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Abstract: We investigated if dominance affected upper limbs muscle function, and we calculated the
level of agreement in asymmetry direction across various muscle-function metrics of two heterologous
muscle groups. We recorded elbow flexors and extensors isometric strength of the dominant and
non-dominant limb of 55 healthy adults. Participants performed a series of explosive contractions
of maximal and submaximal amplitudes to record three metrics of muscle performance: maximal
voluntary force (MVF), rate of force development (RFDpeak), and RFD-Scaling Factor (RFD-SF). At
the population level, the MVF was the only muscle function that showed a difference between the
dominant and non-dominant sides, being on average slightly (3–6%) higher on the non-dominant
side. At the individual level, the direction agreement among heterologous muscles was poor for all
metrics (Kappa values ≤ 0.15). When considering the homologous muscles, the direction agreement
was moderate between MVF and RFDpeak (Kappa = 0.37) and low between MVF and RFD-SF
(Kappa = 0.01). The asymmetries are muscle-specific and rarely favour the same side across different
muscle-performance metrics. At the individual level, no one side is more performative than the other:
each limb is favoured depending on muscle group and performance metric. The present findings can
be used by practitioners that want to decrease the asymmetry levels as they should prescribe specific
exercise training for each muscle.

Keywords: explosive contraction; muscle quickness; dominance

1. Introduction

According to the dynamic dominance models [1], the dominant limb might be spe-
cialized for controlling movements through predictive mechanisms that are most effective
under stable mechanical conditions, while the non-dominant limb might be specialized
for impedance control, which imparts stability when mechanical conditions are unpre-
dictable [2]. Although this model does not mention muscle strength or power as critical
factors in dominance differentiation, many studies investigated the effect of limb dominance
on such muscle performance.

Handgrip muscles are the only ones that present a clear trend (at least in right-handed
individuals) of 8–16% towards a stronger dominant than non-dominant side [3]. The effects
of limb dominance on other strength tests are not as noticeable. In a recent systematic
review, including 19 studies (1880 healthy non-athletes subjects), Kotte et al. [4] reported
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no difference between the dominant and non-dominant side in elbow flexors and extensors.
Ditroilo et al. [5] did not find any difference in maximal voluntary force (MVF) and rate
of force development (RFD) between dominant and non-dominant knee extensors in a
sample of 152 people of various ages. In sports, two meta-analyses found that lower limb
dominance did not influence isometric and dynamic muscle strength [6,7].

The fact that the dominant limb is not stronger or weaker than the non-dominant one at
the population level does not imply that one side would be stronger than the contralateral
one at the individual level. Regardless of dominance, the interlimb asymmetry varies
depending on the test selected, and, thus, the level of asymmetry may strongly depend
on tasks [8]. Numerous recent studies found that the direction of interlimb asymmetry is
rarely consistent across tests [8,9]. For example, by comparing the lower limb asymmetry
during three jump tests, Bishop et al. [10] found that the levels of agreement across jump
tests (considering peak torque and other metrics) were poor. While a metric may favour
the dominant limb at an individual level, others may favour the non-dominant one. Those
studies reinforce that limb dominance does not represent a strong predictor of strength
and quickness produced by a muscle group. However, previous studies investigating the
consistency of asymmetry direction focused only on one muscle group/kinetic chain [10].
So far, it is unclear if asymmetry direction is consistent among heterologous muscles.
Considering the impact of interlimb asymmetry on sports performance [11] it would be
essential to understand if, in the presence of an asymmetry, all muscles of one limb are
more performative than the contralateral ones.

Measuring the MVF is the most straightforward assessment to detect interlimb strength
asymmetry [12]. Since RFD represents a valid alternative to the classical evaluation of
MVF [13], RFD is emerging as a meaningful indicator of interlimb asymmetry [14,15].
RFD represents the derivative of force with respect to time [16] and quantifies a muscle
contraction’s explosiveness [13]. RFD is an important neuromuscular variable in time-
constrained activities [13,16]. Its relevance has been repeatedly demonstrated in sports [17],
ageing [18], and disease contexts [19]. The RFD and MVF rely on partially different
physiological determinants; for example, MVF is more related to muscle volume [20,21],
while RFD is more related to the rate of motor unit recruitments [22]. For these reasons,
MVF and RFD are weakly correlated [20,21], especially when RFD is measured in the early
phase of a muscle contraction [13]. Nevertheless, RFD and MVF have in common the fact
that they are assessed performing maximal-effort contractions. However, not all daily
activities and sports gestures are based on maximal-effort contractions. Most actions are
likely based on quick contractions of submaximal intensities: for example, walking, running,
passing a ball in soccer, or shooting a free shot in basketball. In this context, the adoption
of RFD-Scaling Factor (RFD-SF) has emerged as an informative measure to quantify the
neuromuscular quickness of submaximal contractions [23–26]. Interestingly, RFD-SF is
weakly correlated to MVF and also to maximal RFD [27]. The interest in this capacity has
increased over the last years [28], and RFD-SF has been widely used to identify interlimb
asymmetry [15,29,30]. Together these studies suggest that MVF, RFD, and RFD-SF might
provide different and complementary outcomes in the assessment of interlimb asymmetry.

In the present study, we focused on upper limbs (elbow flexors and extensors) because
they play a critical role in everyday living and sports context in non-disabled, amputee,
and wheelchair users. We firstly aimed to examine if dominance affected muscle function.
Secondly, we investigated if muscle function asymmetries are muscle-specific or, conversely,
if one side is overall more performative than the other independently of the muscle group.
Thirdly, we aimed to investigate if, within each muscle group, asymmetry direction is
consistent among various muscle performance metrics (MVF, RFD, and RFD-SF).

To answer the first experimental question, we adopted a linear mixed-effects model
analysis, while to answer the second and third experimental questions, we tested the
agreement between asymmetry direction among heterologous muscle groups and various
performance metrics. We hypothesized that: (1) the dominance did not affect muscle func-
tions (MVF, RFD, and RFD-SF); (2) the asymmetry direction agreement among heterologous
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muscles (i.e., elbow flexors and extensors) was low; and (3) the asymmetry direction agree-
ment among the metrics adopted (MVF, RFD, and RFD-SF) in homologous muscles was low.
Finally, we tested the inter-day repeatability of the custom-made isometric dynamometer
adopted in the present study as a secondary objective.

2. Materials and Methods
2.1. Participants

A total of 55 young (31 males and 24 females, mean age = 30 ± 7 years;) physically
active healthy individuals (body mass = 70 ± 9 kg, body height = 1.74 ± 0.17 m, body mass
index 23.3 ± 1.6) were recruited for the study. Five of them were left-handed. Inclusion
criteria were: being adults (≥18 years of age); and being physically active, i.e., participating
in moderate-intensity physical activity at least 150 min/week or vigorous-intensity physical
activity at least 75 min/week or an equivalent combination of both moderate and vigorous
physical activity. Exclusion criteria were: any upper-limb complaints and general illness in
the past six months; any clinical evidence of cardiovascular, neuromuscular, or neurological
disorders; and participation in any sports that require extensive asymmetric involvement
of the upper limbs (such as tennis, badminton, fencing, etc.). All the participants were
informed about the testing procedure and provided their written informed consent before
participation in the experiments. Participants were instructed to refrain from performing
strenuous physical exercise and consuming caffeine 24 h before the experimental session
and completed a socio-demographic questionnaire before the experimental sessions. The
study was approved by the Ethical Committee (University of Torino—approval no: 510190)
and performed in accordance with the Helsinki Declaration.

2.2. Experimental Setup

A picture of the experimental setup is reported in Figure 1A. During the testing,
participants were comfortably seated on a bench (seat height = 44 cm) with the left or right
upper arm vertically and slightly abducted from the trunk (~15◦ degree). Each participant’s
elbow was flexed at 90◦ from full extension. Furthermore, the elbow leaned over adjustable
support to avoid the force exerted with the shoulder and trunk would transmit through
the force sensor. The hand and forearm were oriented in a neutral position. The wrist was
aligned with custom-built telescopic support (see Figure 1A) and fixed with nonelastic
straps to the arm. The custom-built support was rigidly connected to a strain gauge load
cell (Model TF 022, cct transducers, Torino, Italy) to record compression/extension forces.
Real-time visual feedback of elbow flexor/extensor forces was provided on a computer
screen (size screen 48 cm × 27 cm). The force signals were sampled at 100 Hz and converted
to digital data with a 16-bit A/D converter (Forza, OT Bioelettronica, Turin, Italy).
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support, allowed mechanical recording in both traction and compression. (B) Traces recorded during
the execution of the RFD-SF (rate of force development scaling factor) protocol for a representative
participant. Left panel: superimposed force traces are reported for each rapid muscle contrac-
tion executed at various submaximal amplitudes compared to the maximal voluntary force (MVF).
(C) Scatterplot representing the peak force and peak RFD of each muscle contraction reported in the
right panel. The slope of the linear regression represents the RFD-SF.

2.3. Procedure

All participants completed one experimental session during which the muscle-function
assessment was performed for elbow flexion and extension of the dominant and non-
dominant limb in randomized, counterbalanced order. The experimental protocol was
re-administered to a sub-sample of 15 participants to check its test–retest reliability. The
experimenters placed particular attention on avoiding torso and shoulder movement
during contractions execution. In addition, participants were instructed to avoid trapezius
activation during the elbow flexion and body leaning forward during elbow extension.
The same investigators conducted all test sessions. A rest of 5 min was observed between
testing each muscle group. For each muscle group and limb, the protocol comprised: (1) a
warm-up consisting of 10 submaximal isometric contractions (at intensities from 20 to 80%
of the perceived maximum force); (2) familiarisation to ballistic contractions (see later);
(3) two maximal voluntary isometric contractions; and (4) RFD-SF protocol.

Two 5 s maximal voluntary contractions, interspersed by 2 min of rest, were performed
to measure MVF. A third maximal voluntary contraction was performed when the MVF
difference between the two trials was higher than 5%. Participants received standardized
verbal encouragements during the execution of maximal voluntary contractions.

The RFD-SF protocol started 2 min after the last maximal voluntary contractions. The
original RFD-SF protocol requires the performance of 125 ballistic isometric contractions
across a full range of submaximal amplitudes [23]. As a reduced form of the original
protocol consisting of at least 36 contractions showed reliable results [31], participants were
instructed to perform 12 ballistic isometric contractions (interspersed by 5 s) at 80%, 60%,
40%, and 20% of their MVF for a total of 48 contractions (see Figure 1B). They were asked
to produce rapid contractions with peak forces reaching approximately ±10% range of
the target force. Each pulse was controlled by standardized acoustic cues. When it was
obvious that a ballistic isometric contraction had not been performed properly, the same
was repeated. The range force was displayed on the computer screen as a horizontal band
of 20% MVF width. Participants were explicitly instructed to produce each isometric torque
pulse as quickly as possible and then relax instantly. The emphasis was on the quickness of
the contraction rather than the accuracy.

2.4. Mechanical Signals

Signal processing was conducted using a custom-written software in MATLAB R2020b
(The MathWorks Inc., Natick, MA, USA). MVF and RFDpeak were calculated over the raw
force signal. MVF was computed as the 0.5 s epoch with the highest value of the force signal.
To obtain the RFDpeak, we averaged the three contractions showing the highest maximal
RFD (calculated as the peak of the first derivative of force signal among the explosive
contractions of the RFD-SF protocol).

To calculate the RFD-SF, the force signal was firstly pre-processed using an overlapping
moving window of 0.1 s [5,26,32]. The adoption of a moving window was preferred to a
5 Hz low-pass filter because it does not introduce aberration in the signals (typically evident
as a force signal below zero just before the contraction onset). If any countermovement
was evident (i.e., a drop in force greater than 0.25 kg in the 250 ms before the contraction
onset), the contraction was rejected from the analysis. Then, the first derivative of the force
signal was computed to obtain the RFD signal. For each ballistic contraction, peak force
and RFDpeak (which is the local maximum of the RFD signal) were calculated.
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The RFD-SF was calculated as the slope of the linear regression between peak force
and peak RFD obtained in each contraction (Figure 1C). RFD-SF represents how RFD scales
with force in a range of submaximal contraction and, thus, quantify the quickness across a
span of intensities. The R2 was also quantified as it reveals the consistency and linearity
of the linear regression. Outliers were detected and removed using the Cook distance
methodology to improve the fit of the linear regression [33].

2.5. Statistical Analysis

Descriptive data of the dependent variables are presented as mean and standard
deviation (SD). The bilateral asymmetry index was calculated for each parameter according
to the following formula [34]:

Dominant limb − Nondominant limb
Dominant limb + Nondominant limb

× 100 (1)

We calculated the smallest worthwhile change (SWC, 0.2 × pooled SD [35] to interpret
interlimb difference that exceeded this threshold as a true difference [36]. Participants were
considered symmetric when the interlimb difference was less than SWC [37]. Otherwise, they
were considered asymmetric, favouring either the dominant or the non-dominant side. Then,
Kappa coefficients were calculated to determine the levels of agreement for the direction
of asymmetry among muscle groups and performance metrics at the individual level [9].
The Kappa coefficient describes the proportion of agreement between two methods after
any agreement may have occurred by chance [38]. We adopted linear weighting kappa [39]
to account for how far apart two categories might be (e.g., “asymmetry favouring the
dominant limb” is a category closer to “symmetry” than to “asymmetry favouring the
non-dominant limb”). Kappa values were interpreted as follows [40]: 0.01–0.20 = slight;
0.21–0.40 = fair; 0.41–0.60 = moderate; 0.61–0.80 = substantial; and 0.81–0.99 = nearly perfect.
High Kappa values would mean that the direction of asymmetry tends to be the same
for different muscle groups or metrics. Therefore, Kappa statistics were applied to test
the dominant vs. non-dominant advantage across muscle groups (considering the same
performance metric) and across metrics (considering the same muscle group).

To check if dominance affected muscle function at the sample level (i.e., collectively
considering all participants), we performed multilevel mixed-effect linear regression analy-
sis [41]. The adoption of mixed-effects models is essential to account for the fact that each
subject was measured four times (i.e., two muscle groups of two sides). Therefore, we
considered the dominance and muscle group over participants as random factors. Then we
considered dominance, muscle group, and gender as fixed effects.

For each muscle function metric (MVF, RFDpeak, and RFD-SF), intraclass correlation
coefficient (ICC), standard error of measurement (SEM), and coefficient of variation (COV)
were calculated to assess the interday reliability [42]. According to Koo and Li [43], ICC
reliability were interpreted as: >0.90 = excellent, 0.75–0.90 = good, 0.50–0.75 moderate and
< 0.50 poor. COV values < 10% were deemed acceptable.

Statistical analysis was performed in R (ver 4.1.1, R Core Team, Vienna, Austria, 2021),
the figures were produced using the package ggplot2 [44] and MATLAB R2020b (The
MathWorks inc., Natick, MA, USA). The threshold for statistical significance was set at
p < 0.05.

3. Results

The descriptive statistics of the three performance metrics across muscle groups and
limb dominance are reported in Table 1. When controlling for gender, the dominant
side showed higher MVF (F = 19.2, p < 0.001) both in extensors (p = 0.010) and flexors
(p = 0.001) compared to the non-dominant side. The RFDpeak was similar on both sides
(F = 3.2, p = 0.077), while the RFD-SF was higher in the non-dominant side compared
to the dominant side in the elbow extensors (p = 0.016) but not in the elbow flexors
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(p = 0.409). Based on SWC analysis (see Table 1), on average more than 65% of individuals
were asymmetric.

Table 1. The asymmetry index was calculated as ((dominant limb − non-dominant limb)/(dominant
limb + non-dominant limb)) × 100 according to previously published studies [34]. Therefore, neg-
ative values indicate a favour of non-dominant limb. The percentage of participants favouring
non-dominant/symmetric/favouring dominant are computed based on the smallest worthwhile
change (SWC).

Flexors Extensors

Dominant Non-Dominant
Bilateral

Asymmetry
Index (%)

Participant
Favouring

Non-Dominant/
Symmetric/
Favouring

Dominant (%)

Dominant Non-Dominant
Bilateral

Asymmetry
Index (%)

Participant
Favouring

Non-Dominant/
Symmetric/
Favouring

Dominant (%)

MVF (N) 311 ± 118 346 ± 135 −4 ± 11 56/26/19 229 ± 69 258 ± 91 −6 ± 12 41/41/19

RFDpeak
(N/s) 4419 ± 1530 4664 ± 1782 −1 ± 10 39/25/37 2970 ± 1019 3050 ± 974 −2 ± 10 9/82/9

RFD-SF
(1/s) 9.1 ± 1.4 8.7 ± 1.4 2 ± 8 29/18/54 9.2 ± 1.5 9.8 ± 1.5 −3 ± 9 57/16/27

The distribution of bilateral asymmetry indices is reported in Figure 2A. As can
be seen, the distributions are widely distributed both towards the dominant and non-
dominant sides. The Figure 2B reports the data of eight representative participants: most
individuals show some performance metrics favouring the dominant and some others
favouring the non-dominant side. The agreement analysis confirmed this scenario. Indeed,
the asymmetry direction agreement between heterologous muscle groups was slight for all
metrics: MVF Kappa = 0.13; RFDpeak Kappa = 0.14; and RFD-SF Kappa = 0.16.
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Figure 2. (A) Distributions of each performance metric for elbow flexors and extensors. Positive
values denote the favour of the dominant limb. As can be seen, the distributions are widely distributed
both towards the dominant and non-dominant sides. (B) Individual values of bilateral asymmetry
indices are reported for each performance metric of the first eight subjects of the sample group.
MVF, maximal voluntary force; RFDpeak, peak rate of force development; and RFD-SF (rate of force
development scaling factor).
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The asymmetry direction agreement between muscle performance metrics (among
homologous muscle groups) was fair for the agreement between MVF and RFDpeak
(Kappa = 0.37), slight for the agreement between RFDpeak and RFD-SF (Kappa = 0.14),
and null when comparing MVF with RFD-SF (Kappa = 0.01).

The two most commonly adopted muscle performance metrics, MVF (ICC = 0.93) and
RFDpeak (ICC = 0.92), showed excellent reliability, while the RFD-SF showed lower but
still acceptable reliability (ICC = 0.69). The coefficient of variation of all variables was <10%
(MVF = 7.0%; RFDpeak 6.5%; and RFD-SF 6.9%). The R2 of the RFD-SF protocol was on
average ≈0.96 for both elbow flexors and extensors.

4. Discussion

We measured three muscle-performance metrics (i.e., MVF, RFDpeak, and RFD-SF) in
two muscle groups of the upper limbs (i.e., elbow flexors and extensors) of the dominant
and non-dominant sides. The main findings were that (1) at the population level, the
difference between the dominant and non-dominant side was trivial, when present, and
it was favouring the non-dominant side; (2) the asymmetry direction agreement between
heterologous muscle groups were relatively poor for all metrics (all Kappa values ≤ 0.16);
and (3) the asymmetry direction agreement between muscle performance metrics (among
homologous muscles) was moderate between MVF and RFDpeak (Kappa = 0.37) and low
between MVF and RFD-SF (Kappa values = 0.01). Overall, the present findings suggest
that no one side is more performative than the other: the objectively better side depends on
muscle group and performance metrics adopted.

At the sample level (i.e., collectively considering all participants), the MVF was the only
metric that showed a clear trend favouring one side compared to the other one. Indeed,
in our sample, the MVF was higher on the non-dominant compared to the dominant
side (Table 1). This is partially in conflict with previous data showing slightly higher
strength on the dominant compared to the non-dominant side [4]. As we did not record
any physiological measures of muscle activation or contractile properties, it is impossible
to ascribe the side-by-side difference to central or peripheral properties. However, the
relatively small sample size of our study (55 subjects) does not allow for inferring the
present finding to the general population. Furthermore, the magnitude of difference
between the sides was negligible as it ranged from 3 to 6%. A symmetry index lower than
10% is usually considered negligible [6,7]. Nevertheless, the asymmetries directions were
sparse at the individual level (see Figure 2). Therefore, the most important findings of the
present study regard the analysis of asymmetry direction agreement at the individual level.

For each performance metric, the bilateral asymmetry index at the individual level was
muscle-specific. The low Kappa values (all Kappa coefficients were ≤0.16) showed that the
between-muscle agreement of asymmetry direction was poor for each metric. Kappa values
close to 0 suggest that the direction agreement between the two heterologous muscles
was due mainly to chance. Therefore, if one metric favoured the dominant limb in one
muscle group (e.g., elbow flexors), this does not necessarily occur for the heterologous
muscle (i.e., elbow extensors). As a consequence, it is possible to suggest that participants
do not have an overall stronger or quicker side. They have a muscle-specific level of
strength and quickness instead. This may be due to differences in morphological (muscle
size and architecture) [45] and neural activation features [46] across muscles. Bishop and
colleagues [9] highlighted the importance of reporting the agreement between asymmetry
direction, as they noted that most previous studies did not mention the direction agreement
among asymmetry metrics. Here we expand previous literature demonstrating that, even
when assessing the same performance metric, the upper limb’s heterologous muscles do
not share the same asymmetry direction.

Asymmetries rarely favoured the same side when considering different performance
metrics of homologous (contralateral) muscles. Except for the agreement between MVF and
RFDpeak (which was moderate), all other Kappa values were low (≤0.14). RFDpeak has
been previously reported to be more sensitive to detect asymmetry than MVF [14]. Here we
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expand previous literature by demonstrating that RFD and MVF do not point necessarily
in the same direction. Furthermore, when comparing MVF with quickness metrics (i.e.,
RFD-SF), the asymmetry agreement was null (Kappa values = 0.01). RFD-SF is believed
to quantify contraction quickness independently by maximal strength [26]. The present
findings suggest that at the individual level, maximal strength asymmetry is unrelated to
quickness asymmetry. The differences in underlying physiological mechanisms could be
responsible for the observed poor agreement [21,47]. From a practical point of view, this
finding advocate that practitioners should include muscle-performance tests and metric
specifically oriented to muscle quickness, such as relative RFD-SF [48].

The task-specific nature of interlimb differences has been clearly demonstrated by
previous studies by Bishop and colleagues [9,10,49]. Here we expand previous literature
demonstrating that, even when the mechanical constraints and contraction modality are
the same, i.e., in isometric conditions, analyzing different muscle performance metrics
may favour one side or the other. This can be clearly seen in the Figure 2B, which shows
the individual pattern of the first eight participants of the sample. In most participants,
interlimb asymmetry favours either the dominant or non-dominant limb depending on
muscle group and performance metric. Indeed, the asymmetry indices are sparse below
and above the zero line, which would indicate perfect symmetry (Figure 2B). These results
suggest that most people do not present one limb overall more performative than the
other. Conversely, each limb is more performative in one performance metric, independent
of dominance.

From a practical point of view, the present findings suggest that to determine strength
asymmetries, practitioners should adopt that specific test for each relevant muscle group.
Even more importantly, the current study may inform the practitioners when they try
to treat strength asymmetries, i.e., when they prescribe physical training to diminish
the asymmetry level of a person. The strength asymmetry should not be treated just
by performing more exercise on one side (the weakest limb) compared to the other (the
strongest limb). Each side may need more specific training for the physical characteristic
where it is less proficient. For example, one side may need more maximal strength training
while the contralateral side may need more explosive training.

The novel findings of the present study do not come without limitations. First, we
measured only two of the many muscle groups of the upper limb (elbow flexors and
extensors). Therefore, our results may not translate to shoulder or wrist muscle groups.
Second, we only adopted isometric contractions; thus, the asymmetry agreement among
other contraction modalities remains unexplored. Third, we only included physically active
individuals, therefore, our results do not necessarily transfer to sedentary people or highly
trained athletes. Even more importantly, our results do not relate to people participating in
highly asymmetric sports such as tennis, badminton, or fencing. Indeed, we expect that the
asymmetry levels in asymmetric sports would be much broader than the those reported in
the present study. Lastly, we could not compare left- vs. right-handed individuals because
we only recruited five left-handed individuals; therefore, this comparison’s statistical
power would be too low. However, investigating whether left-hand individuals would
show different asymmetry agreements would be attractive.

Future studies should address two main questions that remain open from the present
study. First, the neuromuscular determinants of the asymmetry should be elucidated: it is
unknown if MVF and RFD asymmetries were more related to central (i.e., neural activation)
or peripheral (i.e., muscle size and architecture) characteristics. Second, as we determined
the asymmetry only once for each subject, we do not know if those asymmetries fluctuate
with time or if they remain stable over long periods.

5. Conclusions

At the individual level, the asymmetries are muscle-specific and rarely favour the
same limb across different muscle groups. When adopting various performance metrics,
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there is no one limb more performative than the other in general: each limb is favoured
depending on muscle group and performance metric, independent of dominance.
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