
Edited by

Evolutionary 
Ecology of Lizards

Francisco Javier Zamora-Camacho, Mar Comas

Printed Edition of the Special Issue Published in Diversity

www.mdpi.com/journal/diversity



Evolutionary Ecology of Lizards





Evolutionary Ecology of Lizards

Editors

Francisco Javier Zamora-Camacho

Mar Comas

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editors

Francisco Javier Zamora-Camacho

Universidad Complutense de Madrid

Spain

Mar Comas

Universidad de Granada

Spain

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Diversity (ISSN 1424-2818) (available at: https://www.mdpi.com/journal/diversity/special issues/

evolutionary ecology lizards).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-4051-1 (Hbk)

ISBN 978-3-0365-4052-8 (PDF)

Cover image courtesy of Mar Comas

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.





Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Francisco Javier Zamora-Camacho and Mar Comas

Evolutionary Ecology of Lizards: Lessons from a Special Issue
Reprinted from: Diversity 2021, 13, 565, doi:10.3390/d13110565 . . . . . . . . . . . . . . . . . . . 1

Lee Grismer, Perry L. Wood Jr., Nikolay A. Poyarkov, Minh D. Le, Suranjan Karunarathna,

Siriwadee Chomdej, Chatmongkon Suwannapoom, Shuo Qi, Shuo Liu, Jing Che, Evan S. H.

Quah, Fred Kraus, Paul M. Oliver, Awal Riyanto, Olivier S. G. Pauwels and Jesse L. Grismer

Karstic Landscapes Are Foci of Species Diversity in the World’s Third-Largest Vertebrate Genus
Cyrtodactylus Gray, 1827 (Reptilia: Squamata; Gekkonidae)
Reprinted from: Diversity 2021, 13, 183, doi:10.3390/d13050183 . . . . . . . . . . . . . . . . . . . 5

Daniel Escoriza and Félix Amat

Habitat Partitioning and Overlap by Large Lacertid Lizards in Southern Europe
Reprinted from: Diversity 2021, 13, 155, doi:10.3390/d13040155 . . . . . . . . . . . . . . . . . . . 21

Eric J. Gangloff, Sierra Spears, Laura Kouyoumdjian, Ciara Pettit and Fabien Aubret

Does Hyperoxia Restrict Pyrenean Rock Lizards Iberolacerta bonnali to High Elevations?
Reprinted from: Diversity 2021, 13, 200, doi:10.3390/d13050200 . . . . . . . . . . . . . . . . . . . . 33

Gregorio Moreno-Rueda, Senda Reguera, Francisco J. Zamora-Camacho and Mar Comas

Inter-Individual Differences in Ornamental Colouration in a Mediterranean Lizard in Relation
to Altitude, Season, Sex, Age, and Body Traits
Reprinted from: Diversity 2021, 13, 158, doi:10.3390/d13040158 . . . . . . . . . . . . . . . . . . . 47

Naiane Arantes Silva, Gabriel Henrique de Oliveira Caetano, Pedro Henrique Campelo,

Vitor Hugo Gomes Lacerda Cavalcante, Leandro Braga Godinho, Donald Bailey Miles,
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Regardless of taxonomical disquisitions on its yet unraveled phylogenetic relation-
ships within and among taxa [1], the Lacertilia constitute one of the most successful clades
within vertebrates. With above 6000 extant species, not only have lizards (as these ani-
mals are broadly referred to in common parlance) undergone an outstanding degree of
diversification, but this comes along with adaptations that allow them to thrive in most
terrestrial habitats worldwide and occupy astonishingly diverse ecological niches [2]. With
the exception of Antarctica, lizards are represented in all continents, where they can be
found from the seashore to alpine elevations, in a wide array of habitats encompassing
deserts, temperate and tropical forests, meadowy, sandy or rocky grounds, and virtually
all terrestrial landscapes available [2].

However, not all these habitats are equally relevant in lizard evolutionary history and
speciation processes. Although reproductive isolation is deemed one of the most important
motors of speciation, the reality is more intricate than that, and involves other variables lim-
iting or potentiating gene flow [3]. Ultimately, reproductive isolation cannot simplistically
be regarded as categorical: factors affecting the actual degree of gene flow impairment, the
recurrence of isolation events, and their persistence through time determine the probability
of speciation to culminate [4]. Therefore, habitats that are structured into fragmented land-
scapes, capable of acting as ecological islands, can be especially prone to promote radiation.
That is the case of karstic landscapes, which constitute a mosaic of isle-like fragments
composed of caves, hills, and towers where crevices abound and provide multitude of mi-
crohabitats that might boost speciation. This prediction was confirmed by Grismer et al. [5]
in this Special Issue. In their work, they analyzed habitat preferences of 344 Cyrtodactylus
gecko species (one the most diverse genera within vertebrates, distributed in Asia and
Oceania), accounting for a phylogenetic reconstruction of the clade using mitochondrial
DNA [5]. They concluded that not only is the preference for karstic landscapes the norm,
but it also represents the ancestral condition, which confirms karsts as a major trigger of
lizard diversity [5].

Notably, diversity of species with similar ecological requirements may result in conflict-
ing forces for spatial distribution. According to contemporary niche theory, populational
expansion and contraction processes interact with resource supply ratios and requirement
overlaps to determine the probabilities of coexistence among species [6]. Rarely are these
processes stagnant, as the establishment of biogeographical limits among species is usually
the outcome of complex intra and interspecific dynamics that are not alien to phyloge-
netic relationships: more related species are more likely to overlap in their ecological
requirements [7]. These premises were the foundation of the contribution by Escoriza and
Amat [8] to this Special Issue. In their article, they categorized the niches occupied by the
largest Lacertid lizards in Southwestern Europe according to climate and vegetation cover,
controlled for a mitochondrial-DNA based phylogeny [8]. Their results underscore the
key role of climate structuring species segregation, as well as the influence of vegetation
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cover maintaining partition within the overlapped areas [8]. They also confirmed that
overlapping tends to be greater in closely-related species [8].

A way to escape overlapping could be specialization, be it by evolving disparate
diets, by segregating activity periods, or by establishing in habitats where interspecific
competitors are scant or even absent [9]. That could be the case of high-elevation specialists.
While lizards at high elevations may enjoy competition release [10], they may also face
harsh conditions such as reduced temperature, shrunk activity-time window, food scarcity,
and low partial pressure of oxygen [11]. Surviving these extreme conditions could require
a series of changes at the morphological, behavioral, or physiological level. If these changes
are not plastic, the reversibility of the elevational ascension could be at stake. In their article
published in this Special Issue, Gangloff et al. [12] tested whether Iberolacerta bonnali lizards,
whose distribution range is confined to high elevations in the Pyrenees, have adjusted
their physiology to low partial pressure of oxygen to such extent that a transplant to low
elevation conditions would affect other aspects of their physiology. Gangloff et al. [12]
detected that, compared with conspecifics maintained within their natural elevation range,
translocated lizards select lower body temperatures in a controlled experiment, and that
their locomotor performance at high body temperatures is impaired, which is consistent
with a physiological adaptation to low partial pressure of oxygen making them obligatory
high-elevation dwellers.

In other instances, however, the occupation of such extreme habitats as high elevations
is facultative, which clears the way for comparative research lines: due to the aforemen-
tioned elevational shifts in environmental conditions, species that exist along elevational
gradients provide exceptional scenarios for a wide array of evolutionary hypotheses [13].
Although special priority has been given to those particular traits that allow organisms
to cope with the varying parameters described, other features whose potential link with
elevation is less obvious have received little attention. That is the case of coloration. Most
research on elevational variation in ectotherms’ coloration focuses on melanization as a
mechanism to improve heating in low-temperature environments, in light of the thermal
melanism hypothesis [14]. Meanwhile, other color traits have been virtually neglected.
In the article they contributed to this Special Issue, Moreno-Rueda et al. [15] advanced
the filling of this research gap by studying various correlates of ornamental coloration
of Psammodromus algirus lizards in the context of a 2200 m elevational gradient in Sierra
Nevada mountains (SE Iberian Peninsula). Moreno-Rueda et al. [15] detected that the
number of blue lateral eyespots decreases with increasing elevation, whereas throat color
becomes more saturated. Along with the presence of a color patch in the mouth com-
missures, these traits indicate larger heads, while throat saturation and the occurrence of
colored commissures are greater in older individuals [15]. Additionally, males have more
eyespots, whereas the presence of a colored commissure is less frequent in females [15].
These findings suggest that different color patches may convey redundant information
whose perceptibility can be tuned to different environmental or social circumstances. With
elevation, both biotic and abiotic factors change, as well as the perceptibility of signals,
with weather conditions, depending on altitude. Different perceptibility depending on
light or weather conditions may strengthen the importance of the redundant information
contained in different signals [15].

While lizards possess some traits, such as coloration, that are universal, or at least
widespread, in the animal kingdom, others are, if not unique, restricted to a few taxa. One
example is autotomy, which involves the capability of some animals to self-detach a body
part to escape a predator’s grasp [16]. Although the appendage released is usually not
essential for life, autotomy oftentimes comes with a series of costs that could negatively
redound upon the individual’s fitness [17]. In the case of lizards, numerous species
possess autotomic tails, whose loss is foreseeably accompanied by a reduction in locomotor
performance [16,17]. However, this rule could not be universal. In this Special Issue, Silva
et al. [18] published a work that tests whether caudal autotomy affects locomotion in
the South American lizard Micrablepharus atticolus, a semifossorial species with reduced
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limbs that combines undulant movements with trot-like locomotion. They discovered
that sprint speed was not affected by autotomy in this species, whereas it varied among
collection sites, and was dependent on body temperature, body mass, reproductive status,
and the length of the regenerated portion of the tail [18]. The latter results largely confirm
well-known predictors of locomotor performance in animals. However, the lack of effect of
tail autotomy on sprint speed suggests a role for the locomotion mode and the microhabitat
used.

To conclude, lizards constitute exciting investigation subjects in evolutionary ecology
for innumerable reasons (e.g., [19]). Facts as disparate as the complex relationships between
the habitats they occupy and their diversification history, the ecological patterns of spatial
segregation among species, the physiological strategies permitting their occurrence in
extreme habitats, the intricate components of visual communication, and the potential
consequences of extreme antipredator strategies have been explored in this Special Issue. In
doing so, it has accomplished its crucial goal of bridging and forwarding the knowledge on
the diverse disciplines of ecology to which the study of lizards represents an outstanding
contribution.

Author Contributions: Conceptualization, F.J.Z.-C. and M.C.; writing-original draft preparation,
F.J.Z.-C.; writing-review and edition, F.J.Z.-C. and M.C. All authors have read and agreed to the
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Abstract: Karstic landscapes are immense reservoirs of biodiversity and range-restricted endemism.
Nowhere is this more evident than in the world’s third-largest vertebrate genus Cyrtodactylus
(Gekkonidae) which contains well over 300 species. A stochastic character mapping analysis of
10 different habitat preferences across a phylogeny containing 344 described and undescribed species
recovered a karst habitat preference occurring in 25.0% of the species, whereas that of the other eight
specific habitat preferences occurred in only 0.2–11.0% of the species. The tenth category—general
habitat preference—occurred in 38.7% of the species and was the ancestral habitat preference for
Cyrtodactylus and the ultimate origin of all other habitat preferences. This study echoes the results
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of a previous study illustrating that karstic landscapes are generators of species diversity within
Cyrtodactylus and not simply “imperiled arks of biodiversity” serving as refugia for relics. Unfortu-
nately, the immense financial returns of mineral extraction to developing nations largely outweighs
concerns for biodiversity conservation, leaving approximately 99% of karstic landscapes with no legal
protection. This study continues to underscore the urgent need for their appropriate management
and conservation. Additionally, this analysis supports the monophyly of the recently proposed
31 species groups and adds one additional species group.

Keywords: Indochina; Southeast Asia; phylogeny; Indo-Australian Archipelago; Bent-toed geckos;
karst; conservation

1. Introduction

The dramatic topography of karstic landscapes composes some of the most surreal
images of our world and has stirred the emotions of ancient artisans and natural historians
for time on end. But not only are these crenulated, repeating layers of rugged terrain
steeped in natural beauty (Figure 1), they are the only refuge for some of the most seriously
endangered species on the planet [1]. Asia contains 8.35 million km2 of karstic habitat
with some of the most extensive concentrations ranging from China to western Melanesia
(Figure 2). These formations are notable for their fragmented, island-like nature, with
hills, caves, and towers forming archipelagos of habitat-islands stretching across broad
geographic areas. This, and their fractured and eroded surfaces—which provide a myriad of
microhabitats in which many taxonomic groups have specialized—have contributed to their
extraordinarily high degrees of range-restricted endemism [2–5]. Karst formations are often
referred to as “imperiled arks of biodiversity” [5]. However, a stochastic character mapping
analysis of habitat preference using 243 species of the gekkonid genus Cyrtodactylus—
the third most speciose vertebrate genus on the planet—indicated just the opposite [6].
Grismer et al. [6] demonstrated that karstic landscapes not only harbor range-restricted
endemics, but have been the foci of speciation for the largest independent gekkonid
radiations across all of Indochina and Southeast Asia. They went on to show that even in
this ecologically labile genus, karst-associated species outnumbered by threefold all other
species bearing other specific habitat associations. As such, this has transformed our view
of karstic landscapes from that of “limestone museums” harboring relictual endemics, to
platforms of speciation and generators of biodiversity across a broad taxonomic landscape
(e.g., [7–10]).

 

Figure 1. The Dragon Back karst formation in Perlis State, Peninsular Malaysia.
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Figure 2. The distribution of karstic landscapes throughout Indochina and the Indo-
Australian Archipelago.

Cyrtodactylus is by far the most speciose and ecologically diverse gekkotan genus [6,11].
It currently contains 306 nominal species (as of 14 February 2021; [12]) ranging from South
Asia to Melanesia (Figure 3) where they occupy a vast diversity of habitats. As would
be expected from a group this large and widely distributed, it bears a broad variety
of ecotypes ranging from short robust terrestrial species to cryptically colored arboreal
species to gracile cave-dwelling and karst-adapted specialists (e.g., [13–21]; Figure 4). The
annual rate at which new species are being described is unprecedented and shows no
signs of leveling off (Figure 5) and the majority of the most recently described species are
associated with karst formations. In some cases, multiple species from distantly related
clades may be found throughout a single karstic archipelago [14,20], and even more
remarkable, different species from distantly related clades may even occupy the same small
karst formation [14,20]. The intent of this paper is to test, (1) whether or not the same
clades bearing the same specific habitat preferences presented by Grismer et al. [6] are
recoverable, (2) whether or not the relative frequencies of species in each habitat preference
category are not significantly different than that reported by Grismer et al. [6], (3) and
specifically, is the hypothesis that karstic landscapes are generators of biodiversity further
supported. We test these hypotheses by augmenting Grismer et al.’s [6] original phylogeny
of 243 species with an additional 101 species (a 44% increase in species coverage) and by
adding a new category of habitat preference. Additionally, with this significant influx of
species, we test the monophyly of the 31 different species groups recently designated by
Grismer et al. [11] based on their phylogeny of 310 named and unnamed species (an 11%
increase in species coverage).
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Figure 3. Generalized distribution of the genus Cyrtodactylus.

Figure 4. Representative ecotypes of the 10 different habitat preferences in the genus Cyrtodacty-
lus. Photographs by (A) L. Lee Grismer, (B) Steve J. Richards, (C,D) L. Lee Grismer, (E) Suranjan
Karunarathna, (F) L. Lee Grismer. (G) Evan S. H. Quah, (H,I) L. Lee Grismer, and (J) Peter Geissler.
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Figure 5. Cumulative number of species of Cyrtodactylus described per year. The trajectory of new species descriptions
from 2000 to 18 March 2021 indicates that the true diversity of this genus is not yet calculable and that 48% of the newly
described species during this period have come from Myanmar, Vietnam, and Malaysia.

2. Materials and Methods

2.1. Habitat Preferences and Ecotypes

Here we refine some of the criteria for designating habitat preference used by Gris-
mer et al. [6] based on newly acquired data from recent publications and fieldwork. We
also add an additional habitat preference (sandstone), bringing the total to 10 as opposed
to nine categories (Table S1). Habitat preference for each species was coded as a discrete
character state and ascertained by integrating data from the literature, firsthand experience
of the authors, and personal communication with researchers familiar with particular
species. Grismer et al. [6] acknowledged that some of these categories could be further
subdivided (e.g., arboreal into branch, twig, and leaf), but those subdivisions become
far less defensible owing to a lack of detailed microhabitat information. In this regard,
many species can be considered data deficient, inasmuch as baseline information on their
ecological requirements are often limited to anecdotal observations made at the time of
their collection (e.g., [14]). The potential biases of using limited observations from a single
locality at one point in time to ascertain the habitat preference of an entire species does
not go unnoticed. However, in many cases, these are the only data available. Nonetheless,
judiciously vetted, natural history observations summarized across the literature coupled
with our own field observations and those of others, can provide a useful framework for
supporting robust, testable, downstream hypotheses regarding habitat preference. The
habitat preferences and their associated ecotypes bearing the same categorical names are
described below. Obvious morphological correlates associated with some ecotypes are
noted only for additional clarity.

1. General (Figure 4A). Species that use the majority of the microhabitats in their imme-
diate surroundings in whatever environment they inhabit. The microhabitats may
include rocks of all types (when present), logs, tree trunks (with or without holes and
crevices), and all vegetative structures of various dimensions, the ground, and human-
made structures in many cases. No particular microhabitat is notably preferred over
any other although some species may be most often observed in low vegetation.
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2. Trunk (Figure 4B). These are species generally found on the trunks and large branches
of large trees at varying heights and often take refuge in cracks, crevices, or holes in
the trunks. They may occasionally occur on large granite rocks but only if the rocks
are near the trees. These species are generally the largest and most robust species in
the genus [22–24]. None have been reported to have prehensile tails although some
species may coil the tail horizontally similar to that seen in arboreal species.

3. Karst (Figure 4C). These are generally more gracile species that are restricted to habi-
tats where limestone rock (karst) is present. Individuals use this substrate (including
cliff faces, small rocks, and boulders) as well as adjacent vegetation. If caves are
present, they will enter only into the twilight zone and usually no deeper than 50 m
from the entrance [14]. Despite what has been written about many karst-associated
species being cave species or cave adapted (e.g., [25]), none truly are and most are
more commonly found on the outside of caves (see below). These species do not
occur in habitats lacking karstic substrates.

4. Cave (Figure 4D). These are species that occur exclusively in the cave-like environ-
ments formed by large granite boulders. Open spaces between the boulders can be
quite extensive and contain areas where very little light penetrates. These species
rarely occur on the out-facing (i.e., the forest-side) surfaces of the boulders and for
the most part, are restricted to the spaces between the boulders at varying depths
below the surface of the ground in extremely low levels of illumination. These are
truly cave-adapted species with notably thin, gracile bodies, long limbs, flat heads,
large eyes, and faded color patterns [13,26,27].

5. Terrestrial (Figure 4E). These are species that generally occur only on the ground
and may take refuge beneath natural and human-made surface objects. They may
occasionally be found on the tops of small rocks (when present) or on the bases of
small trees and shrubs but never higher than 1 m above the ground. These species
are relatively small and notably squat, with short fat tails, thick heads, and short
digits [28,29].

6. Arboreal (Figure 4F). These are cryptically colored species [30,31] generally restricted
to small branches, leaves, trunks of varying sizes, and shrubs. Some may take refuge
beneath exfoliating bark often as high or higher than three meters above the ground.
These species are rarely observed on the ground or lower than 1.5 m above the ground.
In such instances, it is usually during windy and/or rainy nights (perhaps forced
down from higher up; [32]; authors pers. obs.) or during egg laying. All species
have a prehensile tail used as a climbing aid [31–33] that is often carried in a coiled,
elevated position.

7. Swamp (Figure 4G). These are species restricted to swampy habitats that use low, viny
vegetation, the trunks of small trees and shrubs, or small logs often above, but always
in close proximity to water. These species generally have large eyes with notably
reddish-orange irises [34,35].

8. Granite (Figure 4H). These are generally more robust, strongly tuberculated species
found in forested habitats bearing large granite boulders (not just small, scattered,
granite rocks or rocks of other types). Vegetation is often used, especially by hatch-
lings and juveniles, but individuals occur more commonly on the granite boulders
in all planes of orientation. These species do not occur in forested areas lacking
granite boulders.

9. Intertidal (Figure 4I). This category contains a single species that occurs exclusively
in the rocky intertidal zones of small islands in the Seribuat Archipelago off the
southeastern coast of Peninsular Malaysia and avoids nearby forested regions even if
they lack other species of Cyrtodactylus [19,36].

10. Sandstone (Figure 4J). This category was not included in Grismer et al. [6]. It contains
a single species endemic to a forested sandstone massif isolated in the lowlands of
northwestern Cambodia [11]. This species is known to forage only on the surface or
within crevices of sandstone rocks and was not observed on the nearby vegetation [37].
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This species is similar in body shape to closely related granite-associated species
(Grismer unpublished).

2.2. Mitochondrial DNA

The data set of Grismer et al. [6] was augmented with 107 additional ingroup species
resulting in a matrix composed of 344 described and undescribed species (i.e., species
identified in previous phylogenies but not yet described) of Cyrtodactylus (Table S1). A
phylogeny was constructed using 1474 base pairs of the mitochondrial gene NADH dehy-
drogenase subunit 2 gene and its flanking tRNAs (hereafter referred to as ND2). Agamura
persica, Bunopus tuberculatus, Hemidactylus angulatus, H. frenatus, H. garnotii, H. mabouia,
H. turcicus, Lialis jicari, Mediodactylus russowii, Mokopiriakau cryptozoicus, Pygopus nigriceps,
Sphaerodactylus torrei, Stenodactylus petrii, Tenuidactylus elongatus, Toropuku stephensi, and
Tropiocolotes steudneri—encompassing all other major gekkotan lineages—were used to
root the tree following Wood et al. [38]. Genomic DNA was isolated from liver or skeletal
muscle from new tissue samples stored in 95% ethanol, using standard phenol-chloroform-
proteinase K (final concentration 1 mg/mL) extraction procedures with subsequent iso-
propanol precipitation following Hillis et al. [39] or a SPRI magnetic-bead extraction
protocol (https://github.com/phyletica/lab-protocols/blob/master/extraction-spri.md;
accessed on 15 January 2021). The ND2 gene, with parts of adjacent tRNAs, was amplified
using a double-stranded Polymerase Chain Reaction (PCR) under the following conditions:
1.0 μL genomic DNA (10–30 μg), 1.0 μL light-strand primer (concentration 10 μM), 1.0 μL
(H5934, 5′– AGRGTGCCAATGTCTTTGTGRTT–3′, following [6]), heavy-strand primer
(concentration 10 μM), (L4437b, 5′–AAGCAGTTGGGCCCATRCC–3′, following [6]) 1.0 μL
dinucleotide pairs (1.5 μM), 2.0 μL 5 buffer (1.5 μM), MgCl 10× buffer (1.5 μM), 0.1 μL
Taq polymerase (5 u/μL), and 6.4 μL ultra-pure H2O. PCR reactions were executed on
Bio-Rad T100™ gradient thermocycler under the following conditions: initial denaturation
at 95 ◦C for 2 min, followed by a second denaturation at 95 ◦C for 35 s, annealing at 55 ◦C
for 35 s, followed by a cycle extension at 72 ◦C for 35 s, for 31 cycles. All PCR products
were visualized using 1.0% agarose gel electrophoresis. Successful PCR products were
sent to Evrogen® (Moscow, Russia), Genetech Sri Lanka Pvt. Ltd. (Colombo, Sri Lanka), or
Genewiz® (South Plainfield, NJ, USA) for PCR purification, cycle sequencing, sequencing
purification, and sequencing using the same primers as in the amplification step. Sequences
were analyzed from both the 3′ and the 5′ ends separately to confirm congruence between
reads. Forward and reverse sequences were uploaded and edited in GeneiousTM 2019.0.4
(https://www.geneious.com). Following sequence editing, the protein-coding region and
the flanking tRNAs were aligned using the MAFTT v7.017 [40] plugin under the default
settings in Geneious™ 2019.0.4 (https://www.geneious.com). Mesquite v3.04 [41] was
used to calculate the correct amino-acid reading frame and to confirm the lack of premature
stop codons in the ND2 portion of the DNA fragment.

2.3. Phylogenetic Analyses

A Maximum likelihood (ML) analysis was implemented using the IQ-TREE web-
server [42,43] preceded by the selection of substitution models using the Bayesian Infor-
mation Criterion (BIC) in ModelFinder [44] which selected TVM+F+I+G4 for the tRNAs
and codon position 1 and GTR+F+I+G4 for codon positions 2 and 3. One-thousand boot-
strap pseudoreplicates via the ultrafast bootstrap (UFB; [45]) approximation algorithm
were employed, and nodes having UFB values of 95 and above were considered strongly
supported [46]. We considered nodes with values of 90–94 as well supported.

A Bayesian inference (BI) phylogeny was estimated using Bayesian Evolutionary
Analysis by Sampling Trees (BEAST) version 2.4.6 [47] implemented in CIPRES (Cyber-
infrastructure for Phylogenetic Research; [48]). Input files were constructed in Bayesian
Evolutionary Analysis Utility (BEAUti) version 2.4.6 using a lognormal relaxed clock
with unlinked site models, linked trees and clock models, and a Yule prior and run in
BEAST version 2.4.6 [47] on CIPRES. bModelTest, implemented in BEAST, was used to
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numerically integrate over the uncertainty of substitution models while simultaneously
estimating phylogeny using Markov chain Monte Carlo (MCMC). MCMC chains were run
for 350,000,000 generations and logged every 35,000 generations. The BEAST log file was
visualized in Tracer v. 1.6.0 [49] to ensure effective sample sizes (ESS) were well above
200 for all parameters. A maximum clade credibility tree using mean heights at the nodes
was generated using TreeAnnotator v. 1.8.0 [50] with a burn-in of 1000 trees (10%). Nodes
with Bayesian posterior probabilities (BPP) of 0.95 and above were considered strongly
supported [51,52]. We considered nodes with values of 0.90–0.94 as well supported.

Grismer et al. [6] demonstrated that in their 243-species data set, the third codon
position contributed significantly to the strongly supported topological resolution of the
tree and showed no signs of codon saturation. In their 310-species tree, Grismer et al. [11]
demonstrated that their mito-nuclear tree constructed from ND2 and three nuclear genes
did not improve the resolution or the nodal support of the deep nodes in their ND2 tree.
Therefore, only ND2 was used in this analysis.

2.4. Ancestral State Reconstruction

In order to estimate the probability of each habitat preference at each node in the tree,
we employed a stochastic character mapping (SCM) analysis implemented in R [v3.4.3]
using the R package Phytools [53] on the BEAST tree converted to newick format. The
transition-rate matrix that best fit the data was identified by comparing corrected Akaike
Information Criterion (AICc) scores among alternate models using the R package ape
5.2 [54]. Three transition-rate models were considered: a 90-parameter model having
different rates for every transition type (the ARD model); a 45-parameter model with
equal forward and reverse rates between states (the symmetrical rates SYM model); and a
single-rate parameter model that assumes equal rates among all transitions (ER). Lastly, an
MCMC approach was used to sample the most probable 1000-character histories from the
posterior using make.simmap() and then summarized them using the summary() command.

3. Results

The ML analysis recovered essentially the same well to strongly supported tree
(Figure 6) recovered in Grismer et al. [11]. The same 31 monophyletic species groups
designated in Grismer et al. [11] were recovered here even though sampling in was greatly
expanded with additional species (Table S1). The ML analysis also recovered a new clade,
designated here as the tibetanus group, that is composed of Cyrtodactylus tibetanus, C. cf.
tibetanus, and C. zhaoermii. Cyrtodacylus cf. tibetanus and C. zhaoermii were unavailable
for the analysis of Grismer et al. [11], where C. tibetanus was recovered as the earliest
diverging member of the lawderanus group. Che et al. [55] recovered the same new clade in
a less inclusive (i.e., fewer species) mito-nuclear phylogeny. Although Grismer et al. [11]
recovered C. rubidus as the sister species of the lateralis group, it was not included in that
group because this relationship was well supported only in the ML analysis and not the
BI analysis. Here, it is placed in the lateralis group with high support in both analyses
(90 UFB, 0.90 BPP), a grouping also supported by the fact that all members of this group
have prehensile tails.
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Figure 6. Majority-rule consensus tree from ML bootstrap replicates of 344 species of Cyrtodactylus. Phylogeny based on
1474 base pairs of the mitochondrial gene ND2 illustrating the designation of 32 monophyletic species groups.

The BEAST analysis recovered a tree with generally strong nodal support throughout
with a 94.4% topological consistency (recovering 322 of the same 347 nodes) as the ML
tree (Figure 7). The AICc scores for the three transition-rate models were ARD = 1101.751;
SYM = 1035.445; and ER = 890.9552. The results of the SCM analysis were consistent with
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those of Grismer et al. [6] in that the ER model recovered large and small clades that
independently evolved the same habitat preferences throughout the geographic range
of the genus (Figure 7A). The SCM recovered a general habitat preference as being an-
cestral for not only the genus Cyrtodactylus but for all other major clades and ultimately
all other habitat preferences as well. Notably for this study, however, the two largest
independently evolved lineages of karst-associated species—the lineage composed of the
sadansinensis, yathepyanensis, oldhami, sinyineensis, and chauquangensis groups and the an-
gularis group—were also recovered, even with their expanded species contents. Their
parapatric distributions across much of western and northern Indochina coincide with
regions bearing the most extensive karstic landscapes (Figure 8). Other less diverse, inde-
pendently evolved karstic lineages, such as the linnwayensis group from the Shan Plateau
in Myanmar and a karst-associated subclade from the Thai-Malay Peninsula in the pul-
chellus group, were also recovered and associated with regions rich in karstic habitats
(Figures 7A and 8). Several isolated instances of the independent evolution of karst habitat
preference are scattered across the tips of the tree, representing species from Borneo (C. cav-
ernicolus, C. limajalur, C. muluensis), Cambodia (C. laangensis), China (Cyrtodactylus sp. SYS
r1232), Indonesia (C. darmandvillei), Myanmar (C. aunglini, C. chrysopylos, C. myaleiktaung),
Papua New Guinea (C. tanim), Peninsular Malaysia (C. evanquahi, C. guakanthanensis, C.
gunungsenyumensis, C. metropolis, C. lenggongensis, C. sharkari), and Vietnam (C. sp. nov., C.
yangbayensis) (Figure 7A).
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Figure 8. Distribution of the major clades of the karst-associated species groups throughout Indochina. Inset illustrates their
co-distributions, with the geographic areas bearing the most extensive karstic landscapes.

These data are consistent with those of Grismer et al. [6] in showing that the frequency
of karst-associated species far out-numbers that of any other specific habitat preference
and is nearly two and one-half times more prevalent than any other specific habitat pref-
erence in that it contains 25.0% of the species followed by trunk (11.0%), granite (9.2%),
terrestrial (8.4%), arboreal (3.8%), cave (2.0%), swamp (1.4%), and intertidal and sandstone
(0.2%; Figure 7B). In Grismer et al. [6], granite-associated species comprised the second
highest habitat preference and trunk-associated species the third. That ranking has been
reversed here. The percentage of species with a karst habitat preference was 29.6% in
Grismer et al. [6] but dropped to 25.0% here. We posit that this drop of nearly 5% is a direct
result of our inability to explore unsurveyed karstic regions on the Shan Plateau and in the
Salween Basin of Myanmar during 2020 due to COVID-19.

4. Discussion

The analysis presented here is based on the most complete phylogeny of the genus Cyr-
todactylus to date with an increase of 101 species from that of Grismer et al. [6] and 35 from
that of Grismer et al. [11]. The hypotheses marshaled by Grismer et al. [6] concerning the
evolution of habitat preference is supported here in that there was no notable change in
the frequencies of species bearing different habitat preferences across the genus—even
with the addition of 107 species. More specifically, however, a karst habitat preference
retained a higher frequency than that of any other specific habitat preference (25.0% versus
0.2–11%), supporting the hypothesis that these landscapes are platforms for the generation
of biodiversity. This pattern is particularly strong in Indochina and less so on islands
throughout the Indo-Australian Archipelago, reflecting the sharp contrast in the extent
of karstic landscapes between these regions (Figure 8). These data clearly underscore
the importance of karstic habitats to this hyper-diverse genus and continue to amplify
the work of many other authors indicating that the high levels of biodiversity and range-
restricted endemism in karstic habitats rivals that of most other habitats throughout the
tropics (see discussions in [1,4,5,10,56–61]). The sad irony is that, although these are some
of the most imperiled ecosystems on the planet due to unregulated and unsustainable
quarrying practices, only 1% of these terrains throughout Asia are afforded any form of
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legal protection. Therefore, the diversity of the karst-associated species in general—and
Cyrtodactylus in particular—are, for the most part, without legal protection. Unfortunately,
the immense financial returns from cement manufacturing makes the challenge of karst
conservation difficult and many governments from developing nations that are willing to
overlook sustainable quarrying policies in order to expand their economy [1]. Continued
exploitation of karstic habitats for limestone shows no signs of abating.

5. Conclusions

This study echoes the results of Grismer et al. [6] in that karstic landscapes are ex-
ceedingly important for maintaining Cyrtodactylus diversity and serve as foci for their
speciation and maintenance of their diversity. Referring to them as “imperiled arks of
biodiversity” is somewhat misleading as these are ecological platforms for speciation that
not only continue to generate the most speciose, independent, radiations of the Gekkota,
but do so across a broad range of other taxonomic groups (e.g., [7–10,62]). Referring to
them as “imperiled arks of biodiversity” instead of centers for speciation draws attention
away from their importance as generators of biodiversity in an era of biodiversity crisis
and could potentially lessen the urgency for legislative conservation measures.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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be cross-referenced to Figure 6 by their GenBank no.
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Abstract: South-western Europe has a rich diversity of lacertid lizards. In this study, we evaluated
the occupancy patterns and niche segregation of five species of lacertids, focusing on large-bodied
species (i.e., adults having >75 mm snout-vent length) that occur in south-western Europe (Italian to
the Iberian Peninsula). We characterized the niches occupied by these species based on climate and
vegetation cover properties. We expected some commonality among phylogenetically related species,
but also patterns of habitat segregation mitigating competition between ecologically equivalent
species. We used multivariate ordination and probabilistic methods to describe the occupancy
patterns and evaluated niche evolution through phylogenetic analyses. Our results showed climate
niche partitioning, but with a wide overlap in transitional zones, where segregation is maintained by
species-specific responses to the vegetation cover. The analyses also showed that phylogenetically
related species tend to share large parts of their habitat niches. The occurrence of independent
evolutionary lineages contributed to the regional species richness favored by a long history of
niche divergence.

Keywords: enhanced vegetation index; Lacerta; Mediterranean; niche partitioning; Sauria; Timon

1. Introduction

Climate is a powerful environmental factor driving the process of niche diversifi-
cation in reptiles [1,2]. Tolerance to maximum temperatures in reptiles is evolutionarily
constrained, possibly because of the importance of external heat sources in maintaining
activity and for bodily water balance [3,4]. For these reasons, there is a significant associa-
tion between the composition of reptile assemblages and thermal latitudinal gradients [5].
However, the thermoregulation efficiency of reptiles is not only mediated by the overall
climate conditions, but also by the temperature conditions in microhabitats [6]. Vegetation
cover and structure regulate the patterns of reptile occurrence, but at a finer scale than the
climate [7,8].

South-western Europe encompasses a relatively rich reptile fauna, favored by its
topographic heterogeneity, insularity and mild climate conditions [9]. In this region,
several groups of phylogenetically related species display complex patterns of overlap
structured by environmental gradients or by interspecific interactions [10–12]. In this study
we evaluated the niche occupancy patterns of five species of large lacertid lizard (i.e., adults
having >75 mm snout-vent length) that occur in south-western Europe and comprise a
monophyletic group [13]. We focused on phylogenetically related species because stronger
competitive interactions among them can be expected [14]. The target species in this study
included one species having a broad circumboreal distribution, Lacerta agilis (Linnaeus
1758), two western Mediterranean endemics Lacerta bilineata (Daudin, 1802) and Timon
lepidus (Daudin, 1802), and two Iberian endemics Lacerta schreiberi (Bedriaga, 1878) and
Timon nevadensis (Buchholz, 1963). Given these substantial chorological differences, it was
also expected that these species would diverge in their environmental associations. For
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example, T. nevadensis mainly occupies semi-arid steppe-like habitats, L. agilis appears
to be confined to sub-alpine meadows, and the other species are possibly more habitat
generalists [15,16].

The purpose of this study was to investigate the patterns of habitat occupancy of
these five species of large lacertids and evaluate them from an evolutionary perspective.
We hypothesized that the diversity of large lacertid lizards in southern Europe would
be favored by niche partitioning. However, this partitioning will be phylogenetically
constrained because related species tend to occupy similar or equivalent niches [17]. To
test these hypotheses, we used multivariate ordination and novel probabilistic methods
that enabled quantification of the niche overlap between species, and the niche breadth.

2. Materials and Methods

2.1. Study Region and Surveys

The study region encompassed most of south-western Europe including the Iberian
Peninsula, southern France and the Italian Peninsula (Figure 1). The region is dominated
by Mediterranean climate types, ranging from subtropical warm desert to humid sub-
Mediterranean and oceanic, and temperate to tundra-like types in the mountain ranges
(Pyrenees, Alps) [18]. This environmental heterogeneity favors the concentration of high
biotic diversity in this region, including species having xeric Mediterranean and meso-
temperate affinities [19].

Figure 1. Map of the study region including the distribution of the species according to the IUCN (polygons) and the
surveyed sites (circles). The polygons with diagonal stripes and dots indicate the areas of geographic overlap between two
species or three species (grid).

Species records were obtained opportunistically, based on random habitat surveys
conducted in the region from spring to autumn, following the annual activity periods.
The surveys were planned to capture the maximum heterogeneity of habitats within the
distribution ranges of these species, but with no a priori selection of the most suitable
habitats (i.e., a random sampling of available habitats). In total, 823 sites were surveyed
throughout south-western Europe by 1–3 observers; each site was visited only once. The
occurrence of each species was assessed based on visual surveys and rock flipping, because
both techniques have been used to build inventories of diurnal lizards [20]. The surveys
were conducted on sunny days between 10:00 a.m. and 5:00 p.m. local time. The visual
surveys were complemented with rock flipping in cases where identification of the species
could not be visually ascertained. In total, 188 records of five species of large lacertids were
obtained (Figure 1) and were distributed as follows: L. agilis (number of records = 29), L.
bilineata (59), L. schreiberi (8), T. lepidus (80), and T. nevadensis (12).
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2.2. Environmental Data

The niches for the species were described based on climate and vegetation. We used
three variables to describe the climate: the maximum temperature of the warmest month,
the minimum temperature of the coldest month, and the accumulated annual precipitation,
provided by the WorldClim database [21]. These variables represent climatic properties that
reportedly influence reptile ranges because they describe thermal extremes and available
environmental moisture [22].

The influence of plant cover was assessed using a surrogate for vegetation primary
productivity, the enhanced vegetation index (EVI; [23]); EVI values correlate positively
with the density of trees [24]. The EVI data were obtained for the 2009–2019 period from the
high-resolution (250 m pixel–1) MODIS Collection EVI composite images [25]. The MODIS
data were first checked to remove atmospheric artefacts, and then used to generate a series
of variables describing the seasonal variability among habitats [26] including: the mean
value (EVImean), the coefficient of variation (EVIcv), and the range (EVIrange), considering
the inter-annual (mean value for 10 years) and spatial variability (mean value for 50 points,
generated randomly within a maximum radius of 5 km). This larger area assessed the
effect of the environment around the core habitat where specimens were found and took
into account that species occurrence is sustained by isolated suitable habitat patch, but also
by the interconnection of habitat patches that support the entire population [27].

2.3. Data Analysis

Species associations with two niche dimensions (climate and habitat) were visualized
using outlying mean index (OMI) analysis [28]. The OMI ordination describes the species
responses by quantifying their ecological marginality (the distance between the species
centroid and the mean environmental conditions [28]). An OMI value close to zero indi-
cates a higher similarity between the species position and the background environmental
conditions. The OMI analysis also provided an estimate of the niche breadth of the species
(tolerance index), and the proportion of the environmental variance explained by the OMI
axes (residual tolerance; [28]). These analyses were carried out using the software package
ade-4 [29] for R [30].

The niche overlap was estimated between pairs of species for a probabilistic niche
region [31]. This overlap index was generated after 10,000 Monte Carlo draws for a niche
region (alpha = 0.95), using the predictor variables. This analysis evaluates the probability
that an individual of species X is found in the habitat of species Y, and vice versa, and
produces two index values for a single pair of species (i.e., X→Y and Y→X) [32]. This
method has the advantage of being weakly sensitive to the sample size [31], which is useful
when evaluating the ecological overlap between species having dissimilar distributions, as
was the case in this study. These analyses were carried out using the nicheROVER software
package [32] for R.

We also compared the habitat characteristics between the pairs of species. Before
modelling these associations, we tested the predictor variables for spatial autocorrelation
using Moran’s I correlograms [33]. Moran’s I values were statistically significant, varying
from 0.16 (EVIcv) to 0.55 (maximum temperature). To remove spatial autocorrelation, we
built Binomial Generalized Linear Auto-Covariate Models (BGLAMs; [34]) selecting the
best candidate model using the Akaike information criterion corrected for small sample
sizes (AICc; [35]). In general, the best candidate models show lower AICc values, and
an AICc weight ≥0.1 [35]. These analyses were carried out using the software packages
spdep [36] and AICcmodavg [37] in the R environment.

2.4. Molecular Phylogenetics and Biogeography

Evolutionary relationships among the species of Lacerta and Timon were assessed
by building a phylogenetic tree generated using Bayesian analysis of mitochondrial cy-
tochrome b and 12s genes, obtained from GenBank (Supplementary Materials; Appendix I).
The sequences were assembled and aligned using Bioedit 7.09 [38]. Our dataset comprised
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32 sequences of variable length combining the two genes, and represented nine Lacerta
and six Timon species, and four outgroups. The analysis of DNA evolution was conducted
using jModelTest [39] and showed that the GTR+I+G model was the best for both the 12s
and cytochrome b genes. We used three points of calibration to establish the times of diver-
gence among species. The emergence of the Canary Island of El Hierro representing the
divergence of Gallotia caesaris caesaris and Gallotia caesaris gomerae (1.0 Mya [40]) was used
selecting a normal prior distribution (sigma = 0.02). The split between Lacerta and Timon
was dated based using as a prior a gamma distribution based on a minimum age of 17.5
Mya [41] with shape and scale set to 1.0. The same prior distribution was used to calibrate
the divergence between L. viridis and L. bilineata 8.7 Mya [42]. Bayesian analyses were
performed using BEAST v 2.6.3. [43] running two chains of 5 × 108 iterations, sampling
every 10,000 iterations. Chains were checked for convergence and ESS using Tracer 1.5 [44]
and were combined after a burn-in of 99%. To reconstruct the biogeographic history of large
lacertid lizards in south-western Europe we used ancestral range estimation using Bio-
GeoBEARS implemented in RASP 4.2 [45]. The regions included were south-western Asia
(Caucasus, Anatolia, Iran and the Middle East), Europe (excluding the Iberian Peninsula),
north-western Africa and the Iberian Peninsula. The models of vicariance, dispersal and
extinction allowing all the combinations of ancestral areas (except the Iberian Peninsula
plus Asia) were evaluated using the Akaike criterion [46].

3. Results

The first two axes of the OMI explained 96.98% of total inertia (axis 1: 70.47%, axis
2: 26.51%). The first axis described a gradient from higher to lower temperature and
precipitation and differentiated those species that occur under humid-cold conditions from
those that occur under hot-dry conditions (Figure 2). The second axis described a transition
between habitats having different vegetation cover, typically distinguishing habitats having
a relatively high EVI and a low seasonal coefficient of variation (CV) (e.g., forests) from
those having a relatively low EVI and a high seasonal CV (i.e., grasslands/cultivated lands;
Figure 2). The genus Timon was separated from the genus Lacerta mainly along the first
axis, the former showing a positive association with dry-warm climates (Figure 2). The
niche indices indicated that a large part of the variation in the occurrence of species was
explained by the environmental variables, with residual tolerance values between 19.2%
(L. agilis) to 66.9% (L. schreiberi) (Table 1). In general, the species showed moderate to high
distances from the environmental centroid, ranging from 20.2% (L. schreiberi) to 74.4% (L.
agilis) (Table 1), which indicated that they occupied confined subspaces within the available
environment (Figure 2). The tolerance indices consistently showed moderate to low values,
ranging from 22.6% (T. lepidus) to 6.4% (L. agilis) (Table 1), indicating that these species
differed in their niche sizes (Figure 2).
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Figure 2. Outlying mean index (OMI) scatter plot. The lower panel shows the species sites, with a
convex hull encompassing those that were conspecific. The upper panel shows the environmental
factors represented as vectors. The plot origin (0,0) represents the average environmental conditions.
LAG = L. agilis; LBI = L. bilineata; LSC = L. schreiberi; TLE = T. lepidus; TNE = T. nevadensis.

Table 1. Niche indices generated for the large lacertids in southwestern Europe. OMI, distance
of the species’ centroid to the average environmental conditions; Tolerance, niche breadth; Rtol,
residual tolerance.

OMI Tol Rtol

L. agilis 74.4 6.4 19.2
L. bilineata 30.3 18.3 51.5
L. schreiberi 20.2 12.8 66.9
T. lepidus 24.1 22.6 53.3

T. nevadensis 66.0 7.2 26.8

The niche overlap indices showed high values (>60) between pairs of sister species;
for example, T. nevadensis → T. lepidus: 83.03 (Figures 3 and 4 and Table 2). Among
phylogenetically more distant species the patterns were complex, including high (e.g.,
L. schreiberi → L. bilineata: 61.59; L. bilineata → T. lepidus: 86.03), moderate (L. agilis → L.
bilineata: 53.54), and low (L. bilineata → T. nevadensis: 4.28) levels of overlap, and in some
cases no overlap (L. agilis → T. nevadensis: 0.0) (Figure 3 and 4 and Table 2). Between some
pairs of species, the overlap was highly asymmetric (e.g., L. agilis-L. bilineata, T. lepidus-L.
schreiberi, and T. lepidus-T. nevadensis) indicating that the niche of species Y (smaller niche)
was partially nested within that of species X (larger niche) (Figure 2).
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Figure 3. Ecological overlap between large lacertid species in southwestern Europe, estimated with the posterior distribution
of the probabilistic niche overlap metric (%) for the niche region of alpha = 0.95. The posterior mean and 95% credible
intervals are shown in sky blue lines.LAG = L. agilis; LBI = L. bilineata; LSC = L. schreiberi; TLE = T. lepidus; TNE = T. nevadensis.

Figure 4. Phylogenetic relationships among Lacerta and Timon species estimated using Bayesian
analysis on Cytochrome b and 12s mitochondrial genes. Asterisks denoted those nodes supported
by posterior probabilities lower than 0.90. Pie charts depicted the probability of occurrence of the
ancestors within the eight areas defined by the BioGeoBears analysis.
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Table 2. Niche overlap between southwestern European large lacertid species. The overlap index
described the probability that species X (row) appears in the habitat of the species Y (column), for a
region α = 0.95.

L. agilis L. bilineata L. schreiberi T. lepidus T. nevadensis

L. agilis – 53.54 14.48 14.76 0.0003
L. bilineata 10.43 – 65.56 86.03 4.28
L. schreiberi 4.54 61.59 – 71.93 5.69
T. lepidus 1.07 51.21 30.58 – 13.17

T. nevadensis 0.0 22.27 18.28 83.03 –

The BGLAMs showed than the niche separation between L. agilis-L. bilineata was
mainly related to the by maximum-minimum temperatures (R2 = 0.257) (Table 3). The
separation between L. agilis-T. lepidus was also attributed to temperature, and to a lesser
degree to plant cover (R2 = 0.469). In contrast, the separation between L. bilineata-T. lepidus
was mainly related to plant cover and to a lesser extent to the maximum temperature and
annual precipitation (R2 = 0.181). Comparisons that included L. schreiberi and T. nevadensis
produced statistically poorly supported models and are not shown.

Table 3. Binomial Generalized Linear Auto-Covariate Models (BGLAMs) evaluating the environ-
mental separation between pairs of species which geographically contact. Lacerta schreiberi and T.
nevadensis were not included in the analyses. AIC, Akaike information criterion; AICWt, AIC weights.
LAG = L. agilis; LBI = L. bilineata; TLE = T. lepidus. T, temperature; Prec, precipitations; EVI, Enhanced
Vegetation Index; m, mean; cv, coefficient of variation.

AIC AICWt R2 Variables Estimates

LAG-LBI 35.97 0.31 0.241 Tmin –2.971

37.33 0.16 0.257 Tmin
Tmax

–2.288
–0.789

LAG-TLE 23.95 0.37 0.411 Tmax –3.060

25.80 0.15 0.416 Tmax
Tmin

–2.726
–0.566

26.31 0.11 0.469
Tmax
Tmin
EVIm

–2.408
–0.684
–1.534

LBI-TLE 63.31 0.30 0.144 EVIm 1.264

64.64 0.16 0.154 EVIm
EVIcv

1.286
0.275

64.85 0.14 0.181
EVIm
Tmax
Prec

1.133
–0.658
0.301

The Bayesian phylogenetic analysis strongly supported the monophyly of the gen-
era Timon and Lacerta, and most of the relationships across species within these genera
(Figure 4). The most supported biogeographic model was DIVALIKE +J (AICc = 79.3,
AICc weight = 0.630), indicating a founder event (j = 0.047) and low rates of dispersal
and extinction (both <0.0001). Based on ancestral range reconstruction, large European
lacertids arose in western Asia and independently colonized south-western Europe on four
occasions. The oldest colonization event occurred approximately 8.9–15.5 Mya, during the
invasion of the western Iberian Peninsula from Europe by the ancestor of L. schreiberi. The
ancestor of Timon emigrated from western Asia to north-western Africa, and subsequently
invaded the Iberian Peninsula approximately 6.5–13.0 Mya. The split of the ancestral
Iberian species into T. lepidus and T. tangitanus probably occurred 4.6–11.5 Mya. The split
of L. bilineata from the shared ancestor with L. viridis occurred approximately 8.7–9.4 Mya,
possibly after their isolation in the Balkan and Italian peninsulas. Lacerta bilineata recently
colonized the Iberian Peninsula from the Italian Peninsula (300,000–550,000 years ago) and
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the widespread palaearctic species L. agilis, colonized to the eastern Pyrenees from central
Europe approximately 0.4–1.8 Mya.

4. Discussion

The OMI analysis showed that in south-western Europe the large lacertid lizards
differed in niche marginality and tolerance. In general, environmental variables explained
a major part of the variability in the occurrence of these species (residual tolerance 19.2% to
53.3%); an exception was L. schreiberi (residual tolerance 66.9%), possibly as a result of the
low number of records. The ecological diversification of these species has possibly been
driven by physiological tolerance, particularly variability in preferred temperature and the
level of environmental moisture [47].

The analysis also indicated that T. lepidus and L. bilineata had the highest ecological
tolerances, potentially enabling them to occupy parts of the niches of the other species. In
contrast, T. nevadensis and L. agilis, occupied relatively narrow niches, at opposite extremes
of the environmental range. Ecological partitioning was evident, but incomplete, between
L. agilis and L. bilineata (maximum overlap probability 53.54%) and between L. agilis-T.
lepidus (maximum overlap probability 14.76%). These species pairs consistently showed
either geographical overlap (L. agilis-L. bilineata 170,990 km2) or were almost completely
parapatric (L. agilis-T. lepidus).

Regression models showed that the segregation between L. agilis and these species
of lacertids (L. bilineata and T. lepidus) was mainly influenced by the variables describing
temperature conditions, with the occurrence of L. agilis being negatively associated with
temperature. This is consistent with the relict status of this species in the region, where it
appears mainly isolated to mountain ranges, at altitudes above 1300 m [48]. The BGLAMs
revealed that vegetation cover was unrelated to the niche partitioning between L. agilis and
L. bilineata, possibly because of the use of open habitats in harsh subalpine environments
by the later species [15,49].

There was wide but asymmetric overlap in the niches of T. lepidus and L. bilineata,
and the niche of the latter was partially nested within that of T. lepidus. Both species also
coexist over a wide geographic range (110,203 km2), but T. lepidus is more widespread in the
Iberian Peninsula. The later arrival of L. bilineata to the Iberian Peninsula may have been a
disadvantage for this species, with it being excluded from potentially suitable habitats by
the other lacertid species that evolved in this region (T. lepidus, L. schreiberi). Our results
indicated that in the zone of coexistence between T. lepidus and L. bilineata, the species were
largely segregated according to the vegetation cover. In general, forest habitats constitute
unfavorable habitat for temperate lacertid lizards, which regulate their body temperature
by sun basking [50]. The canopy of temperate forests greatly reduces light transmittance
to the lower understory layers [51]. For this reason, closed forests are usually avoided
by lacertid lizards, although they can colonize discontinuities in these habitats including
path edges, interspersed meadows, forest margins and rocky outcrops [52–54]. Lacerta
bilineata exploits microhabitats with a very dense vegetation cover, because this lizard
thermoregulates efficiently using bushes and tree logs as basking platforms [47,55].

OMI and overlap analyses showed similarities in the patterns of habitat occupancy,
between the species pairs T. lepidus-T. nevadensis and L. schreiberi-L. bilineata, and T. nevaden-
sis niche was almost completely nested within that of T. lepidus. Timon nevadensis typically
occupies relatively sparsely vegetated semiarid habitats, but T. lepidus is also able to exploit
open, de-vegetated habitats in regions where T. nevadensis does not occur (e.g., in the
shrub-steppes of the Ebro valley; [56]). These findings suggest that the range limits of
both species may be sustained by interspecific interactions in the contact zones rather than
by ecotonal transitions [57]. Our results showed a substantial habitat overlap between L.
schreiberi-L. bilineata, which may trigger competitive interactions where both species contact
geographically [58,59]. The results did not indicate that the species of Iberian origin (L.
schreiberi, T. lepidus, and T. nevadensis) have greater habitat overlap than those of recent
arrivals (e.g., L. bilineata and L. agilis). It is possible that during the prolonged isolation
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in the Iberian Peninsula these species diverged in their environmental niches, to reduce
interspecific competition. Together these results indicate that the interaction of several
mechanisms (i.e., interspecific competition, species evolutionary history, ecophysiological
tolerance) determine the occurrence of large lizard species in the region, in a similar way
to that observed for other lizard assemblages [60,61]. However, one limitation of our
study was that it was not able to discern the relative importance of autoecological and
synecological aspects of the distribution patterns.

5. Conclusions

The Iberian Peninsula has the richest lacertid fauna in south-western Europe, sup-
porting five species of large lacertids. Our results revealed that this species richness is
favored by climate niche partitioning, but with transitional areas of overlap where the
segregation is maintained by species-specific responses to the level of vegetation cover.
Interspecific competition may also play a key role in the patterns of occurrence, with the
species that have arrived more recently on the Iberian Peninsula having been excluded
from potentially favorable habitats because of prior habitat occupancy by species that
evolved in this region. The occurrence of several independent evolutionary lineages has
partly contributed to the species richness, which has been favored by a long history of
ecological divergence between subclades having distinct geographic origins. The analyses
applied in this study have the advantage of being weakly sensitive to sample size and are
robust to spatially aggregated records, so they may be useful in disentangling the patterns
of niche partitioning in assemblages including ecologically (or phylogenetically) related
species structured by the effect of various interacting factors (i.e., competition, evolutionary
history, environmental tolerance), which is characteristic of biotic communities in the
Mediterranean region [62,63].
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Abstract: Ectothermic animals living at high elevation often face interacting challenges, including
temperature extremes, intense radiation, and hypoxia. While high-elevation specialists have devel-
oped strategies to withstand these constraints, the factors preventing downslope migration are not
always well understood. As mean temperatures continue to rise and climate patterns become more
extreme, such translocation may be a viable conservation strategy for some populations or species,
yet the effects of novel conditions, such as relative hyperoxia, have not been well characterised. Our
study examines the effect of downslope translocation on ectothermic thermal physiology and perfor-
mance in Pyrenean rock lizards (Iberolacerta bonnali) from high elevation (2254 m above sea level).
Specifically, we tested whether models of organismal performance developed from low-elevation
species facing oxygen restriction (e.g., hierarchical mechanisms of thermal limitation hypothesis) can
be applied to the opposite scenario, when high-elevation organisms face hyperoxia. Lizards were
split into two treatment groups: one group was maintained at a high elevation (2877 m ASL) and the
other group was transplanted to low elevation (432 m ASL). In support of hyperoxia representing
a constraint, we found that lizards transplanted to the novel oxygen environment of low elevation
exhibited decreased thermal preferences and that the thermal performance curve for sprint speed
shifted, resulting in lower performance at high body temperatures. While the effects of hypoxia
on thermal physiology are well-explored, few studies have examined the effects of hyperoxia in an
ecological context. Our study suggests that high-elevation specialists may be hindered in such novel
oxygen environments and thus constrained in their capacity for downslope migration.

Keywords: high elevation; hyperoxia; sprint performance; thermal performance curve; thermal pref-
erence

1. Introduction

Mountains cover approximately 30% of the world’s land surface [1]. These biodiversity
hotspots [2] harbour virtually all life forms (including diversity of bacteria [3,4], insects [5,6],
arachnids [7], gastropods [8,9], fish [10,11], amphibians [12,13], mammals [14,15], birds [16],
and squamate reptiles [17,18]). Mountain ecological landscapes are characterised by alti-
tudinal zonation [19], where organisms tend to be adapted to a relatively narrow range
of environmental conditions including colder temperature regimes (mean and extremes),
strong UV irradiance, and lower atmospheric pressure, thus reduced oxygen availability as
altitude increases. Although examples abound where geographically widespread species
usually constrained to low elevation areas have successfully established along parts of
the elevational gradient [20–23], plants and animals found in high altitudinal zones tend
to become isolated since the conditions above and below a particular zone will be inhos-
pitable and thus restrict their movements or dispersal. In extreme examples, such isolated
ecological systems have been coined sky or continental islands [16,24,25].
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Physiological adaptations to high-elevation life have attracted considerable scien-
tific attention, including in humans, domesticated animals, and wild animal popula-
tions [26–28], notably in relation to colder temperature regimes, UV irradiance, and lower
oxygen availability. However, it is less clear how such adaptations may prevent or hinder
population movement, especially toward lower elevations. In other words, are popu-
lations found at high elevation effectively restricted to this elevation, and if so, why?
Several non-exclusive hypotheses exist. Most obviously, environmental conditions below
the current elevation may exceed the organisms’ tolerance (i.e., beyond its fundamental
niche), being too hot or too dry for instance [29–31]. Alternatively, lower-elevation niches
may be exploited by a direct competitor, harbour a predator, or may lack a suitable food
source [32–34].

One such example comes from an endemic trio of lizard species in the genus Iberolac-
erta, namely, I. aranica, I. aurelioi, and I. bonnali. These three species exhibit non-overlapping
distributions between 1500 and 3100 m above sea level (ASL) in the Pyrénées mountains
of southwestern Europe (France, Andorra, and Spain). They occur as a constellation of
small populations, with high degrees of genetic isolation amongst populations of the three
species [35,36] presumably due to very low dispersal rates amongst mountain peaks [37].
In the case of Iberolacerta, it was suggested that their restricted distribution resulted either
(1) from their cold-adapted thermal physiology (i.e., low tolerance for high temperature,
resulting in a reduction in their activity budgets by excess of heat [38–42]) or (2) from
competitive exclusion from wall lizards (Podarcis spp. [43]). In support of the latter, some
studies suggest that competition with Podarcis might affect the presence of high-elevation
specialist Iberolacerta spp. through antagonistic interactions and competition for access to
preferred thermal habitat ([44,45], but see [46]).

Recent studies [47,48] suggest that Podarcis may be suited to higher-elevation colonisa-
tion beyond its current range due to embryonic developmental resilience to lowered oxygen
availability when transplanted to high elevation (≈3000 m ASL), well above its maximum
recorded elevation (i.e., 2200 m ASL [35,49]). Moreover, Podarcis is locally observed to
expand its range upslope at a steady but rapid pace in the Pyrénées [49], suggesting that
fast colonisation might occur in the coming decades. This will inevitably bring more
Podarcis into contact with Iberolacerta and foster potential competition for territories, nesting
sites, and food, as well as potentially exposing Iberolacerta to novel diseases and parasites.
Current climate change will only facilitate this process [29,50,51]: high-altitude areas are
warming faster than the global average [52–54], and Podarcis are a thermophilic species
successful at establishing in new environments [43,55–58].

With this study, we tested an additional, non-exclusive hypothesis of the mechanism
limiting Iberolacerta to high elevation: we propose that Iberolacerta species have adapted
to high elevation hypoxia to a point where sea-level oxygen levels (hyperoxia, from Ibero-
lacerta’s perspective) may hinder organismal function. As an analogy, the metabolic cold
adaptation hypothesis (MCA) predicts that ectotherms from colder environments (higher
latitudes or elevations) will have elevated metabolic rates compared to those from warmer
climates at a given temperature [59]. Increased metabolic rates are predicted to be adaptive
by allowing accelerated physiological processes in environments that feature shorter pe-
riods of optimal conditions [60,61]. On the other hand, such adaptations become rapidly
detrimental (i.e., metabolically very costly) if environment temperature increases (e.g.,
via climate change or dispersal). In the same manner, organisms adapted to maintaining
organismal function in low-oxygen conditions may suffer under conditions of increased
oxygen availability. For example, this may disrupt oxidative phosphorylation pathways
that can either reduce the efficiency of aerobic metabolism or result in the production of
potentially harmful byproducts [62–64].

To test this hypothesis, we studied the effect of translocation to low elevation on ec-
tothermic thermal physiology and performance. Shifts in elevation most notably affect the
total partial pressure exhibited by the atmosphere, which will reduce oxygen availability at
high elevations and increase availability at low elevations. Utilising Pyrenean rock lizards
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(Iberolacerta bonnali), we measured traits known to have important consequences for both
fitness and thermally-dependent physiological processes: sprint speed and preferred body
temperature. If high-elevation specialists are able to process increased oxygen when avail-
able, we predicted both sprint speed and preferred body temperatures will increase, in the
opposite direction from what has been observed in low-elevation organisms brought into
hypoxia [65–67]. In contrast, under our novel proposal that hyperoxia limits high-elevation
species from moving downslope, we predicted performance decrements and reduced
preferred body temperatures after transplanting lizards to low elevation. Thus, we sought
to understand how organisms are adapted to their specific oxygen environment and their
potential behavioural and physiological responses to novel environments. Quantifying
these responses is essential in addressing the question of whether abiotic factors, such as
oxygen availability, represent absolute constraints on organismal performance or whether
organisms are specifically adapted to the resources in their environment and any deviance
from these levels—either increase or decrease—can restrict physiological processes and
performance.

2. Materials and Methods

2.1. Study Species

The Pyrenean rock lizard (Iberolacerta bonnali Lantz, 1927; Figure 1) is a diurnal,
heliothermic species endemic to the alpine and subalpine environments of the Pyrénées
Mountains [35] and can be found at elevations between 1550 and 3062 m ASL [68]. Its
annual period of activity is very short due to cold temperatures and the presence of snow
most of the year [35,68,69]. This restricts their reproductive cycle to one clutch per year
with an average of three eggs [70]. Being a highly endemic patrimonial species with a very
restricted range, it is listed on the IUCN red list of threatened reptile species in Europe [71].

Figure 1. Two adult Iberolacerta bonnali basking in their natural environment. Photograph by Fabien Aubret.

2.2. Experimental Design

Since female reproductive status cannot always be ascertained (i.e., early vitellogene-
sis) and because carrying eggs may affect performance and thermoregulatory patterns in
squamates [72–74], the study was carried out with male lizards only. We captured 40 male
lizards around the Lac d’Oncet at 2254 m ASL (Department of Hautes-Pyrénées, France)
between 2 and 7 July 2020 using the lasso method [75,76] during peak activity hours (09 h
30–15 h 30). Immediately after capture (within 10 s), body temperature was recorded
with an infrared thermometer from a 30 cm distance (infrared thermometer Trotec BP21,
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Marchtrenk, Austria, distance:measurement spot ratio 12:1). On the day of capture, we
measured the body mass with a precision scale to the nearest 0.01 g (range: 1.24–4.28;
mean ± s.d.: 2.64 ± 0.83 g) and the snout vent length (SVL) with a digital caliper to the
nearest 0.1 mm (range: 38.9–56.0; mean ± s.d.: 48.19 ± 5.22 mm). Lizards were individually
marked using a cautery pen [77]. For logistical reasons, the first 20 lizards captured were
transported to the Station d’Ecologie Théorique et Expérimentale du CNRS à Moulis as
the low-elevation treatment (42◦57′26.8′ ′ N, 1◦ 05′08.3′ ′ E; 436 m ASL; PO2 ≈ 20.1 kPa)
and the following 20 others to the Observatoire du Pic de Midi de Bigorre (42◦56′11.09′ ′ N,
0◦8′32.9′ ′ E; 2877 m ASL; PO2 ≈ 15.3 kPa). These differences in elevation result in about a
25% reduction in oxygen availability at the high elevation Pic du Midi lab compared with
the low elevation lab [78]. Treatment groups did not differ in SVL (t37.6 = 0.035, p = 0.97) or
mass (t37.9 = 0.071, p = 0.94) at the beginning of the experiment or in mass at the end of the
experiment (t36.9 = 1.51, p = 0.14).

Lizards were maintained under identical conditions in both labs so that the primary
difference in environments was total atmospheric pressure and thus oxygen availability.
While such experimental designs are not able to completely isolate the effects of reduction
in oxygen availability from changes in total atmospheric pressure, they are essential com-
plements to experiments that manipulate oxygen concentration in a controlled laboratory
setting [79]. Lizards were housed in groups of 2–4 in plastic enclosures (38 × 26 × 23 cm)
containing a thin layer of substrate, a water container, and two plastic hides also used as
thermoregulation platforms (15 × 5 × 3.5 cm). Every second day, lizards were fed with
mealworms (Tenebrio sp. larvae) and white maggots (Calliphora vomitoria), and water was
provided ad libitum. The cages were misted once a day. A UV lamp provided light for 11 h
per day, and the enclosures were heated with incandescent heat lamps (42 W) for 6 h per
day at 1 h intervals, providing a gradient of 20 to 36 ◦C. Animals stayed in captivity for 2
to 3 days before the start of the testing schedule (see below).

2.3. Thermal Preferences

We quantified lizard thermal preferences for both treatment groups using standard
procedures in a thermal gradient. After two hours acclimating to ambient temperatures
(20 ◦C) in their home cages, four lizards were placed in individual lanes of a thermal
preference arena (each lane 90 × 15 cm). On one side of this arena, we suspended four
ceramic lamps (150 W) to create a thermal gradient ranging from 20 to 60 ◦C. The animals
were left undisturbed for a one-hour acclimation period. Using two thermal cameras
(model C3, Flir Systems, Wilsonville, OR, USA) placed on tripods above the arena at a
distance of approximately 1 m, we captured images of the lizards on the gradient every
5 min for 3 h. Temperature data were extracted from the thermographs with Flir Tools (v.6.4,
Flir Systems). We extracted data from the image that had the best angle or clearest image of
the lizard at a given timepoint. We used the area box tool to select pixels in the centre of each
lizard dorsum. We used an emissivity value of 0.97, appropriate for reptile skin [80,81], and
accounted for ambient temperature and the distance between camera and animal. Using
the 36 values for each individual, we quantified the preferred temperature as the mean of
the middle 50% (mean of interquartile range [82]). Data for one individual were excluded
from analysis because this lizard wedged himself partially under the partition and did not
move for the entire trial period.

2.4. Performance Measurements

Our goal was to create thermal performance curves for sprint speed for lizards in
both treatment groups. We measured sprint performance at five temperatures, spanning
the active range for this species (15, 22, 29, 32, and 35 ◦C [68,83]). We tested lizards at a
maximum of two temperatures per day, with 6–16 h rest between trials. The experiment
was conducted over three consecutive days. Before sprinting, we acclimated lizards for one
hour in thermostatically controlled incubators (Aqualytic, Germany) at the test temperature.
Room temperature was thermostatically controlled to 20 ◦C. We then sprinted lizards on a
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1-m level racetrack lined with artificial turf, recording trials with a video camera (25 fps,
Sony Model HDR-XR160E, Sony Corporation, Tokyo, Japan) placed on a tripod directly
above the track. Lizards were prompted to sprint from 2 to 6 lengths of the track (i.e.,
until the visually fastest running speed was obtained). Data were extracted from videos
using Tracker software [84]. For each length performed by a lizard, we calculated the
maximum speed as the longest distance a lizard traversed in a time step of 0.2 s. We
sprinted lizards from both treatments in the same order of test temperatures, from coolest
to warmest, so that lizards in both groups would experience the exact same treatment order
and to avoid any potentially detrimental effects of incubation at the highest temperatures,
especially in the high-elevation treatment where animals may be more sensitive to high
temperatures [65]. To account for the potential effects of acclimation on lizard performance,
after the trials at the highest temperature, we again sprinted all lizards at 15 ◦C to test
for changes in performance over time in captivity and to estimate repeatability of sprint
performance over the duration of the experiment.

2.5. Ethics Statement

Field and lab protocols were conducted under permit from the Direction régionale
de l’environnement, de l’aménagement et du logement (DREAL) Midi-Pyrénées (Arrêté
Préfectoral No: 2017-s-02 du 30 mars 2017), under current ethical committee approval
(APAFIS DAP#16359), and in accordance with Directive 2010/63/EU on protection of
animals used for Scientific Purposes. Animals were returned to the site of capture after
experiments.

2.6. Statistical Methods

To test for differences between treatment groups in thermal preference, we first used
Levene’s test to assess differences in variance and a t-test, assuming unequal variances,
to test for differences in the mean, implemented in the programming language R [85].
We utilised linear mixed models to assess the relative influence of elevation treatment
(low/high), temperature (treated as a categorical effect), body size (SVL), and the interaction
of treatment and temperature on sprint performance. We log10-transformed sprint speed
before analysis to meet the assumption of normal distribution of residuals and included
a random intercept for individual to account for repeated measures on the same animal.
We used the package emmeans for post hoc comparisons of estimated marginal means,
corrected for multiple comparisons with the Tukey method, in order to compare sprint
speed between treatment groups at each temperature [86,87]. We implemented models
with the lme4 package [88] in R. We confirmed normal distribution of residuals with a
Shapiro–Wilk test and determined the relative importance of fixed effects using type III
sums of squares, correcting denominator degrees of freedom for F-tests [89]. All data
figures were created with the ggplot2 package [90]. Additionally, we assessed whether
sprint speed changed over time in captivity by comparing sprint performance at 15 ◦C
between measures made after 3 days in captivity and after 6 days in captivity with a linear
mixed model of log10-transformed sprint speed (as above), including the fixed effect of time
of measurement and the random effect of individual. Further, we calculated repeatability
of sprint performance at this temperature with the rptR package in R [91], using 1000
bootstraps and 1000 permutations to estimate 95% confidence intervals and a p-value,
respectively.

3. Results

Field body temperatures at time of capture averaged 25.0 ◦C (N = 31; range: 12.6–31.7 ◦C;
Figure 2A). Transplanting lizards to low elevation affected both the mean (t27.6 = −2.92,
p = 0.0069) and variance (F1,37 = 14.7, p = 0.0005) of thermal preference: lizards transplanted
to low elevation exhibited lower thermal preferences and greater variance compared
to lizards maintained at high elevation (low elevation mean ± SD: 30.6 ± 3.6 ◦C; high
elevation mean ± SD: 33.2 ± 1.7 ◦C; Figure 2B). Elevation treatment, temperature, and the
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interaction of elevation treatment and temperature affected sprint performance (Table 1,
Figure 3). Lizards transplanted to low elevation were slower runners at the three highest
temperatures (29, 32, and 35 ◦C), as demonstrated by post hoc comparison of estimated
marginal means (Table 2, Figure 3). Snout-vent length also exhibited a marginal effect on
sprint performance, with larger lizards sprinting faster (β = 0.0032 ± 0.0016 SE; Table 1).
Sprint speed at 15 ◦C did not differ between the two measures made at the beginning
and end of the experiment (β = −0.023 ± 0.015 SE; F1,39 = 2.21, p = 0.14), and individuals
exhibited moderate repeatability of sprint performance at this temperature (R = 0.381,
95% CI: 0.084–0.619, p = 0.003).

Figure 2. Boxplots and raw values of (A) field body temperatures and (B) thermal preferences of
adult male Iberolacerta bonnali lizards. Thermal preferences (panel B) measured in lizards at low
and high elevation. Tukey boxplots show median, interquartile range, and 1.5× interquartile range
of raw data values. Asterisk indicates significant difference between treatment groups for thermal
preference (see text for statistical details).

Table 1. Results of linear mixed model analysis of sprint performance (log10-transformed m/s) in
adult male Iberolacerta bonnali lizards at low and high elevation (see text for statistical details).

Source of Variation Test Statistics

Temperature
F (dfn, dfd) 114.8 (4, 152)

Pr > F <0.001
Treatment
F (dfn, dfd) 5.13 (1, 37)

Pr > F 0.030
Temperature × Treatment

F (dfn, dfd) 2.84 (4, 152)
Pr > F 0.026

Snout-vent length
F (dfn, dfd) 4.02 (1, 37)

Pr > F 0.052
Significant effects shown in bold (p < 0.05).
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Figure 3. Boxplots of raw values for sprint performance in adult male Iberolacerta bonnali lizards at
low and high elevation. Asterisk indicates significant difference between treatment groups at 29, 32,
and 35 ◦C (see text for statistical details).

Table 2. Estimated marginal means of log10-transformed transformed sprint speed (m/s) and
differences between treatment groups at each temperature in adult male Iberolacerta bonnali lizards
(see text for statistical details).

Temperature
(◦C)

Low Elevation
(SE)

High Elevation
(SE)

Difference (SE)
Significance

Test

15 −0.176
(0.02)

−0.188
(0.02)

0.012
(0.29)

t171 = 0.43
p = 0.668

22 0.022
(0.02)

0.013
(0.02)

0.009
(0.29)

t171 = 0.33
p = 0.744

29 0.054
(0.02)

0.113
(0.02)

−0.059
(0.29)

t171 = −2.068
p = 0.040

32 0.103
(0.02)

0.171
(0.02)

−0.068
(0.29)

t171 = 0.−2.39
p = 0.018

35 0.134
(0.02)

0.212
(0.02)

−0.079
(0.29)

t171 = −2.77
p = 0.006

Significant differences at a given temperature shown in bold (p < 0.05).

4. Discussion

Previous work on vertebrate ectotherms demonstrates a near-universal limitation of
performance and aerobic metabolic capacity under conditions of reduced oxygen avail-
ability, especially at high temperatures [65,92]. On the basis of this work, one would
predict that a lizard species endemic to high-elevation habitats, and thus reduced oxygen
availability, would demonstrate increased performance when exposed to a relatively hy-
peroxic environment. Our results are exactly contrary to this prediction, but in support of
the hyperoxia-as-constraint hypothesis proposed in the introduction to this paper. When
transplanted to low elevation, individuals of the high-elevation specialist I. bonnali suffered
reduced sprint speed at high temperatures (Tables 1 and 2, Figure 3) and selected lower
body temperatures in thermal preference trials (Figure 2B). Most of our understanding of
oxygen limitation in ectothermic vertebrates comes from experiments reducing oxygen
availability relative to the conditions in which organisms evolved or developed, and thus
experiments such as the current study are essential for understanding more broadly how or-
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ganisms can deal with ecologically relevant levels of oxygen variation. Our results suggest
strongly that adaptation to reduced oxygen environments restricts an organism’s ability to
take advantage of increased oxygen availability and, in fact, acute exposure to hyperoxia
may be detrimental to performance and ultimately fitness. For example, limiting sprinting
performance may have immediate consequences on lizards’ ability to avoid predators or
catch prey [93,94].

While essential for aerobic life, oxygen is also toxic due to its ability to form molecules
which attract electrons and can damage important biochemical structures [95–97]. Our
results demonstrate that, even across ecologically relevant levels, acute increase in oxygen
availability does not necessarily benefit whole-organism performance. This is in accord
with previous work demonstrating that organisms that have evolved at near-sea-level
conditions are unable to increase performance measures under hyperoxia [98]. For exam-
ple, other lizard species exposed to hyperoxia do not alter selected body temperatures or
behavioural response to high temperatures, although hyperoxia may increase physiolog-
ical tolerance to high temperatures ([99–101], but see [102]). This suggests that multiple
physiological pathways involved in aerobic respiration are fine-tuned to current oxygen
environments, not simply limited by ambient oxygen levels. Therefore, deviations from
baseline availability—either increase or decrease—may disrupt these pathways and lead
to performance decrements. Future work is needed to examine the specific pathways and
trade-offs involved. Our results suggest that, at their native elevation, lizards have evolved
to meet metabolic demand when exposed to high temperatures despite low partial pressure
of oxygen [103]. When more oxygen is available, these pathways can be dysregulated by
hyperoxia in a manner that may disrupt the regulation of oxidative phosphorylation (ATP
production) and increase the production of damaging reactive oxygen molecules (ROMs)
in the mitochondria (reviewed in [62,63]). In our experiment, lizards transplanted to low
elevation lowered their preferred body temperatures, which will result in reduced aerobic
metabolic rates. This reduction of oxygen demand in the presence of increased oxygen
availability could further exacerbate a potential increase in ROM production [104,105]. At
the same time, this reduction in preferred body temperature coincides with a decrement in
running performance at high temperatures in hyperoxia. Lizards may be avoiding warmer
temperatures where performance is inhibited as a compensatory mechanism. Further
work is needed to discern the specific signalling pathways that determine an individual’s
preferred temperature and how these may be disrupted by relative hyperoxia.

The mechanisms that restrict certain taxa to high-elevation habitats remain elusive.
Most commonly, restriction to high-elevation habitats is attributed to either inability to
inhabit warmer, low-elevation habitats (e.g., [25]) or due to the presence of competitors
at lower elevations [32,106,107], including specific examples in high-elevation specialist
lizards of the genus Iberolacerta [39,40,42,43,45,108]. However, the congener Iberolacerta
cyreni does not exhibit agonistic interactions with the low-elevation lizard Podarcis muralis
either in experimental or field settings, providing little support for competitive exclusion
restricting I. cyreni to high-elevation habitats [46,109]. Our results suggest that in addition
to competitive interactions and cold-specialised thermal physiology, a third mechanism—
adaptation to low-oxygen environments and inability to deal with relative hyperoxia—
may contribute to the elevation restriction observed in I. bonnali and potentially other
Iberolacerta species. I. bonnali are extremely adept thermoregulators [83], suggesting that
they could behaviourally buffer themselves in a warmer environment [38,110]. However,
levels of oxygen ability will interact with available temperatures to shape thermal ecology
(as described by the hierarchical mechanisms of thermal limitation hypothesis [65]). If
thermoregulatory set-points are determined by the thermodynamic effects of temperature
on metabolism, increased oxygen availability could disrupt the acquisition of optimal
temperatures for different aspects of organismal function. For example, we found that
I. bonnali transplanted to low elevations selected temperatures 2.6 ◦C cooler than lizards
kept close to the elevation of origin. This reduction in selected temperatures will likely
result in a decrement in fitness-related physiological processes. Additionally, exposure
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to novel conditions might increase among-individual variation in traits when previously
cryptic genetic variation is exposed [111,112]. In this case, increased among-individual
variation in thermal preferences could indicate there is greater genetic variance—in trait
means or plasticity—upon which natural selection could act in novel environments.

Our results suggest that the evolved capacities of I. bonnali to compensate for low
oxygen availability in their high-elevation habitats may be maladaptive when lizards are
translocated to low elevations and increased oxygen availability. The extent to which this
limitation may be important in restricting the range of high-elevation specialists needs to be
assessed in more taxa. The inability to adjust to relative hyperoxia may act in conjunction
with other factors, such as increased interspecific competition or higher temperatures, to
limit species distributions. Our data also suggest that I. bonnali may be resilient to short-
term increases in high temperatures. Their preferred body temperature in unconstrained
laboratory conditions is well above temperatures lizards achieved in the field and they are
capable of maintaining at least one measure of whole-organism performance, sprinting,
at even the highest temperature we tested (35 ◦C). The important conservation question
is then the capacity for lower-elevation species, such as lizards in the genus Podarcis, to
move upslope and the potential ramifications of increased interspecific interactions, which
remain unclear [45,46,113].

Future studies should also test the response of high-elevation lizards when acclimated
to low-elevation conditions for longer periods of time and how physiological plasticity
might mitigate the negative consequences we observed, such as through shifts in blood
oxygen capacity, reactive oxygen molecule production, or metabolic rates (e.g., [114]). Over
longer exposures to relative hyperoxia, lizards may be able to respond via physiological
plasticity to compensate for the new environment. For example, the congener I. cyreni
dramatically reduced hematocrit, increased body condition, and increased preferred body
temperatures after two weeks of exposure to a modest increase in oxygen availability [114].
However, such plasticity may not fully compensate, and performance can be reduced,
as found in low-elevation lizards transplanted to high elevation (e.g., [66,115]). It is
also essential to test the capacity of embryos to develop successfully in different oxygen
environments, as this life-history stage may be more resilient to such limitations [48,116–
118]. Our results were directly opposite to predictions based on models developed from
studies of organisms inhabiting generally normoxic environments introduced to conditions
of oxygen limitation. This highlights the complexities of oxygen physiology and that the
assumption of “more is better” does not apply to organisms adapted to life at high elevation.
Studies of the unique physiological adaptations of high-elevation organisms remain an
essential—and underexplored—area in characterising the vast biological diversity of our
planet [119,120].
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Abstract: Animals frequently show complex colour patterns involved in social communication, which
attracts great interest in evolutionary and behavioural ecology. Most researchers interpret that each
colour in animals with multiple patches may either signal a different bearer’s trait or redundantly
convey the same information. Colour signals, moreover, may vary geographically and according
to bearer qualities. In this study, we analyse different sources of colour variation in the eastern
clade of the lizard Psammodromus algirus. Sexual dichromatism markedly differs between clades;
both possess lateral blue eyespots, but whereas males in the western populations display strikingly
colourful orange-red throats during the breeding season, eastern lizards only show some commissure
pigmentation and light yellow throats. We analyse how different colour traits (commissure and throat
colouration, and the number of blue eyespots) vary according to body size, head size (an indicator of
fighting ability), and sex along an elevational gradient. Our findings show that blue eyespots function
independently from colour patches in the commissure and throat, which were interrelated. Males
had more eyespots and orange commissures (which were yellow or colourless in females). Throat
colour saturation and the presence of coloured commissures increased in older lizards. The number
of eyespots, presence of a coloured commissure, and throat colour saturation positively related to
head size. However, while the number of eyespots was maximal at lowlands, throat colour saturation
increased with altitude. Overall, our results suggest that this lizard harbours several colour signals,
which altitudinally differ in their importance, but generally provide redundant information. The
relevance of each signal may depend on the context. For example, all signals indicate head size, but
commissure colouration may work well at a short distance and when the lizard opens the mouth,
while both throat and eyespots might work better at long distance. Meanwhile, throat colouration
and eyespots probably work better in different light conditions, which might explain the altitudinal
variation in the relative importance of each colour component.

Keywords: colouration; social signals; Psammodromus algirus; lizards; altitudinal gradient

1. Introduction

Colour ornaments are frequent in the animal kingdom, typically involved in social
communication [1]. However, understanding the evolution of colour patterns in animals is
challenging because it often arises from the interaction of concomitant selective pressures.
Sexual selection favours sexual dichromatism and colourful patterns [2], whereas natural
selection selects for dull and cryptic colourations [3]. Besides, animals frequently show
complex and contrasting colour patterns consisting of multiple colour patches [4]. Multiple
ornamental colour patches within individuals may be the result of different selective
pressures on each patch [5,6], and so each component of colouration may be related to
different individual traits (multiple message hypothesis; e.g., [7–9]). Alternatively, different
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colour patches may act as redundant signals providing similar information, in this way
increasing the reliability of the signal (backup hypothesis, [10,11]).

In reptiles, colouration is the result of a mix of pigments (carotenoids, pterins, and
melanin) and structural layers including crystalline platelets [12]. In lizards, the size and
spectral characteristics of colour patches have been related to different traits [13]. For
example, different characteristics of colour patches can reflect fighting ability [14–16], as
well as reproductive status in both females [17–19] and males [20–22], among several
other traits.

Understanding the processes that generate intraspecific phenotypic variation is essen-
tial in evolutionary ecology. Colouration may vary geographically if selective pressures
also vary [23–25]. In this sense, elevational gradients offer a valuable study framework en-
compassing a considerable environmental variation in a relatively short spatial range [26].
For example, Badyaev [27] described an elevational pattern in birds, in which the strength
of sexual selection on colouration decreased with altitude. Badyaev [27] proposed several
explanations for this pattern, some of which apply only to species with prolonged parental
care. However, it is unknown whether such a pattern is also applicable to reptiles, studies
on lizards providing mixed results [28–32].

In the present study, we investigated several sources of inter-individual variation
in social colouration of the Mediterranean lizard Psammodromus algirus in Sierra Nevada
Mountain (Spain). Psammodromus algirus is a medium-large lacertid (53–80 mm snout-
vent length, SVL, in our study area) that inhabits shrubby habitats in the Mediterranean
region of western North Africa, the Iberian Peninsula, and southern France [33]. In the
Iberian Peninsula, this species is split into two phylogeographic clades [34], which differ in
male colouration during the breeding season (see Figures 1 and 2 in [33]). In the western
clade, adult males typically show orange-red colour on the head and throat during the
breeding season [19,30,35–37], while young males only exhibit an orange spot in their
mouth commissures [38]. These colour patches are absent in females. Meanwhile, social
colouration in the eastern clade has been much less studied. In the eastern clade, adult
males present an orange spot in their mouth commissures, but not orange colouration in
the head and throat [39], just like young males in the western clade. Both adult males
and females may exhibit a yellow patch on their throats during the breeding season [39].
Besides, P. algirus from both clades display a variable number of blue-ultraviolet eye-
spots in their flanks, which are more numerous in males than in females, and show little
seasonal variation [39,40].

The aim of this study is to examine the sources of inter-individual variation in the
colour variables involved in social communication of a southern population within the
eastern clade of P. algirus. We were interested in the diversity of colour patches in this
species and its marked geographical variation. We related several colour traits (throat
lightness, chroma, and hue, commissure colour and patch size, and the number of flank
eyespots) with:

(1) Morphometric traits (SVL, body mass, and head size). Lizard morphometric traits
strongly correlate with fitness. Body size is positively related to reproductive success
in males [35,37,41] and females [42]. Head size is typically related to bite force,
representing fighting ability, so it is related to social dominance in P. algirus [37].
While it is well known that head breeding colouration (orange) indicates body size
and fighting ability in the western clade [35,37,41], intervening in communication
during agonist encounters, whether that is also the case of colour patterns in the
eastern clade remains poorly understood.

(2) Sex. Albeit well reported in the western clade [35,36], sexual dichromatism is un-
derstudied in eastern populations (but see [39]). Some degree of dichromatism is
expected given that sexual selection is typically stronger in males, especially in polyg-
ynous species [2]. While the mating system in the eastern clade is unknown, lizards
from the western clade are polygynous; a male’s territory overlaps with those of
several females [35,37].
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(3) Age. In the western clade, adult males are well differentiated from immature males
by head colouration, but how colouration patterns vary with the advances of years
is still unknown. In fact, in the western clade, it is well-determined that male head
colouration varies with body size [35]. However, given that lizards are indeterminate
growers, body size increases with age, so it is unclear whether colour signals indicate
body size or age in this lizard. Males indicating old age may be preferred by females
as their signals would indicate longevity and hence individual quality [43].

(4) Altitude. We examine how social colouration varies with altitude along a 2200-m
elevational gradient. In a population of the western clade, lizards from localities sepa-
rated 650 m in altitude differed in colouration, low-elevation individuals having more
saturated colour in throats and more eyespots than high-elevation conspecifics [29,30].
However, whether colouration in populations from the eastern clade similarly varies
with altitude remains unknown.

(5) Season. In the western clade, some signals as head and throat patch size and coloura-
tion vary seasonally [35], while others as the number of eyespots do not [40]. Seasonal
variation in colouration of the eastern clade is poorly known (but see [39]).

Our final goal is to add to the knowledge of the evolution of lizard colouration.
Concretely, our main purposes are to understand whether such a variety of signals provide
different information on lizard quality or well provide redundant information, as well as
to give insights on the sources of geographic variation in social colouration.

Figure 1. The three-dimensional map (bottom panel) is a representation of the Sierra Nevada
Mountain and displays the location of the six sites sampled during this study along the elevational
gradient: 300 (1), 700 (2), 1200 (3), 1700 (4), 2200 (5), and 2500 (6) m asl. The location of Sierra Nevada
in the Iberian Peninsula (top, left) and an image of the lizard (top, right) are also shown.
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Figure 2. Representation of procedures for quantifying the coloured commissure area, using the
software Image J (version 1.60). (A) First, we performed lateral photographs of the lizard with the
mouth opens; (B) Second, we selected the coloured area with the “Colour threshold” tool; (C) Third,
we measured the area with the “Analyse particles” tool.

2. Material and Methods

2.1. Sampling and General Procedures

Fieldwork was performed in the Sierra Nevada mountain system (SE Spain), where
P. algirus inhabits from 200 to 2800 m asl, with permission of the Andalusian government
and National Park of Sierra Nevada (references GMN/GyB/JMIF and ENSN/JSG/JEGT/MCF).
We sampled six localities sited at 300, 700, 1200, 1700, 2200, and 2500 m asl (Figure 1) with
a similar structure of vegetation (more details in [44]). Lizards were captured by hand
and transported to the lab in cotton bags. Sampling occurred during their activity season
in Sierra Nevada, spanning from March to September [44], during the years 2010–2013.
We captured 482 adult lizards (males/females per year, 2010: 43|58, 2011: 49|50, 2012:
65|60, 2013: 82|75). We measured their SVL with a metal ruler (accuracy 1 mm), body
mass with a digital scale (accuracy 0.01 g) and head width with a digital calliper (accuracy
0.01 mm). Sex was determined according to femoral-pore development (more developed
in males [29]). Only adults were considered because we were interested in inter- and
intra-sexual communication. Given that SVL did not differ between sexes in our study
area [45], we considered adults lizards with the minimum body size for which we found
gravid females. Notice that body size varies with altitude [45], so this minimum SVL was
estimated for each altitude (at 300 m: 53 mm; 700–1700 m: 55 mm; 2200 m: 62 mm; 2500 m:
63 mm). Because lizards were part of a long-term study, they were marked by toe clipping
and resampled lizards (~5%) were excluded to avoid pseudoreplication. Toe clipping is
frequently used to mark lizards with little impact on welfare and survival [46]. Toes of
a subsample (n = 118) were conserved in ethanol and used for age determination using
phalanx skeletochronology (detailed methods in [47]). Skeletochronology was a technique
widely used to estimate age in reptiles (at the accuracy of a year), which has proven to be
very accurate [48].

2.2. Quantification of Colour Patches

Along the four years of the study, we measured throat (gular region) colour with a
colourimeter (Minolta CM-2600d). The colourimeter, placed on the lizard’s skin, projected
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three beams of light through a 3-mm-diameter hole. As a result, it took three measures
of reflectance and automatically gave the average of each colour component [49]. These
components correspond to the L*a*b* colour-space of the Commission Internationale
d’Eclairage (CIE 1976 [50]). The device measured the reflectance of the surface on the
spectrum of light of the visible range, from 400 to 700 nm wavelengths. We did not study
skin reflectance in the ultra-violet (UV) range of the spectrum because the throat has no
reflectance peak in the UV range. L*a*b* colour space is a 3-dimensional rectangular
colour space. L* axis represents lightness (0 is black, 100 is white); a* axis represents
red-green gradient (positive values are red, negative values are green); b* axis represents
blue-yellow gradient (positive values are yellow, negative values are blue). From L*a*b*
values we determined chroma (saturation or purity) as C* = [(a*)2 + (b*)2]1/2 (measured as
the percentage distance from the centre [0] of the colour space to its circumference [100]
where pure spectral colours are represented); and hue angle (the “colour” in common
parlance) as H* = tan−1(b*/a*) [51].

In 2011–2013, we additionally recorded the presence or absence, and colour (orange or
yellow) if present, of a patch in the mouth commissures, and counted the total number of
blue eyespots in the lizard flanks. For those lizards presenting a well-differentiated colour
patch in commissures, we took photographs from the right side of the head (consistently
with the mouth open; Figure 2). We used a Canon Power Shot SX200 IS digital camera
and a graph paper background for size reference. Then, we measured the area of this
pigmented patch using the software Image J (version 1.60 [52]). First, we scaled the photos
using the graph paper (in mm) and the “Set scale” tool. Then, we adjusted the area of the
patch using the “Colour threshold” tool. We afterwards measured the area of each coloured
patch with the “Analyse particles” tool (Figure 2). The software measured all the patches
delineated and gave the total selected area in mm2.

2.3. Statistical Analyses

Sample sizes differed among the variables measured (Appendix A). Eyespot number
and commissure colour and size were not recorded in 2010. The size of the commissure
patch was measured only in lizards in which it was present (50% of lizards). Age was
estimated in a random subsample of 118 lizards. For diverse reasons, some data for different
variables were lost in several individuals. The fact that not all variables were available in
every individual conditioned the statistical analyses we could perform minimising the loss
of sample size.

Firstly, we checked for possible outliers in every variable by using Cleveland plots [53].
Secondly, we graphically checked the normality and homoscedasticity of the variables [53].
Throat hue and area of the commissure were log-transformed to match these assumptions.
Throat lightness was arcsin-transformed. SVL, body mass and head width were log-
transformed to meet homoscedasticity and linearity [54]. Throat chroma and the number of
eyespots were not transformed. Although all analyses were carried out with the variables
transformed, raw data are shown in graphics and when providing mean values (with SE).

The colour variables measured (number of eyespots, throat lightness, throat chroma,
throat hue, presence and colour of commissure patch, and area of the commissure patch)
may not be independent among themselves. For this reason, in a first analysis, we examined
the bivariate Pearson product-moment correlation between continuous variables, and we
tested with Anova whether the value of the colour variables differed among categories of
commissure colour (colourless, orange, yellow).

In a second analysis, we carried out a linear model for every colour variable with a
continuous distribution, and a multinomial model linked to a logit function for commissure
colour. In these models, the predictor variables were SVL, body mass, head width (all
log-transformed, continuous), altitude (six levels: 300, 700, 1200, 1700, 2200, 2500 m), season
(date when lizards were captured, arranged into three categories: March–May, June–July,
August–September), sex (males, females), and year (2010, 2011, 2012, 2013; data for 2010
only available for throat lightness, chroma, and hue). All analyses were carried out with
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R 3.6.1 [55]. Multinomial models were performed using the function “multinom” of the
package “nnet” v. 7.3–14 [56]. In addition, we applied a model selection approach based on
the Akaike Information Criterion (AIC) with the “MuMIn” package [57]. In this analysis,
models with a value of ΔAIC less than 2 were chosen [58]. Moreover, given that some colour
variables showed some correlation (see below), we repeated the best models including
the other variables of colouration as covariates to check the soundness of the findings.
Normality and homoscedasticity of every model’s residuals were checked [53]. Only
significant effects supported by the three statistical approaches (full model, model selection,
and best models controlling for other colour variables) were considered as sound. We also
checked for interactions between the predictor variables. However, most interactions were
non-significant or lacked soundness, so we decided not to show them for the sake of clarity.

Lastly, lacertid lizards typically have indeterminate growth. Consequently, older
lizards are also larger. In this way, age and body size may be confounded. To test the effect
of age, we repeated the analyses with a subsample of known-age individuals, by including
the age estimated with skeletochronology in the models. Given that these models included
SVL and age, the effect of the two variables can be disentangled.

3. Results

3.1. Relationship among Colour Parameters

The number of blue eyespots was unrelated to the other colouration variables (throat
chroma, lightness and hue, and area of the commissure), but lizards with orange com-
missures had significantly more eyespots (F2, 271 = 31.54, p < 0.001; Table 1). This finding
seems to be linked to the fact that males have more eyespots and a higher probability to
present orange commissures (see below). Indeed, when sex was introduced as a predictor,
the relationship between number of eyespots and colour of commissures disappeared
(F2, 270 = 1.49, p = 0.23; effect of sex: F1, 270 = 39.15, p < 0.001). Meanwhile, throat coloura-
tion parameters were interrelated; chroma and lightness were negatively correlated, while
hue was positively correlated with lightness and so negatively related to chroma (Table 1).
Nonetheless, correlation coefficients were relatively low (|r| ≤ 0.51). The size of com-
missure patch was positively correlated with throat chroma, and negatively with hue
and lightness (Table 1). In addition, individuals with a commissure patch (orange or
yellow) had more saturated throats (F2, 274 = 23.31, p < 0.001; Table 1). The reverse oc-
curred for throat lightness (F2, 274 = 17.96, p < 0.001; Table 1). Throat hue was unrelated
to commissure colour (F2, 274 = 0.24, p = 0.79). Lizards with orange commissures tended
to have larger commissure patches than lizards with yellow commissures (0.74 ± 0.07
vs. 0.48 ± 0.16 mm2; F1, 111 = 3.14, p = 0.079). Therefore, mouth commissure and throat
colourations were seemingly interrelated.

3.2. Correlates of Colouration

The full model (Table 2) showed that the number of eyespots was maximal at a low
elevation and minimal at mid-elevation (Figure 3a). Males had more eyespots than females
(Figure 3b). Moreover, lizards with larger heads showed more eyespots (Figure 3c). The
number of eyespots did not significantly vary with season or body size (SVL or mass).
According to a model selection approach, the best model was that including altitude,
sex, and head size (Table 3). The second-best model included those variables plus SVL
(ΔAIC = 1.79), which, however, failed to significantly explain variation in the number
of eyespots.

Throat lightness significantly varied with altitude (Table 2). Concretely, lizards
from localities at 2200 and 2500 m had darker throat than those from lower altitudes
(Figure 4a). Lizard throat was darker at the end of the breeding season (Figure 4b). Lizards
with larger SVL and heads showed darker throats than smaller lizards (Table 2; Figure 4c;
data not shown for SVL). Besides, throat lightness varied among years (Table 2). The four
best models (ΔAIC < 2) included altitude, season, year, and head size as predictors (Table 3).
Given that throat lightness was correlated with throat chroma and hue, we repeated the
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best model including these two variables as predictors to control for them. The resulting
model was qualitatively very similar to the best model (data not shown), with the exception
that SVL was no longer significantly related to throat lightness. SVL was not included in
the fourth best model (Table 3), so there was little support for this variable being related to
throat lightness.

Throat chroma increased with altitude (Figure 5a) and decreased with the advance
of the season (Figure 5b; Table 2). Throat chroma increased with SVL and head size
(Figure 5c, data not shown for head size). Besides, throat chroma showed interannual
variation (Table 2). With the model selection, three models had ΔAIC < 2, all includ-
ing altitude, season, year, SVL, and head size as significant predictors of throat chroma
(Table 3). When controlling for throat lightness and hue, results were similar, but head size
was no longer significant, and a marginally significant effect of body mass emerged (data
not shown).

Table 1. Correlations among the continuous variables (provided sample size -in the subscript-, correlation coefficient and
p-value are provided), and average values (±SE) for each category of commissure colour (no colour, yellow, or orange).
Sample sizes for each category of commissure colour between brackets (for eyespots of lizards with orange commissures,
the sample size was 103). Raw data are shown, but statistical tests were carried out with transformed variables when
necessary. In bold significant relationships or differences. Different superscripts indicate significant differences according to
an unequal N HSD post hoc test.

Correlations Commissure Colour

Throat
Lightness

Throat
Chroma

Throat Hue
Commissure

Area
No (138) Yellow (33) Orange (106)

Eyespots r362 = 0.02
p = 0.71

r362 = 0.03
p = 0.51

r362 = 0.08
p = 0.12

r110 = 0.04
p = 0.71 3.64 a ± 0.18 3.85 a ± 0.44 5.79 b ± 0.20

Throat
Lightness

r473 = −0.51
p < 0.001

r473 = 0.21
p < 0.001

r114 = −0.30
p < 0.001

81.28 a ± 0.37 76.09 b ± 1.12 79.57 c ± 0.44

Throat Chroma r473 = −0.13
p = 0.006

r114 = 0.46
p < 0.001

12.20 a ± 0.36 20.10 b ± 1.58 17.19 b ± 0.92

Throat Hue r114 = −0.18
p = 0.06 88.86 ± 1.09 88.87 ± 2.10 87.70 ± 1.08

Table 2. Full models for each colour variable. In bold, predictors with a significant effect. Degree of freedom (df) as well as
F-value for lineal models and χ2 for multinomial model are shown. * p < 0.05, ** p < 0.01, *** p < 0.001.

Throat Commissure

Eyespots Lightness Chroma Hue Colour Area

Df F-Value df F-Value F-Value F-Value df χ2 df F-Value

Altitude 5, 333 3.88 ** 5, 430 8.48 *** 3.25 ** 6.12 *** 10 4.08 5, 97 0.75

Season 2, 333 0.08 2, 430 12.79 *** 10.93 *** 8.16 *** 4 10.38 * 2, 97 4.96 **

Year 2, 333 1.18 3, 430 6.48 *** 5.93 *** 2.98 * 4 1.92 2, 97 6.58 **

Sex 1, 333 57.62 *** 1, 430 2.98 0.73 1.77 2 90.72 *** 1, 97 2.23

Mass 1, 333 0.71 1, 430 0.99 2.83 0.31 2 0.99 1, 97 2.67

SVL 1, 333 1.44 1, 430 4.58 * 8.50 ** 1.12 2 0.73 1, 97 1.66

Head 1, 333 6.78 * 1, 430 8.94 ** 4.86 * 1.12 2 8.99 * 1, 97 0.15
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Figure 3. The average number of eyespots (with SE) in the flanks of the lizard P. algirus, according to altitude (A) and sex
(B), and the relationship between the number of eyespots and head width (C). Notice that raw data are shown, but statistical
analyses were performed with transformed data when necessary.

Table 3. Models chosen by model selection approach based on AIC. In bold, predictors with a significant effect.

Dependent Variable Predictors df AICc ΔAIC Weight

Eyespots Altitude + Sex + Head 9 1437.01 0 0.29
Altitude + Sex + Head + SVL 10 1438.80 1.79 0.12

Throat Lightness Altitude + Season + Year + Head + SVL + Sex 15 −1161.73 0 0.31
Altitude + Season + Year + Head + SVL + Sex + Mass 16 −1160.61 1.13 0.18

Altitude + Season + Year + Head + SVL 14 −1160.28 1.45 0.15
Altitude + Season + Year + Head + Sex 14 –1159.82 1.91 0.12

Throat Chroma Altitude + Season + Year + Head + SVL + Mass 15 2863.91 0 0.31
Altitude + Season + Year + Head + SVL 14 2864.35 0.45 0.25

Altitude + Season + Year + Head + SVL + Mass + Sex 16 2865.30 1.40 0.15

Throat Hue Altitude + Season + Year + Sex 13 –648.44 0 0.25
Altitude + Season + Year + Sex + Head 14 –646.98 1.46 0.12
Altitude + Season + Year + Sex + Mass 14 –646.49 1.95 0.10

Commissure Colour Season + Sex + Head + Mass 12 272.67 0 0.41
Season + Sex + Head + SVL 12 273.09 0.42 0.33

Commissure Area Year + Season + Mass + Head 8 198.57 0 0.15
Year + Season + Sex + Mass 8 198.74 0.17 0.14

Year + Season + Sex + SVL + Mass 9 198.87 0.30 0.13
Year + Season + SVL + Head 8 199.25 0.68 0.11
Year + Season + Sex + SVL 8 199.75 1.18 0.08

Year + Season + Sex + Mass + Head 9 199.81 1.24 0.08
Year + Season + SVL + Mass + Head 9 200.13 1.55 0.07
Year + Season + Sex + SVL + Head 9 200.22 1.65 0.06

Figure 4. Average values of throat lightness (with SE) in the lizard P. algirus, according to altitude (A) and season (B), and
the relationship between throat lightness and head width (C). Notice that raw data are shown, but statistical analyses were
performed with transformed data when necessary.
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Figure 5. Average values of throat chroma (with SE) in the lizard P. algirus, according to altitude (A) and season (B), and the
relationship between throat chroma and SVL (C). Notice that raw data are shown, but statistical analyses were performed
with transformed data when necessary.

According to the full model, throat hue showed covariation with altitude, season, and
year, but not with sex or lizard morphology (Table 2). Throat hue tended to decrease with
altitude and increased with the advance of the season (data not shown for simplicity). The
model selection provided similar results, but, the best models also included sex, which
significantly explained part of the variation in throat hue (Table 3). The inclusion of throat
lightness and chroma in the model did not alter significantly the results (not shown).

The colour of the commissure differed between sexes, males usually having orange
commissures, while females had yellow or no coloured commissure (Figure 6a; Table 2). The
frequency of lizards with orange commissures decreased with the advance of the breeding
season (Figure 6b; Table 2). Lastly, individuals with coloured commissure (either orange or
yellow) had larger heads than individuals without commissure (Figure 6c, Table 2). No
other variable was significantly related to commissure colour (Table 2). Model selection
approach selected for two models including sex, season, and head size as significant
predictors (Table 3).

Figure 6. Frequency of P. algirus lizards with colourless, yellow or orange commissure according to sex (A) and season (B),
and head width (with SE) of lizards according to commissure colour (C).

The area of the coloured commissure varied significantly with season and year
(Table 2), tending to decrease with the advance of the breeding season (Figure 7). Eight
models were selected by model selection. All models included season and year as signifi-
cant predictors. No model included altitude. The remaining variables were included in
five models, being significant in some, but not in others (Table 3). A model including throat
lightness, chroma, and hue did not alter significantly these results (not shown).

3.3. The Effect of Age

As expected, SVL increased with age (F4, 113 = 14.06, p < 0.001; Appendix B). We
found that older individuals were more likely to have coloured commissures (χ2

6 = 12.83,
p = 0.046; Figure 8a). Moreover, throat chroma increased with age (Figure 8b). This last
result was confirmed by model selection. Two models were selected including the variables
age + body mass (AICc = 678.33) and age + body mass + head size (AICc = 679.14). Notice
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that the two models included age, but not SVL, as a predictor of throat chroma. Previous
analyses showed that throat chroma was the only colour variable that increased with SVL
(Table 4). However, the present findings suggest that throat chroma is influenced by age
rather than by body size.

Figure 7. Average values of commissure area (with SE) in the lizard P. algirus, according to season.

Figure 8. Frequency of lizards with colourless, yellow or orange commissure according to age (A) and average (with SE)
throat chroma according to age (B).

Table 4. Summary of the main results. In bold are the clear results, whereas somewhat dubious results are not in bold.

Altitude Season Year Sex SVL Mass Head

Eyespots U-shaped No No More in males No No Increase

Throat Lightness Darker at the
highest altitudes

Lighter at the end of
the season

Yes No Decrease No Decrease

Throat Chroma Linear increase Linear decrease Yes No Increase
(with age)

No Increase

Throat Hue Decrease Linear increase Yes Yes No No No

Commissure
Colour No

Less orange lizards
with advanced

season
No Orange, males; yellow

or colourless, females
No No Larger in

coloured lizards

Commissure
Area No Linear decrease Yes Larger in males No No No

4. Discussion

Table 4 summarises the conclusions based on the main results. The findings in
this study suggest that blue eyespots function independently from colour patches in
the commissure and throat, while throat and commissure colouration were interrelated.
Moreover, eyespots and both commissure and throat varied in different ways with altitude
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and season. Eyespots varied with altitude following a U-shaped pattern, while throat
colour increased in saturation (chroma) with altitude. Also, throat colouration was darker
in the highest elevations, where lizards are typically darker [59]. While eyespots were
permanent colour patches (as in the western clade [40]), commissure and throat colouration
varied with the season. At the beginning of the breeding season, we found more lizards
with coloured commissures and throat colour was darker and more saturated. Similar
findings were reported for a northern population of the same phylogenetic clade [39],
which suggests that throat and commissure patches are involved in communication during
breeding. Similarly, in the western clade, orange head colouration in adult males and
coloured commissures in young males are present during the breeding season [19,35,36,38].

We found some degree of sexual dichromatism; males typically had more eyespots
and orange commissures (which were yellow or colourless in females). Hence, although
sexual dichromatism was not as pronounced as in the western clade, a slight dichromatism
is still present in the eastern clade. Throat saturation and the presence of coloured commis-
sures was indicative of age. Meanwhile, the number of eyespots, presence of a coloured
commissure, and throat saturation, all were indicators of head size, and thus of fighting
ability. Therefore, although colour patches changed with altitude and season in different
ways (probably reflecting different subjacent colour production costs and mechanisms
and/or selective pressures), they seem, in general, to be redundant indicating the same
traits of lizards: sex, fighting ability, and age. One possibility is that these signals are
used in different contexts, indicating the same traits at different distances or in different
light conditions.

4.1. Colouration as Indicators of Fighting Ability, Sex, and Age

All colour patches measured (eyespots, commissure and throat) seem indicators of
head size (Table 4), which is known as a good indicator of fighting ability [60]. Lizards with
greater fighting ability are more successful in defending their territories and hence obtain
higher mating success [37]. Several studies suggest that blue-ultraviolet colouration, as that
present in eyespots, is related to fighting ability [16,61,62], but pigmentary colourations
may also serve as indicators of fighting ability [63]. During a contest, signals correlated
with fighting ability may help individuals to assess the relative competitive ability of
rivals and so to avoid being involved in a costly physical combat [2]. To be informative,
such signals should be honest indicators of fighting ability. Colouration may be a reliable
indicator of fighting ability when maintained by social interactions [64]. Indeed, in the
western clade of P. algirus, orange head colouration is a good indicator of social dominance,
but orange-headed lizards are also more often involved in fighting, so subordinate lizards
would pay a cost if vividly coloured [41]. Moreover, throat and commissure colouration
might act as amplifiers of head size. This may be especially important in commissure
colouration, which is displayed only when the mouth is open, hence allegedly showing
the intention of biting and amplifying the perceived mouth size [65]. Furthermore, in the
western clade, several costs have been associated with male nuptial colouration, such as
reduced immune capacity, increased risk of ectoparasitism and ultimately reduced survival,
which could serve to maintain honesty [30,35,36].

While lizards from western populations are strongly dichromatic, sexual dichroma-
tism in our study population was reduced to commissure colour (orange in males, yellow
or colourless in females) and the number of eyespots (more numerous in males). Therefore,
commissure colour seems to intervene in sex recognition. The fact that females display
yellow throat and blue eyespots similarly to males suggests that females also use colour
patches in social communication. Female lizards frequently display colour patches, usually
related to receptiveness to breed [17–19]. However, alternative explanations, typically
poorly explored, are possible. Females could use throat colouration (and yellow com-
missures) to indicate fighting ability to rivals. Females could also indicate some type of
individual quality to potential mates [66]. However, colouration in females might simply be
the result of correlated selection in males [67]. Anyway, the reduced sexual dichromatism
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in the eastern clade suggests that sexual selection on male traits is weaker in the eastern
than in the western clade.

In Sierra Nevada, older individuals expressed both the yellow patch on the throat
and the orange commissures more frequently than young lizards. Given that this is a
trans-sectional study, we cannot disentangle whether colourful lizards lived longer (duller
lizards selectively disappearing from the population as they aged), or lizards invested
more in colouration as they aged. In either case, these colour patterns would indicate
higher survival capability of the bearer. Younger lizards may be selected for concealment,
mimicking females, hence not developing the yellow patch or the orange commissure
until they grow large enough to compete with older males [38,41]. However, dominant
males may detect female-mimicking males using chemosensorial cues [68]. Alternatively,
colour cues indicating lizard age could be used to evaluate the survival prospects of
potential mates [43]. In order for signals of survival ability to be honest, they should be
costly to produce or maintain for their bearers [69]. For instance, in the western clade,
conspicuous orange head colourations make individuals more visible to predators [70], so
only high-quality lizards may survive older.

4.2. Altitudinal Variation in Colouration

We report that eyespots and throat colouration followed different altitudinal patterns;
the number of blue eyespots was highest at low elevation and then followed a U-shaped
trend with altitude, while saturation of throat colouration linearly increased with elevation.
These discrepant patterns are hard to explain on the only basis of altitudinal variation in
sexual selection pressure. Moreover, altitudinal colour variation was similar in males and
females, supporting the idea that it is provoked by natural selection, not by sexual selec-
tion [71]. Our findings contrast with those reported for a population of the western clade in
central Spain, where P. algirus lizards have less saturated throats at higher altitude [29,30].
In our study population, lizard throat was darker at high elevations, which has also been
reported in other lizard species [28,32]. Darker colouration with ascending elevation is a
likely consequence of high dermal melanin [59].

This pattern of altitudinal variation in lizard colour signals and, especially, why eye-
spots and throat colouration covaried differently with elevation, requires an explanation
in which both colour signals are differentially affected by selective pressures. Blue eye-
spots are structural colourations, mainly produced by the combination of a thick and
well-arranged layer of iridophores and basal eumelanin. Meanwhile, yellow and orange
colourations are produced by pigments such as carotenoids and pterins. We discuss several
hypotheses that could explain the altitudinal patterns reported.

(1) Population density might affect the investment in social communication. In more
densely populated zones, social encounters should be more frequent, conducing to
increased contests. Given that colour signals in P. algirus apparently inform about
fighting ability, one could expect more investment in social signals in zones with
denser populations. However, this hypothesis is not supported, as density was maxi-
mal at mid-elevation, and minimal at lowlands [44], where the number of eyespots
was the highest. Therefore, altitudinal variation in population density did not covary
with either variation in the number of eyespots or throat saturation.

(2) We could also expect a trade-off between investment in signals and in self-maintenance [2].
Therefore, in zones where lizards invest more in longevity, social signals are expected
to be less expressed (i.e., the pattern of longevity and signal intensity should be
inverse). This hypothesis was not supported either, as longevity followed a U-shape
with altitude [72], hence showing a pattern not consistent with a trade-off between
self-maintenance and investment in colouration. Eyespots also followed a U-shaped
pattern and throat colouration increased with elevation.

(3) Temperature is the main environmental factor that varies with elevation. Colder
temperatures at higher elevations may limit activity, especially for ectotherms [44,73].
Moreover, elevated temperatures may favour sexual selection [74]. Although this
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could partially explain the highest number of eyespots at low elevations, hardly could
it explain why investment in throat colouration increases with ascending altitude.

(4) Several colour traits in lizards are sensitive to parasites [36,75–80]. However, para-
sites follow a complex pattern with altitude in our study system, mite abundance
decreasing, while haemoparasites prevalence increases, with ascending altitude [81].
Still, different types of colouration may be related to different types of parasites [82].

(5) Food availability increases with elevation in our study population [83]. Chromatic
properties of lizard skin correlate with pigment density, highly saturated colour
patches having more pigment density than paler and duller ones [84]. Therefore, if
throat pigment concentration depends on food (e.g., if they are carotenoid-dependent),
the increase in food availability could explain the highest investment in throat coloura-
tion with altitude [85,86]. The altitudinal pattern for eyespots would be different as
structural colour are presumed to be less affected by food availability.

(6) Lizards at higher elevations suffer less oxidative damage than low-elevation
ones [87,88]. Although we do not know if the yellow colouration in the throat is
mediated by carotenoids or by pterins, both pigments may have antioxidant prop-
erties mainly mediated throughout a regulatory effect on the immune system [89].
Therefore, lizards from a higher elevation, exposed to a less oxidant ambient, could
invest more in pigment-mediated social signals [90]. Meanwhile, the structural
colouration of blue eyespots could be unaffected by oxidative stress.

(7) Altitudinal variation in female preferences for different colour traits in males could
explain altitudinal variation in colouration [91] (also see [92,93]). However, this would
hardly explain the low sexual dichromatism along the altitudinal gradient [71].

(8) The efficiency of colour signals depends on the context where the visual stimulus is
produced, as environmental conditions also affect the dispersion of the signal [94].
Blue-ultraviolet colours (short wavelengths) are more effective in partially covered
habitats, while yellow-orange colourations are more effective in open areas [94]. Low
elevation sites, where eyespots are more numerous, are composed of Mediterranean
forests, with low arboreal cover, loose bushes, and a matrix of open and forestry zones.
In this type of habitat, short-length colours would be favoured. Meanwhile, high
elevation sites are above the treeline, with a habitat composed of short and compact
scrubs. In these sites, by contrast, yellow colouration might be favoured.

4.3. Comparison with the Western Clade

In the western clade, testosterone produces orange heads in adult males, but only
an orange commissure in young males [38]. To produce or have an orange head is costly,
as coloured individuals are more implied in fights, and colouration increases parasite
susceptibility and reduces survival [30,35,36,41]. Why do males in the eastern clade not
have orange heads during the breeding season? One possibility is paedomorphism, if adult
lizards are retaining their youthful characteristics. This may occur because environmental
conditions in the zones inhabited by the eastern clade favour an augment in the costs
and/or decrease in the benefits associated with orange colouration. In the western clade,
highly coloured males have larger home ranges that overlap with more females and so are
more successful in mate acquisition [35,37,41]. The eastern clade inhabits more arid zones,
with less plant cover and probably less food availability [42,95]. This might influence the
social behaviour of this lizard (which is unstudied in the eastern clade), needing larger
territories in which the control of several female territories is more difficult, and the contact
with other males is rarer. Therefore, both intra- and intersexual selection could be lower in
the eastern clade and so the benefits of an orange head could decrease. It is also possible
that lizards in the eastern clade are more exposed to predators, given that they live in
an opener environment [95]. Higher risk of predation would select against colourful
males [96]. These questions remain open and show that P. algirus lizards offer a valuable
opportunity to study and understand the evolution of nuptial colouration in lizards.
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Appendix A

Table A1. Sample sizes per sex (males|females) and per altitude for each variable.

300 700 1200 1700 2200 2500 Total

SVL 61|45 20|36 19|30 37|36 42|50 60|46 482
Body Mass 59|44 20|34 18|30 36|36 42|50 60|46 475

Head Width 60|43 19|29 16|29 37|33 39|48 57|45 460
Age 11|12 8|11 10|10 10|9 9|7 11|10 118

Eyespots 44|28 19|29 16|23 37|32 32|37 43|31 371
Throat Colour (LCH) 59|45 19|35 17|30 36|35 42|49 60|46 473

Commissure Patch Colour 33|22 11|15 14|19 32|25 27|24 35|24 281
Commissure Patch Size 16|1 5|2 5|2 20|6 18|5 25|9 114

Appendix B

Figure A1. Average snout-vent length (SVL) of P. algirus lizards according to age estimated with
skeletochronology. Lines indicate the starndard error.
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75. Václav, R.; Prokop, P.; Fekiač, V. Expression of breeding coloration in European Green Lizards (Lacerta viridis): Variation with

morphology and tick infestation. Can. J. Zool. 2007, 85, 1199–1206. [CrossRef]
76. Calisi, R.M.; Malone, J.H.; Hews, D.K. Female secondary coloration in the Mexican boulder spiny lizard is associated with

nematode load. J. Zool. 2008, 276, 358–367. [CrossRef]
77. Martín, J.; Amo, L.; López, P. Parasites and health affect multiple sexual signals in male common wall lizards, Podarcis muralis.

Naturwissenschaften 2008, 95, 293–300. [CrossRef]
78. Megía-Palma, R.; Martínez, J.; Merino, S. A structural colour ornament correlates positively with parasite load and body condition

in an insular lizard species. Sci. Nat. 2016, 103, 52. [CrossRef]
79. Megía-Palma, R.; Martínez, J.; Merino, S. Manipulation of parasite load induces significant changes in the structural-based throat

color of male Iberian green lizards. Curr. Zool. 2018, 64, 293–302. [CrossRef]
80. Megía-Palma, R.; Paranjpe, D.; Reguera, S.; Martínez, J.; Cooper, R.D.; Blaimont, P.; Merino, S.; Sinervo, B. Multiple color patches

and parasites in Sceloporus occidentalis: Differential relationships by sex and infection. Curr. Zool. 2018, 64, 703–711. [CrossRef]
81. Álvarez-Ruiz, L.; Megía-Palma, R.; Reguera, S.; Ruiz, S.; Zamora-Camacho, F.J.; Figuerola, J.; Moreno-Rueda, G. Opposed

elevational variation in prevalence and intensity of endoparasites and their vectors in a lizard. Curr. Zool. 2018, 64, 197–204.
[CrossRef]

82. Megía-Palma, R.; Martínez, J.; Merino, S. Structural- and carotenoid-based throat colour patches in males of Lacerta schreiberi
reflect different parasitic diseases. Behav. Ecol. Sociobiol. 2016, 70, 2017–2025.

83. Moreno-Rueda, G.; Melero, E.; Reguera, S.; Zamora-Camacho, F.J.; Álvarez-Benito, I. Prey availability, prey selection, and trophic
niche width in the lizard Psammodromus algirus along an elevational gradient. Curr. Zool. 2018, 64, 603–613. [CrossRef] [PubMed]

84. Cuervo, J.J.; Belliure, J.; Negro, J.J. Coloration reflects skin pterin concentration in a red-tailed lizard. Comp. Biochem. Physiol. B
2016, 193, 17–24. [CrossRef]

85. Hill, G.E. Geographic variation in the carotenoid plumage pigmentation of male house finches (Carpodacus mexicanus). Biol. J.
Linn. Soc. 1993, 49, 63–86. [CrossRef]

86. Grether, G.F.; Hudon, J.; Millie, D.F. Carotenoid limitation of sexual coloration along an environmental gradient in guppies. Proc.
R. Soc. B 1999, 266, 1317–1322. [CrossRef]

87. Reguera, S.; Zamora-Camacho, F.J.; Trenzado, C.E.; Sanz, A.; Moreno-Rueda, G. Oxidative stress decreases with elevation in the
lizard Psammodromus algirus. Comp. Biochem. Physiol. A 2014, 172, 52–56. [CrossRef]

88. Reguera, S.; Zamora-Camacho, F.J.; Melero, E.; García-Mesa, S.; Trenzado, C.E.; Cabrerizo, M.J.; Sanz, A.; Moreno-Rueda, G.
Ultraviolet radiation does not increase oxidative stress in the lizard Psammodromus algirus along an elevational gradient. Comp.
Biochem. Physiol. A 2015, 183, 20–26. [CrossRef]

89. McGraw, K.J. The antioxidant function of many animal pigments: Are there consistent health benefits of sexually selected
colourants? Anim. Behav. 2005, 69, 757–764. [CrossRef]

90. Olsson, M.; Tobler, M.; Healey, M.; Perrin, C.; Wilson, M. A significant component of ageing (DNA damage) is reflected in fading
breeding colors: An experimental test using innate antioxidant mimetics in painted dragon lizards. Evolution 2012, 66, 2475–2483.
[CrossRef]

91. Jennions, M.D.; Petrie, M. Variation in mate choice and mating preferences: A review of causes and consequences. Biol. Rev.
1997, 72, 283–327. [CrossRef]

92. Brooks, R.C.; Couldridge, V. Multiple sexual ornaments coevolve with multiple mating preferences. Am. Nat. 1999, 154, 37–45.
[CrossRef]

93. Kwiatkowski, M.A.; Sullivan, B.K. Geographic variation in sexual selection among populations of an iguanid lizard, Sauromalus
obesus (=ater). Evolution 2002, 56, 2039–2051. [CrossRef] [PubMed]

63



Diversity 2021, 13, 158

94. Endler, J.A. The color of light in forests and its implications. Ecol. Monogr. 1993, 63, 1–27. [CrossRef]
95. Díaz, J.A.; Verdú-Ricoy, J.; Iraeta, P.; Llanos-Garrido, A.; Pérez-Rodríguez, A.; Salvador, A. There is more to the picture than meets

the eye: Adaptation for crypsis blurs phylogeographical structure in a lizard. J. Biogeogr. 2017, 44, 397–408. [CrossRef]
96. Stuart-Fox, D.M.; Moussalli, A.; Marshall, N.J.; Owens, I.P.F. Conspicuous males suffer higher predation risk: Visual modelling

and experimental evidence from lizards. Anim. Behav. 2003, 66, 541–550. [CrossRef]

64



diversity

Article

Effects of Caudal Autotomy on the Locomotor Performance of
Micrablepharus Atticolus (Squamata, Gymnophthalmidae)

Naiane Arantes Silva 1, Gabriel Henrique de Oliveira Caetano 2, Pedro Henrique Campelo 3,

Vitor Hugo Gomes Lacerda Cavalcante 4, Leandro Braga Godinho 1, Donald Bailey Miles 5,

Henrique Monteiro Paulino 3, Júlio Miguel Alvarenga da Silva 1, Bruno Araújo de Souza 1,

Hosmano Batista Ferreira da Silva 1 and Guarino Rinaldi Colli 3,*

Citation: Silva, N.A.; Caetano,

G.H.d.O.; Campelo, P.H.; Cavalcante,

V.H.G.L.; Godinho, L.B.; Miles, D.B.;

Paulino, H.M.; da Silva, J.M.A.;

de Souza, B.A.; da Silva, H.B.F.; et al.

Effects of Caudal Autotomy on the

Locomotor Performance of

Micrablepharus Atticolus (Squamata,

Gymnophthalmidae). Diversity 2021,

13, 562. https://doi.org/10.3390/

d13110562

Academic Editors: Michael Wink and

Francisco Javier Zamora-Camacho

Received: 6 July 2021

Accepted: 9 September 2021

Published: 4 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Programa de Pós-Graduação em Ecologia e Conservação, Campus Nova Xavantina,
Universidade do Estado de Mato Grosso, Rua Prof. Dr. Renato Figueiro Varella,
Nova Xavantina 78690, MT, Brazil; naianearantes.bio@gmail.com (N.A.S.);
lbgcarranca@gmail.com (L.B.G.); julio7alvarenga@gmail.com (J.M.A.d.S.);
souza_bruno@icloud.com (B.A.d.S.); hosmanobatista@gmail.com (H.B.F.d.S.)

2 Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research,
Ben-Gurion University of the Negev, Midreshet Ben-Gurion 849900, Israel; gabrielhoc@gmail.com

3 Departamento de Zoologia, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Asa Norte,
Brasília 70910, DF, Brazil; pedro.h.campelo@gmail.com (P.H.C.); hunterh1008@gmail.com (H.M.P.)

4 Instituto Federal do Piauí, Teresina 64000-040, Piauí, Brazil; vitor.cavalcante@ifpi.edu.br
5 Department of Biology, Ohio University, Athens, OH 45701, USA; urosaurus@gmail.com
* Correspondence: grcolli@unb.br

Abstract: Caudal autotomy is a striking adaptation used by many lizard species to evade predators.
Most studies to date indicate that caudal autotomy impairs lizard locomotor performance. Surpris-
ingly, some species bearing the longest tails show negligible impacts of caudal autotomy on sprint
speed. Part of this variation has been attributed to lineage effects. For the first time, we model the
effects of caudal autotomy on the locomotor performance of a gymnophthalmid lizard, Micrablepharus
atticolus, which has a long and bright blue tail. To improve model accuracy, we incorporated the
effects of several covariates. We found that body temperature, pregnancy, mass, collection site, and
the length of the regenerated portion of the tail were the most important predictors of locomotor per-
formance. However, sprint speed was unaffected by tail loss. Apparently, the long tail of M. atticolus
is more useful when using undulation amidst the leaf litter and not when using quadrupedal lo-
comotion on a flat surface. Our findings highlight the intricate relationships among physiological,
morphological, and behavioral traits. We suggest that future studies about the impacts of caudal
autotomy among long-tailed lizards should consider the role of different microhabitats/substrates on
locomotor performance, using laboratory conditions that closely mimic their natural environments.

Keywords: lizard; autotomy; tail; locomotion; performance; temperature; predation

1. Introduction

Throughout evolutionary time, an “arms race” fostered varied strategies of prey
capture and predator escape [1]. Autotomy—the self-amputation of a body part in response
to an attack by a predator—is one of the most dramatic adaptations to avoid predation [2].
Caudal autotomy among reptiles has an ancient origin and was present in captorhinids
from the Early Permian [3]. It persists to this day among squamate reptiles, in some species
of snakes and most lizards, allowing them to escape while the predator is distracted by the
abandoned tail part [4–7]. The detachment of the tail in most species occurs through pre-
established, intravertebral fracture planes, the oldest and most common form of autotomy
to date, allowing a new tail to grow supported by a calcified cartilage tube [8–11].

Despite the immediate benefit of avoiding predation, autotomy also involves energy
costs that can influence survival. For instance, even when resources are limiting, tail
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regeneration is a priority, probably associated with long-term survival and reproductive
success [12,13]. Thus, the production of a new tail can negatively affect energy balance,
immunity, growth rate, social status, and immediate reproductive success [2,14]. Besides,
autotomy results in the temporary loss of an important mechanism to avoid predation.
Therefore, autotomized individuals may alter their patterns of activity and space use, as
well as foraging schedules and frequencies, to minimize exposure to predators [15,16].

In addition to affecting behavior, caudal autotomy affects the locomotor performance
of some species. The tail is a counterweight, balancing the head and body during racing;
therefore, its absence results in weight transfer to the forelimbs, making it challenging to
move [4]. Moreover, the tail can act as an inertial damper of pelvic girdle movements, and
its loss causes disordered oscillation of the hind limbs during the race [5] and reduced
jump stability and performance [17]. In general, caudal autotomy leads to decreased loco-
motor performance [18]. However, it may not interfere [19,20] or even increase locomotor
performance [21]. These opposite results may relate to interspecific differences in predation
intensity throughout ontogeny, life habits, and sexual dimorphism [15]. For example, in
sexually dimorphic species where males have conspicuous coloration, their locomotor
performance is little affected by autotomy, as potential predators and competitors can easily
see them [18,22]. Still, variation exists between and within evolutionary lineages associated
with different tail shapes and functions, such as sexual displays, predator distraction,
defense, balance, fat storage, stabilization, and an auxiliary organ in climbing [20,23].

The lizard genus Micrablepharus (Squamata, Gymnophthalmidae) contains two species:
M. maximiliani (Reinhardt and Lütken, 1861), widely distributed across the South American
dry diagonal, comprising the Chaco, Cerrado, and Caatinga, and M. atticolus Rodrigues,
1996, endemic to the Cerrado [24–27]. The two species are diurnal, semifossorial, and live
among the leaf litter [28–31]. Reproductive activity peaks in the dry season, and populations
undergo an almost complete annual replacement [32,33]. They share an elongate trunk and
tail, short limbs, and digit reduction on the forelimbs (complete loss of digit I), whereas the
hindlimbs follow the pentadactyl condition [34,35]. They exhibit intermittent quadrupedal
locomotion, combining conspicuous axial traveling waves with trot-like coordination of the
limbs [36–38]. The vertebral axis is the main effector of locomotion, while the limbs play an
auxiliary role. On low friction substrates, the axial system of locomotion predominates, but
the limbs become increasingly involved as substrate friction increases and with increasing
speed [37]. Micrablepharus atticolus and M. maximiliani have a long and bright blue tail that
contributes to divert attention from visually oriented predators to a non-vital part of the
body at the time of an attack, which may be associated with higher rates of autotomy in
more open environments [39].

Tail loss in Micrablepharus atticolus does not affect body condition, suggesting that
the energetic costs of autotomy are low or that individuals compensate for the tail loss by
increasing foraging rate [39]. Consequently, autotomy may not impair locomotor perfor-
mance by reducing energy reserves [40]. However, because of the importance of the axial
system during locomotion [37], tail loss may compromise sprint speed. Locomotor perfor-
mance is an essential determinant of fitness, because its reduction can undermine survival,
reproductive success [41,42], foraging [43,44], and social dominance [45]. Since environ-
mental variation affects autotomy rates in M. atticolus, but these do not affect survival [39],
studying the effect of autotomy on the locomotor performance of lizards inhabiting different
environments can contribute to the understanding of possible compensatory mechanisms.

Here, we investigate the effects of caudal autotomy on the locomotor performance of
Micrablepharus atticolus from two different environments, one in the central Cerrado and
another in the Cerrado-Amazonia transition. We take into account the effects of geography,
sex, body temperature, and ontogeny since (1) locomotor performance tends to be lower in
females, especially during pregnancy, by the effect of the additional burden represented
by the litter [46,47]; (2) there is a positive allometric relationship between body size and
locomotor performance [48]; and (3) central Cerrado lizards are expected to have better
locomotor performance, assuming that environmental conditions should be optimal for
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performance in the core of species distributions [49]. Moreover, we investigate whether the
effects of autotomy on locomotor performance are proportional to the size of the remaining
or regenerated portion of the tail [50].

2. Materials and Methods

2.1. Study Sites

We collected data from lizards captured at two sites: Reserva do IBGE (15◦56′06′′ S,
47◦52′09′′ W), a protected area in Brasília, Distrito Federal, Brazil, in the central area of the
Cerrado; and Parque do Bacaba (14◦42′24′′ S, 52◦21′10′′ W), Nova Xavantina, Mato Grosso,
Brazil, in the Cerrado-Amazon transition. The climate in both sites is tropical with dry
winter, Aw in Köppen’s classification [51], with a dry season from May to September and a
rainy season from October to April. In Brasília, the average annual accumulated precipi-
tation is 1477.4 mm, and the average annual temperature is 21.0 ◦C; in Nova Xavantina,
1417.7 mm and 24.8 ◦C, respectively (https://portal.inmet.gov.br/normais, accessed on
30 March 2021).

2.2. Lizard Sampling

We captured lizards using arrays of pitfall traps interconnected by drift fences, as
part of a long-term, mark-recapture study on their demography and community dynamics.
Each array consisted of four plastic buckets of 35 L, buried to ground level and arranged
in the form of a “Y”, interconnected by three 6 m long and 50 cm high galvanized steel
plates that functioned as guide fences. Immediately after capture, we took the following
measurements from each lizard: body mass, using a Pesola spring dynamometer (0.1 g
precision); snout-vent length (SVL), total tail length, and length of the non-autotomized
part of the tail—in lizards with caudal autotomy—with a metal ruler (1 mm precision); and
sex, whenever possible, through palpation of the abdomen for the presence of vitellogenic
follicles or eggs in pregnant females and the extrusion of the hemipenis in males. Next,
we transported lizards to the lab and housed them in individual terraria, with vermiculite
substrate and water ad libitum. Up to 24 h after capture, we carried out ecophysiology
experiments (below), after which we permanently marked (by toe-clipping) and released
lizards next to their exact capture sites. We captured and handled all individuals with great
care to prevent any damage to the tail, such that autotomized tails resulted exclusively
from natural processes. Finally, we only used adult individuals in the analyses, comprising
39 lizards from Brasília and 64 from Nova Xavantina. We considered individuals with SVL
greater than 35 mm as adults [32].

2.3. Locomotor Performance

We recorded sprint speed on a wooden track (300 cm long × 30 cm high × 40 cm wide).
We induced each lizard to run as fast as possible by manual stimulation, mimicking a
predatory chase, to record the maximum speed. Due to the thermal sensitivity of sprint
speed [52], we conducted runs at three different temperatures—cold (=ambient −5 ◦C),
ambient (~20 ◦C), and hot (=ambient +5 ◦C)—in each experiment. We used gel ice packs
and incandescent lamps to alter lizards’ body temperature, monitored with a fast-reading
cloacal thermometer (L-K Industries Miller & Weber T-6000 Cloacal 0/50 ◦C 0.2 precision).
We conducted two trials of each lizard at each temperature, totaling six runs. We recorded
runs at 420 fps with a Casio HS EX-FH25 digital camera mounted on an aluminum tripod
at 1.5 m height in the center of the track. Later, we analyzed videos with Tracker 4.80 to
obtain the maximum sprint speed of each lizard at each temperature.

Within at least one hour after the last run, we measured the critical thermal mini-
mum and maximum, with a one-hour interval between them, using a fast-reading cloacal
thermometer (L-K Industries Miller & Weber T-6000 Cloacal 0/50 ◦C 0.2 precision). We
exposed lizards to the sources of heat and cold mentioned above until they lost the righting
response, i.e., when they could not return to the prone position after turning in a supine
position without leading the animal to death. To build performance curves (below), we
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considered that sprint speed is equal to zero at the critical thermal minimum and maximum.
The Animal Use Ethics Committee of the University of Brasília approved all procedures
(process 33786/2016).

2.4. Statistical Analyses

To determine the effect of caudal autotomy on locomotor performance, we built
generalized mixed-effects additive models—GAMMs [53] with the MGCV package [54] in
the R environment [55]. We used GAMMs to generate performance curves and evaluate the
influence of predictors on the shape and location of curves because they allow nonlinear
responses and are flexible due to the non-parametric smoothing functions used in sections
of the data [56]. In these models, we used the maximum sprint speed as the response
variable; the individual as a random factor; and sex, pregnancy (gravid/non-gravid),
body temperature, mass, SVL, relative tail length (total tail length/SVL), caudal autotomy
(autotomized/not autotomized), relative length of the regenerated portion of the tail (length
of the regenerated portion of tail/SVL), and study site (Brasília/Nova Xavantina) as fixed
factors. To assess model significance, we used a likelihood-ratio test comparing its fit with
that of a null model, composed only of the response variable, the intercept, and the random
factor.

To evaluate predictor importance, we used a combination of model selection and
averaging based on the Akaike Information Criterion adjusted for small samples (AICc),
with the package MUMIN [57]. Model selection attempts to improve our understanding of
the relationship between the response and the predictors by reducing model’s complexity.
However, this approach often results in biased regression parameters and too small respec-
tive standard errors in finite samples because they do not reflect the uncertainty related to
the model selection process [58,59]. On the other hand, model averaging incorporates the
uncertainty intrinsic to model selection by combining parameter estimates across different
models [60,61]. Using this approach, we examined the complete set of possible models
combining the fixed effects to obtain model-averaged standardized parameter estimates for
statistical inference [62,63]. We used averages calculated across all models (“full averages”),
assuming that each model includes all variables, but that in some models the corresponding
coefficient (and its respective variance) is set to zero, which avoids biasing the values away
from zero [64]. Moreover, we calculated the importance of each predictor as the sum of
Akaike weights across all models containing that predictor.

3. Results

We obtained ecophysiological data from 39 lizards from Brasília and 64 lizards from
Nova Xavantina (Table 1). The likelihood-ratio test indicated that our full GAMM differed
significantly from a null model and adequately fitted the data (χ2

[1] = 219.129, p < 0.001,
adjusted-r2 = 0.622). Among the parametric terms in the model, collection site and preg-
nancy were significant, while among smooth terms, body temperature, body mass, and the
length of the regenerated portion of the tail were significant (Table 2). Model selection and
averaging indicated that body temperature, pregnancy, mass, collection site, and the length
of the regenerated portion of the tail, in this order, were the most important predictors of lo-
comotor performance in Micrablepharus atticolus (Table 3). The GAMM predicted maximum
locomotor performance around 31 ◦C (Figure 1A). Gravid females had lower performance
than males and non-gravid females (Figure 1B), and lizards from Nova Xavantina achieved
higher performance—and at higher temperatures—than lizards from Brasília (Figure 1C).
Finally, the locomotor performance increased with body mass (Figure 2A) and the relative
length of the regenerated portion of the tail (Figure 2B).
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Table 1. Summary statistics of ecophysiological parameters of Micrablepharus atticolus from Brasília and Nova Xavantina,
Brazil. Values represent the mean ± one standard deviation.

Parameter Brasília Nova Xavantina Total

Sample size 39 64 103

Mass (g) 1.49 ± 0.35 0.82 ± 0.19 1.06 ± 0.41

Snout-vent length (mm) 38.22 ± 3.06 34.98 ± 2.76 36.12 ± 3.26

Tail length (mm) 48.62 ± 13.74 46.37 ± 17.64 47.17 ± 16.39

Relative tail length 1.27 ± 0.34 1.32 ± 0.50 1.31 ± 0.45

Length of regenerated portion of tail (mm) 6.38 ± 10.30 9.99 ± 11.95 8.71 ± 11.51

Relative length of regenerated portion of tail 0.16 ± 0.26 0.28 ± 0.34 0.24 ± 0.32

Body temperature during runs (◦C) 27.94 ± 6.72 27.53 ± 5.43 27.67 ± 5.88

Critical thermal minimum (◦C) 13.90 ± 1.78 15.20 ± 3.29 14.70 ± 2.08

Critical thermal maximum (◦C) 44.41 ± 1.84 40.00 ± 3.09 41.69 ± 3.43

Sprint speed (maximum) 0.07 ± 0.02 0.10 ± 0.04 0.09 ± 0.04

Table 2. Full generalized additive mixed-effects model (GAMM) relating predictors to locomotor performance (sprint speed)
of the lizard Micrablepharus atticolus. AU: caudal autotomy (yes/no), CCr: total tail length, RCr: length of the regenerated
portion of the tail, SVL: snout-vent length, NX: Nova Xavantina, edf: expected degrees-of-freedom.

Parametric Terms

Term Estimate Std. Error t p
(Intercept) 0.0411 0.0065 6.3080 <0.0001
LocalNX 0.0220 0.0069 3.1920 0.0015
SexMale 0.0015 0.0045 0.3230 0.7467
AUYes 0.0000 0.0070 −0.0040 0.9970

Pregnancy −0.0203 0.0068 −2.9700 0.0031
Smooth Terms

Term edf Ref. df F p
s(Temperature) 7.976 7.976 95.569 <0.00001

s(CCr) 1.000 1.000 0.036 0.84979
s(RCr) 1.000 1.000 3.037 0.08203
s(SVL) 1.000 1.000 0.365 0.54589
s(Mass) 3.119 3.119 4.983 0.00259

Table 3. Model selection and averaging of generalized additive mixed-effects models (GAMMs) relating predictors to
locomotor performance (sprint speed) of the lizard Micrablepharus atticolus. Models depicted are those with ΔAICc < 4. AU:
caudal autotomy (yes/no), RT: length of regenerated portion of tail, AICc: Akaike information criterion corrected for small
samples, ΔAICc: difference between given and best model, wAICc: Akaike weight.

Model Selection

Model df logLik AICc ΔAICc wAICc

Pregnancy + Site + s(Mass) + s(RCr) + s(Temperature) 11 934.81 −1847.06 0.00 0.25
AU + Pregnancy + Site + s(Mass) + s(RCr) + s(Temperature) 12 934.84 −1845.01 2.05 0.09
Pregnancy + Site + s(Mass) + s(RCr) + s(Temperature)+ Sex 12 934.82 −1844.97 2.10 0.09

Pregnancy + Site + s(Mass) + s(Temperature) 9 931.35 −1844.32 2.75 0.06
AU + Pregnancy + Site + s(Mass) + s(Temperature) 10 932.22 −1843.96 3.10 0.05

Pregnancy + Site + s(Mass) + s(RCr) + s(SVL) + s(Temperature) 13 934.93 −1843.07 3.99 0.03
Model Averaging

Importance s(Temperature) Pregnancy s(Mass) Site s(RCr) AU Sex s(CCr) s(SVL)

Sum of model weights 1.00 0.93 0.90 0.89 0.73 0.33 0.27 0.15 0.14
Number of containing models 255 253 253 254 254 255 255 255 254
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Figure 1. Locomotor performance (sprint speed) of the lizard Micrablepharus atticolus as a function of (A) body temperature,
(B) body temperature and female reproductive condition (gravid females vs. non-gravid females and males), and (C) body
temperature and geography. Points represent partial residuals of a generalized additive mixed model (GAMM), while lines
and bands represent the predictions and confidence limits, respectively.
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Figure 2. Locomotor performance (sprint speed) of the lizard Micrablepharus atticolus as a function of (A) body temperature
and body mass, and (B) body temperature and length of the regenerated portion of the tail. The surface represents the
predictions of a generalized additive mixed model (GAMM).

4. Discussion

We assessed the effects of caudal autotomy on the locomotor performance of
Micrablepharus atticolus, controlling for the influence of several covariates. We found that
the performance is significantly affected by body temperature, female reproductive con-
dition, body mass, geography, and caudal autotomy. Overall, our findings highlight the
complex patterns of association among physiological, morphological, and behavioral traits
and that meaningful inference and prediction based on physiological performance must
consider such patterns [65–68].

Body temperature was the foremost factor affecting performance. This outcome is
not surprising, given that body temperature is one of the most critical ecophysiological
variables affecting the performance of ectotherms [69–71]. Sprint speed peaked at ca. 31 ◦C,
which is substantially higher than that recorded for Caparaonia itaiquara (24.51 ◦C) and
Colobodactylus dalcianus (25.81 ◦C), two closely related gymnophthalmines from high-
elevation areas in the Atlantic Forest of southeastern Brazil [72,73]. Moreover, our analyses
showed that lizards from Nova Xavantina achieve higher sprint speeds at higher body
temperatures than lizards from Brasília. Such differences might be related to altitudinal,
latitudinal, or even lineage effects [74]. As environmental temperatures in Nova Xavantina
are ca. 4 ◦C higher than in Brasília (and even higher than in high elevations of southeast-
ern Brazil), our results are consistent with the notion that geographic variation of thermal
sensitivity in locomotor performance is adaptive, such that organisms adjust optimal perfor-
mance temperatures to prevalent field body temperatures [67]. For instance, based on the
principle that biochemical and physiological systems operating at high temperatures have
a high catalytic capacity, the “hotter is better” hypothesis predicts a positive relationship be-
tween maximal organismal performance and optimal temperatures [75]. This relationship
holds when considering interspecific [65,76] or intraspecific comparisons [77,78].

Whereas Brasília is at the core of Micrablepharus atticolus’ geographic distribution,
Nova Xavantina is closer to its periphery, next to the Cerrado–Amazonia ecotone [26,79].
Therefore, we expected higher physiological performance in the core population, as pre-
dicted by the core-periphery hypothesis [49,80]. However, we found the opposite pattern,
with higher performance in the more peripheral population. Several factors might account
for this result. For example, despite the centrality difference between the two sites relative
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to the species’ range, they might have the same or even opposite patterns of environmental
suitability, i.e., the geometric center of the geographic distribution may not coincide with
areas of greater suitability and vice-versa [81,82]. Moreover, due to phenotypic plasticity
or adaptation to local conditions, species range boundaries may not be driven by thermal
performance [72,83].

Our analysis indicates no intersexual differences in sprint speed in Micrablepharus
atticolus, most likely related to the lack of sexual size dimorphism [29]. However, we
found that pregnant females have lower locomotor performance than males. This decrease
likely occurs due to the additional physical load of the litter, making the body broader and
heavier [84]. However, as locomotor performance increased with body mass, the lower
performance in pregnant females may be related to physiological changes linked to repro-
duction [85], such as decreased muscle strength, reduced metabolic capacity, motivation
to escape [86], and energy allocation [87]. These physiological changes ensure adequate
embryonic development and remain for a while after egg-laying [85,88]. A decrease in
gravid females’ locomotor performance was also recorded in other lizard species [89–93].
By becoming slower, pregnant females are more susceptible to predation, and this can
promote several behavioral changes during pregnancy, such as foraging near potential
shelters and avoiding long races during a predatory escape.

The body mass of individuals is an essential factor in determining sprint speed [76]. We
found continuously increased performance with increasing body mass, which would prob-
ably occur until the optimal mass is reached, beyond which performance decreases [94,95].
This increase in performance with body mass is typical among quadruped species [45,76,96,97].
Despite using lateral undulation when moving in the middle of the leaf litter, Micrablepharus
atticolus can also rely on quadrupedal locomotion when on a flat substrate [36,37]. We
advance that the ever-increasing locomotor performance associated with increased body
mass results from the very short lifespan of M. atticolus [32], such that individuals never
reach a critical body mass.

In most cases, the tail has an active role in improving lizard sprint speed, and caudal
autotomy undermines locomotor performance [14,20]. Moreover, the greater the relative
size of the intact tail, the higher the magnitude of sprint speed change following autotomy.
However, we found that sprint speed was unaffected by tail loss but by the relative length
of the regenerated portion of the tail, i.e., the longer the regenerated tail, the higher the
sprint speed. Still, this effect was meager, unlike patterns documented elsewhere for
eublepharids, lacertids, and skinks, [46,98–100]. Caudal autotomy has no impact on the
locomotor performance of some lizard species [19,20]. Some researchers have argued
that this reflects these species’ skinny and short tails [19] or even that adverse effects
of autotomy result from researchers damaging the lizards’ locomotor muscles during
experimental tail breakage [101]. Individuals of Micrablepharus atticolus have a long tail
(in our samples, ~1.7× SVL in individuals with intact tails), one of the longest among
gymnophthalmids [102], and we used lizards with naturally broken and regenerated tails.
Therefore, these explanations cannot account for the patterns we observed.

A synthesis on the effects of tail autotomy, tail size, and locomotor performance in
lizards identified clear phylogenetic patterns in the data [20]. Hence, among-lineage dif-
ferences in the biomechanics of locomotion and the tail function during sprinting may
account for the different effects of tail loss on locomotor performance. The single previous
study on the locomotion of Micrablepharus did not address the impact of caudal autotomy
on performance [37], and to the best of our knowledge, ours is the first study on this issue
within Gymnophthalmidae. This lineage comprises small, cryptic, and often fossorial or
semifossorial Neotropical species, characterized by many instances of the evolution of
body elongation and limb reduction [34,35,103]. Indeed, fossoriality is a critical driver
of the evolution of a snake-like morphology among squamates [104,105]. Therefore, in
such species, the tail may have a very context-specific role in locomotion, which may not
be apparent when individuals move on a flat substrate. For instance, in Colobodactylus
taunayi, a gymnophthalmine, the tail remains stretched during displacement on a flat

72



Diversity 2021, 13, 562

surface [102] and a similar pattern is apparent in M. maximiliani when moving on gravel
or sand (Figures 3 and 6 in [37]). Tail loss in lizards of the genus Takydromus, where the
tail can be three times as long as the SVL, similarly had little effect on locomotor perfor-
mance [20,50,106]. These species often use a three-dimensional, cluttered environment
amidst the leaf litter, much like “grass-swimmer” lizards [107,108]. We conjecture that the
long tail of M. atticolus is more useful when using undulation amidst the leaf litter and not
when using quadrupedal locomotion on a flat surface. Future studies on the impacts of
caudal autotomy on long-tailed lizards should consider the role of different microhabi-
tats/substrates on locomotor performance, using laboratory conditions that closely mimic
their natural environment.
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