
Springer Nature 2021 LATEX template

Fungible and Non-Fungible Tokens with Snapshots in Java

Marco Crosara1†, Luca Olivieri1,2†, Fausto Spoto1*† and Fabio Tagliaferro1,3†

1*Università degli Studi di Verona, Verona, Italy.
2 Corvallis S.r.l., Padova, Italy.

3 Commercio.network S.p.A., Schio, Italy.

*Corresponding author(s). E-mail(s): fausto.spoto@univr.it;
Contributing authors: marco.crosara@studenti.univr.it; luca.olivieri@univr.it;

fabio.tagliaferro@univr.it;
†These authors contributed equally to this work.

Abstract

Many blockchain applications exchange tokens, such as bitcoin and ether, or implement them through
smart contracts. A trend in blockchain is to apply standards for token interoperability, unchanged,
from platform to platform, easing the design challenges with trusted and widely-used speci�cations.
However, the exploitation of the target language semantics can result in technological advantages and
more e�cient contracts. This paper presents a re-engineering of OpenZeppelin's implementation of the
ERC-20 and ERC-721 standards in Takamaka, a Java framework for programming smart contracts.
It describes a sound solution to the issue about the types allowed for the token holders and a novel
implementation for making snapshots of tokens, based on tree maps, that is possible in Java, but not
in Solidity, more e�cient than the literal translation in Java from Solidity, within the Java Virtual
Machine. Moreover, it applies to ERC-721 as well, where a snapshot mechanism was previously missing.

Keywords: Smart contract, software reengineering, blockchain, token, ERC-20, ERC-721

This is a pre-print version. The publisher's ver-
sion can be download at https://doi.org/10.1007/
s10586-022-03756-3

1 Introduction

Blockchains exploit the redundant, concurrent
execution of the same transactions on a decen-
tralized network of machines to enforce their
execution in accordance with a set of prede�ned
rules. Namely, blockchains make it hard, for a
single machine, to disrupt the semantics of the
transactions or their ordering: a misbehaving sin-
gle machine gets immediately put out of consensus
and isolated. Bitcoin [3, 19] has been the �rst

blockchain's success story. Bitcoin transactions
are transfers of cryptocurrency between accounts,
with the speci�c rule that the same inputs cannot
be spent twice. Bitcoin's cryptocurrency is called
bitcoin itself and has been the �rst example of a
blockchain token.

A few years after Bitcoin, another blockchain,
called Ethereum [4, 6], introduced the possibil-
ity of programming transactions in an actual,
imperative programming language, called Solidity,
whose code is compiled for the Ethereum Virtual
Machine (EVM). Ethereum's transactions are still
paid in terms of its native ether token, but they
execute much more than native token transfers.

1

https://doi.org/10.1007/s10586-022-03756-3
https://doi.org/10.1007/s10586-022-03756-3

Springer Nature 2021 LATEX template

2 Fungible and Non-Fungible Tokens with Snapshots in Java

Namely, transactions can also run object construc-
tors and methods of code units called smart con-
tracts, so that the Ethereum blockchain becomes
a sort of world computer that persists the same
objects in the memory of all the machines in the
blockchain's network. The transactions included
in the blocks of the blockchain must be the same
in every machine of the network and must lead to
the same outcome. Machines that do not abide to
this rule will be put out of consensus and their
future transactions will be rejected by the other
machines.

Typically, smart contracts are written using
domain-speci�c languages (DSLs) such as Solid-
ity, that have speci�c features and restrictions
for blockchain. More recently, the trend in smart
contract development shifted to the usage of well-
known general-purpose programming languages
providing useful syntactical features missing in
DSLs, along with ready-to-use available developer
toolbelts. This has opened the opportunity to re-
engineer and optimize the implementation of sev-
eral existing standards for di�erent blockchains.
Java is among these general-purpose languages,
since it enjoys large popularity [1,2] and a modern
set of programming tools.

A popular class of Solidity smart contracts
implements a dynamic ledger of coin transfers
between accounts. These coins are not native
tokens, but rather new, derived tokens, imple-
mented in software through a smart contract1.
Native and derived tokens can be categorized in
many ways [13,20,30]. The most popular classi�ca-
tion is between fungible and non-fungible tokens.
Fungible tokens are interchangeable with each
other since they have an identical nominal value,
that is not tied to each speci�c token instance.
Both native tokens and traditional (�at) curren-
cies are fungible tokens. Their main application
is in the area of crowdfunding and in initial coin
o�ers to support startups. On the contrary, non-
fungible tokens have a value that depends on their
speci�c instance. Hence, in general, they are not
interchangeable. Their main application is cur-
rently in the art market, where they represent a

1Perhaps confusingly, the term token is used here for the
smart contract that tracks coin transfers, for the single coin
units and for the category of similar coins.

written declaration of the author's rights conces-
sion to the holder, in gaming and, in general, in
notarization.

A few standards have emerged for fungible
and non-fungible tokens, that should guaran-
tee correctness [23], accessibility, interoperability,
management and security of the smart contracts
that run the tokens. Among them, the Ethereum
Request for Comment #20 (ERC-20 [12]) and
#721 (ERC-721 [11]) are the most popular for fun-
gible and non-fungible tokens, respectively, also
outside Ethereum [15,16,18]. They provide devel-
opers with a list of rules required for the correct
integration of tokens with other smart contracts
and with applications external to the blockchain,
such as wallets, block explorers, decentralized
�nance protocols and games.

The most popular implementations of the
ERC-20 standard are in Solidity, by OpenZep-
pelin [21], a team of programmers in the Ethereum
community who deliver useful and secure smart
contracts and libraries, and by ConsenSys [7],
later deprecated in favor of OpenZeppelin's. Open-
Zeppelin extends ERC-20 with snapshots, ie.
immutable views of the state of a token con-
tract, that show its ledger at a speci�c instant of
time. They are useful for investigating the con-
sequences of an attack, for creating forks of the
token and for implementing mechanisms based on
token balances such as weighted voting. Snapshots
are essential also to provide an immutable view of
the ledger that can be queried by a client without
the risk that it changes during the query, which
would result in a race condition.

In the case of ERC-721, the standard imple-
mentation is in Solidity, again by OpenZep-
pelin [22]. That implementation does not provide
a snapshot mechanism, despite the usefulness of
such feature. The reason is that the already very
tricky implementation in Solidity of snapshots
for ERC-20 becomes intractable for the more
complicated ERC-721 standard.

A controversial issue about ERC-20 and ERC-
721 tokens is about who can hold tokens. It is uni-
versally accepted that externally owned accounts
can hold tokens: they are accounts controlled
by humans or external applications, hence their
behavior is not �xed. Once they receive a token,
the human or the application can decide to keep
it or sell it forward. In this case, there is no
risk that the token remains stuck. However, the

Springer Nature 2021 LATEX template

Fungible and Non-Fungible Tokens with Snapshots in Java 3

ERC-20 and ERC-721 standards also allow con-
tracts to hold tokens. This is problematic, since
contracts are controlled by their code, which is
immutable. If a contract receives a token and its
code is not prepared to deal with it, the result
is that the token gets stuck forever: the contract
will never use it and it will never sell it forward
either. There is no solution to this problem, since
both externally owned accounts and contracts are
represented by the same address type in Solidity
and are consequently indistinguishable. ERC-721
implementations have tried to limit this problem
in a buggy and fragile way, by requiring that
contracts receiving ERC-721 tokens must imple-
ment an interface IERC721Receiver. At least, this
acknowledges that the programmer of the contract
was aware that the latter could receive tokens.
Unfortunately, Solidity has no instanceof opera-
tor to check for implementation of an interface,
because address values are unboxed in Ethereum
and they carry no dynamic type information [8].
As a consequence, the solution, based on the ERC-
165 standard [24], is tricky and fragile and can be
circumvented very easily if contracts cheat about
the interfaces they implement.

The contributions of this paper are the follow-
ing:

� a detailed analysis of OpenZeppelin's Solidity
implementation of ERC-20 and ERC-721;

� a re-engineered solution that exploits Java fea-
tures, not applicable in Solidity, to create
cleaner implementations of both standards;

� a sound check that contracts holding ERC-721
tokens actually implement IERC721Receiver;

� an implementation of a mechanism for e�-
cient snapshots within the Java Virtual Machine
(JVM), for both ERC-20 and ERC-721.

The smart contracts that we developed are avail-
able in the support library of Takamaka, as non-
proprietary, open-source code [27]. They run in the
Hotmoka blockchain [14] hence not in Ethereum-
like blockchains. In particular, the smart contracts
of Hotmoka are written in a subset of Java called
Takamaka [28,29], hence not in Solidity. Takamaka
uses bytecode instrumentation and code annota-
tions (marks starting with @, such as @View or
@FromContract) to implement concepts speci�c to
smart contracts. ERC-20 and ERC-721 tokens
were not ported previously to Takamaka, hence
this is the �rst version of ERC-20 and ERC-721

for that platform. Moreover, this is the �rst imple-
mentation of ERC-721 tokens that correctly check
holders to implement IERC721Receiver and that
provide snapshots, as far as we know.

Paper structure

Sec. 2 presents the ERC-20 standard and its
OpenZeppelin implementation. Sec. 3 presents the
ERC-721 standard and its OpenZeppelin imple-
mentation. Sec. 4 shows how to perform a code
language migration from Solidity to Takamaka
and which heuristics have helped in the translation
of OpenZeppelin's implementations. Sec. 5 shows
an implementation of ERC-20 contracts in Taka-
maka, with snapshots, that mimics as much as
possible the Solidity code structure of OpenZep-
pelin's implementation, discussing its drawbacks.
Sec. 6 shows a more e�cient implementation of
snapshots, possible in Takamaka but not in Solid-
ity, and that works for both ERC-20 and ERC-721
tokens. Sec. 7 shows, experimentally, that this new
implementation is more e�cient than what dis-
cussed in Sec. 5, inside the JVM. Sec. 8 concludes.

This paper is an extended version of [9]. Com-
pared to that previous version, which was limited
to ERC-20 tokens only, the current one adds the
ERC-721 tokens as well and the solution to the
issue related to the kind of holders allowed to hold
tokens, that Solidity tries to solve by using the
partial and fragile approach of the ERC-165 stan-
dard. Moreover, all sections have been expanded
and clari�ed.

2 ERC-20 and its
OpenZeppelin
Implementation

The ERC-20 standard [12] de�nes an interface
with nine functions and two events, ie. immutable
marks saved in blockchain to attest some logical
turning points. Owners of tokens are addresses. In
Solidity, these are untyped pointers to externally
owned accounts (sort of bank accounts controlled
by an external app or human) or to contracts
(objects geared by their code). Although in prin-
ciple contracts can hold tokens, this could be
problematic if their code is not programmed to
deal with such tokens. In such a case, the tokens
could remain stuck forever, since only the contract
can transfer them but the code of the contract

Springer Nature 2021 LATEX template

4 Fungible and Non-Fungible Tokens with Snapshots in Java

contract ERC20 is IERC20 {

mapping (address => uint) private _balances;

mapping (address => mapping (address => uint)) private _allowances;

uint private _totalSupply;

string private _name;

string private _symbol;

constructor(string name_ , string symbol_) { _name = name_; _symbol = symbol_; }

function totalSupply () public view virtual override returns (uint) {

return _totalSupply;

}

function balanceOf(address owner) public view virtual override returns (uint) {

return _balances[owner];

}

function transfer(address to, uint value) public virtual override {

_transfer(msg.sender , to , value);

}

function allowance(address owner , address delegate) public view virtual override returns (uint) {

return _allowances[owner][delegate];

}

function transferFrom(address owner , address to, uint value) public virtual override {

_transfer(owner , to, value);

uint currentAllowance = _allowances[owner][msg.sender];

require(currentAllowance >= value , "transfer excess");

_approve(owner , msg.sender , currentAllowance - value);

}

function _transfer(address owner , address to, uint value) internal virtual {

require(owner != address (0), "transfer zero address");

require(to != address (0), "transfer to zero address");

_beforeTokenTransfer(owner , to , value);

uint senderBalance = _balances[owner];

require(senderBalance >= value , "transfer excess");

_balances[owner] = senderBalance - value;

_balances[to] += value;

emit Transfer(owner , to, value);

}

function _mint(address account , uint amount) internal virtual {

require(account != address (0), "mint to zero address");

_beforeTokenTransfer(address (0), account , amount);

_totalSupply += amount;

_balances[account] += amount;

emit Transfer(address (0), account , amount);

}

function _beforeTokenTransfer(address from , address to , uint amount) internal virtual {

}

}

Fig. 1: A portion of OpenZeppelin's ERC-20 implementation in Solidity. Its full code is available at https:
//github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol.

does not deal with token transfers. Therefore, it
is normally assumed that only externally owned
accounts own tokens, but the implementations of
ERC-20 do not check this constraint and do not

forbid to transfer tokens to contracts, even inad-
vertently. Sec. 3 will show that the same problem
occurs for ERC-721 tokens, whose implementa-
tions have tried to solve the issue in a cumbersome
and �nally ine�ective way.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol

Springer Nature 2021 LATEX template

Fungible and Non-Fungible Tokens with Snapshots in Java 5

The functions of the ERC-20 standard are for:

1. Direct transfers: totalSupply() yields the inte-
ger total amount of tokens in circulation.
balanceOf(address owner) yields the amount of
tokens that owner owns. transfer(address to,

uint value) transfers value tokens from the
balance of the caller to the balance of to (uint is
an unsigned integer of 256 bits). This function
must emit a Transfer event.

2. Delegated transfers: approve(address

delegate, uint cap) allows delegate to
transfer up to cap tokens on behalf of the
caller. It must emit an Approval event.
transferFrom(address owner, address to,

uint value) transfers value tokens from owner

to to, but only if owner has approved the
caller to do so. This function must emit a
Transfer event. allowance(address owner,

address delegate) yields the amount of tokens
that delegate has been approved to transfer
on behalf of owner.

3. Optional info: name() yields the name of the
tokens. symbol() yields the symbol of the
tokens. decimals() yields the number of deci-
mal digits of the tokens.

The �rst part of this interface is just the API
of a dynamic ledger of token balances. Not sur-
prisingly, OpenZeppelin's code, shown in Fig. 1,
stores the user's balance in a �eld _balances2 of
type mapping (address => uint), that binds each
address to the amount of tokens it holds, and with
an integer �eld _totalSupply, assigned at contract
creation time. The second part of the interface
allows token owners to delegate, to other partici-
pants, the transfer of a capped amount of tokens.
OpenZeppelin implements this through a �eld
_allowances of type mapping (address => mapping

(address => uint)): a map from each token owner
to another map from each delegate to its allowed
cap. The third, optional part is just manifest
information about the tokens.

Both transfer and transferFrom use an inter-
nal function _transfer, that shifts the tokens from
the owner to the destination to, calling the handler
_beforeTokenTransfer. This does not do anything
by default, but subclasses can rede�ne it to add
extra functionalities to the contract. Function

2It is customary in Solidity to start non-public properties with
underscore.

_transfer checks, defensively, for missing values
(address(0)) that might arise from incorrect use
of the contract. Function transferFrom addition-
ally checks if the owner of the tokens has actually
delegated msg.sender (the caller of the function)
to transfer at least value tokens on its behalf. This
check occurs after the call to _transfer, which is
�ne since Solidity's functions do not commit their
side-e�ects if they fail. The code of transferFrom
ends with a call to _approve (not shown), which
reduces the allowance. OpenZeppelin adds a _mint

function that initializes the total supply of the
token: it is internal since it is meant to be called
from the constructors of subclasses that deploy
actual instances of the contract. This function
uses address(0) to represent the fact that minted
tokens come from nowhere.

3 ERC-721 and its
OpenZeppelin
Implementation

The ERC-721 standard [11] de�nes an inter-
face with ten functions and three events. As for the
ERC-20 standard, token owners can be both exter-
nally owned accounts and contracts, but contracts
should be avoided, unless they have been explic-
itly programmed to deal with ERC-721 tokens. We
will be back on this issue in a moment.

The functions of the ERC-721 standard are for:

1. Direct transfers: balanceOf(address owner)

yields the amount of tokens that owner owns.
ownerOf(uint tokenId) yields the owner of
the given token, if any. transferFrom(address
from, address to, uint tokenId) transfers
the given token from from to to. In general,
the caller of this function must coincide with
from, or at least be authorized to transfer the
given token on behalf of from (see later). This
function does not even try to check that to

is an externally owned account or a contract
that will be able to deal with the token. If
that is not the case, the token will be trans-
ferred to to and stuck forever. Because of
that, this function is considered to be unsafe.
This function must emit a Transfer event.
safeTransferFrom(address from, address to,

uint tokenId) behaves like transferFrom, but

Springer Nature 2021 LATEX template

6 Fungible and Non-Fungible Tokens with Snapshots in Java

contract ERC721 is IERC721 {

string private _name , _symbol;

mapping(uint => address) private _owners; // Mapping from token ID to owner address

mapping(address => uint) private _balances; // Mapping owner address to token count

mapping(uint => address) private _tokenApprovals; // Mapping from token ID to approved address

mapping(address => mapping(address => bool)) private _operatorApprovals; // Mapping from owner to

approved operators

constructor(string name_ , string symbol_) { _name = name_; _symbol = symbol_; }

function balanceOf(address owner) public view virtual override returns (uint) { return _balances[

owner]; }

function ownerOf(uint tokenId) public view virtual override returns (address) { return _owners[

tokenId]; }

function name() public view virtual override returns (string) { return _name; }

function symbol () public view virtual override returns (string) { return _symbol; }

function approve(address to , uint tokenId) public virtual override {

address owner = ownerOf(tokenId); require(to != owner , "approval to current owner");

require(_msgSender () == owner or isApprovedForAll(owner , _msgSender ()), "caller is not owner

nor approved");

_approve(to, tokenId);

}

function getApproved(uint tokenId) public view virtual override returns (address) { return

_tokenApprovals[tokenId]; }

function isApprovedForAll(address owner , address operator) public view virtual override returns (

bool) { return _operatorApprovals[owner][operator]; }

function transferFrom(address from , address to , uint tokenId) public virtual override {

require(_isApprovedOrOwner(_msgSender (), tokenId), "caller is not owner nor approved");

_transfer(from , to, tokenId);

}

function _isApprovedOrOwner(address spender , uint tokenId) internal view virtual returns (bool) {

address owner = ownerOf(tokenId);

return spender == owner or isApprovedForAll(owner , spender) or getApproved(tokenId) == spender;

}

function _transfer(address from , address to, uint tokenId) internal virtual {

require(ownerOf(tokenId) == from , "transfer from incorrect owner");

require(to != address (0), "transfer to the zero address");

_beforeTokenTransfer(from , to, tokenId);

_approve(address (0), tokenId); // Clear approvals from the previous owner

_balances[from] -= 1; _balances[to] += 1; _owners[tokenId] = to;

emit Transfer(from , to, tokenId);

}

function _approve(address to, uint tokenId) internal virtual {

_tokenApprovals[tokenId] = to; emit Approval(ownerOf(tokenId), to , tokenId);

}

}

Fig. 2: A simpli�ed portion of OpenZeppelin's ERC-721 implementation in Solidity. Its full code
is available at https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/
ERC721/ERC721.sol.

additionally tries to ensure that to is an exter-
nally owned account or a contract able to deal
with the token. In this sense, it is considered
to be safe.

2. Delegation: function approve(address

delegate, uint tokenId) allows delegate to
transfer the given token on behalf of the caller
of the function, that must be the owner of the
token or itself an authorized operator for the

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC721/ERC721.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC721/ERC721.sol

Springer Nature 2021 LATEX template

Fungible and Non-Fungible Tokens with Snapshots in Java 7

token. The previous delegate (if any) loses its
delegation after this function has been called.
This function emits an Approval event. The
function setApprovalForAll(address operator,

bool approved) allows operator to transfer all
tokens owned by the caller of the function
(if approved is true) or removes that right (if
approved is false). It is possible to allow more
operators per token owner. This function emits
an ApprovalForAll event. getApproved(uint

tokenId) yields the delegate for the given
token, if any. isApprovedForAll(address owner,

address operator) determines if operator has
been authorized to transfer all tokens owned
by owner.

3. Optional info: name() yields the name of the
tokens. symbol() yields the symbol of the
tokens.

OpenZeppelin's implementation of the ERC-
721 standard is relatively long, so we only report
a portion of the code in Fig. 2. Most infor-
mation is kept in four maps: _owners speci�es
who is the owner of each given token; _balances
tells how many tokens each given owner owns;
_tokenApprovals speci�es which delegate has been
authorized for each given token (if any); and
_operatorApprovals yields the set of approved
operators for each token owner. Note that mapping
(address => bool) is actually a set of approved
operators: Solidity has no set type, hence sets are
encoded as their characteristic map.

Fig. 2 shows that transferFrom calls an auxil-
iary function _transfer that decreases the balance
of the sender, increases the balance of the receiver
and assigns the token to the receiver (to). There
is no check on the fact that to is actually an exter-
nally owned account, or a contract, able to deal
with the token it receives. This check exists for
function safeTransferFrom (not shown in Fig. 2).
The idea is that contracts ready to receive ERC-
721 tokens must be explicitly labeled by their
programmer as implementing an IERC721Receiver

interface, whose only method onReceive is called
when the contracts receive an ERC-721 token.
In general, it would be enough to check that to

instanceof IERC721Receiver in order to be sure
that the programmer was actually expecting the
contract to receive ERC-721 tokens and to call
onReceive in that case. But this is not possible in
Solidity, since that language lacks the instanceof

operator and, in general, it misses any way to
check the dynamic type of values. This is not just
a missed feature: it is actually impossible to imple-
ment such a check, since Ethereum implements
data as unboxed values, so that their dynamic
type is not available and no instanceof operator
can ever be implemented. Because of this limita-
tion, Solidity programmers use a very cumbersome
technique, based on the ERC-165 standard [24],
consisting in adding a function that yields a hash
of the signatures of the methods implemented by a
contract. By calling that function, it is possible, at
run time, to guess the interfaces implemented by a
contract. This technique (that we have highly sim-
pli�ed but is much more complicated than what
we could express here) is very weak, since con-
tracts are free to cheat and pretend to implement
an interface that they actually do not implement.
However, it is the best that a programmer can
do in Solidity. There is an even weaker approach
to cope with this problem. Namely, the ERC-
223 token standard [10] requires to cast the token
receiver to an interface IERC223Recipient and then
call its tokenReceived method. If the receiver does
not implement such method, the transaction fails.
This is even weaker than ERC-165 since it makes
no attempt to guarantee that the receiver was
actually declared to implement IERC223Recipient:
casts are unchecked in Solidity, they are pure dec-
orations to make the compiler accept the code, but
they are not veri�ed at run time.

4 From Solidity to Takamaka

OpenZeppelin's implementations of ERC-20
(Fig. 1) and of ERC-721 (Fig. 2) are only around
a few hundred non-comment lines of Solidity.
Their code is not particularly complex, although
their correctness has never been proved formally,
in particular against over�ows and under�ows, by
using formal techniques such as abstract inter-
pretation, as already possible in Java [26]. Bugs
are not a theoretical possibility, as the iToken
incident shows [17] (that, however, did not a�ect
OpenZeppelin's, but another ERC-20 implemen-
tation). Bugged contracts cannot be patched and
replaced in blockchain, but only redeployed at
another address. Their correctness is hence of
major importance. Years of exposure to the open-
source community and 35 Github contributors
give some con�dence in OpenZeppelin's code.

Springer Nature 2021 LATEX template

8 Fungible and Non-Fungible Tokens with Snapshots in Java

Hence, if an ERC-20 or ERC-721 implementa-
tion must be provided in another programming
language, a literal translation of OpenZeppelin's
code is a more reliable starting point than a
complete rewriting from scratch.

However, code migration between di�erent
programming languages can be tricky, also for
relatively simple code. There is no formal way
that one can follow to perform such a translation.
Therefore, we are not going here to provide any
formal proof of equivalence between the original
Solidity code and its translation into Takamaka,
but only a re-engineering approach and some
translation patterns.

Languages might have di�erent semantics for
apparently similar constructs or might require dif-
ferent coding styles, for e�ciency, which is more
often the case if they compile towards di�erent vir-
tual machines. For instance, Vyper [31] and Solid-
ity compile for the same EVM and the translation
from Solidity to Vyper [32] is almost immediate.
Takamaka compiles for the JVM and the transla-
tion from Solidity to Takamaka is more di�cult. In
many cases, di�erent programming languages have
speci�c solutions that cannot be translated liter-
ally: for instance, Java has an instanceof operator,
hence it is pointless to translate the ERC-165-
based technique used in Solidity to allow contracts
to hold ERC-721 tokens only if they explicitly
declare to implement a speci�c interface. Just use
instanceof in Java instead. Nevertheless, our anal-
ysis of both languages highlights some translation
patterns from Solidity to Takamaka, as shown
below.

Visibility modi�ers. Solidity's public and private

have direct Java equivalents. Solidity's internal

corresponds to Java's protected, but the latter
grants access also to code in the same package
of the class C where protected is used, which is
not the case for internal (Solidity has no pack-
ages). This might be dangerous since an attacker
might place a new class in C's package and get
access to C's methods that were meant to be C's
implementation details. To avoid this scenario,
the veri�er of Takamaka code, that Hotmoka runs
before installing code in blockchain, rejects split
packages, ie. does not allow two classes in the
same package to occur in di�erent jars (Java
archives) in the classpath (Java enforces the same

constraint only from Java 9). Thanks to this con-
straint, internal can be safely translated into
Java's protected. Solidity's external grants access
to a function only to other contracts and, in this
sense, it is used to specify the public API of a con-
tract. There is no such visibility notion in Java.
However, Takamaka introduces the @FromContract

annotation, which restricts the callers of a method
or constructor to be contracts. Hence external can
be translated into public @FromContract.

The following table summarizes the transla-
tion:

Solidity Takamaka (Java)

public public

private private

internal protected

external public @FromContract

view modi�er. In Solidity, this states that a func-
tion (such as balanceOf in Fig. 1) has no side-
e�ects and can consequently be executed out-
side of transactions, in every single node of the
blockchain. This translates into Takamaka's @View
annotation, with the same semantics.

override and virtual modi�ers. Solidity and Java
take opposite approaches to non-private methods
rede�nition. Namely, methods can be rede�ned in
Solidity only if they are marked with virtual and
rede�nitions must be marked with override. In
Java, methods can always be rede�ned unless they
are marked with final and rede�nitions do not
need any special syntactical mark, although the
@Override annotation has become customary. Con-
sequently, the translation of these modi�ers from
Solidity to Takamaka is the following:

Solidity Takamaka (Java)

virtual f(args)

returns T
T f(args)

override f(args)

returns T
@Override T f(args)

f(args) returns T final T f(args)

uint type. Solidity uses uint (short form of
uint256) to represent unsigned, potentially very
large integers (up to 2256 − 1). For instance,
ERC-20 implementations use uint to represent
token balances (Fig. 1). This type su�ers from
(silent) under�ows and over�ows. To cope with
this problem, Solidity code can use the Safe-
Math library that provides arithmetic functions
with defensive checks against under�ows, over-
�ows and divisions by zero. The latest versions of

Springer Nature 2021 LATEX template

Fungible and Non-Fungible Tokens with Snapshots in Java 9

public class ERC20 extends Contract implements IERC20 {

private final UnsignedBigInteger ZERO = new UnsignedBigInteger("0");

private final StorageMap <Contract ,UnsignedBigInteger > _balances = new StorageTreeMap <>();

private final StorageMap <Contract ,StorageMap <Contract ,UnsignedBigInteger >> _allowances = new

StorageTreeMap <>();

private UnsignedBigInteger _totalSupply = ZERO;

private final String _name , _symbol;

public ERC20(String name , String symbol) { _name = name; _symbol = symbol; }

public final @Override @View UnsignedBigInteger totalSupply () {

return _totalSupply;

}

public final @Override @View UnsignedBigInteger balanceOf(Contract owner) {

return _balances.getOrDefault(owner , ZERO);

}

public final @Override @FromContract void transfer(Contract to, UnsignedBigInteger value) {

_transfer(caller (), to, value);

}

public final @Override @View UnsignedBigInteger allowance(Contract owner , Contract delegate) {

return _allowances.getOrDefault(owner , StorageTreeMap ::new).getOrDefault(delegate , ZERO);

}

protected final void transferFrom(Contract owner , Contract to , UnsignedBigInteger value) {

_transfer(caller (), to, value);

_approve(caller (), owner , allowance(owner , caller ()).subtract(value , "transfer excess"));

}

protected void _transfer(Contract owner , Contract to, UnsignedBigInteger value) {

require(owner != null , "transfer from null account");

require(to != null , "transfer to the null account");

require(value != null , "value cannot be null");

_beforeTokenTransfer(owner , to , value);

_balances.put(owner , balanceOf(owner).subtract(value , "transfer excess"));

_balances.put(to , balanceOf(to).add(value));

event(new Transfer(owner , to, value));

}

protected void _mint(Contract account , UnsignedBigInteger amount) {

require(account != null , "mint to the null account");

require(amount != null , "amount cannot be null");

_beforeTokenTransfer(null , account , amount);

_totalSupply = _totalSupply.add(amount);

_balances.put(account , balanceOf(account).add(amount));

event(new Transfer(null , account , amount));

}

protected void _beforeTokenTransfer(Contract from , Contract to , UnsignedBigInteger amount) {

}

}

Fig. 3: A portion of our ERC-20 implementation in Takamaka. Its full code is available
at https://github.com/Hotmoka/hotmoka/blob/master/io-takamaka-code/src/main/java/io/takamaka/
code/tokens/ERC20.java.

Solidity implement such checks in the language,
natively, at an increased gas cost. Takamaka code
can use UnsignedBigInteger for that, a wrapper
of Java's BigInteger class, from Takamaka's sup-
port library, whose operations include defensive

checks, with the extra advantage that they are
unbounded unsigned integers, hence do not su�er
from over�ows.

mapping type. Solidity uses the mapping type for
maps between values, as for �eld _balances

https://github.com/Hotmoka/hotmoka/blob/master/io-takamaka-code/src/main/java/io/takamaka/code/tokens/ERC20.java
https://github.com/Hotmoka/hotmoka/blob/master/io-takamaka-code/src/main/java/io/takamaka/code/tokens/ERC20.java

Springer Nature 2021 LATEX template

10 Fungible and Non-Fungible Tokens with Snapshots in Java

in Fig. 1. These are not data structures,
but rather an algorithm that spreads the
bindings of the mapping in the key/value
store of Ethereum (with an unlikely risk of
hash collision). Takamaka can use an actual,
generic data structure StorageTreeMap<Key,Value>

instead, an implementation of the interface
StorageMap<Key,Value>, from Takamaka's sup-
port library. Solidity's maps default to 0, hence
one must use getOrDefault(index, 0) calls on
StorageTreeMap in Takamaka. If mapping is used in
Solidity as a trick to implement a set (as in the
codomain of _operatorApproval in Fig. 2), then in
Takamaka it is simpler and more e�cient to use
a StorageTreeSet<Value> instead, an implemen-
tation of the interface StorageSet<Value>, from
Takamaka's support library.

msg.sender. This Solidity expression refers to the
contract that calls a function. In Takamaka, this
corresponds to caller() inside a @FromContract

method.

address(0). This Solidity expression refers to a
contract or account at address 0. It is assumed
that nobody controls that contract or account.
Hence, traditionally, it stands for a missing value
or for the sign of missing information in a trans-
action request. In Takamaka, the same can be
achieved with null.

Fig. 3 shows our manual translation in Taka-
maka of the Solidity code for ERC-20 in Fig. 1, by
following the heuristics above. The translation is
almost literal, with a few exceptions. For instance,
function transferFrom in Fig. 1 enforces a non-
negative allowance through a require assertion.
In Fig. 3, that same check is moved inside the
subtract method of the UnsignedBigInteger class.

Fig. 4 shows our manual translation in Taka-
maka of the Solidity code for ERC-721 in
Fig. 2. Also, this translation is almost literal. We
observe that the _operatorApprovals �eld uses a
StorageSet in Takamaka, instead of the Solidity
trick of using a map to represent a set. Token
instances are represented as BigInteger in Taka-
maka, hence they are more general than in Solid-
ity, where they are limited to be uint, hence 256
bits only. The _balances �eld uses BigInteger to
represent the balance of each token holder. This
is cheaper than UnsignedBigInteger and has been
preferred in this case since the code of the con-
tract guarantees such values to be non-negative,

hence the run-time checks of UnsignedBigInteger
are not useful here. Maps in Takamaka cannot
use the handy indexing notation of Solidity and
do not use null to represent a missing bind-
ing. This explains why the Takamaka code is
sometimes a bit more verbose (see for instance
the methods isApprovedForAll and _approve).
In Takamaka, both methods transferFrom and
safeTransferFrom have been collapsed into a
single method transferFrom that safely checks
if the receiver of the token is an externally
owned account or a contract that implements
IERC721Receiver. In this latter case, its onReceive
method is called. The check on the type of the
receiver is sound in Takamaka and doesn't need
the tricky and fragile ERC-165 machinery, since
Java has an instanceof operator that fails if the
test is false.

5 Snapshots of ERC-20
Ledgers

OpenZeppelin has subclassed its ERC20 imple-
mentation (Sec. 2) to provide extra functionalities,
for instance for tokens that can be (further)
minted, burned, capped or paused. Among them,
this paper focuses on the ERC20Snapshot subclass
only, that supports snapshots, shown in Fig. 5.
Namely, it adds a _snapshot function that per-
forms a snapshot of the ledger and yields its
progressive identi�er (starting at 1). Then it over-
loads methods balanceOf and totalSupply from
Fig. 1 with variants that receive a snapshot iden-
ti�er and yield the balance and the total supply
at the time of that snapshot (Fig. 5). For that,
it stores the modi�cation history of an integer
variable by using the following data structure:

struct Snapshots {

uint[] ids;

uint[] values;

}

For instance, if a variable v is associated with
a Snapshots structure with �elds ids={5,8,15}

and values={6,7,20}, then the value of v was
20 for snapshot identi�ers from 9 to 15; it was
7 for snapshot identi�ers from 6 to 8; it was 6
for snapshot identi�ers from 1 to 5; for snap-
shot identi�ers after 20, the value of v is v's
current value in the ledger. A function _valueAt

(not shown in Fig. 5) reconstructs the value of
a variable at a snapshot. There is one Snapshots

Springer Nature 2021 LATEX template

Fungible and Non-Fungible Tokens with Snapshots in Java 11

public class ERC721 extends Contract implements IERC721 {

private final StorageMap <BigInteger ,Contract > _owners = new StorageTreeMap <>();

private final StorageMap <Contract ,BigInteger > _balances = new StorageTreeMap <>();

private final StorageMap <BigInteger ,Contract > _tokenApprovals = new StorageTreeMap <>();

private final StorageMap <Contract ,StorageSet <Contract >> _operatorApprovals = new StorageTreeMap <>();

private final String _name , _symbol;

public ERC721(String name , String symbol) { _name = name; _symbol = symbol; }

public final @Override @View BigInteger balanceOf(Contract owner) { return _balances.getOrDefault(

owner , ZERO); }

public final @Override @View Contract ownerOf(BigInteger tokenId) { return _owners.get(tokenId); }

public final @View String name() { return _name; }

public final @View String symbol () { return _symbol; }

public @Override @FromContract void approve(Contract to, BigInteger tokenId) {

Contract owner = ownerOf(tokenId); require(owner != to, "approval to current owner");

Contract caller = caller ();

require(caller == owner or isApprovedForAll(owner , caller), "caller is not owner nor approved");

_approve(to, tokenId); }

public @Override @View Contract getApproved(BigInteger tokenId) { return _tokenApprovals.get(tokenId

); }

public @Override @View boolean isApprovedForAll(Contract owner , Contract operator) {

StorageSet <Contract > approvedForAll = _operatorApprovals.get(owner);

return approvedForAll != null && approvedForAll.contains(operator); }

public @Override @FromContract void transferFrom(Contract from , Contract to , BigInteger tokenId) {

require(_isApprovedOrOwner(caller (), tokenId), "caller is not owner nor approved");

require(to instanceof ExternallyOwnedAccount or to instanceof IERC721Receiver ,

"transfer destination must be an externally owned account or implement IERC721Receiver");

_transfer(from , to, tokenId); }

protected boolean _isApprovedOrOwner(Contract spender , BigInteger tokenId) {

Contract owner = ownerOf(tokenId);

return spender == owner or isApprovedForAll(owner , spender) or getApproved(tokenId) == spender;

}

protected void _transfer(Contract from , Contract to, BigInteger tokenId) {

require(ownerOf(tokenId) == from , "transfer from incorrect owner");

require(to != null , "transfer to null");

_beforeTokenTransfer(from , to, tokenId); _approve(null , tokenId);

_balances.put(from , balanceOf(from).subtract(BigInteger.ONE));

_balances.put(to , balanceOf(to).add(BigInteger.ONE)); _owners.put(tokenId , to);

if (to instanceof IERC721Receiver) ((IERC721Receiver) to).onReceive(this , from , to , tokenId);

event(new Transfer(from , to , tokenId)); }

protected void _approve(Contract to , BigInteger tokenId) {

if (to == null) _tokenApprovals.remove(to); else _tokenApprovals.put(tokenId , to);

event(new Approval(owner , to, tokenId)); }

}

Fig. 4: A portion of our ERC-721 implementation in Takamaka. Its full code is available
at https://github.com/Hotmoka/hotmoka/blob/master/io-takamaka-code/src/main/java/io/takamaka/
code/tokens/ERC721.java.

instance for each address that takes part in the
token, inside a new �eld mapping (address =>

Snapshots) private _balancesSnapshots, and for
_totalSupply, with a new �eld Snapshots private

_totalSupplySnapshots. Such structures are allo-
cated and populated whenever a balance gets

updated or the total supply changes (the latter sit-
uation occurs if mints or burns are allowed). This
is achieved by overriding the internal function
_beforeTokenTransfer (see Fig. 5).

The code of ERC20Snapshot (that is very tech-
nical and consequently we do not show) has good

https://github.com/Hotmoka/hotmoka/blob/master/io-takamaka-code/src/main/java/io/takamaka/code/tokens/ERC721.java
https://github.com/Hotmoka/hotmoka/blob/master/io-takamaka-code/src/main/java/io/takamaka/code/tokens/ERC721.java

Springer Nature 2021 LATEX template

12 Fungible and Non-Fungible Tokens with Snapshots in Java

abstract contract ERC20Snapshot is ERC20 {

Counters.Counter private _currentSnapshotId;

struct Snapshots { uint[] ids; uint[] values; }

mapping (address => Snapshots) private _balancesSnapshots;

Snapshots private _totalSupplySnapshots;

function _snapshot () internal virtual returns (uint) {

_currentSnapshotId.increment ();

uint currentId = _getCurrentSnapshotId ();

// ... emit Snapshot event ...

return currentId;

}

function balanceOfAt(address account , uint snapshotId) public view virtual returns (uint) {

(bool snapshotted , uint value) = _valueAt(snapshotId , _balancesSnapshots[account]);

return snapshotted ? value : balanceOf(account);

}

function totalSupplyAt(uint snapshotId) public view virtual returns (uint) {

(bool snapshotted , uint value) = _valueAt(snapshotId , _totalSupplySnapshots);

return snapshotted ? value : totalSupply ();

}

function _beforeTokenTransfer(address from , address to , uint amount) internal virtual override {

super._beforeTokenTransfer(from , to , amount);

if (from == address (0)) { // mint

_updateAccountSnapshot(to);

_updateTotalSupplySnapshot ();

} else if (to == address (0)) { // burn

_updateAccountSnapshot(from);

_updateTotalSupplySnapshot ();

} else { // transfer

_updateAccountSnapshot(from);

_updateAccountSnapshot(to);

}

}

// _valueAt , _updateAccountSnapshot , _updateTotalSupplySnapshot not shown

}

Fig. 5: A portion of OpenZeppelin's Solidity ERC-20 contract with snapshots. Its full code
is available at https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/
ERC20/extensions/ERC20Snapshot.sol.

computational complexity: it creates snapshots in
O(1); since the ids �elds are sorted, it retrieves
balances and total supply at each given snapshot
in O(log n), by binary search, where n is the num-
ber of snapshots already performed. Nevertheless,
it has some drawbacks:

1. It is complex and tricky. We found it very hard
to reach a su�cient trust in its correctness. It
is so complicated and speci�c to ERC-20 that
its extension from ERC-20 to ERC-721 tokens
has never been done.

2. It induces a signi�cant overhead for the manip-
ulation of the Snapshots, also because it needs
the extra _balancesSnapshots map.

3. All participants pay the overhead of the previ-
ous point when they transfer tokens, not just
those who create snapshots. That is, if a par-
ticipant creates a snapshot, then the other
participants will later pay the overhead during
transfers, even though they were not interested
in the snapshot.

4. If a large number of snapshots is generated,
arrays ids and values might become so long
that their manipulation exceeds the maximal
gas (metering of code execution) allowed for
Ethereum transactions, which is the perfect
surface for a denial of service attack. That is
why function _snapshot is internal: subclasses

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC20Snapshot.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC20Snapshot.sol

Springer Nature 2021 LATEX template

Fungible and Non-Fungible Tokens with Snapshots in Java 13

must implement some security policy to control
its access.

We have translated in Takamaka the Solidity
code from Fig. 5. The result of this translation
is at https://github.com/Hotmoka/hotmoka/blob/

master/io-hotmoka-examples/src/main/java/io/

hotmoka/examples/tokens/ERC20OZSnapshot.java.
It works perfectly but su�ers from the same issues
highlighted above for its Solidity counterpart.
Hence, it is interesting to investigate whether a
better implementation of ERC-20 contracts with
snapshots exists, at least in Takamaka, which is
our target language. Moreover, it is interesting
to see if that implementation can also work for
ERC-721 tokens, currently missing the snapshot
feature in Solidity.

6 An E�cient Algorithm for
Snapshots

By looking at OpenZeppelin's code in Fig. 1, it
would be convenient to implement the _snapshot

function in a way completely di�erent from that
described in Sec. 5: it should return an actual
snapshot (not its identi�er), ie. a data struc-
ture containing an immutable view of the ledger.
This new implementation does not increase the
length of any array and can be safely public. In
Solidity-like pseudocode, this would look like in
Fig. 6.
However, this code cannot be written in Solid-
ity. The main reason is that Solidity maps cannot
be cloned, since they are not data structures,
but just an algorithm for distributing key/value
pairs in the storage of Ethereum. Solidity maps
do not even know their set of keys, whose itera-
tion would at least allow a (very expensive) clone
of the map. Moreover, at the time we conducted
the analysis and experiments, Solidity functions
could not return a struct (from Solidity v0.8,
ABIEncoderV2 implements that feature).

Fig. 7 shows that the corresponding code can
well be written in Takamaka instead. The local
inner class SnapshotImpl plays the role of the
struct in Solidity. At creation time, it clones �elds
_totalSupply and _balances from the outer ERC20

object. Class SnapshotImpl actually implements
a new superinterface IERC20View of IERC20, that
has only the read-only methods of ERC-20, ie.
totalSupply and balanceOf. Fig. 8 shows the UML

diagram of these interfaces and classes. It shows
that there is no special class for ERC-20 contracts
with snapshots anymore: all ERC-20 contracts can
be snapshotted.

The magic of this Java code is that, in Taka-
maka, an immutable clone of _balances is simply
_balances.snapshot() (the snapshot method of
StorageMap), that runs in O(1). Therefore, the
problem is now to understand how the class
StorageTreeMap and its snapshot method work.
They exploit the same idea used, for instance,
in the Git version control system and in the
storage of Ethereum, allowing one to check out
their full history of states, by simply swapping
a root pointer. They favor the re-creation of
immutable data structures instead of updates
to mutable data structures. More in detail, in
our case class StorageTreeMap<K,V> implements
red/black trees [25], a special kind of balanced
binary search trees that orders keys of type
K by their storage reference, ie. a machine-
independent pointer to the keys in the memory
of the blockchain [28]. Such references are 32
bytes long, ie. 256 bits. Since a red/black tree
is balanced, the length of a path from root to
leaf is 256 at most and get and put opera-
tions run in O(256), ie. in O(1). Fig. 9(a) shows
a StorageTreeMap<Contract,UnsignedBigInteger>

_balances that implements the mapping with the
following insertion order: 81af 7→ 14, 77b1 7→ 18,
da89 7→ 14, 71a0 7→ 19, fa31 7→ 35 and 9100 7→ 5
(for simplicity, this example assumes that storage
references are only two bytes long, ie. four hex-
adecimal digits or 16 bits). We remember that the
O notation states a worst-case scenario. Namely,
the cost for get and put is often smaller than
256 operations, being in general dependent on the
number of elements in the tree. We are not stating
that get and put cost always exactly 256 opera-
tions, which would need the Θ notation instead.
What we are stating is that it is never higher
than 256, which is the meaning of the O nota-
tion. The fact that get and put run in constant
worst-case time is made possible by the choice of
a particular kind of keys, whose size is �xed a
priori. The situation here is similar to the use of
Merkle-Patricia tries for implementing the storage
of Ethereum, whose get and put operations are
considered to run in constant time as well, since
their cost increases with the size of the trie but

https://github.com/Hotmoka/hotmoka/blob/master/io-hotmoka-examples/src/main/java/io/hotmoka/examples/tokens/ERC20OZSnapshot.java
https://github.com/Hotmoka/hotmoka/blob/master/io-hotmoka-examples/src/main/java/io/hotmoka/examples/tokens/ERC20OZSnapshot.java
https://github.com/Hotmoka/hotmoka/blob/master/io-hotmoka-examples/src/main/java/io/hotmoka/examples/tokens/ERC20OZSnapshot.java

Springer Nature 2021 LATEX template

14 Fungible and Non-Fungible Tokens with Snapshots in Java

contract ERC20 is IERC20 {

mapping (address = > uint) private _balances;

uint private _totalSupply;

struct SnapshotImpl {

immutable mapping (address => unit) public balances;

immutable uint public totalSupply;

}

function snapshot () public returns (SnapshotImpl) {

return (immutable clone of _balances , copy of _totalSupply) }

}

Fig. 6: The pseudocode of an alternative implementation of snapshots in Solidity, that its compiler does
not accept.

public class ERC20 extends Contract implements IERC20 {

private UnsignedBigInteger _totalSupply = ZERO;

private final StorageMap <Contract , UnsignedBigInteger > _balances = new StorageTreeMap <>();

public final IERC20View snapshot () {

class SnapshotImpl extends Storage implements IERC20View {

private final UnsignedBigInteger totalSupply = _totalSupply;

private final StorageMapView <Contract ,UnsignedBigInteger > balance = _balances.snapshot ();

public @Override @View UnsignedBigInteger totalSupply () {

return totalSupply;

}

public @Override @View UnsignedBigInteger balanceOf(Contract account) {

return balances.getOrDefault(account , ZERO);

}

// the snapshot of a snapshot is itself

public @Override @View IERC20View snapshot () {

return this;

}

}

return new SnapshotImpl ();

}

}

Fig. 7: The snapshot method added to the code in Fig. 3.

is bounded from above by a constant [4, 6]. Also,
in that case, constant worst-case time is possible
since keys are Ethereum addresses of �xed size.

Fig. 9(a) shows also the computation of a clone
of _balances: it is another StorageTreeMap whose
root is the same root of _balances. The indepen-
dence between _balances and its clones is obtained
by making the nodes of the trees immutable data
structures: destructive updates of the tree actu-
ally create new nodes instead of modifying old
nodes. For instance, Fig. 9(b) shows an update to
_balances, that changes the value bound to da89,

from 14 to 30. It shows that both nodes for 81af
and da89 are recreated (darkened in the �gure),
and the root of _balances is updated. The clone's
root remains unchanged instead and points to the
old tree. Note that computing a clone means just
creating a new root cell that points to the current
root of the tree. Hence, a clone is computed in
O(1). The idea of creating independent clones of
a tree by using immutable nodes and a new root
pointer is not new. We have borrowed this idea
from the way the Git version control system works
internally. Git allows very inexpensive creation of

Springer Nature 2021 LATEX template

Fungible and Non-Fungible Tokens with Snapshots in Java 15

Fig. 8: The UML class diagram of the IERC20View

and IERC20 interfaces, implemented by the ERC20

class. The IERC20View interface is a very abstract
view of a ledger: it has methods for read-only
access and for creating snapshots.

(a)

 root

_balances

81af

Value: 14

77b1

Value: 18

71a0

Value: 19

da89

Value: 14

fa31

Value: 35

9100

Value: 5

root

clone

da89

Value: 30

81af

Value: 14

 root

_balances

81af

Value: 14

77b1

Value: 18

71a0

Value: 19

da89

Value: 14

fa31

Value: 35

9100

Value: 5

root

clone

(b)

Fig. 9: A red/black tree with immutable nodes,
with snapshots in O(1).

branches of a repository in O(1), since a branch
is just a reference to the root of the repository at
the time of the branch creation.

The code in Fig. 7 has the same asymptotical
complexity as OpenZeppelin's ERC-20 contracts
with snapshots, but overcomes all its drawbacks
reported at the end of Sec. 5:

1. It is simple and intuitive. Class StorageTreeMap
might look complex but comes with the sup-
port library of Takamaka and needn't be re-
implemented.

2. It has no overhead because of snapshots and no
_balancesSnapshots map exists anymore.

3. Who creates a snapshot pays gas. The other
participants can transfer coins without paying
any overhead because of that snapshot.

4. There are no arrays that grow in size when
snapshots are created, hence a denial of service
attack is not possible.

Moreover, the same technique can be used to
implement a snapshot of an ERC-721 token ledger
as well. There is no extra di�culty in comparison
with ERC-20 ledgers. The only di�erence is that
the snapshot must be performed for two maps this
time: for the _balances and for the _owners maps
of the implementation in Fig. 4. The snapshot

method added to the code in Fig. 4 is shown in
Fig. 10. Also in this case, there is an IERC721View

interface that collects the read-only methods of
IERC721.

7 Performance Evaluation

This section compares the performance of the lit-
eral translation into Takamaka of OpenZeppelin's
ERC-20 contracts with snapshots (Sec. 5) against
that of our implementation in Takamaka that
uses a more e�cient snapshot algorithm (Figs. 3
and 7), which we call Native, in terms of gas
consumed for code execution. Gas is the standard
cost measure for smart contracts, since it re�ects
the actual number of resources (CPU cycles, RAM
allocations, storage slots) that each node of a
blockchain must consume. However, gas is a low-
level, bytecode-speci�c measure and Solidity and
Takamaka use two completely di�erent bytecode
languages. Because of that, what we are actually
going to compare is OpenZeppelin's ERC-20 con-
tract with snapshots translated in Takamaka (end
of Sec. 5), that we call OpenZeppelin, against
our Native. Both are written in Takamaka and
both are compiled into Java bytecode. Hence, the
comparison gives a measure of the relative e�-
ciency of the two algorithmic solutions, which is
what we are looking for. Instead, this is not a com-
parison between OpenZeppelin's Solidity code and
our Takamaka code, or more generally between

Springer Nature 2021 LATEX template

16 Fungible and Non-Fungible Tokens with Snapshots in Java

public class ERC721 extends Contract implements IERC721 {

public final IERC721View snapshot () {

class SnapshotImpl extends Storage implements IERC721View {

private final StorageMapView <BigInteger ,Contract > owners = _owners.snapshot ();

private final StorageMapView <Contract ,BigInteger > balances = _balances.snapshot ();

public @Override @View BigInteger balanceOf(Contract owner) {

return balances.getOrDefault(owner , ZERO);

}

public @Override @View Contract ownerOf(BigInteger tokenId) {

return owners.get(tokenId);

}

// the snapshot of a snapshot is itself

public @Override @View IERC721View snapshot () {

return this;

}

}

return new SnapshotImpl ();

}

}

Fig. 10: The snapshot method added to the code in Fig. 4.

Solidity and Takamaka, that would be meaningless
and that we cannot provide, since they compile
into distinct bytecode languages, have di�erent
gas models and do not allow the same algorithmic
solutions: maps can be cloned in Takamaka but
not in Solidity.

We have written a JUnit test case that sim-
ulates a typical usage scenario for an ERC-20
contract: it creates the contract in blockchain,
spreads its tokens among a set of investors (other
contracts), play for some time with the ERC-20
contract (we assumed for ten days), performing
random token transfers between them, burning
some random tokens or minting new random
tokens. At the end of each day, it takes a snapshot.
The test case is implementation-agnostic: given
an implementation of ERC-20 with snapshots
(such as OpenZeppelin or Native), the test
case will reproduce the scenario and report the
gas consumption. Moreover, in order to be deter-
ministic and fair, the test case uses a �xed seed for
random choices. Hence its execution is exactly the
same at each run, with both OpenZeppelin and
Native. Similarly, the number and kind of trans-
actions executed by the test case do not change.
The interested reader can inspect and run the test
case by cloning the repository of Hotmoka (git
clone https://github.com/Hotmoka/hotmoka.git

-b erc20-comparison) and following the instruc-
tions in the �le README.txt. TABLE 11 shows the
results. The experiment has been done on an Intel
Core i5-8259U machine with 16GB of RAM run-
ning Ubuntu Linux 20.04.2. For instance, the test
with 1000 investors generates 22372 transactions.
With our Native contract, it consumes a total of
9718604702 units of gas (CPU+RAM+Storage)
and takes 223 seconds. With the OpenZeppelin
contract, it consumes 17726118750 units of gas
(CPU+RAM+Storage, almost twice as Native)
and takes 344 seconds.

This experiment shows that our Native solu-
tion with e�cient snapshots (Fig. 7) saves gas
units (hence money) and reduces the overall time
for the execution of the test case. This time
reduction is more apparent when there are many
investors, as the overhead of OpenZeppelin's
solution consequently grows.

8 Conclusion

This paper has shown some patterns for the code
migration from Solidity to Takamaka, applied
to the speci�c examples of ERC-20 and ERC-
721 contracts. It has shown an improvement of
the literal code translation of ERC-20 contracts
with snapshots, by using maps with immutable

Springer Nature 2021 LATEX template

Fungible and Non-Fungible Tokens with Snapshots in Java 17

clones, not available in Solidity but implemented
in other programming languages. It has shown
that the same technique applies to ERC-721 con-
tracts, where snapshots were previously missing.
The result has been validated with a test case
that shows the reduced gas and time costs of our
implementation wrt. OpenZeppelin's within the
JVM.

The possibility of creating immutable clones of
maps in O(1) is useful to simplify the code of other
contracts as well, where Solidity must use tricky
code instead (as that described in Sec. 5) or recur
to events, to mark the historical evolution of data
and allow its recovery (with extra gas costs). For
instance, we have added snapshots also to shared
entities, that are used to implement DAOs and the
set of validators of a proof-of-stake blockchain [5].

Springer Nature 2021 LATEX template

18 Fungible and Non-Fungible Tokens with Snapshots in Java

Im
p
le
m
en
ta
ti
o
n

In
v
es
to
rs

T
ra
n
sf
er
s

M
in
ts

B
u
rn
s

T
x
s

C
P
U

R
A
M

S
to
ra
g
e

T
im

e

N
a
ti
v
e

1
0
0

2
1
9

1
0
3

9
9

4
3
3

2
3
2
6
2
9
3

3
5
8
9
9
9
9

6
6
3
3
6
1
3
7

1
.9
8

O
p
e
n
Z
e
p
p
e
li
n

1
0
0

2
1
9

1
0
3

9
9

4
3
3

4
0
2
0
3
2
0

5
8
0
8
3
7
5

1
3
0
3
3
4
1
2
5

2
.0
2

N
a
ti
v
e

2
0
0

8
3
2

2
0
5

1
9
4

1
2
4
3

7
6
3
6
1
1
0

1
1
6
2
7
2
8
1

2
8
5
9
0
6
1
1
3

4
.6
1

O
p
e
n
Z
e
p
p
e
li
n

2
0
0

8
3
2

2
0
5

1
9
4

1
2
4
3

1
3
7
6
6
0
7
9

1
9
6
1
7
6
4
9

5
2
9
9
9
2
9
7
2

5
.8
6

N
a
ti
v
e

3
0
0

1
7
7
6

3
0
2

3
1
6

2
4
0
6

1
5
6
4
5
8
6
2

2
3
7
0
5
6
2
2

6
5
5
5
3
4
3
3
6

9
.8
2

O
p
e
n
Z
e
p
p
e
li
n

3
0
0

1
7
7
6

3
0
2

3
1
6

2
4
0
6

2
8
3
7
2
9
8
4

4
0
2
9
9
9
2
2

1
2
1
6
0
4
3
8
3
1

1
2
.4
3

N
a
ti
v
e

4
0
0

3
2
6
0

3
8
3

4
1
1

4
0
6
6

2
7
9
9
5
7
4
8

4
2
1
8
4
1
8
6

1
2
7
2
4
3
0
4
3
9

1
6
.2
2

O
p
e
n
Z
e
p
p
e
li
n

4
0
0

3
2
6
0

3
8
3

4
1
1

4
0
6
6

5
1
5
8
7
0
8
8

7
2
8
8
1
2
5
8

2
3
3
2
0
3
0
5
7
4

2
4
.0
2

N
a
ti
v
e

5
0
0

5
1
7
0

5
1
2

5
0
6

6
2
0
0

4
3
8
4
6
2
0
3

6
5
8
5
9
5
9
2

2
0
8
6
1
3
8
9
8
5

2
7
.6
8

O
p
e
n
Z
e
p
p
e
li
n

5
0
0

5
1
7
0

5
1
2

5
0
6

6
2
0
0

8
1
8
3
6
7
2
6

1
1
5
2
6
0
5
0
4

3
8
0
1
9
9
3
3
8
4

4
3
.4
2

N
a
ti
v
e

6
0
0

7
3
2
6

5
9
0

5
9
9

8
5
2
7

6
1
6
5
7
5
7
3

9
2
5
9
7
8
0
5

3
0
6
4
3
3
2
6
3
3

4
4
.2
0

O
p
e
n
Z
e
p
p
e
li
n

6
0
0

7
3
2
6

5
9
0

5
9
9

8
5
2
7

1
1
5
8
7
1
4
2
8

1
6
3
1
4
4
6
2
9

5
6
0
0
3
6
4
4
1
1

6
8
.4
7

N
a
ti
v
e

7
0
0

1
0
0
3
8

7
3
8

7
1
0

1
1
4
9
8

8
5
3
3
7
8
2
1

1
2
7
8
3
3
6
9
8

4
3
2
7
1
6
0
8
8
2

6
8
.6
1

O
p
e
n
Z
e
p
p
e
li
n

7
0
0

1
0
0
3
8

7
3
8

7
1
0

1
1
4
9
8

1
6
0
1
0
2
2
7
5

2
2
5
0
2
9
8
8
6

7
8
1
5
2
5
4
9
8
9

1
0
7
.2
0

N
a
ti
v
e

8
0
0

1
2
8
9
6

7
5
9

8
7
1

1
4
5
3
8

1
1
0
2
6
0
9
8
6

1
6
4
8
5
8
6
2
6

5
6
7
3
4
2
4
0
5
0

9
8
.5
6

O
p
e
n
Z
e
p
p
e
li
n

8
0
0

1
2
8
9
6

7
5
9

8
7
1

1
4
5
3
8

2
0
8
7
8
1
1
0
3

2
9
3
0
3
5
3
9
0

1
0
3
4
0
7
6
9
0
4
7

1
6
0
.4
9

N
a
ti
v
e

9
0
0

1
5
9
3
9

8
8
4

9
0
1

1
7
7
3
6

1
3
7
0
6
9
3
8
3

2
0
4
5
6
8
2
0
8

7
1
5
4
7
0
6
4
6
1

1
4
4
.0
9

O
p
e
n
Z
e
p
p
e
li
n

9
0
0

1
5
9
3
9

8
8
4

9
0
1

1
7
7
3
6

2
6
1
4
7
6
5
1
5

3
6
6
3
7
5
5
2
0

1
3
0
5
8
6
6
0
5
4
8

2
3
1
.0
3

N
a
ti
v
e

1
0
0
0

2
0
3
9
0

9
3
9

1
0
3
1

2
2
3
7
2

1
7
5
2
7
4
1
2
0

2
6
1
1
4
8
7
0
4

9
2
8
2
1
8
1
8
7
8

2
2
3
.0
0

O
p
e
n
Z
e
p
p
e
li
n

1
0
0
0

2
0
3
9
0

9
3
9

1
0
3
1

2
2
3
7
2

3
3
3
6
2
2
7
0
2

4
6
7
1
6
0
3
3
2

1
6
9
2
5
3
3
5
7
1
6

3
4
4
.2
3

F
ig
.
1
1
:
T
h
e
re
su
lt
o
f
ru
n
n
in
g
o
u
r
te
st

th
a
t
si
m
u
la
te
s
te
n
d
ay
s
o
f
in
te
ra
ct
io
n
w
it
h
a
n
E
R
C
-2
0
co
n
tr
a
ct
,
p
er
fo
rm

in
g
a
sn
a
p
sh
o
t
a
t
th
e
en
d
o
f

ea
ch

d
ay
.
Im

p
le
m
en
ta
ti
o
n
is
th
e
im

p
le
m
en
ta
ti
o
n
u
n
d
er

te
st
:
n
a
ti
ve

T
a
ka
m
a
ka

w
it
h
e�

ci
en
t
sn
a
p
sh
o
ts

o
r
tr
an
sl
a
te
d
fr
o
m

O
p
en
Z
ep
p
el
in

in
to

T
a
ka
m
a
ka
.
In
ve
st
o
rs

is
th
e
n
u
m
b
er

o
f
a
cc
o
u
n
ts

th
a
t
in
ve
st

in
th
e
E
R
C
-2
0
co
n
tr
a
ct
.
T
ra
n
sf
er
s,
M
in
ts

a
n
d
B
u
rn
s
a
re

th
e
n
u
m
b
er

o
f
tr
a
n
sf
er
,

m
in
t
a
n
d
b
u
rn

tr
a
n
sa
ct
io
n
s
p
er
fo
rm

ed
d
u
ri
n
g
th
e
te
st
,
re
sp
ec
ti
ve
ly
.
T
xs

is
th
e
to
ta
l
n
u
m
b
er

o
f
tr
a
n
sa
ct
io
n
s
p
er
fo
rm

ed
b
y
th
e
te
st
,
in
cl
u
d
in
g

th
o
se

fo
r
th
e
cr
ea
ti
o
n
a
n
d
in
it
ia
li
za
ti
o
n
o
f
th
e
E
R
C
-2
0
co
n
tr
a
ct

a
n
d
fo
r
th
e
co
m
p
u
ta
ti
o
n
o
f
it
s
sn
a
p
sh
o
ts
.
C
P
U
,
R
A
M

a
n
d
S
to
ra
ge

a
re

th
e

g
a
s
u
n
it
s
co
n
su
m
ed

fo
r
C
P
U
ex
ec
u
ti
o
n
,
R
A
M

a
ll
o
ca
ti
o
n
a
n
d
p
er
si
st
en
t
st
o
ra
g
e
in

b
lo
ck
ch
a
in
,
re
sp
ec
ti
ve
ly
.
T
im

e
is
th
e
ti
m
e
fo
r
th
e
ex
ec
u
ti
o
n

o
f
th
e
te
st
,
in

se
co
n
d
s.

Springer Nature 2021 LATEX template

REFERENCES 19

References

[1] URL: https://www.tiobe.com/tiobe-index/
[accessed: 2021-07-23].

[2] URL: https://pypl.github.io/PYPL.html
[accessed: 2021-07-23].

[3] A. M. Antonopoulos. Mastering Bitcoin: Pro-
gramming the Open Blockchain. O'Reilly, 2nd
edition, 2017.

[4] A. M. Antonopoulos and G. Wood. Master-
ing Ethereum: Building Smart Contracts and
Dapps. O'Reilly, 2018.

[5] A. Benini, M. Gambini, S. Migliorini, and
F. Spoto. Power and Pitfalls of Generic Smart
Contracts. In Third International Conference
on Blockchain Computing and Applications
(BCCA'21), pages 179�186, Tartu, Estonia,
November 2021. IEEE.

[6] V. Buterin. Ethereum Whitepaper, 2013.
https://ethereum.org/en/whitepaper.

[7] ConsenSys. Consensys Tokens. https://
github.com/ConsenSys/Tokens.

[8] S. Crafa, M. Di Pirro, and E. Zucca. Is Solid-
ity Solid Enough? In A. Bracciali, J. Clark,
F. Pintore, P. B. Rønne, and M. Sala, edi-
tors, 3rd Wokshop on Trusted Smart Con-
tracts (WTSC'19), volume 11599 of Lecture
Notes in Computer Science, pages 138�153,
St. Kitts and Nevis, 2019. Springer.

[9] M. Crosara, L. Olivieri, F. Spoto, and
F. Tagliaferro. Re-engineering ERC-20 Smart
Contracts with E�cient Snapshots for the
Java Virtual Machine. In Third Interna-
tional Conference on Blockchain Computing
and Applications (BCCA'21), pages 187�194,
Tartu, Estonia, November 2021. IEEE.

[10] Dexaran. ERC223 Token Stan-
dard. https://github.com/Dexaran/
ERC223-token-standard, 2021.

[11] W. Entrinken, D. Shirley, J. Evans, and
N. Sachs. EIP-721: ERC-721 Token Stan-
dard, Ethereum Improvement Proposals,
no. 721. https://eips.ethereum.org/EIPS/
eip-721, 2018.

[12] V. F. and V. Buterin. EIP-20: ERC-20 Token
Standard, Ethereum Improvement Propos-
als, no. 20. https://eips.ethereum.org/EIPS/
eip-20, 2017.

[13] P. Freni, E. Ferro, and R. Moncada. Tok-
enization and Blockchain Tokens Classi�ca-
tion: A Morphological Framework. In IEEE

Symposium on Computers and Communica-
tions (ISCC), pages 1�6, Rennes, France,
July 2020. IEEE.

[14] Hotmoka � Blockchain and IoT with Smart
Contracts in Java. https://www.hotmoka.io,
2021.

[15] Hyperledger. ERC-20 Token Scenario,
2021. https://github.com/hyperledger/
fabric-samples/tree/main/token-erc-20#
erc-20-token-scenario.

[16] Hyperledger. ERC-721 Token Scenario,
2021. https://github.com/hyperledger/
fabric-samples/tree/main/token-erc-721#
erc-721-token-scenario.

[17] K. J. Kistner. iToken Duplication Incident
Report. https://bzx.network/blog/incident,
September 2020.

[18] M. Koscina, M. Lombard-Platet, and
P. Cluchet. PlasticCoin: An ERC20
Implementation on Hyperledger Fabric for
Circular Economy and Plastic Reuse. In
IEEE/WIC/ACM International Conference
on Web Intelligence - Companion Volume,
pages 223�230. ACM, 2019.

[19] S. Nakamoto. Bitcoin: A Peer-to-Peer Elec-
tronic Cash System. Available at https://
bitcoin.org/bitcoin.pdf, 2008.

[20] L. Oliveira, L. Zavolokina, I. Bauer, and
G. Schwabe. To Token or not to Token:
Tools for Understanding Blockchain Tokens.
In Proc. of the International Conference on
Information Systems - Bridging the Inter-
net of People, Data, and Things, ICIS 2018,
San Francisco, CA, USA, December 2018.
Association for Information Systems.

[21] OpenZeppelin. ERC-20 Docs. https:
//docs.openzeppelin.com/contracts/4.x/api/
token/erc20.

[22] OpenZeppelin. ERC-721 Docs. https:
//docs.openzeppelin.com/contracts/4.x/api/
token/erc721.

[23] D. Park, Y. Zhang, M. Saxena, P. Daian,
and G. Ro³u. A Formal Veri�cation Tool for
Ethereum VM Bytecode. In 26th ACM Joint
Meeting on European Software Engineering
Conference and Symposium on the Founda-
tions of Software Engineering, ESEC/FSE
2018, pages 912�915, New York, NY, USA,
2018.

[24] C. Reitwieÿner, N. Johnson, F. Vogelsteller,
J. Baylina, K. Feldmeier, and W. Entriken.

https://www.tiobe.com/tiobe-index/
https://pypl.github.io/PYPL.html
https://ethereum.org/en/whitepaper
https://github.com/ConsenSys/Tokens
https://github.com/ConsenSys/Tokens
https://github.com/Dexaran/ERC223-token-standard
https://github.com/Dexaran/ERC223-token-standard
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://www.hotmoka.io
https://github.com/hyperledger/fabric-samples/tree/main/token-erc-20#erc-20-token-scenario
https://github.com/hyperledger/fabric-samples/tree/main/token-erc-20#erc-20-token-scenario
https://github.com/hyperledger/fabric-samples/tree/main/token-erc-20#erc-20-token-scenario
https://github.com/hyperledger/fabric-samples/tree/main/token-erc-721#erc-721-token-scenario
https://github.com/hyperledger/fabric-samples/tree/main/token-erc-721#erc-721-token-scenario
https://github.com/hyperledger/fabric-samples/tree/main/token-erc-721#erc-721-token-scenario
https://bzx.network/blog/incident
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://docs.openzeppelin.com/contracts/4.x/api/token/erc20
https://docs.openzeppelin.com/contracts/4.x/api/token/erc20
https://docs.openzeppelin.com/contracts/4.x/api/token/erc20
https://docs.openzeppelin.com/contracts/4.x/api/token/erc721
https://docs.openzeppelin.com/contracts/4.x/api/token/erc721
https://docs.openzeppelin.com/contracts/4.x/api/token/erc721

Springer Nature 2021 LATEX template

20 REFERENCES

EIP-165: ERC-165 Standard Interface Detec-
tion: Ethereum Improvement Proposals,
no. 165. https://eips.ethereum.org/EIPS/
eip-165, 2018.

[25] R. Sedgewick and K. Wayne. Algorithms.
Addison-Wesley Professional, fourth edition,
2014.

[26] F. Spoto. The Julia Static Analyzer for Java.
In Proc. of the 23rd International Sympo-
sium on Static Analysis (SAS 2016), volume
9837 of Lecture Notes in Computer Sci-
ence, pages 39�57, Edinburgh, UK, Septem-
ber 2016. Springer.

[27] F. Spoto. Hotmoka Github Repository.
GitHub Inc., 2018�2022. Available at https:
//github.com/Hotmoka/hotmoka.

[28] F. Spoto. A Java Framework for Smart Con-
tracts. In 3rd Wokshop on Trusted Smart
Contracts (WTSC'19), volume 11599 of Lec-
ture Notes in Computer Science, pages 122�
137, St. Kitts and Nevis, February 2019.
Springer.

[29] F. Spoto. Enforcing Determinism of Java
Smart Contracts. In 4th Wokshop on Trusted
Smart Contracts (WTSC'20), volume 12063
of Lecture Notes in Computer Science, pages
568�583, Kota Kinabalu, Malaysia, February
2020. Springer.

[30] D. Tapscott. Token Taxonomy: The
Need for Open-Source Standards around
Digital Assets, 2020. https://www.
blockchainresearchinstitute.org/project/
token-taxonomy-the-need-for-open-source-
standards-around-digital-assets.

[31] Vyper Documentation. https://vyper.
readthedocs.io.

[32] Vyper ERC20 Implementation. https:
//github.com/vyperlang/vyper/blob/
master/examples/tokens/ERC20.vy.

https://eips.ethereum.org/EIPS/eip-165
https://eips.ethereum.org/EIPS/eip-165
https://github.com/Hotmoka/hotmoka
https://github.com/Hotmoka/hotmoka
https://www.blockchainresearchinstitute.org/project/token-taxonomy-the-need-for-open-source-
https://www.blockchainresearchinstitute.org/project/token-taxonomy-the-need-for-open-source-
https://www.blockchainresearchinstitute.org/project/token-taxonomy-the-need-for-open-source-
standards-around-digital-assets
https://vyper.readthedocs.io
https://vyper.readthedocs.io
https://github.com/vyperlang/vyper/blob/master/examples/tokens/ERC20.vy
https://github.com/vyperlang/vyper/blob/master/examples/tokens/ERC20.vy
https://github.com/vyperlang/vyper/blob/master/examples/tokens/ERC20.vy

	Introduction
	ERC-20 and its OpenZeppelin Implementation
	ERC-721 and its OpenZeppelin Implementation
	From Solidity to Takamaka
	Snapshots of ERC-20 Ledgers
	An Efficient Algorithm for Snapshots
	Performance Evaluation
	Conclusion

