals that sent a signal to commence ploughing, sowing, and harvesting. Pen Pidima
ceremony offered fresh water of a tank to Buddha statues to pray for fertility [18].

5. Abandonment of Dry Zone Water Governance to Contemporary Water Governance

By the mid-13th century AD with the collapse of the Polonnaruwa kingdom, the
centralized large-scale tank cascade governance was largely abandoned in many parts of the
dry zone [3,4,31,54]. Although community-driven small-scale cascade systems remained in
practice with varying degrees until the end of the 15th century [31]. European colonization
under the Portuguese, Dutch, and British from the 16th through 18th centuries systemically
and gradually disempowered traditional local authorities for water governance [4].

In 1832, about 17 years after the British established its colonial government in Kandy,
it abolished the Kandyan rajakariya system, which imposed compulsory labor for public
works, claiming that it resembled a form of slavery [3,31]. At the time many villages
governed local affairs through Gansabhawa, a council composed of representatives of vil-
lagers. This council depended largely on the availability of village labor under the rajakariya
system. As the British colonial regime further tightened restrictions on it, canals and other
traditional water management works gradually fell into serious decay [54]. This change
led to the deterioration of the community tank cascade system in many parts of the dry
zone [3,31].
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The British then empowered the Temple Land Commission (1856) and the Service
Tenure Commission (1870) to govern tanks and surrounding villages where village heads
used to control local affairs [3]. From 1870 to 1897, the colonial government repaired and
restored a large number of village tanks, including Kalawewa, one of the largest tanks built
in 477AD and Giant’s Canal (Yoda ela), which was built in 459AD. Village communities
provided their labor in voluntary basis for these tasks [54]. In 1900, as more educated Sri
Lankan elites had been brought into civil services by then, the colonial government hired
many of them and established the Department of Irrigation, which took control over public
works. This department remains as one of the oldest departments in Sri Lanka. One of its
mandates was flood protection [4,55]. During its 50-year operation, it restored almost all
large-scale tanks and anicuts [4].

Soon after independence in 1948, the government of Sri Lanka attempted to improve
water management. For example, in 1952, it constructed the nation’s largest reservoir
called Senanayaka Samudraya [29]. As the Gal Oya basin often experienced floods and
droughts [55], disaster mitigation was one of the main components of the project. However,
the project ultimately failed to achieve its initial goals due largely to top-down decision
making where community participation was not incorporated [29].

In the 1950s, the Sri Lankan government began to place more emphasis on regional
tank cascade governance. The Paddy Lands Act of 1958, for example, authorized the
Department of Agrarian Services to maintain all small-scale water works. This act placed
village tank cascade systems directly under the Department of Agrarian Services, a central
government authority. It led the restoration and rehabilitation of small-scale village tanks
including canals and flood mitigation structures [31].

In 1977, the Sri Lankan government undertook a comprehensive basin development
called the Mahaweli Accelerated Development Project in the Mahaweli River Basin and
created the Mahaweli Authority [4]. Flood control in the lower Mahaweli River was one
of the main objectives [56,57]. It constructed new Western-style water reservoirs such as
Kotmale, Victoria, and Maduru Oya. Kotmale reservoir was specifically designed for flood
control by making it possible to transfer flood water from Polgolla to the dry zone where
restored ancient tanks are located (e.g., Parakrama Samudraya, Minneriya, Kantale, Kaudulla,
Kalawewa and Giritale) [58]. After the construction of this reservoir was completed in the mid-
1980s, the flood inundation risk in the downstream of the Mahaweli River was significantly
reduced [58]. The Mahaweli Authority also reestablished ancient river connections among
Sudu Ganga, Amban Ganga, and Dambulla Oya in central province [59].

In the 1980s, the government undertook projects to restore ancient water management
by mobilizing local people. In 1981, the Gal Oya Left Bank Rehabilitation Project hired
community labor and collected local knowledge about water management [29,60]. It created
farming organizations to control local water use for domestic and agricultural purposes.
It also funded channel maintenance by these organizations. As farmers in the dry zone
are the ones to experience flood damage to their crops, these farmer organizations were
expected to play active roles in flood management [29]. In 1982, for example, the Village
Irrigation Rehabilitation Project and National Irrigation Rehabilitation Project aimed to
repair and maintain minor tanks with community participation [37].

In 1991, the Agrarian Services Act induced the concept of joint water management
between farmers’ organizations and a government agency [31]. In order to promote
participatory planning and management, stakeholders were engaged in kanna meetings
(pre-seasonal meetings of farmers). Even today, these meetings are the most important
decision-making bodies in operating local tanks. Their tasks include the joint maintenance
of flood control bunds, sluices, and channels [31].

Post-independent tank rehabilitation programs were mainly for repair, maintenance
and physical development of individual tanks rather than the whole network of the tank
cascade system. This shortcoming resulted in tank sedimentation, water leakage, land
degradation, biodiversity loss, and floods and soil erosion [37]. In the 1990s, the Shared Con-
trol of Natural Resources in Watersheds Project adopted an ecosystem approach through
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community-based participatory watershed management. It expressed its strong interests in
environmental sustainability and productivity improvement [60]. The project was imple-
mented in northcentral province and southern province. It introduced farming companies
to work independently in watershed management [61]. The project took the novel approach
to address watershed issues by creating mini-projects among local communities and NGOs.
This provided a sense of ownership for the parties involved in the project [62]. For example,
in the Nilwala watershed, deforestation in the upper stream often flooded the lower basin
due to sedimentation. To prevent soil erosion and sedimentation, the project attempted to
protect existing forests and rehabilitate degraded forests. At villages, agroforestry practices
were encouraged [63].

6. Conclusions

This paper has examined how Sri Lanka’s traditional flood and water management
evolved in its dry zone. Our goal was not to suggest that all traditional forms of flood
control and community participation were effective. However, to better understand how Sri
Lanka’s flood management practices exist today in a hybrid form, which has incorporated
traditional, colonial and modern technologies and practices, we found it imperative to
clarify historical changes in flood management practices. Without knowing this complexity,
locally viable flood mitigation measures cannot be sustainable. Therefore, it is important to
understand how, in Sri Lanka, societies developed unique flood control practices, including
governance frameworks and laws to ensure safety from disasters and equitable access to
water. The tank cascade system is the result of their traditional knowledge on watershed
and disaster management.

To demonstrate some recorded practices, this paper looked at how the tank cascade
system captured rainwater, stored it, minimized flood impacts, maintained public health
and conserved/nourished biodiversity. It somewhat resembled modern-day integrated
water resources management. The traditional knowledge regarding engineering and
metallurgy evolved and resulted in large-scale embankments for flood control along with
sluice gate (Sorowwa), valve pit (Bisokotuwa), water level indicator (Diyakata pahana), spillway
(Pitawana), and embankment protector (Ralapanawa).

Anuradhapura, Sigiriya, and Polonnaruwa cities developed both structural and non-
structural water infrastructures. Multiple-purpose structures were designed for flood
mitigation, irrigation, purification, drinking, and recreation. For centuries, the tank cascade
system was largely governed by the community. Experienced community leaders played a
vital role in decision making. Community voluntary support for managing the commons is
an important feature in water governance. Rights to water resources were shared among
elite groups, monks, community and individuals. The development of water professionals,
taxes and rules in managing water systems emerged when centralized water governance
under kingdoms began to exert more control over water resources. Along with these
institutional development, monks and people developed water rituals and customs that
considerably influenced traditional water governance.

European colonial regimes, however, gradually eroded this intricate water governance
practices. The abolition of the rajakariya system under the British rule led to the disuse
of communal tanks as it became difficult to obtain local labor. After independence, the
government of Sri Lanka showed its renewed interests in traditional water governance and
undertook several large-scale water management projects, such as the Gal Oya Irrigation
Project and Mahaweli Accelerated Development Project with renewed interests in locally
viable traditional water management. In the 1990s, Sri Lanka’s watershed restoration policy
began to emphasize community participation and led to some positive results. More water
governance projects are planned to take advantage of traditional systems and mobilize
local participation although the overall impact of their effectiveness for flood control under
escalating climate change conditions remain to be determined in the future.
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Abstract: Long-term changes in precipitation and temperature indirectly impact aquifers through
groundwater recharge (GWR). Although estimates of future GWR are needed for water resource
management, they are uncertain in cold and humid climates due to the wide range in possible
future climatic conditions. This work aims to (1) simulate the impacts of climate change on regional
GWR for a cold and humid climate and (2) identify precipitation and temperature changes leading
to significant long-term changes in GWR. Spatially distributed GWR is simulated in a case study
for the southern Province of Quebec (Canada, 36,000 km2) using a water budget model. Climate
scenarios from global climate models indicate warming temperatures and wetter conditions (RCP4.5
and RCP8.5; 1951–2100). The results show that annual precipitation increases of >+150 mm/yr or
winter precipitation increases of >+25 mm will lead to significantly higher GWR. GWR is expected to
decrease if the precipitation changes are lower than these thresholds. Significant GWR changes are
produced only when the temperature change exceeds +2 ◦C. Temperature changes of >+4.5 ◦C limit
the GWR increase to +30 mm/yr. This work provides useful insights into the regional assessment
of future GWR in cold and humid climates, thus helping in planning decisions as climate change
unfolds. The results are expected to be comparable to those in other regions with similar climates in
post-glacial geological environments and future climate change conditions.

Keywords: groundwater recharge; climate change; thresholds; seasonality; spatiotemporal variations;
regional-scale; long-term; HydroBudget model; cold and humid climates; Quebec (Canada)

1. Introduction

Climate change is already impacting the water cycle everywhere around the world
because of precipitation changes and warming temperatures [1]. In particular, it is im-
pacting surface water and groundwater systems in cold and humid climates due to high
rates of precipitation change and warming temperatures [2–5]. Because changes at the
surface propagate to aquifers through groundwater recharge (GWR), they could have major
impacts on groundwater use for human consumption, industry, and agriculture, as well as
on groundwater-dependent ecosystems [6–10]. Although the impacts of climate change
on groundwater are increasingly studied, the uncertainty associated with simulations of
future climatic conditions remains high [9,11–14]. This is even more remarkable in cold
and humid climates, where precipitation changes are uncertain (increase or decrease) and
where seasonal snow coverage, which leads the annual hydrological cycle, is particularly
sensitive to cold season temperatures [2]. A literature review of climate change impacts on
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groundwater systems in eastern Canada highlighted the wide variability of simulation re-
sults from 22 studies spanning the Canadian provinces of Ontario, Quebec, New Brunswick,
Nova Scotia, and Prince Edward Island [15]. Using different hydrological, hydrogeological,
or integrated models, different downscaling techniques, or different time horizons thus
adds further uncertainty to the analysis [15–17], making it difficult to compare future out-
looks. Nevertheless, simulation of future conditions remains an essential tool for long-term
groundwater resource management in a climate change context.

In cold and humid regions, the geomorphology has largely been shaped by the lat-
est glaciation cycle, groundwater levels are often close to the surface, and unconfined
aquifers are generally fed through GWR and connected to superficial water bodies [18–21].
Groundwater recharge is constrained during winter by freezing temperatures that reduce
the available liquid water and during the growing season by intensive evapotranspiration
rates [4,19,22]. Overall, hydrological systems are highly responsive to changes in the water
cycle (e.g., spatio-temporal distribution of precipitation, rainfall intensity, snow accumula-
tion, timing of snowmelt), thus propagating climate changes to the regional hydrology [23].
The impact of climate change in cold and humid regions characterized by an important rise
of temperature in the future (especially during the winter season) and by uncertain future
precipitation conditions [5,24–26], has been widely studied [2,4,27–33]. The decrease in snow
water storage is recognized as a leading cause of low summer stream flows [29,34–36]. As
winter temperatures increase, snow cover decreases and winter GWR events become more
frequent and are associated with increased winter flow rates in rivers, as evapotranspiration
remains very low [4,22,30,37]. Spring peaks of flow rates or GWR become subdued as snow-
dominated hydraulic regimes transition to rain-dominated regimes [4,11,15,29,33,38–41].
Although not yet well understood, these changes can be important for all groundwater users
(humans, industries, ecosystems) and thus need to be studied and forecasted to support
future water use policies.

Most climate change impact studies identify ranges of changes in hydrologic variables
associated with the climate forcing of the climate scenarios used for simulation [13,27,30,39,41,42].
Reineke et al. [17] observed statistically significant changes in global-scale GWR for different
warming levels (+1 to +3 ◦C). Similarly, Döll et al. [7] presented a global analysis of additional
hydrologic hazard occurrence resulting from +1.5 and +2 ◦C warming using hydrological
indicators, including GWR. However, a range of changes can be insufficient to properly adapt
infrastructures and policies to future conditions, as climate change signals usually overlap
between climate models and RCPs. To overcome this, Crosbie et al. [13] provided data for water
management scenarios using a scale of probability that simulated how future GWR would
change from the simulated historical GWR at the Australian scale. Kløve et al. [9] suggested
the use of indicators to communicate climate simulation results and representative parameters
for use in water resource planning. These indicators of future conditions can be derived from
winter low flows [27], GWR volumes [43], or water table depths [44], and can be expressed, for
example, as functions of Quaternary deposits [27]. Meanwhile, identification of the evolution of
precipitation and temperature changes that would lead to noticeable and statistically significant
changes in GWR over time has not yet been undertaken. This assessment of the sensitivity of
GWR to changes in climate variables, without a specific distinction between different climate
forcing scenarios, would facilitate inter-study comparisons and provide simple and accessible
indicators of future conditions for water managers [11].

This work aims to provide new insights into these questions. The objectives are (1)
to simulate the effect of climate change on potential GWR in cold and humid climates
and post-glacial geological environments and (2) to identify controlling processes and
thresholds of GWR changes. As a regional-scale case study, this work focuses on future
GWR conditions for the southern region of the Province of Quebec, Canada (36,000 km2),
where the hydrology is dominated by long and cold winters. A spatially distributed water
budget GWR model calibrated over the 1961–2017 period [22] was used with a set of
12 climate scenarios downscaled from global climate models (GCMs) using RCP4.5 (low
emissions) and RCP8.5 (high emissions). The results were used to identify the controlling
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processes of GWR changes, as well as temperature and precipitation thresholds that lead to
significant long-term changes emerging from future climate uncertainty.

2. Data and Methods

2.1. Study Area

A detailed description of the study area can be found in Dubois et al. [22] and is sum-
marized hereafter. The study area is located in the province of Quebec (humid continental
climate), between the St. Lawrence River and the Canada–USA border, and between the
Quebec–Ontario border and Quebec City (35,800 km2) (Figure 1). It is comprised of the
watersheds of eight main tributaries of the St. Lawrence River (numbered W1 to W8 from
west to east) (Table 1). Watersheds W1, W2, and W4 have 42%, 83%, and 15% of their total
areas, respectively, located in the USA. The topography is flat, with low-elevation areas
close to the St. Lawrence River and higher elevations in the Appalachian Mountains. The
land cover includes agriculture (42%), forest (45%), wetlands (6%), urban uses (5%), and
surface water (2%). The annual average temperature varies between 6.5 (W1, west) and
3.9 ◦C (W8, east), with the west–east cooling gradient also being notable during the cold
months (December to March, T < 0 ◦C). The annual precipitation ranges between 952 (W1)
and 1123 mm/yr (W4), corresponding to an average of 231 (W3) to 142 mm (W7) of vertical
inflow (VI; available liquid water = sum of rainfall and snowmelt) during the cold months.

Figure 1. Location of the study area and the watersheds within.
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Table 1. Watershed characteristics, climate, and potential groundwater recharge (GWR) for the
1961–2017 period (from 22).

Area
(km2)

Median
Elevation

(m asl)

Annual Cold Months Pot. GWR
T

(◦C)
P (mm)

T
(◦C)

VI
(mm)

mm/yr Win. Spr. Sum. Fall

W1.
Châteaugay * 2219 51 6.5 952 −6.4 211 109 38% 46% 3% 14%

W2. Richelieu * 4414 40 6.3 1039 −6.7 223 119 36% 45% 4% 15%
W3. Yamaska 4792 80 5.9 1080 −7.1 231 139 35% 44% 4% 17%

W4.
Saint-François * 9068 312 4.8 1123 −7.8 214 147 31% 42% 8% 19%

W5. Nicolet 3591 150 5.1 1076 −8.0 196 144 32% 43% 6% 19%
W6. Bécancour 3380 140 4.5 1103 −8.7 164 151 28% 44% 7% 21%
W7. Du Chêne 461 90 4.5 1092 −8.9 142 154 26% 46% 8% 20%
W8. Chaudière 7879 340 3.9 1092 −8.9 151 145 27% 42% 10% 21%

* Part of the watershed is located in the USA—the presented values are only for the Quebec part. Cold months =
DJFM; Win. = DJF; Spr. = MAM; Sum. = JJA; Fall = SON; VI = vertical inflow (available liquid water, the sum of
rainfall and snowmelt).

The study area includes two main geological units, the sedimentary basin of the St.
Lawrence Platform and the metasedimentary Appalachian Mountains. The bedrock is
unevenly covered with unconsolidated Quaternary sediments from the last glaciation–
deglaciation cycle and is mainly composed of thin and coarse superficial materials de-
posited on the bedrock in the uphill areas, thick and mixed-grain size deposits in the valleys,
and clay covering sandy materials close to the St. Lawrence River. Regional fractured
bedrock aquifers flow from the Appalachians to the St. Lawrence River (south/southeast
to north/northwest). The aquifers are moderately productive and are in unconfined con-
ditions upstream and semi-confined to confined conditions in the valleys and in the St.
Lawrence Lowlands [21]. Dubois et al. [22] estimated the average 1961–2017 regional poten-
tial GWR to be 139 mm/yr. They identified preferential recharge zones in the Appalachians,
in forested areas, and over coarse deposits and outcropping bedrock. The potential GWR
increases from west to east (Table 1). Warmer temperatures in the western watersheds (W1
to W3) are responsible for higher winter GWR rates (more VI) and lower summer and fall
GWR rates (more actual evapotranspiration, AET) than in the eastern watersheds. The
peak of the spring GWR, which is linked to snowmelt in April, dominates GWR in all the
watersheds and corresponds to 44% of the annual GWR rates.

2.2. Simulating Groundwater Recharge with Hydrobudget

The HydroBudget model (HB) is a water budget GWR model developed to compute
spatially distributed potential GWR on grid cells of regional-scale watersheds over long
periods of time [45,46]. Using the spatially distributed daily temperature, daily total
precipitation, and runoff curve number (RCN—a combination of pedology, land cover, and
slopes), HB is driven by eight parameters that require calibration (Table 2) and aggregates
the output at a monthly time-step (although daily input data are required). For each daily
time-step, HB computes the snow accumulation and melt (two parameters, TM and CM),
tests if the soil is frozen (two parameters, TTF and FT), and partitions the superficial runoff
(based on the RCN and with two parameters, tAPI and frunoff) from the water that infiltrates
into a conceptual soil reservoir (one parameter, swm). The AET corresponds to the minimum
between the potential evapotranspiration calculated using the formula of Oudin et al. [47]
and the available water in the soil reservoir. Part of the residual soil reservoir water is
mobilized as potential GWR (one parameter, finf). Since HB does not simulate percolation
out of the unsaturated zone, the potential GWR represents a maximum of GWR that could
reach the saturated zone. For simplification, the simulated potential GWR will be hereon
referred to as GWR.
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Table 2. Description of the HydroBudget parameters and calibrated values from Dubois et al. [22].

Parameter
Regionally Calibrated Value

from Dubois et al. [22]

Snowmelt model
Melting temperature—TM (◦C) Air temperature threshold for

snowmelt 1.4

Melting coefficient—CM
(mm/◦C/d) Melting rate of the snowpack 4.9

Freezing soil conditions

Threshold temperature for soil
frost—TTF (◦C)

Air temperature threshold for
soil frost −15.9

Freezing time—FT (d) Duration of air temperature
threshold to freeze the soil 16.4

Runoff

Antecedent precipitation index
time—tAPI (d)

Time constant to consider the
soil in dry or wet conditions

based on previous
precipitation event

3.9

Runoff factor—frunoff (-)

Correction factor for runoff
computed with the RCN

method for the partitioning
between runoff and

infiltration into the soil
reservoir

0.60

Lumped soil reservoir

Maximum soil water
content—swm (mm)

Soil reservoir storage capacity,
maximum height of water
stored in a 1 m soil profile

385

Infiltration factor—finf (-)
Fraction of soil water that

produces deep percolation at
each daily time step

0.06

Assuming that surface watersheds match hydrogeological watersheds and that rivers
drain unconfined aquifers, Dubois et al. [22] calibrated HB by comparing the sum of
the simulated superficial runoff and simulated GWR to the measured river flow and the
simulated GWR to baseflow estimates (regressive filter on river flow time series). A multi-
objective automatic calibration procedure was used with time series of river flow rates from
51 gauging stations over the 1961–2017 period and showed that the simulated variables
had a small uncertainty (≤10 mm/yr). Therefore, this regionally calibrated model was
considered suitable to be used to simulate future GWR over the study area.

2.3. Climate Scenarios

A subset of 12 climate scenarios was derived from an ensemble of 54 climate sim-
ulations provided by 29 global climate models (GCMs) from the Coupled Model Inter-
comparison Project—Phase 5 (CMIP5) driven by RCP4.5 and RCP8.5 future greenhouse
gas concentrations. The 12-member ensemble (Table 3) was created using the k-means
clustering method proposed by Casajus et al. [48]. The climate scenario clustering process
was constrained by ten criteria: the change in annual mean temperature and precipitation
between the 1981–2010 period and the 2041–2070 period (two variables) and the changes in
seasonal mean temperature and precipitation between the same periods (eight variables).
Nine out of the 12 clusters comprised climate scenarios based on both RCPs. The algorithm
selects the climate scenario closest to the cluster centroid as the candidate (not considering
their RCP), as it best represents the average condition of future precipitation and tempera-
ture of the cluster. However, CanESM2 (CE2) was hand-picked from its respective cluster to
include the Canadian GCM. The subset captures approximately 85% of the initial variance
of the ensemble of 54 climate simulations. Casajus et al. [48] showed that this method
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retains a good representativity of the uncertainty linked to the climate scenarios between
an ensemble of 27 climate scenarios and its subset of six.

Table 3. Selected climate scenarios.

Name. Model Source Code RCP

ACCESS1-0_rcp45_r1i1p1
Commonwealth Scientific and Industrial Research Organization

(CSIRO), Australia and Bureau of Meteorology (BOM),
Australia

A10 4.5

ACCESS1-3_rcp85_r1i1p1
Commonwealth Scientific and Industrial Research Organization

(CSIRO), Australia and Bureau of Meteorology (BOM),
Australia

A13 8.5

bcc-csm1-1-m_rcp45_r1i1p1 Beijing Climate Center, China Meteorological Administration,
China B1M 4.5

BNU-ESM_rcp85_r1i1p1 College of Global Change and Earth System Science, Beijing
Normal University (BNU), China BNU 8.5

CanESM2_rcp45_r1i1p1 Canadian Center for Climate Modelling and Analysis (CCCma),
Canada CE2 4.5

CMCC-CMS_rcp45_r1i1p1 Centro Euro-Mediterraneo sui Cambiamenti Climatici Climate
Model, Italy CMS 4.5

GFDL-CM3_rcp45_r1i1p1 Geophysical Fluid Dynamics Laboratory (GFDL), USA GF3 4.5

GISS-E2-R_rcp45_r6i1p3 National Aeronautics and Space Administration
(NASA)/Goddard Institute for Space Studies (GISS), USA GIR 4.5

inmcm4_rcp45_r1i1p1 Institute for Numerical Mathematics (INM), Russia INM 4.5

MIROC-ESM _rcp45_r1i1p1
Japan Agency for Marine-Earth Science and Technology,

Atmosphere and Ocean Research Institute (The University of
Tokyo), National Institute for Environmental Studies, Japan

MIC 8.5

MIROC-ESM-
CHEM_rcp85_r1i1p1

Japan Agency for Marine-Earth Science and Technology,
Atmosphere and Ocean Research Institute (The University of
Tokyo), National Institute for Environmental Studies, Japan

MIE 4.5

MRI-ESM1_rcp85_r1i1p1 Meteorological Research Institute, Japan MRE 8.5

The 12 selected simulations were bias-corrected to a 1981–2010 reference dataset
(Natural Resources Canada gridded observation database) [49,50] and downscaled to the
reference 10 km × 10 km resolution using the quantile mapping approach by Mpelasoka
and Chiew [51]. With these scenarios, changes in mean annual temperature and annual
precipitation between the 1981–2010 and 2041–2070 periods (ΔT and ΔP, respectively)
covered most of the combinations of ΔT and ΔP found in the ensemble of 54 climate
scenarios (Figure 2a). ΔT ranged between +0.9 (INM, RCP4.5) and +5.0 ◦C (MIC, RCP8.5)
and ΔP ranged between +5 (B1M, RCP4.5) and +200 mm (A13, RCP8.5). The change in mean
temperature during the cold months (December to November; ΔTCM) was between +1.1
(INM, RCP4.5) and +6.0 ◦C (MIC, RCP8.5) (Figure 2b). The change in precipitation during
the cold months (ΔPCM) was between +17 (MIE, RCP4.5) and +100 mm (GF3, RCP4.5). The
warming temperature during the cold months led to ΔVICM between +33 (INM, RCP4.5)
and +215 mm (MIC, RCP8.5) (Figure 2c).

2.4. Period Comparisons and Significant Changes

The simulation period was divided into four 30-year periods: 1981–2010, the reference
period, also used as the baseline for the bias correction of the climate scenarios, and three
future periods, 2011–2040, 2041–2070, and 2071–2100. The same periods were used to
present the results of the 96 GWR scenarios (12 scenarios for 8 watersheds). Each 30-year
period was compared to the previous one and to the 1981–2010 reference period to observe
the simulated range in future GWR and to identify future GWR changes.
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Figure 2. Changes (Δ) between the reference period (1981–2010) and the 2041–2070 horizon for
the 12 selected climate scenarios in the study area in (a) annual precipitation (ΔP) as a function
of mean annual temperature (ΔT) within the ensemble of 54 climate scenarios (27 RCP4.5 and 27
RCP8.5), (b) cold month (December to March) precipitation (ΔPCM) as a function of mean cold month
temperature (ΔTCM), and (c) vertical inflow during the cold months (sum of liquid precipitation and
snowmelt; ΔVICM) as a function of mean cold month temperature (ΔTCM).

Changes in precipitation, temperature, and GWR were determined to be statistically
significant based on the Tukey test (p < 0.05), comparing the results of each 30-year period
and the previous one or between the future periods and the reference period. The sample
size in each group varied between 30 values, when monthly or annual variables for each
watershed and each scenario were compared, and 360 values for the monthly or annual
variables for each watershed (or grid cells) when all the scenarios were compared.

3. Results

3.1. Climate Changes for the 1981–2100 Period

The average evolution of annual precipitation and mean temperature from the 12 sce-
narios for each watershed and for each 30-year period shows a constant increase throughout
the century (Figure 3). All increases between each 30-year period and the previous one
(30 years and 12 scenarios corresponding to 360 values for each period) were statistically
significant. The range of precipitation and temperature changes, represented by the differ-
ence between the minimum and the maximum of the 12 scenarios for each year, increased
remarkably from the 1981–2010 period to the 2071–2100 period (Figure 3).

 
Figure 3. Thirty-year period change of mean annual precipitation (a) and annual temperature (b) of
the 12 climate scenarios for the eight watersheds (W1 to W8).
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3.2. Groundwater Recharge for the 1981–2100 Period

The previously calibrated HB model [22] was used to simulate future GWR under the
12 climate scenarios for the entire 1951–2100 period with a monthly time-step and a 500 m
× 500 m spatial resolution. Although simulations were performed for the 1951–2100 period,
GWR changes were only compared between three future periods (2011–2040, 2041–2070,
2071–2100) and the previous period (including the 1981–2010 reference period). The 30-year
moving averages for all GWR scenarios ranged between 126 (W1) and 183 mm/yr (W6)
(Figure 4). The ensemble mean GWR increased between +5 (W8) and +17 mm/yr (W1)
from the 1981–2010 period to the 2071–2100 period, with maximum increases of +5 mm/yr
between two consecutive 30-year periods (Table 4). Six climate scenarios produced GWR
rates higher than the ensemble mean (A13, BNU, CMS, GIR, MIC, MRE, RCP8.5, and
RCP4.5). The other six climate scenarios (A10, B1M, CE2, GF3, INM, MIE, and RCP4.5)
produced GWR rates lower than the ensemble mean. Climate scenarios based on RCP8.5
produced higher GWR rates (although not always the highest).

Figure 4. Thirty-year moving average of groundwater recharge (GWR) simulated with the 12 climate
scenarios and significant changes (Tukey test, p < 0.05) between subsequent 30-year periods (2011–
2040, 2041–2070, and 2071–2100) for (a) W1 to (h) W8.
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Table 4. Thirty-year evolution of mean groundwater recharge (mm/yr), range of the ensemble
changes (in brackets), and evolution of the cold month groundwater recharge from December to
March (T < 0 ◦C) and that from May to November (T > 0 ◦C) (mm) of the 12 climate scenarios for the
eight watersheds (W1 to W8).

W1 W2 W3 W4 W5 W6 W7 W8
CM WM CM WM CM WM CM WM CM WM CM WM CM WM CM WM

1981–
2010

126 (26) 136 (24) 160 (26) 173 (28) 171 (26) 175 (28) 170 (28) 170 (24)
74 31 74 39 80 53 75 71 77 66 71 74 66 72 66 77

2011–
2040

132 (22) 140 (22) 164 (26) 175 (34) 175 (34) 177 (38) 175 (36) 171 (36)
82 27 82 33 89 45 85 61 86 57 81 64 77 64 75 67

2041–
2070

138 (42) 145 (42) 168 (48) 176 (54) 178 (60) 180 (60) 178 (60) 171 (50)
93 25 93 30 102 41 96 54 99 51 94 57 90 58 85 58

2071–
2100

143 (60) 150 (60) 173 (68) 181 (76) 182 (78) 183 (76) 182 (76) 175 (74)
101 22 102 27 112 36 107 48 110 45 105 50 102 50 97 51

CM = sum of groundwater recharge for the “cold months”, from December to March (T < 0 ◦C); WM = sum of
groundwater recharge for the “warm months”, from May to November (T > 0 ◦C).

The range of changes in the GWR scenarios was smallest for the 1981–2010 period
(2011–2040 for W1 and W2), with values between 22 (W1 and W2) and 28 mm/yr (W4, W6,
and W7) (Table 4). It increased markedly in the 2041–2070 period, with values between
42 (W1 and W2) and 60 mm/yr (W5, W6, and W7). It increased even more during the
2071–2100 period, reaching values of between 60 (W1 and W2) and 78 mm/yr (W5). This
larger range of the results was due to the increasing range in precipitation changes between
the scenarios in the second half of the 21st century (Figure 3).

The climate changes associated with each significant ΔGWR between 30-year periods
(not using the 30-year moving average) are reported in Table 5. Although there was a general
increase in temperature between 1981 and 2100, a relatively small number of significant
inter-period ΔGWR were observed (Figure 4). This could be due to the combined effect of
increased evapotranspiration triggered by higher temperature and increased precipitation.
As such, the direction of the ΔGWR change was not directly linked to the change in precip-
itation (ΔP). For example, ΔGWR > 0 (increase) was associated with ΔP < 0 (CMS for the
2071–2100 period, compared to 2041–2070 for W3 and W8), while ΔGWR < 0 (decrease) was
simulated with ΔP > 0 (CE2 and GF3 for the 2071–2100 period compared to 2041–2070 for
W3 and W8; MIE for the 2041–2070 period compared to 2011–2040 for W3, W6, and W8).
An average temperature change (ΔT) of +1.2 ◦C was associated with ΔGWR < 0 (between
+0.7 and +2.3 ◦C), while an average ΔT of +1.8 ◦C was associated with ΔGWR > 0 (between
+0.2 and +2.8 ◦C). The four climate scenarios based on RCP8.5, representing mainly very
humid future conditions, produced statistically significant ΔGWR > 0 for one of the last
two future periods, except for A13 in the eastern watersheds (W5 to W8; Figure 4e–h). The
climate scenarios based on RCP4.5, representing both moderately and very humid future
conditions, produced both ΔGWR < 0 and ΔGWR > 0 for different periods. In addition, the
changes between the 1981–2010 and the 2011–2040 periods were not statistically significant
(only one significant change in W1 for one scenario; Figure 4a).

Overall, the GWR simulations showed minor variation prior to 2041, and the main
changes occurred during the last two future periods, 2041–2070 and 2071–2100. Therefore,
only these two future periods will be considered in the rest of the analysis.
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Table 5. Mean annual precipitation (ΔP) and temperature (ΔT) changes between 30-year periods
associated with significant changes in groundwater recharge (ΔGWR) for the 12 climate scenarios and
eight watersheds (W1 to W8) (cell color represents the direction of the ΔGWR: orange for decrease
and blue for increase, cells are empty when ΔGWR was not significant).

Climate
Scenario

Period **

Precipitation (mm) and Temperature (◦C) Changes Compared to Previous 30-Year Period
W1 W2 W3 W4 W5 W6 W7 W8

ΔP ΔT ΔP ΔT ΔP ΔT ΔP ΔT ΔP ΔT ΔP ΔT ΔP ΔT ΔP ΔT
A13 * 3 198 1.9 200 1.9 113 1.8 191 1.9
BNU * 2 119 2.6 121 2.6 39 1.1 121 2.6 116 2.6 118 2.6 119 2.6 40 1.1

CE2 3 −45 0.7 −47 0.7 34 1.6 −47 0.7 −36 0.7 −30 0.7 13 1.6
CMS 3 180 0.9 183 0.9 −39 1.0 181 0.9 179 1.0 184 1.0 188 1.0 −38 1.0
GF3 2 92 2.1
GF3 3 −57 0.7 −60 0.7 79 2.1 −63 0.7 −60 0.8 −48 0.8 −51 0.8 61 2.3
INM 1 36 0.2

MIC * 2 176 2.8 182 2.8 68 2.2 158 2.8 145 2.7 176 2.8
MIE 2 −11 1.6 −16 1.6 94 1.7 −18 1.6 −4 1.5 8 1.5 −15 1.6 60 1.7
MIE 3 −6 1.2 16 1.2 35 1.2 25 1.4

MRE * 2 117 1.5 120 1.5
MRE * 3 135 1.9 144 1.9 88 1.5 146 1.9 127 1.9 100 1.9 88 1.9 104 1.5

* Represents RCP8.5 (scenarios without an * represent RCP4.5). ** Period 1 is 2011–2040, Period 2 is 2041–2070,
and Period 3 is 2071–2100.

3.3. Inter-Annual Changes in Groundwater Recharge

The ΔGWR between the two future periods and the reference period for each climate
scenario can be represented as a function of different variables (Figure 5). For each scenario,
significant ΔGWR < 0 was associated with ΔP < +150 mm for all watersheds except W1
(Figure 5a,b). Inversely, significant ΔGWR > 0 was obtained when ΔP > +150 mm. The few
scenarios with ΔP < 0 mm always led to ΔGWR < 0 (some significant, some not; Figure 5b).
All the significant ΔGWR < 0 were simulated for +3 ◦C < ΔT < +5 ◦C, while significant
ΔGWR > 0 were obtained for +2 ◦C < ΔT < +8 ◦C (Figure 5a,c). ΔGWR seemed to plateau
at approximately +30 mm for both ΔT > +4.5 ◦C (Figure 5b,c,h, note triangle markers)
and ΔTCM > +6 ◦C (Figure 5f, December to March). Using ΔTCM and ΔPCM showed that
ΔGWR < 0 occurred with ΔPCM < +25 mm and +3 ◦C < ΔTCM < +5 ◦C, except for one
scenario in W3 and W8 (Figure 5d–f). All significant ΔGWR were simulated with ΔTCM >
+3 ◦C (Figure 5f). Significant ΔGWR < 0 were systematically associated with change in cold
month GWR (ΔGWRCM) < +25 mm and inversely for ΔGWR > 0 (Figure 5g). Significant
ΔGWR < 0 were simulated with scenarios of limited changes in annual simulated AET
(+50 mm < ΔAET < +95 mm), while ΔAET > +120 mm were associated with limited GWR
increase (plateau around +30 mm) and a ΔT > +4.5 ◦C (Figure 5h). All significant annual
ΔGWR were < −15 or > +15 mm (Figure 5b,c,e–h).

Of the 96 GWR simulations, 20 produced a statistically significant ΔGWR between
the 1981–2010 and 2041–2070 periods, including 11 based on RCP8.5, and 39 between
the 1981–2010 and 2071–2100 periods, including 21 based on RCP8.5 (Table 6). Although
scenarios based on RCP8.5 did not always produce significant ΔGWR, they were more
likely to produce significant ΔGWR than those based on RCP4.5. The greater number of
significant changes simulated for the 2071–2100 period in comparison to the 2041–2070
period confirmed that GWR was more affected with more pronounced climate changes, be
it through greater emissions or longer progression.
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Figure 5. Changes in annual groundwater recharge (ΔGWR) between the reference period (1981–2010)
and the 2041–2070 and 2071–2100 periods as a function of (a) changes in mean annual temperature (ΔT)
and annual precipitation (ΔP), (b) annual precipitation changes (ΔP), (c) mean annual temperature
changes (ΔT), (d) mean cold month temperature changes (ΔTCM) and cold month precipitation
changes (ΔPCM), (e) cold month precipitation changes (ΔPCM), (f) mean cold month temperature
changes (ΔTCM), (g) cold month groundwater recharge changes (ΔGWRCM), and (h) annual actual
evapotranspiration changes (ΔAET).

Table 6. Number of simulations with significant changes in groundwater recharge between the
1981–2010 reference period and the future periods for the eight watersheds (W1 to W8); the number
of scenarios based on RCP8.5 producing significant changes is indicated in brackets.

W1 W2 W3 W4 W5 W6 W7 W8

2041–2070 5 [2] 3 [2] 1 [0] 3 [2] 2 [1] 2 [1] 2 [2] 2 [1]
2071–2100 6 [4] 6 [4] 6 [3] 6 [4] 5 [2] 3 [1] 3 [2] 4 [1]
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3.4. Spatial Changes in Groundwater Recharge over Time

The changes in future GWR (future periods vs. the reference period) were analyzed
spatially on a cell-by-cell basis with the ensemble of scenarios (Figures 6 and 7). For the
months of January, February, and March, and to a lesser extent for the month of December,
significant ΔGWR > 0 was simulated for all watersheds, between +1 and >+5 mm for the
2041–2070 period, and mainly >+5 mm for the 2071–2100 period, as well as between +1
and +5 mm for December for the two periods. Although half of the changes were not
significant in April for the two future periods, a clear pattern appeared during that month,
with −5 mm < ΔGWR < −1 mm in the western portion of the study area and +1 mm
< ΔGWR < +5 mm in the eastern portion. In May and June, significant ΔGWR < 0 was
simulated, which was lower eastward and for the 2071–2100 period (locally < −5 mm).
Generalized significant decreases of −5 mm < ΔGWR < −1 mm were simulated for July,
August, and September for the two future periods. The ΔGWR was mainly between −5
and −1 mm from July to November for the two future periods. Non-significant ΔGWR
< 0 was simulated in these months in the western and central portions of the study area.
Significant ΔGWR < −5 mm was also simulated in the eastern portion for the two future
periods in October and to a lesser extent in November.

Figure 6. Spatial changes in average monthly groundwater recharge (GWR) between the reference
period (1981–2010) and the 2041–2070 period for the 12 climate scenarios.
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Figure 7. Spatial changes in average monthly groundwater recharge (GWR) between the reference
period (1981–2010) and the 2071–2100 period for the 12 climate scenarios.

3.5. Monthly Groundwater Recharge Changes over Time

The watershed-scale monthly GWR for each period showed significant ΔGWR > 0
simulated for the eight watersheds in December, January, February, and March, with
significant increases from 2041–2070 to 2071–2100 from January to March (Figure 8). The
range of the ensemble changes for these months also increased remarkably in the future
periods in comparison to the reference period. In April, the GWR changes were smaller
and the range of the ensemble was smaller. They were mainly significant in the watersheds
that are partially located in the USA (W2 and W4). The future GWR in January, February,
and March exceeded that of April, which exhibited a peak during the reference period. This
can already be noted in the western watersheds (W1 to W4) for the 2041–2070 period and
reached similar values in the eastern watersheds (W5 to W8) in March of the 2071–2100
period. Significant ΔGWR < 0 were simulated in May and June for the two future periods
and between the two future periods for all watersheds except W1 and W2. Significant
ΔGWR < 0 were also simulated in July, August, September, and October for the eight
watersheds and between the two future periods in October for the western watersheds (W5
to W8). From May to October, the range of changes of the ensemble was clearly smaller
for all watersheds when comparing the reference period with the future periods. While
the future GWR was close to zero as early as June and as late as October for the two most
western watersheds (W1 and W2), the future GWR reached near-zero values between July
and September in the other watersheds. Finally, significant ΔGWR < 0 was simulated for
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the eight watersheds in November, again with a smaller range of changes than during the
reference period.

 

Figure 8. Monthly groundwater recharge (GWR) for the reference period (1981–2010) and the two
future periods (2041–2070 and 2071–2100) for (a) W1 to (h) W8.

The sum of GWR from December to March increased by +32 mm on average (mean
of the ensemble of scenarios), from +27 mm in W1 to +36 mm in W7 and between the
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1981–2010 and 2071–2100 periods (Table 4). The sum of the GWR from May to November
(months with T > 0 ◦C) decreased by −19 mm, from −9 mm in W1 to −26 mm in W8 and
between the 1981–2010 and 2071–2100 periods. These seasonal changes were within the
range of uncertainty of the annual GWR.

4. Discussion

4.1. Future Groundwater Recharge Dynamics

For all watersheds except W1, the GWR for the 2011–2040 period was not statistically
different from that of the 1981–2010 period. Of the eight watersheds, significant GWR
changes occurred with two to four climate scenarios between the 2011–2040 and 2041–2070
horizons and with four to seven climate scenarios between the 2041–2070 and 2071–2100
horizons (Figure 4). For this reason, the results were compared only between the 2041–2070
and 2071–2100 periods and the 1981–2010 period.

The simulations showed both increases and decreases in GWR in the future, hence
markedly increasing the range of possible future conditions from those simulated in the
reference period (Figure 4). The climate scenarios based on RCP8.5 were the wettest
(140 mm < ΔP < 220 mm, Figure 2) and thus produced increasing GWR rates in the future.
Other studies have observed a wide range of hydrological responses to climate change in
cold and humid regions or regions with snow-dependent hydrology [2,11,14]. Kurylyk and
MacQuarrie [38] simulated increased future annual GWR under four climate scenarios and
decreased GWR under three climate scenarios in New Brunswick (eastern Canada). Guay
et al. [41] have shown, based on the simulation of future river flows in 305 watersheds in
Quebec under 87 climate scenarios, that it was unclear whether future annual river flows
would increase or decrease by the 2041–2070 period. Inversely, Sulis et al. [52] mainly
simulated decreased future GWR in part of the Chateaugay River watershed (W1) with the
integrated CATHY model for the 2041–2065 period (increase under one scenario). These
authors used 12 climate scenarios based on the high-emission SRES A2 greenhouse gas
projections, with annual precipitation increases of close to 0 to +20% between the future and
the reference periods. Differences in future GWR depend on the choice of future horizon
and emission scenarios, as well as on the type of model used to derive the GWR [15].

The analysis of monthly recharge allowed major shifts in the intra-annual changes
in future GWR to be identified. The results show that winter GWR could significantly
increase due to warmer winters and lead to an earlier spring GWR peak. Other studies in
eastern Canada have obtained similar results [30,33,37–39]. Similarly, Grinevskiy et al. [53]
simulated GWR with an unsaturated zone model (HYDRUS-1D) in 22 sites spread over
western Russia (humid climate, cold in the north, temperate in the south) and observed
increased GWR during winter, which was linked to wetter and warmer winters in the
North, but not in the South of the study area. Such results are reported for cold and
humid climates and regions of snow-dominated hydrology with more available liquid
water during winter, which is linked to warmer temperatures that affect not only GWR,
but the entire hydrologic dynamic [2,11,27,29,34,35,41,54]. These future GWR conditions
are supported by observations of past groundwater level time series showing a similar
shift in the GWR peak from spring (snowmelt) to winter (rain) in Fennoscandia (Northern
Europe, transition between temperate and cold climates) associated with a warming climate
between the 1980–1989 and 2001–2010 periods [4].

In the present study, the GWR scenarios showed a statistically significant decrease from
May to November (Figure 8). The future GWR was close to zero from July to September
(similarly to the reference period), except in the western and warmest watersheds, W1
and W2, where the low flow period began a month earlier (June) and ended a month later
(October). Similar results were obtained in different cold and humid climates or regions
of snow-dominated hydrology. Guay et al. [41] noticed small or negligible changes in
river flows during the summer, a period of the year where flow rates are already very low,
extending until October. Expected dryer summer low flow rates were also reported by
Addor et al. [11] and Arnoux et al. [27] for the Swiss Alps and by Dieraurer et al. [34] for
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watersheds across the Rockies (western North America), and they were linked to reduced
snowpack, leading to limited snowmelt contribution to spring flows. In this study, the GWR
scenarios were similar for all watersheds during summer, thus increasing the certainty
of the expected summer decrease. Despite the high uncertainty in simulations of future
hydrologic conditions, Addor et al. [11] reported a good convergence of results toward
lower summer flow (90% of the scenarios) for Swiss alpine watersheds, similar to that of the
current study. However, Arnoux et al. [27] showed that post-glacial Quaternary deposits
can contribute to the mitigation of the impact of climate change on summer low flows
in alpine catchments due to their water storage capacity, which supports river low flows
during long dry spells. This is an indication that water-bearing unconsolidated superficial
materials could be an indicator of watershed response to climate change.

Aygün et al. [2] showed that the hydrology of cold and humid regions (northern
regions of North America and Eurasia outside of the permafrost zone) with near-freezing
annual temperatures were more sensitive to climate change than regions with substantially
colder climates. The current study showed differences in the watershed response from
west to east that followed the regional temperature gradient (decrease of mean annual
temperature). These findings were most likely possible because of the use of a single model
across the region and a robust knowledge of the past dynamics. Larocque et al. [15] did
not find such a clear trend from west to east in their review of modeling studies of climate
change impacts on groundwater systems in eastern Canada.

4.2. Climate Changes Impacting Groundwater Recharge

The groundwater recharge changes became statistically significant when ΔGWR was
< −15 or > +15 mm for the two future periods (Figure 5). More specifically, small GWR
changes could not be interpreted as being different from the simulated variability of the
1981–2010 reference period for one to five of the 12 scenarios for the 2041–2070 period and
three to six of the scenarios for the 2071–2100 period (Table 6). The increasing number of
scenarios with significant changes for the 2071–2100 period is coherent with results from
Goderniaux et al. [42] in the Geer Basin (Belgium), where projections of groundwater levels
obtained using an ensemble of 30 climate scenarios became greater than the variability of the
1961–1990 period only in 2085. Similarly, using an ensemble of 54 climate scenarios, Addor
et al. [11] demonstrated that flow rate changes in alpine catchments became significantly
different from those of the 1980–2009 reference period only after the 2050 horizon. They
showed that significant changes were simulated even under the climate scenarios with the
lowest emissions based on RCP2.6 (not used in this study). In contrast, this study showed
that climate scenarios based on RCP8.5 did not systematically produce significant changes
between the future periods and the reference period, although they tended to simulate
significant changes and higher future GWR than scenarios based on RCP4.5 more often.
Henceforth, using a large ensemble of climate scenarios appears to be necessary to provide
a representative sample of possible future precipitation and temperature.

One of the main novelties of this work lies in the identification of climate conditions
leading to statistically significant changes in future GWR. Significant ΔGWR < 0 was
simulated only with ΔP < +150 and ΔPCM < +25 mm. ΔP < 0 always led to ΔGWR < 0, but
the latter was not necessarily significant. Inversely, ΔGWR > 0 were significant only with
ΔP > +150 and ΔPCM > +25 mm. Therefore, ΔP ≈ +150 and ΔPCM ≈ +25 mm appear to be
regional thresholds for determining the direction of future GWR changes.

Another contribution of this work was to determine that significant ΔGWR < 0 was
systematically associated with ΔT and ΔTCM ranging between +3 and +5 ◦C, while signifi-
cant ΔGWR > 0 was found for +2 ◦C < ΔT < +8 ◦C and +3 ◦C < ΔTCM < +11 ◦C. Interestingly,
ΔT > +4.5 ◦C (or ΔTCM > +6 ◦C) led to ΔAET > +120 mm, thus limiting ΔGWR to +30 mm.
Therefore, ΔT ≈ +2 ◦C and ΔTCM ≈ +3 ◦C appear to be regional thresholds for significant
GWR changes (increase or decrease), while ΔT > +4.5 ◦C triggers GWR increase. These
temperature thresholds control future GWR through the modification of the cold month
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hydrology and the evolution of ET, which also depends on the adaptation of vegetation to
climate change.

This study demonstrated that, on an annual basis, ΔGWRCM > +25 mm compen-
sated for decreased GWR during the rest of the year and produced statistically significant
ΔGWR > 0. This is coherent with numerous previous studies showing that the seasonality
of the entire hydrologic dynamic (GWR, groundwater storage, groundwater level, stream
flow) in cold and humid climates or regions of snow-dependent hydrology was affected
by the increase in available liquid water during warmer winters, counterbalancing the
decreasing availability of water during summer [2,4,11,27,30,35,39,41]. Rivard et al. [39]
observed that changes in future GWR were most sensitive to winter temperature in simu-
lations with a spatialized water budget model in Nova Scotia (HELP, eastern Canada, not
overlapping the current study area). This was more due to increased amounts of liquid
winter precipitation that was readily available for infiltration than to changes in precipitation
amounts. Interestingly, Wright and Novakowski [33] showed that winter recharge events
on a fractured bedrock (Ontario, Canada, frozen during winter) could bypass the frozen
soil and reach unfrozen fractures at the soil/bedrock interface. They concluded that winter
rainfall events could produce more GWR than during the rest of the year, thus making the
precipitation form and amount during this period a sensitive GWR variable. The differences
in these studies may be due to their respective scales. The local scale associated with GWR
estimates based on well observations used in some studies [4,33] is in dire contrast to the
250 m × 250 m resolution used by Rivard et al. [39] or the 500 m × 500 m in the HydroBud-
get model. In addition, the sub-hourly sampling time-step of other studies [33,55] is not
comparable to the daily time-steps aggregated into monthly inter-annual results presented
here. Nevertheless, all the available studies for Eastern Canada confirm the importance
of future winter GWR in the overall annual GWR dynamic, as well as the importance of
capturing local-scale (meter order) processes in regional-scale GWR simulations.

From a different perspective, Sulis et al. [52] showed that changes in future GWR in a
sub-watershed of W1 were linked to intra-annual patterns of the climate scenarios (more
snowmelt during winter, less rain during the fall, the duration of successive days with daily
precipitation > 1 mm/d) rather than being related to annual precipitation changes. The
integrated CATHY model (daily time-step) seemed sensitive to the dryness conditions of the
soil [56], thus inducing more percolation through the unsaturated zone (GWR) for climate
scenarios with regular summer rainfall events than for scenarios with more intense but less
frequent rainfall events. Similar conclusions were reached by Wright and Novakowski [33]
at the well scale in a fractured bedrock aquifer for winter GWR events in Ontario. Finally,
Rathay et al. [55] observed that increasing rainfall intensity, from <1 mm/h to > 1 mm/h,
produced a decrease in the rainfall–groundwater level cross-correlation coefficients in a
bedrock aquifer in the temperate climate of British Columbia (Canada). Although they
did not identify a rainfall intensity threshold limiting GWR, these authors concluded that
more intense rainfall events produced more surface and subsurface runoff rather than
increasing GWR rates. Although these studies highlighted that precipitation intensity can
be an important factor for future GWR changes in humid climates, the sensitivity of GWR
to this parameter was not a focus of the current study.

4.3. Future Groundwater Recharge Simulation in Cold and Humid Climates

The clustering method used to select the subset of climate scenarios was based on
ten criteria including changes in seasonal and annual precipitation, as well as changes
in temperature, but did not include changes in precipitation intensity. Although recent
work has projected the intensification of year-round precipitation in North America [57],
precipitation intensity changes for the province of Quebec are not yet clear [25]. Further
research needs to assess the impact of this variable on increasing or decreasing future GWR
in cold and humid climates on intra-annual and inter-annual time scales.

Considering the range of changes in future recharge, understanding GWR under future
conditions probably lies mostly in the capacity to adequately simulate GWR during the
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cold months, the period corresponding to the greatest changes in terms of absolute value in
the study area. Stream flow or GWR simulations in cold and humid climates are sensitive
to snow-related calibration parameters, such as the melting temperature and melting
coefficient [22,58]. However, Melsen and Guse [59] showed that these parameters were
less sensitive when simulating river flow in 605 USA watersheds under future conditions
with decreased snowpack. Therefore, an evolution of the snow-related parameters could
be expected under future conditions. Improving the simulation of winter GWR in cold
regions will necessitate a better understanding of the roles of snow dynamics and soil frost
in changing conditions, and future work should be aimed at calibrating these parameters
for long-term regional-scale simulations.

The current study was based on the HB model, which was calibrated and validated
over an exceptionally long period of time (57 years from 1961 to 2017), ensuring satisfying
representativeness of the long-term and regional-scale hydrological dynamics [22]. The
resulting GWR scenarios used constant model parameters over time under the hypoth-
esis that the system was stationary in time and no significant land-use change occurred.
However, Jaramillo et al. [60] linked a 40-year increase in AET rates of 65 mm/yr in the
Stockholm region (Sweden, temperate to cold climate transition zone) to land-use change,
with the massive conversion of semi-natural grasslands (mowing) to cereal and fodder
harvesting at the beginning of the 20th century. For Sweden as well, Destouni et al. [61]
compared the evolution of evapotranspiration (ET) and runoff (R) for nine watersheds
in temperate and cold climates that remained stationary in time or were affected by hy-
dropower and non-irrigated agricultural development during the 20th century. Despite
precipitation and temperature increases, they found that ET and R remained stable in
unregulated watersheds, while hydropower development increased ET and decreased R,
and agriculture development increased both ET and R. These hydrological changes impact
the regional water budget, and therefore most likely propagate to GWR. Alternatively,
Guerrero-Morales et al. [62] found that land cover changes accounted for 25% of the GWR
decrease in an urbanized watershed in western Mexico (warm and humid climate) un-
der climate change conditions by the 2050 horizon. Although Kløve et al. [9] and Taylor
et al. [10] stated that climate change studies should consider land-use change, integrating
land-use scenarios into future GWR simulations in cold and humid climates has not been
widely reported in the scientific literature. Further study of this important question could
lead to the identification of other factors than climate that determine the extent of possible
GWR changes. Considering land-use change would also probably increase the uncertainty
of future GWR simulations [63].

Reinecke et al. [17] concluded on the importance of coupling biosphere dynamic
simulations to long-term GWR simulation, especially at the global scale, where increases
in atmospheric CO2 concentrations could lead to more active vegetation, which would,
in turn, impact GWR estimates. Koirala et al. [64] showed that vegetation had a large
impact on the water budget through AET, especially in humid climates. To avoid using
scenarios of future solar radiation and other climate variables that are less readily available,
more difficult to bias-correct, and may introduce additional uncertainty compared to
the more common temperature and precipitation scenarios [25], the maximum daily ET
in HB was based on the simple formula from Oudin et al. [47], which only used daily
temperature, latitude, and Julian day (as a proxy for extraterrestrial radiation). However,
considering the regional scale of the study and the long-term simulation period, more work
should be dedicated to improving AET simulations for cold and humid climates, especially
considering the uncertainty related to plant adaptation to warmer climates. This could
impact the temperature thresholds identified in this study. Specific AET calibration could
be developed using spatialized time-series of the measured AET, or the impact of coupling
biosphere dynamics and GWR at the regional scale could be tested.
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4.4. Using These Results for Adaptation

Studies clearly show that GWR in cold and humid climates could follow different
paths of change depending on specific climate conditions, geology, morphology, and land
use [15,38]. Taking into consideration uncertainty in future climate conditions is another
major challenge, as this study showed with future GWR that can either increase or decrease
at the regional scale depending on the climate scenario It is thus extremely difficult to
provide concrete recommendations to water managers despite the increasing body of
knowledge [14].

Nevertheless, several patterns in the future evolution of GWR emerged with a rela-
tively high level of confidence. For example, the significant projected decrease in GWR from
May to November as soon as the 2041–2070 period and the substantial increase in GWR
from December to March clearly stand out. A cold month GWR increase of > +25 mm will
compensate for the decrease throughout the rest of the year, suggesting stable groundwater
resources. Additionally, this work provides threshold values for changes in precipitation
and temperature that lead to likely increases or decreases in future GWR (Figure 9). These
thresholds could be used in integrated water resource management plans, where they could
trigger specific actions (e.g., if local warming reaches 1.5, 2, or 3 ◦C, associated with stable
precipitation increase of +50 or +100 mm). Although they would probably be similar in
other cold and humid climates in post-glacial geological environments, these thresholds
will need to be tested in different contexts.

 

Figure 9. Annual groundwater recharge changes (ΔGWR) between the reference period (1981–2010)
and future periods (2041–2070 and 2071–2100) for the eight watersheds (W1–W8) and 12 scenarios.
The associated precipitation and temperature thresholds are displayed on the right, and the gray
zone indicates the −15 to +15 mm non-significant change range in GWR. CM stands for cold months
(December to March).

In cold and humid climates, GWR generally represents the actual aquifer renewal
rates—the total flow discharging to superficial water bodies [4,19,21]. A decrease in future
GWR from May to November means that groundwater inflow into superficial water bodies
and groundwater levels will decrease when water demand for drinking water, agriculture,
industrial purposes, hydroelectricity, and recreation is the highest [19,65] and when river
flows come almost exclusively from a connected aquifer. Considering the high confidence
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in the simulation of the decreasing GWR from May to November, it is expected that water
use conflicts will increase in future decades.

The identified thresholds were related to potential GWR, i.e., the maximum GWR
that can reach the saturated zone [22]. Future changes in actual GWR are expected to be
closely linked to those in potential GWR. For scenarios and periods where potential GWR
is expected to decrease, actual GWR will most likely decrease as well due to the reduction
of available water. Inversely, for expected increases in potential GWR, actual GWR changes
would vary depending on the AET rates. Future work studying the propagation of these
changes should focus on the periods of expected potential GWR increases.

5. Conclusions

In cold and humid climates, the impact of climate change will propagate in groundwa-
ter systems and more broadly to regional hydrologic dynamics through GWR. Estimates of
changes in GWR under future climate conditions are therefore strategic for long-term water
resource management. This work has provided new data for assessing climate change
impacts on GWR and to identify controlling processes and thresholds for cold and humid
climates. One of the outcomes was the simulation of the first set of 12 transient regional-
scale GWR scenarios for the 1951–2100 period in southern Quebec. Simulated using a
water budget model and a set of 12 climate scenarios maximizing the future climate vari-
ability (12 GCMs using RCP4.5 and RCP8.5), the spatio-temporal GWR scenarios showed
notable changes occurring in the 2041–2070 and 2071–2100 periods. Warming temperatures
were between +1 and +5 ◦C at the 2041–2070 horizon (in comparison with the 1981–2010
reference period), and the precipitation change pattern was more variable, including an
increase of +10% to +80% in the available liquid water between March and December.
Increasing and decreasing annual GWR was simulated. However, major impacts were
found in the monthly dynamics, with a statistically significant decrease in future GWR from
May to November compensated by a statistically significant increase in future GWR from
December to March. The periods of null or very low GWR rates were lengthened by one
month in June and October for the warmer watersheds. Overall, the average annual GWR
change was positive if the increase in future cold month GWR was higher than +25 mm,
offsetting the decrease for the rest of the year. Such results were coherent with previous
findings in other regions of cold and humid climates.

The novelty of this work lies in linking changing climate conditions to the direction
and amplitude of statistically significant changes in future regional GWR through specific
precipitation and temperature change thresholds. All significant changes in GWR were
>+15 or <−15 mm/yr and were only produced by warming temperatures >+2 ◦C. A
significant decrease in future GWR was always simulated under future increases in annual
precipitation of <+150 mm and cold month precipitation changes of <+25 mm, along
with warming temperatures of between +3 and +5 ◦C (for annual and cold months). A
significant increase in future GWR was systematically simulated under increases in annual
precipitation of >+150 mm and cold month precipitation increases of >+25 mm, along with
warming temperatures of >+2 ◦C. A future temperature increase of >+4.5 ◦C produced
more intense AET rates, thus limiting the increase in future GWR to approximately +30 mm,
irrespective of the precipitation increase. These thresholds are sufficiently straightforward
for general use and for integrated water resource management plans.
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Abstract: While ongoing climate change is well documented, the impacts exhibit a substantial
variability, both in direction and magnitude, visible even at regional and local scales. However,
the knowledge of regional impacts is crucial for the design of mitigation and adaptation measures,
particularly when changes in the hydrological cycle are concerned. In this paper, we present hydro-
meteorological trends based on observations from a hydrological research basin in Eastern Austria
between 1979 and 2019. The analyzed variables include air temperature, precipitation, and catchment
runoff. Additionally, the number of wet days, trends for catchment evapotranspiration, and computed
potential evapotranspiration were derived. Long-term trends were computed using a non-parametric
Mann–Kendall test. The analysis shows that while mean annual temperatures were decreasing
and annual temperature minima remained constant, annual maxima were rising. Long-term trends
indicate a shift of precipitation to the summer, with minor variations observed for the remaining
seasons and at an annual scale. Observed precipitation intensities mainly increased in spring and
summer between 1979 and 2019. Catchment actual evapotranspiration, computed based on catchment
precipitation and outflow, showed no significant trend for the observed time period, while potential
evapotranspiration rates based on remote sensing data increased between 1981 and 2019.

Keywords: hydrological research basin; precipitation; temperature; long-term trends; climate change;
evapotranspiration

1. Introduction

It is well documented that the climate is changing [1–3]. Impacts are seen as globally
rising temperatures [2,4] with a reduced number of cold days and nights and an increased
number of warm days and nights [4], an altered depth [5–7] and duration of snow and
ice cover [6–8], changing precipitation [4,9–11] and river flow regimes [12–14], or an
increased number of extreme events [2,4,15]. However, the magnitude and impact direction
of major climate variables, such as temperature, precipitation, catchment runoff, and
evapotranspiration in both climate observations and projections vary significantly at the
global and regional scale [16,17].

While there is a consensus on global warming [2] supported by many studies
(e.g., [15,18,19]), some areas experienced decreasing mean, maximum, or minimum tem-
peratures 1951-2002 [20]. Precipitation observations indicate minor global changes despite
a large, compensating variability with a decrease observed in the subtropics and Southern
Europe [21,22], Southern Asia and Africa and increases observed in North America, South
America, Eurasia, and North and Central Europe [11,22–24]. Furthermore, a seasonal shift
of precipitation has been reported (e.g., [19,25]).

With respect to catchment runoff, a decrease was observed for some basins in
China [18,26], while an increase in runoff was reported for other Chinese basins [27]
or North-Eastern USA [28]. Blaschke et al. [24] report only minor changes in runoff for
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Austrian catchments in the past 50 years but predict a future runoff reduction for summer
and an increase for winter. As for precipitation, a seasonal runoff shift has been reported
(e.g., [13]). Furthermore, an increase in flooding events, particularly in Alpine areas, has
been observed [14].

Several studies report increasing potential evapotranspiration trends for most of the
Northern hemisphere (e.g., [19,29–33]), while China experienced decreasing evapotranspi-
ration rates over the past 50 years [34]. Some of these studies confirm the trend that dry
areas become drier and wet areas become wetter, while some contradict [23,35].

The validation of observations is one of the most important tasks during hydrological
assessments as faulty data obviously provoke wrong analysis results and conclusions.
At the same time, particularly the validation of precipitation measurements is very de-
manding due to the spatial and temporal variability of rainfall and its stochastic nature.
An appropriate validation strategy depends on several factors, such as the spatial dis-
tribution of stations, the recording and analysis frequency or the type of measurement
device. While there is no standardized procedure that is generally applicable, validation
strategies commonly comprise the following steps: (i) identification of documented defects,
(ii) device-specific boundaries, (iii) climatological boundaries, (iv) temporal variability,
(v) intra-stational validation, and (vi) inter-stational variability [36,37].

The literature shows that the impact of climate change is widely acknowledged. At
the same time, it is obvious that the impacts greatly vary at a regional and even local
scale. However, this knowledge is crucial to develop measures to mitigate and counteract
hydrological climate change impacts at the regional and local scale. Furthermore, we
aim to investigate whether large-scale climate observations or projections also hold for
smaller catchments where hydro-meteorological conditions may be very site-specific. For
this purpose, we analyzed the hydro-meteorological data from a hydrological research
catchment in Styria, Eastern Austria, which has been monitored since 1979. Analyzed
climate variables include precipitation depth and intensities, number of wet days, air
temperature, river flow, and actual and potential evapotranspiration.

2. Materials and Methods

2.1. Hydrological Research Catchment Pöllau

The hydrological research basin (HRB) Pöllau was established in 1978 [38,39] and is
currently operated by the Institute of Urban Water Management and Landscape Water
Engineering at Graz University of Technology in cooperation with the Department 14 of
the Federal State Styria. The decision to establish an HRB in the Pöllau sub-basin was
based on a number of reasons: (i) the confining arched mountain ridge allows a clear
delineation of the catchment, (ii) the loamy soils are characterized by low storage capacities,
minimizing the influence of subsurface flow on catchment hydrology, and (iii) the climate
of the catchment with heavy storm events in the summer and relatively dry winters is
representative for the Eastern alpine foothills [40]. The catchment covers 58.3 km2 and
is located in Styria, Austria, about 60 km northeast of the city of Graz (Figure 1). The
elevation of the catchment ranges from 398 to 1279 m, and the catchment land-cover is
dominated by forest (ca. 43.8%) and grass- and cropland (ca. 51.8%) with a low degree of
discontinuous urban fabric (ca. 4.4%) [41].

The catchment comprises two main sub-catchments that are monitored: (i) the sub-
catchment Saifenbach/Dürre Saifen covering 23 km2 (monitored 1997–2005 and since 2018)
and (ii) the sub-catchment Prätisbach covering 21 km2 (monitored since 1980). Additionally,
the discharge at the joint catchment outlet of both the sub-catchments has been monitored
since 1980. Characteristic catchment properties are given in Table 1.
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Figure 1. Overview of the catchment Pöllau (discharge measurement A) with the sub-catchment Prätisbach (discharge
measurement B) in the west and the sub-catchment Dürre Saifen (discharge measurement D) in the east, and the locations of
the precipitation measurements.

Table 1. Overview of the catchment properties [40].

Area 58.3 km2

Land-use forest 43.8%, grass- and cropland 51.8%, settlement 4.4%
Stream density 1.87 km km−2 or 0.0019 m m−2

Geology Crystalline basement rock 82.7%, tertiary hill country 12.7%, quaternary deposits 4.3%
Elevation range 398–1279 m.a.s.l

Discharge characteristics Qmin 0.04 m3s−1; Qmax 92.14 m3s−1; Qmean 0.49 m3s−1;
Mean runoff coefficient 0.31 (1979–2004)

2.2. Data

The first precipitation measurement gauge in the HRB Pöllau was installed in 1979
(1, see Figure 1 and Table 2). During the following year (1980), an additional five pre-
cipitation gauges were installed, and two stream gauges (the catchment outlet A and the
sub-catchment B) were constructed and taken into operation. The precipitation monitor-
ing at the meteorological station (7) started in 1982, whereas the observation of climate
variables started in 1991. The stream gauge C started operation in 1988 but was destroyed
during a massive flood in 1997. The gauge was then reconstructed in 2000, but after further
flood damage in 2007, the gauge was not put back into operation. The stream gauge D was
constructed in 1997, but due to the challenging measurement location, monitoring was
abandoned in 2005. The gauge was reconstructed 500 m upstream in 2018 and is, together
with the gauges A and B, currently operating.

The currently operated precipitation gauges are rather symmetrically distributed over
the catchment area and located at elevations between 420 and 1040 m.a.s.l. Initially, all 7
precipitation gauges were tipping buckets with a resolution of 0.1 mm. Since the year 2011,
6 stations have been equipped with rain scales (type Ott Pluvio2 [42]) operated at a 1 min
recording interval. The rain scales in the catchment are not equipped with heaters, which
hampers the record of snowfall. Due to this shortcoming, only snow that stayed on the
gauges and thereafter melted was recorded. The currently operated stream gauges monitor
the entire catchment outflow (A) and the two main sub-catchments (Figure 1). The stream
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gauges are equipped with pressure sensors, calibrated with rating curves, and record at a
10–15 min interval.

Table 2. Stations, altitude (m.a.s.l), measured variables: WL (water level), WT (water temperature),
P (precipitation), T (air temperature), p (air pressure), rH (relative humidity), Ra (solar radiation),
ST (soil temperature), SM (soil moisture), WS (wind speed), WD (wind direction), and
data availability.

Station Altitude Observed Variables Data Availability

A 398 WL, WT 1980–
B 415 WL, WT 1980–
C 418 WL, WT 1988–1997, 2000–2007
D 455 WL, WT 1997–2005, 2018–

1 424 P 1979–
2 729 P 1980–
3 740 P 1980–
4 800 P 1980–
5 740 P 1980–
6 1040 P 1980–
7 525 P, T, p, rH, Ra, ST, SM, WS, WD 1980–

Land-cover changes due to urbanization, agriculture or forestation can, along with
potential climate change, significantly affect the catchment water balance, hampering the
attribution of observed long-term changes to a single driver. Therefore the catchment
land-use was analyzed based on the CORINE land-cover datasets available for the years
1990, 2000, 2006, 2012, and 2018 [43]. Between 1990 and 2018, forested areas decreased by
0.27 km2 and were mostly replaced by settlements growing by 0.3 km2, while the fraction
of agricultural landuse remained almost constant with a decrease of 0.03 km2 (Table 3).

Table 3. Land-cover in the catchment Pöllau in 1990, 2000, 2006, 2012, and 2018 based on the CORINE land-cover datasets [43].

Land-Cover 1990 2000 2006 2012 2018 Δ1990–2018

Discontinuous urban fabric

(km2)

2.21 2.48 2.48 2.51 2.51 0.30
Mixed forest 9.34 9.19 9.19 9.19 9.19 −0.15
Coniferous forest 16.30 16.16 16.16 16.18 16.18 −0.12
Agricultural areas and pastures 30.05 30.07 30.07 30.02 30.02 −0.03

Discontinuous urban fabric

(%)

3.8 4.3 4.3 4.4 4.4 0.6
Mixed forest 16.1 15.9 15.9 15.9 15.9 −0.2
Coniferous forest 28.2 28.0 28.0 28.0 28.0 −0.2
Agricultural areas and pastures 51.9 51.9 51.9 51.8 51.8 −0.1

2.3. Data Validation

To exclude as much doubtful data as possible from the subsequent analysis, the
available measurements were first validated on a daily basis according to the following
procedure: (i) identification of documented defects, (ii) device-specific boundaries, (iii) cli-
matological boundaries, (iv) temporal variability, (v) intra-stational validation, and (vi)
inter-stational variability [36,37].

The validation steps (i)–(vi) were applied for rainfall and discharge observations. The
comparison of daily precipitation observations after validation shows a good correlation
(Pearson correlation 0.91), allowing the conclusion that the seven stations mostly recorded
similar values (Figure 2). Discharge measurements were validated using cumulative sums
of available gauges. An inter-stational validation for temperature data was not directly
possible, as this variable is recorded at only one location within the catchment. How-
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ever, the general observed pattern was compared with regionally available temperature
observations for consistency.

Figure 2. Scatter of daily recordings of each station against each station (Pearson correlation 0.91).

2.4. Data Analysis

Long-term hydrological trends and their significance were computed using the non-
parametric modified Mann–Kendall test [44] to reduce the influence of serial correlation.
Additionally, the Theil–Sen robust estimate was computed [45,46] to evaluate the magni-
tude of the trend. This approach has been successfully used to assess climate developments
in numerous earlier studies (e.g., [47–50]) and was therefore applied in the current study.

Long-term trends of air temperatures were analyzed based on mean annual tempera-
tures, on the one hand, and on mean seasonal temperatures recorded at the climate station 7
on the other hand. The seasons were defined as spring (March, April, May), summer (June,
July, August), autumn (September, October, November) and winter (December, January,
February). Seasonal trends were computed as annual trends that might be balanced by
seasonal changes.

The conducted precipitation analyses comprised long-term trends of annual and
seasonal (seasons as defined above), precipitation depths, and long-term trends of pre-
cipitation intensities for different durations (60, 120, 240 min). Precipitation depth was
analyzed as the catchment mean sum (mean of the station recordings that fulfilled the vali-
dation criteria). Additionally, the trend of the number of annual wet days in the catchment
was analyzed.

Long-term trends for the catchment discharge were analyzed for gauge A, while the
remaining gauges were utilized for data validation only.

As for precipitation and temperature, long-term flow trends were also analyzed at a
seasonal scale to identify temporal shifts in stream flow behavior.

The catchment water balance was computed based on observed precipitation runoff to
assess the long-term development of actual evapotranspiration in the catchment. The com-
putation includes a number of simplifications: (i) groundwater outflow of the catchment is
not considered (no data available), (ii) land-cover changes were minor in the catchment
during the observation period and therefore not further considered, and (iii) only years are
taken into account, where available data allow for computation of annual runoff values.
The simplifications yield the following water balance:
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ET = P − R (1)

where ET is actual evapotranspiration (mm), P is observed catchment precipitation (mm),
and R is observed catchment runoff (mm). Additionally, potential catchment evapotranspi-
ration (PET) was computed based on remote sensing data from the Copernicus Climate
Data Store [51] as global radiation observations at the catchment climate station were
insufficiently complete to allow for PET computation. PET was computed according to
de Bruin et al. [52] using temperature, surface solar radiation and top of the atmosphere
incident solar radiation. This approach was selected as wind speed data recordings were
incomplete at the catchment climate station. Wind speed substantially influences PET, and
thus, this simplification may underestimate computed PET rates.

3. Results

3.1. Temperature Trends

The mean annual air temperature at the climate station 7 between 1991 and 2019 is
9.8 ◦C, with the maximum annual mean recorded in 1995 (11.5 ◦C) and the minimum
annual mean recorded in 1991 (7.6 ◦C). The long-term development of the mean annual tem-
perature shows a negative trend with decreasing annual mean air temperature recordings
(Figure 3).

While the development of annual minima shows no significant trend, annual tem-
perature maxima were increasing between 1991 and 2019. The mean annual minimum
1991–2019 is −13.4 ◦C, with the lowest recording in 2009 (−19.2 ◦C) and the highest record-
ing in 2015 (−8.3 ◦C). The mean annual maximum 1991–2019 is 32.5 ◦C, with the lowest
recording in 1997 (29.1 ◦C) and the highest recording in 2003 and 2016 (37.4 ◦C) (Figure 3).

Figure 3. Annual mean (black), maxima (red) and minima (blue) of the air temperature and their
trends 1979–2019.

The mean winter temperature between 1991 and 2019 is 0.3 ◦C shows a decreasing
trend, with the lowest value recorded in 2009 (−3.2 ◦C) and the highest recording in
1994 (2.7 ◦C). Both winter minima (mean of −13.4 ◦C, with the lowest recording in 2009
(−19.2 ◦C) and the highest recording in 2015 (−8.3 ◦C)) and maxima 1991–2019 (mean
of 16.5 ◦C, with the lowest recording in 1996 (10.6 ◦C) and the highest recording in 2011
(20.3 ◦C)) show no significant trend (Figure 4 top left).

The mean spring temperature between 1991 and 2019 is 10.0 ◦C and shows a similarly
decreasing trend as observed for winter. The lowest mean was recorded in 2009 (7.6 ◦C)
and the highest recording in 1995 (12.1 ◦C). The trend of spring minima is decreasing
around a mean minimum of −5.5 ◦C, with the lowest recording in 2018 (−16.3 ◦C) and
the highest record observed in 2011 (−1.2 ◦C). The trend of spring maxima 1991–2019 is
also decreasing around 27.0 ◦C, with the lowest recording in 1991 (23.1 ◦C) and the highest
recording in 1999 (30.9 ◦C) (Figure 4 top right).

The mean temperature during summer between 1991 and 2019 shows no trend staying
at 19.9 ◦C, with the lowest recording in 2008 (17.5 ◦C) and the highest recording in 2003
(22.2 ◦C). The trend of summer minima is also not significant at 6.3 ◦C, with the lowest
recording in 2006 (2.7 ◦C) and the highest recording in 2019 (12.7 ◦C). The trend of summer
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maxima 1991–2019 is increasing around 35.5 ◦C, with the lowest recording in 1997 (29.1 ◦C)
and the highest recording in 2003 and 2016 (37.4 ◦C) (Figure 4 bottom left).

The trend of the mean autumn temperature 1991–2019 is not significant around 9.8 ◦C,
with the lowest recording in 2008 (6.0 ◦C) and the highest recording in 1995 (13.4 ◦C).
The trend of autumn minima is decreasing around −4.9 ◦C, with the lowest recording in
2008 (−9.8 ◦C) and the highest recording in 1995 (1.0 ◦C). The trend of autumn maxima
1991–2019 is increasing around 25.7 ◦C, with the lowest recording in 2010 (22.7 ◦C) and the
highest recording in 2015 (31.5 ◦C) (Figure 4 bottom right). A comprehensive summary of
the observed temperature trends, including statistical trend properties, is given in Table 4.

Figure 4. Mean (black), maxima (red) and minima (blue) of the air temperature and the trend 1979–2019 for the winter
(top left), spring (top right), summer (bottom left), and autumn (bottom right).

Table 4. Summary of the climate variable trends for the catchment Pöllau.

Assessment Period Variable Unit Y-W Trend p-Value T-S Slope

Annual

mean air temperature (◦C) decrease 1.4E-03 −3.1E-02
minimum air temperature (◦C) no trend 2.3E-01 2.7E-02
maximum air temperature (◦C) increase 1.2E-03 6.3E-02
precipitation depth (mm) no trend 9.3E-02 6.0E-01
annual wet days (days) no trend 7.1E-01 −7.7E-02
precipitation intensity (mm/60 min) no trend 5.7E-01 4.0E-04
precipitation intensity (mm/120 min) no trend 4.3E-01 5.0E-03
precipitation intensity (mm/240 min) no trend 5.9E-01 7.0E-03
mean river flow (m3s−1) decrease 4.2E-03 −2.4E-02
minimum river flow (m3s−1) increase 5.2E-03 1.0E-03
maximum river flow (m3s−1) no trend 7.3E-01 −1.1E-01
actual evapotranspiration (mm) no trend 7.1E-01 1.3E-01
potential evapotranspiration (mm) increase 0.0E00 1.4E00

Winter

mean air temperature (◦C) decrease 1.1E-02 −3.7E-02
minimum air temperature (◦C) no trend 2.2E-01 −1.5E-02
maximum air temperature (◦C) no trend 6.5E-01 2.8E-02
precipitation depth (mm) no trend 4.5E-01 −1.5E-01
precipitation intensity (mm/60 min) increase 5.5E-04 1.7E-02
precipitation intensity (mm/120 min) no trend 5.8E-02 9.0E-03
precipitation intensity (mm/240 min) no trend 1.8E-01 1.4E-02
mean river flow (m3s−1) decrease 3.2E-03 −5.0E-03
minimum river flow (m3s−1) no trend 4.6E-01 3.0E-04
maximum river flow (m3s−1) no trend 1.8E-01 −9.0E-03
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Table 4. Cont.

Assessment Period Variable Unit Y-W Trend p-Value T-S Slope

Spring

mean air temperature (◦C) decrease 2.6E-05 −4.7E-02
minimum air temperature (◦C) decrease 1.1E-02 −4.6E-02
maximum air temperature (◦C) decrease 3.0E-04 −9.9E-02
precipitation depth (mm) no trend 3.4E-01 2.8E-01
precipitation intensity (mm/60 min) increase 3.1E-04 1.1E-02
precipitation intensity (mm/120 min) increase 7.1E-03 2.5E-02
precipitation intensity (mm/240 min) increase 1.0E-02 4.9E-02
mean river flow (m3s−1) decrease 1.1E-03 −9.0E-03
minimum river flow (m3s−1) no trend 2.4E-01 -9.0E-04
maximum river flow (m3s−1) increase 3.0E-02 3.6E-02

Summer

mean air temperature (◦C) no trend 7.9E-01 −1.0E-03
minimum air temperature (◦C) no trend 2.3E-01 −3.4E-02
maximum air temperature (◦C) increase 7.5E-05 6.3E-02
precipitation depth (mm) increase 2.5E-06 2.1E00
precipitation intensity (mm/60 min) no trend 1.3E-01 3.4E-03
precipitation intensity (mm/120 min) increase 0.0E00 5.2E-02
precipitation intensity (mm/240 min) increase 1.6E-05 5.4E-02
mean river flow (m3s−1) no trend 2.0E-01 −1.1E-02
minimum river flow (m3s−1) no trend 1.5E-01 −1.5E-03
maximum river flow (m3s−1) increase 4.4E-02 3.6E-01

Autumn

mean air temperature (◦C) no trend 8.5E-01 −5.0E-03
minimum air temperature (◦C) decrease 6.2E-03 −6.9E-02
maximum air temperature (◦C) increase 1.0E-03 6.4E-02
precipitation depth (mm) no trend 5.0E-01 −2.8E-01
precipitation intensity (mm/60 min) no trend 7.9E-01 −8.1E-17
precipitation intensity (mm/120 min) no trend 2.1E-01 −5.0E-03
precipitation intensity (mm/240 min) no trend 7.8E-01 −4.2E-04
mean river flow (m3s−1) no trend 1.6E-01 7.3E-03
minimum river flow (m3s−1) increase 8.0E-03 1.7E-03
maximum river flow (m3s−1) no trend 2.8E-01 2.9E-02

3.2. Precipitation Trends
3.2.1. Precipitation Depth

The mean annual precipitation shows no significant trend between 1979 and 2019
around 608.9 mm, with the maximum mean recorded in 2014 (807.2 mm) and the minimum
recorded in 2001 (364.3 mm). The annual maximum at a single station was recorded in 1996
at 4 (829.2 mm) and the annual minimum in 2001 at 7 (340.4 mm) (Figure 5). It is to be noted
that the circumstance in which the rain scales are not equipped with heaters allows for
the recording of only melted snowfall. Thus, winter and partly spring precipitation trends
depend both on snowfall and melting occurring. The same is true for derived precipitation
intensity trends.

The seasonal precipitation 1979–2019 shows an increasing trend for summer (June, July,
August), while no significant trend was detected for spring (March, April, May), autumn
(September, October, November), and winter (December, January, February) 1979–2019
(Figure 6).
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Figure 5. Annual precipitation of the 7 stations (25% and 75% percentile, median (red)) and trend
1979–2019 (dashed line).

Figure 6. Precipitation of the 7 stations (25% and 75% percentile, median (red)) and trend 1979–2019 (dashed line) for winter
(top left), spring (top right), summer (bottom left), and autumn (bottom right).

The mean winter precipitation in the catchment 1979–2019 was 73.3 mm, with the
highest recording in 2013 (139.5 mm) and the lowest recording in 1998 (16.3 mm) (Figure 6
top left). The mean precipitation falling in the winter season accounted for 12% of the
mean annual precipitation 1979–2019.

The mean spring precipitation accounted for 151.9 mm for 25% of the mean annual
precipitation 1979–2019. The largest spring precipitation was recorded in 1985 (272.5 mm)
and the smallest in 2003 (66.7 mm) (Figure 6 top right).

The mean summer precipitation shows a clearly increasing trend around 222.0 mm,
accounting for 36% of the mean annual precipitation 1979–2019. The largest summer
precipitation was recorded in 2018 (416.4 mm), and the smallest value was recorded in 1984
(99.1 mm) (Figure 6 bottom left).

The mean autumn precipitation 1979–2019 was around 168.2 mm, accounting for 27%
of the mean annual precipitation. The largest autumn precipitation was recorded in 1993
(273.5 mm) and the smallest precipitation in 2019 (78.7 mm) (Figure 6 bottom right).

3.2.2. Wet Days

The number of wet days in the catchment remained constant, with a mean of 78 wet
days per year (Figure 7). The highest number of wet days was recorded in 1979 with 105,
while the smallest number of rainfall days was recorded in 2019 with 54.

3.2.3. Precipitation Intensities

Precipitation intensities for a duration of 60 min showed no significant trend at an
annual level as well as for summer and autumn. However, an increasing trend was detected
for winter and spring 1979–2019. Annual intensities for a duration of 120 min showed no
significant trend as well as for winter and autumn, while spring and summer experienced
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increasing intensities (Figure 8). The trend for a longer duration of 240 min was not
significant for winter and autumn as well as annually. However, as for the duration of
120 min, intensities were increasing for spring and summer. A comprehensive summary of
the observed precipitation trends, including statistical trend properties, is given in Table 4.

Figure 7. Annual wet days recorded at the 7 stations (25% and 75% percentile, median (red)) and
trend 1979–2019 (dashed line).

Figure 8. Seasonal maximum precipitation intensities for 120 minutes of the 7 stations (25% and 75% percentile, median
(red)) and the trend 1979–2017 (dashed line).

3.3. River Flow Trends

The annual mean flow 1981–2016 at the catchment outlet A shows a decreasing trend
around 1.10 m3s−1, with the maximum mean flow observed in 1998 (3.01 m3s−1) and the
minimum mean flow observed in 2016 (0.12 m3s−1) (Figure 9 left).

Figure 9. Annual mean (black, left), minimum (blue, left) and maximum (red, right) flow at Saifenbach and linear trends
1981–2016.

Observed mean annual minimum flows were increasing 1981–2016 around 0.11 m3s−1

with the smallest recording in 2002 (0.03 m3s−1) and the largest recording in 2014 (0.24 m3s−1)
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(Figure 9 left). Observed mean annual maximum flows showed no significant trend 1981–
2016 around 31.10 m3s−1, with the largest observation in 1992 (92.14 m3s−1) and the
smallest observation in 2015 (5.61 m3s−1) (Figure 9 right).

Mean winter flows 1981–2016 show, as already observed for annual flows, a decreasing
trend around 0.51 m3s−1, with the lowest observation in the winter 2016 (0.12 m3s−1) and
the largest observation in the winter 1992 (1.99 m3s−1). Minimum winter flows showed no
significant trend 1981–2016 around 0.14 m3s−1, with the lowest flow in 2002 (0.03 m3s−1)
and the largest minimum in 2014 (0.35 m3s−1). Maximum winter flows also remained
constant 1981–2016 at 4.11 m3s−1, with the highest flow recorded in 1992 (34.28 m3s−1) and
the lowest maximum in 1984 (0.58 m3s−1) (Figure 10 top).

Figure 10. Mean (black), minimum (blue) and maximum (red) flow at Saifenbach and linear trends 1981–2016 for the winter
(top), spring (2nd from top), summer (3rd from top), and autumn (bottom).

Mean spring flows 1981–2016 were decreasing around 0.88 m3s−1, with the lowest
mean in 2002 (0.13 m3s−1) and the largest mean recorded in 1994 (5.62 m3s−1). Mean
minimum spring flows show no trend at 0.17 m3s−1, with the lowest flow occurring in 2014
(0.33 m3s−1) and the highest minimum observed in 2002 (0.05 m3s−1). Mean maximum
spring flows were increasing 1981–2016 around 8.27 m3s−1, with the largest recording in
1994 (42.42 m3s−1) and the smallest recording in 1993 (0.91 m3s−1) (Figure 10 2nd from top).

Mean summer flows 1981–2016 remained constant around 1.64 m3s−1, with the largest
summer mean flow observed in 1997 (8.07 m3s−1) and the lowest mean in the summer
2001 (0.19 m3s−1). Summer minima show no trend 1981–2016 at 0.20 m3s−1, with the
lowest observation in 2003 (0.04 m3s−1) and the highest in 1986 (1.30 m3s−1). Summer
maxima increased 1981–2016 around 26.57 m3s−1, with the largest summer flow in 1992
(92.14 m3s−1) and the lowest maximum in 1984 (0.76 m3s−1) (Figure 10 3rd from top).

Mean autumn flows showed no trend 1981–2016 around 1.08 m3s−1, with the lowest
mean recorded in 2001 (0.16 m3s−1) and the largest mean occurring in 1998 (4.35 m3s−1).
Autumn minima decreased around 0.19 m3s−1, with the smallest flow recorded in autumn
1992 (0.06 m3s−1) and the largest minimum in 1982 (0.40 m3s−1). Maximum autumn
flows remained constant 1981–2016 around 13.04 m3s−1, with the smallest maximum in
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autumn 2008 (0.73 m3s−1) and the largest autumn flow in 1998 (60.81 m3s−1) (Figure 10
bottom). A comprehensive summary of the observed runoff trends, including statistical
trend properties, is given in Table 4.

3.4. Water Balance and Evapotranspiration

Particularly in the 1990s, flow measurements at A have large gaps preventing the
computation of annual flow volumes. Thus, 21 years were available for the assessment of
evapotranspiration based on precipitation and catchment runoff (Figure 11). The mean
runoff fraction of the water balance 1981–2015 was 55% showing a decreasing trend. It is
to be noted though that fewer data were available for the time period 1981–2000 (6 years)
than for the period 2001–2015 (15 years). The highest runoff fraction was observed in 2014
with 89%, while the lowest fraction occurred in 2008 with only 30%. In absolute values, the
catchment runoff ranged between 131 and 743 mm, with a mean of 338 mm per year.

Based on long-term precipitation and runoff trends, the actual evapotranspiration
fraction showed no significant trend 1981–2015, with a mean of 45%, a minimum of
11% in 2014, and a maximum of 70% in 2008. In absolute numbers, actual catchment
evapotranspiration 1981–2015 was around 257 mm, with a minimum of 92 mm in 2014 and
a maximum of 451 mm in 2008.

Figure 11. Annual water balance as fallen precipitation (100%, blue) and runoff fraction (red). The dashed lines mark the
long-term trend of the runoff fraction (red) and the actual evapotranspiration fraction (green) 1981–2015. Missing years did
not provide sufficient runoff data for a cumulative annual runoff value.

The potential catchment evapotranspiration (PET) was computed using remote sens-
ing data for air temperature, global radiation, and top of the atmosphere solar radiation for
the period 1981–2019. Catchment PET rates show an increasing trend 1981–2019 around a
mean of 759 mm per year, with a minimum of 711 mm in 1995 and a maximum of 822 mm
in 2002 (Figure 12).

Figure 12. Annual potential evapotranspiration (PET) based on de Bruin [52] computed with remote
sensing data [51] and trend 1981–2019 (dashed line).
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4. Discussion

The mean annual air temperature in the catchment Pöllau has been decreasing since
1991, while annual minima remained constant and maxima were increasing. While the
development of minima and maxima is a common consequence of ongoing climate change
(e.g., [53,54]), the decreasing long-term development of the annual mean temperature in
Pöllau is less often confirmed by literature (e.g., [20]) as clearly more often rising temper-
atures are reported (e.g., [15,18,19,55]). For Austria, rising temperatures have also been
reported [56], which confirms that climate change impacts at the local or regional scale
differ from large-scale assessments. On the other hand, the rising maximum tempera-
tures in the catchment are in line with the APCC report [56]. It is to be noted that the
observed time series in Pöllau covers approximately 30 years and is thus rather short for
temperature change detection. It might, therefore, well be that the analyzed time period
coincided with a period where warming in the catchment did not occur (see, e.g., [57]).
This assumption is also confirmed by reports and studies addressing climate change in
Austria (e.g., [56,58,59]).

The reported climate-change-induced perturbations to precipitation patterns are far
more diverse than for air temperature. Increasing [11,23] and decreasing precipitation
rates [20,21] were reported as well as areas where no change was detected [19,20,60]. Mean
annual precipitation in Pöllau remained constant between 1979 and 2019. This observation
is confirmed by the Austrian APCC report [56], reporting increased precipitation for
the Austrian alpine areas and a decrease for South-East Austria since the beginning of
observations. The Pöllau catchment falls in between these two areas in the Eastern alpine
foothills. The seasonal precipitation analysis indicates a shift towards the summer season,
for which an increasing trend was observed. The remaining seasons (spring, autumn,
winter) showed no significant trend concerning the fallen precipitation 1979–2019. It is to
be noted that the circumstance in which the rain scales are not equipped with heaters allows
for the recording of only melted snowfall. Thus, winter and partly spring precipitation
trends depend both on snowfall and melting occurring. Seasonal shifts in precipitation
have also been reported by earlier studies (e.g., [9,10]), but it is to be noted that especially
the climate change induced impact on precipitation shows obvious regional differences [56].
Precipitation intensities for the analyzed durations were increasing for spring and summer.
While summer precipitation depth 1979–2019 was also increasing, it remained constant
for spring, allowing the assumption of a reduction of events and at the same time, a
higher event precipitation. For winter and autumn, no significant trends were detected,
as already observed for the precipitation depth in these seasons. Furthermore, for the
precipitation intensity trends, it is to be noted that snowfall was only recorded indirectly
via melted snow.

Mean river flows at gauge A decreased annually as well as for spring and summer,
while flow minima increased annually and for autumn, and flow maxima increased for
spring and summer. These observations are in line with the APCC report [56]. At the
same time, the precipitation depth increased only during the summer season and analyzed
precipitation intensities during spring and summer. The rather opposite trends for the
precipitation depth and mean river flows indicate that more water is evapotranspirated in
the catchment during the warm season, and increasing flow maxima during spring and
summer could be due to increasing precipitation intensities for the same seasons.

Based on observed catchment precipitation and runoff, the actual annual catchment
evapotranspiration showed no significant trend between 1981 and 2015. It is to be noted
though that only river flow at the catchment outlet was used for computation as subsurface
flow data were not available. PET rates show an increasing trend 1981–2019 for the catch-
ment. It is to be noted though that these rates were computed based on remote sensing
data as local ground climate data were insufficiently complete for PET computation. Fur-
thermore, the selected PET computation approach [52] did not account for wind speed, due
to missing data, and may therefore underestimate catchment PET. These observations are
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confirmed by several studies reporting similar evapotranspiration trends for the Northern
hemisphere [19,29–32] as well as by the APCC report [56].

5. Conclusions

The presented analyses of hydro-meteorological variables observed in a hydrological
research basin in Eastern Austria mostly confirm the results of earlier studies. At the same
time, the results confirm the assumption that climate change impacts vary regionally, and
large-scale assessments cannot account for site-specific conditions.

• The decreasing trend of long-term mean annual temperatures in the catchments shows
that climate change impacts can vary at the regional scale.

• The observed precipitation trends are in line with large-scale assessments, including
the study catchment. However, precipitation recordings during the cold season
were hampered by missing rain scale heaters. For a full assessment of precipitation
developments and especially seasonal changes, heated rain scales should be used.

• Climate data observations such as global radiation, relative humidity, wind speed
or soil moisture are of substantial importance to assess the drivers for the change in
climate variables. Thus, a comprehensive monitoring is required to assess not only if
but also why climate variables are changing.

• The impact of increasing precipitation intensities is seen in larger river flow maxima
during spring and summer.

• Actual catchment evapotranspiration (AET) remained constant, while potential catch-
ment evapotranspiration (PET) increased 1981–2019. It is to be noted that AET was
computed based on river runoff that was not fully available for a significant number
of years, hampering the assessment.

• The analysis of hydro-meteorological variable trends can be supported by numerical
modeling approaches to evaluate the variations in hydrological and meteorological
processes in more detail. This numerical assessment is currently conducted for the
catchment Pöllau.
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Abstract: Consistent time series rainfall datasets are important in performing climate trend analyses
and agro-hydrological modeling. However, temporally consistent ground-based and long-term ob-
served rainfall data are usually lacking for such analyses, especially in mountainous and developing
countries. In the absence of such data, satellite-derived rainfall products, such as the Climate Hazard
Infrared Precipitations with Stations (CHIRPS) and Global Precipitation Measurement Integrated
Multi-SatellitE Retrieval (GPM-IMERG) can be used. However, as their performance varies from
region to region, it is of interest to evaluate the accuracy of satellite-derived rainfall products at
the basin scale using ground-based observations. In this study, we evaluated and demonstrated
the performance of the three-run GPM-IMERG (early, late, and final) and CHIRPS rainfall datasets
against the ground-based observations over the Ziway Lake Basin in Ethiopia. We performed the
analysis at monthly and seasonal time scales from 2000 to 2014, using multiple statistical evaluation
criteria and graphical methods. While both GPM-IMERG and CHIRPS showed good agreement with
ground-observed rainfall data at monthly and seasonal time scales, the CHIRPS products slightly
outperformed the GPM-IMERG products. The study thus concluded that CHIRPS or GPM-IMERG
rainfall data can be used as a surrogate in the absence of ground-based observed rainfall data for
monthly or seasonal agro-hydrological studies.

Keywords: CHIRPS; GPM-IMERG; rainfall data scarcity; agro-hydrology; Rift Valley Lake Basin

1. Introduction

Climate change and variability trend analyses need consistent and long-term time
series climate data [1–8] that are required to study the impact of climate change on the
agro-hydrological system [9–11]. Such climate studies can benefit from the freely available
Global Climate Models (GCMs) outputs such as rainfall data. In addition, complete and
long-term rainfall data with high spatial and temporal resolutions are of importance for
water resources planning and optimization of crop water productivity especially in water-
scarce areas [12–19].

The application of the GCMs rainfall data requires long-term observed-rainfall data
for the downscaling and bias correction of coarse resolutions GCMs products into fine
resolutions [9,10]. Ground-based rainfall measurement is the most common approach
and well recognized as an accurate dataset [20,21]. However, records from the ground-
based station are inconsistent over several parts of the world, including Ethiopia [22,23].

Climate 2021, 9, 113. https://doi.org/10.3390/cli9070113 https://www.mdpi.com/journal/climate61
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Furthermore, available weather stations are inadequate and unevenly distributed to capture
rainfall spatial heterogeneity, including less accessibility in remote areas [1,24]. This
is a prominent problem, especially in developing countries, including the Ziway Lake
Basin [25,26].

The advancement and application of remote sensing technologies offer the possibility
of using remotely sensed rainfall data in places where ground-based observed rainfall data
are not available [24,27–31]. Several satellite-based rainfall products have been developed
with promising approaches for obtaining rainfall estimates at regional and global scales,
including blending the ground-based observed rainfall data with remotely sensed data [32].
Some of those satellite-based rainfall products include Tropical Precipitation Measuring
Mission Multi-Satellite Precipitation Analysis (TMPA) [33], Precipitation Estimation from
Remote Sensed Information using Artificial Neural Networks (PERSIAN) [34], Climate
Hazards Infrared Precipitation with Stations (CHIRPS) [35], and Global Precipitation
Measurement Integrated Multi-SatellitE Retrieval (GPM-IMERG) [36,37].

Globally, several researchers have evaluated the performance of GPM-IMERG rainfall
data using ground-based observations or other existing satellite-based rainfall
products [28,38–41]. For example, Tong et al. [38] evaluated the monthly performance
of the GPM-IMERG rainfall product using gauge observations at both grid and basin
scales for the Nanliu River Basin, Beibu Gulf (Southern coast of China). They concluded
that the IMERG showed a high accuracy when detecting light rainfall. Anjum et al. [28]
demonstrated IMERG-final run rainfall product estimates by comparing it with gauges and
TMPA-based real-time data over the northern highlands of Pakistan at annual, monthly,
seasonal, and daily time scale. Their study report showed that the IMERG-final run reason-
ably well performed than the TMPA-based rainfall estimates. Morsy et al. [40] compared
TMPA and IMERG rainfall datasets in the arid environment of El-Qaa Plain, Sinai. They
concluded that the IMERG data exhibit superior performance than TMPA in all rainfall
intensities. Similarly, Kawo et al. [41] evaluated GPM-IMERG early and late run rainfall
estimates with ground gauged rainfall at monthly and seasonal time scales over the Lake
Hawassa catchment, Ethiopia. They found that both IMERG-early and late run captured
the observed rainfall patterns and values during the rainy season than the dry season.

Many studies have also evaluated the performance of CHIRPS and compared it with
ground-based observations at different spatial and temporal scales [31,42–50]. For instance,
Wu et al. [50] evaluated the performance of the CHIRPS rainfall dataset against ground-
based observed rainfall data over the Yunnan Province, China at monthly, annual, and
seasonal scales. They found that CHIRPS data performed well in estimating annual and
monthly precipitation. Luo et al. [43] evaluated TRMM and CHIRPS rainfall products in the
Lower Lancang-Mekong River Basin. They reported that TRMM rainfall products outper-
formed the CHIRPS rainfall products. Further, Taye et al. [44] evaluated the performance of
CHIRPS and Multi-Source Weighted-Ensemble Precipitation (MSWEP) at a monthly time
scale over the upper Blue Nile Basin, Ethiopia. They found that CHIRPS better simulated
the magnitude of drought than MSWEP in the different elevation zones of the Upper Blue
Nile Basin. Goshime et al. [46] conducted a performance evaluation of CHIRPS rainfall
product with the gauged rainfall at monthly and daily temporal resolutions over the Lake
Ziway Basin, Ethiopia, and concluded that CHIRPS performed better at the monthly time
scale. While several studies have been conducted on evaluating the performance of IMERG
and CHRIPS, the previous studies have not simultaneously evaluated and compared the
performance of the three IMERG runs (early, late, and final) and CHIRPS at different time
scales (monthly and seasonal). Therefore, evaluating and comparing the performance of
the recently available different rainfall products at two-time scales is of interest for in-depth
and better understanding of their performance and appropriately choosing them as a sur-
rogate when ground-based rainfall observations are lacking. Such studies might also help
to identify at what time resolution the satellite-based rainfall estimates can appropriately
be used as they play a key role in simulating long-term agro-hydrological modeling and in
forecasting changes in freshwater supply and agricultural crop yields [51,52]. Thus, the
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objectives of this study were to evaluate the accuracy of the satellite-based areal rainfall
data over the Ziway Lake Basin at different time scales. We evaluated and compared the
CHIRPS and GPM-IMERG of early, late, and final runs with the ground-based observed
rainfall data from 12 gauging stations. The evaluation was performed at monthly and
seasonal time scales from 2000 to 2014. This study might be useful for the alternative
application of remotely sensed precipitation products in simulating the agro-hydrological
modeling and climate change trend assessment of the Ziway Lake Basin and elsewhere
with similar agro-hydrological conditions, in the Central Rift Valley Lake Basin of Ethiopia.

2. Data and Methods

2.1. Study Area Description

Lake Ziway Basin (LZB) is located between 38◦00′−39◦30′ East longitude and
7◦00′−8◦30′ North latitude in the Adami Tullu-Jiddo Kombolcha Woreda of the East
Shewa Zone, Oromia region, Ethiopia. The basin is about 150 km south of the capital city,
Addis Ababa. The town of Ziway (recently named Batu) is situated on the lake’s western
shore. The altitude of Lake Ziway is approximately 1636 m above mean sea level (amsl),
with a maximum water depth of 4 m, a total basin area of about 7300 km2 (Figure 1) and
a lake volume of 1.5 million cubic meters [53]. The majority of the basin is characterized
by low to moderately undulating topography but bounded by a steep slope and abrupt
faults in the eastern and southeastern escarpments, ranging from 4200 to 1600 m (Figure 1).
Lake Ziway Basin experiences the monsoon agro-climate zone characteristics. The rainfall
patterns are generally affected by the annual oscillation of the inter-tropical convergence
zone that forms wet summer from June to September [54]. The mean annual rainfall of
the basin spatially varies from 500 to 1150 mm, with a noticeable temporal variation at a
monthly time scale. The mean annual temperature ranges from approximately 15 ◦C for
the highlands to 25 ◦C close to the lake.

 

Figure 1. A map of the Ziway Lake Basin, including elevation, rivers, rainfall stations, and Lake
Ziway itself.

2.2. Data
2.2.1. Ground Observed Data

In this study, the monthly and seasonal rainfall ground-based observed data from
2000 to 2014 were used as a point of reference for evaluating the CHIRPS and GPM-IMERG.
We obtained the data from the Ethiopian National Meteorological Agency (NMA). We
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originally obtained nineteen climate stations distributed over the Ziway Lake basin with
different elevation. However, after performing quality and checking consistency of the
data, we selected 12 stations that had good quality and consistent temporal coverage
(Table 1). Then, we applied Thiessen polygon method in order to calculate the areal
weighted rainfall values of the Ziway Lake Basin (ZLB) from the 12 selected stations. Such
approach accounts for the areal coverage of each rain gauge station, the spatial distribution
and variability of rainfall for the basin [55]. The areal coverage (Thiessen polygon) of the
12 stations is shown in Figure 2.

Table 1. List of the twelve rainfall stations over the Ziway Lake Basin.

Station Name
Latitude

(in Degree)
Longitude
(in Degree)

Elevation (m)

Adamitulu 7.86 38.70 1653
Arata 7.98 39.06 1777
Assela 7.96 39.14 2413

Bui 8.33 38.55 2020
Butajira 8.15 38.37 2000
Etheya 8.13 39.33 2129

Kulumsa 8.01 39.16 2211
Meki 8.15 38.82 1662

Merero 7.45 39.37 2940
Sagure 7.77 39.15 2480

Tora 7.86 38.42 2001
Ziway 7.93 38.70 1640

Figure 2. Thiessen Polygon network of the Ziway Lake Basin.

2.2.2. Satellite Precipitation Products

In this study, we considered and evaluated two Satellite Precipitation Products (SPPs).
These are CHIRPS and GPM-IMERG.

CHIRPS Database

CHIRPS was launched in early 2014 by the Climate Hazards Group at the University
of California, Santa Barbara (UCSB). The CHIRPS precipitation dataset globally covers
50◦ S−50◦ N with a horizontal resolution of 0.05◦ for both daily and monthly time scales.
CHIRPS datasets were originally developed to support the United States Agency for
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International Development Famine Early Warning Systems Network (FEWS NET) [35] and
African Rainfall Climatology [55,56]. Nowadays, the CHIRPS dataset is available in two
sets of spatial resolutions i.e., 0.25◦ × 0.25◦ and 0.05◦ × 0.05◦ from 1981 to the present.

The CHIRPS dataset is developed based on a blend of three data sources [35]:
(i) the Climate Hazards Precipitation Climatology (CHPclim) [57], a global precipitation
climatology at 0.05◦ latitude and longitude resolution (estimated for each month based
on station data, averaged satellite observations, elevation, latitude and longitude) [35,58];
(ii) quasi-global geostationary Thermal Infrared Radiation (TIR) satellite observations,
TMPA 3B42 product [33], and (iii) atmospheric model precipitation fields from the National
Oceanic and Atmospheric Administration (NOAA) Climate Forecast System (CFS) version
2.0 [59].

According Funk et al. [35], the CHIRPS algorithm encompasses four development
processes: (i) a pentad (5 day) rainfall estimate, which is generated from the three-hourly
quasi-global geostationary TIR data of Climate Prediction Center (CPC) and the Na-
tional Climatic Data Center; (ii) a TMPA-3B42 rainfall product, which is used to calibrate
the IR pentad estimate; (iii) the calibrated IR pentad product is then multiplied with
the Climate Hazards Precipitation Climatology and subsequently divided by the long-
term mean to produce the Climate Hazards Group (CHG) IR Precipitation (CHIRP) data;
(iv) the pentadal CHIRP values are disaggregated to daily precipitation estimates based on
the daily NOAA Climate Forecast System (CFS) fields rescaled to 0.05◦ resolution. Finally,
CHIRPS is produced through blending the rainfall stations with the CHIRP data sets and
using a modified inverse distance-weighted algorithm [35].

The CHIRPS datasets include rainfall information from a large number of gauges,
which is about 1200 stations globally. It should be mentioned that a relatively large number
of rain gauge stations were used in East Africa [35]. More than 50 rain gauge stations from
the Ethiopian NMA were blended with the CHIRPS products for up-to-date evaluations of
the rainfall conditions throughout the major growing seasons of the country. The 50 stations
are updated every 10 days [60] and used to correct the CHIRPS datasets [35,49,61] Detailed
information regarding the CHIRPS rainfall products was provided in Funk et al. [35].
In this study, we used a higher resolution CHIRPS dataset with a spatial resolution of
0.05◦ × 0.05◦ and a daily time scale, which was freely downloaded from (ftp://ftp.chg.
ucsb.edu/pub/org/chg/products/CHIRPS-2.0/).

IMERG Database

The GPM-IMERG algorithm combines information from the GPM satellite group to
estimate precipitation over the majority of the Earth’s surface. The GPM-IMERG was
launched by the National Aeronautics and Space Administration (NASA) and the Japan
Aeronautics and Exploration Agency (JAXA) in 2014 [62]. This algorithm is particularly
valuable over the majority of the Earth’s surface that lacks precipitation-measuring in-
struments on the ground. In the latest release of IMERG (Version 06; V06), the algorithm
fuses the early precipitation estimates based on the TRMM satellite (2000−2014) with more
recent precipitation estimates collected during the operation based on the GPM satellite
(2014–2021). The three gridded products are commonly used for scientific research and op-
erational purposes. There are three different daily IMERG products, which include IMERG
Day 1 Early Run (near real-time with a latency of 6 h), IMERG Day 1 Late Run (reprocessed
near real-time with a latency of 18 h), and IMERG Day 1 Final Run (gauged-adjusted with
a latency of four months) products. In this study, we used the three IMERG products
(IMERG-early IMERG-late and IMERG-final run products, with a fine spatial resolution
(0.1◦ × 0.1◦), a high temporal resolution (30 min), and a spatial coverage from 60◦ S to
60◦ N, which was freely downloaded from (https://giovanni.gsfc.nasa.gov/giovanni/
(accessed on 4 February 2021)).
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2.3. Performance Evaluation Criteria

To identify the best datasets in the study area, we evaluated the performance of
CHIRPS and three IMERG (early, late, and final) products against the ground-based rainfall
data. We evaluated the monthly and seasonal time scale. We obtained monthly and seasonal
rainfall by adding up the daily values on a monthly and seasonal basis in Microsoft Excel
2019 [63], Jupyter Notebook and ArcMap used to visualize data. In Ethiopia, the climate
varies mostly with altitude. The lowland areas have hot and arid climatic conditions while
plateau areas experience a cold climate, and the season category does not constant over the
regions [64,65]. Therefore, in this study, we characterized the performance of CHIRPS and
IMERG rainfall datasets for the four seasons of the ZLB. These include Kiremt (summer;
from June to August), Tseday (spring; from September to November), Bega (winter; from
December to February), and Belg (Autumn; from March to May). Then, we evaluated the
temporal variations of rainfall for each product.

We consistently used four statistical metrics that include Percent Bias (PBIAS), Root
Mean Square Error (RMSE), Nash–Sutcliffe Efficiency (NSE), and Pearson linear Correlation
Coefficient (r) to quantitatively compare the performance of the CHIRPS and the three GPM-
IMERG rainfall products. PBIAS describes the systematic bias of the CHIRPS and IMERG
products. Positive values of PBIAS indicate an overestimation of the rainfall quantity,
whereas negative values show an underestimation of the rainfall quantity [28,66,67]. RMSE
measures the absolute error magnitude of the CHIRPS and IMERG products, with the
smaller the RMSE value, the closer the CHIRPS and IMERG measurements to the ground-
observed rainfall. NSE is a normalized statistic that determines the relative magnitude of
the residual variance compared to the measured data variance. NSE values range between
−∞ and 1, with value 1 indicating a perfect fit between the satellite-based and observed
rainfall [42,68]. The degree of linear correlation between the CHIRPS and IMERG and the
ground-based rainfall evaluated with r values ranging from −1 to 1 r value of 0 indicates
no correlation between the CHIRPS and IMERG products and the observed rainfall. On
the other hand, r values of 1 and −1 show perfect positive and negative correlations,
respectively [69,70], as summarized in (Table 2). In addition to statistical metrics, we used
graph for comparison of SPPs and observed rainfall.

Table 2. List of the statistical metrics, used for the evaluation of satellite rainfall products.

Evaluation Metrics Description Equation Unit Range Best Value

Percent Bias (PBIAS) Measure the average
tendency of the SPPs PBIAS =

n
∑

1=1
(PSi − PGi)

1
∑n

i=1 PS
× 100 NA (∞~∞) 0

Root Mean Square
(RMSE)

Measure the average
magnitude of errors RMSE =

√
n
∑

i=1
(PSi − PGi)

2 × 1
N

mm [0~∞) 0

Nash–Sutcliffe Efficiency
(NSE)

Determines the
magnitude of the
residual variance

NSE = 1 − ∑n
i=1(PSi−PGi)

2

∑n
i=1(PGi−PGmean)

2
NA (∞~1] 1

Correlation Coefficient
(r)

Indicate the relationship
between observed

rainfall data and the
SPPs products

r = ∑n
i=1(PGi−PGmean)∑n

i=1(PSi−PSmean)√
(PG−PGmean)

2
√
(PS−PSmean)

2
NA [−1~1] 1

where: PSi is rainfall from satellite and PGi the observed rainfall at ith time step (daily, weekly, monthly, or seasonal) with N pairs of data,
PGmean and PSmean are mean observed rainfall and mean satellite rainfall, respectively.

3. Results and Discussion

3.1. Spatial Rainfall Pattern Evaluation

The Ziway Lake Basin seasonal average rainfall distribution of the CHIRPS and
IMERG map was compared visually from the 2000–2014 period. Figure 3 shows the
seasonal average rainfall distribution for the main rainy (summer) and dry (winter) seasons.
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In summer (Figure 3a,b), both CHIRPS and IMERG show that the western part of the basin,
which is the eastern highlands of Gurage Zone, receives more rainfall than the eastern
part of the basin, which is the western highlands of the Arsi Zone. The spatial rainfall
distribution of both CHRIPS and IMERG is consistent with ground-observed rainfall [64].
During the winter season (DJF), a similar rainfall pattern was observed in the western and
eastern parts of the basin (Figure 3c,d). Up to 105 mm of rainfall amount is received for the
eastern and western part of the basin whereas the central and southern part of the basin
receives rainfall up to 45 mm. Overall, both CHRIPS and IMERG showed a decreasing
rainfall pattern towards the center i.e., from west to the central part of Ziway Lake Basin
(lowland). According to Hailesilassie et al. [64], the observed rainfall is mainly concentrated
in the southern and western parts of the basin, while the eastern and central rift valley (low
land areas) where the lake is located generally experience low rainfall amounts. CHIRPS
relatively well captured that pattern when compared to IMERG, which is probably due to
its high spatial resolution and blending of more stations’ data [47].

 
Figure 3. Spatial distribution of main rainy and dry season rainfall (a,c) for CHIRPS, (b,d) for IMERG
for the period 2000–2014.

3.2. Monthly Rainfall Evaluation

Comparison of the CHIRPS and IMERG (early, late, and final run) monthly rainfall
data showed a good performance over the Ziway Lake Basin. CHIRPS rainfall generally
showed a stronger correlation with the observed rainfall when compared to the three-run
IMERG’s rainfall (Table 3). The Correlation Coefficient between the early, late, and final
IMERG run rainfall and the observed rainfall was high i.e., 0.93, 0.92, and 0.85, respectively.
Compared with all IMERG (early, late, and final) products, CHIRPS products showed the
highest Correlation Coefficient (0.96) and low Percent Bias (2.22%). In comparison with the
IMERG products, the monthly CHIRPS product relatively better represented the ground-
observed rainfall values over ZLB with relatively higher r and NSE; and lower RMSE and
RBIAS. This is consistent with the previous studies of that confirmed the applicability of
CHIRPS precipitation datasets at a monthly time scale in ground-observed data-scarce
regions [22,31,46,49,64].
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Table 3. Monthly statistical performance evaluation satellite rainfall products for the Ziway Lake Basin.

SPPs r NSE RMSE (mm) PBIAS (%)

CHIRPS 0.96 0.92 17.45 2.22
IMERG-E 0.92 0.72 28.19 9.67
IMER-L 0.93 0.76 26.12 8.48

IMERG-F 0.85 0.60 34.47 13.0

Figure 4a shows the monthly rainfall values while Figure 4b, c shows the cumulative
and scatter values, respectively. The CHIRPS and IMERG-L rainfall product showed the
best performance to capture the temporal pattern of monthly rainfall. However, both
IMERG-E and IMERG-F products did not well capture the temporal variability of observed
rainfall over the study area, indicating that both somehow overestimated the observed
rainfall values. As visualized from the cumulative rainfall (Figure 4b), the CHIRPS and
IMERG-L captured the monthly cumulative observed rainfall values. The IMERG-E and
IMERG-F run smoothly captures the temporal cumulative observed rainfall compared to
the CHIRPS and IMERG-L product. As the scatter plot (Figure 4c) indicated, the monthly
CHIRPS and IMERG-L rainfall values are close to the monthly observed rainfall values.
The CHIRPS data showed capability to represent the monthly maximum observed values
compared to all the IMERG’s runs. IMERG-L data generally outperformed the IMERG-E
and IMERG-F data (Table 3).

 

Figure 4. Cont.
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Figure 4. Monthly areal rainfall (a), cumulative rainfall depths (b), the correlation between monthly satellite-derived (CHIRPS and
IMERG-(early, late, and final) run) and observed rainfall (c) from (2000–2014) over the Ziway Lake Basin.

3.3. Seasonal Rainfall Evaluation

Figure 5 shows statistical metrics used for seasonal rainfall evaluation of the SPPs
versus the ground stations. There were some slight differences between these products on
r, RMSE, NSE, and PBIAS (Figure 5a–d). The figure shows that the CHIRPS, the IMERG-E,
IMERG-L, and IMERG-F performed well. Moreover, the IMERG-E, IMERG-L, and IMERG-
F performance indicated a better relationship during the summer season with an r and NSE
values of (0.96 and 0.9 and (0.95 and 0.96), respectively, whereas CHIRPS well-performed
with a high r value of 0.92 and low bias error (−2.6) (Figure 5a–d). The three IMERG runs
underestimated the summer rainfall by −2.9% to −10%, while CHIRPS underestimated
the summer season rainfall by −12% (Figure 5d). All IMERG runs overestimated observed
rainfall by 4% to 9.7% in the winter season, whereas CHIRPS underestimated the observed
values by −2.6% (Figure 5d). When compared to IMERG runs, CHIRPS achieved higher
correlations with observed rainfall during spring, winter, and autumn seasons with r values
of 0.93, 0.97, and 0.93 (Figure 5a), respectively. The RMSE values indicated that the CHIRPS
data relatively had a small value compared to all IMERG runs, especially during the winter
and autumn seasons (Figure 5b). During the spring season, the three IMERG runs had the
same r values (0.92) and CHIRPS had (0.93) (Figure 5a).
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Figure 5. Seasonal performance evaluation indices of CHIRPS, IMERG-E, IMERG-L, and IMERG-F
run: Correlation Coefficient (a), Root Mean Square Error (b), Nash–Sutcliffe Efficiency (c), and Percent
Bias (d) for the period 2000–2014.
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A number of previous studies reported the good performance of SPPs at monthly
time scales [25,28,41,46,50,68–70]. In general, CHIRPS showed slightly better performance
than the other three IMERG runs for monthly and seasonal time scales. Previous studies
have already confirmed the superiority of CHIRPS than IMERG runs for different parts
of the world [40,71–73], including Ethiopia [31,47,49]. For example, Wedajo et al. [47]
reported better rainfall estimation by CHIRPS compared with IMERG and TAMSAT3 and
3B42/3 products for the Dhidhessa River Basin, Ethiopia. Dinku et al. [49] reported better
rainfall estimation capability of CHIRPS for east Africa compared to the African Rainfall
Climatology version 2 (ARC2) and TAMSAT3 products. The better performance of CHIRPS
has been attributed to the capability of the algorithm to integrate satellite, rain gauges,
and reanalysis products, combined with its higher spatial and temporal resolutions than
IMERG products [35].

Overall, the statistical evaluation results indicate that both CHIRPS and IMERG are
capable of estimating and detecting observed monthly and seasonal rainfall values of the
ZLB. Therefore, the monthly and seasonal CHIRPS and IMERG-F data are a reliable source
for simulating monthly and seasonal agro-hydrological processes, estimating the seasonal
crop water requirement, and accounting the stocks and fluxes of water in the Ziway
Lake Basin.

4. Conclusions

In this study, we evaluated and compared the performance of IMERG and CHIRPS
rainfall products against ground-observed rainfall data over the Ziway Lake Basin. The
analyses covered the period from 2000 to 2014 at monthly and seasonal time scales. We used
four statistical evaluation parameters: Correlation Coefficient, Nash–Sutcliffe Efficiency,
Percent Bias, and Root Mean Square Error. The two rainfall products performed well
for both monthly and seasonal time scales. Overall, while the CHIRPS’s rainfall datasets
showed slightly better performance over the IMERG’s datasets, both datasets can be used at
a monthly or coarser temporal resolution when ground-based rainfall data are not available.
This can greatly contribute to continuous spatiotemporal monitoring of drought and
helping the water managers and agricultural planners implementing mitigation measures
and improving the livelihood of the stakeholders in the basin.

The follow up research should focus on the evaluation and comparison of the grid
point satellite dataset with interposed ground station data, considering point to point
performance evaluation at daily time basis. Future evaluation studies should also include
the Climate Hazards Group Infrared Precipitation (CHIRP) satellite-only product.
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Abstract: The use of the Soil Conservation Service-curve number (SCS-CN) model for runoff
predictions after rainstorms in fire-affected forests in the Mediterranean climate is quite scarce and
limited to the watershed scale. To validate the applicability of this model in this environment,
this study has evaluated the runoff prediction capacity of the SCS-CN model after storms at the
plot scale in two pine forests of Central-Eastern Spain, affected by wildfire (with or without straw
mulching) or prescribed fire and in unburned soils. The model performance has been compared to
the predictions of linear regression equations between rainfall depth and runoff volume. The runoff
volume was simulated with reliability by the linear regression only for the unburned soil (coefficient
of Nash and Sutcliffe E = 0.73–0.89). Conversely, the SCS-CN model was more accurate for burned
soils (E = 0.81–0.97), also when mulching was applied (E = 0.96). The performance of this model was
very satisfactory in predicting the maximum runoff. Very low values of CNs and initial abstraction
were required to predict the particular hydrology of the experimental areas. Moreover, the post-fire
hydrological “window-of-disturbance” could be reproduced only by increasing the CN for the storms
immediately after the wildfire. This study indicates that, in Mediterranean forests subject to the fire
risk, the simple linear equations are feasible to predict runoff after low-intensity storms, while the
SCS-CN model is advisable when runoff predictions are needed to control the flooding risk.

Keywords: hydrological models; rainfall; surface runoff; linear regression models; curve number;
SCS.CN model; mulching; wildfire; prescribed fire

1. Introduction

The importance of forests in the climatic context at the planetary scale is well known, since
forests produce oxygen and store carbon, regulate water and energy fluxes, support biodiversity and
provide other fundamental ecosystem services [1–3]. However, the fundamental role of forests is
threatened by some natural and anthropogenic agents, such as the extreme weather events and fire,
with a long history of influence on forest ecosystems [4]. Extreme weather events (e.g., heavy storms
and severe drought) are more and more intensified by climate change trends and occur in all regions
of the world [5,6]. The fire effects extend to several components of forests, such as soil, vegetation,
air and surface water [7]. With regard to the effects on surface water and soil, fire strongly alters
the hydrological response of recently burnt areas, increasing by many folds the soil’s aptitude to
generate runoff and erosion compared the unburned forest areas [8,9]. High runoff and erosion rates in
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forests increase the flooding risk, debris flow occurrence and water quality alteration in downstream
areas, with possible loss of human lives and heavy damage to infrastructures and environment [10,11].
For instance, with regard to the Mediterranean climate, exceptionally high erosion rates (up to 100 tons
per ha) have been reported immediately after wildfire by Menendez-Duarte et al. [12] in the Iberian
peninsula, while Lopez-Batalla et al. [13] measured increases in flood runoff by 30% and in peak
discharges by 120% in the same environments. These studies together with a large body of literature
(see several examples in the milestone review of Shakesby [14]) clearly demonstrate the need to control
and mitigate the hydrological response of forest soils after the wildfire adopting prediction tools and
post-fire management actions.

The hydrological processes in forests are influenced by several factors, among which fire severity
is important [15]. In other words, the more severe the fire, the more susceptible the soil to increases
in runoff and erosion and worsening in water quality changes in the downstream ecosystems [7].
For instance, Lucas-Borja et al. [7] found increases in runoff and erosion in soil burned by wildfire by
about 20% and even 200%, respectively, compared to unburned soils in Central-Eastern Spain.

The hydrology of burned forests is very complex, since it is the product of several factors,
such as climate and edapho-climatic conditions, fire severity, soil, vegetation, morphology and land
management after fire [15–19]. The needs to predict the impacts of fire on runoff and erosion and to
implement the most effective actions for rehabilitation of fire-affected areas have increased the demand
for hydrological models [16,20]. This demand is particularly important for forest managers working in
the Mediterranean Basin, which is characterized by dry and hot summers followed by frequent and
high-intensity rains immediately after the wildfire season [15,21]. In Mediterranean areas, increases in
wildfire frequency and burned areas are expected under the forecasted climate scenarios [22,23].

In Mediterranean forests, the literature reports applications and verifications of hydrological
models with different nature and complexity: from the simplest empirical models (such as the Soil
Conservation Service (SCS)-curve number model to predict runoff, the universal soil loss equation,
USLE, to simulate soil erosion) through the semiempirical models (e.g., the Morgan–Morgan–Finney
model, MMF) until the most complex physically-based models (for instance, the Water Erosion
Prediction Project, WEPP) or even the artificial neural networks [24,25]. Nonetheless, the empirical
models are sometime more commonly used compared to the more complex models, mainly in data-poor
environments (that is, in those situations with limited availability of parameter inputs) and for quick
identification of sources of water, sediments and pollutants in forests [24–26].

Accurate predictions of surface runoff are fundamental to achieve reliable estimations of erosion
rates and water quality parameters using hydrological models [27], particularly in forests subject
to climate change and fire, since the latter factors play a large influence of the soil’s hydrological
response [28,29]. The Soil Conservation Service (SCS)-curve number (CN) model (hereinafter “SCS-CN
model”) is one of the most common methods for estimating the runoff volume generated by a
rainstorm [30,31]. The popularity of this method is due to its simplicity, ease of use, widespread
acceptance and large availability of input data [32]. Moreover, the SCS-CN model takes into account
most of the factors that influence runoff generation, such as soil type, land use, hydrologic condition and
antecedent moisture of the soil [33]. The model has also been incorporated as a hydrological submodel
in several distributed rainfall–runoff models at the watershed scale (e.g., AnnAGNPS—annual
agricultural non-point source pollution model, SWAT—soil and water assessment tool model and
HEC-HMS—hydrologic engineering center-hydrologic modeling system model), supporting its
robustness and popularity [33,34]). To date, there is no any alternative model that offers as many
advantages as the SCS-CN model, which therefore is still commonly used in the large majority of
environments and climatic conditions [35].

However, various studies conducted throughout the world on the applicability of the SCS-CN
method have suggested a need for further improvement or overhauling of the model [32,36],
since in some environments the method provides unsatisfactory predictions, particularly when
the soil’s hydrological response does not follow the runoff generation mechanism by saturation-excess.
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Moreover, in spite of the large number of requisites, the model has been surprisingly little used for
hydrological predictions in fire-affected areas, and the CN values are not completely known in burned
areas [37]. The hydrological research has been mainly carried out at the watershed scale, where
post-fire runoff has been predicted using the SCS-CN method incorporated in watershed-scale models
(e.g., WILDCAT4 Flow Model [38] and FIRE HYDRO [39]). For instance, the SCS-CN model was
used by Candela et al. [40], who analyzed the flood frequency curves for pre- and post-fire conditions,
showing an increase in the average curve numbers and a decrease in the catchment time lag. Increases
by 25 units in post-fire CNs were estimated by Soulis [37] in a small Greek watershed using pre-fire and
post-fire rainfall–runoff datasets. A daily-constant CN in the SWAT model was used by Nunes et al. [41]
to simulate the effects of soil water repellency on runoff from burnt hillslopes in a Mediterranean forest
throughout three years after fire. It is therefore evident that the modeling experiences are scarce at the
plot scale. At this scale, modeling of soil hydrology is less complex compared to the watershed scale,
where the hydrological response to Mediterranean storms is further complicated by a combination
and overlaying of several hydrological processes (e.g., water routing in the channel network, ponding
and uneven soil properties) other than surface runoff generation. Furthermore, the studies about the
hydrological effects of post-fire management on runoff in forests using the SCS-CN model are scarce.

Therefore, there is a need of further studies that must evaluate the runoff prediction capacity of
the SCS-CN model in forest hillslopes or plots affected by fire of different severity—a fire parameter
referring to the effects of wildfire on plant communities—in comparison with simpler models that
estimate runoff directly from precipitation, such as the linear regression equations. In other words,
is the SCS-CN model accurate to predict surface runoff in Mediterranean burned forests? Is it able
to simulate post-fire hydrology with or without rehabilitation management actions (such as straw
mulching) after a wildfire? When is its use convenient compared to a simpler linear regression between
rainfall and runoff?

This study aims to reply to these questions, evaluating the hydrological performance of the
SCS-CN model in two pine forests of Central-Eastern Spain affected by a wildfire and a prescribed
fire, respectively, having different fire severity. More specifically, observations of rainfall–runoff
patterns collected throughout one year in undisturbed soils (assumed as control) and in plots subject
to prescribed fire/wildfire (the latter with or without a mulching treatment) are compared with the
corresponding predictions of the SCS-CN model and linear rainfall–runoff regressions. The outcomes
of this study help land managers to adopt strategies to control the hydrological effects of fire in
Mediterranean forests.

2. Materials and Methods

2.1. Study Areas

Two experimental areas were selected in pine forests of the Province of Albacete, Castilla—La
Mancha Region, Central Eastern Spain. The first area (Sierra de las Quebradas, municipality of Liétor)
was affected by a wildfire in July 2016. The second forest (municipality of Lezuza) was subjected to
a prescribed fire in March 2016, to reduce fuel loading and thus the potential risk and severity of
subsequent fires (Figure 1). Prior to wildfire, the soil cover of the forest was mainly composed of plants,
litter and stones with variable composition.

Both study areas have a semiarid Mediterranean climate, BSk according to the Köppen–Geiger
classification [42]. The average annual rainfall and medium annual temperature are 282 (Liétor) and
450 (Lezuza) mm and 13.5 (Liétor) and 16 (Lezuza) ◦C, respectively (Spanish National Meteorological
Agency, 1950–2016). According to historical data (1990–2014) provided by the Spanish Meteorological
Agency, the maximum precipitation is concentrated in October (44.5 mm) and the minimum in May
(39.6 mm); from June to September a hot and dry period (air relative humidity below 50%) occurs.
The mean minimum temperature of the coldest month is −0.9 ◦C and the mean maximum temperature
of the hottest month is nearly 32 ◦C.
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Figure 1. Location and layout of forest plots subject to prescribed fire and wildfire and monitored for
hydrological observations (Lezuza and Liétor, Castilla La Mancha, Spain). Geographic coordinates and
map source: Lezuza X: 557588E, Y: 4306475N; Liétor: X: 600081 E, Y: 4262798 N (unburned area); X:
598358 E, Y: 4264032 N (burned area); Google Earth, last access on 6/15/2019).

2.1.1. Wildfire-Affected Forest (Liétor)

The experimental area of Liétor is located at an elevation between 520 and 770 m a.s.l. with W-SW
and N aspect and mean slope of 15–20% (Table 1). Soils are classified as Inceptisols and Aridisols with
sandy-loam texture [43].

The wildfire burned about 830 ha of the forestland (mainly Pinus halepensis Mill). The mean tree
density of this forest was between 500 and 650 trees per hectare with height between 7 and 14 m.
Rosmarinus officinalis L., Brachypodium retusum (Pers.) Beauv., Cistus clusii Dunal, Lavandula latifolia
Medik., Thymus vulgaris L., Helichrysum stoechas (L.) Moench, Macrochloa tenacissima (L.) Kunth, Quercus
coccifera L. and Plantago albicans L. are the shrub or herbaceous species of the forest. The wildfire,
classified as high-severity fire by the local forest managers according to the methodology proposed by
Vega et al. [44], determined a tree mortality of 100% (Table 1). Forest floor was about 3–5 cm deep.
This forest floor, as happened also in Lezuza, was blanketed with decaying Pinus halepensis M. needles
and twigs and other wood debris such as cones or branches coming from trees. In both sites, the forest
floor was blanketed with decaying Pinus halepensis M. needles and twigs and other wood debris such
as cones or branches coming from trees in both sites, Lezuza and Liétor. More information related to
this suggestion is provided in Table 1.

In September 2016 (two months after the wildfire), a mulching treatment was carried out in some
areas of the burned site. Barley straw was spread manually on soil at a depth of 3 cm and a rate of
0.2 kg m−2 (dry weight), following the dose proposed by different authors for forests of Northern
Spain, to achieve a burned soil cover over 80% [45].
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2.1.2. Forest Subjected to Prescribed Fire (Lezuza)

The forest area was selected in a relatively hilly area at an elevation from about 1010 to 1040 m
a.s.l., with a 50-year old mixed plantation of Pinus halepensis and Pinus pinaster. The mean slope is
around of 15% and the aspect is N-NE. Soils are classified as Alfisols with Xeralf Rhodoxeralf horizon
with clay texture [43] (Table 1).

The tree density of this forest area was about 500 trees per hectare with a mean height of 6.40 m.
The understory was dominated by Quercus faginea Lam. L., Quercus ilex subsp. ballota, Quercus coccifera
L., Juniperus oxycedrus, Brachypodium retusum P. and Thymus sp. (Table 1). Forest floor depth was about
5–7 cm.

2.2. Description of Experimental Plots and Measurement of Runoff Volume

In the two selected forests, experimental plots were installed in unburned (control) and burned
areas. Plots were randomly distributed in the experimental site in areas with the same morphological
and ecological characteristics to ensure comparability.

More specifically, in the wildfire-affected forest of Liétor, eighteen rectangular plots (20-m long
× 10-m wide) were installed at a distance between 200 and 500 m. Six plots were located in the
forest outside of the burned site and assumed as a control. Twelve plots were instead located in the
burned area, of which six were not treated, while six plots were mulched. In the forest subjected to
the prescribed fire in Lezuza, twelve plots (4-m long and 2-m wide) were isolated, of which six were
located in the unburned area and the other six in the burned site. The prescribed fire was carried
out under controlled air conditions in the forests (wind speed of 14 km/h, air temperature of 14 ◦C
and relative humidity of 63%), which are reference values for applying the prescribed fire as a forest
protection measure. The upper and side borders of all plots in both areas were hydraulically isolated
by geotextile fabric pounded into the ground, to prevent external water inputs. At the plot bottom,
runoff was collected using a metal fence conveying the water into a pipe, which discharged to a plastic
tank of 25 (Liétor) or 50 (Lezuza) liters. In these plots, immediately the runoff volumes were measured
after each rainfall event throughout an observation period of about one year (Table 2).

Table 2. Main characteristics of precipitation events in plots subject to prescribed fire and wildfire
(Lezuza and Liétor, Castilla La Mancha, Spain).

Event Date Days after Fire Rainfall Height (mm) Maximum Intensity (mm h−1)

Prescribed fire (Lezuza)
1 4 Apr 2016 5 20.0 8.8
2 6 May 2016 37 20.1 8.4
3 18 May 2016 49 10.2 4.3
4 12 Oct 2016 196 21.1 8.8
5 19 Oct 2016 203 27.4 5.3
6 8 Nov 2016 223 17.0 5.6
7 2 Dec 2016 247 52.4 4.2
8 23 Dec 2016 268 59.6 11.6
9 11 Feb 2017 318 38.2 6.3
10 4 Apr 2017 377 20.2 5.7
11 28 Apr 2017 394 28.2 6.8

Wildfire (Liétor)
1 21 Oct 2016 98 40.0 3.99
2 24 Nov 2016 129 41.0 1.48
3 8 Dec 2016 146 59.0 0.98
4 21 Dec 2016 159 93.8 2.1
5 30 Jan 2017 199 28.0 0.84
6 22 Feb 2017 222 16.8 1.14
7 8 Mar 2017 236 11.6 1.78
8 20 Mar 2017 248 102.6 16.2
9 12 May 2017 301 20.7 3.77
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A weather station (WatchDog 2000 Series model) with a tipping bucket rain gauge was placed in
each study area to measure total daily precipitation, storm duration, air temperature and rain intensity
during the study period. In the hourly rainfall series of the experimental database, two consecutive
events were considered separate, if no rainfall was recorded for 6 h or more [46,47]. The mean rainfall
intensity was the total rainfall divided by the storm duration. The main variables characterizing the
observed events are reported in Table 2.

2.3. Outlines on the SCS-CN Model

This model, proposed by the Soil Conservation Service of the United States Department of
Agriculture in 1972, hypothesizes that:

V
Pn

=
W
S

(1)

being:

• V = runoff volume (mm);
• Pn = net precipitation (mm);
• W =water volume stored into the soil (mm);
• S =maximum water storage capacity of soil (mm).

Pn is the difference between the total precipitation (P) and the initial losses (Ia, as the water storage
in the soil dips, interception, infiltration and evapotranspiration) prior to surface runoff. Ia is assumed
to be proportional to S through a coefficient λ:

Ia = λS (2)

S is given by:

S = 25.4·
(1000

CN
− 10

)
(3)

when the parameter CN is the so called “curve number”. The CN can be considered as the soil’s
aptitude to produce runoff and is a function of the hydrological properties and conditions of soil, and
land use. The CN varies between 0 and 100 (0 means that the soil does not produces runoff, 100 means
that all the precipitation turns into surface runoff and then the hydrological losses are zero).

According to this model, the runoff volume V is:

V =
(P− λS)2

P + (1− λ)S (4)

To estimate CN in agroforest areas, the soil hydrological class, vegetation cover, hydrological
condition (good, medium and poor) and cultivation practice and the antecedent moisture condition
(AMC) of the soil must be determined.

The soil hydrological class (A to D) is related to the soil’s capability to produce runoff, on its
turn due to the soil infiltration capacity. A low runoff production capability corresponds to the A soil
hydrological class, while the highest runoff capability is typical of less permeable soils D.

The actual AMC of the soil subject to a rainfall/runoff event was estimated as a function of the
total height of precipitation in the five days before the event in the two different conditions of crop
dormancy or the growing season. On this regard, three AMCs are identified:

• AMCI: dry condition and minimum surface runoff;
• AMCII: average condition and surface runoff;
• AMCIII: wet condition and maximum surface runoff.
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The SCS guidelines make the CN values available in tables for a soil of given hydrological class
and condition, vegetal cover, cultivation practice and average AMC (AMCII). The values of CNs
related to AMCI (CNI) or AMCIII (CNIII) can be calculated through the following equations:

CNI =
4.2CNII

10− 0.058CNII
(5)

CNIII =
23CNII

10 + 0.13CNII
(6)

The parameter AMC takes into account the influence of the soil water content on the hydrological
response of the soil to the rainstorm and distinguishes “dry” (AMCI), “average” (AMCII) and “wet”
(AMCIII) conditions depending on the total rainfall height of the five days before the event.

2.4. Model Implementation

2.4.1. Linear Regression between Rainfall and Runoff

A linear regression model was established between the surface runoff volume (dependent variable)
and the rainfall height (independent variable) for each event, as follows:

V = aP (7)

where:

• V = runoff volume (mm);
• P = total precipitation (mm);
• a = slope (-).

The intercept of this linear equation was forced to zero, in order to avoid runoff without
any precipitation.

2.4.2. SCS-CN Model

The SCS-CN model was first applied considering the “default” input parameters, that is, the
values of λ and CN derived from the SCS guidelines for woods (control plots) or pasture (burned plots)
for the soil hydrologic group A of the experimental soils and AMC “I” for all the modeled events (since
no or vey low precipitation was recorded in the antecedent five days). However, the runoff prediction
capacity was totally unsatisfactory using default CNs, since very large errors between predictions and
observations were achieved. Therefore, the SCS-CN model was adjusted by manual trials tuning both
λ and CN parameters until the maximum coefficient of efficiency E (see below) was achieved using
optimal λ and CN (Table 3).

Table 3. Optimal values of the Soil Conservation Service-curve number (SCS-CN) model parameters
used for runoff predictions in plots subject to prescribed fire and wildfire (Lezuza and Liétor, Castilla
La Mancha, Spain).

Input Parameter

Soil Condition

Prescribed Fire (Lezuza) Wildfire (Liétor)

Unburned Burned Unburned Burned Burned and Mulched

Soil hydrologic class A
λ 0.0001

CN 15 16 0.25 3 (27) * 3 (22) *
AMC I

Note: * indicates the CN value of the first modeled event.
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2.5. Evaluation of Model Prediction Accuracy

The runoff simulations of the linear regression equation and SCS-CN model were analyzed for
“goodness-of-fit” with the corresponding observations. More specifically, the observed and simulated
runoff volumes were visually compared in scatterplots. Then, the main statistics and the indexes of
goodness-of-fit commonly used in literature (e.g., [27,48–50]) were adopted (Table 4): (i) the maximum,
minimum, mean and standard deviation of both the observed and simulated values; (ii) the coefficient
of determination (r2); (iii) the coefficient of efficiency of Nash and Sutcliffe [51] (E); (iv) the root mean
square error (RMSE) and (v) the coefficient of residual mass (CRM, also known as “percent bias”,
PBIAS). Table 4 reports the equations and the range of variability of these indexes [52–55]. Generally
speaking, these indexes are based on the analysis of the errors between simulations and predictions of
the modeled hydrological variables.

Table 4. Indexes and related equations and range of variability to evaluate the runoff prediction
capacity of the linear regression and curve number models in forest plots subject to prescribed fire and
wildfire (Lezuza and Liétor, Castilla La Mancha, Spain).

Index Equation Range of Variability Acceptance Limit and Notes

Coefficient of
determination (r2) r2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
n∑

i=1
(Oi−O)(Pi−P)√

n∑
i=1
(Oi−O)

2
√

n∑
i=1
(Pi−P)

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
2

0 to 1 >0.5 [56–58]

Coefficient of efficiency
(E, Nash and Sutcliffe

[51]) E = 1−
n∑

i=1
(Oi−Pi)

2

n∑
i=1
(Oi−O)

2

−∞ to 1

“Good” model accuracy if E ≥
0.75, “satisfactory” if 0.36 ≤ E
≤ 0.75 and “unsatisfactory” if

E ≤ 0.36 [55]

Root mean square error
(RMSE) RMSE =

√
n∑

i=1
(Pi−Oi)

2

n

0 to∞ <0.5 of observed standard
deviation [59]

Coefficient of residual
mass

(CRM or PBIAS, Loague
and Green [50])

CRM =

n∑
i=1

Oi−
n∑

i=1
Pi

n∑
i=1

Oi

−∞ to∞

<0.25 [54]
CRM < 0 indicates model

underestimation
CRM > 0 indicates model

overestimation
[60]

Notes: n = number of observations; Oi, Pi = observed and predicted values at the time step i; O = mean of
observed values.

3. Results and Discussion

3.1. Hydrological Characterization

3.1.1. Wildfire-Affected Forest (Liétor)

During the observation period, only nine events (total rainfall of 413 mm) produced surface
runoff. For these events, precipitation height and mean intensity were in the range 11.6–93.8 mm and
0.98–28.0 mm/h, respectively. Expectedly, in the burned plots the runoff (on average 0.60 mm with a
maximum value of 2.20 mm) was higher compared to the unburned soils (average of 0.03 mm and
maximum of 0.08 mm). This may be due to the reduced infiltration and some combination of sealing,
soil water repellency, loss of surface cover and decrease in soil aggregate stability, for the loss of organic
matter [61].

In the mulched soil the mean and maximum runoff was 0.53 and 1.65 mm, respectively (Figure 2).
These volumes were lower compared to the runoff generated in the burned plots. This shows the
effectiveness of mulching as post-fire management technique to reduce the runoff generation capacity
of the burned soils. These results confirm several other studies about the efficacy of mulch application,
in order to control the hydrological response of soil after wildfires (e.g., [8,62–66]).
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Figure 2. Rainfall and runoff volumes observed in forest plots subject to prescribed fire (Lezuza, Castilla
La Mancha, Spain). Vertical bars are the standard deviations.

A sudden increase in the runoff generation capacity was evident in the first event after the
fire (21 October 2016), presumably due to the ash release (that sealed the soil) and changes in the
physicochemical properties (as the depletion in the organic matter content, which reduces the aggregate
stability of the soil) [28,67]. A temporal reduction in runoff generation was found in burned soils
(treated or not). This indicates a decrease in the hydrological response over time since the fire,
also noticed by several authors in the early storms immediately after wildfire (e.g., [68–70]). The higher
runoff is due to both the changes in soil hydrological properties and to the reduction of the vegetal
cover after fire. As a matter of fact, the development of a water-repellent layer (also due to the ash
released by fire) over the soil surface and the destruction of soil aggregates reduce water infiltration
and thus increase runoff [71,72]. Over time, the shrub and herb vegetation quickly recovery, which
decreases the runoff generation on the soil left bare by wildfire [73].

3.1.2. Forest Subjected to Prescribed Fire (Lezuza)

Sixteen storms (totaling 368 mm) produced runoff. The mean runoff from these rainfall events was
0.39 mm and the maximum was 0.69 mm. In the burned plots, the mean and maximum runoff volumes
recorded were 0.40 and 0.75 mm, respectively (Figure 3). For few events, runoff from burned soils was
lower compared to the control plots, while, for the majority of the monitored storms, the soil subjected
to prescribed fire produced noticeably more runoff compared to the unburned plots. This waiving soil
response to storms confirms the low impacts of low-intensity fires on the hydrological response of soils,
already observed by several authors (e.g., [28,74]). This means that the prescribed fire has a limited
potential to change the soil properties that drives the hydrological behavior, such as the repellency and
infiltrability. However, as observed for the wildfire, attention should be paid to the first rainfall events
occurring immediately after fire, when the removal of almost all the vegetal cover (including the litter)
may leave the soil bare and thus exposed to rainfall erosivity.
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Figure 3. Rainfall and runoff volumes observed in forest plots subject to wildfire (Liétor, Castilla La
Mancha, Spain). Vertical bars are the standard deviations.

3.2. Hydrological Modeling

3.2.1. Linear Regression

The simulation of runoff volumes gave satisfactory results for the unburned soil both in Lezuza
and Liétor, as shown by the values of E (close or over 0.75) and r2 (>0.62) indexes and the closeness
between predictions and observations (mean error of 10-15%). RMSE values (0.01, Lezuza, and 0.07,
Liétor) were under the limit of acceptance of Table 4 (half std. dev.) only for the runoffmeasured in
Lezuza (0.165), but not in Liétor (0.005). In general, the linear models tended to overestimate the runoff
volumes in unburned and burned and mulched plots (CRM < 0), while underestimating the runoff in
burned plots (CRM > 0; Figure 4). In the latter condition, the maximum runoff values were noticeably
underestimated (difference between 25 and 40%; Table 5).

The performance of the linear regression Equation (7) was only acceptable but not satisfactory
in burned soils (with or without treatment), because E (between 0.52, soil burned by wildfire, and
0.62, soil burned by wildfire and then mulched) was lower than the suggested limit of Table 4 and the
differences between the maximum values of observations and predictions were over 20%; only the mean
values were close each others (error <12%; Table 5 and Figure 5a,b); the values of RMSE, which was
acceptable in Lezuza (0.12 vs. a limit of 0.15), were 0.62 (burned and untreated plots) and 0.46 (burned
and mulched soils) and therefore were over the acceptance limit (Table 4). This limited performance
is mainly due to inaccurate prediction of the most intense rainfall–runoff event (21 October 2016),
immediately following the fire. Moreover, for the burned soils, the RMSE values were higher than 50%
of the standard deviation of observed runoff and thus not satisfactory; for soils burned by wildfire,
also the coefficient of determination was poor (r2 < 0.39). This unsatisfactory model performance is
also visually shown by the large scattering of the simulations around the regression line (Figure 5a,b),
which highlights a particular prediction inaccuracy for the first rainfall event (21 October 2016 recorded
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in Liétor). This inaccuracy is due to the soil changes induced by the wild fire (e.g., water repellency,
decreases in infiltration and interception), which alters its hydrological response to rainstorms, but
disappear some weeks or a few months after the fire [7–9,26]. Moreover, the linear equation was not
able to simulate the variability of the hydrological processes with the precipitation, since the same
runoff was observed for the same precipitation. This means that linear regressions are not able to
simulate with reliability the surface runoff produced in burned plots, although these models may give
an indication at least of the magnitude of the hydrological response of soils under different precipitation
input and conditions.

 

p

p

p

p
p

p

p
p

Figure 4. Linear regressions between observed rainfall and runoff in plots subject to prescribed fire
and wildfire (Lezuza, Left, and Liétor, Right; Castilla La Mancha, Spain). V is the runoff volume
and P is the rainfall height, while r2 and p are the coefficient of determination and the significance
level, respectively.

Table 5. Statistics and indexes to evaluate the runoff prediction capacity of linear regression models in
forest plots subject to prescribed fire and wildfire (Lezuza and Liétor, Castilla La Mancha, Spain).

Runoff Volume Mean Standard Minimum Maximum r2 E CRM RMSE

Prescribed fire (Lezuza)
Control

Observed 0.39 0.25 0.14 0.69 - - - -
Simulated 0.42 0.31 0.08 0.61 0.62 0.73 −0.08 0.07

Burned
Observed 0.40 0.16 0.19 0.75 - - - -
Simulated 0.40 0.30 0.08 0.58 0.75 0.60 0.01 0.12

Wildfire (Liétor)
Control

Observed 0.03 0.00 0.03 0.08 - - - -
Simulated 0.03 0.01 0.02 0.07 0.90 0.89 −0.07 0.01

Burned
Observed 0.60 0.04 0.72 2.20 - - - -
Simulated 0.59 0.15 0.43 1.32 0.22 0.52 0.02 0.62

Burned and mulched
Observed 0.49 0.01 0.62 1.66 - - - -
Simulated 0.55 0.14 0.40 1.23 0.39 0.62 −0.11 0.46

Notes: r2 = coefficient of determination; E = coefficient of efficiency; CRM = coefficient of residual mass; RMSE =
root mean square error.
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(a) 

 

     (b)            (c) 

Figure 5. Scatterplots of runoff observations vs. predictions using linear regressions in plots subject
to prescribed fire (Lezuza, a) and wildfire (Liétor, control soils, b, and burned soils c) (Castilla La
Mancha, Spain).

3.2.2. SCS-CN Model

The predictions of runoff volume became more accurate for the majority of fire (in terms of
severity) and soil conditions (Figure 6a,b). Compared to the linear regressions, the runoff predictions
improved in the unburned plots of Lezuza (E = 0.87 and r2 = 0.92), but slightly worsened in all the
plots of Liétor (E = 0.88 and r2 = 0.95; Table 6).
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(a) 

 

     (b)            (c) 

Figure 6. Scatterplots of runoff observations vs. predictions using the curve number model in plots
subject to prescribed fire (Lezuza, a), and wildfire (Liétor, control soils, b, and burned soils, c) (Castilla
La Mancha, Spain).

Conversely, the runoff was predicted with greater accuracy in burned soils (with or without
treatment), as shown by E > 0.80—with peaks of 0.96-0.97 after wildfire—and r2 > 0.94, these indicators
being noticeably over the acceptance limit (Table 4). The RMSE values were always lower than 50%
of the observed standard deviation (Table 6). In general, the SCS-CN model always showed a runoff
overestimation (see CRM < 0). It should be noticed that the mean runoff values were predicted
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with less accuracy compared to the linear regression equations (differences between predictions and
observations over 20% in some cases), but the SCS-CN model was much more reliable in predicting
the maximum runoff volumes (differences lower than 7% for soils burned by wildfire and 15% for
plots subjected to prescribed fire; Table 6). This indicates that, when accurate predictions of runoff are
required to control the flooding risk (linked to the highest runoff volumes), the SCS-CN should be
preferred to the simpler linear regressions.

Table 6. Statistics and indexes to evaluate the runoff prediction capacity of the curve number model in
forest plots subject to prescribed fire and wildfire (Lezuza and Liétor, Castilla La Mancha, Spain).

Runoff Volume Mean Standard Minimum Maximum r2 E CRM RMSE

Prescribed fire (Lezuza)
Control

Observed 0.39 0.14 0.25 0.69 - - - -
Simulated 0.37 0.15 0.20 0.73 0.92 0.87 0.06 0.05

Burned
Observed 0.39 0.14 0.25 0.69 - - - -
Simulated 0.41 0.18 0.21 0.79 0.95 0.81 -0.03 0.06

Wildfire (Liétor)
Control

Observed 0.03 0.03 0.003 0.08 - - - -
Simulated 0.02 0.03 0.000 0.08 0.95 0.88 0.26 0.01

Burned
Observed 0.60 0.72 0.04 2.20 - - - -
Simulated 0.47 0.70 0.00 2.06 0.98 0.97 0.22 0.16

Burned and mulched
Observed 0.49 0.62 0.01 1.66 - - - -
Simulated 0.53 0.61 0.02 1.65 0.94 0.96 -0.07 0.15

Notes: r2 = coefficient of determination; E = coefficient of efficiency; CRM = coefficient of residual mass; RMSE =
root mean square error.

Some additional considerations about SCS-CN model application in the experimental conditions
should be made.

First, very low values of CN and λ were provided in this study as input to the model, in order to
predict with accuracy runoff after the two fire-severity conditions. This means that the water losses
during and immediately after the rainfall (reflected by Ia and S, such as water storage in the soil dips,
interception, infiltration and evapotranspiration) are very high and the storms produce very small
runoff volumes. In more detail, the small CN simulates a large water storage capacity (S) of soil
through the infiltration process and λ must be decreased even by three orders of magnitude to simulate
the very low initial water losses, due to interception and evapo-transpiration.

Second, both for wildfire and prescribed fire, unrealistic input parameters are required to simulate
such a minimal runoff generation capacity of these soils. As a matter of fact, values of 15–16 (after
wildfire) or even 0.25–3 (after prescribed fire) for CN and 0.0001 for λ against common values over
30 for CN and 0.2 for λ are needed to fit the runoff predictions to the corresponding observations.
This should be taken into account when the SCS-CN model must be implemented in soils having a
small hydrological response.

Third, a unique CN value as input for the SCS-CN model is not able to reproduce the increase in
runoff immediately after wildfire. The worsening of the hydrological response of the burned soil both
after wildfire and prescribed fire has been shown by a number of studies (e.g., [9]) and particularly in
Mediterranean forests (e.g., Keizer et al. [8], in a Portuguese eucalypt forest; Lucas-Borja et al. [7,62],
in pine forests of Central Spain). This increase is mainly due to soil water repellency and vegetation
cover removal due to fires, but these effects disappear some months after fire. In order to simulate the
hydrological effects of a repellent and almost bare soil, it is necessary to increase the CNs in this so-called
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“window-of-disturbance” [15,75] up to values that may be noticeably high. Soil mulching “smoothes”
the increase in the soil hydrological response and this requires a lower increase in CN values.

4. Conclusions

This study evaluated the runoff prediction capacity of the SCS-CN model in comparison with
linear regression equations after storms in two pine forests of Central-Eastern Spain affected by wildfire
(with or without a rehabilitation treatment using straw mulching) or prescribed fire.

The simulation of runoff volumes by the linear regression gave satisfactory results only for the
unburned soils. Conversely, for the burned plots, the linear regressions failed in simulating the runoff
with reliability. The SCS-CN model was instead accurate to predict the runoff volume particularly in
burned soils, also when mulching was applied. Although the mean runoff was predicted with less
accuracy compared to the linear equations, the model performance was very satisfactory in predicting
the maximum volumes. Moreover, all the soil conditions (unburned, burned and burned and mulched)
were simulated with reliability. To reproduce the peculiar hydrology of the experimental areas, very
low values of CNs and initial abstraction were required, which may appear unrealistic; moreover, the
post-fire hydrological window-of-disturbance could be reproduced only by increasing the CN for the
storms occurring few months after wildfire.

The performances of the two tested models indicate that, in Mediterranean forests subject to the
fire risk, the use of simple linear equations is suggested for predicting runoff generated by relatively
low storms, while the SCS-CN model is more reliable and therefore advisable when runoff predictions
are needed to control the flooding risk.

Overall, the study has confirmed the viability of the SCS-CN method to reproduce the complex
hydrological response of unburned and burned (and treated or not) soils of Mediterranean forests.
Although this assumption is limited to the experimental conditions, the results are encouraging
towards larger applications of this method in other climatic and geomorphologic conditions. However,
further modeling studies are needed, in order to explore the runoff prediction capacity of the model
in fire-affected forests with different ecological and soil characteristics. These studies should also be
enlarged from the plot to the watershed scale, using more complex hydrological models based on the
SCS-CN method. Once validated in a wide range of environmental contexts, the use of these models
may support the land managers to control runoff and erosion in mountain forests that are prone to
both the wildfire and hydrogeological risks.
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Abstract: Risk analysis of water resources systems can use statistical weather generators coupled with
hydrologic models to examine scenarios of extreme events caused by climate change. These require
multivariate, multi-site models that mimic the spatial, temporal, and cross correlations of observed
data. This study developed a statistical weather generator to facilitate bottom-up approaches to assess
the impact of climate change on water resources systems for cases of limited data. While existing
weather generator models have impressive features, this study suggested a simple weather generator
which is straightforward to implement and can employ any distribution function for variables such
as precipitation or temperature. It is based on (1) a first-order, two-state Markov chain to simulate
precipitation occurrences; (2) the use of Wilks’ technique to produce correlated weather variables at
multiple sites with the conservation of spatial, temporal, and cross correlations; (3) the capability
to vary the statistical parameters of the weather variables. The model was applied to studies of
the Diyala River basin in Iraq, which is a case with limited observed records. Results show that it
exhibits high values (e.g., over 0.95) for the Nash–Sutcliffe and Kling–Gupta metric tests, preserves
the statistical properties of the observed variables, and conserves the spatial, temporal, and cross
correlations among the weather variables in the meteorological stations.

Keywords: statistical weather generator; stochastic process; Diyala River basin; Wilks’ technique

1. Introduction

Climate change impacts are of increasing concern to hydrologists who assess risks in the
management of water resources systems. Their models of climate scenarios for extreme events can
be derived from global climate models (GCMs), stochastic-statistical weather generators (SWGs),
or a combination. Although they have their own advantages, some argue that the GCM scenarios
are inadequate and limit decision-making options because they represent only specific scenarios for
climatic variability and have large uncertainties [1–6]. On the other hand, others think that SWGs can
produce a wide range of scenarios to study system responses and provide more insights about the
system performance under climate change [7–10]. The drawbacks of the SWGs are that they have a
stochastic-basis and cannot provide future change insights. Therefore, the SWGs and GCMs have
been linked to generate forecasting scenarios and to assign a probability of each SWG scenario by
fitting a distribution to the GCM outcomes [11–13]. In this way, SWGs can then be used to generate
probabilistic synthetic scenarios with the aid of the GCM information and which are statistically similar
to observed data and used to investigate which climate states cause system failure [4,14–23]. Where
historic records are limited, synthetic weather sequences based on SWGs are especially suitable [24].
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Given the previous work, the main objective of this paper is to develop a SWG that can be used in a
bottom-up approach to generate daily synthetic scenarios to evaluate the impacts of long-term climate
change on system performance and suggest robust adaptations to cope with anticipated negative
impacts that will be examined in a follow up study. Emphasis is placed on areas with low data
availability, and the model is demonstrated for Diyala River basin in Iraq for the four historic weather
variables (e.g., precipitation, maximum and minimum temperatures, and wind speed magnitude) with
daily time steps from 1948 to 2006.

2. Literature Review

Generally, SWGs can be grouped into parametric, non-parametric, and semi-parametric methods.
In the parametric method, the weather variables are assumed to fit one continuous probability
distribution or two combined distributions. The parameters are usually estimated from historic
observations [24–28]. In the non-parametric method, the weather variables are resampled from
historic observations using techniques such as empirical distributions, neural networks, and maximum
entropy bootstrap [29–32]. The semi-parametric method is a mixture between parametric and
non-parametric methods.

Albeit other approaches have their advantages, the parametric SWG in the bottom-up approach is
preferable because the parameters can be altered to simulate different weather scenarios and facilitate
climate change studies [16]. Verdin et al., [15], Furrer and Katz [18], Buishand and Brandsma [33],
Seneviratne et al., [34] noted that the non-parametric method has limitations in generating extreme
events because values can only be in the range of the observations. Using only the observed sequences
ignores climate change’s impacts on altering the intensities of the variables and is insufficient in assessing
the future response of water resources systems because it leads to single results corresponding only to
these observed sequences [22,23,25,34–36].

Most existing SWGs are for single sites and cannot capture the spatial and cross correlations
between the variables, which are essential for generating realistic climate change scenarios. Schaake
et al., [37] stated that “relationships between physically dependent variables like precipitation and
temperature should be respected”. Single site SWGs can fail to capture the extreme events of the
generated runoff, which are essential to develop realistic adaptation strategies to cope with flood and
drought events, especially where a high runoff in one sub-basin can be offset by the low runoff in
adjacent sub-basins [26,35,38].

Moreover, the misrepresentation of spatial and cross correlations (e.g., correlations between the
precipitation and temperature) leads to biased generated streamflows as this correlation determines the
water availability for evapotranspiration and snowmelt [32,39,40]. Therefore, SWGs should capture
the characteristics of each site and the spatial dependence among them.

Recently, multi-site and multi-variable SWGs have been developed using different approaches.
Steinschneider and Brown, [4] developed a semi-parametric model using a k-nearest-neighbor
resampling scheme to simulate multiple spatially distributed variables using wavelet decomposition
and autoregressive model to account for low-frequency oscillations. They used a Markov chain
of first-order with three states to identify the precipitation states (e.g., dry, wet, and extremely
wet). This model had difficulty in preserving the weather statistics besides the cross correlation.
Additionally, it is not clear how to diagnose the differences between the precipitation states (e.g., wet
and extremely wet).

Srivastav and Simonovic, [32] developed a non-parametric model using the maximum entropy
bootstrap technique to capture the time-dependent structure and statistical characteristics. They used
an orthogonal transformation to capture the spatial correlations. Even though the model preserves the
historical characteristics, Verdin et al., [15] and Chen et al., [40] showed that the maximum entropy
bootstrap technique is limited to the historical data range leading to inadequacy in climate change
studies. It is difficult to employ this model to create different climate scenarios through variations
of parameters.
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Li and Babovic, [41] proposed a two-stage parametric model using an empirical copula to generate
spatial distribution templates. Then, they developed a rank ordering technique that depended on
historic data ranks with an empirical copula technique to preserve the correlations between the
variables. The model preserves correlations between the variables and sites but is limited to the historic
record length. For example, the model cannot generate more than 30 years of simulation if the historic
observations are 30 years. Therefore, the model is not useful in areas with limited data length as an
insufficient projection length may lead to wrong conclusions in risk assessment studies [42,43].

Verdin et al., [15] presented a model using a Bayesian hierarchical technique. The precipitation
amounts are modeled using gamma distributions and maximum and minimum temperatures are
modeled using a normal distribution. The statistical coefficients within them are modeled as spatial
Gaussian processes to account for the correlations. Besides the complexity of model structure, the model
has difficulty in preserving the statistical properties of the variables (especially the standard deviation
of the minimum temperature is extremely underestimated by the model). Additionally, the model
underestimates the spatial correlation between the variables. Furthermore, their results do not
demonstrate the model’s ability to preserve the cross correlation between the variables as well as the
temporal correlation.

3. Model Description

The goal here is to develop a parametric regional weather generator (PR-WG) to generate daily
stochastic weather variables that preserve their statistical parameters, such as the mean and standard
deviations, as well as the spatial, temporal, and cross correlations among them. It should be easy
to implement and adapt by altering the statistical parameters to generate synthetic future climate
scenarios. The generated scenario must exceed the historic record length and observation range.

The novel contribution is to use a parametric approach to create a flexible model that can adapt to
any continuous probability distribution. This will enable the use of the most accurate distribution for
each weather variable, and the user can employ other distributions according to the data availability
and scope of the study.

3.1. Precipitation States

The first step in developing the PR-WG is to establish the precipitation states. They are defined
here as: wet days if the daily amounts equal or exceed 0.1 mm and dry days otherwise. This is
similar to the approach by Verdin et al., [15] and Li and V. Babovic [41]. The approach is to use the
first-order two-state Markov chain (FTMC), which is the most popular method to produce dry and
wet precipitation occurrences. It works well in different climate types and performs as well as higher
Markov chain orders [21,22].

Let S(k,t,m) denote the precipitation state (S = 0 is a dry day and S = 1 is a wet day) at spatial location
k ∈ N, time index t ∈ N in days, and month index m = {1,2, . . . 12}. The dry or wet day occurrence is
obtained from the following conditional probabilities:

Pr (S(k,t,m) = 0 |Sk,t−1,m = 0) = κ0 ; Pr (S(k,t,m) = 1 |Sk,t−1,m = 0) = 1− κ0 (1)

Pr (S(k,t,m) = 1 |Sk,t−1,m = 1) = κ1 ; Pr (S(k,t,m) = 0 |Sk,t−1,m = 1
)
= 1− κ1 (2)

where, κ0 is the probability of a dry day following a dry day, and κ1 is the probability of a wet
day following a wet day. These probabilities were estimated from the daily historical precipitation
observations for each month.

3.2. Precipitation Amount

Precipitation amounts were calculated by using the joint probability distribution between the
occurrence and amount. For example, once a wet day is predicted from the FTMC, the precipitation
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amount is calculated. A skewed normal distribution (SN) was selected because it was recommended
by other researchers and estimates the daily precipitation amount better than other distributions such
as exponential, gamma, Weibull, mixed-exponential, and generalized Pareto in capturing the mean,
standard deviation, and extreme values [20,21,36,44,45].

Let P denote the precipitation amount in mm/day and  Ψ denote the indicator of precipitation
state condition ψ. P returns to a value obtained implicitly from Equation (4) [46] if the condition ψ

holds (  [S=1]) and returns to zero otherwise
(

 [S=0]

)
, as follows:

P(k,t,m) =

{
SN (μP, σP, γP) f or  [S(k,t,m)=1]
0 f or  [S(k,t,m)=0]

(3)

θ(k,t,m) =
6

γp(k,m)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
γp(k,m)

2

(P(k,t,m) − μp(k,m)

σp(k,m)

)
+ 1

] 1
3

− 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭+
γp(k,m)

6
(4)

where θ is the matrix of the standard normal deviates θ ~ N(0,1) ε R, and μp, σp, and γp, are the mean,
standard deviation, and skew coefficient of the precipitation for month m. The values of the parameters
μp, σp, and γp were estimated from the daily historical observations using the method of maximum
likelihood estimation (MLE).

3.3. Maximum and Minimum Air Temperature

The maximum and minimum daily air temperatures are usually modeled by the normal distribution
(N) [47,48]. Let TX and TN denote the maximum and minimum daily air temperature in ◦C, respectively.
In which, TX is (and TN) is:

TX(k) ∼ N
(
μX(k), σX(k)

)
(5)

where μX and σX are the mean and standard deviation of TX, respectively. Solving Equation (5) for each
month m according to  Ψ (to account for precipitation state effects), Tx and TN can be computed as:

TX(k,t,m) = μx0(k,m) + σX0(k,m) ×  (k,t,m) f or  [S(k,t,m)=0] (6)

TX(k,t,m) = μμx1(k,m) + σX1(k,m) ×  (k,t,m) f or  [S(k,t,m)=1] (7)

TN(k,t,m) = μμN0(k,m) + σN0(k,m) × δ(k,t,m) f or  [S(k,t,m)=0] (8)

TN(k,t,m) = μμN1(k,m) + σN1(k,m) × δ(k,t,m) f or  [S(k,t,m)=1] (9)

where, μX0, μX1, μN0, μN1, σX0, σX1, σN0, and σN1 are the monthly mean and standard deviation for
the maximum and minimum air temperature (◦C/day) for S = 0 and 1, respectively, and υ and δ are
the matrices of standard normal deviates, such that υ and δ ~ N (0,1) ε R. The parameter values of
Equations (6)–(9) were estimated from the historic observations using MLEs.

3.4. Wind Speed Magnitude

Ref. [49] showed that the most accurate function to simulate the daily wind speed magnitude
(WS) is Weibull with three and two parameters, respectively, followed by gamma. Given the condition
that wind speed is affected by precipitation states and amounts [50], the selected distribution must
be decomposed into the same distribution type. As the Weibull distribution cannot be decomposed
into two Weibulls (although gamma can be [51]), wind speed magnitude was modeled by the gamma
distribution (GM) in this study. Let WS denote the daily wind speed magnitude (m/s) for k locations,
as follows:

WS(k) ∼ GM
(
α(k), β(k)

)
(10)
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where α and β are the shape and scale parameters, respectively. Similarly for the temperature, the WS
for each month m, according to  Ψ, was estimated implicitly from the following equations:

λ(k,t,m) =
β0(k,m)

−α0(k,m)

Γ
(
α0(k,m)

) ∫ WS(k,t,m)

0
hα0(k,m)−1 exp−h/β0(k,m) dh f or  [S(k,t,m)=0] (11)

λ(k,t,m) =
β1(k,m)

−α0(k,m)

Γ
(
α1(k,m)

) ∫ WS(k,t,m)

0
hα1(k,m)−1 exp−h/β1(k,m) dh f or  [S(k,t,m)=1] (12)

where α0, α1, β0, and β1 are the shape and scale parameters for S = 0 and 1, respectively, for each
month m, h is an independent parameter, and λ is the cumulative probability, which is distributed
uniformly—λ~ U [0, 1], ε R. The shape and scale parameters were estimated from the historic
observations using MLEs.

4. Model Implementation

The parametric SWG should conserve the spatial, temporal, and cross correlations of the historic
observations of the four weather variables. The concept is to study the behavior of the variates θ,
υ, δ, and λ, hereafter referred to as anomalies. The correlations between those anomalies should be
identified so the generated weather values are statistically similar to the observed values and conserve
spatial, temporal, and cross correlations. The implementation of the PR-WG consists of two stages,
namely preprocessing and postprocessing, as shown in Figure 1.

4.1. Preprocessing: Parameter Estimation and Matrix Preparation

In order to specify the wet and dry occurrences, a random uniform variate y ~U(0, 1) must be drawn
and compared with the transition probabilities obtained from Equations (1) and (2). For multi-site
precipitation, the anomalies (referred to as Y ε R) that identify the states in k locations must be
correlated so that the generated states S are correlated to the historic observations. Wilks’ method was
selected to generate correlated anomalies Y~ N(0,1) at multiple sites. It is simple and more efficient
than hidden Markov and k-nearest neighbor methods [52], accurate in generating the correlations of
monthly interstations [53], and the most cited method compared to other approaches [54].

Assume S (1,m) and S (2,m) are the precipitation states on month m at sites k = 1 and k = 2.
To generate realistic sequences of the precipitation states at these two sites, the correlation (ω) between
their corresponding anomalies Y, ω(1,2) = corr (Y(1,m), Y(2,m)) must be computed. The parameter ω
was determined by generating different sets of Ý at the two sites with different arbitrary correlation
values {ώ1, ώ2, . . . }, ώ1 =corr (Ý (1,m), Ý (2,m)), identifying the precipitation states at the two locations
Ś1 and Ś2, and calculating the corresponding correlation {έ1, έ2, . . . }, έ1(1,2) = corr (Ś(1,m), Ś (2,m)). Then,
a regression line between έ and ώ sets was fitted to identify the relationship between them. Using this
regression equation with the observed precipitation state correlation ξ, the parameter ω can then be
found. A synthetic example is shown in Figure 2a, in which selecting a 0.858 correlation between the
pair anomalies (ω) will produce 0.785 correlation between the pair states (ξ) at the two locations.

The process should be repeated for each station pair and lead to the number of realizations of k
(k-1)/2 and be repeated for each month m to create the anomalies matrix ωs ∈ R. The ωs matrix is then
used to develop Y that produces correlated precipitation states in k locations for month m, using the
multivariate normal distribution as follows,

Y = f
(
μy, Σ

)
=

1√
Σ (2π)d

exp
(
−1

2

(
y− μy

)
Σ−1

(
y− μy

))
(13)
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Figure 1. Schematic flowchart of the daily weather generation processes.

Figure 2. (a) An example of Wilks’ technique for precipitation states; (b) and (c) are examples of Wilks’
technique to obtain ϕz for Tx and WS, respectively, for station k of month m.
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The variable μy denotes the 1-D mean vector for the anomalies Y, Σ denotes the covariance matrix,
and d is an independent parameter. In this case, μ = [0, 0, . . . , 0]k×1 and the variance is 1, so the
covariance matrix Σs becomes the correlation matrix ωs.

The matrix ωs must be a positive-definite matrix (e.g., the matrix is symmetric and all its
eigenvalues are positive) to be implemented in Equation (13). Since the elements of ωs were calculated
empirically, ωs is usually a non-positive matrix. Comparing to the work of others, the most precise
method to obtain a positive-definite matrix is the iterative spectral with Dykstra’s correction (ISDC) [55],
as follows:

1) Assume ωi = ω, ΔΩi = 0, and i = 1, in which ω is a non-positive-definite correlation matrix.
2) Let Ri = ωi − ΔΩi.
3) Find Li, and Ωi, such that Ri = Ωi Li ΩT

i .

4) Replace the negative eigenvalues of Li by a small positive value to construct L+
i .

5) Set ωi+1 = Ωi L+
i ΩT

i and ΔΩi+1 = ωi+1 − Ri. Then, replace all ωi+1 diagonal elements with 1.

6) Test whether ωi+1 is a positive-defined matrix or not. If not, repeat the steps from two to six by
making i = i + 1 and ωi = ωi−1.

After generating the matrix S at k and m, the next step is to simulate the weather variables
(e.g., P, TX, TN and WS). The idea here is to examine the anomalies of these variables and generate
the weather variables with the same observation properties. To account for all the spatial and cross
correlation between the variables, their anomalies (θ, υ, δ, and λ) must be correlated. The temporal
correlation, identified by the Lag-1 day auto-correlations, for the TX, TN and WS must also be considered.
Since the precipitation amount is an intermittent variable, the auto-correlation is not considered. The
following procedure was suggested to achieve this purpose. First, arrange the weather variable matrix
V as follows, ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1
1,1

V1
2,1

V1
1,2

V1
2,2

· · · Vn
1,k

Vn
2,k

...
... . . .

...
V1

t,1 V1
t,2 · · · Vn

t,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(14)

where, V represents the observed weather variable value and n denotes the weather variable rank
(P, TX, TN and WS), n = {1, 2, 3, 4}. The total number of the rows will be T =month days × year numbers,
the columns will be K × N, and the aisle will be M. This matrix arrangement enables us to consider all
the spatial and cross correlations between the weather variables. Next, extract the anomalies matrix Z
∈ R from V using Equations (3) and (4) for P; Equations (6)–(9) for Tx and TN; Equations (11) and (12)
for the WS, after estimating their parameters (e.g., μp, σp, γp for P, μX0, μX1, σX0, σX1 for Tx, μN0, μN1,
σN0, σN1 for TN, and α0, α1 β0, β1 for the WS).

The Z matrix represents the anomalies of the weather variables and their elements have spatial,
cross-, and auto-correlation magnitudes. To generate the Z matrix with the same observation properties,
these correlations must be preserved. The first step done here was to estimate autoregressive model of
order 1, AR(1), coefficients for the anomalies (ϕz) so that the generated variables have the observed
AR(1) value (ϕv) applying Wilks’ technique. For illustration, synthetically assume that the values of
μX0, μX1, σX0, σX1 are 11.72, 9.12, 3.71, 2.21 (Co/day), respectively, and ϕv is 0.82 at station k of month
m. The adopted procedure for obtaining the ϕz is as follows:

1) Generate the standard normal random deviate set y; y ~ N (0,1).
2) Use y with Equations (1) and (2) to identify the dry and wet days.
3) Generate a standard normal random deviate set x; x ~ N (0,1).
4) Apply the AR(1) of arbitrary values between –1 and 1 (e.g., ϕ’z).
5) Obtain the anomalies z by standardizing x of Step 4.
6) Apply Equations (6) and (7) to obtain T’X.
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7) Calculate the AR (1) of TX (e.g., ϕ’v) and plot versus the ϕ’z, then regress them.
8) Use the regression equation obtained in Step 7 with the observed value ϕv (e.g., 0.82) to determine

ϕz. In this case, 0.88 (as shown in Figure 2b).

This procedure must be done for all Tx and TN of each k and m. For the WS, the procedure is
the same except for Step 5, converting x so it is uniformly distributed to get the WS anomalies. For
example, let us assume that α0, α1, β0, and β1 are 4.04, 3.22, 0.62, 0.71, respectively, and the ϕv is 0.54.
The corresponding ϕz will be 0.56, as shown in Figure 2c. This procedure allows us to preserve the
auto-correlation of Tx, TN, and the WS.

The final step of the preprocessing stage is to construct the positive-definite correlation matrix of
the variable anomalies ωV, as done for precipitation states using ISDC. Building the ωV allows us to
preserve all the spatial, temporal, and cross correlations between the variables.

4.2. Postprocessing Stage: Variable Generation

After building all matrices and estimating the parameters in the preprocessing stage, the four
weather variables can be generated for any time length of interest, as follows:

1) Use Equation (13) with ωs to generate Y anomalies that denote S. The length of Y denotes
the day number of the generated time series. In this case, the user can generate any length
(independently of the historic observation length).

2) Use Equations (1) and (2) with the estimated FTMC parameters (κ0 and κ1) to identify the dry
and wet day occurrences.

3) Apply Equation (13) with ωv to generate Z anomalies that denote the variable values. Of course,
the length of Z must be the same of Y.

4) Obtain P for the wet days using Equations (3) and (4) with the estimated parameters μp, σp,
and ιp. This will make sure the generated P have similar observed statistics.

5) Apply the AR (1) with coefficients φz for Tx, TN and the WS anomalies to consider the
auto-correlation magnitude for the variables.

6) Re-standardize the anomalies for TX and TN, as follows:

Zstd(k) =
Z(k) − μ

(
Z(k)

)
σ
(
Z(k)

) (15)

where Zstd represents the standardized anomalies Z of Step 5, and μ(Z) and σ(Z) are the mean
and standard deviation of Z, respectively.

7) Apply Zstd in Equations (6)–(9) with the estimated parameters μX0, μX1, μN0, μN1, σX0, σX1, σN0,
and σN1 to calculate Tx and TN.

8) Convert the anomalies Z of the WS to be uniformly distributed between 0 and 1 ZU, as follows:

ZU(k) = 0.5× er f

⎛⎜⎜⎜⎜⎜⎜⎝Z(k) − μ
(

Z(k)

)
√

2 σ
(

Z(k)

)
⎞⎟⎟⎟⎟⎟⎟⎠+ 0.5 (16)

9) Apply ZU in Equations (11) and (12) with the estimated parameters α0, α1, β0, and β1 to calculate
the WS. Steps 3 to 9 enable us to preserve the observation statistics of Tx, TN and the WS and
the spatial, temporal, and cross correlations with consideration of the precipitation states effects
through decomposing their distribution functions.

10) Repeat Steps 1 to 9 for all months m.
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5. Case Study and Data

The developed PR-WG was tested in the Diyala River basin, which is a transboundary basin
between Iran and Iraq with a total stream length of 217 km and basin area of 16,760 km2 above
Derbendikhan Dam, as shown in Figure 3. In previous work, Waheed et al., [5] implemented the
daily weather data (e.g., precipitation, maximum and minimum temperature, and wind speed) in
this basin at a 0.5◦ spatial resolution from 1948 to 2006 and explained the implementation procedure.
In this follow up study, the historic forcing data were used to validate the proposed PR-WG and
test its performance. The reader should refer to the original paper for more details about the data
implementation and their validation in the basin.

Figure 3. Diyala River basin in Iraq with grid-cell numbers.

6. Results and Discussion

6.1. Model Performance Evaluation

The PR-WG was tested for its daily performance with historic observations for the period between
1948 and 2006, e.g., 58 years, in a grid composed of 24 grid-cells. The Nash–Sutcliffe coefficient
efficiency (NSCE; [56]) and the Kling–Gupta efficiency (KGE; [5]) were used to evaluate the PR-WG’s
ability to produce spatially correlated precipitation states S similar to the observed values, as follows:

NSCE = 1−
∑
( Simi −Obsi )

2∑
( μsim − Simi )

2 (17)

KGE = 1−
√(
μsim

μobs
− 1

)2

+

(
σsim
σobs
− 1

)2

+ (ρ− 1)2 (18)

where Sim and Obs are the simulations (e.g., the PR-WG outcomes) and the observations of the time
index t, respectively; μobs, σobs, μsim, and σsim are the mean and standard deviation of the observations
and simulations (e.g., the PR-WG outcomes), respectively, and ρ is the correlation coefficient between
the observations and simulations.
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Figure 4 shows the comparison of 10 separate daily simulations each of the same observation
length (e.g., 58 years) of PR-WG monthly dry and wet occurrences in gray color dots. The average
of these 10 simulations is calculated and plotted in blue dots. The A 1-1 line is also plotted to ease
the comparison. It is evident that the model works well to produce the number of dry and wet days,
with KGE and NSCE values of 0.97. This result demonstrates the ability of the FTMC to produce the
precipitation states well [21,22]. Figure 5 shows a comparison of pairwise correlations of the daily
precipitation states calculated for each calendar month. It can be seen that the correlations are captured
well by the PR-WG. The overall KGE and NSCE values are 0.98 and 0.99, respectively.

Figure 4. Comparison of the daily precipitation states between the observations and simulations for all
months and grid-cells.

Figure 5. Comparison of the daily precipitation state correlation between the observations and
simulations for each month for all grid-cells.

Figure 6 demonstrates the PR-WG performance to produce the statistical parameters (e.g., mean,
standard deviation and skewness) of the four weather variables. The comparisons were done on a daily
basis at each month for the 24 grid-cells. A daily time step series of 1000 years was generated to reduce
the sampling bias and uncertainty in the simulations. However, the daily means of all variables and
the standard deviations for Tx, TN and WS were perfectly produced by the model (KGE ≈1), while σp,
and γp are reasonably preserved (KGE = 0.96 and 0.86; NSCE = 0.98 and 0.93). The slight discrepancies
are due to the stochastic nature of the process [57].
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Figure 6. Comparisons of the daily statistic parameters of the observations and simulations. (a–c) are
the mean, standard deviation, and skewness of P. (d–g) are the mean and standard deviation of Tx and
TN. (h,i) are the mean and standard deviation of the WS.

Figure 7 shows the daily median values with 0.05 and 0.95 quantiles of the daily values in
the bounded areas, and the inverse cumulative distribution function (CDF−1) of the observed and
simulated weather variables for grid-cell number 9, which is located in the basin heart (see Figure 3).
It is seen that PR-WG well preserves the daily medians for all months. Moreover, the quantile daily
estimates show good agreement with the observation quantiles, proving the model’s ability to capture
the maximum and minimum daily weather values. It is also noticeable from the inverse CDF the
observed and simulated weather values are very close, evincing the validity of the selected distribution
types. Furthermore, the simulated daily values of quantile 1 exceed the observation values which
demonstrates the model’s ability to produce values beyond the observation ranges.

Figure 7. Comparisons of the daily observed and simulated values for the medians with daily 0.05 and
0.95 quantiles in the bounded areas, and the CDF−1 for the four weather variables.

105



Climate 2020, 8, 93

Figure 8 shows the spatial and cross correlation coefficient matrices of the observations and
simulations for one month (e.g., m=1), while Figure 9 shows the spatial and cross correlation comparison
for all variables for each m calculated at daily time steps. The number of columns of the V matrix
(see Section 4.1) are 4 × 24 = 96. Therefore, the V dimensions are 96 × 96, in which the values are
from 1 to 24 for P, 25 to 48 for Tx, 49 to 72 for TN, and 73 to 96 for the WS. It can be observed from
Figure 8 that the observed correlation among the variables varies greatly across them. P and the WS
are slightly less spatially correlated as compared with Tx and TN. These facts are in line with Srivastav
and Simonovic [32] and Verdin et al. [15]. It is also noticeable from Figures 8 and 9 that the model
preserves the spatial and cross correlation well among the variables. The overall KGE and NSCE
values are 0.96 and 0.97, respectively.

 
Figure 8. Spatial and cross correlation coefficients of the daily observed (a) and simulated variables (b).

Figure 9. Spatial and cross correlation comparison of the daily weather variables for each month.

Figure 10 demonstrates the PR-WG capability to preserve the Lag-1 day auto-correlations of Tx,
TN and the WS. It is noticeable that the values differ from month to month, they are less for the WS
comparing to Tx and TN. However, the PR-WG captures these monthly variations very well regardless
of their magnitudes with the overall KGE and NSCE values of 0.97 and 0.98, respectively.

The results presented here glimpse the model capability to preserve the statistical properties of
the observations to synthesize the future scenarios. The proposed model demonstrated the Wilks
technique ability to generate anomalies similarly to the observations. It is also seen that the hybrid
structure of the AR and Wilks technique leads to generate data that preserve the temporal correlation
beside the spatial and cross correlations.

106



Climate 2020, 8, 93

Figure 10. Lag-1 day auto-correlations of the weather variables Tx, TN, and WS, respectively,
for all months.

The key advantage of PR-WG is that it is built to be a general model through studying the
observation anomalies and mimicking them. Therefore, the model is anticipated to work well in
different climate zones and topographies regardless of the data spatial and temporal scale. The model
framework is flexible enough for locations observe short-term and long-term variations. Moreover,
the user can reduce the cycle data length to meet their scope. e.g., they can use a data window of two
weeks (or a week) instead of the monthly window that was used in this study. The computational
expensive of implemented the pre-processing stage has to carefully examined.

6.2. Model Validation

In some cases, the proposed SWG produces negative daily values for precipitation. [58] indicated
that the SN is not suitable when the skewness is greater than 4.5. However, in the study area, values of
the skewness have not exceeded 4.5 (see Figure 6c), therefore the SN is applicable. The negatives of
the daily values were checked and found to be less than 3% of the whole 1000-year time series in the
24 grid-cells. The suggestion of [32] to round the negative values to zero was considered, but it would
affect the number of wet and dry calculations and the statistical parameters of precipitation. Instead,
the negatives were rounded to 0.1 mm/day, which is assumed to be the minimum precipitation amount
(see Section 3.1). This correction approach for negative values illustrates the slight differences in the
simulated σp and γp (see Figure 5b,c). The user could apply another distribution function in cases
where the SN is not applicable such as mixed-exponential [59,60], log-normal, gamma, etc. The key
advantage of PR-WG is its flexibility in adopting any distribution of interest, such as these.

The second validation was done by checking if TN is greater than Tx and was found to be less
than 1% of the whole 1000-year time series in the 24 grid-cells. [41] suggested to force Tx to be greater
than TN through setting TN equal to Tx minus 1. This procedure will affect the auto-correlation of the
TN. Instead, the Chen et al., [57] approach was applied as follows, if Tx < TN,

TX(k,t,m) = TN(k,t,m) + (μμx(k,m) − μμN(k,m)) +
√
σ2

X(k,m)
− σ2

N(k,m)
× zstd(k,t,m) f or  [σX (k,t,m)≥σN (k,t,m)]

(19)

TX(k,t,m) = TN(k,t,m) + (μμx(k,m) − μμN(k,m)) +
√
σ2

X(k,m)
− σ2

N(k,m)
× zstd(k,t,m) f or  [σX (k,t,m)<σN (k,t,m)]

(20)

Equations (19) and (20) are conditioned on the precipitation states. For example, the σ and μ will
turn to condition 0 if S = 0. In this case, the TX is guaranteed to be greater than TN and the auto, spatial,
and cross correlations are preserved since they are multiplied by the anomalies zstd.

6.3. Model Comparison

For comparison purposes, two SWG models were selected to compare their performances with
the PR-WG to further demonstrate the model applicability. The first model is the single site weather
generator (WG) developed by Chen et al., [57] and Chen et al., [61]. The second is the two stages weather
generator using an empirical copula (EC) approach developed by Li and Babovic [41]. To highlight
the unique contribution of the PR-WG model, we focused on the model performances to maintain
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the spatial, cross, and temporal correlations. Figure 11 shows the daily performances of the WG and
EC to for the spatial and cross correlations, while Figure 12 shows the temporal correlations for the
sites and month. It is seen that the EC model works well in preserving the spatial, cross, and temporal
correlation; the PR-WG is slightly superior to it. However, the KGE and NSCE for the spatial and
cross correlations are 0.92 and 0.93, and for the temporal 0.95, and 0.96. It also notable that the WG
model poorly preserves the spatial and cross correlations but has good ability to preserve the temporal
correlation. This is because the model accounts for the temporal correlation only, where the simulated
data were generated independently for all variables and sites which leads to poor spatial and cross
correlation accuracy. The KGE and NSCE for the spatial and cross correlations are −0.29 and −8.3, and
for the temporal 0.88, and 0.89. Although the EC approach works well in general, the only drawback
is that its simulation time period must be identical to the historic observation, which prevents its
usage in areas with limited data availability. This is because the post processing stage of the EC
model employs a re-ranking technique that extracts the ranked variables directly from the historic
observations. Therefore, the model length can only be the same as the historic observations, leading to
less flexibility for future scenarios, especially in data scarce regions. The PR-WG has the advantage of
producing the simulation length of interest, making it useful in areas with limited data availability
besides maintaining the statistical characteristics.

Figure 11. Performance evaluation for empirical copula (EC) and weather generator (WG) models for
preserving the spatial and cross correlations of the weather variables for each month.

Figure 12. Monthly performance evaluation for EC and WG models for preserving the temporal
correlation (Lag-1 day) of the weather variables.

6.4. Simulation of the Future Forecasting Scenarios

The goal of the PR-WG is to be used later for climate variation assessments. The advantage of
the model, besides the ability to preserve the statistical characteristics, is its flexibility to alter them to
produce a wide range of different scenarios. However, defining the future scenario ranges to test a
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water resources system’s performance in terms of the climate stress is a difficult task and dependent on
many factors, including expert opinions [4].

These future scenarios will be applied in the Diyala River basin to discover the vulnerability of
the Derbendikhan Dam and its reservoir. Moreover, different adaptation strategies will be suggested
in order to test their capabilities to improve the system performance. Since the model is implemented
on a stochastic basis, the future trend insights will be obtained from analyzing the GCM models.
Then, this can be fed into the PR-WR to mimic the future trend as well as the statistical properties.
For instance, multiplicative factors for the precipitation mean will be applied starting from a 0% change
in the historical precipitation and annual linearly increasing (or decreasing) up to the specified value in
the final period (e.g., +30% of the historical value). Forms other than the linear change can also be
applied to synthesize the future forecast data.

7. Conclusions

It was shown that a PR-WG accurately preserves the statistical properties (mean, standard
deviation, and skewness coefficient) of the weather variables (overall KGE and NSCE test values were
0.98). The PR-WG also preserves the spatial, temporal, and cross correlations among the weather
variables. While other SWGs may have more features, the one developed in this study enables a
bottom-up vulnerability assessment study to be implemented in areas with limited data availability.

The PR-WG effectively estimates the dry and wet day occurrences using a FTMC with overall
KGE and NSCE values of 0.97, a result that is in line with those in [21,22]. The results also demonstrate
the effectiveness of Wilks’ technique to produce spatially correlated precipitation states (KGE of 0.98;
NSCE of 0.99) and spatially and cross correlated weather variables (KGE of 0.96; NSCE of 0.97), as well
as temporally correlated variables (KGE of 0.97; NSCE of 0.98). The model is also capable of preserving
the maximum and minimum daily weather values as well as producing values beyond the observed
ranges. Furthermore, the PR-WG outperforms the EC and WG models in preserving the spatial, cross,
and temporal correlations in the meteorological stations.

While the PR-WG was validated in the Diyala River basin, it should be effective and applicable in
other places and with other weather variables, such as solar radiation. The advantages of PR-WG are its
flexibility to select any distribution function for each weather variable, ability to simulate any number
of years within or beyond the historic observation length, capability to generate values outside the
observation range, and its ability to produce synthetic scenarios through the alteration of the weather
variable parameters for the study of climate change’s impacts. The PR-WG is easy to construct and
understand with little computational intensity to build the spatial and cross correlation matrices of the
anomalies. Increasing computational power will facilitate the work.
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