
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3134485, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Integrated Exploration of Data-Intensive
Business Processes

Carlo Combi, Barbara Oliboni, and Francesca Zerbato

Abstract—Modeling and reasoning over business processes
require enterprises to manage and integrate large amounts of
information. Despite process designers and engineers may benefit
from a unified view of process and data models, integrating
these two perspectives is challenging, especially when considering
conceptual models. In this paper, we provide a uniform formal
representation of a process model, the schema of a related
database, and the data operations connecting them. Then, we
show how we can use such a formal representation to identify in-
teresting information during the integrated conceptual modeling
and analysis of processes and related databases, from a process
(re-)design and improvement perspective. Finally, we discuss
the evaluation of the proposed approach through a controlled
experiment and a proof-of-concept implementation that considers
both relational and XML database technologies.

Index Terms—Process Modeling, BPMN, Process Analysis,
Conceptual Database Design, Relational Database, SQL, XML.

I. INTRODUCTION

Business processes are widely used in industry to organize
and document procedures aimed to deliver services or products
to customers [1]. Modeling and executing business processes
requires handling different kinds of information generated and
used by process activities and, at the same time, stored and
managed by (enterprise) databases [2].

Modeling is an important phase of the business process
life-cycle [1]. Process models entail different inter-related per-
spectives, such as control-flow, data, and resources. The data
perspective represents the informational entities produced or
manipulated by a process and their relationships, being crucial
to capture business requirements and, in turn, improve both the
understanding and streamlining of process activities [3], [4].

The Business Process Model and Notation (BPMN) [5] is
the standard for business process modeling, widely used for the
so-called “activity-centric” processes. BPMN supports the rep-
resentation of processes at different levels of abstraction [1],
spanning from high-level process models needed during pro-
cess design and analysis to detailed models for supporting
enactment and automation. However, BPMN provides limited
support for the data perspective [3], and, in practice, BPMN
data objects are often used inconsistently [6].

Indeed, linking business processes and data is still an open
challenge [7], [8], especially when considering conceptual
models [2], [7], [9]–[11]. Connecting process models and data
at the conceptual level brings many advantages: it improves the
understanding of the overall process in a general, tool-agnostic
way [7] and the modeling of data sources supporting process

C. Combi, B. Oliboni are with the Department of Computer Science,
University of Verona, Italy, e-mail: {carlo.combi | barbara.oliboni@univr.it};
F. Zerbato is with the Institute of Computer Science, University of St. Gallen,
Switzerland, e-mail: francesca.zerbato@unisg.ch.

execution, and supports the collaboration among process de-
signers and data engineers [3], as well as the detection [12],
[13] and repair [14] of data flaws at design time.

Such a research issue can be seen as a facet of the more
general theme of conceptually modeling both data and the re-
lated “behavioral” aspects in a holistic way. For example, such
behaviors could be related to the communication needs within
an information system [15]. In this case, processes and related
data are observed from the viewpoint of supporting com-
munication within complex organizations. Another behavioral
aspect concerns the seamless conceptual modeling of data-
intensive web applications, where process, data, and hypertext
design, have to be integrated [16]. In this case, organizational
processes are considered according to the web pages, data,
and services supporting them. Another behavioral aspect is
related to the specification of software systems by conceptually
designing both the data and the related operations, and their
usage within a complex organizational software system [17].

Compared to the briefly sketched research scenario, this
paper is motivated by (and focuses on) the need to model
and analyze activity-centric business processes and related
data at design time. We focus on explicitly highlighting the
connections between a process model and the conceptual
schema(ta) of one or more databases storing the data relevant
for its execution with the final aim to enable the human-
driven exploration of the overall “connected system”. To this
end, we combine the BPMN [5] and UML class diagram [18]
notations with formal methods, whose suitability for reasoning
over processes and data in a general, tool-agnostic manner
has been acknowledged by literature, e.g., in the case of
logic-based conceptual description languages for the design
of processes [19], [20] and data [21], [22]. We choose BPMN
and UML class diagrams as they are both well-known, widely
used, and sound notations for the conceptual modeling of
processes and data, respectively, and their specifications are
(integrated) parts of the OMG technology standards, adopted
by ISO [5], [18]. Besides, we ground in a set-theoretic formal
model that supports the uniform representation of processes,
data, and related operations and the querying over them. In
detail, we use a complex value model [23], also known as
non-first normal form (NFNF) model, which allows specifying
complex values for attributes, including atomic values, sets of
values, or nested relations. We choose such a model since
it serves as a formal reference for querying over processes
and connected data without being tied to specific database
technology but supports the mapping to many logical models,
e.g., the object-oriented, relational, and semi-structured ones.

The contributions of this paper can be outlined as follows.
• Building upon the notion of Activity View [10], we



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3134485, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

provide a uniform, formal representation of an activity-
centric process model, a conceptual database schema, and
the operations performed by the process on the database.

• We show how such a formal representation supports the
integrated conceptual modeling and design-time analysis
of process models and the data operations performed by
the processes on databases. In detail, after introducing an
algorithm that captures the structure of a process model,
we formalize queries that aim to support designers and
analysts in reasoning over process activities and data
operations and gaining useful insights for process (re-)
design and improvement.

• Finally, we discuss the evaluation of our approach,
consisting of (i) a controlled experiment that investi-
gates the effects of Activity Views on process and data
understanding and (ii) a proof-of-concept that shows
the applicability of the proposed approach to different
database management technologies. In detail, we present
an implementation based on relational database technol-
ogy and SQL and, then we provide an example of process
representation in XML and a related XQuery expression.

The paper unfolds as follows. Section II motivates our
approach with an example. Section III introduces foundational
concepts. Then, Section IV presents the core contribution of
our approach, which is evaluated in Section V. Section VI
discusses related work and Section VII concludes the paper.

II. MOTIVATING EXAMPLE

In this section, walking through a simple order-to-cash
process, we introduce some examples of information needs
that capture interesting aspects of integrated process models
and conceptual database schemata, and support their analysis.

Order-to-cash processes are enacted in many organizations
to fulfill customer orders for goods or services [1] and encom-
pass activities such as order verification, shipment, invoicing,
and payment. These activities are often performed with the
help of a BPM system that interacts with one or more database
systems to manage the relevant information.

Figure 1 (left) shows a simplified BPMN process model for
managing a purchase order placed by a customer and (right)
the UML class diagram representing the conceptual schema of
the database supporting the process. The process starts when
a purchase order is received from a customer (start event s).
The first task Manage order (A) represents order reception
and verification, and determines whether the order will be
“accepted” or “declined”. The data needed by task A are
listed in the related text annotation. Then, exclusive gateway
G1, enclosing symbol and labeled Are order details correct?,
splits the control flow into two alternative paths. If errors are
detected or the ordered items are out of stock, the vendor
must Decline order (B). Otherwise, the order is accepted. Upon
checking customer details (task C), the vendor runs multiple
activities in parallel, which are enclosed by gateways G2 and
G5 depicted with symbol . First, items are procured (task
D) and the order status is updated to “in process”. Then, items
are packaged (task E) with the help of a warehouse checklist,
shown as a data object. Meanwhile, the vendor may decide

to Offer discount (F). Then, the invoice is issued and sent to
the customer (task H). The vendor waits to Verify payment (I)
before shipping the products (task J). Finally, new offers are
sent to the customer (task K) based on the purchase history, if
available, and the process ends (end event e).

To be properly executed, the process in Figure 1 (left)
needs to access the purchase database (data store DB) whose
conceptual schema is outlined in Figure 1 (right) and contains
classes corresponding to invoices, customers, orders, items,
and so on, together with the required associations. Figure 1
remarks the lack of a conceptual integration between activity-
centric process models and conceptual database schemata
representing the information needed for process execution [2],
[9], [10], which, in turn, undermines the capability of jointly
analyzing and re-designing them to keep up with business and
market changes [24]. Indeed, especially when dealing with
large and complex process models, it is not easy to grasp
which information entities are needed to support the process
and how they are used along the process flow [4].

For example, by looking at Figure 1, we can see that some
process activities need to access the same kind of information
(e.g., both tasks B and F concern communication with the
customer, i.e., information represented by classes Customer,
Order and Communication), and that some activities do not
access the database (e.g., task E). However, it is not possible
to understand how the process accesses these data, nor can we
see whether they are needed at later stages. Indeed, activities
may require data that are generated or obtained in previous
steps of the process, e.g., the kind and quantity of ordered
items obtained during task A are necessary to execute task D.

Starting from the exemplified scenario, we focus on some
information needs that are quite common in software design
when considering both processes and data. Such information
needs (I1–I4) were elicited by considering both the structure
of process models (i.e., alternative and parallel flows) and the
kinds of data access operations (e.g., CRUD operations) that
are typically performed by process activities on a database.
These are just some possible examples of the needs that can
be managed through our proposal in a real-world software and
requirements engineering context [4], [24]–[26].
Information Need I1 – Identical data operation signatures.
Understanding which activities are characterized by the same
kind of data operations is particularly relevant for enhancing
re-use of process fragments. Re-use can entail the definition
of reusable elements during process (re-)design (e.g., global
process elements such as call activities [5]) but can also
concern the definition of data access permissions to users.
Indeed, resources may be associated with roles based on their
authorization to read or write specific data or use associated
client applications [4]. Moreover, identifying activities with the
same signature in terms of data operations can help understand
possible data-related interactions among activities.

As an example, let us consider tasks B and F. Despite being
completely different activities from a process perspective, from
a database point of view they both involve communication with
the customer, which is realized through the same operations
on the database: to communicate with a certain customer, the
vendor must access the customer’s email address and the order



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3134485, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

Manage
order
(A)

Are order
details
correct?

Decline
order

NO

YES
Procure

items

Issue
invoice

(B)

(D)

s Package
items

Is customer 
in loyalty 
program?

Check 
customer

Offer
discount

Verify
payment

Ship
products

(C)

(E)

(H)

(F)

(I) (J)

NO

YES

(K)

Send new 
offers

Customer, Order,
itemQuantity, Item

Customer, 
loyaltyContract, 
Order

Customer, Order,
Communication

Customer, Order, 
Invoice, Communication

Customer, Order, 
Communication, 
Shipment

Payment, 
Order, Invoice

Customer, Order, 
loyaltyContract, 
Communication

number
date
priority
status

Order
name
kind
producer
inStock

Item

number
total 
dueDate
discount

Invoice

paymentID
date
currency
type

Payment

custID
firstName
lastName
address
email

Customer

contractID
dateStarted

1..1

1..10..1

1..

1..1

invoicing

purchase
quantity
unitPrice

itemQuantity1..1
0..1

paying

billing

1..1 0..1
loyalty

itemQuantity

loyaltyContract

DB

DB

DB

DB

DB

DB

warehouse
checklist

commID
content

customerService
0..*

*

1..*

1..*

0.. *

1..*Order, Item,
itemQuantity

e

Customer, Order, Communication

shipmentID
shippingDate
deliveryDate

Shipment

1..1
0..1 shipping

Communication

G1

G2

G3 G4

G5

G6

Figure 1. (Left) BPMN process model showing the main steps of a generic purchase order process. Text annotations, depicted in blue, describe the data needed
by each activity, whose short name is enclosed in parentheses. (Right) UML class diagram showing the conceptual schema of a purchase order database.

number. Knowing which activities have access to the same
data is useful for several reasons, e.g., for (i) improving the
compliance of the process with customer communication best
practices or (ii) managing database access permissions of the
procurement team and staff accountants.
Information Need I2 – Use of data across process paths.
I2 evaluates whether activities located on alternative process
paths require the same data to be executed. Alternative paths
often capture different business settings and executions. How-
ever, activities lying on alternative paths may need to access
the same data. During process re-engineering, this information
may help to re-arrange activities and improve data access (e.g.,
an activity dedicated solely to information gathering may be
moved before the exclusive gateway). From a data perspective,
knowing which data are needed by activities across process
paths is useful to identify information that is central to the
whole process, regardless of which is the preferred flow.

For example, since both tasks B and C require information
about customers to communicate that the order is declined or
to check the details of an accepted order, persistent instances
(hereinafter, objects) of class Customer are used in every
process execution. Instead, information about invoicing and
shipping is not needed if the order is declined.
Information Need I3 – Use of data along process paths. I3
explores how data is used by activities located along a specific
process path. While some activities create data that are used
later in the process, other activities may perform operations
that are superfluous or may lead to data inconsistencies [12],
[13]. Thus, discovering data reading and writing patterns may
help designers to get rid of redundant data access operations,
to add new ones, or resolve inconsistencies.

For example, designers may be interested in knowing which
is the last activity of the process that updates objects of class
Order to ensure that the information provided to the customer
is up-to-date and not modified afterward. In Figure 1, the last
activity to access objects of class Order is either task J if the
order is accepted or task A, i.e., the first of the process, if the
order is declined.
Information Need I4 – Concurrent data access. I4 checks
if activities located on parallel paths require access to the
same data. From the point of view of the process, it helps

identify activities that do not have concurrent data access
and may be parallelized. Instead, from the point of view of
the database, it identifies potentially concurrent operations
that may require careful transactional control or additional
constraints. For example, tasks D and H have concurrent access
to instances of class Order and both activities update the
status of the order, either to “in process” or to “invoice sent”.
Besides, we can consider concurrent data access from many
different process models to understand which parts of the given
database(s) are most commonly accessed by process activities
and to optimize and tune, for example, the transaction isolation
levels.

We would like to note that the presented list of information
needs is not complete and can be extended with other aspects
that are interesting for the design-time analysis of integrated
processes and data (e.g., discovering data that are never used
by a process or data authorization constraints [4]).

III. FOUNDATIONS

This section introduces the basic concepts of process and
data modeling that will be encountered throughout the paper.

Starting from a significant subset of BPMN [5] as done
in [3], [13], we give the following definition of process model,
focusing on control- and data-flow elements used in this paper.

Definition 1 (Process Model). A process model m is a tuple
m = (N,C,DN,F, P`,P) consisting of a finite non-empty
set of flow nodes N , a finite non-empty set C of control flow
edges, a finite set DN of data nodes, a finite set F of data
associations, a function P` associating proposition literals to
branching edges, and a set of propositions P . The set N =
Ac ∪ G ∪ E of flow nodes consists of the disjoint sets Ac
of activities, G of gateways, and E= {s, e} of start and end
events. The set G = Gx

s ∪ Gx
m ∪ Ga

s ∪ Ga
m is partitioned

according to the routing behavior of its nodes into the disjoint
sets Gx

s of xor split nodes, Gx
m of xor merge nodes, Ga

s of
and split nodes, and Ga

m of and merge nodes, respectively. The
control flow C ⊆ N ×N connects the elements of N . Given
a flow node n ∈ N , ·n ⊆ N (n· ⊆ N ) denotes the set of
direct predecessor (successor) nodes of n. DN = DO ∪ DS
is the set of data nodes, consisting of the disjoint sets DO of



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3134485, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

data objects and DS of data stores. F ⊆ (DN ×Ac)∪ (Ac×
DN) is the data flow that connects data nodes with activities.
Ultimately, function P` : (C ∩ (Gx

s × N)) → P∗, where P∗
is the set of literals that we can derive from propositions in
P , assigns two mutually exclusive proposition literals to edges
outgoing from a xor split node, respectively.

Without loss of generality, we assume to deal with well-
structured process models [27], [28]. Also, we consider
process models having exactly two flows outgoing (incoming)
from (to) xor split (merge) gateways, i.e., |g·|=2 (|·g|=2)
for g ∈ Gx

s (Gx
m), as this simplifies the encoding of process

paths. Indeed, a gateway with x outgoing (incoming) flows
may always be expressed as x−1 cascading binary gateways.

Besides, given a xor split gateway g, the two outgoing edges
are labeled with some literals p and ¬p, respectively. Thus, we
may say that proposition p is implicitly associated to g.

Definition 2 (Database schema). A database schema DS is
a tuple DS = (Cl,As,Att,A, I, CA) where Cl is a finite
non-empty set of classes, As is a finite set of associations
between classes of Cl, Att is a finite set of attributes,
A : Cl → 2Att and CA : Cl → As are functions
mapping classes to their attributes and to the corresponding
associations (if any), respectively. The set AsC ⊂ Cl is
composed by association classes c, having CA(c) 6= ∅. The set
As ⊂ AsN×Cl×m×M×Cl×m×M represents associations.
Each association has a name uniquely identifying it from set
AsN , two associated classes1 and their related multiplicities,
respectively. A multiplicity (min..max), where min ∈ m and
max ∈ M , denotes the minimum and maximum number of
objects of that class that can participate in the association. The
most common multiplicity values are 0, 1, or ∗, where symbol
∗ is used for representing no maximum limit on participation.
With the notation cj(attr1, . . . , attrn), where cj ∈ Cseti , we
specify in a compact way that A(cj) = {attr1, . . . , attrn}.
The set I ⊂ Cl×Cl represents the inheritance relationships:
(ci, cj) ∈ I when class ci inherits from class cj .

Activity Views have been introduced in [10] as a possible
approach for representing the connection between a process
model and a conceptual database schema. In short, an Activity
View shows which parts of a database schema are related to
data that are accessed by a certain process activity and which
data operations are performed on it. Below, we introduce the
concept of Activity View, by refining the definition given
in [10].

Definition 3 (Activity View). Let us consider a process
model m = (N,C,DN,F, P`,P), and a database schema
DS = (Cl,As,Att,A, I, CA) corresponding to a data store
ds ∈ DS ⊆ DN . Given an activity ac ∈ Ac ⊆ N , its Activity
View avac = {t1, . . . , tn} is a possibly empty set2 of tuples
t1, . . . , tn, where each tuple ti denotes a particular data access
operation performed by ac on data of a given database schema
DS.

1For the sake of simplicity, we will consider here only binary associations.
2We represent data access operations as a set as the same activity can imply

the execution of different queries in many possible orders.

Each tuple of the Activity View has the form ti = 〈Cseti ,
Aseti , AccessTypei, AccessTimei, NumInstancesi〉, where:
• Cseti = {c1, . . . , cj}⊆ Cl is the set of connected classes,

having instances accessed by ac. Classes cj , ch ∈ Cseti

are connected if they both are at the extremes of an
association af . If af is connected also to association
class cf ∈ AsC (i.e., CA(cf ) = af ), then cf must also
belong to Cseti . If a class cj ∈ Cseti specializes class
cl, then it is sufficient that cl is one end of af for cj
to be considered connected to other classes of Cseti .
When all the attributes of cj are involved in the data
operation, we write cj(∗), otherwise, we specify them as
cj(attrg, . . . , attrm) with {attrg, . . . , attrm} ⊂ A(cj).

• Aseti = {a1, . . . , ar} ⊆ AsN is a set of binary associ-
ations, identified through their names, that directly link
any two classes of Cseti .

• AccessTypei ∈ {R, I, D, U} defines the type of access
to the related information. R denotes a read of elements
of Cset, whereas I, D, and U respectively denote an
insertion, a deletion, and an update operation.

• AccessT imei ∈ {start, during, end} denotes when a data
operation is performed w.r.t. activity execution.

• NumInstancesi = (min,max), where min ∈ {0, 1}
and max ∈ {1, ∗}, denotes the number of objects the
operation focuses on. The value of max is set to 1 if the
operation selects at most a single object of (at least) a
class or to ∗ if the operation may select many objects of
any class. The value of min is set to 1 when the operation
will use for sure at least one object of any class, or to 0
if the operation could not use any object of a class.

Below, we show the Activity Views representing the oper-
ations performed by the process in Figure 1 on the database.

To check an order, the vendor verifies if the order details
are correct and all the requested items are in stock. Then,
the status of the order is updated to “accepted” or “declined”.
These two data access operations correspond to the two tuples
of the following Activity View enclosed in angular brackets.
avA ={〈{Customer(∗), Order(∗), ItemQuantity(∗), Item(∗)},
{purchase, itemQuantity}, R, start, (1, 1)〉,
〈{Order(status)}, ∅, U , during, (1, 1)〉}

In this case, the number of instances involved in both data
operations is (1, 1) as single objects of classes Customer and
Order need to be mandatorily accessed.

If the order is declined, the customer must be immediately
informed and all the communications are recorded in the pur-
chase database. When a discount is applied and communicated
to the customer the Activity View is the same.
avB ={〈{Customer(∗), Order(∗)}, {purchase}, R, start, (1, 1)〉,
〈{Communication(∗)},∅, I, end (1, 1)〉}

Instead, if the order is accepted, customer details related
to loyalty contracts are checked. Only for loyalty customers,
purchase history is also reviewed to possibly offer discounts.
avC ={〈{Customer(∗), loyaltyContract(∗)}, {loyalty}, R,

during, (1, 1)〉, 〈{Customer(custID), Order(∗)},
{purchase}, R, during, (0, ∗)〉}

In this case, the number of instances involved in the last data
operation is (0, ∗). Indeed, such operation may not find any



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3134485, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

object related to the purchase history but, in general, such
purchase history can be composed by many objects.

To procure items the warehouse staff needs to access the
details about the kind and quantity of the ordered items and,
then, updates the status of the order to “in process”.
avD ={〈{Order(number, priority), ItemQuantity(∗), Item(∗)},
{itemQuantity}, R, start (1, ∗)〉, 〈{Order(status)}, ∅,

U, end, (1, 1)〉}
To issue the invoice order and delivery data are reviewed

prior to creating the invoice and sending it to the customer.
Then, the status of the order is updated to “invoiced”.
avH ={〈{Customer(∗), Order(∗)}, {purchase}, R, start, (1, 1)〉,
〈{Invoice(∗)},∅, I, during, (1, 1)〉, 〈{Communication(∗)},
∅, I, end, (1, 1)〉, 〈{Order(status)},∅, U, end, (1, 1)〉}

To verify a payment, the vendor compares the received
amount with the invoice. Then, payment details are inserted
into the database and the order status is updated to “paid”.
avI ={〈{Invoice(∗)},∅, R, start, (1, 1)〉, 〈{Payment(∗)},∅, I,

during, (1, 1)〉, 〈{Order(status)},∅, U, end, (1, 1)〉}

Product shipping implies adding shipping information to
the database and communicating the tracking details to the
customer. The status of the order is then updated to “shipped”.
avJ ={〈{Shipment(shipmentID, shippingDate)},∅, I, start,

(1, 1)〉, 〈{Communication(∗)},∅,I, start, (1, 1)〉,
〈{Order(status)},∅, U, during, (1, 1)〉}

Finally, new offers are sent to the customer, based on the
purchase history. Depending on the period of the year, loyalty
customers may receive additional offers.
avK ={〈{Customer(custID), Order(∗)}, {purchase}, R, start,

(1, ∗)〉, 〈{Customer(∗), loyaltyContract(∗)}, {loyalty},
R, start, (0, 1)〉, 〈{Communication(∗)},∅, I, end, (1, 1)〉}

IV. AN APPROACH TO ANALYZE CONNECTED MODELS

To encode the information related to process models,
database schemata, and their connections realized through
Activity Views, we rely on a complex value model [23],
[29] and design a complex value schema that collects and
integrates such information. The complex value model allows
us to specify complex values for attributes, i.e., values with a
hierarchical structure, such as sets of values or nested relations.
In this work, we use complex values for representing sets of
elements, e.g., the class and association sets of Activity Views.

Complex values are defined through the use of set con-
structors3. For example, given a relation Class, the notation
{Class} represents the domain of an attribute that can have
instances of Class as its values. The proposed set-theoretic
complex value schema is shown in Figure 2. Attributes that
denote primary keys are underlined, while symbol ∗ is used
to denote attributes that can be NULL. For example, avID is
NULL when activities do not have an Activity View (e.g., task
E in Figure 1). In Figure 2, complex value relation names are
in upper camel case, attribute names are in lower camel case
and inclusion dependency constraints are listed at the bottom.

3The notation for the other constructor tuple is the standard one for
relational schemata extended to represent attributes with complex values, i.e.,
RelationName(attribute1, · · · , attributeM:{attribute0} attributeN: {Relation1})

Complex Value Relations
Business Process Models
1) Process(processID, name, documentation)
2) DataNode(dnID, processID)
3) DataStore(dnID, dsName, capacity)
4) DataObject(dnID, name, isCollection)
5) DataFlow(fnID, dnID, direction)
6) FlowNode(fnID, processID)
7) ControlFlow(from, to, hasLiteral, literal∗)
8) Activity(fnID, activityName, isReusable, isAtomic, type,

avID∗, label:{literal})
9) Gateway(fnID, gatewayName, routingType, splitType,

hasCondition, condition∗)
10) Event(fnID, eventName, type, position, triggerType)
11) Succ(fnID, successors:{Activity})
Database Schemata

12) DomainDB(dbID, dbName)
13) ClassDB(className, dbID, isAssociationClass,

assocNameRef*, assocDBref*)
14) AssociationDB(assocName, dbID, leftC, minL, maxL,

rightC, minR, maxR)
15) AttributeDB(attrName, className, dbID, type)
16) InheritDB(classNameS, classNameG)

Activity Views
17) ActivityView(avID, operations:{DataOp})
18) DataOp(opID, cSet:{ClassDB}, aSet:{AssociationDB}∗,

accessType, accessTime, minInstances, maxInstances)
19) AttDataOp(opID, cAttSet:{AttributeDB})
Inclusion Dependency Constraints
•DataNode[processID] ⊆ Process[processID];
•DataStore[dnID] ⊆ DataNode[dnID];
•DataObject[dnID] ⊆ DataNode[dnID];
•FlowNode[processID] ⊆ Process[processID];
•ControlFlow[from] ⊆ FlowNode[fnID];
•ControlFlow[to] ⊆ FlowNode[fnID];
•Activity[fnID] ⊆ FlowNode[fnID];
•Activity[avID] ⊆ ActivityView[avID];
•Gateway[fnID] ⊆ FlowNode[fnID];
•Event[fnID] ⊆ FlowNode[fnID];
•Succ[fnID] ⊆ FlowNode[fnID];
•ActivityView[processID] ⊆ Process[processID];
•ActivityView[operations] ⊆ DataOp;
•AssociationDB[dbID] ⊆ DomainDB[dbID];
•ClassDB[dbID] ⊆ DomainDB[dbID];
•AttrDB[className, dbID] ⊆ ClassDB[className, dbID];
•Succ[successors] ⊆ Activity;
•DataOp[cSet] ⊆ ClassDB;
•DataOp[aSet] ⊆ AssociationDB;
•AttDataOp[cAttSet] ⊆ AttributeDB;
•AttrDB[className, dbID] ⊆ ClassDB[className, dbID]
•ClassDB[assocNameRef, assocDBref] ⊆
AssociationDB[assocName, dbID]
if ClassDB[IsAssociationClass] is true

Figure 2. Complex value schema of the repository storing information about
a process model, a conceptual database schema, and related data operations.

Complex value relations 1–11 (hereinafter relations) rep-
resent the elements of BPMN process models (cf. Defini-



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3134485, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

tion 1). Since relations Activity, Gateway, and Event specialize
FlowNode, and relations DataObject and DataStore specialize
DataNode, we used the same primary keys. Relation Succ and
complex attribute label of Activity store information related
to the order and position of the activities along the process
flow. Relations 12–16 represent database schemata (cf. Def-
inition 2). Finally, relations ActivityView and DataOp denote
the data operations performed on databases (cf. Definition 3).

Some attributes are represented as complex (set) values:
label of relation Activity, as each label can be seen as a set of
literals (cf. Section IV-A); successors of relation Succ, as each
activity is associated to a (possibly empty) set of successors;
and attributes operations, cSet, and aSet, and cAttSet of
relations ActivityView, DataOp, and AttDataOp, respectively.

A. Unravelling Process Paths with a Labeling Approach
To address information needs I1–I4 it is essential to estab-

lish whether any two activities are executed sequentially, in
parallel, or alternatively, i.e., on which process path(s) they
lie and we need to keep track of their successors along those
paths. Since process models have a graph-like structure, infor-
mation about process paths can be retrieved by exploring flow
nodes and edges. However, since not all process executions
include the same set of activities and the number of alternative
process paths is exponential w.r.t. the number of xor split
nodes, obtaining a compact encoding of the process structure
is challenging. To tackle this problem, we draw inspiration
from [30] and associate labels with process activities.

Definition 4 (Label). Given a set P of propositional letters, a
label is a (possibly empty) conjunction of positive or negative
literals from P∗. The empty label is notated as � and is an
identity for label conjunction.

As an example, let P = {p, q, r}. A label consistent with
Definition 4 is L = p∧q∧¬r. For convenience hereinafter we
notate logical conjunctions such as ‘p∧ q∧¬r’ as ‘pq¬r’. As
explained later, labels are associated to activities and encode
their position along process paths. As an example, in Figure 3
activities B and C are labeled with ¬p respectively p, since
they lie on the alternative paths originating from gateway G1,
which is associated to propositional letter p.

Algorithm 1 shows the pseudocode of a recursive procedure
that traverses the process as a depth-first search and populates
relation Succ and attribute label of relation Activity of the
schema in Figure 2. Algorithm 1 takes as input a process
model m = (N,C,DN,F, P`,P), a node n ∈ N , and a label
L managed as a stack of literals. S is a global associative array
that records the set of successor activities of each node.

From the start event, the procedure traverses each process
path recursively4. At every forward step, the procedure keeps
track of the current label L, while at every backward step, it
updates the set S of successor activities of each node.

The initial call of Algorithm 1 is traverseProcess(m, s, {�}).
Each conditional statement evaluates the current node n and
proceeds as follows, based on the kind of n.

4Algorithm 1 does not explicitly deal with (finite) loops. Loops in the pro-
cess model must first be unfolded in many disjoint paths, each corresponding
to the execution of the loop with a different number of iterations.

Algorithm 1: traverseProcess

Input: process model m = (N,C,DN,F, P`,P), n ∈ N ,
label L.

Result: populates field label of Activity and relation Succ.
1 if (n ∈ Ac) then // Activities
2 Activity(fnID, label)← (n,L)
3 n′ ← n·
4 if S(n′) == NIL then
5 traverseProcess(m, n′, L)
6 Succ(fnID, successors)← (n, S(n′))
7 S(n)← S(n′) ∪ {n}
8 else if n ∈ Gx

s ∪Ga
s then // Split gateways

9 n′ ← FIRST(n·)
10 n′′ ← SECOND(n·)
11 if (S(n′) == NIL ∧ S(n′′) == NIL) then
12 if n ∈ Gx

s then
13 `← P`(n, n

′)
14 `← P`(n, n

′′)
15 if L.PEEK() = ‘�’ then
16 L.POP()
17 traverseProcess(m, n′, L.PUSH(`))
18 traverseProcess(m, n′′, L.PUSH(`))
19 if n ∈ Ga

s then
20 traverseProcess(m, n′, L)
21 traverseProcess(m, n′′, L)
22 S(n)← S(n′) ∪ S(n′′)
23 else if n ∈ Gx

m ∪Ga
m then // Merge gateways

24 n′ ← n·
25 if S(n′) == NIL then
26 if n ∈ Gx

m then
27 traverseProcess(m, n′, L.POP())
28 if n ∈ Ga

m then
29 traverseProcess(m, n′, L)
30 S(n)← S(n′)
31 else if n == s then // Start event

32 n′ ← n·
33 traverseProcess(m, n′, L)
34 else
35 S(n) = ∅

• Activities (lines 1–7). The label L of n is stored in the
database (line 2). Then, Algorithm 1 finds the direct
successor of n, i.e., n′, from the singleton n·(line 3).
If the successors of n′ are unknown (line 4), then a
recursive call is made to discover them (line 5). Once all
the successors of n have been discovered, the set S(n′)
of successors is added to the database (line 6) and n is
added to S(n) as it is the latest visited activity (line 7).

• Split gateways (lines 8–22). Split gateways require deal-
ing with two successor nodes at once. Functions FIRST()
and SECOND() extract the first and second element of
n·, i.e., n′ and n′′ (lines 9–10). If the sets of successors
S(n′) and S(n′′) are unknown, then two recursive calls
are made to discover them. If the gateway is exclusive,
i.e., n ∈ Gx

s (line 12), the proposition literals of the two
outgoing edges are assigned to variables ` and ` (lines 13–
14) and the two recursive calls are made after updating the
label L by appending ` and ` (lines 17–18). If the gateway
is parallel, i.e., n ∈ Ga

s (line 19), the two recursive calls
on n′ and n′′ are made considering the original label L
(lines 20–21). Then, S(n) is updated with the successors



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3134485, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

Manage
order

(A)

Are order
details
correct?

NO

YES

Procure
items

Issue
invoice

(B)

(D)

Decline 
order

Package
items

Is customer 
in loyalty
program?

Check 
customer

Offer 
discount

Receive
payment

Ship
products

(C)

(E)

(H)

(F)

(I) (J)

NO

YES

Succ
successors

A
B

D
C

K

labelfnID
A
B

E
D
C

F

I
H

J

Activity

…

…

…

…

…

…

…

…

fnID

¬p
<latexit sha1_base64="MbcQ6ITRVJAqyA1KysNKWrtoTgk=">AAAB7nicdVDLSgMxFM3UV62vqks3wSK4GjJ1sK2rghuXFewD2qFk0rQNzSQhyQhl6Ee4caGIW7/HnX9j+hBU9MCFwzn3cu89seLMWIQ+vNza+sbmVn67sLO7t39QPDxqGZlqQptEcqk7MTaUM0GblllOO0pTnMSctuPJ9dxv31NtmBR3dqpolOCRYENGsHVSu8eFtFD1iyXko7B8UQ0h8ssoqAWXjlRCFNYqMPDRAiWwQqNffO8NJEkTKizh2JhugJSNMqwtI5zOCr3UUIXJBI9o11GBE2qibHHuDJ45ZQCHUrsSFi7U7xMZToyZJrHrTLAdm9/eXPzL66Z2WI0yJlRqqSDLRcOUQyvh/Hc4YJoSy6eOYKKZuxWSMdaYWJdQwYXw9Sn8n7TKfoD84DYs1a9WceTBCTgF5yAAFVAHN6ABmoCACXgAT+DZU96j9+K9Lltz3mrmGPyA9/YJgmWPqA==</latexit><latexit sha1_base64="MbcQ6ITRVJAqyA1KysNKWrtoTgk=">AAAB7nicdVDLSgMxFM3UV62vqks3wSK4GjJ1sK2rghuXFewD2qFk0rQNzSQhyQhl6Ee4caGIW7/HnX9j+hBU9MCFwzn3cu89seLMWIQ+vNza+sbmVn67sLO7t39QPDxqGZlqQptEcqk7MTaUM0GblllOO0pTnMSctuPJ9dxv31NtmBR3dqpolOCRYENGsHVSu8eFtFD1iyXko7B8UQ0h8ssoqAWXjlRCFNYqMPDRAiWwQqNffO8NJEkTKizh2JhugJSNMqwtI5zOCr3UUIXJBI9o11GBE2qibHHuDJ45ZQCHUrsSFi7U7xMZToyZJrHrTLAdm9/eXPzL66Z2WI0yJlRqqSDLRcOUQyvh/Hc4YJoSy6eOYKKZuxWSMdaYWJdQwYXw9Sn8n7TKfoD84DYs1a9WceTBCTgF5yAAFVAHN6ABmoCACXgAT+DZU96j9+K9Lltz3mrmGPyA9/YJgmWPqA==</latexit><latexit sha1_base64="MbcQ6ITRVJAqyA1KysNKWrtoTgk=">AAAB7nicdVDLSgMxFM3UV62vqks3wSK4GjJ1sK2rghuXFewD2qFk0rQNzSQhyQhl6Ee4caGIW7/HnX9j+hBU9MCFwzn3cu89seLMWIQ+vNza+sbmVn67sLO7t39QPDxqGZlqQptEcqk7MTaUM0GblllOO0pTnMSctuPJ9dxv31NtmBR3dqpolOCRYENGsHVSu8eFtFD1iyXko7B8UQ0h8ssoqAWXjlRCFNYqMPDRAiWwQqNffO8NJEkTKizh2JhugJSNMqwtI5zOCr3UUIXJBI9o11GBE2qibHHuDJ45ZQCHUrsSFi7U7xMZToyZJrHrTLAdm9/eXPzL66Z2WI0yJlRqqSDLRcOUQyvh/Hc4YJoSy6eOYKKZuxWSMdaYWJdQwYXw9Sn8n7TKfoD84DYs1a9WceTBCTgF5yAAFVAHN6ABmoCACXgAT+DZU96j9+K9Lltz3mrmGPyA9/YJgmWPqA==</latexit><latexit sha1_base64="MbcQ6ITRVJAqyA1KysNKWrtoTgk=">AAAB7nicdVDLSgMxFM3UV62vqks3wSK4GjJ1sK2rghuXFewD2qFk0rQNzSQhyQhl6Ee4caGIW7/HnX9j+hBU9MCFwzn3cu89seLMWIQ+vNza+sbmVn67sLO7t39QPDxqGZlqQptEcqk7MTaUM0GblllOO0pTnMSctuPJ9dxv31NtmBR3dqpolOCRYENGsHVSu8eFtFD1iyXko7B8UQ0h8ssoqAWXjlRCFNYqMPDRAiWwQqNffO8NJEkTKizh2JhugJSNMqwtI5zOCr3UUIXJBI9o11GBE2qibHHuDJ45ZQCHUrsSFi7U7xMZToyZJrHrTLAdm9/eXPzL66Z2WI0yJlRqqSDLRcOUQyvh/Hc4YJoSy6eOYKKZuxWSMdaYWJdQwYXw9Sn8n7TKfoD84DYs1a9WceTBCTgF5yAAFVAHN6ABmoCACXgAT+DZU96j9+K9Lltz3mrmGPyA9/YJgmWPqA==</latexit>

p
<latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit>

p
<latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit>

(K)

Send new 
offers

q
<latexit sha1_base64="V5hb8qHPHyQgkVirKME6ElqGuRk=">AAAB6HicdVDJSgNBEO1xjXGLevTSGARPQ08cTOIp4MVjAmaBZAg9nZqkTc9id48QhnyBFw+KePWTvPk3dhZBRR8UPN6roqqenwiuNCEf1srq2vrGZm4rv72zu7dfODhsqTiVDJosFrHs+FSB4BE0NdcCOokEGvoC2v74aua370EqHkc3epKAF9JhxAPOqDZS465fKBKbuKXziouJXSJO1bkwpOwSt1rGjk3mKKIl6v3Ce28QszSESDNBleo6JNFeRqXmTMA030sVJJSN6RC6hkY0BOVl80On+NQoAxzE0lSk8Vz9PpHRUKlJ6JvOkOqR+u3NxL+8bqqDipfxKEk1RGyxKEgF1jGefY0HXALTYmIIZZKbWzEbUUmZNtnkTQhfn+L/SatkO8R2Gm6xdrmMI4eO0Qk6Qw4qoxq6RnXURAwBekBP6Nm6tR6tF+t10bpiLWeO0A9Yb58/go00</latexit><latexit sha1_base64="V5hb8qHPHyQgkVirKME6ElqGuRk=">AAAB6HicdVDJSgNBEO1xjXGLevTSGARPQ08cTOIp4MVjAmaBZAg9nZqkTc9id48QhnyBFw+KePWTvPk3dhZBRR8UPN6roqqenwiuNCEf1srq2vrGZm4rv72zu7dfODhsqTiVDJosFrHs+FSB4BE0NdcCOokEGvoC2v74aua370EqHkc3epKAF9JhxAPOqDZS465fKBKbuKXziouJXSJO1bkwpOwSt1rGjk3mKKIl6v3Ce28QszSESDNBleo6JNFeRqXmTMA030sVJJSN6RC6hkY0BOVl80On+NQoAxzE0lSk8Vz9PpHRUKlJ6JvOkOqR+u3NxL+8bqqDipfxKEk1RGyxKEgF1jGefY0HXALTYmIIZZKbWzEbUUmZNtnkTQhfn+L/SatkO8R2Gm6xdrmMI4eO0Qk6Qw4qoxq6RnXURAwBekBP6Nm6tR6tF+t10bpiLWeO0A9Yb58/go00</latexit><latexit sha1_base64="V5hb8qHPHyQgkVirKME6ElqGuRk=">AAAB6HicdVDJSgNBEO1xjXGLevTSGARPQ08cTOIp4MVjAmaBZAg9nZqkTc9id48QhnyBFw+KePWTvPk3dhZBRR8UPN6roqqenwiuNCEf1srq2vrGZm4rv72zu7dfODhsqTiVDJosFrHs+FSB4BE0NdcCOokEGvoC2v74aua370EqHkc3epKAF9JhxAPOqDZS465fKBKbuKXziouJXSJO1bkwpOwSt1rGjk3mKKIl6v3Ce28QszSESDNBleo6JNFeRqXmTMA030sVJJSN6RC6hkY0BOVl80On+NQoAxzE0lSk8Vz9PpHRUKlJ6JvOkOqR+u3NxL+8bqqDipfxKEk1RGyxKEgF1jGefY0HXALTYmIIZZKbWzEbUUmZNtnkTQhfn+L/SatkO8R2Gm6xdrmMI4eO0Qk6Qw4qoxq6RnXURAwBekBP6Nm6tR6tF+t10bpiLWeO0A9Yb58/go00</latexit><latexit sha1_base64="V5hb8qHPHyQgkVirKME6ElqGuRk=">AAAB6HicdVDJSgNBEO1xjXGLevTSGARPQ08cTOIp4MVjAmaBZAg9nZqkTc9id48QhnyBFw+KePWTvPk3dhZBRR8UPN6roqqenwiuNCEf1srq2vrGZm4rv72zu7dfODhsqTiVDJosFrHs+FSB4BE0NdcCOokEGvoC2v74aua370EqHkc3epKAF9JhxAPOqDZS465fKBKbuKXziouJXSJO1bkwpOwSt1rGjk3mKKIl6v3Ce28QszSESDNBleo6JNFeRqXmTMA030sVJJSN6RC6hkY0BOVl80On+NQoAxzE0lSk8Vz9PpHRUKlJ6JvOkOqR+u3NxL+8bqqDipfxKEk1RGyxKEgF1jGefY0HXALTYmIIZZKbWzEbUUmZNtnkTQhfn+L/SatkO8R2Gm6xdrmMI4eO0Qk6Qw4qoxq6RnXURAwBekBP6Nm6tR6tF+t10bpiLWeO0A9Yb58/go00</latexit>

p
<latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit>

K …

…

p
<latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit>

J
I
H
F
E

…

s e

{B,C,D,E,F,H,I,J,K}

�<latexit sha1_base64="y2narP/W8B/lSMVYjMtJwhI8ARY=">AAAB7nicdVDLSgMxFM3UV62vqks3wSK4GjJ1sO2u4MZlBfuAdiiZTKYNzSRDkhHL0I9w40IRt36PO//G9CGo6IELh3Pu5d57wpQzbRD6cApr6xubW8Xt0s7u3v5B+fCoo2WmCG0TyaXqhVhTzgRtG2Y47aWK4iTktBtOruZ+944qzaS4NdOUBgkeCRYzgo2VuoNQ3kfSDMsV5CK/elH3IXKryGt4l5bUfOQ3atBz0QIVsEJrWH4fRJJkCRWGcKx130OpCXKsDCOczkqDTNMUkwke0b6lAidUB/ni3Bk8s0oEY6lsCQMX6veJHCdaT5PQdibYjPVvby7+5fUzE9eDnIk0M1SQ5aI449BIOP8dRkxRYvjUEkwUs7dCMsYKE2MTKtkQvj6F/5NO1fWQ6934lWZ1FUcRnIBTcA48UANNcA1aoA0ImIAH8ASendR5dF6c12VrwVnNHIMfcN4+AeWlj+M=</latexit><latexit sha1_base64="y2narP/W8B/lSMVYjMtJwhI8ARY=">AAAB7nicdVDLSgMxFM3UV62vqks3wSK4GjJ1sO2u4MZlBfuAdiiZTKYNzSRDkhHL0I9w40IRt36PO//G9CGo6IELh3Pu5d57wpQzbRD6cApr6xubW8Xt0s7u3v5B+fCoo2WmCG0TyaXqhVhTzgRtG2Y47aWK4iTktBtOruZ+944qzaS4NdOUBgkeCRYzgo2VuoNQ3kfSDMsV5CK/elH3IXKryGt4l5bUfOQ3atBz0QIVsEJrWH4fRJJkCRWGcKx130OpCXKsDCOczkqDTNMUkwke0b6lAidUB/ni3Bk8s0oEY6lsCQMX6veJHCdaT5PQdibYjPVvby7+5fUzE9eDnIk0M1SQ5aI449BIOP8dRkxRYvjUEkwUs7dCMsYKE2MTKtkQvj6F/5NO1fWQ6934lWZ1FUcRnIBTcA48UANNcA1aoA0ImIAH8ASendR5dF6c12VrwVnNHIMfcN4+AeWlj+M=</latexit><latexit sha1_base64="y2narP/W8B/lSMVYjMtJwhI8ARY=">AAAB7nicdVDLSgMxFM3UV62vqks3wSK4GjJ1sO2u4MZlBfuAdiiZTKYNzSRDkhHL0I9w40IRt36PO//G9CGo6IELh3Pu5d57wpQzbRD6cApr6xubW8Xt0s7u3v5B+fCoo2WmCG0TyaXqhVhTzgRtG2Y47aWK4iTktBtOruZ+944qzaS4NdOUBgkeCRYzgo2VuoNQ3kfSDMsV5CK/elH3IXKryGt4l5bUfOQ3atBz0QIVsEJrWH4fRJJkCRWGcKx130OpCXKsDCOczkqDTNMUkwke0b6lAidUB/ni3Bk8s0oEY6lsCQMX6veJHCdaT5PQdibYjPVvby7+5fUzE9eDnIk0M1SQ5aI449BIOP8dRkxRYvjUEkwUs7dCMsYKE2MTKtkQvj6F/5NO1fWQ6934lWZ1FUcRnIBTcA48UANNcA1aoA0ImIAH8ASendR5dF6c12VrwVnNHIMfcN4+AeWlj+M=</latexit><latexit sha1_base64="y2narP/W8B/lSMVYjMtJwhI8ARY=">AAAB7nicdVDLSgMxFM3UV62vqks3wSK4GjJ1sO2u4MZlBfuAdiiZTKYNzSRDkhHL0I9w40IRt36PO//G9CGo6IELh3Pu5d57wpQzbRD6cApr6xubW8Xt0s7u3v5B+fCoo2WmCG0TyaXqhVhTzgRtG2Y47aWK4iTktBtOruZ+944qzaS4NdOUBgkeCRYzgo2VuoNQ3kfSDMsV5CK/elH3IXKryGt4l5bUfOQ3atBz0QIVsEJrWH4fRJJkCRWGcKx130OpCXKsDCOczkqDTNMUkwke0b6lAidUB/ni3Bk8s0oEY6lsCQMX6veJHCdaT5PQdibYjPVvby7+5fUzE9eDnIk0M1SQ5aI449BIOP8dRkxRYvjUEkwUs7dCMsYKE2MTKtkQvj6F/5NO1fWQ6934lWZ1FUcRnIBTcA48UANNcA1aoA0ImIAH8ASendR5dF6c12VrwVnNHIMfcN4+AeWlj+M=</latexit>

{K}
{D,E,F,H,I,J,K}

{E,I,J,K}
{I,J,K}

{H,I,J,K}
{I,J,K}
{J,K}
{K}
{ }

�<latexit sha1_base64="y2narP/W8B/lSMVYjMtJwhI8ARY=">AAAB7nicdVDLSgMxFM3UV62vqks3wSK4GjJ1sO2u4MZlBfuAdiiZTKYNzSRDkhHL0I9w40IRt36PO//G9CGo6IELh3Pu5d57wpQzbRD6cApr6xubW8Xt0s7u3v5B+fCoo2WmCG0TyaXqhVhTzgRtG2Y47aWK4iTktBtOruZ+944qzaS4NdOUBgkeCRYzgo2VuoNQ3kfSDMsV5CK/elH3IXKryGt4l5bUfOQ3atBz0QIVsEJrWH4fRJJkCRWGcKx130OpCXKsDCOczkqDTNMUkwke0b6lAidUB/ni3Bk8s0oEY6lsCQMX6veJHCdaT5PQdibYjPVvby7+5fUzE9eDnIk0M1SQ5aI449BIOP8dRkxRYvjUEkwUs7dCMsYKE2MTKtkQvj6F/5NO1fWQ6934lWZ1FUcRnIBTcA48UANNcA1aoA0ImIAH8ASendR5dF6c12VrwVnNHIMfcN4+AeWlj+M=</latexit><latexit sha1_base64="y2narP/W8B/lSMVYjMtJwhI8ARY=">AAAB7nicdVDLSgMxFM3UV62vqks3wSK4GjJ1sO2u4MZlBfuAdiiZTKYNzSRDkhHL0I9w40IRt36PO//G9CGo6IELh3Pu5d57wpQzbRD6cApr6xubW8Xt0s7u3v5B+fCoo2WmCG0TyaXqhVhTzgRtG2Y47aWK4iTktBtOruZ+944qzaS4NdOUBgkeCRYzgo2VuoNQ3kfSDMsV5CK/elH3IXKryGt4l5bUfOQ3atBz0QIVsEJrWH4fRJJkCRWGcKx130OpCXKsDCOczkqDTNMUkwke0b6lAidUB/ni3Bk8s0oEY6lsCQMX6veJHCdaT5PQdibYjPVvby7+5fUzE9eDnIk0M1SQ5aI449BIOP8dRkxRYvjUEkwUs7dCMsYKE2MTKtkQvj6F/5NO1fWQ6934lWZ1FUcRnIBTcA48UANNcA1aoA0ImIAH8ASendR5dF6c12VrwVnNHIMfcN4+AeWlj+M=</latexit><latexit sha1_base64="y2narP/W8B/lSMVYjMtJwhI8ARY=">AAAB7nicdVDLSgMxFM3UV62vqks3wSK4GjJ1sO2u4MZlBfuAdiiZTKYNzSRDkhHL0I9w40IRt36PO//G9CGo6IELh3Pu5d57wpQzbRD6cApr6xubW8Xt0s7u3v5B+fCoo2WmCG0TyaXqhVhTzgRtG2Y47aWK4iTktBtOruZ+944qzaS4NdOUBgkeCRYzgo2VuoNQ3kfSDMsV5CK/elH3IXKryGt4l5bUfOQ3atBz0QIVsEJrWH4fRJJkCRWGcKx130OpCXKsDCOczkqDTNMUkwke0b6lAidUB/ni3Bk8s0oEY6lsCQMX6veJHCdaT5PQdibYjPVvby7+5fUzE9eDnIk0M1SQ5aI449BIOP8dRkxRYvjUEkwUs7dCMsYKE2MTKtkQvj6F/5NO1fWQ6934lWZ1FUcRnIBTcA48UANNcA1aoA0ImIAH8ASendR5dF6c12VrwVnNHIMfcN4+AeWlj+M=</latexit><latexit sha1_base64="y2narP/W8B/lSMVYjMtJwhI8ARY=">AAAB7nicdVDLSgMxFM3UV62vqks3wSK4GjJ1sO2u4MZlBfuAdiiZTKYNzSRDkhHL0I9w40IRt36PO//G9CGo6IELh3Pu5d57wpQzbRD6cApr6xubW8Xt0s7u3v5B+fCoo2WmCG0TyaXqhVhTzgRtG2Y47aWK4iTktBtOruZ+944qzaS4NdOUBgkeCRYzgo2VuoNQ3kfSDMsV5CK/elH3IXKryGt4l5bUfOQ3atBz0QIVsEJrWH4fRJJkCRWGcKx130OpCXKsDCOczkqDTNMUkwke0b6lAidUB/ni3Bk8s0oEY6lsCQMX6veJHCdaT5PQdibYjPVvby7+5fUzE9eDnIk0M1SQ5aI449BIOP8dRkxRYvjUEkwUs7dCMsYKE2MTKtkQvj6F/5NO1fWQ6934lWZ1FUcRnIBTcA48UANNcA1aoA0ImIAH8ASendR5dF6c12VrwVnNHIMfcN4+AeWlj+M=</latexit>

p
<latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit>

q
<latexit sha1_base64="PkVn6OFcpzsuIiBNZ0hkRoUbCJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUDwVvHhswX5AG8pmO2nXbjZxdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rG8N5ME/YgOJQ85o8ZKjcd+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia89jMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrYuq51a9xmWldpPHUYQTOIVz8OAKanAHdWgCA4RneIU358F5cd6dj0VrwclnjuEPnM8f2TWM7Q==</latexit><latexit sha1_base64="PkVn6OFcpzsuIiBNZ0hkRoUbCJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUDwVvHhswX5AG8pmO2nXbjZxdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rG8N5ME/YgOJQ85o8ZKjcd+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia89jMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrYuq51a9xmWldpPHUYQTOIVz8OAKanAHdWgCA4RneIU358F5cd6dj0VrwclnjuEPnM8f2TWM7Q==</latexit><latexit sha1_base64="PkVn6OFcpzsuIiBNZ0hkRoUbCJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUDwVvHhswX5AG8pmO2nXbjZxdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rG8N5ME/YgOJQ85o8ZKjcd+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia89jMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrYuq51a9xmWldpPHUYQTOIVz8OAKanAHdWgCA4RneIU358F5cd6dj0VrwclnjuEPnM8f2TWM7Q==</latexit><latexit sha1_base64="PkVn6OFcpzsuIiBNZ0hkRoUbCJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUDwVvHhswX5AG8pmO2nXbjZxdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rG8N5ME/YgOJQ85o8ZKjcd+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia89jMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrYuq51a9xmWldpPHUYQTOIVz8OAKanAHdWgCA4RneIU358F5cd6dj0VrwclnjuEPnM8f2TWM7Q==</latexit>

p
<latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit>

p
<latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit>

p
<latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit>

�<latexit sha1_base64="Z1V9Dl6RStKsmK5rIsvjVOLteL8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUDwVvHisYD+gDWWz2bRLN9mwOxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzglQKg6777ZTW1jc2t8rblZ3dvf2D6uFR26hMM95iSirdDajhUiS8hQIl76aa0ziQvBOMb2d+55FrI1TygJOU+zEdJiISjKKVOv1APYUKB9WaW3fnIKvEK0gNCjQH1a9+qFgW8wSZpMb0PDdFP6caBZN8WulnhqeUjemQ9yxNaMyNn8/PnZIzq4QkUtpWgmSu/p7IaWzMJA5sZ0xxZJa9mfif18swuvZzkaQZ8oQtFkWZJKjI7HcSCs0ZyokllGlhbyVsRDVlaBOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEYnuEV3pzUeXHenY9Fa8kpZo7hD5zPH4HPj6Q=</latexit><latexit sha1_base64="Z1V9Dl6RStKsmK5rIsvjVOLteL8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUDwVvHisYD+gDWWz2bRLN9mwOxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzglQKg6777ZTW1jc2t8rblZ3dvf2D6uFR26hMM95iSirdDajhUiS8hQIl76aa0ziQvBOMb2d+55FrI1TygJOU+zEdJiISjKKVOv1APYUKB9WaW3fnIKvEK0gNCjQH1a9+qFgW8wSZpMb0PDdFP6caBZN8WulnhqeUjemQ9yxNaMyNn8/PnZIzq4QkUtpWgmSu/p7IaWzMJA5sZ0xxZJa9mfif18swuvZzkaQZ8oQtFkWZJKjI7HcSCs0ZyokllGlhbyVsRDVlaBOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEYnuEV3pzUeXHenY9Fa8kpZo7hD5zPH4HPj6Q=</latexit><latexit sha1_base64="Z1V9Dl6RStKsmK5rIsvjVOLteL8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUDwVvHisYD+gDWWz2bRLN9mwOxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzglQKg6777ZTW1jc2t8rblZ3dvf2D6uFR26hMM95iSirdDajhUiS8hQIl76aa0ziQvBOMb2d+55FrI1TygJOU+zEdJiISjKKVOv1APYUKB9WaW3fnIKvEK0gNCjQH1a9+qFgW8wSZpMb0PDdFP6caBZN8WulnhqeUjemQ9yxNaMyNn8/PnZIzq4QkUtpWgmSu/p7IaWzMJA5sZ0xxZJa9mfif18swuvZzkaQZ8oQtFkWZJKjI7HcSCs0ZyokllGlhbyVsRDVlaBOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEYnuEV3pzUeXHenY9Fa8kpZo7hD5zPH4HPj6Q=</latexit><latexit sha1_base64="Z1V9Dl6RStKsmK5rIsvjVOLteL8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUDwVvHisYD+gDWWz2bRLN9mwOxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzglQKg6777ZTW1jc2t8rblZ3dvf2D6uFR26hMM95iSirdDajhUiS8hQIl76aa0ziQvBOMb2d+55FrI1TygJOU+zEdJiISjKKVOv1APYUKB9WaW3fnIKvEK0gNCjQH1a9+qFgW8wSZpMb0PDdFP6caBZN8WulnhqeUjemQ9yxNaMyNn8/PnZIzq4QkUtpWgmSu/p7IaWzMJA5sZ0xxZJa9mfif18swuvZzkaQZ8oQtFkWZJKjI7HcSCs0ZyokllGlhbyVsRDVlaBOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEYnuEV3pzUeXHenY9Fa8kpZo7hD5zPH4HPj6Q=</latexit>

�<latexit sha1_base64="Z1V9Dl6RStKsmK5rIsvjVOLteL8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUDwVvHisYD+gDWWz2bRLN9mwOxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzglQKg6777ZTW1jc2t8rblZ3dvf2D6uFR26hMM95iSirdDajhUiS8hQIl76aa0ziQvBOMb2d+55FrI1TygJOU+zEdJiISjKKVOv1APYUKB9WaW3fnIKvEK0gNCjQH1a9+qFgW8wSZpMb0PDdFP6caBZN8WulnhqeUjemQ9yxNaMyNn8/PnZIzq4QkUtpWgmSu/p7IaWzMJA5sZ0xxZJa9mfif18swuvZzkaQZ8oQtFkWZJKjI7HcSCs0ZyokllGlhbyVsRDVlaBOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEYnuEV3pzUeXHenY9Fa8kpZo7hD5zPH4HPj6Q=</latexit><latexit sha1_base64="Z1V9Dl6RStKsmK5rIsvjVOLteL8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUDwVvHisYD+gDWWz2bRLN9mwOxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzglQKg6777ZTW1jc2t8rblZ3dvf2D6uFR26hMM95iSirdDajhUiS8hQIl76aa0ziQvBOMb2d+55FrI1TygJOU+zEdJiISjKKVOv1APYUKB9WaW3fnIKvEK0gNCjQH1a9+qFgW8wSZpMb0PDdFP6caBZN8WulnhqeUjemQ9yxNaMyNn8/PnZIzq4QkUtpWgmSu/p7IaWzMJA5sZ0xxZJa9mfif18swuvZzkaQZ8oQtFkWZJKjI7HcSCs0ZyokllGlhbyVsRDVlaBOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEYnuEV3pzUeXHenY9Fa8kpZo7hD5zPH4HPj6Q=</latexit><latexit sha1_base64="Z1V9Dl6RStKsmK5rIsvjVOLteL8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUDwVvHisYD+gDWWz2bRLN9mwOxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzglQKg6777ZTW1jc2t8rblZ3dvf2D6uFR26hMM95iSirdDajhUiS8hQIl76aa0ziQvBOMb2d+55FrI1TygJOU+zEdJiISjKKVOv1APYUKB9WaW3fnIKvEK0gNCjQH1a9+qFgW8wSZpMb0PDdFP6caBZN8WulnhqeUjemQ9yxNaMyNn8/PnZIzq4QkUtpWgmSu/p7IaWzMJA5sZ0xxZJa9mfif18swuvZzkaQZ8oQtFkWZJKjI7HcSCs0ZyokllGlhbyVsRDVlaBOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEYnuEV3pzUeXHenY9Fa8kpZo7hD5zPH4HPj6Q=</latexit><latexit sha1_base64="Z1V9Dl6RStKsmK5rIsvjVOLteL8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUDwVvHisYD+gDWWz2bRLN9mwOxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzglQKg6777ZTW1jc2t8rblZ3dvf2D6uFR26hMM95iSirdDajhUiS8hQIl76aa0ziQvBOMb2d+55FrI1TygJOU+zEdJiISjKKVOv1APYUKB9WaW3fnIKvEK0gNCjQH1a9+qFgW8wSZpMb0PDdFP6caBZN8WulnhqeUjemQ9yxNaMyNn8/PnZIzq4QkUtpWgmSu/p7IaWzMJA5sZ0xxZJa9mfif18swuvZzkaQZ8oQtFkWZJKjI7HcSCs0ZyokllGlhbyVsRDVlaBOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEYnuEV3pzUeXHenY9Fa8kpZo7hD5zPH4HPj6Q=</latexit>

¬p
<latexit sha1_base64="uT3dQ3gYiqsstMc8V3T6ol8UJA0=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0RFE8BLx4jmAckS5idzCZDZmeWmV4hLPkILx4U8er3ePNvnCR70MSChqKqm+6uKJXCou9/e2vrG5tb26Wd8u7e/sFh5ei4ZXVmGG8yLbXpRNRyKRRvokDJO6nhNIkkb0fju5nffuLGCq0ecZLyMKFDJWLBKDqp3ZNKI0n7lapf8+cgqyQoSBUKNPqVr95AsyzhCpmk1nYDP8UwpwYFk3xa7mWWp5SN6ZB3HVU04TbM5+dOyblTBiTWxpVCMld/T+Q0sXaSRK4zoTiyy95M/M/rZhjfhLlQaYZcscWiOJMENZn9TgbCcIZy4ghlRrhbCRtRQxm6hMouhGD55VXSuqwFfi14uKrWb4s4SnAKZ3ABAVxDHe6hAU1gMIZneIU3L/VevHfvY9G65hUzJ/AH3ucPHCePYQ==</latexit><latexit sha1_base64="uT3dQ3gYiqsstMc8V3T6ol8UJA0=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0RFE8BLx4jmAckS5idzCZDZmeWmV4hLPkILx4U8er3ePNvnCR70MSChqKqm+6uKJXCou9/e2vrG5tb26Wd8u7e/sFh5ei4ZXVmGG8yLbXpRNRyKRRvokDJO6nhNIkkb0fju5nffuLGCq0ecZLyMKFDJWLBKDqp3ZNKI0n7lapf8+cgqyQoSBUKNPqVr95AsyzhCpmk1nYDP8UwpwYFk3xa7mWWp5SN6ZB3HVU04TbM5+dOyblTBiTWxpVCMld/T+Q0sXaSRK4zoTiyy95M/M/rZhjfhLlQaYZcscWiOJMENZn9TgbCcIZy4ghlRrhbCRtRQxm6hMouhGD55VXSuqwFfi14uKrWb4s4SnAKZ3ABAVxDHe6hAU1gMIZneIU3L/VevHfvY9G65hUzJ/AH3ucPHCePYQ==</latexit><latexit sha1_base64="uT3dQ3gYiqsstMc8V3T6ol8UJA0=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0RFE8BLx4jmAckS5idzCZDZmeWmV4hLPkILx4U8er3ePNvnCR70MSChqKqm+6uKJXCou9/e2vrG5tb26Wd8u7e/sFh5ei4ZXVmGG8yLbXpRNRyKRRvokDJO6nhNIkkb0fju5nffuLGCq0ecZLyMKFDJWLBKDqp3ZNKI0n7lapf8+cgqyQoSBUKNPqVr95AsyzhCpmk1nYDP8UwpwYFk3xa7mWWp5SN6ZB3HVU04TbM5+dOyblTBiTWxpVCMld/T+Q0sXaSRK4zoTiyy95M/M/rZhjfhLlQaYZcscWiOJMENZn9TgbCcIZy4ghlRrhbCRtRQxm6hMouhGD55VXSuqwFfi14uKrWb4s4SnAKZ3ABAVxDHe6hAU1gMIZneIU3L/VevHfvY9G65hUzJ/AH3ucPHCePYQ==</latexit><latexit sha1_base64="uT3dQ3gYiqsstMc8V3T6ol8UJA0=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0RFE8BLx4jmAckS5idzCZDZmeWmV4hLPkILx4U8er3ePNvnCR70MSChqKqm+6uKJXCou9/e2vrG5tb26Wd8u7e/sFh5ei4ZXVmGG8yLbXpRNRyKRRvokDJO6nhNIkkb0fju5nffuLGCq0ecZLyMKFDJWLBKDqp3ZNKI0n7lapf8+cgqyQoSBUKNPqVr95AsyzhCpmk1nYDP8UwpwYFk3xa7mWWp5SN6ZB3HVU04TbM5+dOyblTBiTWxpVCMld/T+Q0sXaSRK4zoTiyy95M/M/rZhjfhLlQaYZcscWiOJMENZn9TgbCcIZy4ghlRrhbCRtRQxm6hMouhGD55VXSuqwFfi14uKrWb4s4SnAKZ3ABAVxDHe6hAU1gMIZneIU3L/VevHfvY9G65hUzJ/AH3ucPHCePYQ==</latexit>

p
<latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit>

p
<latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit>

p
<latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit><latexit sha1_base64="HQHLRIFUIBxukVpskRQqLnwYkyc=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnriYBJPAS8eEzALJEPo6fQkbXoWunuEMOQLvHhQxKuf5M2/sbMIKvqg4PFeFVX1/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5Hrud+6ZVDyObvU0YV5IRhEPOCXaSM1kUCxhG7vli6qLsF3GTs25NKTiYrdWQY6NFyjBCo1B8b0/jGkaskhTQZTqOTjRXkak5lSwWaGfKpYQOiEj1jM0IiFTXrY4dIbOjDJEQSxNRRot1O8TGQmVmoa+6QyJHqvf3lz8y+ulOqh6GY+SVLOILhcFqUA6RvOv0ZBLRrWYGkKo5OZWRMdEEqpNNgUTwten6H/SLtsOtp2mW6pfreLIwwmcwjk4UIE63EADWkCBwQM8wbN1Zz1aL9brsjVnrWaO4Qest089/o0z</latexit>

p
<latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit>

p
<latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit>

p
<latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit>

G1

G2

G3 G4

G5

G6

Figure 3. The process of Figure 1 labeled by applying Algorithm 1 (left) and updated complex value relations (right). For simplicity, activity short names
and database identifiers are assumed to coincide. Activities labeled with the empty label ‘�’ belong to paths that are traversed by every process execution.

found along both outgoing paths (line 22).
• Merge gateways (lines 23–30). Whenever a merge gate-

way is encountered (line 23), if the set S(n′) is undefined
then a recursive call is made. If the gateway is exclusive
(lines 26–27), the latest added literal is also removed from
the current label. Then, S(n) is updated accordingly.

• Start event (lines 31–33). From the start event, the algo-
rithm makes a recursive call to visit the following node.

• End event (lines 34–35). When the end event is reached,
then S(n) is set to empty5.

Figure 3 shows the output of Algorithm 1 for the process
in Figure 1. Attribute successors of relation Succ is the set
of all the successors of one activity in the process.

The labels recorded in attribute label of Activity can be
combined with the information about successors to character-
ize the relative position of any two activities. Given any two
activities a1 and a2, respectively labeled L1 and L2, then:
(1) if a1 ∈ successors of a2 or a2 ∈ successors of a1, then

a1 and a2 are in sequential order;
(2) if condition (1) does not hold (i.e., a1 /∈ successors of a2

and a2 /∈ successors of a1) and there is no propositional
letter ` such that ` ∈ L1 and ¬` ∈ L2, then a1 and a2
belong to parallel paths;

(3) if there exists at least one propositional letter ` such that
` ∈L1 and ¬` ∈L2, then a1 and a2 belong to alternative
paths.

For example, from Figure 3 we can evince that activities B
and F are located on alternative paths since their labels, ¬p
and pq, include the opposite literals p and ¬p. Instead, tasks
D and F are executed in parallel as they are not successors of
one another and their labels p and pq do not include literals in
opposition. It is worth noting that Algorithm 1 labels with ‘�’
all the activities belonging to paths that are always executed.

The computational complexity of Algorithm 1 is basically
the one of a recursive depth-first search algorithm. Each recur-
sive call requires a constant number of steps to be executed, as
functions FIRST(), SECOND(), NEWPROPOSITION(), PUSH(),
PEEK(), and POP() can be implemented in constant time.
Since Algorithm 1 visits all the nodes in m only once, the
number of recursive calls needed to traverse the process is

5In the algorithm and the following queries, we assume opposite literals to
be unique to each pair of xor outgoing edges without losing generality. Finding
successors of each node in case of repeating literals is straightforward by
considering both the literals and activity successors derived by the algorithm.

linear in the number of nodes in m (i.e., its computational
complexity is bound by O(|N |)). Algorithm 1 is complete as
all kinds of flow nodes described in Definition 1 are considered
and the procedure always deals with all the immediate succes-
sors of one node, i.e., at most two in case of split gateways.

B. Querying Connected Process and Database Models

This section shows how our approach can be used to explore
the data perspective of a process by addressing information
needs I1–I4. We focus on properties that cannot be easily
observed on a process model alone but originate from its
connection with a conceptual database schema and can provide
useful hints for process re-design and improvement.

To formalize examples of the queries that can be run
against the schema of Figure 2, we choose a complex value
calculus [23]. This many-sorted calculus extends the relational
calculus with complex-valued attributes, thus being suitable to
deal with models including complex structures, such as the
one proposed in this work. Indeed, this formalism includes
set and tuple variables, and supports quantification over them.
Besides, it features three binary predicates: ‘=’ (equality),
‘∈’ (membership), and ‘⊆’ (set containment) that allow us
to express conditions on sets of elements, e.g., “element e
belongs to set A”. For tuple comparison, we rely on the well-
known principle of deep equality [31].

Below, we introduce some shortcuts for formulas that we
will use to formalize queries Q1–Q6 that exemplify possible
ways of addressing information needs I1–I4 with our approach.
• Given activity a and data operation do, DataOpOf (a,do)

checks if do belong to the Activity View of a:
DataOpOf (a,do) ≡ (Activity(a) ∧ DataOp(do) ∧ ∃ av (Ac-
tivityView(av) ∧ av.avID = a.avID ∧ do ∈ av.operations)).

• Given two activities a and a’, SuccessorOf (a,a’) checks if
a’ is a successor of a:
SuccessorOf (a,a’) ≡ (Activity(a) ∧ Activity(a’) ∧
∃s (Succ(s) ∧ s.fnID = a.fnID ∧ a’ ∈ s.successors)).

• Given an activity a and a process p, ActOf (a,p) checks
if a is an activity of process p:
ActOf (a,p) ≡ (Activity(a) ∧ Process(p) ∧ ∃n (FlowNode(n)
∧ n.fnID = a.fnID ∧ n.processID = p.processID)).

Query Q1 focuses on identifying activities lying on al-
ternative process paths but having identical data operation
signatures, thus addressing both information needs I1 and I2.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3134485, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

Q1: Which pairs of activities lying on alternative process
paths have the same Activity View?
{a, a’ | ∃ p (ActOf (a,p) ∧ ActOf (a’,p)) ∧
∃ l (l ∈ a.label ∧ ¬l ∈ a’.label) ∧
∀do (DataOpOf (a,do) → ∃ doa (DataOpOf (a’,doa) ∧
do.cSet = doa.cSet ∧ do.aSet = doa.aSet ∧ do.accessType
= doa.accessType ∧ do.accessTime = doa.accessTime ∧
do.numInstances = doa.numInstances)) ∧
∀do’(DataOpOf (a’,do’) → ∃ dob (DataOpOf (a,dob) ∧
do’.cSet = dob.cSet ∧ do’.aSet = dob.aSet ∧
do’.accessType = dob.accessType ∧ do’.accessTime =
dob.accessTime ∧ do’.numInstances =
dob.numInstances))}

When applied to the process in Figure 1, Q1 returns tasks
B and F, as they both read information about purchases and
insert the messages sent to the customer into the database.

Query Q1 may be tuned to compare Activity Views, so that
(i) all the attributes of all their tuples coincide, (ii) only some
tuples coincide, or (iii) only some attributes of some tuples
coincide. In the context of well-structured processes, process
elements or blocks may be repeated within alternative paths
to maintain the correct nesting of Single-Entry-Single-Exit re-
gions [28]. Here, Q1 can be useful to improve the identification
of re-usable process activities from a data perspective.

Queries Q2 and Q3 are both examples of addressing I3
as they consider (successive) activities along process paths,
focusing on which data operations are performed and when.

Q2: Which are the last activities of a process p reading
objects of a certain (data) class x?
{a | ∃ do, c (ActOf (a,p) ∧ DataOpOf (a,do) ∧ ClassDB(c)
∧ p.name = ‘p’ ∧ c.className = ‘x’ ∧ c ∈ do.cSet ∧
do.accessType = ‘R’ ∧ @ a’,do’ (DataOpOf (a’,do’) ∧
SuccessorOf (a,a’) ∧ c∈ do’.cSet∧ do’.accessType = ‘R’))}

Below we show Q2 for the process Purchase order of
Figure 1, considering the last activities that read class Invoice.

{a | ∃ p, do, c (ActOf (a,p) ∧ DataOpOf (a,do) ∧
ClassDB(c) ∧ p.name = ‘Purchase order ’ ∧ c.className
= ‘Invoice’ ∧ c ∈ do.cSet ∧ do.accessType = ‘R’ ∧
@ a’,do’(DataOpOf (a’,do’) ∧ SuccessorOf (a,a’) ∧
c∈ do’.cSet∧ do’.accessType = ‘R’))}

In this case, we obtain task Receive Payment (I) as a result.
Q2 can be adapted to find the first activity a that accesses
objects of a class x: this can be done by ensuring that a is
not a successor of any other activity reading objects of x.
Also, we can change the accessType to consider writing access.
For example, to find the last activity updating objects of class
Order, e.g., to ensure that order details are up-to-date when
communicated to the customer, we can set do’.accessType= ‘U’
and c.className= ‘Order’.

Query Q3 considers the dependencies among data read-
ing/writing operations to check if the data written or modified
by an activity a’ are needed (e.g., read) by any following
activities of the same process.

Q3: Which classes have objects that are written by an
activity and read by a successive one of the same

process?
{c | ClassDB(c) ∧ ∃ a, do(DataOpOf (a,do) ∧ c∈ do.cSet ∧
(do.accessType ∈ {‘I’,‘U’} → ∃ a’,do’(DataOpOf (a’,do’) ∧
SuccessorOf (a,a’)∧ do’.accessType= ‘R’∧ c∈ do’.cSet)))}

When applying Q3 to the process of Figure 1, we obtain
classes Order and Invoice as a result. Indeed, payment details
and communication history are inserted in the database without
being further modified, and information about customers and
loyalty contracts is only read by the process.

Query Q4 retrieves all classes that have objects accessed
by a writing operation by concurrent activities of the same
process, thus addressing information need I4.

Q4: Which classes have objects that are accessed in writing
mode by at least two concurrent activities of the same
process?
{c, a, a’ | ∃p, do, do’(ActOf (a,p) ∧ ActOf (a’,p) ∧
DataOpOf (a,do) ∧ DataOpOf (a’,do’) ∧ ClassDB(c) ∧
c∈ do.cSet ∧ c ∈ do’.cSet ∧ @ l (l ∈ a.label ∧ ¬l ∈
a’.label) ∧ ¬SuccessorOf (a,a’) ∧ ¬SuccessorOf (a’,a) ∧
do.AccessType∈{‘I’,‘U’,‘D’}∧ do’.AccessType∈
{‘I’,‘U’,‘D’})}

When applied to the process of Figure 1, Q4 returns class
Order, which is concurrently updated by activities D and H.
Query Q4 can be specialized to retrieve also specific class
attributes that are affected by concurrent writing operations.
Query Q5 considers operations that are always performed in
a process, i.e., across (I2) and along (I3) all process paths.

In detail, Q5 retrieves all the classes having objects that are
accessed in all the paths of a process considering the following
settings: (i) either a class has objects accessed by an activity
labeled with ‘�’, or (ii) it has objects accessed by multiple
activities located on paths that together cover all the possible
alternative flows, i.e., the logical disjunction of all activity
labels is true.

Q5: Which data classes are read in all process paths and in
which processes?
{c, p.name | ClassDB(c) ∧ Process(p) ∧ (∃a, do
(ActOf (a,p) ∧ DataOpOf (a,do) ∧ c ∈ do.cSet ∧
do.accessType = ‘R’ ∧ a.label = ‘�’) ∨
∀ l,a,do ((DataOpOf (a,do) ∧ a.label 6= ‘�’ ∧ l ∈ a.label ∧
c ∈ do.cSet ∧ do.accessType = ‘R’) → ∃ a’,do’
(DataOpOf (a’,do’) ∧ ¬l ∈ a’.label ∧ c ∈ do.cSet ∧
do.accessType = ‘R’)))}

When considering our process Purchase order, Q5 returns
classes Order, Customer, loyaltyContract, Item and itemQuan-
tity. The query can be adapted to find classes having objects
that are updated, inserted, or deleted in all process paths, thus
generalizing Q4.

Q1–Q5 as well as parts of them can be combined to address
more complex information needs. For example, by combining
and re-arranging the properties expressed by Q3 and Q5, one
can easily find the classes having objects modified by a process
activity and always read by a successive one.

Last but not least, our approach allows formulating quan-
titative queries. For example, a database engineer may be



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3134485, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

interested in knowing which data classes are accessed more
frequently for database optimization purposes. Access fre-
quency can be quantified by considering the number of (a)
data operations performed on the class, (b) distinct activities
using it, or (c) distinct processes using it. Although counting
cannot be expressed in complex value calculus, we rely on a
well-known extension of the relational calculus with aggregate
functions [32] and introduce query Q6 using the word count
to express the homonym aggregate function.

Q6 Which are the classes having objects accessed more
frequently?

(a) According to the highest number of data operations.
{c |ClassDB(c)∧ @c’(ClassDB(c’) ∧ count{do |DataOp(do)
∧ c’ ∈ do.cSet} > count{do |DataOp(do) ∧ c∈ do.cSet})}

(b) According to the highest number of (distinct) activities.
{c |ClassDB(c) ∧ @c’(ClassDB(c’) ∧ count{a |Activity(a)
∧ ∃ do (DataOpOf (a,do) ∧ c’ ∈ do.cSet)} > count{a
|Activity(a) ∧ ∃ do (DataOpOf (a,do) ∧ c ∈ do.cSet)})}

(c) According to the highest number of (distinct) processes.
{c |ClassDB(c) ∧ ∀c’(ClassDB(c’) → count{p |Process(p)
∧ ∃ a, do (ActOf (a,p) ∧ DataOpOf (a,do) ∧ c’∈ do.cSet)}
≤ count{p |Process(p) ∧ ∃ a, do (ActOf (a,p) ∧
DataOpOf (a,do) ∧ c ∈ do.cSet)}

Q1–Q6 exemplify blueprints of queries that address infor-
mation needs I1–14.

V. EVALUATION

In this section, we describe the controlled experiment de-
vised to evaluate the Activity View (cf. Section V-A) and
the proof-of-concept developed to test the feasibility of our
approach, considering relational (cf. Section V-B) and XML
(cf. Section V-C) data management technologies.

A. Empirical Evaluation through a Controlled Experiment

The integrated exploration of processes and data assumes
a good understanding of their connection, which we real-
ized with Activity Views. To assess whether Activity Views
improve the understanding of integrated process models and
database schemata, we conducted a human-oriented single
factor controlled experiment following the guidelines in [33].

The experimental design was informed by previous studies
on process model comprehension [34]–[36], and especially
by [37], as it considers aspects of integrated modeling. How-
ever, while previous research has focused on the effects that
intrinsic process model properties, e.g., the structure [34],
have on understanding, we explored if the Activity View as
an additional artifact can improve the understanding of the
interplay between process models and database schemata.

Figure 4 outlines the three main phases of the experiment6.
PHASE I was organized as a tutorial introducing the Activity
View to the subjects. PHASE II was a comprehension task
consisting of two supervised runs, while PHASE III consisted
of a modeling exercise and a questionnaire-based interview.

6More details can be found at https://iris.univr.it/retrieve/handle/11562/
976919/97357/RR106%3a2018.pdf

Purchase order Triage in ER 

G
RO

U
P 

1
G

RO
U

P 
2

  

PHASE I: 30 mins PHASE II: 60 mins PHASE III: 30 mins

RUN 1 RUN 2

COMPREHENSION TASK SUBJECTS PERCEPTION  

Modeling
Exercise

Final 
Interview

TUTORIAL

Tutorial on 
the Activity

View

Understand 
Diagrams
with AV

Understand 
Diagrams
with AV

Understand 
Diagrams

without AV

Understand 
Diagrams

without AV

Figure 4. The three phases of the empirical evaluation of the Activity View.

The factor of our experiment is the Activity View with
levels present or absent. The research question we investigated
is “Does the Activity View improve the comprehension of
integrated processes and data?”, which led to alternative hy-
pothesis H1:“The Activity View improves the comprehension of
integrated processes and data”, i.e., of the parts of a concep-
tual database schema needed by one or more process activities
to be executed. We measured comprehension task performance
considering answering times and answer accuracy.

Subjects were 21 master’s students in Computer Science
Engineering at our university, 8 master’s students in Medical
Bioinformatics, and 4 database researchers. All the 33 subjects
had attended the same information systems course, where
BPMN is explained, and a database design course. Overall, 8
subjects reported having professional experience with database
design, whereas no-one worked with BPMN professionally.

Each run of PHASE II was designed as a conceptual analysis
task, asking subjects 7 questions regarding the connection
between processes and related data [10], e.g., “Which process
activities access objects of class Order?” or “Are there classes,
whose objects are used only for read operations? If so, which
ones?”

We used a within-subjects design and randomly divided
subjects into two groups, but keeping the groups balanced
w.r.t. their background. During both runs of the comprehension
task, all subjects were provided with a BPMN process model,
having 9 activities and 4 gateways, the conceptual schema
of the database, and a process description including the data
operations executed on the database. In each run, one group
was also provided with the Activity Views related to the given
models (e.g., GROUP 1 in RUN 1). Figure 5 replicates parts
of the material provided to the subjects in RUN 1 (colors are
used just for presentation). The subjects answered questions
on paper and had unlimited time to complete the task. A
simplified version of Definition 3 was written on a whiteboard
for the whole task duration. For RUN 2, we switched the factor
levels (i.e., the Activity Views were given to GROUP 2) and
changed the process domain (from a purchase process to a
nurse triage).

For accepting H1, we needed to prove that the subjects
with the Activity Views were (i) faster and (ii) more accurate
in answering the questions. Both measurements are related
to the comprehension of integrated processes and data and,
especially, to using the Activity View effectively. Since our
experiment was designed to collect repeated measurements,

https://iris.univr.it/retrieve/handle/11562/976919/97357/RR106%3a2018.pdf
https://iris.univr.it/retrieve/handle/11562/976919/97357/RR106%3a2018.pdf


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3134485, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

LI
ST

 O
F A

CT
IV

IT
Y V

IE
W

S

Check 
customer

Add new 
customer

YES

NO
Add 
order

Obtain
drugs from 
warehouse

Package
drugs for
shipment

Create 
invoice

Send 
invoice to 
customer

Receive 
payment

Ship 
parcel to 
customer

payment
proof

AV_CreateInvoice

AV_CheckCustomer
AV_AddOrder

AV_AddNewCustomer

AV_ReceivePayment

DB

DB

DB

DB

DB

Order
received

Order
fulfilled

New 
customer?

Number
Date
Priority
Status
ShippingCost

Order
Code
Name
ActivePrinciple
DoseFormat
ItemsAvailable

Drug

Number
Total amount
Discount

InvoicePaymentID
InvoiceNumber
Date
CheckNumber
Currency

Payment

CustNum
FirstName
LastName
Address
Email

Customer

DateStarted
CustomerKind

Fidelity
 Customer

1..1

1..

1..11..1

1..

1..1

invoicing
0..1..

purchase

quantity
itemQuantity

itemQuantity
1..10..1

paying

billing

**

*
*

during

AV_CheckCustomer
CLASS SET ACCESS TYPE ACCESS TIMETUPLE NUMINSTANCES

{Customer(CustNum, FirstName, Lastname)}T1 R (1,  )
ASSOC SET

AV_AddOrder

? *

start
CLASS SET ACCESS TYPE ACCESS TIMETUPLE NUMINSTANCES

T1 R (1,1)
ASSOC SET

?{Customer(Number)}
{Order( ), itemQuantity(quantity), Drug(Code)}*T2 itemQuantity I during (1,  )*

…

TEXTUAL PROCESS DESCRIPTION (with DATA OPERATIONS on the DATABASE)
PR

OC
ES

S 
M

OD
EL

 (w
ith

 A
CT

IV
IT

Y V
IE

W
S)

CO
NC

EP
TU

AL
 D

AT
AB

AS
E S

CH
EM

A

order
request

Figure 5. Example of comprehension task material related to purchase
process. The list of Activity Views, here incomplete for space reasons, and
the related gray tags were shown only to the treatment group in each run.

i.e., each subject was exposed to all factor levels, we relied
on paired analysis [38] and measured, for each subject, the
time needed and the number of correct answers for each run.

Figure 6 shows the results of our analysis. In RUN 1, the
subjects in the treatment group took an average of 12,45
minutes, and answered 84,03% of the questions correctly.
Instead, the group without Activity Views took 21,57 minutes
on average and only 39,29% of the answers were correct. The
results of RUN 2 are comparable, but revealed a reduction in
answering times and correctness for both groups, especially
for the one without Activity Views. When interviewed, some
subjects reported that they had familiarized with the kind of
questions that were asked and, thus, they were faster to answer.
Overall, with Activity Views the average comprehension task
time decreased by 37,68%, while the number of correct an-
swers increased by 44,15%. The paired t-test and the Wilcoxon
signed-rank test [38] applied to both measurements yielded a
p < 0.001 and, thus, we could accept H1.

In PHASE III we asked subjects to design a BPMN model

30

25

20

15

10

5

0
21,57 15,1410,25

RUN 1

TI
M

E 
(m

in
ut

es
)

12,45
RUN 2

AVERAGE EXECUTION TIME 

80

60

40

20

0
28,57%71,43%

RUN 1

CO
RR

EC
T 

AN
SW

ER
S 

(%
)

84,03%
RUN 2

TOTAL EXERCISE CORRECTNESS
100

39,29%

WITH ACTIVITY VIEW
WITHOUT ACTIVITY VIEW

 STANDARD DEVIATIONLegend:  LOWEST VALUE       

*

*

*
*

*

HIGHEST VALUE

Figure 6. Results of the controlled experiment showing average execution
time with standard deviation (left) and percentage of correct answers (right).

starting from a textual process description, and to write the
Activity Views connecting their model with a given database
schema. Overall, 58,89% of the Activity Views and 83,94% of
the designed process models were correct. With this modeling
task we aimed to explore how Activity Views are used in
practice. When interviewed, subjects were asked to rate how
easy the Activity View is to read, understand, use, and write,
based on a 5-point Likert scale, with 3 being “neutral” and to
suggest potential improvements. Overall, Activity View were
rated easy to read (score=4,16), understand (score=4,06), and
use (score=4,03), whereas subjects leaned towards “neutral”
when asked about writing them (score=3,13). However, we
expect such results to improve with proper training and the
support of modeling software, as suggested by some subjects.

The results of our evaluation should be read in light of the
following limitations. In terms of internal validity, the final
results could have been influenced by a potential disparity in
the subjects’ modeling expertise and cognitive abilities [36].
Indeed, we did not screen the subjects for familiarity with
BPMN and UML class diagrams. However, we provided
the same tutorial on process and data modeling to everyone
and assigned subjects to groups randomly, but in a balanced
way, e.g., ensuring that researchers and students with similar
backgrounds were equally split into the two groups. Famil-
iarization is another factor threatening internal validity since
subjects could have become familiar with the experimental
material and procedure. We considered two different domains
for the comprehension task (i.e., purchase and healthcare) to
mitigate this risk. Also, we asked a low number of ques-
tions addressing various and mostly independent aspects of
the provided material. Nevertheless, we could not prevent
subjects from familiarizing themselves with the experiment’s
format as it emerged when the triangulating the decreased
answering times of RUN 2 with the final interviews. However,
since answer correctness also decreased, we speculate that
familiarization affected comprehension task performance only
partially, inducing some people to read the questions less
attentively. Probably, changing the order of the questions in
each run could have better mitigated this effect.

As for external validity, the relatively small number of
subjects and the fact that the majority are students make
our results hard to generalize to real organizational environ-
ments. However, under certain conditions, there is evidence
that graduate students may be proxies for professionals [39].
Besides, since the core contribution of the paper is the analysis
approach, the limitations concerning sample selection are less
critical. Finally, we acknowledge that the experimental settings
may not be realistic as the chosen process models are real
but simple, and the questions are centered on the Activity
View, i.e., we focus only on some facets of process and data
integration that can be addressed during conceptual modeling
and analysis. However, this experiment should be seen as
an initial study meant to be complemented by the proofs-of-
concept presented next and by future studies.

B. Proof-of-concept: Implementation with PostgreSQL
As a proof-of-concept, we considered the standard rela-

tional database technology and implemented a Java-based



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3134485, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

tool, using the Camunda BPMN model API7. The tool parses
and labels a BPMN 2.0 XML process description and is
interfaced with a relational database implemented using Post-
greSQL8. The database was implemented by following the
schema in Figure 2, but translating all the fields contain-
ing complex set-valued attributes into many-to-many rela-
tions. For example, activity successors, originally captured
by attribute successors of Succ, were represented as relation
NewSucc(activity, successor) which relates each activity to one
or more successive ones. Similarly, we added:
• Label(activityID, literal), where literal is an integer, so that

value 0 corresponds to �;
• ComposedOf(avID, opID);
• Cset(opid, attrName, className, dbID);
• Aset(opid, assocName, dbID).
Figure 7 outlines the implemented proof-of-concept. The

parser reads the XML description of a BPMN process provided
in input and creates a Java object containing all the information
about the parsed process model. Then, Algorithm 1 labels ac-
tivities as explained in Section IV-A. Finally, SQL statements
are created to populate the database. In detail, relations 1-10
in Figure 2, Label and newSucc are populated automatically
by the tool, whereas the remaining relations are populated by
directly inserting data in the database through SQL statements.

BPMN 

2.0 XML

PARSER
BPMN Model 

API (Camunda) SQL 
INSERT INTO 
statements

SQL 

QUERIES
(Q1-Q6)

INPUT OUTPUT

PostgreSQL

DATABASE

ANALYSISBUSINESS PROCESS PARSING, LABELING and DB POPULATION

ALGORITHM 1

traverseProcess

Figure 7. Overview of the proof-of-concept implemented using PostgreSQL.

We translated queries Q1-Q6 into SQL and run them against
the described database storing data related to different pro-
cesses and application domains. As an example, in Figure 8,
we report Q4-SQL, omitting the part of the query needed to
select the process and the domain database, for simplicity.
To establish whether two activities are concurrent, Q4-SQL
checks that they are not successors of one another and that
their labels do not have opposing literals. Since literals are
treated as integers, opposite literals are represented by integers
having the same absolute value, different from 0, but opposite
sign (e.g., if p corresponds to 1 then ¬p corresponds to -1).

In general, using SQL as query language is beneficial for
several reasons. Among others, SQL is the standard language
for querying relational database management systems and
supports the definition of aggregation operators (e.g., Q6). All
the other queries presented in Section IV-B can be translated
in SQL as illustrated for Q4.

C. Proof-of-Concept: Querying XML data

Our approach can be implemented using logical (and phys-
ical) database models other than the relational ones. As an

7https://docs.camunda.org/manual/7.9/user-guide/model-api/bpmn-model-
api/

8https://www.postgresql.org

Q4-SQL Which classes have objects accessed in writing mode
by at least two concurrent process activities?
SELECT DISTINCT C1.className, A1.fnID, A2.fnID,
A1.activityName, A2.activityName

FROM Cset C1 JOIN DataOp D1 ON C1.opID = D1.opID
JOIN ComposedOf CO1 ON D1.opID = CO1.opID JOIN
Activity A1 ON CO1.avID = A1.avID JOIN FlowNode F1
ON A1.fnID = F1.fnID, Cset C2 JOIN dataOp D2 ON
C2.opID = D2.opID JOIN ComposedOf CO2 ON D2.opID =
CO2.opID JOIN Activity A2 ON CO2.avID = A2.avID
JOIN FlowNode F2 ON A2.fnID = F2.fnID

WHERE C1.className = C2.className AND F1.ProcessID =
F2.ProcessID AND D1.accessType IN ('U', 'I', 'D')
AND D2.accessType IN ('U', 'I', 'D') AND A1.fnID
< A2.fnID AND A1.fnID NOT IN(
SELECT activity
FROM NewSucc S1
WHERE A1.fnID = S1.activity AND

S1.successor = A2.fnID) AND A2.fnID NOT IN(
SELECT activity
FROM NewSucc S2
WHERE A2.fnID = S2.activity AND

S2.successor = A1.fnID)
AND NOT EXISTS(SELECT 1

FROM Label L1, Label L2
WHERE L1.activityID = A1.fnID AND
L2.activityID = A2.fnID AND
L1.literal <> 0 AND L2.literal <> 0 AND
L1.literal = -1*L2.literal);

Figure 8. SQL expression corresponding to query Q4.

example, in this paragraph we discuss how an XML database
can be used for implementation.

Figure 10 sketches a possible fragment of an XML doc-
ument storing information about the BPMN process model
(based on the 2.0 XML structure) and about Activity Views
and data classes related to our motivating example. The
structure of the process derives from the standard XML

<PairsOfActivities>{
for $p in doc("ProcessViews.xml")//bpmn:process
for $a1 in $p/bpmn:task, $a2 in $p/bpmn:task
let $dos1 := for $d1 in doc("ProcessViews.xml")//

ActivityView where $d1/@activityRef= $a1/@id
return $d1//dataOperation

let $dos2 := for $d2 in doc("ProcessViews")//
ActivityView where $d2/@activityRef= $a2/@id
return $d2//dataOperation

where ($a1/@id < $a2/@id) and (some $l1 in $a1//
literal satisfies (some $l2 in $a2//literal
satisfies $l1= concat("not ",$l2)))
and (every $do1 in $dos1 satisfies (some $do2 in
$dos2 satisfies
$do2/cset/@classSet = $do1/cset/@classSet and
$do2/asSet/@AsSet = $do1/aset/@AsSet and
$do2/bpmn:accessType = $do1/bpmn:accessType and
$do2/bpmn:accessTime = $do1/bpmn:accessTime and
$do2/bpmn:numInstances/@minCardinality =
$do1/bpmn:numInstances/@minCardinality and

$do2/bpmn:numInstances/@maxCardinality =
$do1/bpmn:numInstances/@maxCardinality))

and (every $do2 in $dos2 satisfies (some $do2 in
$dos2 satisfies

(: the symmetrical conditions follow, as for
$do1 in $dos1 :)

return <Tpair>{$a1}{$a2}</Tpair>
}</PairsOfActivities>

Figure 9. XQuery expression corresponding to query Q1 expressed through
the complex value calculus in Section IV-B



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3134485, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

representation provided by BPMN, while the elements for
Activity Views and data classes are derived directly from
the complex value schema, using both element nesting and
element references.

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://www.omg.org/spec/BPMN

/20100524/MODEL">

<process id="Process_1" name="PurchaseManagement">
<!-- ............. -->
<task id="TaskA" name="Manage order (A)">
<incoming>SequenceFlow_01</incoming>
<outgoing>SequenceFlow_02</outgoing>
<label><literal value="dotBox"/></label>
</task>
<!-- ............. -->
<task id="TaskF" name="Offer discount (F)">
<incoming>SequenceFlow_12<incoming>
<outgoing>SequenceFlow_13</outgoing>
<label><literal value="p"/> </label>
<label><literal value="q"/> </label>
</task>
<!-- ............. -->
</process>

<!-- ............. -->

<activityView processRef="Process_1"
activityRef="TaskA">

<dataOperation>
<cset classSet="Customer Order ItemQuantity Item"/>
<aset AsSet="purchase ItemQuantity"/>
<accessTime> start </accessTime>
<accessType> R </accessType>
<numInstances minCardinality="1" maxCardinality="1"/>
</dataOperation>
<dataOperation>
<cset classSet="Order">
<attributes class="Order"><att>status</att>
</attributes>
</cset>
<accessType> U <accessType>
<accessTime> during </accessTime>
<numInstances minCardinality="1" maxCardinality="1"/>
</dataOperation>
</activityView>

<!-- ............. -->

<dataClass>
<className> Customer </className>
<!-- ............. -->
</dataClass>
</definitions>

Figure 10. Fragment of an XML document containing information about the
process and the Acitivity Views of our motivating example. The namespace
prefix bpmn has been removed for improving readability.

An example of query that can be run against such kinds of
XML documents is summarized in Figure 9. In this XQuery
expression, the complex value query Q1 (i.e., Which pairs of
activities lying on alternative process paths have the same
Activity View?) is mapped to the XML specification of the
database (e.g., the one in Figure 10), and the nesting of
elements and the references between element identifiers are
used to represent complex data.

VI. RELATED WORK

The relationship between processes and data has been
central to several works in the business process management
and database fields [2], considering all the phases of the
business process life-cycle and different process granularity

and data abstraction levels. However, the integrated modeling,
verification, enactment, and analysis of these two perspectives
still presents relevant research challenges [4], [7], [9], [20].
Among process modeling approaches, we can distinguish
between those aiming to enhance activity-centric processes
for the modeling and execution of the data perspective [3],
[9], [10], [13], [40] and those focusing on defining languages
for data- or object-aware process modeling, verification and
enactment [4], [7], [8], [14], [41], [42]. Our approach falls
within the first research line and, particularly, aims to define a
conceptual and unified view of a process model and database
schema that can be used to explore the data perspective of a
process at design-time. Some recent proposals [9], [24], [40]
remark the importance of introducing conceptual modeling
frameworks to support the design, analysis and execution of
integrated activity-centric processes and persistent data. The
framework proposed in [9] links BPMN process models to a
UML class diagram representing the domain data of interest,
which includes a class “Artifact” containing all the process
variables needed for process execution. Data manipulations
are defined as OCL (Object Constraint Language) expressions
on such variables. The execution relies on relational SQL
technology: the UML class diagram is encoded as a relational
database, the BPMN diagram is translated into a Petri net,
and OCL contracts are encoded as logic rules that support
the derivation of SQL statements that can be run against the
database. Db-nets are proposed in [40] to support data-aware
process modeling and verification and are grounded in colored
Petri nets and relational databases.

In [3], the authors address the problem of modeling and
executing BPMN processes with complex data dependencies.
They extend data objects with identifiers, information about
their life-cycle, and fields to express complex correlations
among multiple objects. These data annotations comprehen-
sively define activity pre- and post-conditions, and are used
to derive SQL queries that execute the modeled data depen-
dencies. Both the approaches introduced in [9], [40] focus on
reducing the gap between control flow and persistent data as-
pects by means of an intermediate layer (i.e., a class “Artifact”
in [9] and the data logic layer of db-nets in [40]) capturing
changes over process data. The Activity View follows this
line of thought, as it embraces the idea of keeping the pro-
cess model and database schema untouched while connecting
them. However, the design and analysis goals discussed in
this paper are substantially different from those presented
in [9], [40]. Indeed, we focus on the human-driven exploration
of connected conceptual models at design-time, and do not
address the (automatic) execution of the overall “connected
system”, as done also in [3]. Thereby, our approach abstracts
from aspects related to process execution, e.g., the violation
of integrity constraints on the database or the detection of
undesired data evolution. Indeed, despite our approach can be
a starting point for detecting data inconsistencies [12], [13]
and for reviewing data access privileges [4], in this paper we
abstain from looking into such analyses as they require to
consider lower process granularity and data abstraction levels
(e.g., execution traces and database instances).

The problem of providing a unified view of processes and



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3134485, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 13

data was tackled also in the field of process mining, mostly
by proposals focusing on obtaining and transforming data
from databases to derive event logs [24], [43], [44]. In [24],
the authors propose a conceptual framework that combines
information coming from an event log, a transaction log,
and a relational database storing the current values of data
attributes. The framework enables the in-depth exploration of
business process behavior through nine mapping operations
defined between the three data sources. In [43], propose an
approach grounded in conceptual modeling for supporting the
extraction of event logs from legacy information systems.
In [44], the authors present a meta-model to support the
creation of multi-perspective process logs from data coming
from different sources. The meta-model includes three levels
of process granularity, i.e., (i) processes, (ii) instances, and
(iii) events, and three data abstraction levels, namely (i) data
model, (ii) objects, and (i) versions, i.e., the instantiations of an
object over a certain amount of time. The process and the data
perspectives are connected at the level of events and versions.

Compared to our work, the proposals in [24] and [44]
focus on connecting processes and data at a lower level,
i.e., considering trace events and database instances. Both
the works in [44] and [24] are valuable starting points for
extending Activity Views to deal with process instances and
logical database models, which is part of our future research
agenda. Recently, in [26], the authors consider the role of data
in process similarity checking. The way they incorporate the
data-flow information into the process control flow by consid-
ering data reading and writing semantics and the introduction
of different types of similarity measures may be viewed as
a last proof of the relevance of the discussed Information
Needs. Further recent contributions confirmed the importance
of bridging the gap between data and process design and
explored some research directions complementary to the one
focusing on conceptual modeling proposed in this paper.
They deal with: a formal language for modeling process- and
information-related concepts and constraints [45]; the support
to analyze the impact of unexpected data changes during
process executions [46]; an operational framework, mainly
based on BPMN and SQL languages, supporting modeling
and verification of business process models enriched with data
management capabilities [11]. All these recent contributions
share a sound theoretical foundation with our approach. How-
ever, their focus is not on the conceptual modeling of processes
and data, as they consider more specific data dependencies
and (runtime) constraints and do not focus on the seamless
conceptual modeling of processes and data.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we proposed an approach to capture and query
the data perspective of business processes, to support concep-
tual modeling and analysis tasks. By allowing designers to
explore the data manipulations realized by process activities on
a database schema, our approach supports the understanding
at design time of how data are used by a process, fostering
process (re)-design and improvement.

Compared to data-aware approaches that consider also ex-
ecution, an obvious limitation of our approach, as it focuses

solely on conceptual design and analysis, is that real execution
traces are not considered/mined. However, the proposed ap-
proach allows designers to analyze and specify the connections
between process models and data before facing the implemen-
tation of the considered business processes. Both inter- and
intra-process data-related features may be analyzed. Another
limitation, we plan to face in future work, is that Activity
Views are not yet supported by a diagrammatic notation
integrating BPMN and UML class diagrams. We preferred to
focus on a formal description of our proposal, making it sound
and independent from the (many) possible implementations.

As for other future work, we aim to extend the scope of our
approach by considering the modeling and analysis of non-
persistent data (e.g., process variables), as done by [3], [9],
[44], and improve the proof-of-concept discussed in Section V,
considering a thorough evaluation with end-users and its
integration into open-source process modeling tools.

REFERENCES

[1] M. Weske, Business Process Management: Concepts, Languages, Archi-
tectures. Springer Publishing Company, Incorporated, 2010.

[2] D. Calvanese, G. De Giacomo, and M. Montali, “Foundations of
data-aware process analysis: a database theory perspective,” in 32nd
ACM SIGMOD Symposium on Principles of Database Systems (PODS).
ACM, 2013, pp. 1–12.

[3] A. Meyer, L. Pufahl, D. Fahland, and M. Weske, “Modeling and enacting
complex data dependencies in business processes,” in International Con-
ference on Business Process Management (BPM), ser. LNCS. Springer,
2013, vol. 8094, pp. 171–186.

[4] V. Künzle and M. Reichert, “PHILharmonicFlows: towards a framework
for object-aware process management,” Journal of Software Mainte-
nance and Evolution: Research and Practice, vol. 23, no. 4, pp. 205–244,
2011.

[5] Object Management Group, “Business Process Model and Notation
(BPMN), v2.0.2,” http://www.omg.org/spec/BPMN/2.0.2/.

[6] H. Leopold, J. Mendling, and O. Günther, “Learning from Quality Issues
of BPMN Models from Industry,” IEEE Software, vol. 33, no. 4, pp. 26–
33, 2016.

[7] D. Calvanese, M. Montali, F. Patrizi, and A. Rivkin, “Modeling and
in-database management of relational, data-aware processes,” in In-
ternational Conference on Advanced Information Systems Engineering
(CAiSE), P. Giorgini and B. Weber, Eds. Springer, 2019, pp. 328–345.

[8] A. Artale, A. Kovtunova, M. Montali, and W. M. P. van der Aalst,
“Modeling and reasoning over declarative data-aware processes with
object-centric behavioral constraints,” in Int. Conf. on Business Process
Management (BPM). Cham: Springer, 2019, pp. 139–156.

[9] G. De Giacomo, X. Oriol, M. Estañol, and E. Teniente, “Linking Data
and BPMN Processes to Achieve Executable Models,” in International
Conference on Advanced Information Systems Engineering (CAiSE), ser.
LNCS, vol. 10253. Springer, 2017, pp. 612–628.

[10] C. Combi, B. Oliboni, M. Weske, and F. Zerbato, “Conceptual modeling
of processes and data: Connecting different perspectives,” in Interna-
tional Conference on Conceptual Modeling (ER), ser. LNCS, vol. 11157.
Springer, 2018, pp. 236–250.

[11] S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin, “Delta-bpmn:
A concrete language and verifier for data-aware BPMN,” in Business
Process Management - 19th International Conference, BPM 2021,
Rome, Italy, September 06-10, 2021, Proceedings, ser. Lecture Notes
in Computer Science, A. Polyvyanyy, M. T. Wynn, A. V. Looy, and
M. Reichert, Eds., vol. 12875. Springer, 2021, pp. 179–196. [Online].
Available: https://doi.org/10.1007/978-3-030-85469-0_13

[12] N. Trčka, W. M. Van der Aalst, and N. Sidorova, “Data-flow anti-
patterns: Discovering data-flow errors in workflows,” in International
Conference on Advanced Information Systems Engineering (CAiSE).
Springer, 2009, pp. 425–439.

[13] C. Combi, B. Oliboni, M. Weske, and F. Zerbato, “Conceptual modeling
of inter-dependencies between processes and data,” in ACM Symposium
on Applied Computing (SAC ’18). ACM, 2018, pp. 110–119.

[14] X. Oriol, G. De Giacomo, M. Estañol, and E. Teniente, “Embedding
reactive behavior into artifact-centric business process models,” Future
Generation Computer Systems, vol. 117, pp. 97 – 110, 2021.

https://doi.org/10.1007/978-3-030-85469-0_13


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3134485, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 14

[15] S. España, A. González, and O. Pastor, “Communication analysis: A
requirements engineering method for information systems,” in Inter-
national Conference on Advanced Information Systems Engineering
(CAiSE), ser. LNCS, vol. 5565. Springer, 2009, pp. 530–545.

[16] M. Brambilla, S. Comai, P. Fraternali, and M. Matera, “Designing
web applications with webml and webratio,” in Web Engineering, ser.
Human-Computer Interaction Series. Springer, 2008, pp. 221–261.

[17] O. Pastor and J. C. Molina, Model-driven architecture in practice
- a software production environment based on conceptual modeling.
Springer Science & Business Media, 2007.

[18] Object Management Group, “Unified Modeling Language, v2.5,” avail-
able at: http://www.omg.org/spec/UML/2.5/.

[19] A. Borgida, D. Toman, and G. E. Weddell, “On special description logics
for processes and plans,” in Description Logics, ser. CEUR Workshop
Proceedings, vol. 2373. CEUR-WS.org, 2019.

[20] D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin,
“From model completeness to verification of data aware processes,” in
Description Logic, Theory Combination, and All That, ser. LNCS, vol.
11560. Springer, 2019, pp. 212–239.

[21] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati,
“Conceptual modeling for data integration,” in Conceptual Modeling:
Foundations and Applications. Springer, 2009, pp. 173–197.

[22] M. Lenzerini and C. Daraio, “Challenges, approaches and solutions in
data integration for research and innovation,” in Springer Handbook of
Science and Technology Indicators, ser. Springer Handbooks. Springer,
2019, pp. 397–420.

[23] S. Abiteboul and C. Beeri, “The power of languages for the manipulation
of complex values,” VLDB J., vol. 4, no. 4, pp. 727–794, 1995.

[24] A. Tsoury, P. Soffer, and I. Reinhartz-Berger, “A Conceptual Framework
for Supporting Deep Exploration of Business Process Behavior,” in
International Conference on Conceptual Modeling (ER), ser. LNCS, vol.
11157. Springer, 2018, pp. 58–71.

[25] J. L. de la Vara, M. H. Fortuna, J. S. Díaz, C. M. L. Werner,
and M. R. S. Borges, “A requirements engineering approach for data
modelling of process-aware information systems,” in BIS, ser. LNBIP,
vol. 21. Springer, 2009, pp. 133–144.

[26] C. Liu, Q. Zeng, L. Cheng, H. Duan, and J. Cheng, “Measuring similarity
for data-aware business processes,” IEEE Transactions on Automation
Science and Engineering, pp. 1–13, 2021, in press.

[27] C. Combi and M. Gambini, “Flaws in the flow: The weakness of
unstructured business process modeling languages dealing with data,” in
On the Move to Meaningful Internet Systems: OTM 2009, Confederated
International Conferences, CoopIS, DOA, IS, and ODBASE 2009,
Vilamoura, Portugal, November 1-6, 2009, Proceedings, Part I, ser.
Lecture Notes in Computer Science, R. Meersman, T. S. Dillon, and
P. Herrero, Eds., vol. 5870. Springer, 2009, pp. 42–59. [Online].
Available: https://doi.org/10.1007/978-3-642-05148-7_6

[28] M. Dumas, L. García-Bañuelos, and A. Polyvyanyy, “Unraveling un-
structured process models,” in Business Process Modeling Notation.
Springer, 2010, pp. 1–7.

[29] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.
Addison-Wesley, 1995.

[30] L. Hunsberger, R. Posenato, and C. Combi, “A sound-and-complete
propagation-based algorithm for checking the dynamic consistency of
conditional simple temporal networks,” in 22nd Int. Symp. on Temporal
Representation and Reasoning (TIME). IEEE Press, 2015, pp. 4–18.

[31] S. Abiteboul and J. Van den Bussche, “Deep equality revisited,” in
International Conference on Deductive and Object-Oriented Databases.
Springer, 1995, pp. 213–228.

[32] G. Özsoyoğlu, Z. Özsoyoğlu, and V. Matos, “Extending relational
algebra and relational calculus with set-valued attributes and aggregate
functions,” ACM Transactions on Database Systems (TODS), vol. 12,
no. 4, pp. 566–592, 1987.

[33] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and A. Wess-
lén, Experimentation in Software Engineering. Springer-Verlag, 2012.

[34] J. Melcher, J. Mendling, H. A. Reijers, and D. Seese, “On measuring the
understandability of process models,” in Business Process Management
Workshops, ser. LNBIP, vol. 43. Springer, 2010, pp. 465–476.

[35] H. A. Reijers, J. Mendling, and R. M. Dijkman, “Human and automatic
modularizations of process models to enhance their comprehension,”
Information Systems, vol. 36, no. 5, pp. 881 – 897, 2011.

[36] J. Recker, H. A. Reijers, and S. G. van de Wouw, “Process model
comprehension: the effects of cognitive abilities, learning style, and
strategy,” Communications of the association for information systems,
vol. 34, no. 1, p. 9, 2014.

[37] W. Wang, M. Indulska, S. Sadiq, and B. Weber, “Effect of linked rules on
business process model understanding,” in International Conference on

Business Process Management (BPM), ser. LNCS, vol. 10445. Springer,
2017, pp. 200–215.

[38] H. Motulsky, Intuitive biostatistics: a nonmathematical guide to statis-
tical thinking. Oxford University Press, USA, 2014.

[39] M. Höst, B. Regnell, and C. Wohlin, “Using students as subjects—
a comparative study of students and professionals in lead-time impact
assessment,” Empirical Software Engineering, vol. 5, no. 3, pp. 201–214,
2000.

[40] M. Montali and A. Rivkin, “DB-Nets: On the Marriage of Colored Petri
Nets and Relational Databases,” in Transactions on Petri Nets and Other
Models of Concurrency XII. Springer, 2017, pp. 91–118.

[41] K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su, “Towards formal
analysis of artifact-centric business process models,” in International
Conference on Business Process Management (BPM). Springer, 2007,
pp. 288–304.

[42] Y. Sun, J. Su, B. Wu, and J. Yang, “Modeling data for business
processes,” in IEEE 30th International Conference on Data Engineering
(ICDE). IEEE Press, 2014, pp. 1048–1059.

[43] D. Calvanese, T. E. Kalayci, M. Montali, and S. Tinella, “Ontology-
based data access for extracting event logs from legacy data: the
onprom tool and methodology,” in International Conference on Business
Information Systems. Springer, 2017, pp. 220–236.

[44] E. González López de Murillas, H. A. Reijers, and W. M. P. van der
Aalst, “Connecting databases with process mining: a meta model and
toolset,” Software & Systems Modeling, vol. 18, no. 2, pp. 1209–1247,
2019.

[45] A. Polyvyanyy, J. M. E. M. van der Werf, S. Overbeek, and
R. Brouwers, “Information systems modeling: Language, verification,
and tool support,” in Advanced Information Systems Engineering - 31st
International Conference, CAiSE 2019, Rome, Italy, June 3-7, 2019,
Proceedings, ser. Lecture Notes in Computer Science, P. Giorgini and
B. Weber, Eds., vol. 11483. Springer, 2019, pp. 194–212. [Online].
Available: https://doi.org/10.1007/978-3-030-21290-2_13

[46] A. Tsoury, P. Soffer, and I. Reinhartz-Berger, “Data impact analysis
in business processes,” Bus. Inf. Syst. Eng., vol. 62, no. 1, pp. 41–60,
2020. [Online]. Available: https://doi.org/10.1007/s12599-019-00611-5

Carlo Combi is full professor of Computer Sci-
ence at the Dept. of Computer Science, University
of Verona. In 1993, he received the Ph.D. degree
in biomedical engineering from the Politecnico of
Milan. From 2009 to 2013 he was chair of the Artifi-
cial Intelligence in Medicine Society (AIME). Since
2017 he is Editor-in-Chief of the journal Artificial
Intelligence in Medicine. His main research interests
are in the database and information systems field,
with an emphasis on clinical data and processes.

Barbara Oliboni is associate professor at the Dept.
of Computer Science of the University of Verona.
She received the Ph.D. degree in Computer En-
gineering by the Politecnico of Milan. Her main
research interests are in the database field, with an
emphasis on semistructured data, temporal informa-
tion, business processes management, and clinical
information management. She is part of the Pro-
gram Committee of International Conferences, and
reviewer for International Journals.

Francesca Zerbato is a post-doc at the Institute of
Computer Science, University of St. Gallen, Switzer-
land. She obtained her Ph.D. degree in Computer
Science from the University of Verona in 2019.
Her main research interests are in information sys-
tems and BPM, with an emphasis on process and
data modeling, and healthcare applications. She is
a member of the program committee of the BPM
and SAC conferences, and managing editor of the
journal Artificial Intelligence in Medicine.

https://doi.org/10.1007/978-3-642-05148-7_6
https://doi.org/10.1007/978-3-030-21290-2_13
https://doi.org/10.1007/s12599-019-00611-5

